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Problem Description

In recent years, significant theoretical progress has been made by the group of Dr S.
Å. Ellingsen on wave phenomena atop vertically sheared currents; a particular point of
focus has been the waves behind moving wave sources – “ships”. Recently, the theory has
been confirmed by a series of laboratory experiments at Dr Ellingsen’s lab in the Fluid
Mechanics building, NTNU. The theory, which has been developed to handle a shear
current of arbitrary vertical shear, depends on modelling the ship as a travelling patch
of pressure which depresses the surface, yet while this this model goes back more than
a century, it is imperfect. Today, a single pressure patch of the same size and shape as
the desired wetted ship hull is used, however the actual depression of the water surface
beneath the patch will be different depending on the speed and direction with which it
travels. Thus, errors are made since the “ship” does not have the effective hull shape it
is supposed to.

The project will use a numerical scheme to solve the inverse problem: given a desired
wetted hull shape, speed and direction of motion, what must the pressure patch be to
produce this shape? The problem may be solved using either Green’s function techniques
or direct numerical minimization approaches, and will be considered in increasing levels
of complexity:

1. Develop a robust method for solving the simplest case: a 2D “ship” in deep water
with no current.

2. Generalise the method to 2D ship models of gradually increasing complexity

(a) in finite water depth with no current

(b) with a linear shear profile

(c) with arbitrary 2D shear profile

3. Generalise to 3D ship models

(a) With no current (symmetrical solution)

(b) With linear shear profile

(c) With arbitrary shear current, unidirectional and spiralling

4. Assuming sub-points of 3 can be achieved, the effect of using a correct, rather than
approximate, model on the following published predictions and results will be made:

(a) Using the method from 3a, test the wave predictions of

i. Darmon et al (2014) and Benzaquen et al. (2014) (deep water gravity
waves)

ii. Ledesma-Alonso et al (2016) for thin films

(b) Using the method from 3b, test the predictions of Ellingsen (2014) and Li and
Ellingsen (2016)
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(c) Using the method from 3c, test the theoretical predictions of Smeltzer et al
(2019), and the recent laboratory measurements of Smeltzer et al (in review).

5. Develop a robust and user-friendly numerical library for use by Ellingsen’s group
and general publication.

This list is an absolute best-case scenario, assuming no major unforeseen hurdles manifest
themselves; if it is completed it will be enough for an article in a leading international
journal. Realistically, time will not allow all points to be covered. The project is an
ambitious research project in the true sense of the word, with the inherent uncertainty
this entails.
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Abstract

In this thesis, a numerical method is developed for finding an external pressure distribu-
tion that models a ship on the water surface given the shape of the hull, the speed of
the moving ship, the water depth, and a depth-dependent shear profile. Using a pressure
patch to model a ship has commonly been done in the linear surface waves field over the
years. These pressures are, however, typically kept constant for different ship velocities,
water depth, and shear flow, and the effective ship hull in the water will change with these
conditions. The traditional pressure patch method is therefore not an accurate model
for a moving ship, and there is a need for a method that finds the pressure source that
correctly models the ship hull, given the geometry of the hull, ship velocity, water depth,
and shear flow.

The numerical method is a brute force method where a combination of mesh integration,
FFT and finite differences is used to solve the problem. The integral equation used for
finding the pressure patch is a Fredholm integral equation of the first kind, and solving
the equation for the pressure can be regarded as an inverse problem. By using a Green’s
function method and discretizing the equation, the problem is solved by solving the
linear equation system. Furthermore, the problem is solved in both 2D and 3D, and the
numerical method can calculate solutions for an arbitrary depth-dependent shear profile.

The accuracy of the solutions provided by the numerical method is found to be reasonably
accurate. The method can reproduce all the points in the given surface elevation with an
upper bound relative error of less than 0.5% for all the cases in this study. It was found
that the effect of ship velocity, water depth, and shear current profile had significant effects
on the pressure patch. Moreover, the calculated pressure patch is dramatically different
from the constant pressure patch that is traditionally used, where the traditionally used
patch only gives the correct effective ship hull when the ship velocity is zero. However,
there are some challenges with obtaining the solution of the inverse problem. As the
Green’s function is divergent for the point G(0) in addition to being slowly convergent
in the points close to zero, the Green’s function will not be fully converged. Also, the
radiation condition parameter ε needs to be set to a relatively high value in order to avoid
periodic boundary issues.

Nevertheless, the resulting pressure patches are ensuring the wanted prescribed surface
elevation on the water surface. However, the big pressure spikes occurring at the back
of the pressure patches are indicating the need for a more physical prescribed surface
elevation in the region of the ship. In the real world, a moving ship would be elevated
and tilted as the pressure forces act on the hull. Hence, the calculated pressure sources
should give a fair representation of moving the ship in the unnatural case of a non-
changing effective ship hull.
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Sammendrag

I denne oppgaven er det utviklet en numerisk metode for å finne en ekstern trykkfordeling
som modellerer et skip p̊a vannoverflaten gitt skrogets form, fartøyets fart, vanndybden
og en dybdeavhengig skjærprofil. Trykkflekker har ofte blitt brukt for å modellere skip
i kombinasjon med lineære overflatebølger gjennom årene. Disse trykkflekkene holdes
imidlertid konstant for forskjellige fartshastigheter, vanndybde og skjærstrøm, som vil
gjøre at det effektive skroget i vannet endres etter forholdene. Derfor er den tradis-
jonelle trykkflekkmetoden ikke en nøyaktig modell for skipsskrog, og det er behov for
en metode som finner trykkflekken som korrekt modellerer skipsskroget, gitt skrogets
geometri, hastighet, vanndybde og skjærstrømning.

Den numeriske metoden er brute en force-metoden der en kombinasjon av ”mesh”-
integrasjon, FFT og ”finite difference” brukes til å løse problemet. Integral ligningen
som brukes til å finne trykklappen, er en Fredholm integral likning av den første typen,
og å løse for likningen for trykket kan betraktes som et inverst problem. Ved å bruke en
Green’s funksjon og diskretisere ligningen, kan problemet løses ved å løse det lineære lign-
ingssystemet. Problemet løses i b̊ade 2D og 3D, og den numeriske metoden kan beregne
løsninger for en vilk̊arlig dybdeavhengig skjærprofil.

Nøyaktigheten av løsningene som er gitt ved den numeriske metoden er funnet å være
ganske gode. Metoden kan reprodusere alle punktene til den gitte overflaten med en øvre
grense for relativ feil p̊a mindre enn 0,5 % for alle testene i dette studiet. Det ble funnet at
effekten av skipshastighet, vanndybde og skjærstrømprofil hadde signifikante effekter p̊a
trykkflekken. Dessuten er den beregnede trykkflekken veldig forskjellig fra den konstante
trykkflekken som tradisjonelt brukes, hvor den tradisjonelt brukte flekken bare gir riktig
skipsskrog n̊ar skipets hastighet er null. Imidlertid er det noen utfordringer med å f̊a
løsninger for det inverse problemet. Siden Greens funksjonen er divergerende for punktet
G(0) i tillegg til å være sakte konvergende for punktene nær null, vil Greens funksjonen
ikke være fullt konvergert. I tillegg må str̊alingsbetingelsesparameteren ε settes til en
relativt høy verdi for å unng̊a periodisk grense-problemer.

Likevel sikrer de resulterende trykkflekkene ønsket høyde p̊a vannoverflaten. Imidlertid
viser de store trykktaggene p̊a baksiden av trykkflekken behovet for en mer fysisk ønsket
overflatehøyde i skipets omr̊ade. I den virkelige verden vil et skip bli forhøyet og rotert
bakover ettersom trykk-kraften virker p̊a skroget. Derfor er de beregnede trykkflekkene
en rettferdig representasjon av skip i det unaturlige tilfellet av ikke-skiftende effektive
skipsskrog.
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1 Introduction

Ship waves is a significant contribution to the dynamics of ships. While the waves them-
selves have been a curiosity for humans for a long time, the theory of ship waves has only
been studied for a little over a century. A ship traveling through water will create the
waves propagating away from the ship. Hence the creation of waves causes an energy loss
in itself in addition to the viscous drag [1]. The presence of a shear current beneath the
surface of the moving ship can greatly alter this energy loss in addition to some other
attributes of ship waves [1, 2, 3, 4]. Special care is needed for calculating ship waves
when introducing a shear current to the problem, hence a method called ’the pressure
patch model’ has been used in later years [2]. The pressure patch model uses an external
pressure patch on the surface of the water to model a moving ship.

1.1 Background

Water waves occur all around the world and in many forms, from tsunamis and ocean
tides to small waves created by ducks swimming in water. There is no doubt that water
waves impact humans in both big and small ways. Ship waves are of special importance
and can have huge impacts on the ship industry. Up to 30 % fuel consumption of ocean-
going ships is from making waves [5]. Therefore, an understanding of water waves and
ship wakes can have big implications in the design and maintenance of ships.

The theory of ship waves was first studied by the famous Lord Kelvin, which is why the
ship wake is often called the Kelvin wake. One of his most important conclusions was that
the wake line is offset from the path of the moving ship by an angle of arcsin(1/3) = 19.47°
called the Kelvin angle. These results are to this day still used and referred to [6, 7, 2].
In [8], they observed that the Kelvin angle seemed to decrease for higher Froude numbers
as a scale of Fr−1. This was quickly resolved by Darmond and his colleagues [9] and
Noblesse and his colleagues [7]. They show that the wave pattern seems narrower since
the maximum amplitude of waves scales as Fr−1 for high Froude numbers, while the
angle where no waves can be observed, remains constant and equal to the Kelvin angle
of 19.47°.

Some decades after Kelvin’s original treatment, T. H. Havelock developed a method for
modeling ships with an external pressure applied to the water surface, thus creating
a wave pattern behind the moving pressure [10]. This method is popularly called the
pressure patch model, which have some benefits that recent studies have taken advantage
of [6, 2, 3, 4]. This external pressure is only applied to the dynamic boundary condition
and does not affect the equations of motion. Thus, it does not pose any restrictions on
the flow vorticity like sources and sinks approaches. Hence, the pressure patch model
allows ship wakes in the presence of a depth-dependent shear flow.

Introducing a depth-dependent shear current under the water surface of a moving ship,
alter some key characteristics and implications of the waves. First of all in [2] Ellingsen
uses a linear depth-dependent shear current to show that the combined Kelvin angle
can now reach as much as 180°. Second of all, the functional relation between wave
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Figure 1: A Figure showing the definition of shear-inhibited and shear-assisted waves. The
illustration is taken from [4].

frequency, wave number and propagation direction, the dispersion relation, is altered

from the classical ω =
√

(gk + σk
ρ

)tanh(kh) for both the 2D and 3D case in presence

of a shear current [1, 11]. Due to the difference in phase velocities for shear-inhibited
and shear-assisted waves, mean kinetic energy is higher than mean potential energy for
shear-assisted waves. Shear-inhibited and shear-assisted waves are defined as shown in
Figure 1 as done in [4]. The opposite is true for shear-inhibited waves [1]. Hence, the
principle of equipartition does not hold for waves traveling through the water with a
shear current present. The shear current can, in a rough sense, alter the effective ship
velocity when looking at the stationary wave pattern. Shear-inhibited waves will have a
lower critical velocity, while shear-assisted waves will have a higher critical velocity. For
instance, increasing the strength of the shear current in a shear-assisted system can cause
a transition from subcritical waves to supercritical waves [3]. Also, an increase in side-on
shear strength can cause a subcritical to supercritical transition [3]. Moreover, the shear
current affects the wave resistance acting on the ship. Due to the asymmetrical wave
pattern created by the shear, except for the cases where the shear current direction is
directly upstream or downstream, there will be a lateral wave resistance component [3].
For a boat traveling on, for example, the Colombia river delta, the lateral wave resistance
typically accounts for around 20% of the total wave resistance [4]. Furthermore, the
velocity for maximum wave resistance is lowered in shear-inhibited waves and increased
for shear-assisted waves. Besides, the maximum wave resistance in itself increases in
shear-inhibited waves while decreasing in shear-assisted waves.

Arbitrary depth-dependent shear currents take a more complicated form than linearly
depth-dependent shear. In [12], a direct integration method for the dispersion relation
is developed. This is further used in [4] to develop a method for calculating transient
ship waves and wave resistance. As for the stationary ship waves, the situation simplifies
somewhat in comparison to the transient case. The implications of arbitrary shear profiles
are similar to that of linear shear profiles, although the numbers change.

Similar to a shear current, the constraint of having a finite depth underneath the moving
ship alter some key characteristics of the waves. In a finite depth, the dispersion relation
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will be changed being approximately ω =
√
gh for shallow waters. Thus, the critical

velocity is lower for shallow waters, since the phase velocities are lower and transverse
waves cannot keep up with the moving source for higher velocities [3]. The combination
of finite depth and a depth-dependent shear current is not intuitive, and hence careful
handling is required, and calculations need to be done on a case to case basis [3].

1.2 Thesis Motivation

As mentioned above, all the recent research concerning ship waves on depth-dependent
shear flow in 3D are using the pressure patch model. Nonetheless, there are some down-
sides to using this model. The pressure patch has the same shape as the desired wetted
ship hull. This gives a water surface depression equal to the hull when the ship is standing
still. The model fails to recognize, however, that the actual surface depression underneath
the patch will depend on the velocity of the ship, water depth, and the shear flow under-
neath.

A way to resolve this is to look at the inverse problem; given the wanted shape of the
hull, what must the pressure patch be to produce this shape.

In general, an inverse problem is one where you use an observed effect to determine
the nature of its cause, as opposed to a ”forward” problem where you predict the effect
when the cause is known. This particular inverse problem has not been treated before to
the author’s knowledge. Similar problems have been encountered in other areas, however.
Binder, Blyth, and McCue developed a numerical method to calculate the inverse problem
regarding free-surface flow past arbitrary topography [13]. In this case, the forward
problem would be calculating the free-surface given the topography. Hence, the numerical
tool determines the topography given the shape of the free surface. The method is used to
calculate the topography giving wave-free solutions. The inverse problem to the pressure
patch model is different, however, since the surface elevation is in this case caused by an
external pressure patch, not the topography. Besides, the complexity of the problem is
greatly enhanced by doing the calculations in 3D, while the topography inverse problem
is only done in 2D.

Today, using the pressure patch model in combination with the linearized Euler equations
is the only cheap way to simulate ship waves with vorticity. Thus, solving the inverse
problem could be interesting for design purposes of ships and boats. Experiments are
expensive and time-consuming and only done in the final stages of design. Solving the full
Navier-Stokes equations using computational fluid dynamics, is far too computationally
expensive for design purposes. Also, existing Green’s function methods are not applicable
in 3D with vorticity present. The results of studying ship waves in depth dependent shear
flows can therefore possibly be of great use. Furthermore, the results of these studies
could be used in operating decisions for ocean-going vessels. For example, are waves of
small boats in the Colombia river delta heavily dependent on the shear current and ship
velocity [4]. Hence being considerate of the velocity in regards to shear current can affect
the wave resistance significantly.
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1.3 Thesis Objective

This thesis aims to develop a method whereby the inverse pressure-patch problem may be
solved numerically. That is, the aim is to devise a method to calculate an applied pressure
distribution on the water surface which produces a desired wetted hull shape, given its
velocity, a vertically varying horizontal shear current and a constant water depth. The
problem will be addressed in settings of increasing complexity: first 2D then 3D geometry,
first uniform, then linearly varying and finally arbitrary shear current. Furthermore, the
thesis aims to develop a robust and user-friendly numerical library for use by Ellingsen’s
group and general publication.

2 Theoretical Framework

This section focuses on the theoretical framework required for solving the inverse problem
as well as the forward problem. The forward problem is, in this thesis, referring to the
classic problem of calculating the wave pattern given the external pressure distribution.

Initially, system definitions and geometry are defined. Then the linear surface waves
theory is laid out for both 2D and 3D in the most general case of arbitrary shear and
finite depth. The special cases like deep water and linear shear can be obtained from
the general cases. More specifically, the governing equations, boundary conditions, and
dispersion relation for linear surface waves will be described. These relations are the basis
for both the forward and inverse problem.

2.1 2D

2.1.1 System Definitions and Geometry

Following the work of the Ellingsen group [2, 3, 4], a combination of different definitions is
used for the 2D system. A ship moves with a steady velocity of V . A Cartesian coordinate
system is used where the origin is put at the surface of the water. Hence, z = 0 defines
the free water surface when everything is at rest, and the surface elevation is defined as
z = ζ̂(x, t), where x is the position on the surface and t is the time. The shear current
profile is defined as U and the water depth as h. The system can be visualized, as done
in Figure 2.
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Figure 2: A figure illustrating the geometry of the problem. The figure shows steady state
gravity waves generated from applying an external pressure source p̂ext. The ship moves at a
constant velocity of V and the depth dependent arbitrary shear flow is U . ζ̂ represents the

surface elevation and h the water depth.

The total velocity field can be written as

v(x, z, t) = (U(z) + û(x, z, t), ŵ(x, z, t)) (1)

Furthermore, let the pressure field be P (x, z, t) and p̂ be the dynamic pressure defined
as p̂ = P + ρgz, where g is the gravitational acceleration and ρ is the water density. The
flow is assumed to be incompressible and inviscid. All hatted quantities are assumed to
be small, and the solutions will be linearized with respect to these. Since this thesis is
only concerned with stationary waves, it is useful to introduce the variable ξ defined as
ξ = x − V t. Such a coordinate transformation will make the ship stand still with the
stationary waves behind.

The prescribed surface elevation ζ̂s(ξ) is defined on ξ ∈ [−l, l], such that L = 2l is the
length of the ship. Thus the surface elevation can be defined as

ζ̂(ξ) =

{
ζ̂s, if ξ ∈ [−l, l]
ζ̂[p̂ext(ξ)], otherwise

(2)

where p̂ext(ξ) is the unknown applied pressure patch. In this thesis, the external pressure
patch will only have non-zero values in the region of the ship, ξ ∈ [−l, l].

Underneath are a few definitions for later reference and convenience

U0 = U(0) , U ′0 = U ′(0) , F r =
V√
gL

, Frh =
V√
gh

, Frs =
V U ′0
g

Fr, Frh, Frs will be referred to as the Froude number, the height Froude number, and
the shear Froude number, respectively.
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2.1.2 Governing Equations

Since waves are of a periodic nature, it is useful to make the ansatz, as done by Li on
page 21 in [14], that all physical solutions depend on an overall oscillating factor e−iωt

where ω is the frequency of a propagating plane wave. The Fourier transform is therefore
taken for all of the physical quantities in the x-direction.

[û(x, z, t), ŵ(x, z, t), p̂(x, z, t), p̂ext(x, t), ζ̂(x, t)] =∫ ∞
−∞

dk

2π
[u(k, z), w(k, z), p(k, z), pext(k), ζ(k)]ei(kx−ωt)

(3)

Here k is the wave number.

As water in this problem is assumed to be inviscid and incompressible, the equations for
linear surface waves are determined from continuity and the Euler equations; as presented
in Equation (4a) and (4b).

∇ · v = 0 (4a)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + g (4b)

Following the procedure of Ellingsen in [2] by linearizing and taking the Fourier transfor-
mation, the Euler equations and continuity can be expressed as

iku+
∂w

∂z
= 0 (5a)

u(kU − ω)− iwU ′ = −kp
ρ

(5b)

iw(kU − ω) = −1

ρ

∂p

∂z
(5c)

Eliminating u and p, gives the Rayleigh equation

∂2w

∂z2
− k2w =

kU ′′

kU − ω
w (6)

which is in accordance to the Rayleigh equation on page 390 in [15]. k can have both
negative and positive values.

2.1.3 Boundary Conditions

To obtain the equation for linear surface waves, the boundary conditions need to be
specified. Specifically, the boundary conditions of interest are the no-penetration con-
dition, the kinematic boundary condition, and the dynamic boundary condition. The
no-penetration condition says that the vertical velocity ŵ needs to be zero at the bottom.
Hence the no-penetration condition can be written as
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w = 0 , at z = −h (7)

The kinematic boundary condition states that if fluid particles have reached the free
surface of the water, the fluid particle will always stay at the surface. The condition can
be defined as

Dζ̂

Dt
= ŵ

∣∣
z=0

(8)

This can be written as
w = i(kU − ω)ζ , at z = 0 (9)

The dynamic boundary condition states that the pressure right above the free surface
needs to equal the pressure right below. The ship waves in this problem fall under the
category of gravity waves; hence, it is reasonable to neglect surface tension effects in the
dynamic boundary condition [1]. Therefore, the condition can be stated as follows

P (ξ, ζ̂) = p̂ext (10)

Applying the dynamic boundary condition to the expressions above gives

k2
pext
ρ

= −i∂w
∂z

(kU − ω) + iwkU ′ − gk2ζ , at z = 0 (11)

For convenience, w0 is defined as w(k, 0) and ∂w0

∂z
as ∂w(k,0)

∂z
. Now, combining the kinematic

and dynamic boundary condition

i(kU0 − ω)k2
pext
ρ

= (kU0 − ω)2
∂w0

∂z
− (gk2 + kU ′0(kU0 − ω))w0 (12)

The Rayleigh equation (6) does not, in general, have an analytic solution. One of the
exceptions where the equation does have a solution is the case where the shear profile is
linear, U ′′ = 0. A solution to ∂2w

∂z2
− k2w = 0 is wh(k, z) = sinh(k(z+h))

sinh(kh)
. Using this result

and the no-penetration condition as done in [4] gives∫ 0

−h
dz[wh(k, z)(

∂2w(k, z)

∂z2
− k2w(k, z)) + w(k, z)(

∂2wh(k, z)

∂z2
− k2wh(k, z))]

= wh(k, 0)
∂w(k, 0)

∂z
− w(k, 0)

∂wh(k, 0)

∂z

=

∫ 0

−h
dz
kU ′′w(k, z)wh(k, z)

kU − ω

(13)

Inserting the combination of the kinematic and dynamic boundary condition (12) into
(13)

w0(k)∆R(k, ω(k)) = ik(kU0 − ω)tanh(kh)
pext
ρ

(14)
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where

∆R(k, ω(k)) = (1 + Ig)(ω − kU0)
2 +

(ω − kU0)(kU
′
0)tanh(kh)

k
− gktanh(kh)

Ig =

∫ 0

−h
dz

U ′′sinh(k(z + h))

(kU − ω)cosh(kh)

w(k, z)

w(k, 0)

Inserting this into (9) gives

ζ(k) =
pextktanh(kh)

ρ∆R(k, ω(k))
(15)

Taking the fourier transform and using the kinematic pressure, pext
ρ
→ pext, gives

ζ̂(ξ) =

∫ ∞
−∞

dk

2π

pextktanh(kh)eikξ

∆R(k, ω(k))
(16)

However, this integral is not defined due to singularities in the integrand. In order to
define the integral, a radiation condition can be used.

The radiation condition replaces ω with ω+ iε where ε is an infinitesimal positive variable
which preferably would be set to zero in the end. By adding this extra term, the poles are
moved off the real axis and integration path, and thus making it possible to evaluate the
integral using the residue theorem or numerical integrations like fast Fourier transform.
Another way to look at it is that the radiation condition adds an additional boundary
condition infinitely far away. Physically, there will be waves propagating from both the
source and from infinitely far away. The radiation condition constrains the steady-state
solution to have the waves propagating only from the source. It is the same as letting
the pressure be turned on gradually from t = −∞ [16]. L.D. Landau and E.M. Lifshitz
gives in paragraph 25 in [17] an approximate relation for ε as ε = 2νk2, where ν is the
kinematic viscosity. The reason why it is desired to have ε go to zero in the end, is that
viscous effects are neglected in this study, as is typically done for ship waves.

By replacing ω with ω + iε and neglecting second order terms of ε, the general solution
now reads,

ζ̂(x, t) =

∫ ∞
−∞

dk

2π

pextktanh(kh)ei(kx−ωt)

∆R(k, ω(k) + iε)
(17)

Furthermore, the phase velocity needs to be c = V for stationary waves. Hence the
angular frequency is ω = kV for 2D stationary waves. Now using the variable ξ defined
as ξ = x− V t,

ζ̂(ξ) =

∫ ∞
−∞

dk

2π

pextktanh(kh)eikξ

∆R(k, kV + iε)
(18)
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where

∆R(k, kV + iε) = (1 + Ig)(kV )2 + (V kU ′0 − gk)tanh(kh) + iεΦ

Φ = 2V k(1 + Ig) + U ′0tanh(kh)

Ig =

∫ 0

−h
dz

U ′′sinh(k(z + h))

k(U − V )cosh(kh)

w(k, z)

w(k, 0)

For brevity, the surface velocity is set to zero, U0 = 0. This is the general expression
for linear surface waves on depth dependent flow and more special cases can be obtained
from this equation. By setting the shear current to be linear, U ′′(z) = 0, Ig is zero,
and the known equation for surface waves on linear shear current is obtained as in [1].
Likewise, the expression for no shear surface waves can be obtained from setting U ′0 = 0,
and deep water surface waves by letting h→∞.

2.1.4 The Inverse Problem

Equation (18) is the equation for the surface elevation of linear surface waves, and solving
for ζ̂ is the forward problem. The problem of interest, the inverse problem, is finding
the external pressure distribution p̂ext corresponding to the given hull form ζ̂s. This has
never been done before to the author’s knowledge. An approach for solving this pressure
ship problem is to define a Green’s function as follows

G(k) =
ktanh(kh)

∆R(k, kV + iε)
(19a)

G(ξ) =

∫ ∞
−∞

dk

2π

ktanh(kh)eikξ

∆R(k, kV + iε)
(19b)

where G(k) is the Green’s function in Fourier space, and G(ξ) is the Green’s function in
real space. A Green’s function can be seen as an impulse response and a propagator, and
will in this case contain information about the propagation of particles at the surface.

The equation for surface elevation can then be expressed as

ζ̂(ξ) =

∫ ∞
−∞

dk

2π
pext(k)G(k)eikξ (20)

The convolution theorem gives

ζ̂(ξ) = p̂ext(ξ) ∗G(ξ) (21a)

ζ̂(ξ) =

∫ ∞
−∞

dξ′p̂ext(ξ
′)G(ξ − ξ′) (21b)

Since the applied pressure is only non-zero at ξ′ ∈ [−l, l]

ζ̂(ξ) =

∫ l

−l
dξ′p̂ext(ξ

′)G(ξ − ξ′) (22)
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Moreover, the surface elevation in the region of the ship, ξ ∈ [−l, l], is known. Thus, the
equation (22) can be expressed as

ζ̂s(ξ) =

∫ l

−l
dξ′p̂ext(ξ

′)G(ξ − ξ′) , ξ ∈ [−l, l] (23)

Now, using equation (23), it is possible to solve for the external pressure patch p̂ext. When
discretized, equation (23) makes a linear equation system where ζ̂s and G is known.

However, finding the Green’s function can be troublesome. Although the radiation con-
dition moves the poles of the integration path, the Green’s function is still divergent at
the point ξ = 0 due to lack of oscillations in the integrand. Furthermore, the integral
is slowly convergent in points close to ξ = 0, meaning the numerical integration needs
to be over a wider range of k-values in order to converge to a solution. In addition, the
spacing between the discretized k-values needs to be sufficiently small to resolve the more
frequent oscillations in the integrand occurring in points further away from ξ = 0. Plots
showing an oscillating and non-oscillating integrand are shown in Figure (3).

(a) (b)

Figure 3: Plots of the Green’s function integrand G(k) for (a) ξ = 0 (non-oscillating
integrand) (b) ξ = 1 (oscillating integrand). The plots are done for Fr = 0.5, Frh = 0.1,

Frs = 0, Frs = 0, Nship = 26, Nx = 215, and ε = 2

Furthermore, equation (23) is a Fredholm integral equation of type one and is known to
be ill-conditioned and sensitive to error when using numerical methods [18]

2.2 3D

By transitioning into 3D, the physics of the problem changes significantly. The waves
will now move in an extra dimension, hence dissipating quicker than for the 2D cases.
Furthermore, the wave pattern will look different and more realistic in comparison to
2D. The procedure for obtaining the governing equations are, however, similar to the
procedure for 2D.
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2.2.1 System Definitions and Geometry

The extension to 3D is quite trivial for system definitions and geometry. The ship now
moves with a velocity of V with a shear current profile U(z) = (Ux, Uy), water depth h,

and surface elevation ζ̂(x, t). x is defined as x = (x, y) and the origin of the Cartesian
coordinate system is still put at the water surface.

The total velocity field in 3D is

v(x, y, z, t) = (Ux(z) + û(x, y, z, t), Uy(z) + v̂(x, y, z, t), ŵ(x, y, z, t)) (24)

Furthermore, the dynamic pressure can now be written as

p̂(x, y, z, t) = P (x, y, z, t)− ρgz (25)

and

ξ = x− V t (26)

The surface elevation can now be defined as

ζ̂(ξ) =

{
ζ̂s(ξ), if ξ ∈ A
ζ̂[p̂ext(ξ)], otherwise

(27)

where A is the region of the ship. Also in 3D, it is assumed that the external pressure
will only have non-zero values in the region of the ship A.

Underneath are a few definitions for later reference and convenience

U0 = U(0) , U ′0 = U ′(0) , F r =
|V |√
gL

, Frh =
|V |√
gh

, Frs =
|V ||U ′0|

g

As for 2D, Fr, Frh, Frs will be referred to as the Froude number, the height Froude
number, and the shear Froude number, respectively.

2.2.2 Governing Equations

Using the same ansatz as done in 2D and on page 21 in [14] by Li

û(x, z, t), v̂(x, z, t), ŵ(x, z, t), p̂(x, z, t), p̂ext(x, t), ζ̂(x, t)] =∫
d2k

(2π)2
[u(k, z), v(k, z), w(k, z), p(k, z), pext(k), ζ(k)]ei(k·x−ωt)

(28)
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The continuity equation (4a) and linearized Euler equation (4b) can now be expressed as

ikxu+ ikyv +
dw

dz
= 0 (29a)

u(k ·U − ω)− iwdUx
dz

= −kx
p

ρ
(29b)

v(k ·U − ω)− iwdUy
dz

= −ky
p

ρ
(29c)

iw(k ·U − ω) = −1

ρ

dp

dz
(29d)

Eliminating u, v and p, gives the Rayleigh equation

∂2w

∂z2
− k2w =

k ·U ′′

k ·U − ω
w (30)

where U ′′ = d2U
dz2

.

2.2.3 Boundary Conditions

The same boundary conditions are needed in 3D as in 2D. The no-penetration condition
is exactly the same and can be written as

w = 0 , at z = −h (31)

The kinematic boundary condition, Dζ̂
Dt

= ŵ
∣∣
z=0

, can be expressed as follows in 3D

w = i(k ·U − ω)ζ , at z = 0 (32)

and the 3D dynamic boundary condition reads

k2
pext
ρ

= −i∂w
∂z

(k ·U − ω) + iw(k ·U ′)− gk2ζ , at z = 0 (33)

The same definitions as in 2D are made regarding the vertical velocity on the water
surface. w0 is defined as w(k, 0) and ∂w0

∂z
as ∂w(k,0)

∂z
. Combining the dynamic and kinematic

boundary condition then yields the relation

i(k ·U0 − ω)k2
pext
ρ

= (k ·U0 − ω)2
∂w0

∂z
− (gk2 + k ·U ′0(k ·U0 − ω))w0 (34)

The Rayleigh equation (30) does, in general, not have a analytic solution. One of the
exceptions where the equation does have a solution is the case where the shear profile is
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linear, U ′′ = 0. A solution to ∂2w
∂z2
− k2w = 0 is wh(k, z) = sinh(k(z+h))

sinh(kh)
. Using this result

no-penetration condition, w(k,−h) = 0, as done in [4] gives∫ 0

−h
dz[wh(k, z)(

∂2w(k, z)

∂z2
− k2w(k, z)) + w(k, z)(

∂2wh(k, z)

∂z2
− k2wh(k, z))]

= wh(k, 0)
∂w(k, 0)

∂z
− w(k, 0)

∂wh(k, 0)

∂z

=

∫ 0

−h
dz

(k ·U ′′)w(k, z)wh(k, z)

k ·U − ω

(35)

Inserting the combination of the kinematic and dynamic boundary condition (34) into
(35)

w0(k)∆R(k, ω(k)) = i(k ·U0 − ω)ktanh(kh)
pext
ρ

(36)

where

∆R(k, ω(k)) = (1 + Ig)(ω − k ·U0)
2

+
(ω − k ·U0)(k ·U ′0)tanh(kh)

k
− gktanh(kh)

Ig =

∫ 0

−h
dz

(k ·U ′′)w(k, z)sinh(k(z + h))

k(k ·U − ω)w(k, 0)cosh(kh)

Inserting this into (32) gives

ζ(k) =
pextktanh(kh)

ρ∆R(k, ω(k))
(37)

When using the kinematic pressure pext
ρ
→ pext and doing the fourier transform, the

equation for the surface elevation reads

ζ̂(x, t) =

∫
d2k

(2π)2
pextktanh(kh)ei(k·x−ωt)

∆R(k, ω)
(38)

For the 3D case, the angular frequency ω has to be ω = k ·V in order to obtain stationary
waves behind ships traveling at a constant speed of V . Hence, by applying the radiation
condition, the equation for surface waves is

ζ̂(x, t) =

∫
d2k

(2π)2
pextktanh(kh)ei(k·x−(k·V )t)

∆R(k,k · V + iε)
(39)

Now using the variable ξ defined as ξ = x − V t, the final equation for the stationary
surface elevation is
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ζ̂(ξ) =

∫
d2k

(2π)2
pextktanh(kh)ei(k·ξ)

∆R(k,k · V + iε)
(40)

where

∆R(k, ω(k)) = (1 + Ig)(k · V )2 +

(
(k · V )(k ·U ′0)

k
− gk

)
tanh(kh) + iεΦ

Φ = 2(k · V )(1 + Ig) +U ′0tanh(kh)

Ig =

∫ 0

−h
dz

(k ·U ′′)sinh(k(z + h))

k(k ·U − k · V )cosh(kh)

w(k, z)

w(k, 0)

As for 2D, the surface velocity is set to zero, U0 = 0. The different special cases can be
obtained from this equation. By setting the shear current to be linear, U ′′(z) = 0, Ig
is zero and the known equation for surface waves on linear shear current is obtained as
in [3]. Likewise, the expression for no shear surface waves can be obtained from setting
U ′0 = 0, and deep water surface waves by letting h→∞.

2.2.4 The Inverse Problem

Equation (40) is the equation for the surface elevation of linear surface waves, and solving
for ζ̂ is the forward problem. The problem of interest, the inverse problem, is finding
the external pressure distribution p̂ext corresponding to the given hull form ζ̂s. This has
never been done before. An approach for solving this pressure ship problem is to define
a Green’s function as follows

G(k) =
ktanh(kh)

∆R(k,k · V + iε)
(41a)

G(ξ) =

∫
d2k

(2π)2
ktanh(kh)ei(k·ξ)

∆R(k,k · V + iε)
(41b)

where G(k) is the Green’s function in Fourier space, and G(ξ) is the Green’s function in
real space. A Green’s function can be seen as an impulse response and a propagator, and
will in this case contain information about the propagation of particles at the surface.

The equation for surface elevation can then be expressed as

ζ̂(ξ) =

∫
d2k

(2π)2
pext(k)G(k)ei(k·ξ) (42)

The convolution theorem then gives

ζ̂(ξ) = p̂ext(ξ) ∗G(ξ) (43a)

ζ̂(ξ) =

∫
d2ξ′p̂ext(ξ

′)G(ξ − ξ′) (43b)

Moreover, since the applied pressure is only non-zero at ξ ∈ A

ζ̂(ξ) =

∫
A

d2ξ′p̂ext(ξ
′)G(ξ − ξ′) (44)
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As in the 2D case, finding the Green’s function can be troublesome. Although the radi-
ation condition moves the poles of the integration path, the 3D Green’s function is also
divergent at the point ξ = 0 due to lack of oscillations in the integrand. Similarly, the
integral is slowly convergent in points close to ξ = 0, meaning the numerical integration
needs to be over a wider range of k-values in order to converge to a solution. In addition,
the spacing between the discretized k-values needs to be sufficiently small in order to
resolve the more frequent oscillations in the integrand occurring in points further away
from ξ = 0. Plots showing an oscillating and non-oscillating integrand in the 3D case are
shown in Figure (4).

(a) (b)

Figure 4: Plots of the Green’s function integrand G(K) for (a) ξ = 0 (non-oscillating
integrand) (b) ξx = 1, ξy = 0 (oscillating integrand). The plots are done for Fr = 0.5,

Frh = 0.1, Frs = 0, Frs = 0, Nx,ship = 26, Nx = 213, and ε = 2

3 Methodology

The numerical method for solving the inverse problem was created in MATLAB and uses
a direct integration method. Also the verification, like solving the forward problem, is
done in MATLAB. SI units are used for all dimensional variables and parameters.

3.1 The code

3.1.1 Initializing

Initially, the code takes in some user-defined parameters. Due to the generality of the
code, there are many degrees of freedom when defining a system to calculate. The tables
(1) and (2) shows an overview of the different parameters that needs to be defined. The
numerical methods for solving the inverse problem can be found in Appendix B.
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Table 1: Table showing an overview of the different mandatory user defined parameters for
2D calculations

z A vector of the discretized variable z. This parameter is used to get the water-
depth in addition to being used in the equations.

L The length of the ship in longitudinal direction in meters.
Nship Number of points on the ship in x-direction.
Nx Number of points in the domain in x-direction.
ε The parameter used in the radiation condition.
V The velocity of the ship.
U The depth dependent shear current velocity as seen from the surface of the

water. The vector should be discretized to match the water depth z
U ′0 The derivative of the shear current velocity evaluated at the surface.
U ′′ The double derivative of the depth dependent shear current velocity as seen

from the surface of the water. The vector should be discretized to match the
water depth z

ζ̂s The wanted surface elevation in the area of the ship. Typically this means the
mean wet hull of the ship.
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Table 2: Table showing an overview of the different mandatory user defined parameters for
3D calculations

z A vector of the discretized variable z. This parameter is used to get the
waterdepth in addition to being used in the equations.

L The length of the ship in longitudinal direction in meters.
Nx,ship Number of points on the ship in x-direction.
Nx Number of points in the domain in x-direction.
AR The aspect ratio of the ship defined as AR = W/L where W is the width

of the ship. The aspect ratio is also used to define the number of points in
y-direction of both the ship and the domain, Ny = Nx · AR.

ε The parameter used in the radiation condition.
Vx The velocity of the ship in x-direction.
Vy The velocity of the ship in y-direction.
Ux The depth dependent shear current velocity in x-direction as seen from the

surface of the water. The vector should be discretized to match the water
depth z

Uy The depth dependent shear current velocity in y-direction as seen from the
surface of the water. The vector should be discretized to match the water
depth z

U ′0,x The derivative of the shear current velocity in x-direction evaluated at the
surface.

U ′0,y The derivative of the shear current velocity in y-direction evaluated at the
surface.

U ′′x The double derivative of the depth dependent shear current velocity in x-
direction. The vector should be discretized to match the water depth z

U ′′y The double derivative of the depth dependent shear current velocity in y-
direction. The vector should be discretized to match the water depth z

ζ̂s The wanted surface elevation in the area of the ship. Typically this means
the mean wet hull of the ship.

3.1.2 Finding the vertical velocity

Due to the complexity and generality of the problem, a numerical method is used for
calculating the vertical velocity in Fourier space. More specifically, a central difference
scheme of second order is used to calculate w in the Rayleigh equation (6) and (30).
Hence, the scheme can be formulated as follows,

wi+1 + wi−1 −
(

2 + ∆z2k2 + ∆z
U ′′

U − V

)
wi = 0 (45a)

wi+1 + wi−1 −
(

2 + ∆z2k2 + ∆z
k ·U ′′

k ·U − k · V

)
wi = 0 (45b)

where w is discretized in z-direction and is still a function of k. There are some problems
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with finding the vertical velocity however. First of all, the scheme cannot solve the
problem when U − V = 0 for the 2D case and k ·U − k · V = 0 for the 3D case. This is
what is called a critical layer and needs careful handling [14]. The critical layers happens
at a specific water depth zc. In 2D, it is only a problem if the shear current velocity
is greater than the speed of the moving ship. In 3D however, the problem can only be
avoided if the shear current is parallel to the moving ship for the whole water depth.
Second of all, the 3D case is not defined for k = 0. Both the critical layer and the k = 0
problem is ignored in this thesis by setting ∆z U ′′

U−V = 0 and ∆z k·U ′′

k·U−k·V = 0 for the 2D
and 3D case respectively.

3.1.3 Finding Ig

The next critical step in the numerical calculations is finding the function Ig. As Ig
is a function of k and a big k-domain is needed for accurate calculations, the simple
but quick trapezoid method is used for the integration. Also here, critical layers are a
problem. Here the critical layers appear as poles in the integrand when z = zc. Similar
to finding the vertical velocity, the problem is ignored by setting the integrand equal to
zero at the critical depths zc. As Ig is a function of k, this has to be done for all the
different k-values where a critical layer exists. Furthermore, the integrand is not defined
when k = 0. However, since the Green’s function integrand approaches zero in the limit
of k → 0, Ig is set to zero at this point.

3.1.4 The Inverse Problem

Finding the Green’s function matrix is a vital part of solving the inverse problem. Also,
the integral is divergent for G(0) and slowly convergent for other values. Hence, careful
handling of the Green’s function is needed. To treat the integral of the Green’s function
similar to the integral in the forward problem, the same k-mesh is used as in the forward
problem. Since the forward problem uses a Fast Fourier Transform scheme, the k-mesh
is restricted to equidistant points in a finite domain. This causes some issues for the
integration as a high integration limit difference is needed for convergence while small
distances in the area of the poles are necessary for an accurate result.

The integrand G(k) also causes some problems in MATLAB when k = 0. Hence the limit
lim
k→0

G(k) = 0 is done analytically and set manually in the code. As for Ig, the simple but

quick trapezoid scheme is used for the integration due to the size of the k-domain. The
double integral is done for each point ξ − ξ′

Now, the external pressure distribution or pressure patch can be calculated using the
Green’s function matrix and the prescribed surface elevation. The discretized relation
reads as follows.
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ζ
(ps)
i =

Nx∑
j

p̂ext(ξi)G(ξi − ξj)∆ξx (46a)

ζ
(ps)
i,j =

Ny∑
k

Nx∑
t

p̂ext(ξi,j)G(ξi,j − ξk,t)∆ξx∆ξy (46b)

where ζ
(ps)
i and ζ

(ps)
i,j are the discretized prescribed surface elevation for the 2D case and 3D

case respectively. This is a linear equation system that can be solved by using backslash
in MATLAB.

3.2 Cases

In order to test the pressure patch’s dependence on the velocity of the ship, water depth,
and shear current profile, some test cases have been constructed.

3.2.1 Overview

The resulting choice of parameters for the different cases are illustrated in the tables (3)
and (4).

Table 3: Table showing the different 2D test cases.

Fr Frh Frs Shear Direction Shear Profile
0.3 0.1 0 - -
0.5 0.1 0 - -
0.5 0.9 0 - -
0.5 0.1 0.5 Assisted Linear
0.5 0.1 0.5 Inhibited Linear
0.5 0.1 0.5 Assisted Exponential
0.5 0.1 0.5 Inhibited Exponential

Table 4: Table showing the different 3D test cases.

Fr Frh Frs Shear Direction Shear Profile
0.3 0.1 0 - -
0.5 0.1 0 - -
0.5 0.9 0 - -
0.5 0.1 0.5 Assisted Linear
0.5 0.1 0.5 Inhibited Linear
0.5 0.1 0.5 Side-On Linear
0.5 0.1 0.5 Assisted Exponential
0.5 0.1 0.5 inhibited Exponential
0.5 0.1 0.5 Side-On Exponential
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3.2.2 2D

For simplicity, a Gaussian distribution with length L = 1 is used for the prescribed surface
elevation as shown in Figure (5). It is described by equation (47).

ζ̂s = − 1

15
e−(

π
l
ξ)2 (47)

Figure 5: Prescribed surface elevation ζ̂s for the 2D cases.

Hence, the velocity of the ship V can be determined using the Froude number Fr = V√
gL

.

Furthermore, the z-vector is initialized using the height Froude number Frh = V√
gh

and
by the number of points in z-direction which is set to be Nz = 200 for all the cases.

To illustrate that the effects of a non-linear depth-dependent shear flow, an exponential
shear current profile, (48), is used in addition to the linear profile.

U(z) =
gFrs
3V

(1− e3z) (48)

Hence, the derivative evaluated at the surface is U ′0 = −gFrs
V

, which is the correct defi-
nition of the shear Froude number Frs. The depth-dependent shear profile is illustrated
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in Figure (6). By choosing such a shear profile, the problem of critical layers is avoided,
since the shear current velocity U never reaches the velocity of the moving sheep V . The
exponential shear current is illustrated for a shear-assisted system in Figure (6).

(a) (b)

Figure 6: Shear current profile for the 2D case as seen from the water surface when
Fr = 0.5, Frh = 0.1, Frs = 0.5 in a exponential shear profile in (a) a assisted system, (b) a

inhibited system.

The radiation condition parameter ε is set to the relatively high ε = 2. The reason for
using a high ε is to make the problem feasible to calculate without the use of supercom-
puters. By choosing a high ε, the integral in the Green’s function converges faster and
the physical domain Nx don’t have to be unreasonably big to avoid periodic boundary
condition issues. However, such a big ε is not physically correct and will alter some wave
characteristics. These issues will be discussed further in section (5).

3.2.3 3D

Similar to the 2D case, a elliptical Gaussian distribution is used with a longitudinal length
L = 1 and a width W = L · AR. An aspect ratio of AR = 0.25 is used for all 3D cases
done in this thesis. Thus, the resulting prescribed surface elevation is as shown in Figure
7. It is described by equation (49).

ζ̂s = − 1

15
e−((

π
l
ξx)2+( π

w
ξy)2) (49)
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Figure 7: Prescribed surface elevation ζ̂s for the 3D cases.

The velocity of the ship |V | is determined from the Froude number Fr = |V |√
gL

. As for

the 2D case, the z-vector is initialized using the height Froude number Frh = |V |√
gh

and
by setting Nz = 200.

The same shear current profile is used for the 3D case as the 2D case is used, only the
direction of the shear current is chosen to be normal to the direction of the moving ship.
If the ship moves in the x-direction, the shear current can be described by the following
equations
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Ux(z) = 0 (50a)

Uy(z) =
gFrs
3V

(1− e3z) (50b)

Furthermore, this shear current profile maintains the relationship Frs = |U0||V |
g

. The

shear current profile is illustrated in Figure (8).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Shear current profile for the 3D case as seen from the water surface when
Fr = 0.5, Frh = 0.1, Frs = 0.5 in a exponential shear profile in (a,b) a assisted system, (c,d)

a inhibited system, (e,f) a side-on system.

As for the 2D case, the radiation condition parameter ε is set to be ε = 2. The argument
that these calculations are computationally expensive is especially important in 3D. It
would not be possible to use this numerical tool for low ε and get accurate results without
the use of supercomputers.
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3.3 Verification

3.3.1 The Forward Problem

A reasonable test for checking the resulting pressure patch is to use it in the forward
problem and look at the resulting wave pattern and ship result. The discrete forward
problem is solved using a fast Fourier transform (FFT) method, which is a relatively
quick method for calculating a discrete Fourier transform. Initially, the FFT scheme is
used on the external pressure ˆ̃p to find the Fourier space external pressure p̃. Then an
inverse FFT method is used to calculate the surface elevation. More specifically, the
MATLAB functions fft() in the 2D case, and fft2() in the 3D case, are used for discrete
Fourier transform of the pressure. While the ifft(), and ifft2() are used for inverse discrete
Fourier transform to find the surface elevation.

The discrete forward problem in 2D can be formulated as a discrete Fourier transform.

ζ̂k =
1

N

N∑
n=1

p̃nkntanh(knh)e
2πi
N

(n−1)(k−1)

(∆R)n
(51)

where

(∆R)n = (1 + (Ig)n)(knV )2 + (V knU
′
0 − gkn)tanh(knh) + iεΦn

Φn = 2V kn(1 + (Ig)n) + U ′0tanh(knh)

(Ig)n =

∫ 0

−h
dz

U ′′sinh(kn(z + h))

kn(U − V )cosh(knh)

wn
(w0)n

The 3D discrete forward problem can be formulated as

ζ̂t,k =
1

M

M∑
m=1

1

N

N∑
n=1

p̃m,nkm,ntanh(km,nh)e
2πi
M

(m−1)(t−1)e
2πi
N

(n−1)(k−1)

(∆R)m,n
(52)

where

(∆R)m,n = (1 + (Ig)m,n)((kx)m,nVx + (ky)m,nVy)
2

+

(
((kx)m,nVx + (ky)m,nVy)((kx)m,nU

′
x,0)

km,n
− gkm,n

)
tanh(km,nh) + iεΦm,n

Φm,n = 2((kx)m,nVx + (ky)m,nVy)(1 + (Ig)m,n) +U ′0tanh(km,nh)

(Ig)m,n =

∫ 0

−h
dz

(km,n ·U ′′)sinh(km,n(z + h))

km,n(km,n ·U − km,n · V )cosh(km,nh)

w(km,n, z)

w(km,n, 0)

The difference between the wanted surface elevation in the area of the ship and the
actual surface elevation is a natural way to verify the pressure patches. Moreover, the
mean relative error defined as
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εs =
max(|ζ̂ − ζ̂s|)

max(|ζ̂s|)
(53)

will be used as verification for the different cases in this thesis.

3.3.2 Green’s function

As the pressure patch is highly dependent on the Green’s function, it is important to
investigate the function in order to verify that the resulting pressure patch is in fact
correct. More specifically, a convergence test concerning both the integral limits and
the Fourier spacing ∆k is conducted. Since the k-values used for the integration in the
Green’s function are the same as the ones used in a FFT scheme, the only way to increase
the integration limits is to decrease the distance between points in real space, ∆ξx and
∆ξy. Hence, the convergence of the function regarding the integral limits is tested by
increasing the number of points in the region of the ship Nship, making the spacing in
real space smaller. The convergence is measured as the difference in the solution for the
current Nship and some presumed correct solution with a relatively high Nship. For 2D,
the presumed correct solution was the value obtained when setting Nship = 210, In 3D,
Nship = 27 was used as the reference point. The solution obtained for both the 2D and
3D case is not, however, expected to be fully converged for all the points. But due to the
computational expensiveness of the problem, these parameters are reasonable to get an
estimate of the convergence. The Green’s function is as mentioned in section (2.1.4) and
(2.2.4), not convergent in the point ξ = 0, and slowly convergent close to this point.

The integrand of the Green’s function is highly oscillating for high values of ξ, as seen in
figure (3) and (4). Therefore, it is important to have sufficiently small spacing in Fourier
space making ∆k small. This can be done by increasing the number of points in the
domain. Similar to the integral limits, the convergence test regarding ∆k is measured by
the difference in value between the current number of points in the domain Nx and some
presumed correct solution with a relatively high Nx.

3.3.3 Verifying Ig

Ig is used in both the forward problem and the inverse problem when an arbitrary depth-
dependent shear profile is present. Hence, the solution of this integral plays an important
role in the results. As the parameter Nz is not used for other calculations other than for
Ig, the verification of Ig is important when determining Nz. Similar to the convergence
test of the Green’s function, a reference value presumed to be correct was used to measure
the convergence of the integral. However, since Ig is less computationally expensive than
the Green’s function, the error is defined as the mean difference of all the points in Ig.

εIg = mean(|Ig − Ig,final|) (54)
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The different size parameters will be set to a suitable value determined by the convergence
test of the Green’s function. Furthermore, the reference value used as the presumed
correct solution Ig,final is solution obtained when setting Nz = 300 for both the 2D and
3D case.

3.3.4 Wavelength

An additional test for the 2D results is to check to measure the resulting wavelength and
compare it to the theoretical wavelength. Since the result of the inverse problem are, in
most cases considered in combination with solving the forward problem, some validation
for the forward problem is useful. The wavelength is measured at the points indicated in
Figure 9 for all the 2D cases.

Figure 9: A figure showing how the wavelength is measured.

The theoretical wavelength is found using the implicit dispersion relation ∆R = 0. More-
over, the numerical method of Newton-Raphson is used to obtain the wavelength. The
scheme can be expressed as follows.

λ(n+1) = λ(n) − ∆R(λ(n))

∆′R(λ(n))
(55)
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(a) (b)

Figure 10: Plots showing the implicit dispersion relation Υ(λ) = ∆R(λ) and its derivative
Υ′(λ) = ∆′R(λ) in the case of Fr = 0.5, Frh = 0.1, and Frs = 0.5.

Due to the sloping of the implicit dispersion relation ∆R(λ), a high initial guess for the
wavelength λ will make the solution diverge. Hence, a low initial guess of λ = 0.01 is
made for all the different cases. As seen in Figure (10), this low initial guess will make
the solution converge to the right solution.

3.3.5 The inverse problem

A way to test the inverse problem solver is to use the numerical method to find a pressure
patch for a surface depression where the pressure patch is already known. More specifi-
cally, given a Gaussian pressure p̂ext, the surface elevation in the region of the ship will
be one of the plots in section 4.1. Thus, if one of these plots are given as the wanted
surface elevation in the area of the ship, the resulting pressure should be precisely the
Gaussian pressure.

4 Results

4.1 Constant Pressure Source

Part of the motivation for this thesis is that using the same pressure source for different
conditions won’t produce the same effective ship hull on the water surface. Hence, this
section is included to show the effect of changing the conditions.

4.1.1 2D

A regular Gaussian pressure distribution is used as the pressure patch, as shown in Figure
11a. This gives the right surface elevation in the area of the ship, as shown in Figure
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11b, when Fr = 0.

(a) (b)

Figure 11: Plots showing (a) the regular Gaussian pressure patch used, p̂ext = −gζ̂s (b) the

wanted surface elevation in the area of the ship in 2D ζ̂s = − 1
15e−(

π
l
ξ)2 .

The effect of increasing the velocity is shown in Figure 12. As seen, the ship velocity
changes the surface elevation in the region of the ship significantly.

(a) (b) (c)

Figure 12: Plots showing the effect of increasing the velocity for a constant pressure source.
The plots are taken for Frh = 0.05, Frs = 0, and (a) Fr = 0, (b) Fr = 0.3, (c) Fr = 0.5.

Also, changing the water depth effects the resulting effective ship hull. The effect of
purely decreasing the water depth is shown in Figure 13.
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(a) (b)

Figure 13: Plots showing the effect of decreasing the water depth for a constant pressure
source. The plots are taken for Fr = 0.5, Frs = 0, and (a) Frh = 0.05, (b) Frh = 0.9.

In a shear-assisted system, the wavelength is shortened. This also affects the effective
ship hull for a constant pressure source. The effect of increasing the shear strength in a
shear-assisted system is shown in Figure 14.

(a) (b)

Figure 14: Plots showing the effect of increasing the shear strength in a shear-assisted
system for a constant pressure source. The plots are taken for Fr = 0.5, Frh = 0.1, and (a)

Frs = 0, (b) exponential shear profile with Frs = 0.5.

Likewise, the wavelength is lengthened in a shear-inhibited system. In addition, the shear
current profile seems to raise the surface elevation in the region of the ship. The effect of
increasing the shear strength in a shear-inhibited system is shown in Figure 15.
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(a) (b)

Figure 15: Plots showing the effect of increasing the shear strength in a shear-inhibited
system for a constant pressure source. The plots are taken for Fr = 0.5, Frh = 0.1, and (a)

Frs = 0, (b) exponential shear profile with Frs = 0.5.

4.1.2 3D

A regular Gaussian pressure distribution is used as the pressure patch, as shown in Figure
16a. This gives the right surface elevation in the area of the ship, as shown in Figure
16b, when Fr = 0.

(a) (b)

Figure 16: Plots showing (a) the regular Gaussian pressure patch used, p̂ext = −gζ̂s (b) the

wanted surface elevation in the area of the ship in 3D ζ̂s = − 1
15e−((

π
l
ξx)2+( π

w
ξy)2) .

The effect of increasing the velocity is shown in Figure 17. As for the 2D case, the ship
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velocity has a significant effect on the surface elevation in the region of the ship.

(a) (b)

(c)

Figure 17: Plots showing the effect of increasing the velocity for a constant pressure source.
The plots are taken for Frh = 0.1, Frs = 0, and (a) Fr = 0, (b) Fr = 0.3, (c) Fr = 0.5.

While decreasing the water depth in 2D had a noticeable effect on the surface elevation in
the region of the ship, the effect of decreasing the water depth in 3D is almost negligible.
This can be seen in Figure 18.
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(a) (b)

(c) (d)

Figure 18: Plots showing the ship results from different water depths when a constant
pressure source is used. (c) and (d) are scaled color images looking at the surface elevation

from above The plots are taken for Fr = 0.5, Frs = 0, and (a,c) Frh = 0.1, (b,d) Frh = 0.9.

The effect of increasing the shear strength in a shear-assisted system is shown in Figure
19. Similar to 2D, the effect of introducing a shear-assisted profile is to shift the wave
pattern towards the right. Thus the surface elevation in the region of the ship has higher
a wave amplitude closer to the center of the pressure patch.
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(a) (b)

Figure 19: Plots showing the effect of increasing the shear strength in a shear-assisted
system for a constant pressure source. The plots are taken for Fr = 0.5, Frh = 0.1, and (a)

Frs = 0, (b) Frs = 0.5 with a exponential shear profile.

While a shear-assisted system increases the amplitude close to the center of the pressure
patch, a shear-inhibited system decreases it. The effect of increasing the shear strength
in a shear-inhibited system is shown in Figure 20.

(a) (b)

Figure 20: Plots showing the effect of increasing the shear strength in a shear-inhibited
system for a constant pressure source. The plots are taken for Fr = 0.5, Frh = 0.1, and (a)

Frs = 0, (b) Frs = 0.5 with a exponential shear profile.
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The effect of increasing the shear strength in a side-on shear system is shown in Figure
21. As seen, the resulting surface elevation in the region of the ship is shifted upwards in
the direction of the shear current. Hence, an asymmetric ship result is created.

(a) (b)

Figure 21: Plots showing the effect of increasing the shear strength in a side-on shear system
for a constant pressure source. The plots are taken for Fr = 0.5, Frh = 0.1, and (a) Frs = 0,

(b) Frs = 0.5 with a exponential shear profile.

4.2 Variable Pressure Source

The ship velocity, water depth, and shear current profile have a significant effect on the
surface elevation in the area of the ship. Hence, these conditions are expected to affect
the calculated pressure patch from the inverse problem. This section studies the effect of
ship velocity, water depth, and shear profile on the resulting pressure patch.

First of all, when using the calculated pressure patch, the difference between the pre-
scribed surface elevation and the resulting surface elevation in the area of the ship is
almost imperceptible. For more information about the error of the result, see section 4.5.
The resulting surface elevation in the region of the ship for both 2D and 3D are shown
in Figure 22.
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(a) (b)

(c) (d)

Figure 22: Plots showing the prescribed surface elevation for the (a) 2D case, (c) 3D case,
and the ship result for (b) 2D case where Fr = 0.5, Frh = 0.1, Frs = 0.5, (d) 3D case where

Fr = 0.5, Frh = 0.1, Frs = 0.5.

Second of all, the resulting pressure distribution is significantly different from the regular
Gaussian pressure distribution. As seen in Figure 23 and 24, there are much bigger
pressure variations away from the center of the patch. This can be seen as the pressure
compensating for the slower reaction time of the water surface when the ship is moving at
a certain velocity. Also, some pressure spikes are happening at the back of the pressure
patches for both the 2D and 3D case, although the 3D pressure patches tend to have bigger
spikes than the 2D patches. These pressure spikes cause some trouble when looking at
the wave pattern created. This will be discussed further in section 5.
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(a) (b)

Figure 23: Plots showing the resulting pressure patch when Fr = 0.5 Frh = 0.1, Frs = 0,
(a) Regularized scaling of plot (b) Full plot.

(a) (b)

Figure 24: Plots showing the resulting pressure patch when Fr = 0.5 Frh = 0.1, Frs = 0.
(a) Regularized scaling of plot (b) Full plot

Furthermore, the different conditions have similar effects on the calculated pressure
patches as the ship results for a constant pressure source. The biggest effect, as for
the ship result of with constant pressure patch, is the increase of ship velocity. Here,
the increase in velocity causes bigger pressure variations throughout the pressure patch.
Physically, this makes sense as more power is needed to compensate for shorter impact
time. The effect can be seen in Figure 25 and 26. As the pressure patch values in the
middle of the patch are of interest as well as the back, a regularized set of plot limits are
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used when illustrating the pressure patches. The same plot limits as in Figure 23a and
24a are used.

(a) (b)

Figure 25: Plots showing the resulting pressure patch when Frh = 0.1, Frs = 0, (a)
Fr = 0.3 (b) Fr = 0.5

(a) (b)

Figure 26: Plots showing the resulting pressure patch when Frh = 0.1, Frs = 0, (a)
Fr = 0.3 (b) Fr = 0.5

Similar to the ship result of a constant pressure patch, the effect of decreasing the water
depth has a bigger impact on the 2D pressure patch than the 3D pressure patch. In
2D, the pressure patch is more symmetrical with a slightly raised left side, causing the
pressure spike at the back of the patch to have a smaller magnitude. In 3D, the impact
is imperceptible from looking at the regular external pressure distribution surface plot.
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However, when looking at the full pressure patch, it is possible to see that also in 3D,
the decrease of water depth dampens the pressure spikes. The regular external pressure
distribution plots are shown in Figure 27 and 28, while the full pressure patch in the 3D
case are shown in Figure 29.

(a) (b)

Figure 27: Plots showing the resulting pressure patch when Fr = 0.5, Frs = 0, (a)
Frh = 0.1 (b) Frh = 0.9

(a) (b)

Figure 28: Plots showing the resulting pressure patch when Fr = 0.5, Frs = 0, (a)
Frh = 0.1 (b) Frh = 0.9
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(a) (b)

Figure 29: Plots showing the full resulting pressure patch when Fr = 0.5, Frs = 0, (a)
Frh = 0.1 (b) Frh = 0.9

The effect of increasing the shear flow strength in 2D for both a shear-inhibited and shear-
assisted system are shown in Figure 30. Moreover, the figure shows the effect of both a
linear and an exponential shear current profile. As can be seen, the shear-assisted system
causes the pressure spikes to be bigger, in addition to lowering the pressure values at the
left side of the patch in general. The opposite is true for the shear-inhibited system, where
the pressure spikes are smaller and the left side of the patch is in general raised, making
the pressure distribution more symmetrical. It should also be noted that the exponential
shear current profile seems to have a stronger effect on the pressure distribution compared
to the linear profile.
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(a)

(b) (c)

(d) (e)

Figure 30: Plots showing the resulting pressure patch when Fr = 0.5, Frh = 0.1, (a)
Frs = 0, (b) Frs = 0.5 in a linear shear-assisted system, (c) Frs = 0.5 in a linear

shear-inhibited system, (d) Frs = 0.5 in a exponential shear-assisted system, (e) Frs = 0.5 in
a exponential shear-inhibited system.

The effects that the shear current profile had on the 2D pressure patches can be observed
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in 3D by looking at Figure 31 and 32. For a shear-assisted profile, the back side of the
pressure patch is lowered, while for a shear-inhibited profile, the back side of the pressure
patch is raised. The exception to this rule is the external pressure distribution for an
exponential shear-assisted profile. Here, the back side of the pressure patch is raised. This
anomaly seems to be connected to the problem of critical layers. A further discussion
about critical layers can be found in section 5. Increasing the shear strength in the case of
side-on shear profile causes an asymmetry in the pressure distribution. A high pressure is
needed at the back right corner of the ship, upstream of the shear current, whereas a low
pressure is needed at the back left corner of the ship, downstream of the shear current.
This is shown in Figure 33.
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(a) (b)

(c)

Figure 31: Plots showing the resulting pressure patch when Fr = 0.5, Frh = 0.1, (a)
Frs = 0, (b) Fr = 0.5 with a linear shear-assisted profile, (b) Fr = 0.5 with a exponential

shear-assisted profile.
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(a) (b)

(c)

Figure 32: Plots showing the resulting pressure patch when Fr = 0.5, Frh = 0.1, (a)
Frs = 0, (b) Fr = 0.5 with a linear shear-inhibited profile, (b) Fr = 0.5 with a exponential

shear-inhibited profile.
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(a) (b)

(c)

Figure 33: Plots showing the resulting pressure patch when Fr = 0.5, Frh = 0.1, (a)
Frs = 0, (b) Fr = 0.5 with a linear side-on shear profile, (b) Fr = 0.5 with a exponential

side-on shear profile.

4.3 Green’s function

Since the solution of the inverse problem is highly dependent on the Green’s function,
some insight into the nature of the resulting pressure patches can be gained from looking
at the effect of different conditions on the Green’s function. As shown in Figure 34, the
effect of increasing the velocity is an increase in wavelength and decrease in amplitude
for both the 2D and 3D case. This implies the response from applying a pressure patch
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on the water surface is dampened for higher velocities and higher wavelengths will occur.

(a) (b)

Figure 34: Plots showing the Green’s function when Frh = 0.1, Frs = 0, (a) Fr = 0.3, (b)
Fr = 0.5.

(a) (b)

Figure 35: Plots showing the Green’s function when Frh = 0.1, Frs = 0, (a) Fr = 0.3, (b)
Fr = 0.5.

As for the external pressure, the effect of decreasing the water depth is only noticeable
in 2D. When the ship is traveling through shallow waters in 2D, the Green’s function
have higher amplitudes upstream of the point pressure and the amplitudes are in general
higher around the point pressure compared to a deep water case. Hence, the surface
elevation of the point in question will be more affected by surrounding points in shallow
water than in deep water. In addition, the wavelength of the pressure point response is
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longer in shallow water than in deep water. Figure 36 shows the effect of decreasing the
water depth in 2D, while Figure 37 shows how similar the Green’s function is at different
water depths in 3D.

(a) (b)

Figure 36: Plots showing the Green’s function when Fr = 0.5, Frs = 0, (a) Frh = 0.1 (b)
Frh = 0.9.

(a) (b)

Figure 37: Plots showing the Green’s function when Fr = 0.5, Frs = 0, (a) Frh = 0.1 (b)
Frh = 0.9.

The effect of introducing a shear current profile to the problem in 2D is shown in Figure
38. Increasing the shear strength in a shear-assisted system will decrease the wavelength
in the Green’s function while in a shear-inhibited system the wavelength will increase.
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(a)

(b) (c)

Figure 38: Plots showing the Green’s function when Fr = 0.5, Frh = 0.1, (a) Frs = 0, (b)
Frs = 0.5 in a exponential shear-assisted system, (c) Frs = 0.5 in a exponential

shear-inhibited system.

The same effect can be seen in Figure 39 and 40 for the 3D case. For a side on shear profile,
the Green’s function will become asymmetrical and the V-shape will rotate slightly in
the direction of the shear current as shown in Figure 41.
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(a) (b)

Figure 39: Plots showing the Green’s function when Fr = 0.5, Frh = 0.1, (a) Frs = 0, (b)
Frs = 0.5 with a exponential shear-assisted profile.

(a) (b)

Figure 40: Plots showing the Green’s function when Fr = 0.5, Frh = 0.1, (a) Frs = 0, (b)
Frs = 0.5 with a exponential shear-inhibited profile.
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(a) (b)

Figure 41: Plots showing the Green’s function when Fr = 0.5, Frh = 0.1, (a) Frs = 0, (b)
Frs = 0.5 with a exponential side-on shear profile.

4.4 Wave Pattern

It has been shown that using the calculated pressure patch, the resulting pressure, as
well as the ship result, changes drastically. A change in the external pressure distribution
does not, however, mean a big difference in wave pattern created by the moving ship.
This section compares the wave pattern created by a calculated pressure patch to the
constant Gaussian pressure patch used in section 4.1. All the different wave patterns for
the different cases are shown in Appendix A.

4.4.1 2D

In 2D, there are two important differences in the wave pattern from the constant pressure
source and the calculated pressure patch. Firstly, the surface elevation close to the
ship, the near field, is significantly different. The calculated pressure patch forces the
surface elevation in the region of the ship to shape of the effective wetted hull, and waves
propagate accordingly from the source. While the near field is different for the constant
and calculated pressure, the far field does not change significantly. This effect is best
seen in the shallow water case illustrated in Figure 42.
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(a) (b)

Figure 42: Plots showing the wave pattern for Fr = 0.5, Frh = 0.9, Frs = 0 for (a) a
Gaussian pressure source, (b) the calculated pressure source.

Secondly, the amplitude of the waves is bigger for the calculated pressure patch compared
to the constant Gaussian pressure patch. The reason for this is the spikes at the back of
the pressure patch. The difference in amplitude is best shown with an exponential shear-
assisted profile as illustrated in Figure 43. A list of all the differences in max amplitude
is shown in Table 5.

(a) (b)

Figure 43: Plots showing the wave pattern of a shear-assisted system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for a exponential shear profile, where (a) is a Gaussian pressure source,

(b) is the calculated pressure source.
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Table 5: Table maximum amplitudes for the different cases. Amplitude C is the maximum
amplitude of the waves created by a calculated pressure patch, while Amplitude G is the

maximum amplitude of the waves created by a Gaussian pressure patch.

Fr Frh Frs Shear Direction Shear Profile Amplitude C Amplitude G
0.5 0.1 0 - - 0.37708 0.17752
0.5 0.1 0 - - 0.14488 0.10687
0.5 0.9 0 - - 0.04449 0.081377
0.5 0.1 0.5 Assisted Linear 0.33293 0.10906
0.5 0.1 0.5 Inhibited Linear 0.051175 0.056612
0.5 0.1 0.5 Assisted Exponential 0.12008 0.10325
0.5 0.1 0.5 Inhibited Exponential 0.01528 0.075527

4.4.2 3D

The same differences in wave pattern between the constant and calculated pressure patch
can be seen in 3D as in 2D. While the surface elevation in the near field is changed
significantly, the wave pattern in the far field has the same form. In 3D, however, the
differences in wave pattern are bigger than for 2D. The amplitude difference is amplified in
3D due to the bigger pressure spikes happening at the back of the pressure patch. Besides,
the 3D calculated pressure patch creates some noise happening inside the transverse
waves. This is due to the positive pressure spikes happening at the back corners of the
pressure patch. All these differences can be seen in Figure 44. Furthermore, the increase
in amplitude difference for 3D cases can be seen in Table 6.

(a) (b)

Figure 44: Plots showing the wave pattern for Fr = 0.5, Frh = 0.1, Frs = 0, where (a) is a
Gaussian pressure source, and (b) is the calculated pressure source.
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Table 6: Table maximum amplitudes for the different cases. Amplitude C is the maximum
amplitude of the waves created by a calculated pressure patch, while Amplitude G is the

maximum amplitude of the waves created by a Gaussian pressure patch.

Fr Frh Frs Shear Direction Shear Profile Amplitude C Amplitude G
0.3 0.1 0 - - 1.2482 0.038428
0.5 0.1 0 - - 0.62602 0.042634
0.5 0.9 0 - - 0.59291 0.038362
0.5 0.1 0.5 Assisted Linear 0.55171 0.047824
0.5 0.1 0.5 Inhibited Linear 0.86136 0.034200
0.5 0.1 0.5 Side-on Linear 2.1118 0.043671
0.5 0.1 0.5 Assisted Exponential 2.0295 0.047916
0.5 0.1 0.5 Inhibited Exponential 1.0006 0.033161
0.5 0.1 0.5 Side-on Exponential 3.1245 0.042965

4.5 Verification

4.5.1 Forward Problem

The resulting error in ship results for the different cases can be seen in Table 7 and 8. The
tables show that there is a clear difference in accuracy for the calculated pressure patch
and the constant Gaussian pressure patch. While the error of the Gaussian pressure is
in the order of magnitude of 10−1, the calculated pressure patch’s errors are typically in
the order of magnitude of 10−6 for 2D and 10−4 for 3D.

Table 7: Table showing the mean relative errors for different cases in 2D. Fr is the Froude
number Fr = V√

gL
where L is the longitudinal length of the ship. Frs is the shear Froude

Number defined as Frs =
V U ′

0
g . Frh is the height Froude number Frh = V√

gh
. The cases are

simulated using ε = 2, Nz = 200, a 64 point ship, and a 32768 point domain. Error C is the
mean relative error in the region of the ship for a calculated pressure patch, while Error G is

the mean relative error in the region of the ship for a Gaussian pressure patch.

Fr Frh Frs Shear Direction Shear Profile Error C Error G
0.3 0.1 0 - - 1.59× 10−5 0.97670
0.5 0.1 0 - - 3.6773× 10−6 0.85404
0.5 0.9 0 - - 9.1142× 10−7 1.2204
0.5 0.1 0.5 Assisted Linear 1.01× 10−5 0.66793
0.5 0.1 0.5 inhibited Linear 1.07× 10−6 0.89279
0.5 0.1 0.5 Assisted Exponential 2.0326× 10−6 0.57895
0.5 0.1 0.5 inhibited Exponential 4.0892× 10−7 0.89279
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Table 8: Table showing the mean relative errors for different cases in 3D. Fr is the Froude
number Fr = |V |√

gL
where L is the longitudinal length of the ship. Frs is the shear Froude

Number defined as Frs =
|V ||U ′

0|
g . Frh is the height Froude number Frh = |V |√

gh
. The cases are

simulated using ε = 2, Nz = 200, a 16× 64 point ship, and a 2048× 8192 point domain. Error
C is the mean relative error in the region of the ship for a calculated pressure patch, while
Error G is the mean relative error in the region of the ship for a Gaussian pressure patch.

Fr Frh Frs Shear Direction Shear Profile Error C Error G
0.3 0.1 0 - - 1.0730× 10−4 0.19001
0.5 0.1 0 - - 1.5353× 10−4 0.21462
0.5 0.9 0 - - 1.5725× 10−4 0.22644
0.5 0.1 0.5 Assisted Linear 3.0959× 10−5 0.20312
0.5 0.1 0.5 Inhibited Linear 1.7962× 10−4 0.21558
0.5 0.1 0.5 Side-On Linear 1.8779× 10−4 0.21386
0.5 0.1 0.5 Assisted Exponential 2.1074× 10−4 0.19846
0.5 0.1 0.5 Inhibited Exponential 9.7286× 10−5 0.21550
0.5 0.1 0.5 Side-On Exponential 3.006× 10−3 0.21402

4.5.2 2D Green’s function

Since the results are highly dependent on the Green’s function, it is desirable to have a
converged solution of the function. As mentioned in section ref(), the Green’s function
is divergent at the point G(ξ = 0). Unfortunately, it is not possible to get accurate
solutions for the points close to ξ = 0 as well. The reason for this is that the same
k-values as in the FFT are used for the integration, making the kmax-value dependent on
∆ξ. Trying to get higher kmax-values by making ∆ξ smaller will create points closer to
ξ = 0, which in turn requires higher kmax-values. In addition, the calculations quickly
become computationally expensive by decreasing ∆ξ. Thus, this thesis is only concerned
with obtaining reasonably accurate solutions of the Green’s function for parts of the
domain. As seen in Figure 45, the solution of the Green’s function is quickly converged
to a solution for points far away from ξ = 0. However, for points closer to ξ = 0, the
Green’s function is slower to converge. Figure 46 illustrates this.
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(a) (b)

Figure 45: Plots showing the convergence of the Green’s function at the fastest converging
point, G(ξ = 1). The test is done for Fr = 0.5, Frh = 0.1, Frs = 0.

(a) (b)

Figure 46: Plots showing the convergence of the Green’s function at a slow converging point,
G(ξ = 0.01). The test is done for Fr = 0.5, Frh = 0.1, Frs = 0.

As can be seen from Figure 46, the Green’s function is not quite converged for ξ = 0.01
when using Nship = 26. Nevertheless, having Nship = 26 is a reasonable choice as this
on the verge of making the calculations too computationally expensive for a normal
computer. For points ξ > 0.01, the solution should be reasonably converged. It should
be noted that the convergence of the Green’s function is also affected by the shear current
profile and the water depth. However, the conclusion remains the same. The Green’s
function will be well converged for points far away from ξ = 0, while being quite converged
for points close to ξ = 0.

Now, given that Nship = 26, the problem is to find the required ∆k in order to solve the
integrals correctly. The convergence of the integral regarding the number of points in the
domain Nx is shown in Figure ref() for the different cases in the highest oscillating point
G(ξ = 1).
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(a) (b)

Figure 47: Plots showing the convergence of the Green’s function at the most oscillating
point, G(1). The error is defined as the difference between the value of the Green’s function
integral for the current domain Nx to the value of the integral when the domain is Nx = 222.

The test is done for Fr = 0.5, Frh = 0.1, Frs = 0

By looking at the plots in Figure 47, it is clear that choosing a domain size of Nx = 215

should be sufficient for the 2D case when ε = 2 and Nship = 26. Also here, the convergence
of the Green’s function is affected by the shear current profile and the water depth.
However, having Nx = 215 makes the integrals converged for all the different cases.

4.5.3 3D Green’s function

The same issues regarding the convergence of the Green’s function are encountered in 3D
as in 2D, only now the computational effort is an even bigger issue. As seen in Figure
48, G(ξx = 1) is in the 3D case not converged for Nx,ship = 26.

(a) (b)

Figure 48: Plots showing the convergence of the Green’s function at the fastest converging
point, G(ξx = 1). The test is done for Fr = 0.5, Frh = 0.1, Frs = 0.
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Choosing Nx,ship = 26 is the highest number of points in the region of the ship possible
without the use of supercomputers for the current numerical method. Figure 49 shows
that by choosing Nx = 213 should be sufficient for making the integrals converge with
respect to the domain size.

(a) (b)

Figure 49: Plots showing the convergence of the Green’s function at the most oscillating
point, G(1). The error is defined as the difference between the value of the Green’s function
integral for the current domain Nx to the value of the integral when the domain is Nx = 215.

The test is done for Fr = 0.5, Frh = 0.1, Frs = 0

4.5.4 Convergence of Ig

Ig is used in both the forward problem and the inverse problem and plays an important
role in the results. As the parameter Nz is not used for other calculations other than
for Ig, the verification of Ig is important when determining Nz. Figure 50 shows the
convergence of Ig as a function of Nz.

57



(a) (b)

Figure 50: Plots showing the convergence of Ig with respect to Nz. The simulation is done
for ε = 2, Fr = 0.5, Frh = 0.1, Frs = 0.5 with an exponential shear-assisted profile. Moreover,

(a) is the 2D-case with Nship = 26 and Nx = 215 while (b) is 3D-case with Nx,ship = 26 and
Nx = 213.

By looking at the plots, it is clear that Ig is reasonably well converged for values of
Nz = 200 with errors in the order of magnitude of 10−3.

4.5.5 2D Wavelength

A comparison between the theoretical and measured wavelength in 2D is presented in
Table 9.

Table 9: Table comparing the theoretical wavelength to the measured wavelength.

Fr Frh Frs Shear Direction Shear Profile λm λt ελ
0.3 0.1 0 - - 0.5652 0.5655 5.4× 10−4

0.5 0.1 0 - - 1.5651 1.5708 3.6× 10−3

0.5 0.9 0 - - 2.2016 2.2580 2.5× 10−2

0.5 0.1 0.5 Assisted Linear 1.0445 1.0472 2.5× 10−3

0.5 0.1 0.5 Inhibited Linear 3.0315 3.1416 3.5× 10−2

0.5 0.1 0.5 Assisted Exponential 0.9619 0.9631 1.1× 10−3

0.5 0.1 0.5 Inhibited Exponential 3.5485 8.8063 6.0× 10−1

As seen in the table, the relative error between the measured and theoretical wavelength
are in most cases lower than 3%. The exception is for the exponential shear-inhibited
case where a relatively high error is present. Moreover, the calculated wavelength is,
in general, further away from the theoretical wavelength when the waves are heavily
damped. This is the case for both the shear-inhibited cases as well as the shallow water
case. One reason for this could be that as the waves are heavily damped, the effect of
having a too high ε is bigger since ε can be seen as the viscous damping of waves.
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4.5.6 Inverse Problem

The high pressure spikes happening at the back of the pressure patch might seem a little
strange. The Green’s function matrix have relatively high condition numbers, and as
the inverse problem is a Fredholm type one problem, small inaccuracies in the input are
known to create big differences in the results. To test if these pressure spikes are a result
of inaccuracies in the inverse problem solver, the test described in section 3.3.5. Figure
51 shows this test for both the 2D and 3D case.

(a) (b)

(c) (d)

Figure 51: Plots showing the resulting pressure patch from the given prescribed surface
elevation. The given surface elevation is known to be created by a Gaussian pressure patch.

The simulation is done for Fr = 0.5, Frh = 0.1, Frs = 0. (a,b) 2D case, (c,d) 3D case

As seen in the plots, the inverse solver is able to get the Gaussian pressure distribution
back. In fact, the mean relative error of the pressure is εp = 3.2974 × 10−12 in 2D and
εp = 1.0776× 10−10 in 3D.
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5 Discussion

Solving the inverse problem shows that there are some differences between the calculated
pressure patch and the constant Gaussian pressure patch both in the near field and the far
field. The calculated pressure patch is able to get the wanted prescribed surface elevation
in the area of the ship to a much higher accuracy than the Gaussian. However, the
waves created by the calculated pressure are of a higher amplitude than for the Gaussian
pressure. In fact, the Gaussian pressure creates amplitudes closer to what is expected in
real life, as the calculated pressure creates waves up to 50 times the height of the hull.

The high amplitudes appearing when using the calculated pressure patch is due to the
high pressure spikes happening at the back of the patch. There could be several reasons
for this. As explained above, a possible reason for such a result could be the high condition
numbers of the Green’s function matrix used to solve the linear equation system. However,
the inverse solver is able to accurately reproduce the benchmark pressure without any big
pressure spikes. Hence the high amplitudes are not likely to be caused by inaccuracies in
the inverse solver.

A more troublesome issue is the convergence of Ig and the Green’s function. Due to the
computational effort needed in both time and memory, the calculations are not done with
highly accurate solutions of Ig and the Green’s function. This will create oscillations in
the solution. Nonetheless, these oscillations will be all over the pressure patch and does
not cover up the fact that there exist big pressure spikes at the back of the patch. Hence,
the convergence of Ig and the Green’s function alone cannot be the reason for the pressure
spikes.

Another simplification made in order to make the problem computationally reasonable
is the relatively high value of the radiation condition parameter ε. As mentioned in
section 2.1.3, L.D Landau and E.M. Lifshitz approximate the relation for this parameter
as ε = 2νk2, which means that the value of ε should be in the order of magnitude of
10−4 for the most of the wave spectrum that is contributing to the stationary waves.
Furthermore, since the viscosity is often neglected in gravity waves, the desired way to
treat ε is to let it go to zero after doing the integral. This is not possible, however, when
doing the calculations numerically as done in this thesis. Nonetheless, the value of ε = 2
is too high for normal ship waves. This is the reason why some of the wave patterns look
odd for the 2D case, as the viscous damping of the waves is unnaturally high. Also, the
Green’s function integral is changed significantly compared to lower values of ε. However,
since radiation condition parameter can be looked at as the viscous damping of waves, it
is assumed that choice of ε will not have a significant effect on the result close to and in
the area of the ship.

A possible explanation of the high pressures in the pressure patch is the unnatural shape
forced on the surface elevation. First of all, a Gaussian ship hull is not a realistic hull for
a ship. Second of all, a moving ship would not create the same effective wetted hull on the
water surface as a ship standing still or a ship moving at another velocity. The calculated
pressure patch would, in accordance with Newton’s third law, also act on the ship hull.
As seen in the results, there is, in most cases, a big negative pressure spike at the back of
the pressure patch. This would create a downward force on the ship, making the ship tilt
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backward as can be seen in real life for boats traveling at a certain velocity. When trying
to force the water surface to be exactly the same as a Gaussian ship standing still, there
is a substantial negative pressure needed in order to ”suck up” the water so quickly after
being pushed downwards. Likewise, the big positive pressure spikes happening at the
corners of the pressure patch can be explained by needing to stop the upward momentum
of the water in order to create the corners of the ship hull.

6 Concluding Remarks

This thesis investigates a method for finding a pressure patch that is able to mirror a given
effective wetted hull of a ship onto the water surface in a certain region. Compared to a
constant Gaussian pressure patch, often used in investigations of ship waves with wave-
current interactions, the calculated pressure patch gives a more accurate representation of
the wanted surface elevation in the region of the ship. Similar to the surface elevation in
the region of the ship, the pressure patch needed to get the prescribed surface elevation is
dependent on the velocity, water depth, and shear current profile. Increasing the velocity
of the moving ship causes the calculated pressure patch to have bigger pressure variations
throughout the patch. When decreasing the water depth, the pressure patch needs smaller
pressure spikes at the back of the patch in 2D, while in 3D the effect of decreasing water
depth is negligible. The wave pattern created in both 2D and 3D is, however, affected
by the water depth. Thus, agreeing with the results of [3]. Introducing a shear-assisted
profile to the problem causes the pressure patch to have bigger negative pressure spikes at
the back of the ship region while having a shear-inhibited profile makes the pressure patch
have less negative pressure spikes. Furthermore, having a side-on shear profile causes an
asymmetric pressure patch with more positive values upstream of the shear current and
more negative values downstream.

While the results in the region of the ship are significantly different when using a calcu-
lated pressure patch compared to the constant Gaussian, the surface elevation difference
is smaller in the far field. The same wave pattern can be seen from the calculated pressure
patch as for the constant Gaussian. Furthermore, the effect of velocity, water depth, and
shear current profile regarding the wave pattern are the same for both Gaussian and the
calculated pressure patch. However, the effect of the pressure spikes is noticeable in the
wave pattern for the calculated pressure patch. The effect of the pressure spikes are three-
fold; First of all, the surface elevation in the near field is changed significantly. Second
of all, the area at which the largest waves exist increase. Third of all, the amplitudes of
the waves increase significantly compared to a constant Gaussian pressure patch. These
differences in the wave pattern and the pressure spikes causing them indicates an issue
in the way the calculated pressure patch model is currently used. While the prescribed
surface elevation would be the correct effective wetted hull for a ship standing still, the
given surface elevation is not natural for a moving ship. In accordance to Newton’s third
law, the big pressure spikes will create a force on the moving ship that affects the posi-
tion of the ship on the water surface, both in height and in tilt angle. Therefore, there
is a need for a more sophisticated method of predicting the effective wetted ship hull for
different conditions if this model is to be used to simulate a moving ship, both regarding
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the wave pattern and the pressure forces acting on the ship hull.
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7 Appendix A

7.1 Wave pattern

7.1.1 2D

(a) (b)

(c) (d)

Figure 52: Plots showing the wave pattern for (a,b) Fr = 0.3, Frh = 0.1, Frs = 0, (c,d)
Fr = 0.5, Frh = 0.1, Frs = 0, where (a,c) is a Gaussian pressure source, and (b,d) is the

calculated pressure source.
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(a) (b)

Figure 53: Plots showing the wave pattern for Fr = 0.5, Frh = 0.9, Frs = 0 for (a) a
Gaussian pressure source, (b) the calculated pressure source.

(a) (b)

(c) (d)

Figure 54: Plots showing the wave pattern of a shear-assisted system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for (a,b) a linear shear profile, (c,d) a exponential shear profile, where

(a,c) is a Gaussian pressure source, (b,d) is the calculated pressure source.
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(a) (b)

(c) (d)

Figure 55: Plots showing the wave pattern of a shear-inhibited system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for (a,b) a linear shear profile, (c,d) a exponential shear profile, where

(a,c) is a Gaussian pressure source, (b,d) is the calculated pressure source.
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7.1.2 3D

(a) (b)

(c) (d)

Figure 56: Plots showing the wave pattern for (a,b) Fr = 0.3, Frh = 0.1, Frs = 0, (c,d)
Fr = 0.5, Frh = 0.1, Frs = 0, where (a,c) is a Gaussian pressure source, and (b,d) is the

calculated pressure source.
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(a) (b)

Figure 57: Plots showing the wave pattern for Fr = 0.5, Frh = 0.9, Frs = 0 for (a) a
Gaussian pressure source, (b) the calculated pressure source.
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(a) (b)

(c) (d)

Figure 58: Plots showing the wave pattern of a shear-assisted system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for (a,b) a linear shear profile, (c,d) a exponential shear profile, where

(a,c) is a Gaussian pressure source, (b,d) is the calculated pressure source.
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(a) (b)

(c) (d)

Figure 59: Plots showing the wave pattern of a shear-inhibited system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for (a,b) a linear shear profile, (c,d) a exponential shear profile, where

(a,c) is a Gaussian pressure source, (b,d) is the calculated pressure source.
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(a) (b)

(c) (d)

Figure 60: Plots showing the wave pattern of a side-on shear system with Fr = 0.5,
Frh = 0.1, Frs = 0.5 for (a,b) a linear shear profile, (c,d) a exponential shear profile, where

(a,c) is a Gaussian pressure source, (b,d) is the calculated pressure source.
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8 Appendix B

8.1 Example Script for 2D

% Example script for arbitrary shear

g = 9.81; % Gravitational acceleration

Fr = 0.5; % Froude number

L = 1; % Length of ship

V = Fr*sqrt(g*L); % Speed of moving ship

Frh = 0.1; % Height Froude number

h = ((V/Frh)^2)/g; % Water depth

nz = 200; % Number of points in z-direction

z = linspace(0,-h,nz)’; % z-vector

dz = -z(2); % z-step

Frs = 0; % Shear Froude number

direction = ’Assisted’; % Direction of the shear current, can

% choose between ’Assisted’ and

% ’Inhibited’

shearProfile = ’Exponential’; % Type of shear profile, can choose

% between ’Exponential’ and ’Linear’

[U,dU0,ddU] = createArbitraryShear2D(Fr,Frs,L,z,direction,shearProfile);

n_ship = 2^6; % Number of points on the ship

nx = 2^15; % Number of points in the whole domain

epsilon = 2; % The radiation condition number

incPlt = false; % Include plot of ship?

zeta_s = createShip2D(L,n_ship,incPlt); % Ship geometry

PltOpt = ’None’; % Plotting options for the results,
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% options: ’All’, ’Essentials’, ’None’

p_ext = -g*zeta_s; % Gaussian pressure source usually used

% for constant pressure source cases

OptIn = {p_ext,’Pressure’}; % One example of optional input to the

% solver. Other options are ’Greens’ with

% a Green’s function matrix

[Wavelength_t,Ig,p_ext,zeta,dk,k_max,zeta_error,maxAmp] = ...

solvePressureShip2D(z,L,n_ship,nx,epsilon,V,U,dU0,ddU,shearProfile,...

zeta_s,PltOpt);

dx = 0.015873

dk = 0.01208

k_max = 197.9083

Error = -0.071096

maxAmp = 0.14488

Wavelength = 1.5708

No plots for you

8.2 2D solver

% Mandatory Input: z-vector, length of ship, number of points on ship,

% number of points on ship , radiation condition parameter, ship

% velocity, shear current, shear current derivative at surface,

% souble derivative of shear current, shear profile

% Optional Input:

% zeta_s (hull shape)

% PltOpt (Plotting options) = ’None’, ’Essentials’ or ’All’

% OptIn (Optional input) = {data,’Greens’ or ’Pressure’}

% (Green’s function or external pressure distribution)

% Example of Green’s function input:

% load(’G_ij.mat’)

% OptIn = {G_ij,’Greens’};

% Example of pressure input:

% load(’Gauss_p.mat’)

% OptIn = {p_ext,’Pressure’};

function [Wavelength_t,Ig,p_ext,zeta,dk,k_max,zeta_error,maxAmp] = ...

solvePressureShip2D(z,L,n_ship,nx,epsilon,V,U,dU0,ddU,...
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shearProfile,zeta_s,PltOpt,OptIn)

switch nargin

case 13

switch OptIn{2}

case ’Pressure’

hasG_ij = false;

hasp_ext = true;

p_ext = OptIn{1};

case ’Greens’

hasG_ij = true;

hasp_ext = false;

G = OptIn{1};

otherwise

error("Invalid optional input. The input needs to be either

’Greens’ or ’Pressure’.")

end

hasship = true;

n_ship_test = length(zeta_s);

if n_ship_test ~= n_ship

n_ship = n_ship_test;

disp(’Changed nx_ship to the dimension of the given ship’)

end

case 12

hasG_ij = false;

hasp_ext = false;

hasship = true;

n_ship_test = length(zeta_s);

if n_ship_test ~= n_ship

n_ship = n_ship_test;

disp(’Changed nx_ship to the dimension of the given ship’)

end

case 11

hasG_ij = false;

hasp_ext = false;

hasship = true;

PltOpt = ’None’;

n_ship_test = length(zeta_s);

if n_ship_test ~= n_ship

n_ship = n_ship_test;

disp(’Changed nx_ship to the dimension of the given ship’)

end

case 10
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hasG_ij = false;

hasp_ext = false;

hasship = false;

PltOpt = ’None’;

otherwise

error("Invalid number of input.")

end

% Initialize

g = 9.81; % Gravitational acceleration

h = -z(end); % Water depth

l = L/2; % Length of half the ship

% Size of small domain

x_L = -l; % Lowest value of xi while in ship region

x_H = l; % Highest value of xi while in ship region

xi_ship = linspace(x_L,x_H,n_ship); % xi for the ship region

dx = xi_ship(2) - xi_ship(1);

% Size of big domain domain

x_L2 = -dx*((nx-1)/2); % Lowest value of xi in the whole domain

x_H2 = dx*((nx-1)/2); % Highest value of xi in the whole domain

xi = linspace(x_L2, x_H2, nx); % xi for the whole domain

% Useful relations between big domain and ship

nx_0 = nx/2; % The integer at which xi = 0 is

ship_dom = (nx_0-(n_ship/2 - 1)):(nx_0+(n_ship/2)); % Ship domain

% Shape of hull

if ~hasship

zeta_s = -(1/15)*exp(-((pi/l)*xi_ship).^2); % Create the a standard

% ship geometry

end

zeta_s = zeta_s(:); % Creating the ship geometry vector

% Fourier space

[k, dk] = build_k_mesh2D(nx,dx);

k_shift = fftshift(k);

k_max = max(k(:));

% Size of Greens domain

nx_green = n_ship*2-1;

xi_green = linspace(x_L*2,x_H*2,nx_green);
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% Check if Ig calculations are necessary

if dU0 ~= 0 && ~strcmp(shearProfile,’Linear’)

% Calculate vertical velocity

w = findVel2D(U,V,ddU,k,z);

% Calculate Ig

Ig = findIg2D(w,U,V,ddU,k,z);

clear(’w’) % Clear up memory

Ig_shift = fftshift(Ig); % Shift Ig for use in Greens calculations

else

Ig = 0;

Ig_shift = 0;

end

% Green’s function

if ~hasp_ext

if ~hasG_ij

G = greenMatrix(Ig_shift,epsilon,V,dU0,xi_green,k_shift,h);

hasG_ij = true;

end

p_ext = findPressure(G,zeta_s,n_ship,dx);

end

% Finding the wave patter

zeta = forwardProblem(Ig,p_ext,ship_dom,epsilon,V,dU0,k,h);

% Post Processing

wavePattern_ship = zeta(ship_dom);

% Error

zeta_error = mean(abs((wavePattern_ship(:) - zeta_s(:))))/max(zeta_s(:));

% Max amplitude

maxAmp = max(real(zeta(:)));

% Wavelength

Fr = V/sqrt(g*L);

Wavelength_t = findWavelengthShear(Fr,U,ddU,dU0,z,L,h,shearProfile);

% Display important info

75



disp([’dx = ’, num2str(dx)])

disp([’dk = ’, num2str(dk)])

disp([’k_max = ’, num2str(k_max)])

disp([’Error = ’, num2str(zeta_error)])

disp([’maxAmp = ’, num2str(maxAmp)])

disp([’Wavelength = ’, num2str(Wavelength_t)])

% Creating Plotting Structures

plottingParam.xi_ship = xi_ship;

plottingParam.xi = xi;

plottingParam.xi_green = xi_green;

plottingParam.l = l;

plottingData.p_ext = p_ext;

plottingData.zeta_s = zeta_s;

plottingData.wavePattern_ship = wavePattern_ship;

plottingData.zeta = zeta;

if hasG_ij

plottingData.G_ij = G;

end

switch PltOpt

case ’None’

disp(’No plots for you’)

otherwise

plottingWaves(plottingParam,plottingData,PltOpt,hasG_ij)

end

end

%%%%%%%%%%%%%%%%% Local Functions %%%%%%%%%%%%%%%%%%%%%%

% Building the Fourier space

% This function builds a mesh in fourier space from a mesh defined in

% real space, using MATLAB’s convention for ordering of frequencies.

% Input: nx - number of mesh columns, ny - number of mesh rows

% dx - mesh element width in x-direction

% Output: Wave number, step size in Fourier space

function [k, dk] = build_k_mesh2D(nx,dx)

dk = 2*pi/(nx*dx);

k = [0:floor(nx/2)-1, -ceil(nx/2):-1]*dk;
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end

% Finding the vertical velocity

% Input: Shear current, ship velocity, double derivative of shear

% current, wave number, z-vector

% Output: Vertical velocity in fourier space

function w = findVel2D(U,V,ddU,k,z)

dz = abs(z(2)-z(1));

nz = length(z);

n = length(k);

a_diag = ones(nz-3,1);

c_diag = ones(nz-3,1);

rightSide = zeros(nz-2,1);

rightSide(1) = -1;

w = zeros(n,nz);

w(:,1) = 1;

ddU_dummy = ddU(2:end-1);

U_dummy = U(2:end-1);

w_dummy = zeros(n,nz-2);

for i = 1:n

b_diag = -2 - dz^2*k(i)^2 - dz^2 * ddU_dummy./(U_dummy-V);

velMat = diag(a_diag,1) + diag(b_diag) + diag(c_diag,-1);

w_dummy(i,:) = velMat\rightSide;

end

w(:,2:end-1) = w_dummy;

end

% Finding Ig

% Input: Vertical velocity, shear current, ship velocity, double

% derivative of shear current, wave number, z-vector

% Output: Ig

function Ig = findIg2D(w,U,V,ddU,k,z)

h = -z(end);

n = size(k,2);
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Ig = zeros(size(k));

for i = 1:n

w_v = w(i,:)’;

Ig_integrand = (ddU.*w_v.*sinh(k(i)*(z+h)))./((k(i)*(U-V))*cosh(k(i)*h));

high_var = (abs((k(i)*(z+h))) > 300);

if sum(high_var(:)) > 0

if k(i) > 0

Ig_integrand(high_var) = (ddU(high_var).*w_v(high_var)...

.*exp(k(i)*z(high_var)))./(k(i)*(U(high_var)-V));

else

Ig_integrand(high_var) = (ddU(high_var).*w_v(high_var)...

.*(-exp(-k(i)*z(high_var))))./(k(i)*(U(high_var)-V));

end

end

null_Var = (k(i)*(U-V)) == 0;

Ig_integrand(null_Var) = 0;

Ig(i) = trapz(z,Ig_integrand);

end

end

% Finding Green’s Function Matrix

% Input: Ig, radiation condition parameter, ship velocity, shear

% current derivative at the surface, xi, wave number, water depth

% Output: Green’s function matrix

function G = greenMatrix(Ig,epsilon,V,dU0,xi,k,h)

% Initiate

g = 9.81;

[km,xim] = meshgrid(k,xi);

[Igm,~] = meshgrid(Ig,xi);

% Calculating the denominator Delta_r or Dr

Phi = 2*V*km.*(1+Igm) + dU0*tanh(km*h);

Phi = sign(Phi);

D_r = (1+Igm).*(km*V).^2 + V*(dU0*km).*tanh(km*h) - g*km.*tanh(km*h) ...

+ 1i*epsilon*Phi;

% Green’s Integrand

I = (km.*tanh(km*h).*exp(1i*km.*xim))./((2*pi)*D_r);

78



I(:,length(k)/2 + 1) = 0;

G = trapz(k,I,2);

end

% Solving the inverse problem

% Input: Green’s function matrix, ship geometry, number of points on

% ship, step size in real space: dx

% Output: Pressure patch

function p_ext = findPressure(G,zeta_s,n_ship,dx)

% Greens Function in regular space

G_ij = zeros(n_ship); % Green’s function matrix

for i = 1:n_ship

green_dom = n_ship + (i-1):-1:i;

G_ij(i,:) = G(green_dom); % Fill in Green’s function matrix

end

b = zeta_s/dx;

p_ext = G_ij\b;

p_ext = p_ext’;

end

% Forward Problem

% Input: Ig, External Pressure Distribution, ship domain, radiation

% condition parameter, ship velocity, the shear current derivative at

% the surface, wave number, water depth

% Output: Wave pattern

function zeta = forwardProblem(Ig,p_ext,ship_dom,epsilon,V,dU0,k,h)

g = 9.81;

nx = length(k);

p_ext_big = zeros(1,nx); % Need to define the external pressure

% field for the whole domain

p_ext_big(ship_dom) = p_ext;

% Fourier space

P_ext = fft(p_ext_big);
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% Calculating the denominator Delta_r or Dr

Phi = 2*V*k.*(1+Ig) + dU0*tanh(k*h);

Phi = sign(Phi);

D_r = (1+Ig).*(k*V).^2 + V*(dU0*k).*tanh(k*h) - g*k.*tanh(k*h) ...

+ 1i*epsilon*Phi;

% Integrand

I = P_ext.*k.*tanh(k*h)./D_r;

I(1) = 0;

% Solution

zeta = ifft(I);

end

% Calculate the wavelength

% Input: Froude number, Froude Number, shear current, double

% derivative of shear current, z-vector, length of ship, water depth,

% shear current profile

% Output: wavelength

function wavelength = findWavelengthShear(Fr,U,ddU,dU0,z,L,h,shearProfile)

g = 9.81;

V = Fr*sqrt(g*L);

wavelength = 0.01; % Initial guess

max_error = 1e-10;

max_iter = 100;

error = 1;

iter = 0;

while error > max_error && iter < max_iter

iter = iter + 1;

if ~strcmp(shearProfile,’Linear’)

w = find_vel_wavelength_2D(U,V,ddU,wavelength,z);

w = w(:);

Ig = find_Ig_wavelength_2D(w,U,V,ddU,wavelength,z);

dIg = find_dIg_wavelength_2D(w,U,V,ddU,wavelength,z);

else

Ig = 0;

dIg = 0;

end

f = (4*pi^2*V^2*(1 + Ig))./wavelength^2 -...

(2*g*pi*tanh((2*h*pi)/wavelength))/wavelength +...

(2*dU0*pi*V*tanh((2*h*pi)/wavelength))/wavelength;
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df = -((8*pi^2*V^2*(1 + Ig))/wavelength^3)...

+ (4*g*h*pi^2*sech((2*h*pi)/wavelength)^2)/wavelength^3 ...

- (4*dU0*h*pi^2*V*sech((2*h*pi)/wavelength)^2)/wavelength^3 ...

+ (2*g*pi*tanh((2*h*pi)/wavelength))/wavelength^2 ...

- (2*dU0*pi*V*tanh((2*h*pi)/wavelength))/wavelength^2 ...

+ (4*pi^2*V^2*dIg)/wavelength^2;

wavelength_new = wavelength - f/df;

error = abs(wavelength_new - wavelength);

wavelength = wavelength_new;

end

end

% Plotting function

function plottingWaves(plottingParam,plottingData,PltOpt,hasG_ij)

set(0, ’DefaultTextInterpreter’, ’latex’)

set(0, ’DefaultAxesFontSize’, 20)

switch PltOpt

case ’Essentials’

figure

imagesc(plottingParam.xi,real(plottingData.zeta))

title(’Wave Pattern’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}(\xi)$ \big[m\big]’)

figure

plot(plottingParam.xi,real(plottingData.zeta))

xlim([-20,5])

title(’Surface Elevation’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}_s(\xi)$ \big[m\big]’)

case ’All’

figure

plot(plottingParam.xi_ship,real(plottingData.p_ext))

title(’External Pressure Distribution’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{p}_{ext}(\xi)$ \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

figure

plot(plottingParam.xi_ship,real(plottingData.p_ext))

ylim([-3,1])
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title(’External Pressure Distribution’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{p}_{ext}(\xi)$ \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

figure

plot(plottingParam.xi_ship,real(plottingData.zeta_s))

ylim([-0.07,0.01])

title(’Prescribed Surface Elevation’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}_s(\xi)$ \big[m\big]’)

figure

plot(plottingParam.xi_ship,real(plottingData.wavePattern_ship))

ylim([-0.2,0.2])

title(’Ship results’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}(\xi)$ \big[m\big]’)

figure

plot(plottingParam.xi,real(plottingData.zeta))

title(’Wave Pattern’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}(\xi)$ \big[m\big]’)

figure

plot(plottingParam.xi,real(plottingData.zeta))

xlim([-20,5])

ylim([-0.7,0.7])

title(’Wave Pattern’)

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{\zeta}_s(\xi)$ \big[m\big]’)

if hasG_ij

figure

plot(plottingParam.xi_green,real(plottingData.G_ij))

ylim([-3,3])

title("Green’s Function")

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$G(\xi)$ \big[s\textsuperscript{2}/m\textsuperscript{3}\big]’)

end

end

end
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8.3 Example Script for 3D

% Example script for arbitrary shear

g = 9.81; % Gravitational acceleration

Fr = 0.5; % Froude number

L = 1; % Length of ship

V = Fr*sqrt(g*L); % Speed of moving ship

Vx = V; % Speed of moving ship in x-direction

Vy = 0; % Speed of moving ship in y-direction

Frh = 0.1; % Height Froude number

h = ((V/Frh)^2)/g; % Water depth

nz = 200; % Number of points in z-direction

z = linspace(0,-h,nz)’; % z-vector

dz = -z(2); % z-step

Frs = 0; % Shear Froude number

direction = ’SideOn’; % Direction of the shear current, can choose

% between ’Assisted’, ’Inhibited’, and

% ’SideOn’

shearProfile = ’Exponential’; % Type of shear profile, can choose

% between ’Exponential’ and ’Linear’

[Ux,Uy,dUx0,dUy0,ddUx,ddUy] = ...

createArbitraryShear(Fr,Frs,L,z,direction,shearProfile);

nx_ship = 2^6; % Number of points on the ship in x-direction

nx = 2^13; % Number of points in the whole domain

AR = 0.25; % The aspect ratio

epsilon = 2; % The radiation condition number

incPlt = false; % Include plot of ship?
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zeta_s = createShip(L,AR,nx_ship,incPlt); % Ship geometry

PltOpt = ’None’; % Plotting options for the results,

% options: ’All’, ’Essentials’, ’None’

p_ext = -g*zeta_s; % Gaussian pressure source usually used

% for constant pressure source cases

OptIn = {p_ext,’Pressure’}; % One example of optional input to the

% solver. Other options are ’Greens’ with

% a Green’s function matrix

[wavePattern_ship,Ig,p_ext,zeta,dkx,dky,k_max,zeta_error,maxAmp] = ...

solvePressureShipParallel(z,L,AR,nx_ship,nx,epsilon,Vx,Vy,Ux,Uy,dUx0,...

dUy0,ddUx,ddUy,shearProfile,zeta_s,PltOpt);

dx = 0.015873

dy = 0.016667

dkx = 0.04832

dky = 0.18408

k_max = 273.3186

Error = -57387.7417

maxAmp = 0.62602

No plots for you

8.4 3D solver

% Mandatory Input: z-vector, length of ship, aspect ratio, number of

% points on ship in x-direction on ship, number of points on ship in

% x-direction, radiation condition parameter, ship velocity in x-

% direction, ship velocity in y-direction, shear current in x-

% direction, shear current in y-direction, derivative of shear current

% at surface in x-direction, derivative of shear current at surface in

% y-direction, double derivative of shear current in x-direction,

% double derivative of shear current in y-direction, shear profile

% Optional Input:

% zeta_s (hull shape)

% PltOpt (Plotting options) = ’None’, ’Essentials’ or ’All’

% OptIn (Optional input) = {data,’Greens’ or ’Pressure’}

% (Green’s function or external pressure distribution)
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% Example of Green’s function input:

% load(’G_ij.mat’)

% OptIn = {G_ij,’Greens’};

% Example of pressure input:

% load(’Gauss_p.mat’)

% OptIn = {p_ext,’Pressure’};

function [wavePattern_ship,Ig,p_ext,zeta,dkx,dky,k_max,zeta_error,maxAmp]...

= solvePressureShipParallel(z,L,AR,nx_ship,nx,epsilon,Vx,Vy,Ux,Uy,...

dUx0,dUy0,ddUx,ddUy,shearProfile,zeta_s,PltOpt,OptIn)

switch nargin

case 18

switch OptIn{2}

case ’Pressure’

hasG_ij = false;

hasp_ext = true;

p_ext = OptIn{1};

case ’Greens’

hasG_ij = true;

hasp_ext = false;

G_ij = OptIn{1};

otherwise

error("Invalid optional input. The input needs to be either

’Greens’ or ’Pressure’.")

end

hasship = true;

nx_ship_test = size(zeta_s,2);

if nx_ship_test ~= nx_ship

nx_ship = nx_ship_test;

disp(’Changed nx_ship to the dimension of the given ship’)

end

AR_test = nx_ship/size(zeta_s,1);

if AR_test ~= AR

AR = AR_test;

disp(’Changed AR to the aspect ratio of the given ship’)

end

case 17

hasG_ij = false;

hasp_ext = false;

hasship = true;

nx_ship_test = size(zeta_s,2);

if nx_ship_test ~= nx_ship

nx_ship = nx_ship_test;
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disp(’Changed nx_ship to the dimension of the given ship’)

end

AR_test = nx_ship/size(zeta_s,1);

if AR_test ~= AR

AR = AR_test;

disp(’Changed AR to the aspect ratio of the given ship’)

end

case 16

hasG_ij = false;

hasp_ext = false;

hasship = true;

PltOpt = ’None’;

nx_ship_test = size(zeta_s,2);

if nx_ship_test ~= nx_ship

nx_ship = nx_ship_test;

disp(’Changed nx_ship to the dimension of the given ship’)

end

AR_test = nx_ship/size(zeta_s,1);

if AR_test ~= AR

AR = AR_test;

disp(’Changed AR to the aspect ratio of the given ship’)

end

case 15

hasG_ij = false;

hasp_ext = false;

hasship = false;

PltOpt = ’None’;

otherwise

error("Invalid number of input.")

end

% Initialize

h = -z(end); % Water depth

l = L/2; % Length of half the ship

W = L*AR; % Width of ship

w_half = W/2; % Half the width of the ship

% Size of small domain

x_L = -l;

x_H = l;

xi_ship_x_v = linspace(x_L,x_H,nx_ship);
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dx = xi_ship_x_v(2) - xi_ship_x_v(1);

ny_ship = 2^nextpow2(nx_ship*AR);

y_L = -w_half;

y_H = w_half;

xi_ship_y_v = linspace(y_L,y_H,ny_ship);

dy = xi_ship_y_v(2) - xi_ship_y_v(1);

[xi_ship_x,xi_ship_y] = meshgrid(xi_ship_x_v,xi_ship_y_v);

% Size of big domain domain

ny = 2^nextpow2(nx*AR);

x_L2 = -dx*((nx-1)/2);

x_H2 = dx*((nx-1)/2);

y_L2 = -dy*((ny-1)/2);

y_H2 = dy*((ny-1)/2);

xi_x_v = linspace(x_L2, x_H2, nx);

xi_y_v = linspace(y_L2, y_H2, ny);

% Useful relations between big domain and ship

nx_0 = nx/2; % The integer at which xi = 0 is

ny_0 = ny/2; % The integer at which xi = 0 is

ship_dom_x = (nx_0-(nx_ship/2 - 1)):(nx_0+(nx_ship/2));

ship_dom_y = (ny_0-(ny_ship/2 - 1)):(ny_0+(ny_ship/2));

% Shape of hull

if ~hasship

zeta_s = -(1/15)*exp(-(((pi/l)*xi_ship_x).^2 + ((pi/w_half)*xi_ship_y).^2)); % Create the standard ship geometry

end

zeta_s_flipped = flip(zeta_s);

zeta_s_v = zeta_s_flipped(:);

% Fourier space

[kx, ky, dkx, dky] = build_k_mesh(nx,ny,dx,dy);

kx_shift = fftshift(kx);

ky_shift = fftshift(ky);

kx_v_shift = kx_shift(1,:);

ky_v_shift = ky_shift(:,1)’;

k = sqrt((kx.^2)+(ky.^2));

k_shift = sqrt((kx_shift.^2)+(ky_shift.^2));

k_max = max(k(:));

% Size of Greens domain

nx_green = nx_ship*2-1;

ny_green = ny_ship*2-1;

xi_green_x_v = linspace(x_L*2,x_H*2,nx_green);
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xi_green_y_v = linspace(y_L*2,y_H*2,ny_green);

[xi_green_x,xi_green_y] = meshgrid(xi_green_x_v,xi_green_y_v);

dU0 = sqrt(dUx0^2 + dUy0^2);

% Check if Ig calculations are necessary

if dU0 ~= 0 && ~strcmp(shearProfile,’Linear’)

% Calculate vertical velocity

w = findVel(Ux,Uy,Vx,Vy,ddUx,ddUy,k,kx,ky,z);

% Calculate Ig

Ig = findIg(w,Ux,Uy,Vx,Vy,ddUx,ddUy,k,kx,ky,z);

clear(’w’)

Ig_shift = fftshift(Ig);

else

Ig = 0;

Ig_shift = 0;

end

% Green’s function

if ~hasp_ext

if ~hasG_ij

tic

G_ij = greenMatrix(Ig_shift,nx,ny,nx_green,ny_green,epsilon,Vx,...

Vy,dUx0,dUy0,xi_green_x,xi_green_y,kx_shift,ky_shift,k_shift,...

kx_v_shift,ky_v_shift,h);

toc

hasG_ij = true;

end

p_ext = findPressure(G_ij,zeta_s_v,nx_ship,ny_ship,nx_green,...

ny_green,dx,dy);

end

% Finding the wave patter

zeta = forwardProblem(Ig,p_ext,ship_dom_x,ship_dom_y,epsilon,Vx,Vy,dUx0,...

dUy0,kx,ky,k,h);

% Post Processing

wavePattern_ship = zeta(ship_dom_y,ship_dom_x);

% Error

zeta_error = mean(abs((wavePattern_ship(:) - zeta_s(:))))/max(zeta_s(:));

maxAmp = max(real(zeta(:)));
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% Display important info

disp([’dx = ’, num2str(dx)])

disp([’dy = ’, num2str(dy)])

disp([’dkx = ’, num2str(dkx)])

disp([’dky = ’, num2str(dky)])

disp([’k_max = ’, num2str(k_max)])

disp([’Error = ’, num2str(zeta_error)])

disp([’maxAmp = ’, num2str(maxAmp)])

% Creating Plotting Structures

plottingParam.xi_ship_x_v = xi_ship_x_v;

plottingParam.xi_ship_y_v = xi_ship_y_v;

plottingParam.xi_x_v = xi_x_v;

plottingParam.xi_y_v = xi_y_v;

plottingParam.xi_green_x_v = xi_green_x_v;

plottingParam.xi_green_y_v = xi_green_y_v;

plottingParam.l = l;

plottingData.p_ext = p_ext;

plottingData.zeta_s = zeta_s;

plottingData.wavePattern_ship = wavePattern_ship;

plottingData.zeta = zeta;

if hasG_ij

plottingData.G_ij = G_ij;

end

switch PltOpt

case ’None’

disp(’No plots for you’)

otherwise

plottingWaves(plottingParam,plottingData,PltOpt,hasG_ij)

end

end

%%%%%%%%%%%%%%%%% Local Functions %%%%%%%%%%%%%%%%%%%%%%

% Building the Fourier space

%This function builds a mesh in fourier space from a mesh defined in real

%space, using MATLAB’s convention for ordering of frequencies.

% Input: nx - number of mesh columns, ny - number of mesh rows,

% dx - mesh element width in x-direction, dy - mesh element width

% in y-direction
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% Output: Wave number in x-direction, wave number in y-direction,

% step size in x-direction, step size in y-direction

function [kx, ky, dkx, dky] = build_k_mesh(nx,ny,dx,dy)

dkx = 2*pi/(nx*dx);

dky = 2*pi/(ny*dy);

kxv = [0:floor(nx/2)-1, -ceil(nx/2):-1]*dkx;

kyv = [0:floor(ny/2)-1, -ceil(ny/2):-1]*dky;

[kx, ky] = meshgrid(kxv,kyv);

end

% Finding the vertical velocity

% Input: Shear current in x-direction, shear current in y-direction,

% ship velocity in x-direction, ship velocity in y-direction, double

% derivative of shear current in x-direction, double derivative of

% shear current in y-direction, wave number, wave number in

% x-direction, wave number in y-direction, z-vector

% Output: Vertical velocity in fourier space

function w = findVel(Ux,Uy,Vx,Vy,ddUx,ddUy,k,kx,ky,z)

dz = abs(z(2)-z(1));

h = -z(end);

n = length(z);

ny = size(k,1);

nx = size(k,2);

a_diag = ones(n-3,1);

c_diag = ones(n-3,1);

rightSide = zeros(n-2,1);

rightSide(1) = -1;

rightSide(end) = 0;

w = zeros(size(k,1),size(k,2),n);

w(:,:,1) = 1;

ddUx_dummy = ddUx(2:end-1);

ddUy_dummy = ddUy(2:end-1);

Ux_dummy = Ux(2:end-1);

Uy_dummy = Uy(2:end-1);

z_dummy = z(2:end-1);

w_dummy = zeros(size(k,1),size(k,2),n-2);

90



parfor i = 1:ny

for j = 1:nx

if k(i,j)==0

w_dummy(i,j,:) = z_dummy/h + 1;

else

nullVar = abs(kx(i,j)*(Ux_dummy-Vx)...

+ ky(i,j)*(Uy_dummy-Vy)) < 1e-6;

b_diag = -2 - dz^2*k(i,j)^2 - dz^2 * (kx(i,j)*ddUx_dummy ...

+ ky(i,j)*ddUy_dummy)./(kx(i,j)*(Ux_dummy-Vx)...

+ ky(i,j)*(Uy_dummy-Vy));

b_diag(nullVar) = - 2 -dz^2*k(i,j)^2;

velMat = diag(a_diag,1) + diag(b_diag) + diag(c_diag,-1);

w_dummy(i,j,:) = velMat\rightSide;

end

end

end

w(:,:,2:end-1) = w_dummy;

end

% Finding Ig

% Input: Vertical velocity, shear current in x-direction, shear current

% in y-direction, ship velocity in x-direction, ship velocity in

% y-direction, double derivative of shear current in x-direction,

% double derivative of shear current in y-direction, wave number,

% wave number in x-direction, wave number in y-direction, z-vector

% Output: Ig

function Ig = findIg(w,Ux,Uy,Vx,Vy,ddUx,ddUy,k,kx,ky,z)

h = -z(end);

ny = size(k,1);

nx = size(k,2);

Ig = zeros(size(k));

parfor i = 1:ny

for j = 1:nx

w_v = w(i,j,:);

w_v = w_v(:);

high_var = (k(i,j)*(z+h)) > 300;

Ig_integrand = ((kx(i,j)*ddUx + ky(i,j)*ddUy).*w_v.*sinh(k(i,j)*(z+h)))./...

((k(i,j)*(kx(i,j)*(Ux-Vx) + ky(i,j)*(Uy-Vy)))*cosh(k(i,j)*h));
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Ig_integrand(high_var) = ((kx(i,j)*ddUx(high_var) + ky(i,j)...

*ddUy(high_var)).*w_v(high_var).*exp(k(i,j)*z(high_var)))./...

(k(i,j)*(kx(i,j)*(Ux(high_var)-Vx) + ky(i,j)*(Uy(high_var)-Vy)));

null_Var = (kx(i,j)*(Ux-Vx) + ky(i,j)*(Uy-Vy))==0;

Ig_integrand(null_Var) = 0;

Ig(i,j) = trapz(z,Ig_integrand);

end

end

end

% Finding Green’s Function Matrix

% Input: Ig, number of points in x-direction whole domain, number of

% points in y-direction whole domain, number of points in x-direction

% Green’s matrix, number of points in y-direction Green’s matrix,

% radiation condition parameter, ship velocity in x-direction, ship

% velocity in y-direction , shear current derivative at the surface in

% x-direction, xi in x-dierction, xi in y-dierction, wave number in

% x-direction, wave number in y-direction, wave number, k_x vector

% k_y vector, water depth

% Output: Green’s function matrix

% Finding Green’s Function Matrix

function G_ij = greenMatrix(Ig,nx,ny,nx_green,ny_green,epsilon,Vx,Vy,dUx0,...

dUy0,xi_x,xi_y,kx,ky,k,kx_v,ky_v,h)

% Initiate

g = 9.81;

G_ij = zeros(ny_green,nx_green);

% Calculating the denominator Delta_r or Dr

Phi = 2*(kx*Vx + ky*Vy).*(1+Ig) + (kx*dUx0 + ky*dUy0).*tanh(k*h)./k;

Phi((ny/2)+1,(nx/2)+1) = 0;

Phi = sign(Phi);

D_r = (1+Ig).*(kx*Vx + ky*Vy).^2 + (kx*Vx + ky*Vy).*(kx*dUx0 + ky*dUy0)...

.*tanh(k*h)./k - g*k.*tanh(k*h) + 1i*epsilon*Phi;

% Green’s Integrand without exponential

I_we = k.*tanh(k*h)./(((2*pi)^2)*D_r);

parfor j = 1:nx_green

for i = 1:ny_green

I = I_we .* exp(1i*(xi_x(i,j)*kx + xi_y(i,j)*ky));

I((ny/2)+1,(nx/2)+1) = 0;
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% Greens Function in regular space

G_ij(i,j) = trapz(ky_v,trapz(kx_v,I,2));

end

end

end

% Solving the inverse problem

% Input: Green’s function matrix, ship geometry, number of points on

% ship in x-direction, number of points on ship in y-direction,

% number of points in x-direction Green’s matrix, number of points in

% y-direction Green’s matrix, step size in real space x-direction,

% step size in real space y-direction

% Output: Pressure patch

function p_ext = findPressure(G_ij,zeta_s_v,nx_ship,ny_ship,nx_green,...

ny_green,dx,dy)

% Creating a big 2D Matrix for G

G_ijkt = zeros(nx_ship*ny_ship);

nx_green_0 = (nx_green+1)/2;

ny_green_0 = (ny_green+1)/2;

for j = 1:nx_ship

for i = 1:ny_ship

green_dom_x = (nx_green_0+(j-1)):-1:j; % t

green_dom_y = (ny_green_0-(i-1)):ny_green-(i-1); % k

G_dummy = G_ij(green_dom_y,green_dom_x);

index = ny_ship*(j-1) + i;

G_ijkt(index,:) = G_dummy(:);

end

end

A = G_ijkt;

b = zeta_s_v/(dy*dx);

p_ext_v = A\b;

p_ext_v = p_ext_v’;

p_ext = reshape(p_ext_v,[ny_ship,nx_ship]);

p_ext = flip(p_ext);

end
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% Forward Problem

% Input: Ig, External Pressure Distribution, ship domain in x-direction,

% ship domain in y-direction, radiation condition parameter,

% ship velocity in x-direction, ship velocity in y-direction,

% shear current derivative at the surface in x-direction, shear current

% derivative at the surface in x-direction, wave number in x-direction,

% wave number in y-direction, wave number, water depth

% Output: Wave pattern

function zeta = forwardProblem(Ig,p_ext,ship_dom_x,ship_dom_y,epsilon,Vx...

,Vy,dUx0,dUy0,kx,ky,k,h)

g = 9.81;

[ny, nx] = size(k);

p_ext_big = zeros(ny,nx); % Need to define the external pressure field for the whole domain

p_ext_big(ship_dom_y,ship_dom_x) = p_ext;

% Fourier space

P_ext = fft2(p_ext_big);

% Calculating the denominator Delta_r or Dr

Phi = 2*(kx*Vx + ky*Vy).*(1+Ig) + (kx*dUx0 + ky*dUy0).*tanh(k*h)./k;

Phi((ny/2)+1,(nx/2)+1) = 0;

Phi = sign(Phi);

D_r = (1+Ig).*(kx*Vx + ky*Vy).^2 + (kx*Vx + ky*Vy).*(kx*dUx0 + ky*dUy0)...

.*tanh(k*h)./k - g*k.*tanh(k*h) + 1i*epsilon*Phi;

% Integrand

I = P_ext.*k.*tanh(k*h)./D_r;

I(1,1) = 0;

% Solution

zeta = ifft2(I);

end

% Plotting function

function plottingWaves(plottingParam,plottingData,PltOpt,hasG_ij)

set(0, ’DefaultTextInterpreter’, ’latex’)

set(0, ’DefaultAxesFontSize’, 20)

switch PltOpt

case ’Essentials’
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figure

imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,...

real(plottingData.zeta), [-0.01,0.01])

set(gca,’YDir’,’normal’)

title(’Surface Elevation $\hat{\zeta}($\boldmath$\xi$)’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,...

real(plottingData.zeta))

xlim([-20,5])

ylim([-10,10])

set(gca,’YDir’,’normal’)

title(’Surface Elevation $\hat{\zeta}_s($\boldmath$\xi$)’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

plot(plottingParam.xi_x_v,real(plottingData.zeta(...

length(plottingParam.xi_y_v)/2,:)))

xlim([plottingParam.xi_x_v(1),plottingParam.xi_x_v(end)])

% xlim([xi2(length(xi2)*3/4),xi2(end)])

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\hat{\zeta}$ \big[m\big]’)

title(’Surface Elevation Along Center of Domain’)

case ’All’

% figure

% imagesc(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,real(plottingData.p_ext))

% set(gca,’YDir’,’normal’)

% caxis manual

% caxis([-30,30]);

% colorbar

% title(’External Pressure Distribution $\hat{p}_{ext}($\boldmath$\xi$)’)

% xlabel(’$\xi_x$ \big[m\big]’)

% ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,...

real(plottingData.p_ext))

zlim([-30,30])

caxis manual

caxis([-30,30]);

colorbar

title(’External Pressure Distribution’)
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xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

zlabel(’$\hat{p}_{ext}($\boldmath$\xi$) \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

% figure

% imagesc(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,real(plottingData.p_ext))

% set(gca,’YDir’,’normal’)

% caxis manual

% caxis([-6,4]);

% colorbar

% title(’External Pressure Distribution’)

% xlabel(’$\xi_x$ \big[m\big]’)

% ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_ship_x_v(2:end),plottingParam.xi_ship_y_v,...

real(plottingData.p_ext(:,2:end)))

title(’External Pressure Distribution’)

zlim([-6,4])

caxis manual

caxis([-6,4]);

colorbar

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

zlabel(’$\hat{p}_{ext}($\boldmath$\xi$) \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

% figure

% imagesc(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,real(plottingData.p_ext))

% set(gca,’YDir’,’normal’)

% caxis manual

% caxis([-1,1]);

% colorbar

% title(’External Pressure Distribution’)

% xlabel(’$\xi_x$ \big[m\big]’)

% ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_ship_x_v(2:end),plottingParam.xi_ship_y_v,...

real(plottingData.p_ext(:,2:end)))

title(’External Pressure Distribution’)

zlim([-1,1])

caxis manual

caxis([-1,1]);

colorbar

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)
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zlabel(’$\hat{p}_{ext}($\boldmath$\xi$) \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

figure

imagesc(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,...

real(plottingData.zeta_s))

set(gca,’YDir’,’normal’)

caxis manual

caxis([-0.1,0.05]);

colorbar

title(’Prescribed Surface Elevation $\hat{\zeta}_s($\boldmath$\xi$’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,...

real(plottingData.zeta_s))

zlim([-0.1,0.05])

caxis manual

caxis([-0.1,0.05]);

colorbar

title(’Prescribed Surface Elevation’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

zlabel(’$\hat{\zeta}_s($\boldmath$\xi$) \big[m\big]’)

figure

imagesc(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,...

real(plottingData.wavePattern_ship))

set(gca,’YDir’,’normal’)

caxis manual

caxis([-0.1,0.05]);

colorbar

title(’Ship results’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_ship_x_v,plottingParam.xi_ship_y_v,...

real(plottingData.wavePattern_ship))

zlim([-0.1,0.05])

caxis manual

caxis([-0.1,0.05]);

colorbar

title(’Ship results’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)
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zlabel(’$\hat{\zeta}($\boldmath$\xi$) \big[m\big]’)

% figure

% imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,real(plottingData.zeta), [-0.01,0.01])

% set(gca,’YDir’,’normal’)

% colorbar

% title(’Wave Pattern $\hat{\zeta}($\boldmath$\xi$)’)

% xlabel(’$\xi_x$ \big[m\big]’)

% ylabel(’$\xi_y$ \big[m\big]’)

% figure

% imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,real(plottingData.zeta))

% set(gca,’YDir’,’normal’)

% caxis manual

% caxis([-0.05,0.05]);

% colorbar

% title(’Wave Pattern $\hat{\zeta}($\boldmath$\xi$)’)

% xlabel(’$\xi_x$ \big[m\big]’)

% ylabel(’$\xi_y$ \big[m\big]’)

figure

imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,...

real(plottingData.zeta))

set(gca,’YDir’,’normal’)

xlim([-20,5])

ylim([-10,10])

caxis manual

caxis([-0.1,0.1]);

colorbar

title(’Wave Pattern $\hat{\zeta}($\boldmath$\xi$)’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

imagesc(plottingParam.xi_x_v,plottingParam.xi_y_v,...

real(plottingData.zeta))

set(gca,’YDir’,’normal’)

xlim([-20,5])

ylim([-10,10])

caxis manual

caxis([-0.05,0.05]);

colorbar

title(’Wave Pattern $\hat{\zeta}($\boldmath$\xi$)’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)
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figure

plot(plottingParam.xi_ship_x_v,real(plottingData.p_ext(...

length(plottingParam.xi_ship_y_v)/2,:)))

xlabel(’$\xi$ \big[m\big]’)

ylabel(’$\hat{p}_{ext}(\xi)$ \big[m\textsuperscript{2}/s\textsuperscript{2}]’)

title(’External Pressure Distribution’)

figure

plot(plottingParam.xi_x_v,real(plottingData.zeta(...

length(plottingParam.xi_y_v)/2,:)))

xlim([plottingParam.xi_x_v(1),plottingParam.xi_x_v(end)])

% xlim([xi2(length(xi2)*3/4),xi2(end)])

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\hat{\zeta}$ \big[m\big]’)

title(’Surface Elevation Along Center of Domain’)

figure

plot(plottingParam.xi_x_v,real(plottingData.zeta(...

length(plottingParam.xi_y_v)/2,:)))

xlim([-plottingParam.l,plottingParam.l])

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\hat{\zeta}$ \big[m\big]’)

title(’Ship Results Along Center’)

if hasG_ij

figure

imagesc(plottingParam.xi_green_x_v,plottingParam.xi_green_y_v,...

real(plottingData.G_ij))

set(gca,’YDir’,’normal’)

caxis manual

caxis([-150,150]);

colorbar

title(’Greens function $G($\boldmath$\xi$)’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)

figure

surf(plottingParam.xi_green_x_v,plottingParam.xi_green_y_v,...

real(plottingData.G_ij))

zlim([-150,150]);

caxis manual

caxis([-150,150]);

colorbar

title(’Greens function’)

xlabel(’$\xi_x$ \big[m\big]’)

ylabel(’$\xi_y$ \big[m\big]’)
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zlabel(’$G($\boldmath$\xi$) \big[s\textsuperscript{2}/m\textsuperscript{3}\big]’)

end

end

end
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[3] Y. Li and S. Å. Ellingsen, “Ship waves on uniform shear current at finite depth: wave
resistance and critical velocity,” Journal of Fluid Mechanics, vol. 791, pp. 539–567,
2016.
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