
Adaptive Mesh Refinement for the
Euler Equations of Gas Dynamics

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Frederik Kristoffersen

2019
Frederik Kristoffersen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f E
ne

rg
y

an
d

Pr
oc

es
s

En
gi

ne
er

in
g

Adaptive Mesh Refinement for the Euler
Equations of Gas Dynamics

Frederik Kristoffersen

Mechanical Engineering
Submission date: June 2019
Supervisor: Bernhard Müller

Norwegian University of Science and Technology
Department of Energy and Process Engineering

Abstract

A finite volume solver that utilizes adaptive mesh refinement (AMR) on unstructured

Cartesian grids has been developed for the two-dimensional Euler equations of gas dy-

namics. The solver uses the explicit Euler method and the Rusanov method for time and

flux discretization, respectively. The rectangular cells can be refined by quadrisection

through their centers. This preserves their aspect ratios and doubles the spatial resolu-

tion locally. Four cells that were created from the same cell refinement can be merged

by reversing the refinement process. The criterion for refinement and merging is based

on the absolute differences of the density and velocity components in neighboring cells.

For triggering adaptation, i.e., for deciding when to perform AMR, a new criterion is

proposed. It is based on accumulating the absolute rate of change of mass relative to its

initial value.

The development of a regular oblique shock reflection from a plane wall is simulated,

starting from an initial condition corresponding to a Riemann problem. For comparison,

the Euler equations of gas dynamics are also solved by a standard finite volume solver

on a structured Cartesian grid. Using AMR, the number of cells can be reduced by up to

95%, i.e. a factor 20, to achieve the same error as the standard finite volume solver. Even

though mesh adaptation impairs convergence to steady state and there is some overhead

related to the data structure, the AMR solver takes only 36% of the computing time

needed by the standard solver, in the most beneficial cases. The potential of the AMR

solver for unsteady flow is demonstrated for the simulation of a 2D Riemann problem.

I

Acknowledgement

I want to thank my academic supervisor, Professor Bernhard Müller. He has been actively

involved in the project from its start, and dedicated much time to provide greatly appreciated

counsel, encouragement, feedback, ideas and critique. He also initiated my interest in the field

of computational fluid dynamics. I am truly grateful for all of this. Thank you, Bernd!

I also give a big thanks to my girlfriend and my family, for their support, and for always believing

in me.

I thank all developers and providers of free open-source software. Because of them, anybody

with the know-how and a functioning computer could produce the results and figures presented

in this report.

II

Contents

Acknowledgement II

List of Figures VIII

List of Tables IX

Description of the Cover Figure X

Nomenclature XI

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Description . 3

1.3 Outline of this Report . 4

2 The Euler Equations of Gas Dynamics 5

3 Test Cases 10

3.1 Regular Oblique Shock Reflection . 10

3.2 2D Riemann Problem . 23

4 Numerical Approach 27

4.1 Basis for the Finite Volume Method . 27

4.2 Time Discretization . 29

4.3 Flux Approximation . 29

4.4 Numerical Treatment of Initial and Boundary Conditions 30

4.4.1 Shock Reflection . 30

4.4.2 2D Riemann Problem . 32

4.5 Stopping Criterion for the Steady-State Problem 32

4.6 Numerical Error . 33

III

4.7 Two Finite Volume Solvers . 34

5 AMR Approach 35

5.1 Data Structure . 35

5.2 Adaptation Trigger . 38

5.3 Flagging . 39

5.4 Grading . 42

5.5 Refining . 43

5.6 Merging . 50

6 Results and Discussion 52

6.1 Development of a Shock Reflection . 52

6.2 Measuring the Benefit from AMR . 64

6.3 Simulation of a 2D Riemann Problem . 70

7 Conclusions 79

8 Future Outlook 80

References 81

Appendix A Article Submitted to Conference Proceedings, MekIT 19 83

IV

List of Figures

1 Principle sketch of local grid refinement and merging using quadrisection. L

is the cell refinement level. The grading degree is q = 1, which means that

between a cell at L = 0 and a cell at L = 2, there must be at least one cell at

L = 1. This figure is taken from [1] and adapted slightly. 2

2 Sketch of the regular shock reflection test case. The colors blue, green and

orange denote regions 1, 2 and 3 respectively. The red lines represent the

shocks. The colored arrows represent the flow velocity vectors. 11

3 Visual representation of the oblique shock relations (41)-(43), and the relations

(44)-(48). The red line represents the oblique shock. The symbols are explained

in Table 1. 14

4 Velocity components and angles that were used to find u2 and v2. Subscripts 1

and 2 denote variables that are constant throughout region 1 and 2, respectively.

Subscript α denotes variables related to the incoming shock sα. The hat ˆ

denotes a variable on the downstream side of the shock. 16

5 Velocity components and angles that are used to find the deflection angle ϕβ.

Subscripts 2 and 3 denote variables that are constant throughout regions 2 and

3, respectively. Subscript β denotes variables related to the reflected shock sβ.

The hat ˆ denotes variables on the downstream side of the shock. 18

6 Initial conditions for the 2D Riemann problem. The red lines represent diaphragms. 23

7 Sketch of the different waves that appear in the 2D Riemann problem. The solid

red lines represent shocks, the dashed red lines represent contact discontinuities

and the hatched areas represent rarefaction waves. In the colored areas the flow

is still equal to the IC. The blue arrows show the direction of the velocity, but

not the magnitude. The gray rounded rectangle encloses the central area where

2D effects will appear. In the central area, the wavefronts will be nonlinear,

even though they are drawn linear in this simplified sketch. 25

8 Notation for cells and faces. Variables in cells are denoted by subscript i , L or

R , depending on focus. Values at faces are denoted by subscript k 28

9 Minimum and maximum number of enclosing faces for a cell i 29

10 Examples of illegal flag and level combinations, and following countermeasures

to avoid size ratio 4. m and r denote the merge and refine flags. The figures

are taken from my project report [1], with small changes. 43

V

11 Example of an illegal flag combination, corresponding to row 6 in Table 4. The

red part of the figure shows how the result would be if if the refine and merge

procedures were run directly after flagging, without grading. In the red result,

the largest cell is 4 times larger than the small cells, implying that they are

2 refinement levels apart. The black arrows represent the proper procedure.

Adding a refine flag to the largest cell, gives the case on row 9 in Table 4, which

is legal. The figure is from [1]. 45

12 The scheme for ordering cells in the linked list. The upper part in both subfigures

shows how cells are positioned in the mesh. The lower parts show the cells’

order in the linked list. The small black double-ended arrows represent pointers

between list nodes. The dots · · · represent multiple cells that were not drawn. 45

13 Examples of cell refinement and its consequences for the faces. In both cases the

middle cell is refined while the surrounding cells are unchanged. Blue faces ex-

isted before the refinement, but some of their data members may have changed

during the refinement. Red faces were created by the refinement and inserted

into the linked lists for faces. This figure is taken from [1] and adapted slightly. 47

14 Three contiguous cells in a mesh. The white circles on two of the faces show

their order in the list of interior vertical faces, where k is directly before k + 1.

Face k is the current face in the loop, and is accessing its adjacent (green) cells.

The next face k + 1 is likely to get a cache-hit when accessing its left adjacent

(green) cell [19]. If face k + 1 had been above, below, or far away from k , we

would not get this cache hit. 48

15 Building horizontal chains of interior vertical faces, when cells are refined. Col-

ored lines with circles are interior vertical faces. Red faces are created when

following the arrow, blue faces are re-used. The indices j , k , l and m inside the

circles denote the traversal order in the list of interior vertical faces. k + 1 is

after k ; and k − 1 is before k ; etc. 49

16 Cell plot of density initial condition. 54

17 Cell plot of density at t = 0.201. The shock propagates downward. A large

refined area forms above the shock. 54

18 Cell plot of density at t = 0.451. The refined area above the shock gets clearly

distinct from the density discontinuity. 55

19 Cell plot of density at t = 0.753. The shock hits the wall and starts to reflect. 56

20 Cell plot of density at t = 1.2. The reflection point moves leftwards and the

reflected shock bends upward. 56

VI

21 Cell plot of density at t = 6.74. Steady state is achieved. 57

22 Cell plot of the initial condition for velocity component u. 58

23 Cell plot of velocity component u at t = 0.451. The shock propagates down-

wards. ∆xmax = 1
10

and ∆xmin = 1
160

. 58

24 Cell plot of velocity component u at the same time instant t = 0.451 as Fig-

ure 23, but with ∆xmax = 1
20

and ∆xmin = 1
640

, and without drawing faces. . . 59

25 Cell plot of velocity component u at t = 0.753, just before the shock hits the

wall and starts to reflect. 59

26 Cell plot of velocity component u at t = 1.35. The reflected shock forms

extensionally, while bending upwards. 60

27 Cell plot of velocity component u at t = 6.74. Steady state is achieved. 60

28 Cell plot of the initial condition for velocity component v 61

29 Cell plot of velocity component v at t = 0.451. The shock propagates down-

wards, and almost exits the refined area. 61

30 Cell plot of velocity component v at t = 0.701. The shock hits the wall and

starts to reflect. 62

31 Cell plot of velocity component v at t = 1.2. The reflected shock bends

upwards, while the reflection point moves to the left. 62

32 Cell plot of velocity component v at t = 6.74. Steady state is achieved. 63

33 Convergence history plot with logarithmic ordinate axis. The red and blue graphs

show the development of the convergence indicator ‖∆ρn‖1 /∆tn, normalized by

its initial value. The dashed gray vertical lines show the time levels when the last

15 of the total 42 adaptations occurred. Both solvers used ∆xmin = ∆ymin = 1
160

. 64

34 The final number of cells in the mesh, plotted against the smallest cell size

∆xmin. For the structured solver, this is the size of alle the cells in the mesh.

ηm is not shown in the legend since it is ηr

2.2
in all simulations. This applies to

all following plots. Both axes use the logarithmic scale. 67

35 The simulation runtime (CPU time), plotted against the smallest cell size ∆xmin.

Both axes use the logarithmic scale. 67

36 The density error ερ (131), as defined in subsection 4.6, plotted against the

smallest cell size ∆xmin. The first axis uses logarithmic scale. 68

VII

37 The final number of cells in the mesh, plotted versus the density error. The

ordinate axis uses the logarithmic scale. 69

38 Normalized CPU runtime τ ∗ (152). This is plotted versus the density error ερ. 70

39 Initial condition for the density in the 2D Riemann problem. 72

40 Final solution for the density in the 2D Riemann problem. 73

41 Final solution for the velocity component u in the 2D Riemann problem. The

solution was produced by the AMR-solver. 74

42 Final solution for the velocity component v in the 2D Riemann problem. The

solution was produced by the AMR-solver. 74

43 Final solution for the pressure in the 2D Riemann problem. The solution was

produced by the AMR-solver. 75

44 The final mesh used by the AMR-solver, plotted on top of the density solution. 76

VIII

List of Tables

1 Variable definitions for equations (41)-(48) and Figure 3. 14

2 Numerical values for the analytical solution of the shock reflection test case.

The highlighted blue values were prescribed as input. 22

3 Data member variables of the cell class. The variables are explained in the text. 35

4 Flag combinations for cell pairs at different levels. The countermeasures are

listed in the right column, if the combination is illegal. Lowest level means

biggest cell and highest level means smallest cell. This table is taken from my

project report [1] and given small changes. 44

5 Parameters and derived parameters used by the AMR-solver to simulate the

development of the shock reflection. 53

6 Parameters that vary within an AMR simulation series. ∆xmax is the size of all

the cells when the mesh is created and Lmax is the highest permitted refinement

level. ∆xmin is the smallest permitted cell size, and follows directly from ∆xmax

and Lmax . 65

7 Refine and merge tolerances for the 5 AMR series. ηr and ηm are defined in

subsection 5.3. 66

8 Cell sizes, i.e. grid spacings for the structured solver. 66

9 Comparison between an AMR simulation and a standard simulation, where we

see a large benefit from AMR. For the standard solver the refine tolerance ηr is

not applicable, and ∆xmin was the size of all the cells. Ni is the final number of

cells in the mesh, τ is the total CPU time in seconds and ερ is the density error.

The ratios are the values from the standard solver divided by the AMR values. 68

10 Parameters used by the AMR-solver to simulate the 2D Riemann problem. . . 71

11 Miscellaneous technical output from the AMR solver. Values from the structured

solver are given where applicable, for comparison. The right column is the ratio

between the left and middle columns. The meaning of each row is explained

when commented in the text. 77

IX

Description of the Cover Figure

The figure on the cover of this document shows a plotted numerical solution of the horizontal

velocity component u. The color red represents the highest values, and blue represents the

lowest values. There are two narrow areas where the color changes rapidly, which indicates

that there are discontinuities in the solution. The black lines are the mesh faces that divide

the domain into square-shaped cells. We can see that the cells around the discontinuities are

much smaller than elsewhere. These cells have been refined when the mesh was adapted to the

solution.

X

Nomenclature

Symbols

α , β Shock angles, cf. Figures 2, 4 and 5.

γ Ratio of specific heats, cf. equation (10).

δr , δm Refine and merge thresholds, cf. equations (136) and (137).

∆ Difference between two values.

ερ Numerical error, cf. equation (131).

ηr , ηm Refine and merge tolerances, cf. equations (136) and (137).

θ Shock angle, cf. Figure 3 and Table 1.

ρ Density of mass.
∑

Sum.

τ CPU time, runtime. The time it took to run a simulation.

ϕ Velocity deflection angle, cf. Figure 3 and Table 1.

Ω Arbitrary control volume.

a , b Characteristic velocities in the x- and y-directions respectively, cf. equation (114).

A Area.

c Speed of sound, cf. equation (11).

cp , cv Specific heats at constant pressure and volume, respectively.

Cmax Maximum occurring Courant number, cf. equation (111).

E Specific total energy.

F , G Flux vectors in the x- and y-directions, respectively, cf. equations (24) and (113).

i A cell. Subscript denotes a value in a cell, cf. Figure 8.

j , k , l , m Face number in data structure, cf. Figure 15.

k A face. Subscript denotes a value at a face, cf. Figure 8.

L Refinement level, cf. Figure 1.

L Subscript denoting adjacent cell, cf. Figure 8.

m , m̃ Merge flag and prevent merge flag, cf. equations (141), (142).

M Mach number, cf. equation (12).

n Time level, cf. subsection 4.2. Superscript denotes variable at given time level.

Ni Number of cells in the mesh.

XI

Symbols, continued

p Thermodynamic pressure.

q Grading degree, cf. Figure 1.

r Refine flag, cf. equation (139).

R Specific gas constant of the ideal gas law.

R Subscript denoting adjacent cell, cf. Figure 8.

t Time. Not CPU time.

T Temperature.

u Velocity component parallell with the x-axis.

U Vector of conserved variables, cf. equation (23).

v Velocity component parallell with the y-axis.

V Vector of primitive variables, cf. equation (25).

V Volume.

w Modulus of velocity, cf. Figure 3 and Table 1.

x , y Spatial coordinates.

Acronyms and Abbreviations

aka Also known as

AMR Adaptive mesh refinement

BC Boundary condition(s)

cf. conferatur, ”as in”

CFD Computational fluid dynamics

CPU Central processing unit

E.g. Exempli gratia, ”for example”

etc. et cetera, ”and so on”

FVM Finite volume method

IC Initial condition(s)

I.e. Id est, ”that is” or ”in other words”

XII

1 Introduction

The scope of this report is similar to my previous work, Adaptive Mesh Refinement in Con-

servation laws [1]. I therefore reuse parts of the motivation and background from said work.

Although I have made several modifications in notation and phrasing, much of subsection 1.1

is taken from [1]. Throughout this report, several of the figures are taken from [1] and adapted

slightly.

1.1 Background and Motivation

In computational fluid dynamics (CFD), the demand for high mesh resolution is not equal

throughout the computational domain. High gradients or discontinuities in flow variables require

higher resolution, i.e. smaller and more densely packed cells. It is possible to do this adaptation

before simulating, if a priori knowledge, or justified assumptions are available for the flow. In

many flows the regions that require high resolution are moving. Examples are vortex shedding,

and moving shocks. It would be possible to resolve the vortices or shock by refining the mesh

in the entire region the features traverse before they dissipate. Another approach, which can

lower the computational cost, is to detect resolution demanding features while simulating, and

refine or coarsen accordingly [2–6]. This approach is known as Adaptive Mesh Refinement, or

AMR for short.

An adaptation strategy describes how the AMR is executed on an algorithmic level. It should

answer the questions: when, where and how to adapt?[7] The choice of adaptation strategy

is closely linked with the choice of mesh, and affects how the mesh should be generated. The

AMR solver developed for this project, uses an unstructured Cartesian mesh. Marsha J. Berger

has contributed to the field of AMR using unstructured Cartesian meshes in cooperation with

Michael J. Aftosmis and John E. Melton [8]. This work has laid the basis for locally refining

AMR softwares such as NASA’s Cart3D project [9].

One method for refining a Cartesian mesh locally, is to quadrisect the cells through their centers

[4, 10]. This allows the refinement state of the cells to be classified by levels [11, 12]. These

refinement levels L correspond to cell sizes, as shown in Figure 1. The largest permitted cell

size corresponds to level L = 0, and gives the lowest possible resolution. The smallest allowed

cell size corresponds to L = Lmax , which gives the highest possible resolution. Each time L

increases by one, the spatial resolution is locally doubled in all dimensions. This means that

when a 2D cell is refined, it is split into four geometrically similar cells [4, 10], as can be seen

in Figure 1. In other words, all the cells have equal aspect ratio, regardless of their refinement

levels. For three-dimensional meshes, refined cells are split into eight cells. Only 2D cases are

considered in this project.

An advantage of using this refinement approach is flexibility. Any cell can be split into four, as

1

Refine Refine

L=0 L=1 L=2

Merge Merge

Figure 1: Principle sketch of local grid refinement and merging using quadrisection. L is the cell

refinement level. The grading degree is q = 1, which means that between a cell at L = 0

and a cell at L = 2, there must be at least one cell at L = 1. This figure is taken from [1]

and adapted slightly.

can be seen in Figure 1. Conversely, four cells that were created by the same cell refinement

can be merged. However, it is advantageous to limit this freedom with a constraint called

grading [11]. This constraint sets the lower limit, denoted by q, for how many cells must come

between two level changes. With a grading degree of q = 0, there is no limit to how close

two level changes can be. Essentially, this means that the refinement level can change multiple

times from one cell to another, i.e. a very small cell can be adjacent to a big cell. This can

negatively affect accuracy, and it can make the local refining and coarsening algorithms more

intricate. With a grading degree of q = 1, like in Figure 1, there needs to be at least one cell

between level changes. This means that the resolution level can change for every traversed cell,

but only one level at a time.

Another approach of mesh refinement is known as structured AMR, or S-AMR for short [2, 4,

8]. This method involves organizing the computational domain into patches. All the cells that

belong to the same patch have the same resolution. This makes the detection and refinement

procedures much simpler [2], which is a an advantage. It also makes it much easier to implement

methods with a higher order of accuracy in space, due to the fact that each patch is a structured

sub-mesh. However, many cells will get a higher resolution than they require, unless the patches

are very small. If the patches are too small, then the maximum cell size is limited, and the

inter-patch communication becomes costly. The work of Marsha J. Berger must be mentioned

here as well. She has contributed to the field of S-AMR, collaborating with Randall J. LeVeque.

Their work in this field is utilized in the AMRCLAW software package [2], which is part the

CLAWPACK package [13].

A third alternative is to refine locally using a tree structure [14], instead of an unstructured

mesh. For a 2D solver it could be a quadtree structure. This approach allows for an intuitive

data structure, if combined with the quadrisection method discussed above. However, traversing

2

the leaf nodes in a tree data structure is costly, unless an additional mapping of the leaf nodes

is added. Another option is to use hash tables [3, 14]. Neither S-AMR, tree structures or hash

tables are used in this project, but they are listed as alternatives.

There are multiple ways to detect where the mesh needs refinement, and where it can be

coarsened. One way is to compare the entire solution from the latest time step, with a solution

calculated on a coarsened mesh [2]. If the error of a cell, or patch of cells, is above a given

threshold then the cell or patch is marked for refining. Another way is to evaluate the gradients

in the solution, in pairs of neighbor cells. Then the cell or patch could be flagged for refinement

or merging based on gradient thresholds. In this project, the solver checks differences between

flow variables in neighboring cells. Regardless of how the detection is done, it will consume CPU

time. Therefore it is common not to detect at every time step, but to have a criterion for when

to adapt. A simple criterion is to specify a number of time steps between each detection routine

[2], or a time interval. The AMR-solver in this project decides when to adapt, by accumulating

an approximated mass redistribution rate. This will be elaborated in subsection 5.2.

1.2 Problem Description

I quote the objectives given by my academic supervisor, Professor Bernhard Müller:

” The goal of the project is to devise, implement and test adaptive mesh re-

finement and coarsening for the Euler equations of gas dynamics. The research is

most relevant for the development of accurate and efficient numerical methods in

CFD.

The following tasks are to be considered:

1. to get a basic understanding of adaptive mesh refinement (AMR), solution

based error criteria, and strategies to refine and coarsen the mesh for the Euler

equations of gas dynamics,

2. to devise, implement and test adaptive mesh refinement for the Euler equa-

tions of gas dynamics,

3. to investigate the performance of AMR for the Euler equations of gas dynamics

with different error criteria,

4. to compare the accuracy and CPU time of numerical solutions of the Euler

equations of gas dynamics with and without adaptive mesh refinement. ”

— Bernhard Müller, Department of Energy and Process Engineering, NTNU

January 15, 2019

3

1.3 Outline of this Report

This thesis will continue with the following sections: In section 2, the 2D Euler equations of

gas dynamics are outlined, and an equation of state is given. In section 3 two test cases are

introduced and their initial and boundary conditions are stated. The first one is a regular

oblique shock reflection over a plane wall, for which an analytical solution is derived. The

second case is a 2D Riemann problem. The explicit finite volume method (FVM) for the

discretization of the 2D Euler equations is given in section 4. The present AMR approach

based on unstructured Cartesian grids is outlined in section 5. Results for the two test cases

are presented and discussed in section 6. The accuracies and efficiencies of the AMR solver

and a standard solver are compared in subsection 6.2. In section 7 conclusions are drawn and

section 8 outlines the future outlook for the project.

4

2 The Euler Equations of Gas Dynamics

Many gas dynamics problems include discontinuities and areas with constant flow variables.

Thus, they can achieve large efficiency gains from the AMR approach. The AMR solver pre-

sented in this report specializes in solving inviscid gas flow problems, governed by the Euler

equations of gas dynamics. These equations model the conservation of mass, momentum and

total energy. The continuity equation,

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0 , (1)

models the conservation of mass. The density, ρ, is the conserved variable, u is the velocity

component in the x-direction, and v is the velocity component in the y-direction. Secondly, the

horizontal momentum-, or x-momentum equation,

∂(ρu)

∂t
+

∂

∂x

[
ρu2 + p

]
+

∂

∂y
[ρvu] = 0 , (2)

models the conservation of momentum in the x-direction. ρu is the x-momentum density and

p is the pressure. Thirdly, the vertical momentum-, or y-momentum equation,

∂(ρv)

∂t
+

∂

∂x
[ρuv] +

∂

∂y

[
ρv 2 + p

]
= 0 , (3)

models the conservation of momentum in the y-direction. ρv is the y-momentum density.

Fourth and final is the total energy equation,

∂(ρE)

∂t
+

∂

∂x
[u(p + ρE)] +

∂

∂y
[v(p + ρE)] = 0 , (4)

which models the conservation of total energy. ρE is the total energy density, and

E = e +
1

2

(
u2 + v 2

)
(5)

is the specific total energy, where e is the specific internal energy.

In addition to these four flow equations, two equations of state are required to give two relations

between density ρ, pressure p, temperature T and internal energy e. For this purpose, ideal

gas is assumed. The equations of state for perfect gas read [15]:

5

p = ρRT , (6)

e = cv T , (7)

where R is the specific gas constant

R = cp − cv . (8)

cp and cv are the specific heats at constant pressure and volume, respectively. The specific

heats are assumed to be constant. The equations of state yield an explicit expression for the

pressure,

p = (γ − 1)

[
ρE − 1

2
ρ
(
u2 + v 2

)]
, (9)

which we will utilize to express the pressure as a function of ρ, ρu, ρv and ρE .

γ =
cp

cv
(10)

is the ratio between the specific heats, cp and cv . Since cp and cv are assumed to be constant,

γ is constant. We shall use γ = 1.4 for air at standard conditions. The speed of sound for

perfect gas is given by

c =

√
γ

p

ρ
, (11)

which will be needed for the numerical method, and to compute the Mach number.

M =
w

c
, (12)

where

w = |w| =
√

u2 + v 2 (13)

is the modulus of the velocity vector w = [u , v]T .

To make the results easier to compare with other results, the governing equations should be

non-dimensionalized. The individual variables are non-dimensionalized as follows:

6

x∗ = x
xmax

, y ∗ = y
xmax

,

u∗ = u
u∞

, v ∗ = v
u∞

,

ρ∗ = ρ
ρ∞

, p∗ = p
ρ∞u2

∞
,

t∗ = t∗ u∞
L

, c∗ = c
u∞

,

E ∗ = E
u2
∞

,

(14)

where the superscript ∗ denotes dimensionless variables, and the length scale xmax is the length

of the domain. The velocity scale u∞ and the density scale ρ∞ are specific to the test cases,

discussed in subsections 3.1 and 3.2. The variables from (14) can be substituted into the

governing equations, starting with the continuity equation (1):

ρ∞∂ρ∗

L
u∞
∂t∗

+
ρ∞u∞∂(ρ∗u∗)

L∂x∗
+
ρ∞u∞∂(ρ∗v ∗)

L∂y ∗
= 0 . (15)

ρ∞u∞
L

is a common factor and can be removed, yielding the non-dimensionalized continuity

equation,

∂ρ∗

∂t∗
+
∂(ρ∗u∗)

∂x∗
+
∂(ρ∗v ∗)

∂y ∗
= 0 . (16)

The same procedure is applied to the x-momentum equation. I.e. the variables (14) are

substituted into (2), and the common factor ρ∞u2
∞

L
is removed. This yields the non-dimensional

x-momentum equation,

∂(ρ∗u∗)

∂t∗
+

∂

∂x∗
[
ρ∗u∗2 + p∗

]
+

∂

∂y ∗
[ρ∗v ∗u∗] = 0 . (17)

The exact same procedure is applied again to the y-momentum equation (3), to give the

non-dimensional y-momentum equation,

∂(ρ∗v ∗)

∂t∗
+

∂

∂x∗
[ρu∗v ∗] +

∂

∂y ∗
[
ρ∗v ∗2 + p∗

]
= 0 , (18)

and to the total energy equation (4), yielding the non-dimensional total energy equation,

∂(ρ∗E ∗)

∂t∗
+

∂

∂x∗
[u∗(p∗ + ρ∗E ∗)] +

∂

∂y ∗
[v ∗(p∗ + ρ∗E ∗)] = 0 . (19)

The equations of state are also non-dimensionalized in this way, giving the non-dimensional

pressure formula,

7

p∗ = (γ − 1)

[
ρ∗E ∗ − 1

2
ρ∗
(
u∗2 + v ∗2

)]
, (20)

and the non-dimensional speed of sound,

c∗ =

√
γ

p∗

ρ∗
. (21)

All the non-dimensionalized equations assume the exact same form as the dimensional equations,

except for the superscripts ∗. Therefore, and to simplify the notation, the superscripts ∗ are

omitted in the rest of this report. Thus, x , y , t, ρ, u, v , p, c , etc. denote non-dimensional

variables.

To further simplify the notation, the flow equations (16), (17), (18) and (19) are combined in

a vector equation:

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= 0 , (22)

where

U =




ρ

ρu

ρv

ρE




(23)

is the vector of conservative variables and

F(U) =




ρu

ρu2 + p

ρuv

u(p + ρE)




and G(U) =




ρv

ρvu

ρv 2 + p

v(p + ρE)




(24)

are the flux vectors in the x- and y-directions, respectively. The density ρ, the velocity com-

ponents u and v , and the pressure p will be referred to as primitive variables. They can be

assembled into the vector of primitive variables:

8

V =




ρ

u

v

p




(25)

The primitive variables (25) and the Mach number (12) will be in focus when solutions are

presented, and when solution accuracies are measured.

9

3 Test Cases

Two test cases were considered: regular oblique shock reflection [10, 16], for which the analyt-

ical solution is outlined in subsection 3.1, and a 2D Riemann problem [17], which is defined in

subsection 3.2.

3.1 Regular Oblique Shock Reflection

In this subsection a regular oblique shock reflection from a plane solid wall will be introduced.

First the flow will be described, to give an intuitive overview. Then, the oblique shock relations

will be used to derive the analytical solution for the flow.

We have a supersonic gas flow over a solid wall. As illustrated in Figure 2, an incoming oblique

shock, sα, enters through the left boundary at y = yα. The shock sα strikes the wall at the

lower boundary at xR , causing a regular shock reflection. The reflected shock, sβ, exits the

domain through the right boundary. The shocks then form the angles α and β with the wall,

which are also shown in Figure 2. The domain can then be divided into three regions, using

the shock characteristics sα(x) and sβ(x). Region 1 is on the lower left side (upstream) of the

incoming shock sα:

0 ≤ x1 ≤ xR and 0 ≤ y1 ≤ sα(x1) (26)

Region 2 is between sα and the reflected shock sβ,

0 ≤ x2 ≤ xmax and sα(x2) < y2 ≥ sβ(x2) and y2 ≤ ymax , (27)

and region 3 is on the lower right side (downstream) of sβ:

xR < x3 ≤ xmax and 0 ≤ y3 < sβ(x3) (28)

xmax and ymax mark the right and upper boundaries, respectively. Subscripts 1, 2 and 3 denote

variables in regions 1, 2 and 3, respectively. The shock characteristics and regions are also

shown in Figure 2. Inside these regions, all the flow variables will be constant. Thus, the

primitive variables (25) can be expressed as

10

x

y

1
3

2

s
β

s
α

x
R

α β

y
α

Figure 2: Sketch of the regular shock reflection test case. The colors blue, green and orange denote

regions 1, 2 and 3 respectively. The red lines represent the shocks. The colored arrows

represent the flow velocity vectors.

V(x , y) =





V1 for x < xR and y < sα(x)

V2 for x < xR and y > sα(x)

V2 for x > xR and y > sβ(x)

V3 for x > xR and y < sβ(x)

(29)

where subscripts 1-3 denote constant values in regions 1-3 respectively.

Figure 2 also shows that the velocities in regions 1 and 3 are parallell with the wall. This is

necessary to respect the principle of impermeability, and implies that

v1 = v3 = 0 . (30)

Furthermore, the magnitudes of the velocities decrease when going from region 1 to region 2,

and from region 2 to region 3. I.e. the flow slows down when crossing the shocks. This is

because the shocks are irreversibilities that cause the entropy to increase and transform some

kinetic energy into internal energy. This means that the density and pressure will increase when

the fluid passes through the shocks. Summarized we have:

11

ρ1 < ρ2 < ρ3 , (31)

u1 > u2 > u3 , (32)

v2 < v1 = v3 = 0 , (33)

p1 < p2 < p3 , (34)

M1 > M2 > M3 . (35)

So far, we have described the steady state of this test case. The full test case includes the

development of this steady state, from the initial conditions (IC),

V(x , y , t = 0) =

{
V1 for y ≤ yα

V2 for y > yα
, (36)

where the constant values in regions 1 and 2 of the steady-state solution are given in the lower

and upper part, respectively. The intersection between the incoming shock sα and the left

boundary will be at y = yα in the IC and throughout the development of the flow. This is

dictated by the Boundary conditions (BC), which will be discussed next.

At the left and upper boundaries, the primitive variables are set using the values in regions 1

and 2:

V(x = 0, y , t) =

{
V1 for y ≤ yα

V2 for y > yα
, (37)

V(x , y = ymax , t) = V2 . (38)

As already mentioned, we prescribe impermeability at the lower boundary:

v(x , y = 0, t) = 0 (39)

At the right boundary we have outflow and therefore prescribe homogeneous Neumann condi-

tions,

∂V

∂x

∣∣∣∣
x=xmax

= 0 . (40)

12

These boundary conditions are fully compatible with both the initial conditions (36) and the

steady state (29). The development from the IC towards the steady state will be discussed in

more detail, and shown by results, in subsection 6.1.

The analytical solution will now be derived for the steady state of the regular shock reflec-

tion. It will be used for verification of the numerical solutions to be introduced later in this

report. Additionally, parts of the analytical solution will be used to set the boundary and initial

conditions.

Based on the Mach number M1 of the incoming uniform supersonic flow and the angle α in

Figure 2, we will find the region specific flow variables (31) - (35). We will use the oblique

shock relations,

ŵn

wn
=
ρ

ρ̂
= 1− 2

γ + 1

(
1− 1

M2sin2(θ)

)
, (41)

p̂

p
= 1 +

2γ

γ + 1

(
M2sin2(θ)− 1

)
, (42)

ŵt = wt = w cos(θ) , (43)

wn = w sin(θ) , (44)

sin−1
(

1

M

)
≤ θ ≤ π

2
, (45)

which were found in chapter 7 of [16], and the additional geometric relations,

ŵ =
√

ŵ 2
n + ŵ 2

t , (46)

θ̂ = tan−1
(

ŵn

ŵt

)
, (47)

ϕ = θ − θ̂ . (48)

The variables in equations (41)-(48) are visualized in Figure 3 and defined in Table 1.

The lower limit for θ in (45) ensures that we get ŵn ≤ wn in (41). This is a physical criterion,

based on the Rankine-Hugoniot conditions. The upper limit π
2

defines a normal shock as limiting

case. The inequalities (45) imply that supersonic flow M > 1 is required for an oblique shock.

We start in region 1, which is shown in Figure 2. We prescribe ρ1, u1, v1 and the Mach number

M1 as input. The pressure p1 is found using the Mach number and equations (11), (12) and

(13):

13

w

w
t w

n

ŵ
n

ŵ
t

ŵθ̂

θ

φ

ρ , p , M ρ̂ , p̂ , M̂

Figure 3: Visual representation of the oblique shock relations (41)-(43), and the relations (44)-(48).

The red line represents the oblique shock. The symbols are explained in Table 1.

Table 1: Variable definitions for equations (41)-(48) and Figure 3.

w , ŵ : Velocity vector

[
u

v

]
, upstream and downstream of the shock, respectively.

w , ŵ : Modulus of velocity w and ŵ, upstream and downstream of the shock,

respectively.

wt , ŵt : Tangential component of w and ŵ, respectively. Parallell with the shock.

wn , ŵn : Normal component of w and ŵ, respectively. Perpendicular to the shock.

θ , θ̂ : Smallest angle between the shock and velocity w and ŵ, respectively.

ϕ : Deflection angle. Smallest angle between w and ŵ.

ρ , ρ̂ : Density upstream and downstream of the shock, respectively.

p , p̂ : Pressure upstream and downstream of the shock, respectively.

M , M̂ : Mach number upstream and downstream of the shock, respectively.

14

M1 =
w1

c1
=

√
u2
1 + v 2

1√
γ p1

ρ1

=

√
u2
1√

γ p1

ρ1

, (49)

where w1 is the velocity modulus and c1 is the speed of sound in region 1. By squaring (49)

and solving for p1, we get

p1 =
ρ1u2

1

γM2
1

. (50)

The angle α, between the incoming shock sα and the lower boundary wall, is also given as

input. Since v1 = 0, we know that w1 = u1, and that the shock angle is

θα = α , (51)

as demonstrated in Figure 4. We recall the limits for the shock angle (45), and prescribe α

such that

sin−1
(

1

M1

)
≤ θα = α ≤ π

2
. (52)

Then, θα is used to decompose the velocity vector w1 into

wtα = w1cos (θα) , (53)

wnα = w1sin (θα) , (54)

where wtα is the component of w1 that is tangential to sα, and wnα is the normal component.

This decomposition can be seen in the left part of Figure 4.

When the flow passes through the oblique shock sα, (43) yields that the tangential velocity

component is unchanged. I.e.

ŵtα = wtα , (55)

where ŵtα is the tangential velocity component behind the shock. On the contrary, by applying

(41) the normal velocity component will be decreased:

ŵnα

wnα

= 1− 2

γ + 1

(
1− 1

M2
1 sin2(θα)

)
. (56)

15

α

w
1

w
tα

w
nα

ŵ
nα

ŵ
tα

w
2

w
2

u
2

v
2

x

φ
α

θ̂α

θα

s
α

Figure 4: Velocity components and angles that were used to find u2 and v2. Subscripts 1 and 2

denote variables that are constant throughout region 1 and 2, respectively. Subscript α

denotes variables related to the incoming shock sα. The hat ˆ denotes a variable on the

downstream side of the shock.

Solving (56) for ŵnα yields

ŵnα = wnα

[
1− 2

γ + 1

(
1− 1

M2
1 sin2(θα)

)]
. (57)

Knowing both the components ŵtα and ŵnα, we can use (46) to find the modulus w2 of the

velocity in region 2:

w2 =
√

ŵ 2
tα + ŵ 2

nα . (58)

This relation (58) can also be seen in Figure 4. The right part of the figure shows that the

Cartesian components u2 and v2 can be computed from w2, and the deflection angle ϕα. Using

(48), the deflection angle can be found as

ϕα = θα − θ̂α , (59)

where

θ̂α = tan−1
(

ŵnα

ŵtα

)
(60)

is the angle between the shock sα and the velocity vector w2, behind the shock. After ϕα is

computed using (59), the Cartesian velocity components, u2 and v2 in region 2 can be found

as

16

u2 = w2cos(ϕα) and v2 = −w2sin(ϕα) . (61)

Note the minus sign when computing v2 in (61). The minus is there, because ϕα will always

be positive when θα is limited as in (52).

Recalling (41) and applying the notation for regions 1 and 2, we find the density ρ2 in region

2:

ρ1
ρ2

= 1− 2

γ + 1

(
1− 1

M2
1 sin2(θα)

)

ρ2 =
ρ1

1− 2
γ+1

(
1− 1

M2
1 sin2(θα)

) (62)

where

ρ2 ≥ ρ1 because

[
ŵnα ≤ wnα and

ŵnα

wnα
=
ρ1
ρ2

]
(63)

The pressure p2 in region 2 is found using (42):

p2

p1
= 1 +

2γ

γ + 1

(
M2

1 sin2(θα)− 1
)

, (64)

p2 = p1

[
1 +

2γ

γ + 1

(
M2

1 sin2(θα)− 1
)]

. (65)

Knowing the density ρ2 and pressure p2 in region 2, we find the speed of sound c2 in this region

as well, using (11) from section 2:

c2 =

√
γ

p2

ρ2
. (66)

The Mach number M2 in region 2 can then be found as

M2 =
w2

c2
. (67)

At this state we can express all the primitive variables and the Mach numbers in regions 1 and

2. We will now use the oblique shock relations again, with the variables from region 2, to obtain

17

β

w
2

w
tβ

w
nβ

ŵ
nβ

ŵ
tβ

w
3

x

φ
β

θ̂β

θβ

s
β

Figure 5: Velocity components and angles that are used to find the deflection angle ϕβ. Subscripts 2

and 3 denote variables that are constant throughout regions 2 and 3, respectively. Subscript

β denotes variables related to the reflected shock sβ. The hat ˆ denotes variables on the

downstream side of the shock.

the values for region 3. However, for the reflected shock sβ we do not know the angles β or

θβ, which are shown in Figure 5. Instead, we know that the y-component v3 of the velocity in

region 3 must be

v3 = 0 (68)

for the flow to become parallell with the wall after crossing sβ. This means that we cannot

derive explicit expressions for the variables in region 3. Instead we will solve this iteratively.

Similar to the incoming shock sα, we need to ensure ŵnβ ≤ wnβ at the reflected shock sβ.

Therefore, we limit our guesses of θβ in the iterative solution as in (45):

sin−1
(

1

M2

)
≤ θβ ≤

π

2
. (69)

Figure 5 also shows how the guessed angle θβ of the reflected shock is used to decompose w2

into tangential and normal components,

wtβ = w2cos(θβ) , (70)

wnβ = w2sin(θβ) . (71)

As for the incoming shock, the tangential component remains unchanged through the shock,

ŵtβ = wtβ . (72)

18

The normal component is decreased, by using relation (41) with the Mach number M2 from

region 2 and the guessed θβ:

ŵnβ = wnβ

[
1− 2

γ + 1

(
1− 1

M2
2 sin2(θβ)

)]
. (73)

We do not compute the velocity modulus w3 before the correct angle θβ is determined by the

iterative method. Instead we find the angle

θ̂β = tan−1
(

ŵnβ

ŵtβ

)
, (74)

which is also shown in Figure 5. Taking one more look at Figure 5, we see that the angle

between the shock and the wall is

β = θ̂β . (75)

We can also see that the new deflection angle can be found as

ϕβ = θβ − θ̂β . (76)

Again, limiting θβ in (69) causes the deflection angle ϕβ to be positive for all valid input.

Knowing this, and comparing ϕ in Figure 4 and Figure 5, we see that the deflection angles ϕα
and ϕβ must be equal, for the flow in region 3 to become parallell with the wall. Mathematically:

[
v1 = 0 and v3 = 0

]
⇒ ϕα = ϕβ . (77)

Therefore, we keep guessing θβ and computing ϕβ until ϕα = ϕβ. To guess systematically, the

secant method is used. That is, the next value to guess is found by

θm
β = θm−1

β −
(
ϕm−1
β − ϕα

) θm−1
β − θm−2

β

ϕm−1
β − ϕm−2

β

, (78)

where m denotes the iteration number. Since the iterative scheme (78) uses the two previous

iterations m − 1 and m − 2, we need to supply two initial guesses. The initial guesses are set

inside the limits given by (69). The secant method (78) is then applied until

|ϕα − ϕβ| < 10−10 . (79)

19

When that happens, θβ, ϕβ, ŵnβ and ŵtβ are accepted as valid. Knowing the normal and

tangential velocity components behind the shock, the absolute value w3 of the velocity in

region 3 can be found from relation (46),

w3 =
√

ŵ 2
nβ + ŵ 2

tβ , (80)

as seen in Figure 5.

Since we postulated v3 = 0, we have flow parallel with the wall, and

u3 = w3 . (81)

The shock angle θβ, that was found iteratively, is then used to compute the density and pressure

in region 3, applying relations (41) and (42), respectively:

ρ3 =
ρ2

1− 2
γ+1

(
1− 1

M2
2 sin2(θβ)

) , (82)

p3 = p2

[
1 +

2γ

γ + 1

(
M2

2 sin2(θβ)− 1
)]

. (83)

Using ρ3 and p3 in equation (11) gives the speed of sound in region 3,

c3 =

√
γ

p3

ρ3
, (84)

which in turn gives us the Mach number,

M3 =
w3

c3
. (85)

The iterative method (78) used to solve region 3 can converge towards two different solutions.

In one of the solutions the reflected shock is a weak shock, which gives supersonic flow M3 > 1

in region 3. In the other solution, the reflected shock is a strong shock, giving a larger angle

β and subsonic flow M3 < 1 in region 3. The numerical solutions always include a weak shock

and supersonic flow in region 3. To help the secant method find the weak shock solution we

choose the initial guesses for θβ in (78) closer to the lower limit in (69) than the upper limit.

Weighted averages of said limits give the initial guesses,

20

θ0β = 0.8 tan−1
(

1

M2

)
+ 0.2

π

2
,

θ1β = 0.6 tan−1
(

1

M2

)
+ 0.4

π

2
,

which never produced the strong shock solution.

At this stage, we have obtained the primitive variables and the Mach numbers in all the regions

of the flow. The last part of finding the analytical solution is determining the spatial extents

of the regions. The regions’ borders are set by the domain boundaries,

0 ≤ x ≤ xmax and 0 ≤ y ≤ ymax , (86)

and the shock characteristics which we will find next. To do this we prescribe yα, the y-

coordinate where sα intersects the left boundary x = 0, as shown in Figure 2. The incoming

shock characteristic will be

sα(x) = yα − tan(α)x . (87)

We also see in Figure 2 that the reflection point is found by

tan(α) =
yα
xR

,

xR =
yα

tan(α)
. (88)

Furthermore, Figure 2 shows that the reflected shock characteristic will be

sβ(x) = (x − xR)tan(β) , (89)

because

sβ(xR) = 0 and
∂sβ
∂x

= tan(β) . (90)

Then we have all the values that comprise the analytical steady-state solution of the regular

oblique shock reflection (29),

21

Table 2: Numerical values for the analytical solution of the shock reflection test case. The highlighted

blue values were prescribed as input.

(a) Global values

xmax 1.0

ymax 0.6

yα 0.4

xR 0.5506

α π
5

β π
5.576

(b) Region-specific values

Region 1 Region 2 Region 3

ρ 1.00 1.810 3.009

u 1.00 0.8454 0.6895

v 0.00 -0.2128 0.00

p 0.1143 0.2689 0.5564

M 2.50 1.912 1.397

V(x , y) =





V1 for x < xR and y < sα(x)

V2 for x < xR and y > sα(x)

V2 for x > xR and y > sβ(x)

V3 for x > xR and y < sβ(x)

. (91)

The numerical values that were prescribed, and the resulting computed variables are listed in

Table 2. By setting ρ1 and u1 in region 1 to

ρ1 = u1 = 1 , (92)

as in Table 2, we implicitly give the density scale ρ∞ and the velocity scale u∞, used in the

non-dimensionalization (14). ρ∞ will then be the dimensional density [kg/m3] in region 1, and

u∞ is the magnitude of the dimensional velocity [m/s] in region 1.

In this report, all the results from the shock reflection test case were obtained using M1 = 2.5,

as seen in Table 2. However, M1 can be varied as a parameter, to give variations of the test

case, as long as it is set large enough to give supersonic flow in all regions:

M2 > M3 > 1 . (93)

As mentioned, α is prescribed to satisfy the limits in (52). The chosen value α = π
5

is much

closer to the lower limit than the upper. The reason is that higher values of α caused the

regular shock reflection to transition into a Mach reflection in the numerical solutions. Mach

reflections are, however, outside the scope of this report.

22

x

y

x
M

y
M

ρ3 , p3 ρ4 , p4

ρ2 , p2 ρ1 , p1

Figure 6: Initial conditions for the 2D Riemann problem. The red lines represent diaphragms.

3.2 2D Riemann Problem

The second test case that was studied is a two-dimensional (2D) Riemann problem. This is a

rather theoretical flow, which is difficult to achieve in a physical experiment. It features shocks,

contact discontinuities and rarefaction waves of different magnitudes and angles. Thus, it

provides insight on the interactions between these different types of waves.

The flow domain is divided into 4 regions, as illustrated in Figure 6. The initial condition is that

the density and pressure are constant inside the regions, but differ from one region to another.

We envision this being achieved by thin diaphragms separating the regions at xM and yM , as

in Figure 6. We prescribe the following numerical values for the diaphragm positions and the

domain boundaries:

xM = yM = 0.5 , (94)

0 ≤ x ≤ 1 , (95)

0 ≤ y ≤ 1 . (96)

Thus, the IC is

23

V(x , y , t = 0) =





V1 for x > xM and y > yM

V2 for x < xM and y > yM

V3 for x < xM and y < yM

V4 for x > xM and y < yM

, (97)

where subscripts 1-4 denotes the constant values in regions 1-4 respectively. The fluid is initially

still in all the regions. I.e.,

u(x , y , t = 0) = v(x , y , t = 0) = 0 . (98)

The densities in (97) are prescribed as

ρ1 = 4 , ρ2 = 3 , ρ3 = 1 , ρ4 = 2 , (99)

which means that the density scale ρ∞ in (14) is the dimensional density in region 3, at t = 0.

Since the initial velocity is zero, the pressures cannot be set using the Mach numbers as we did

in (49). Instead we reorder the ideal gas law (6) as

p

ρ
= RT . (100)

If the initial temperature T (x , y , t = 0) is constant, then

p1

ρ1
=

p2

ρ2
=

p3

ρ3
=

p4

ρ4
. (101)

To ensure that (101) holds, we can prescribe the pressures in (97) as

p1 = 4 , p2 = 3 , p3 = 1 , p4 = 2 , (102)

which implies that the reference pressure is the dimensional pressure in region 3, at t = 0.

The boundaries in this test case are artificial, not walls. Physically, we picture this as if our

frame of reference is close to the diaphragm intersection, and we imagine that the regions and

diaphragms extend far beyond this frame. This means that end effects are neglected, and we

will only observe effects from the region interfaces. Thus, we specify homogeneous Neumann

conditions,

∂V

∂x

∣∣∣∣
x=0

=
∂V

∂x

∣∣∣∣
x=xmax

=
∂V

∂y

∣∣∣∣
y=0

=
∂V

∂y

∣∣∣∣
y=ymax

= 0 , (103)

24

x

y

x
M

y
M

Figure 7: Sketch of the different waves that appear in the 2D Riemann problem. The solid red lines

represent shocks, the dashed red lines represent contact discontinuities and the hatched

areas represent rarefaction waves. In the colored areas the flow is still equal to the IC. The

blue arrows show the direction of the velocity, but not the magnitude. The gray rounded

rectangle encloses the central area where 2D effects will appear. In the central area, the

wavefronts will be nonlinear, even though they are drawn linear in this simplified sketch.

for all the boundaries in this case.

At the time t = 0, the diaphragms are removed instantaneously, giving the regions freedom

to interact. The gas immediately starts flowing from the higher pressure regions towards the

lower pressure regions. Figure 7 shows how shocks and contact discontinuities are propagating

into the lower pressure regions, and rarefaction waves are propagating into the higher pressure

regions.

Additionally, Figure 7 shows how the initial conditions are retained in the areas where none of

the waves have passed. These areas become smaller as the waves propagate. Without viscosity,

energy dissipation or obstacles, the waves would proceed forever. However, we will limit the

test case to the time intervall before any of the waves reach the artificial bundaries.

Another observation we make from Figure 7 is that there are 4 one-dimensional Riemann

problems along the boundaries. They are located between the corner regions where the IC is

retained. I.e. the same areas as the blue arrows in Figure 7. This means that all the 2D effects

will be confined to the central area of the domain, which is represented by the gray rounded

rectangle in Figure 7. In the central area, the interactions between the different waves cause

25

the wavefronts to become nonlinear, as the results will show in subsection 6.3.

26

4 Numerical Approach

In this section the Numerical method will be outlined.

4.1 Basis for the Finite Volume Method

The integral form of the Euler equations (22) can be written as

∫

Ω

∂U

∂t
dV +

∫

∂Ω

[F (U) n] dA = 0 , (104)

where Ω is a control volume with surface ∂Ω . F = [F(U) , G(U)] is a matrix where the

columns are equal to the flux vectors (24) and n is the normal vector of the surface ∂Ω . We

use 2D Cartesian grids where the control volumes Ω correspond to rectangular cells i whose

surfaces are divided into faces k , as shown in figures 8 and 9. Figure 8a shows that the normal

vectors of the faces point away from the cell in focus. That is,

nk,e =

[
1

0

]
, nk,w =

[
−1

0

]
, nk,n =

[
0

1

]
and nk,s =

[
0

−1

]
(105)

are the normal vectors of faces on the left side, on the right side, below and above the cell i ,

respectively. The meshes are adaptable by quadrisection with a grading degree q = 1, as shown

in Figure 1. Thus, each cell will have minimum 4 and maximum 8 enclosing faces, as illustrated

in Figure 9. With these mesh specifications in mind, we can write the surface integral in (104)

as sums over faces:

∫

∂Ω

[F (U) n] dA =
∑

k∈ke

F̂kAk −
∑

k∈kw

F̂kAk +
∑

k∈kn

ĜkAk −
∑

k∈ks

ĜkAk , (106)

where F̂k(t) and Ĝk(t) are the flux functions F(U(x , y , t)) and G(U(x , y , t)) (24), averaged

over a face k with area Ak . The subscripts e, w , n, s and k are explained in Figure 8a. We

introduce cell averages,

Ûi (t) =
1

Vi

∫

i

U(x , y , t)dV , (107)

for the conserved variables U in cell i . Differentiating (107) in time and reordering yields

27

i

k
n

k
e

k
s

k
w

(a) The cell i is in focus. It has 6 en-

closing faces, whose normal vectors

point away from the cell i . The sub-

scripts e, w , n and s denote enclos-

ing faces on the right, left, upper and

lower side of the cell i .

i
R

i
L

i
R

i
L

k

(b) Two examples where a face k is in focus. Its adjacent

cells are denoted by subscripts L and R. For vertical

faces the subscripts denote cells on the left and right

side of the face, respectively. For horizontal faces the

subscripts L and R denote cells below and above the

face, respectively.

Figure 8: Notation for cells and faces. Variables in cells are denoted by subscript i , L or R, depending

on focus. Values at faces are denoted by subscript k .

dÛi (t)

dt
Vi =

∫

i

∂U(x , y , t)

∂t
dV , (108)

where ∂
∂t

could enter the integral because the limits of integration are independant of t. The

face averaged fluxes F̂k(t) and Ĝk(t), and the cell averaged conserved variables Ûi (t) are still

exact, but to complete our numerical method we need to approximate them. We let Fk(t),

Gk(t) and Ui (t) denote the spatially discretized approximations of the fluxes and conserved

variables. Substituting (106) and (108) into (104), using the spatially discreet approximations,

yields

dUi

dt
Vi =

∑

k∈kw

FkAk −
∑

k∈ke

FkAk +
∑

k∈ks

GkAk −
∑

k∈kn

GkAk . (109)

(109) is a template for our finite volume method (FVM). To complete it we must choose

methods to approximate the fluxes at the faces and to discretize in time.

We set the cell sizes ∆xi = ∆yi , which means that all cells are squares. Physically, this models

extrusions, i.e., square prisms where nothing depends on the third spatial dimension. Therefore

we refer to Vi and Ak as volumes and areas, respectively, even though they are mathematically

areas and lengths in this model.

28

i

(a) The cell i has only one enclosing face at each

side, giving a total of 4 enclosing faces. This

is the lowest possible number.

i

(b) The cell i has two enclosing faces at each side,

giving a total of 8 enclosing faces. This is the

highest possible number.

Figure 9: Minimum and maximum number of enclosing faces for a cell i .

4.2 Time Discretization

The approximated fluxes and variables in our FVM template (109) are continuous in time t,

but in our numerical method the solutions will only exist at discreet time levels n. We introduce

the fully discretized approximations of the fluxes, Fn
k and Gn

k , and the conserved variables Un
i ,

where superscript n denotes the time level.

To approximate the time derivative in (109) we use the first order explicit Euler method,

dUi

dt
≈ Un+1

i −Un
i

∆tn
. (110)

∆tn = tn+1 − tn is the time step size, which is set on every time level n to respect the CFL

condition. I.e., we set ∆tn such that the maximum Courant number is

C n
max =

maxi{|un
i |+ cn

i }∆tn

mini{∆xi}
+

maxi{|v n
i |+ cn

i }∆tn

mini{∆yi}
≤ 1 . (111)

Introducing this time discretization into the FVM template (109) and reordering, gives the

explicit numerical scheme,

Un+1
i = Un

i

∆tn

Vi

(∑

k∈ke

Fn
kAk −

∑

k∈kw

Fn
kAk +

∑

k∈kn

Gn
kAk −

∑

k∈ks

Gn
kAk

)
. (112)

4.3 Flux Approximation

The fluxes Fn
k and Gn

k in (112) are approximated at the vertical and horizontal faces, respectively.

For this we use the first order Rusanov method, also known as the local Lax-Friedrichs method.

29

At face k we have:

Fn
k =

1

2

[(
F(Un

R) + F(Un
L)
)
− an

k

(
Un

R −Un
L

)]
,

Gn
k =

1

2

[(
G(Un

R) + G(Un
L)
)
− bn

k

(
Un

R −Un
L

)]
,

(113)

where subscripts L, R and k are explained in Figure 8b. The characteristic speeds

ak = max{|uL|+ cL , |uR |+ cR} , bk = max{|vL|+ cL , |vR |+ cR} , (114)

are determined by the spectral radii of the Jacobian matrices ∂F(U)
∂U

and ∂G(U)
∂U

, respectively, in

the cells iL and iR . ci =
√
γpi/ρi is the speed of sound in cell i .

4.4 Numerical Treatment of Initial and Boundary Conditions

4.4.1 Shock Reflection

The left (37) and upper (38) boundary conditions for the shock reflection test case, cf. Figure 2,

are passed directly to the analytical flux functions (24). I.e., for a face k in the left boundary

we have

Fn
k =

{
F(U(V1)) if yk < yα

F(U(V2)) if yk > yα
, (115)

where yk is the y-coordinate of any point on face k . This means that we always ensure that yα
is at a cell interface, i.e., all cells and vertical faces are either entirely above or below yα. At a

face k in the upper boundary, all the fluxes are computed using variables from region 2:

Gn
k = G(U(V2)) . (116)

The homogeneous Neumann conditions (40) at the right boundary are treated by extrapolating

the variables from the left adjacent cell. Thus, for a face k at the right boundary, we have

Fn
k = F(UL) , (117)

by the notation in Figure 8b. The impermeability (39) at the lower boundary is treated using

the concept of ghost cells, but without adding actual ghost cells in the program. For each face

30

k in the lower boundary, we imagine that below the face there is a cell, iL by the notation in

Figure 8b. In this cell the primitive variables VL are symmetrical with VR in the cell above face

k . I.e.,

ρL = ρR , uL = uR , vL = −vR , pL = pR , (118)

where we notice the minus sign for v . Evaluating the Rusanov flux approximation Gn
k (113) for

our lower boundary face k using UR and U(VL) gives

Gn
k =




0

0

G n
ρv ,k

0




. (119)

G n
ρv ,k is the Rusanov approximation of the vertical momentum density flux,

Gρv (U) = ρv 2 + p , (120)

which is the third element of the flux vector G(U) (24). The approximation (113) gives that

G n
ρv ,k =

1

2

[(
Gρv (Un

R) + Gρv (Un
L)
)
− bn

k

(
[ρv]n

R − [ρv]n
L

)]
. (121)

We recall the symmetry (118) of the variables, such that

G n
ρv ,k =

1

2

[(
ρn

R [v n
R]2 + pn

R + ρn
R [−v n

R]2 + pn
R

)
− bn

k

(
ρn

Rv n
R − ρn

R [−v n
R]
)]

=
1

2

[
2
(
ρn

R [v n
R]2 + pn

R

)
− (|v n

R |+ cn
R) (2ρn

Rv n
R)
]

= ρn
R [v n

R]2 + pn
R − ρn

Rv n
R |v n

R | − ρn
Rv n

Rcn
R

= ρn
Rv n

R (v n
R − |v n

R | − cn
R) + pn

R , (122)

where (114) was used to express bn
k . The fluxes Gn

k at our lower boundary face k are set as

(119), where G n
ρv ,k (122) only depends on the variables UR in the cell above.

The initial conditions (36) for the shock reflection case are treated by setting the variables,

31

V0
i =

{
V1 if yi < yα

V2 if yi > yα
, (123)

explicitly in each cell. Again, we note that the meshes are chosen such that all cells are either

entirely above yα or entirely below it.

4.4.2 2D Riemann Problem

The 2D Riemann problem has homogeneous Neumann conditions (103) at all its boundaries.

We treat them the same way as the right boundary in the shock reflection case (117), by

extrapolating the variables from the only adjacent cell. Thus, the fluxes at the boundary faces

k are

Fn
k =

{
F(Un

R) if xk = 0

F(Un
L) if xk = xmax

, (124)

Gn
k =

{
G(Un

R) if yk = 0

G(Un
L) if yk = ymax

, (125)

for vertical and horizontal faces, respectively. xk and yk are coordinates of any point at face k .

The initial conditions (97) are passed to the cells i such that

Vn
i =





V1 if xi > xM and yi > yM

V2 if xi < xM and yi > yM

V3 if xi < xM and yi < yM

V4 if xi > xM and yi < yM

, (126)

where xi and yi are the coordinates of any point inside cell i . This means that we have taken

the same precautions for xM and yM as we did for yα. I.e., the vertical line x = xM and the

horizontal line y = yM do not bisect any cell i .

4.5 Stopping Criterion for the Steady-State Problem

For the test case with the regular oblique shock reflection, a convergence criterion is needed.

When the solution converges towards its steady state, the time derivatives ∂[]
∂t

, in the governing

equations (1)-(4), will converge towards zero. We assumed that it suffices to demand the rate

32

of density change ∂ρ
∂t
→ 0 for the stopping criterion. With the explicit Euler method (110), we

have the approximation

(
∂ρ

∂t

)n

i

≈ ρn+1
i − ρn

i

∆tn
=

∆ρn
i

∆tn
, (127)

for ∂ρ
∂t

in cell i . Steady state is assumed at time level n + 1 if

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

≤ 10−4
∥∥∥∥

∆ρ0

∆t0

∥∥∥∥
1

, (128)

where

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

=
∑

i

[
Vi

∣∣∣∣
∆ρn

i

∆tn

∣∣∣∣
]

(129)

is the 1-norm of the rate of density change. This corresponds to the sum of the moduli of the

rate of mass change in all cells i , from time level n to time level n + 1. It indicates if the total

mass in the domain is changing, and if mass is redistributed within the domain. Since the time

step size ∆tn is equal for all cells we extract it from the 1-norm.

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

=
‖∆ρn‖1

∆tn
(130)

will be referred to as the mass redistribution rate and serves as convergence indicator. It is

required to be lower equal to its initial value by the factor 10−4, before we assume steady state.

4.6 Numerical Error

The error considered in this report is the volume averaged density error,

ερ =
1

VD
‖ρnmax − ρ̂exact‖1 , (131)

where VD =
∑

i

Vi is the domain volume, ρnmax is the final density solution and

ρ̂exact,i =
1

Vi

∫

i

ρexact(x , y) dx dy (132)

is the exact average density in cell i . The analytical solution ρexact(x , y) is given by equation

(91) and Table 2 in subsection 3.1. Comparing with the exact cell averages (132) instead

33

of evaluating ρexact(x , y) in the cell centers, gives a more justified comparison, because the

numerical solution approximates cell averages.

The errors εu, εv , εp and εM of the velocity components, pressure and Mach number were

computed in the same manner as ερ.

4.7 Two Finite Volume Solvers

The numerical method outlined in this section was implemented in two different solvers. The

first one is a standard finite volume solver, which uses structured, equidistant grids that cannot

be adapted. However, the grid spacing can be varied from one simulation to another. The

data structure of this structured solver is based on dynamically allocated arrays. The numerical

scheme is implemented as it is formulated in (112). I.e., looping over cells and applying the

flux balance in one cell at a time.

The second solver uses unstructured adaptive meshes, as explained in the beginning of subsec-

tion 4.1. This AMR solver is outlined in detail in section 5. The numerical scheme (112) is

implemented as a loop over faces, where the flux transfer is applied through one face at a time.

E.g., for interior vertical faces,

Un+1
R := Un+1

R + Fn
k ,

Un+1
L := Un+1

L − Fn
k ,

(133)

by the notation in Figure 8b. The := operator denotes assignment to a computer variable. The

fluxes Fn
k are computed using (113), in the same loop.

The reason for using two different solvers was to provide a justified comparison, that can show

the potential overhead from the AMR data structure. An alternative approach would be to use

the AMR solver, without adapting, as a basis for comparison.

34

Table 3: Data member variables of the cell class. The variables are explained in the text.

Double-precision floating points:

ρn
i , ρun

i , ρv n
i , ρE n

i

ρn−1
i , ρun−1

i , ρv n−1
i , ρE n−1

i

un
i , v n

i , pn
i , cn

i

Fρu(Un
i) , Fρv (Un

i) , FρE (Un
i) , Gρv (Un

i) , GρE (Un
i)

Vi

Integer:

Li

Boolean:

ri , mi , m̃i

Iterators to faces:

kw1 , kw2 , kn1 , kn2 , ke1 , ke2 , ks1 , ks2

5 AMR Approach

As mentioned, an adaptation strategy should specify when, where and how to adapt [7]. This

section will answer those three questions, one by one. The adaptation trigger decides when

to adapt. The flagging and grading loops detect where to adapt. In sections 5.5 and 5.6 we

explain how cells are refined and merged. Before we examine these procedures separately, the

data structure of the AMR-solver is outlined.

5.1 Data Structure

The data structure in the AMR-solver is object oriented [18]. The cells and faces in the mesh

are objects, i.e. instances of the classes Cell and Face, respectively. Here, class refers to a

user-defined data type that can contain multiple data member variables of different types.

The data members of the cell class are listed in Table 3, where the members are sorted after

data type [19]. The table shows that the cells contain all the flow variables as data members.

That is, the primitive variables (25), the conserved variables (23) and the speed of sound (11).

The conserved variables are stored for the current time level n, and the previous time level

n− 1. The first reason for that is to compute the 1-norm of density change (130), used in the

stopping criterion (128) and the adaptation trigger (subsection 5.2). The second reason is that

the numerical fluxes are computed and transferred in loops over faces. All of cell i ’s enclosing

faces will use Un−1
i to compute their fluxes and overwrite Un

i , cf. equation (133).

35

Fρu, Fρv , FρE , Gρv and GρE are fluxes evaluated using the exact flux functions (24) with the

flow variables Un
i in the cell. These values are stored in the cells to avoid computing them

redundantly for the flux approximations (113). Since the density fluxes are already available as

momentum densities ρun
i and ρv n

i , they are not stored again. Since Fρv = Gρu, these fluxes

share one single data member. Additionally, the cells store their volumes Vi .

The remaining data members in the cells are not used in the numerical method, but are necessary

for the mesh adaptation, as we will see in the following subsections. The refinement level Li

was introduced in subsection 1.1. It relates to the cell size and is stored as an integer. There

are also 3 boolean (also known as logical, or binary) data members. These are the refine flag ri ,

the merge flag mi , and the prevent merge flag m̃i . These flags are explained with the flagging

procedure in subsection 5.3.

Before listing the last data members, we will introduce three new concepts: pointers, containers

and iterators [18]. A pointer is a variable that contains the memory address (aka location) [19]

of another variable. It is not a copy of the other variable, but gives access to it. A container,

in this report, refers to a data structure that contains multiple objects of the same type. A

common example is an array, which will soon be further discussed. An iterator is an object

used to navigate, and potentially manipulate, a container. We could write a whole other report

about pointers and iterators, but in this data structure they are mainly used in the following

way: Pointers and iterators are used to access objects in a container, without copying the

objects. Iterators are additionally used to insert and delete objects in containers.

The last data members of the cell class are iterators to the faces that enclose the cell. As we

saw in Figure 9 in subsection 4.1, a cell can be enclosed by 4 to 8 faces. Each cell stores 8

iterators to faces, 2 for each side: kw1 , kw2 , kn1 , kn2 , ke1 , ke2 , ks1 and ks2. Most cells will

have only one adjacent face on most of its sides. In these cases both the iterators point to the

same face on that side. E.g., for cell i in Figure 8a we have kw1 = kw2 and ks1 = ks2, while

kn1 , kn2 , ke1 and ke2 are unique. This means that some unnecessary memory space is used.

We tolerate this, since saving memory capacity is not the priority for this solver.

The face class is much simpler, as it contains only 3 data members: the area Ak of the face,

and two pointers to cells iL and iR . We keep the notation in Figure 8b, so for vertical faces,

iL and iR are the left and right adjacent cells. Horizontal faces point to the cells below and

above themselves. All interior faces have exactly two adjacent cells, but all boundary faces

have exactly one. This is solved by letting one of the pointers in the boundary faces point

to the address zero, which is called a null-pointer. E.g., a face at the left boundary will have

a null-pointer as its iL. The faces do not store information about whether they are interior,

boundary, vertical or horizontal. We will show how this is solved later.

Knowing all the members of both cells and faces, we can see how the connectivity of the mesh

is specified [3]. Connectivity, here refers to how the cells and faces are related to one another.

36

In this solver, all cells can point to their enclosing faces, and all faces can point to their adjacent

cell(s). The numerical method outlined in section 4 only requires one of these ways. I.e. we

can loop over faces and point to cells, as the present AMR solver does, or we could loop over

cells and point to faces. In my previous work [1], I developed a solver where the mesh had no

cell-to-face connectivity. This made the mesh adaptation algorithms quite complex and difficult

to maintain. In the new solver, developed for this report, cell-to-face connectivity was included.

This was to improve code maintainability, and allow less complex algorithms.

The trade-off regarding a complex class versus complex algorithms also applies to spatial coor-

dinates. We see that there are no x- or y-values in either of the classes, meaning that neither

cells or faces know their position in the spatial domain. Positions, e.g. cell centers, are not

needed for the numerical method or for the mesh adaptation, but will require extra work when

adapting, to keep the positions correct. The positions are needed after the simulation, for

plotting and comparing with the analytical solution to find the error. For these purposes, the

cell positions can be found recursively, using the cells’ refinement levels and their ordering in the

container. The ordering scheme is discussed with the refining loop in subsection 5.5. Summa-

rized, omitting x and y data members gave a simpler cell class, simpler adaptation procedures,

and more complex post-processing.

The cell- and face objects are stored in a doubly linked list [14, 18]. A linked list is a container

data structure, where the actual data is stored in nodes. The nodes can be located anywhere

in the program’s heap memory. This means that they are not necessarily close to each other, or

even in order, in memory. Instead, the ordering of the nodes is given by pointers. In a doubly

linked list, each node contains a pointer to the next node and a pointer to the previous node.

Special treatment is given at the first and last nodes, depending on implementation. In the

scope where the list is declared, we have a pointer to the first node, and a pointer to the last

node. Thus, we can traverse (aka iterate) the linked list by following the pointer to the first

node, and then follow the pointers forward until we find the last node. In a doubly linked list we

can also start at the last node, and traverse it backwards, following the pointers to the previous

nodes until we find the first one. In general, we cannot start at any of the nodes between the

first and the last. I.e., we do not have random access to the data in a linked list.

An alternative container data structure that was considered is dynamic arrays [18]. In an array,

objects are located contiguously in memory. Therefore, the next objects can always be found

by offsetting the memory address by the object size. This is faster than reading a pointer.

Furthermore, it is probable that the next object is already in cache [19], whose access time is

much lower than the main memory. Another advantage of arrays is that we save the memory

space that the node pointers in the linked lists require. However, several implementations

of dynamic arrays allocate much more memory than they use, for extra capacity, to avoid

reallocation on every insertion. The biggest disadvantage of using arrays in the AMR-solver is

that adding and removing elements in the middle of the array is very costly. As an example,

37

if object number 100 000 is removed from an array of 200 000 objects, the last 100 000

objects must be left-shifted to fill the gap from the removed object. On the contrary, adding

and removing nodes in a linked list is very simple: One object is created or deleted, and two

pointers are changed. The arguments for choosing linked lists instead of arrays were:

1. The ability to insert and delete with constant complexity.

2. Pointers to objects in a linked list are still valid after adding/removing, whilst pointers to

objects after the added/removed object in an array are invalidated.

3. The cost of loading a pointer to find the next element was assumed to be negligible

compared to the other work done on each loop.

4. When looping over faces, the cells are not accessed in the same order as they are stored

in their container. This was assumed to limit the gain from spatial locality.

5. Random access is not necessary. All operations on cells and faces are done while travers-

ing.

All the cells are stored in one single linked list. On the other hand, the faces are divided into

multiple lists: interior vertical, interior horizontal, and one for each boundary. Thus, the faces

do not need to know whether they are vertical or horizontal, or wether they are interior or at

a boundary. More importantly, this means that we do not need to check any of that while

looping. E.g. when looping over interior vertical faces, we already know that iL and iR exist,

and that we shall transfer the flux Fn
k , not Gn

k , from iL to iR .

5.2 Adaptation Trigger

The adaptation trigger decides when to adapt. When the trigger activates, the flagging, grading,

refining and merging procedures are run, in that order. The trigger is based on accumulating

the mass redistribution rate ‖∆ρn‖1 /∆tn (130), as defined in subsection 4.5.

The first mesh adaptations are triggered at time level n0 = 0, i.e., based on the initial condition

(IC). The number of initial adaptations is equal to the upper limit Lmax for the refinement level.

Thus, if there are large gradients or discontinuities in the IC, the nearby cells will be refined

to the highest level before the first time step starts. After an adaptation, say at n = na, the

subsequent values of ‖∆ρn‖1 /∆tn at every time level n are accumulated until

na+1−1∑

n=na

‖∆ρn‖1
∆tn

≥ 5
‖∆ρ0‖1

∆t0
(134)

38

Then, mesh adaptation is triggered at time level n = na+1. I.e., we accumulate the mass

redistribution since the last adaptation, until the accumulated change is so big that we need

to adapt the mesh. This is an idea that I have not yet found in the literature. However, I

wanted to test it and it has worked very well in all simulations of both test cases this far. When

a solution starts to converge, the number of time levels between mesh adaptations becomes

higher and higher, as the results will later show.

The factor 5 above was found by trial and error and may be case specific. However, it proved

to be a good value both of the test cases in this project. With values higher than 5, I observed

that the wavefronts could propagate out of a highly refined area before the mesh was adapted.

With values around 1-2, the mesh is adapted more frequently than necessary, which increases

the CPU time.

The implementation of the adaptation trigger is simple. After the first time step is computed,

we store the value 5
‖∆ρ0‖

1

∆t0
. We also declare a variable for the sum

∑
in (134) and initialize it

to zero. On every time level n, after the fluxes are transferred we compute ‖∆ρn‖1 /∆tn and

add it to the sum. Then, if (134) is true, we set the sum-variable to zero and run the flagging,

grading, refining and merging loops. If (134) is false we do nothing.

5.3 Flagging

The flagging loop is the first step of each mesh adaptation. It decides where the mesh will be

refined, and where it can be coarsened. To decide this, a criterion based on absolute differences

in the flow variables ρ, u and v is used. These 3 variables will be referred to as the indicators.

The flagging loop is a loop over all the interior faces. For each face k we check the absolute

difference in all the indicators, between the 2 adjacent cells iR and iL.

∆ρk = |ρn
R − ρn

L| , ∆uk = |un
R − un

L| , ∆vk = |v n
R − v n

L | , (135)

where subscripts k , R and L follow the notation in Figure 8b. By looping over interior faces

we check all combinations of neighboring cell pairs exactly once. The differences (135) are

compared to the refine thresholds

δr ,ρ = ηr ∆ρmax , δr ,u = ηr ∆umax , δr ,v = ηr ∆vmax , (136)

and the merge thresholds

δm,ρ = ηm ∆ρmax , δm,u = ηm ∆umax , δm,v = ηm ∆vmax , (137)

39

where

∆ρmax = max
i ,0≤l≤n

{ρl
i} − min

i ,0≤l≤n
{ρl

i} ,

∆umax = max
i ,0≤l≤n

{ul
i} − min

i ,0≤l≤n
{ul

i} ,

∆vmax = max
i ,0≤l≤n

{v l
i } − min

i ,0≤l≤n
{v l

i } ,

(138)

are the largest spreads for all the indicators, evaluated over all cells i and all time levels l until

n. max
i ,0≤l≤n

{ρl
i} is the largest density that has existed in any cell i at any time level l until time

level n. Conversely, min
i ,0≤l≤n

{ρl
i} is the lowest cell density until time level n. The same applies for

the other indicators. This means that the spreads (138) can never decrease, and that they are

likely to increase. This is a precaution we take to avoid the thresholds to converge towards zero

if any of the indicators converge towards a constant distribution. E.g., if un
i becomes almost

the same value in all cells, we do not want δr ,u to go towards zero. Even though the spreads

(138) cannot decrease, they can start at zero. If the initial condition for velocity component u0
i

is the same in all cells (cf. the 2D Riemann problem (97)), then we have ∆umax = 0 initially.

To avoid refine thresholds δr = 0 (136), which would cause all cells to be refined, we set a

lower limit for the thresholds, δr ≥ 10−5. This is a rudimentary solution, but it works for the

test cases in this report.

ηr is a is a multiplier that affects all the refine thresholds (136). It sets the thresholds δr as

fractions of the largest spreads (138). We will refer to ηr as the refine tolerance. In a similar

way, ηm sets the merge thresholds δm in (137), also as fractions of the largest spreads (138).

ηm will be referred to as the merge tolerance. Both these tolerances are given as parameters

for the AMR-solver, to adjust the strictness of the refinement criterion.

The comparisons between the absolute differences (135) and the thresholds, (136) and (137),

are used to assign the refine flag r , the merge flag m and the prevent merge flag m̃. Since

they are boolean values they can be either true or false, which we also denote by 1 and 0,

respectively. The refine flag rL in the left/lower adjacent cell of face k is set by the following

scheme:

rL := (139)

(∆ρk > δr ,ρ

∣∣ ∆uk > δr ,u

∣∣ ∆vk > δr ,v)

& LL < Lmax

∣∣ rL

where := denotes assignment of a computer variable. & and
∣∣ are the binary AND and OR

40

operators, respectively, from boolean algebra. A & B = 1 if and only if both the operands

A = B = 1, otherwise it is false. A
∣∣ B = 1 if and only if any of the operands are true. The

inequality signs < and >, in this subsection, are conditional operators that return true if the

condition is true, and false otherwise. The conditional operators have higher precedence than

&, which has higher precedence than
∣∣. I.e.,

A
∣∣ B & a < b = A

∣∣ (B & [a < b]) , (140)

where A and B are booleans and a and b are real numbers.

With these definitions, we can see that (∆ρk > δr ,ρ

∣∣ ∆uk > δr ,u

∣∣ ∆vk > δr ,v) in (139)

will be true if any of the indicators have a difference higher than its respective threshold. This

reflects that we want to refine the mesh in areas where any of the indicators have high gradients.

The results in subsection 6.1 will show the effects of this. The next condition is LL < Lmax ,

where LL is the refinement level of the left/lower cell. This ensures that cells at refinement

level L = Lmax cannot be refined further. In the end of (139), the previous state of rL is ORed

in. This implies that the refine flag can only be given, not removed, in this loop. As we saw in

figures 8 and 9, all cells have multiple enclosing faces. If the refine flag was set independently

of its previous state, then the enclosing face that comes latest in the loop would decide if the

cell were refined or not. With the final OR, we ensure that a cell is refined if any of its enclosing

faces flag it. For this to work, all the cells must have r = 0 when the flagging loop starts.

The absolute differences (135) are then compared with the merge thresholds (137), to set the

merge flags mL and mR in both the adjacent cells of face k . In the left/lower cell,

mL := (141)

∆ρk < δm,ρ & ∆uk < δm,u & ∆vk < δm,v

& LL > 0 & !m̃L

where the exclamation mark ! is the NOT operator (aka invert), which is true if and only if the

operand is false. The first 3 conditions in (141) ensure that all the indicators must have small

differences to allow merge flagging. The next condition LL > 0 ensures that cells cannot be

merged past level zero. In the end of (141) we see that mL cannot be set true if the prevent

merge flag m̃L = 1. The purpose of m̃ is to make sure that a cell can only be merge flagged if

all its enclosing faces find small differences. Therefore, m̃L is assigned as

m̃L := !mL

∣∣ m̃L (142)

41

on each loop. That is, m̃L is assigned true if mL = 0, and cannot be changed from 1 → 0

throughout the flagging loop. I.e. for this technique to work, all the cells must have m̃ = 0

when the loop starts. We could avoid using m̃ altogether. If all the cells had m = 1 before the

flagging loop, we could allow m to change from 1→ 0, but not 0→ 1. This would make sure

that merge flags are only given if all the enclosing faces condone it. However, in the current

implementation, the latter approach would require an extra list traversal, which is too costly.

The flags rR , mR and m̃R in the right/above cell are set by the same schemes as rL (139), mL

(141) and m̃L (142), but changing the subscripts L→ R .

At the end of the flagging loop we know the following conditions to be true:

• Cells are flagged for refinement if any of the indicators have large absolute differences

over any of the enclosing faces, and the cell is not at the maximum level Lmax .

• Cells are flagged for merging if all of the indicators have small absolute differences over

all of the enclosing faces, and the cell is not at the minimum level 0.

• No cell has both flags r = 1 and m = 1. They have either one of them, or none of them.

5.4 Grading

As discussed in subsection 1.1, we will use mesh grading to prevent adjacent cells to be more

than 1 refinement level apart. Thus, we require

∆xL ∈
{

1

2
∆xR , ∆xR , 2 ∆xR

}
, (143)

at all interior faces, where ∆xL and ∆xR are the cell sizes of the adjacent cells.

The flagging loop discussed above, gives us no such guarantee for the flag distribution it

produced. Instead, we achieve this by traversing the interior faces again, in the grading loop.

For each face we check the refinement level L and the preliminary flags in both the adjacent

cells. If the combination of levels and flags would give a situation that violates (143), then we

either remove a merge flag, or add a refine flag. Examples of this are shown in Figure 10. We

limit the number of combinations to handle, by assuming that (143) holds when the grading

loop starts. By induction, this is true if the initial mesh satisfies (143), and the grading loop is

run for every adaptation.

If the adjacent cells are at equal levels LL = LR there is only one illegal flag combination, which

is shown in Figure 10a. The figure also shows how this is solved. If the cells are at different

levels, there are multiple illegal flag combinations, listed in Table 4. This table also shows

42

m r r

(a) Merge flag is removed.

r
r

r

(b) Refine flag is added.

Figure 10: Examples of illegal flag and level combinations, and following countermeasures to avoid

size ratio 4. m and r denote the merge and refine flags. The figures are taken from my

project report [1], with small changes.

how these situations are solved. The first row might seem wrong, but as will be discussed in

subsection 5.6, it is not guaranteed that a cell will merge if it has the merge flag at this stage.

Figure 11 shows a detailed explanation of one of the illegal combinations in Table 4. The figure

shows both why the combination is illegal, and how it is solved.

Every time a refine flag is added to solve an illegal combination, there is a chance that we

create a new illegal combination. A simple, but costly solution for this would be looping over

the interior faces multiple times, until no illegal flag combinations exist. Instead of doing that,

each time we give a cell the refine flag to solve a combination, we add a pointer to this cell

to a container. A queue structure [14, 18], which follows the first-in-first-out (FIFO) policy,

was used in the present AMR solver. After we have looped over all the interior faces, we start

looping over the cell pointers in the queue. For each of these cells, we check all the enclosing

faces and look for the illegal combinations in Table 4 and Figure 10a. Each time a cell is

given a refine flag, we still push a cell pointer to the queue. When the queue is empty, we are

guaranteed that there are no illegal combinations left.

After grading is finished, we know that all the flags are set according to the refinement criterion,

the mesh grading constraint, and the upper and lower limits for the refinement level L. The

flags are then processed in two separate loops, discussed in the two following subsections.

5.5 Refining

The refine loop is a loop over all the cells in the mesh, where we check the refine flag ri for

each cell i . If ri = 1 we split cell i into four new cells. This is done by inserting three copies of

the parent cell i into the linked list, directly after the parent, as shown in Figure 12b. Thus, the

parent cell becomes the first child cell, and the remaining 3 children cells come directly after

it in the list. When the initial mesh is created, the cells are added from the lower left domain

corner, row by row, left to right, as in Figure 12a. Using this strict cell ordering scheme for

both the initial mesh and when refining, has no penalty when inserting and deleting in a linked

list. However, it does allow us to find all the cell positions at any time using their refinement

levels, as mentioned in subsection 5.1. This internal ordering of the cells does not mean that

the mesh is structured. I.e. the ordering scheme does not specify connectivity between cells

43

Table 4: Flag combinations for cell pairs at different levels. The countermeasures are listed in the

right column, if the combination is illegal. Lowest level means biggest cell and highest level

means smallest cell. This table is taken from my project report [1] and given small changes.

Lowest Highest

level level ⇒ Reaction

m m Lowest looses m

m Lowest looses m

m r Lowest gets r

m OK

OK

r Lowest gets r

r m OK

r OK

r r OK

and faces. It is used to relate children cells to each other while adapting, and to find cell centers

after the actual simulation is complete.

Before the parent is copied, some of its data members are changed, to affect all the children

cells:

ri := 0 , Vi :=
Vi

4
, Li := Li + 1 (144)

The first assignment makes sure all cells have r = 0 the next time we start flagging. The

second divides the cell volume by 4, and the third increments the refinement level.

Creating new objects by copying others is often referred to as copy-construction. After copy-

constructing the 3 new cells, all the 4 child cells are identical, i.e. all their data members (see

Table 3) are equal. For the flags r , m, m̃, the volume V , and the level L, this is exactly what

we want. However, for the flow variables,

ρ, u, v , p, ρu, ρv , ρE , (145)

and the exact, cell-evaluated fluxes

44

r
r

r
Grading

Refine / merge

ILLEGAL

Refine / merge

LEGAL

Figure 11: Example of an illegal flag combination, corresponding to row 6 in Table 4. The red part

of the figure shows how the result would be if if the refine and merge procedures were

run directly after flagging, without grading. In the red result, the largest cell is 4 times

larger than the small cells, implying that they are 2 refinement levels apart. The black

arrows represent the proper procedure. Adding a refine flag to the largest cell, gives the

case on row 9 in Table 4, which is legal. The figure is from [1].

In the mesh:

In the list: ...1 2 9

1 2 3

4 5 6

7 8 9

(a) Example of a 3x3 initial mesh.

The numbers indicate the

traversal order in the list.

In the mesh:

In the list:

Parent
cell

ch1 ch2

ch3 ch4

(b) A cell is refined, shown by the large white arrow. The colors

show that the parent cell becomes child 1, and how the other

children cells are ordered.

Figure 12: The scheme for ordering cells in the linked list. The upper part in both subfigures shows

how cells are positioned in the mesh. The lower parts show the cells’ order in the linked

list. The small black double-ended arrows represent pointers between list nodes. The

dots · · · represent multiple cells that were not drawn.

Fρu, Fρv , FρE , Gρv , GρE , (146)

there are pros and cons. On the positive side, copying the flow variables ensures that the

solution stays exactly the same as before the mesh adaptation. We will see examples of this

in the results in subsections 6.1 and 6.3. On the negative side, the convergence indicator

45

‖∆ρn‖1 /∆tn (130) will sky-rocket if the mesh is adapted while the solution is converging.

We will examine this in the results as well, specifically in Figure 33. Interpolation of the flow

variables using values in neighbor cells was considered, but not implemented.

The remaining data members are the iterators to the enclosing faces, providing the cell-to-face

connectivity. Since these are copied from the parent, most of the iterators point to incorrect

faces. In fact, several of the faces the they will point to, do not exist yet. Figure 13 shows why

at least 4 new faces must be created for every refined cell. The figure also shows that we may

have to split several of the enclosing faces, depending on the levels of the neighboring cells.

Faces are split by dividing its area Ak by 2, and copy-constructing another face.

Newly created faces are inserted into the linked lists for interior vertical faces, interior horizontal

faces, or one of the boundaries. For the interior faces we try to follow a certain ordering scheme,

as with the cells. When we are looping over interior faces, we always access both the adjacent

cells. I.e. flux transfer, flagging and grading. We want the next face in the loop to access one

of the cells that we accessed from the current face in the loop, as seen in Figure 14. This was

meant to utilize cache locality in time [19]. In the initial mesh we achieve this by creating the

interior vertical faces row by row, left to right, similar to the cells in Figure 12a. Conversely,

the interior horizontal faces are created column by column, bottom to top.

When refining cells, we try to sustain this order by building horizontal chains of vertical faces,

as seen in Figure 15, and vertical chains of horizontal faces. In Figure 15a we see a parent

cell that has two right-faces. They are number k and l in the list, and we do not know how

many faces that come between them. To expand the potential chains that follow k and l , we

insert the new faces before k and l , as shown in Figure 15a. The best-case in said figure is if

j = k − 1 before refining (left of the arrow). If j = k − 1 before refining, then j = k − 2 after

refining, which makes two unbroken chains: {l − 2, l − 1, l} and {j , k − 1, k}. In Figure 15b,

we use the same idea, but build from the left in case there are chains before j and k . Similarly

to 15a, there is a best-case for 15b, if l = k + 1 before refining.

In Figure 15c there are no chains to expand, so we create two new ones. In the current

implementation this is done by inserting all the new faces before k , as the figure suggests. In

hindsight I supect it would be more cache-friendly to change k − 4 and k − 3 in 15c into j + 1

and j + 2. The latter approach would guarantee two unbroken chains of three faces each.

Following the schemes in Figure 15 promotes the cache hits discussed in Figure 14, but it

will not sustain the order perfectly. E.g., in the right part of Figure 15d we see that face

number k and face number m − 1 are adjacent to the same cell in the mesh, but they are not

subsequent in the linked list. When the parent cell has two left-faces and two right-faces, as in

Figure 15d, there can be chains at both sides. These chains cannot be spliced in the current

implementation, but it could be achieved using move-semantics [18].

The same approaches are used for horizontal faces. To build and sustain vertical chains of

46

r

(a) Since all the surrounding cells were one level higher than the refined cell, none of the enclosing

(blue) faces needed splitting. However, several of them needed to update connectivities. 4 new

(red) faces were created, to separate the children cells. This extremely unlikely, but not impossible,

situation gives the lowest possible number of new faces to create.

r

(b) Since all the surrounding cells were at the same level as the refined cell, all the enclosing faces

(blue) were split. We can see that the blue faces were not deleted, but their areas are changed.

8 new (red) faces were created. As always, 4 of them separate the children cells. The other 4

come from splitting blue faces.

Figure 13: Examples of cell refinement and its consequences for the faces. In both cases the middle

cell is refined while the surrounding cells are unchanged. Blue faces existed before the

refinement, but some of their data members may have changed during the refinement.

Red faces were created by the refinement and inserted into the linked lists for faces. This

figure is taken from [1] and adapted slightly.

47

k k+1

Figure 14: Three contiguous cells in a mesh. The white circles on two of the faces show their order

in the list of interior vertical faces, where k is directly before k + 1. Face k is the current

face in the loop, and is accessing its adjacent (green) cells. The next face k + 1 is likely

to get a cache-hit when accessing its left adjacent (green) cell [19]. If face k + 1 had

been above, below, or far away from k , we would not get this cache hit.

horizontal faces, the schemes in Figure 15 can be mirrored over the rising diagonal. This

symmetry can be seen by examining figures 13b and 15c in combination.

The algorithm for creating new faces is summarized in the following numbered list:

1. Check if we can expand a chain.

2. Create the faces between the children cells, following one of the schemes in Figure 15.

3. Split enclosing faces if necessary. If they are interior, follow the appropriate scheme in

Figure 15. If an enclosing face is at a domain boundary, split it and put the new face in

the appropriate boundary linked list.

4. Where necessary, update face areas, and set connectivities (pointers and iterators), such

that all faces point to the correct cells, and vice versa.

These 4 steps are done first for vertical faces, then for horizontal faces, separately. Locating

the appropriate faces is very simple, using the cell-to-face connectivity, kw1 , kw2 , kn1 , kn2 ,

ke1 , ke2 , ks1 and ks2.

In addition to checking flags and refining cells, we execute several other operations in the

refining loop:

• We find the highest occurring refinement level max
i
{Li}, and use it to find min

i
{∆xi} in

the end of the loop. This is necessary to respect the CFL condition (111).

• We set the prevent merge flag to m̃i = 0 for all cells.

48

j

l

kk-1

l-1l-2Construct
new faces

j

l

k

(a) Parent had 2 right-faces, so we build from the right.

l

l

j+2j+1j

Construct
new faces

j

k k+1k

(b) Parent had 2 left-faces, so we build from the left.

j k

j

k

k-3k-4

k-1k-2Construct
new faces

(c) Parent had 1 right-face and 1 left-face, so we start new chains.

j

m

ll-1

m-1kConstruct
new faces

j

k

l

m

(d) Parent had 2 right-faces and 2 left-faces. We build from the right, but cannot

splice with the chains on the left.

Figure 15: Building horizontal chains of interior vertical faces, when cells are refined. Colored lines

with circles are interior vertical faces. Red faces are created when following the arrow,

blue faces are re-used. The indices j , k , l and m inside the circles denote the traversal

order in the list of interior vertical faces. k + 1 is after k; and k − 1 is before k; etc.

49

• We update the indicators’ minimum and maximum values, which gives the largest spreads

(138). They are needed for computing the refine and merge thresholds.

• We store an iterator to the former parent cell, which is now the first child cell (see

Figure 12). By keeping iterators to all ”child 1” cells, we simplify the merging loop

considerably, as we will discuss in subsection 5.6.

5.6 Merging

The merging loop is the final stage of each mesh adaptation. Cells are merged in groups of

four, as illustrated by Figure 1 in subsection 1.1, and the four cells must stem from the same

cell refinement. To ensure this, we utilize the ordering of the cells in their linked list, shown in

Figure 12. If we know that cell i was child 1 in a cell refinement (ch1 in Figure 12), and the

subsequent cells i , i + 1, i + 2 and i + 3 are at the same refinement level, then the four cells

came from the same refinement. We loop over the cell iterators that point to ch1 cells, which

are stored whenever cells are refined. For each cell i we overwrite the merge flag mi such that

mi := (147)

mi & mi+1 & mi+2 & mi+3 &

Li+1 = Li & Li+2 = Li & Li+3 = Li

In (147) we demand that the cells i , i + 1, i + 2 and i + 3 originated from one single cell

refinement, and that they all have the merge flag. Thus, if a cell is flagged for merging after

the flagging and grading loops, it is not guaranteed that the cell can merge. If mi = 1 after

applying (147), we merge the four cells. This reverses the refinement that created them, that

is, i + 1, i + 2 and i + 3 are deleted and i is enlarged to fill their void. Before we delete any

cells, we set

Li := Li − 1 , Vi := 4 Vi , mi := 0 . (148)

I.e., the refinement level and volume of the remaining cell are corrected, and we remove its

merge flag. The last part is important because multiple iterators in this loop can point to the

same cell.

The flow variables and cell-evaluated fluxes (see ”floating points” in Table 3) are set in the

remaining cell i , to the arithmetic mean of the four merging cells, e.g.,

50

Un
i :=

Un
i + Un

i+1 + Un
i+2 + Un

i+3

4
. (149)

This changes the solution, but the total mass in conserved. After all of the flow variables are

set as in (149), the four faces that separated the children cells are deleted. In Figure 13a, four

such faces are colored red. The four merging cells are enclosed by exactly 8 faces, as we can

see by comparing the right parts of figures 13a and 13b. We may need to assemble several

of those. As opposed to the splitting of faces in subsection 5.5, two faces are assembled by

deleting one and doubling the area of the other. To find out which faces to assemble, we check

the following for the two faces at each side:

• Are the faces at the boundary?

– If so, assemble them.

– If not, check the level(s) Lnb of the neighbor cell(s) at that side, and compare with

the level Li of the four merging cells.

∗ If Lnb = Li , do not assemble.

∗ If not, then we know that Lnb = Li − 1. ⇒ Assemble the faces.

We find and delete faces using the iterators kw1 , kw2 , kn1 , kn2 , ke1 , ke2 , ks1 and ks2

from the merging cells. After the appropriate faces are deleted or assembled, we correct the

connectivities. That is, we update the cell pointers in the faces and the face iterators in the

cells, such that they reflect how cells and faces are connected. Finally, we delete the three cells

i + 1, i + 2 and i + 3; and we delete the cell iterator that pointed us to cell i .

51

6 Results and Discussion

In this section, the obtained results will be displayed and discussed. Before examining the

results, we will see how the data was measured and presented.

All the 1D plots in this report are prepared with the Matplotlib library in Python. This is a free

open source multi-platform library, specialized in plotting.

All the 2D plots that show solutions of flow variables, are prepared by a cell plotting tool that

I have made myself, but not specifically for this project. The plotting tool was made using

the free open source multimedia library SFML. This cell plotter represents data as colored

rectangles, where the color of each rectangle is constant. This resembles how the approximated

cell averages (107) in the numerical solutions are constant throughout each cell. In a solution

from the AMR-solver, the rectangles’ sizes are different, showing the cell sizes. This can be

accentuated by outlining all the rectangles, where the outlines will show the faces that enclose

the cells. In a solution by the structured solver all the rectangles are the same size.

All the measurements are done by the solvers themselves. When the total CPU runtime τ is

measured, some of the procedures are excluded: Finding the analytical solution, computing the

numerical errors, storing data for the cell plotter, and saving a report file, are not included in the

total runtime. Some minor book-keeping to produce average cell count, convergence history,

etc. are included, but the complexities of these operations are low enough to neglect them.

What is not negligible, is the fact that the solvers run through an operating system (Linux Mint

18.3, 4.15.0-50-generic). Even though no other tasks were given the computer while simulating,

hidden processes can interrupt the CPU and give a measurement uncertainity for the runtime.

This uncertainity has not been tested thoroughly, but running identical simulations 3-4 times

typically gives a relative spread of 1-5 %.

6.1 Development of a Shock Reflection

The shock reflection test case was introduced in subsection 3.1. In this subsection we will

examine how the shock reflection flow develops, from the initial condition to the steady-state

solution. The main reasons for studying this are:

1. To check that the mesh adapts as intended. We can check if the fine resolution areas

follow the shocks.

2. To provide intuitive understanding of the flow.

3. To check that the solution actually converges, and achieves a steady state.

52

Table 5: Parameters and derived parameters used by the AMR-solver to simulate the development

of the shock reflection.

(a) Given parameters.

∆xmax : 1
10

Lmax : 4

ηr : 0.04

ηm : 0.0182

(b) Available refinement levels and corresponding cell sizes.

Lmax

L : 0 1 2 3 4

∆xamr : 1
10

1
20

1
40

1
80

1
160

∆xmax ∆xmin

We will primarily study the results from a simulation by the AMR-solver, with the parameters

listed in Table 5. The allowed refinement levels and cell sizes are listed in Table 5b. These are

driven parameters, dictated by ∆xmax and Lmax . For later simulations, only ∆xmax , Lmax and

∆xmin will be listed. All the results displayed in subsection 6.1 will be from the AMR simulation

with the parameters in Table 5, unless something else is specified.

Figures 16 - 21 are cell plots of the density ρ at different time instants. The time instants,

shown in the tops of the figures, were handpicked to show the most interesting features. The

colorbars on the right side of the figures show the symbol and value of the plotted variable.

These colorbars are scaled to the entire series, and are therefore identical in figures 16 - 21.

The plots are prepared with the cell plotter, introduced at the beginning of section 6.

In Figure 16 we can recognize the initial conditions (36) discussed in subsection 3.1. We see

that the mesh around the discontinuity has already been refined to the highest allowed level

Lmax = 4, before the first time step is computed. Since physical variables are copied from

parent cells to children cells, we can see that the initial refinement did not change the solution.

In Figure 17 we see that the shock has propagated downwards, while retaining its intersection

with the y-axis at yα. We also see that the shock has lost the sharpness that we saw in the

initial conditions. Since there is no diffusion introduced by the Euler equations (22), this must

be numerical diffusion. The mesh in Figure 17 shows that many cells have been refined since

the start, keeping the shock well resolved. However, almost no cells have been merged, leaving

a wide trail of high resolution above the shock. This is not a bug, it is a feature. The refine

criterion monitors density ρ, but also the velocity components u and v . We shall later see that

a gradient in u is the main reason for this refined area.

In Figure 18 we see that the shock has moved further down and that it is still well resolved.

We also see that the highly refined area above the shock is becoming separated from the rest

of the high resolution cells.

In Figure 19 the shock has started to interact with the wall at the lower boundary. The density

then increases rapidly close to the wall, between the reflection point and the right boundary.

53

Figure 16: Cell plot of density initial condition.

Figure 17: Cell plot of density at t = 0.201. The shock propagates downward. A large refined area

forms above the shock.

54

Figure 18: Cell plot of density at t = 0.451. The refined area above the shock gets clearly distinct

from the density discontinuity.

This is the formation of region 3, which was discussed in subsection 3.1. The shock and the

emerging reflection is well resolved by small cells, and the refined area above the shock has

detached from the area around the shock.

In the time between Figures 19 and 20, the incoming shock has straightened, which has caused

the reflection point to move leftward. Figure 20 also shows that the reflected shock is bending

upwards, increasing the angle β from Figure 2. At this stage, the mesh seems well adapted to

the density field. We have high resolution around the shock, and coarse cells almost everywhere

else.

The reflected shock keeps bending upward until the solution becomes steady, as it converges.

The converged solution is shown in Figure 21, which indicates that the mesh is still very well

adapted to the incoming and reflected shocks.

The x-component u of the velocity develops slightly different from the density. Figures 22-27

show this development. Again the colorbars are scaled to the entire series of u-plots, causing the

colorbars to be identical in Figures 22-27. The time instants in these figures were handpicked,

some to compare with the density plots

Figure 22 shows the initial condition for u. Similar to the density, the initial u discontinuity

moves downwards and is subjected to numerical diffusion, as seen in Figure 23. However, we

also see that the right and horizontal part of the wavefront, for x & 0.4, seems to propagate

slower than the left part. An extra plot at the same time instant is given in Figure 24. The

simulation that produced Figure 24 used a higher base resolution ∆xmax = 1
20

, higher Lmax = 5

55

Figure 19: Cell plot of density at t = 0.753. The shock hits the wall and starts to reflect.

Figure 20: Cell plot of density at t = 1.2. The reflection point moves leftwards and the reflected

shock bends upward.

56

Figure 21: Cell plot of density at t = 6.74. Steady state is achieved.

and a stricter refine tolerance. The consequence of adjusting the parameters like this is that

Figure 24 has much smaller cells than the other plots, and thus resolves the gradients much

better. Figure 24 reinforces the impression that the wavefront is split into two parts, and that

the right part propagates slower. It also shows an S-shaped transition area between the left

and right parts. Now, comparing Figures 18 and 23 shows why the fork-shaped area of refined

cells is necessary, to resolve both ρ and u.

In Figure 25 the S-shaped transition area has become so diffuse that most of the cells in that

area have merged. What is left of the right wavefront is then advected out of the domain

through the right boundary, and the shock hits the wall as seen in Figure 26. The reflected

shock then forms extensionally like a telescope, while bending upwards at the same time. At

this stage we do not observe highly refined cells in any other area than around the shocks. This

suggests that all the variables that are monitored by the refinement criterion have coinciding

gradients. When the reflected shock finds it steady position, the solution converges. The steady

state solution is shown in Figure 27.

Now we examine the velocity component v , parallell with the y-axis. Figures 28-32 show its

development. From the initial condition shown in Figure 28, the wavefront propagates very

similarly to the density field. We can observe this by comparing Figures 29 and 18.

When the shock reaches the lower boundary, as seen in Figure 30, the lower part of the shock

becomes aligned with the wall. It then starts to bend upwards, creating the reflected shock as

seen in Figure 31. The solution then proceeds to its steady state and converges as shown in

Figure 32. Figures 30-32 also indicate that v is well resolved throughout the flow development.

57

Figure 22: Cell plot of the initial condition for velocity component u.

Figure 23: Cell plot of velocity component u at t = 0.451. The shock propagates downwards.

∆xmax = 1
10 and ∆xmin = 1

160 .

58

Figure 24: Cell plot of velocity component u at the same time instant t = 0.451 as Figure 23, but

with ∆xmax = 1
20 and ∆xmin = 1

640 , and without drawing faces.

Figure 25: Cell plot of velocity component u at t = 0.753, just before the shock hits the wall and

starts to reflect.

59

Figure 26: Cell plot of velocity component u at t = 1.35. The reflected shock forms extensionally,

while bending upwards.

Figure 27: Cell plot of velocity component u at t = 6.74. Steady state is achieved.

60

Figure 28: Cell plot of the initial condition for velocity component v .

Figure 29: Cell plot of velocity component v at t = 0.451. The shock propagates downwards, and

almost exits the refined area.

61

Figure 30: Cell plot of velocity component v at t = 0.701. The shock hits the wall and starts to

reflect.

Figure 31: Cell plot of velocity component v at t = 1.2. The reflected shock bends upwards, while

the reflection point moves to the left.

62

Figure 32: Cell plot of velocity component v at t = 6.74. Steady state is achieved.

The pressure p develops very similarly to the densityρ. The only visible difference is the values

at the colorbar.

To check that the solutions discussed above achieve steady states, the convergence history of

the AMR simulation cf. Table 5 is plotted in Figure 33. Another simulation was executed, by the

standard finite volume solver solver (see subsection 4.7). It used a grid spacing ∆xstr = ∆xmin,

i.e., equal to the smallest cell size allowed in the AMR-simulation. This standard simulation is

also included in the convergence history plot in Figure 33. In said figure, the red graph shows

that the convergence indicator ‖∆ρn‖1 /∆tn, scaled by its initial value, decreases monotonically

for the structured solver, until reaching the threshold, 10−4. For the AMR simulation the

convergence indicator is indicated by the blue graph in Figure 33. It peaks at the time levels

indicated by the dashed vertical lines, because the mesh is adapted at those times, causing

disturbances of the numerical solution. In this particular case, the convergence threshold is

reached at n = 2248 for the AMR solver, and at n = 1671 for the standard solver. This means

that the AMR solver takes 1.35 times as many time steps as the structured solver, which is a

recurring trend. Although the factor varies between 1.3 and 1.6, the AMR-solver required more

time steps to converge in all simulations.

It seems natural that the mesh adaptation disturbs the convergence. Figure 33 confirms this, by

showing that the last peaks in the blue graph coincide with the dashed vertical lines. However,

the figure also shows that the blue graph displays a strong linear tendency, for n & 500 in this

logarithmic plot. At the last few mesh adaptations we can see that the graph recovers very

quickly back to its linear trend, and the peaks do not seem to affect this trend in the long run.

The red graph in Figure 33 has no peaks, and more importantly, it displays a negative curvature

63

Figure 33: Convergence history plot with logarithmic ordinate axis. The red and blue graphs show the

development of the convergence indicator ‖∆ρn‖1 /∆tn, normalized by its initial value.

The dashed gray vertical lines show the time levels when the last 15 of the total 42

adaptations occurred. Both solvers used ∆xmin = ∆ymin = 1
160 .

for n & 500. Even though this difference in convergence rate is interesting and important to

note, investigating it further is beyond the scope of this report.

Figure 33 illustrates yet another important point: If we observe the spacing between the dashed

gray lines, it is evident that the mesh adaptations happen much more seldom later in the

simulation. This relates to the adaptation trigger that was introduced in subsection 5.2. As

‖∆ρn‖1 /∆tn decreases, more time steps are required before mesh adaptation is triggered.

6.2 Measuring the Benefit from AMR

We will measure the gains from the AMR approach by comparing several AMR simulations with

several structured simulations. The gain here refers to a reduction in the number of cells Ni , and

a reduction of the CPU runtime τ . The reduction in τ shows the overall gain from this AMR

approach with the current implementation. It factors in overhead in the data structure and

algorithm efficiency. The reduction in cell count Ni is important because it shows the potential

of the approach. It gives a measure of how much more we can decrease τ by optimizing the

data structure and the algorithms.

In addition to measuring the gains we will measure the drawback of the approach, which is an

increase in numerical error. We need to examine the relation between gains and drawbacks to

see the actual benefit from the AMR approach. The error considered here is the density error

64

Table 6: Parameters that vary within an AMR simulation series. ∆xmax is the size of all the cells

when the mesh is created and Lmax is the highest permitted refinement level. ∆xmin is the

smallest permitted cell size, and follows directly from ∆xmax and Lmax .

Sim. number: 1 2 3 4 5 6 7 8 9 10 11

∆xmax : 1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
20

Lmax : 2 2 3 3 4 4 5 5 6 6 6

∆xmin : 1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1280

ερ (131), which was defined in subsection 4.6. The errors of all the primitive variables (25) and

the Mach number were logged and examined, and they all show the same trends. Therefore,

only results of ερ are presented.

Instead of comparing simulations one to one we will present the data in plots and look for

general trends. The simulations are grouped into 6 series, where 1 series was executed by the

structured solver and the remaining 5 series were simulated by the AMR solver. The purpose

of these simulations is to look for relations τ(ερ) and Ni (ερ). We will compare these relations

for each of the 6 simulation series graphically. Therefore, we must ensure that ερ falls into

a similar range for all the series. The error depends strongly on the smallest allowed cell size

∆xmin = ∆ymin in the AMR-solver, and on the uniform cell size ∆xstr = ∆ystr in the structured

solver. This was utilized when setting the simulation parameters. In each of the 5 AMR series,

the parameters that control the available cell sizes are varied according to Table 6. To exemplify:

The first simulation in all the AMR series will allow cell sizes down to ∆xmin = 1
40

, the second

simulation in all the AMR series allows cell sizes down to ∆xmin = 1
60

, and so on.

The 5 AMR series use different values for the refine and merge tolerances, ηr and ηm, which

were introduced in subsection 5.3. The values are given in Table 7, were the merge tolerances

have been set to

ηm =
ηr

2.2
. (150)

The first series has high tolerances. This gives relaxed refine and merge criteria, meaning that

less cells will be refined, and more cells will merge. The last series has low tolerances. This

gives stricter criteria, forcing more cells to be refined and permitting fewer cells to merge.

The structured series consist of 13 simulations executed by the structured solver, using equidis-

tant grids. The 13 simulations use different mesh resolutions listed as grid spacings in Table 8.

These chosen cell sizes are similar to ∆xmin in Table 6, which was intended to give errors in

the same range.

We start by examining the gains and drawbacks separately by plotting Ni (∆xmin), τ(∆xmin)

65

Table 7: Refine and merge tolerances for the 5 AMR series. ηr and ηm are defined in subsection 5.3.

Series no.: ηr ηm

1 0.08 0.0364

2 0.06 0.0273

3 0.04 0.0182

4 0.02 0.0091

5 0.01 0.0045

Table 8: Cell sizes, i.e. grid spacings for the structured solver.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11 12 13

∆x : 1
35

1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1100

1
1200

and ερ(∆xmin). Figure 34 shows that the AMR simulations use much fewer cells than the

structured solutions in the left part of the figure, where we allow small cells. We also see

that the refine tolerance has a large impact on the cell count. Series 1 has the most relaxed

tolerance, ηr = 0.08. Its cell count is almost two orders of magnitude below the structured

cell count in the left end of the graphs. Overall, the cell count increases when the tolerances

decrease, except for the left end of the green graph, which is series 3. This simulation was run

again multiple times, but gave the same strange values every time. It is included in all the plots

and it stands out in almost all of them, but will not be investigated further in this report.

Next we plot the CPU time τ(∆xmin) in Figure 35. From this plot we see that the runtimes are

considerably lower for the AMR simulations than for the structured ones. In the left end of the

plot the AMR simulations have smaller cells than the structured solver, but use only 10 - 35 %

of the runtime. I.e., we see the same trend as for the cell count, but to a smaller degree. The

refine and merge tolerances seem to have an even bigger effect on runtime than on cell count.

With the most relaxed tolerances (red), the highest resolved simulation (leftmost) is one order

of magnitude below the structured solver. With the strictest criterion (blue), the ratio between

AMR and structured is close to 3.

The error ερ(∆xmin) is plotted in Figure 36. We can see from this plot, that the AMR simulations

give higher errors than the structured ones. Especially the simulations with the high refine

tolerance ηr = 0.08. Conversely, the simulations in series 5 (blue) with the strictest tolerances

give errors that are quite close to the structured simulations, but they are still a little higher.

From the slopes of the error plots, it does not look like the error

lim
∆x→0

ερ = 0 , (151)

66

Figure 34: The final number of cells in the mesh, plotted against the smallest cell size ∆xmin. For

the structured solver, this is the size of alle the cells in the mesh. ηm is not shown in the

legend since it is ηr

2.2 in all simulations. This applies to all following plots. Both axes use

the logarithmic scale.

Figure 35: The simulation runtime (CPU time), plotted against the smallest cell size ∆xmin. Both

axes use the logarithmic scale.

67

Figure 36: The density error ερ (131), as defined in subsection 4.6, plotted against the smallest cell

size ∆xmin. The first axis uses logarithmic scale.

Table 9: Comparison between an AMR simulation and a standard simulation, where we see a large

benefit from AMR. For the standard solver the refine tolerance ηr is not applicable, and

∆xmin was the size of all the cells. Ni is the final number of cells in the mesh, τ is the

total CPU time in seconds and ερ is the density error. The ratios are the values from the

standard solver divided by the AMR values.

ηr ∆xmin Ni τ [s] ερ

AMR: 0.01 1
1280

35 433 327 0.00742

Standard: 1
1100

726 000 903 0.00735

Ratio: 20.5 2.76 0.991

for any of the solvers. This could be further investigated by allowing even smaller cells.

The trade-offs between gains and drawbacks are examined by plotting Ni (ερ) and τ(ερ). In

Figure 37 we see that all the AMR simulations use fewer cells than the standard solver to

achieve a certain error. The simulations in the left end of the plot show the largest benefits,

using only 5-10% of the number of cells. Details about one of these AMR simulations is listed

in Table 9, where it is compared to a structured simulation that gave an approximately equal

error. Figure 37 also shows a trend regarding the refine and merge tolerances. In the right half

of the plot the AMR benefit increases with increasing tolerances. Conversely, at the left end

of the plot the lowest tolerances give larger benefits. This indicates that larger tolerances are

more beneficial for larger cells, and smaller tolerances are more beneficial for smaller cells, since

the error decreases with ∆xmin, cf. Figure 36.

68

Figure 37: The final number of cells in the mesh, plotted versus the density error. The ordinate axis

uses the logarithmic scale.

The plots of τ(ερ) do not provide good comparisons with any of the four combinations of

proportional and logarithmic axes. On proportional axes, the graphs of τ(ερ) resemble rectan-

gular hyperbolas with asymptotes at the coordinate axes. However, the product τ ερ increases

hyperlinearly as ερ decreases, and the graphs appear too close to each other to distiguish. To

provide a readable plot the runtimes were normalized as

τ ∗ =
τ

τstr
, (152)

where τ is the runtime the simulation in focus, and τstr is the runtime of a simulation from the

structured solver, that gives the same error as the simulation in focus. Since no two simulations

have equal errors, τstr is found by linear interpolation between structured simulations:

τstr = τ r ight + (ερ − εr ight
ρ)

τ lef t − τ r ight

εlef t
ρ − εr ight

ρ

, (153)

where the superscripts lef t and r ight denote the closest structured solution on each side, in

terms of error. In Figure 38 the normalized runtime τ ∗ is plotted versus ερ. The plot shows

that the AMR simulations mostly took less CPU time per error than the structured simulations.

However, the red graph shows that if the tolerances are too relaxed, we will not achieve this

benefit in the left part of the plot. Even though the high tolerance ηr = 0.08 gives low runtimes

and cell counts, it increases the error so much, that the standard solver could achieve the same

error using less runtime. Like for the cell count Ni in Figure 37, we find the highest benefits in

the left end of Figure 38. These AMR simulations use less than 40% of the CPU time that the

69

Figure 38: Normalized CPU runtime τ∗ (152). This is plotted versus the density error ερ.

standard solver uses to reach the same error. One of these AMR simulations is the one that

was detailed in Table 9. For the refine and merge tolerance we see the same trend in figures 37

and 38: Smaller tolerances are more beneficial for smaller cells and larger tolerances are more

beneficial for larger cells. If this relationship holds, the refine and merge tolerances should be

set depending on the smallest allowed cell size.

6.3 Simulation of a 2D Riemann Problem

The second test case that was studied is a two-dimensional (2D) Riemann problem. It was

introduced and discussed in subsection 3.2. For this flow case we do not have an analytical

solution to verify the solution. However, there are other gains from simulating this test case:

1. We will check if the AMR-solver finds the same solution as the structured solver.

2. We will check if the mesh adaptation algorithm detects high gradients in a more compli-

cated flow.

3. We will still compare runtimes between the AMR-solver and the structured solver.

The parameter settings that were used to simulate this test case with the AMR-solver are

given in Table 10. The refine and merge tolerances ηr and ηm, and the smallest cell size

∆xmin = ∆ymin are set relatively small, if compared to the parameters used in subsection 6.2.

This was done to ensure that all the different wave types mentioned in subsection 3.2, were

70

Table 10: Parameters used by the AMR-solver to simulate the 2D Riemann problem.

∆xmax : 1
20

Lmax : 6

∆xmin : 1
1280

ηr : 0.015

ηm : 0.0068

resolved. For the structured solver, the uniform grid spacing ∆xstr = ∆ystr was set equal to

the smallest allowed cell size for the AMR-solver.

As mentioned, we limit this test case to the time before any of the waves reach the domain

boundaries. By trial and error it was found that the time interval

0 ≤ t ≤ 0.2 (154)

achieves this while still showing the waves we are interested in.

Figures 39-44 show the simulation results from the 2D Riemann problem test case. The time

instant is shown at the top, and the size and name of the plotted variable is shown by the

colorbar.

We start by confirming that Figure 39 agrees with the initial condition (99) given in subsec-

tion 3.2. We recognize the regions, with increasing density at higher x- and y-values. The IC

for pressure is identical to density, and the ICs for the velocity components are constant zero.

Their plots are therefore not included.

Figure 40a shows the final density solution at t = 0, computed by the AMR-solver. In this

density field we can identify all the different waves, by using Figure 7 in subsection 3.2 as

reference. We see the vertical shock at x ≈ 0.23 and the horizontal shock at y ≈ 0.2. The

contact discontinuities at x ≈ 0.48 and y ≈ 0.43 are not as distinct, especially near the center

of the domain. At x ≈ 0.7 and y ≈ 0.7 we find the rarefaction waves. They are wider than

the other waves, as indicated in Figure 7.

We also recognize the different areas that were discussed in the end of subsection 3.2. I.e.

we see that the density is constant in the corners, and equal to the initial condition. We also

see the 1D Riemann problems along the artificial domain boundaries, where all the wavefronts

are linear and perpendicular to the adjacent boundary. In the central area we observe the 2D

effects, as non-linear wavefronts.

Figure 40b is a plot of the density at the same time and flow case as 40a, but computed by

the structured solver. Comparing the two plots in Figure 40 gives a strong indication that the

71

Figure 39: Initial condition for the density in the 2D Riemann problem.

solvers have found the same solution. We can observe small differences around the contact

discontinuities, where it is possible to make out the color changes between cell interfaces in the

AMR solution. This indicates that the mesh might be too coarse in these areas.

Figures 41 and 42 are plots of the velocity components u and v , from the AMR solution. One

thing we notice in these figures is that not all the waves are observable in these plots. The

u-plot Figure 41 shows the entire vertical shock- and rarefaction waves, but not the vertical

contact discontinuity. The horizontal shock and contact can be seen, but only between the

outer vertical waves. Instead of a distinct horizontal rarefaction wave, we see that u increases

gradually from the horizontal contact, up to y ≈ 0.7, where the density showed the rarefaction

wave in Figure 40.

All the same features appear for the velocity component v in Figure 42, but mirrored over the

rising diagonal. We can also compare these velocity fields to the blue arrows in Figure 7 and

find consistency for the flow directions along the boundaries.

Comparing the AMR velocity fields in figures 41 and 42 with the result from the structured

solver did not show any differences apart from those discussed when commenting the density.

Velocity fields from the structured solver are therefore excluded.

The pressure from the AMR-solver’s solution is plotted in Figure 43. It shows both the shocks

and both rarefaction waves, although the vertical rarefaction wave is a little vague. None of the

contact discontinuities can be observed. As the density, the pressure has remained constant in

the boundary corners.

72

(a) AMR-solver.

(b) Structured solver.

Figure 40: Final solution for the density in the 2D Riemann problem.

73

Figure 41: Final solution for the velocity component u in the 2D Riemann problem. The solution

was produced by the AMR-solver.

Figure 42: Final solution for the velocity component v in the 2D Riemann problem. The solution

was produced by the AMR-solver.

74

Figure 43: Final solution for the pressure in the 2D Riemann problem. The solution was produced

by the AMR-solver.

Figure 44 shows the exact same density solution as Figure 40a, but with the mesh faces plotted

as black lines on top. Counting refinement levels from any of the largest cells, e.g. in the

corners, we can see the refinement levels 0 ≤ L ≤ 4. The 2 smallest cell sizes, corresponding

to refinement levels 5 and 6, are so small that the highly refined areas appear as opaque black.

This occurrs at both the shock waves and both the rarefaction waves. The mesh around the

contact discontinuities has also clearly been refined, but mostly to level 4. The lower part of

the vertical contact discontinuity is only at level L = 3. For perspective, we could fit

(26)2

(23)2
= 64 (155)

of the smallest cells inside each of the level 3 cells. This shows a disadvantage of using absolute

differences for the refine- and merge criteria: The lower part of the vertical contact discontinuity

has a relatively small difference in density. It is therefore not given the highest refinement level,

even though it is a discontinuity. This indicates that the refinement criterion should be based

on e.g. gradients instead, to detect discontinuities with small differences.

Another observation we make from this test case is that the density ρ is a very good indicator

for where high resolution is needed. For this particular test case all the high gradients and

discontinuities are present for the density. We could therefore have omitted checking u and v

in this case, and used ρ as the only indicator. However, as we have seen in the case with the

shock reflection, cf. Figure 23 in subsection 6.1, checking ρ does not always suffice.

75

Figure 44: The final mesh used by the AMR-solver, plotted on top of the density solution.

For this test case, we will examine some technical output from the AMR-solver, and compare

some of it with data from the structured solver. Table 11 shows selected values from the reports

that the two solvers produced when simulating the 2D Riemann problem.

The runtime τ is the measured time that the CPU used to execute the simulation. We see that

the structured solver used about twice as much time as the AMR-solver. This ratio is lower

than than the values we found for the shock reflection case, indicating that the efficiency gain

is a little lower for this 2D Riemann problem. The time-level-averaged number of cells N̄i and

the final number of cells Nnmax
i are approximately 8 times higher for the structured solver. This

ratio was typically much higher for the shock reflection case, as seen in Figure 34. The many

waves that appear in the 2D Riemann problem require a larger portion of the domain to be well

resolved. This decreases the gain from the AMR approach, as expected. Similar to the shock

reflection case, we see much higher ratios in cell count than in runtime, which again indicates

a potential to increase the efficiency gain considerably.

The number of time steps nmax tells us how many times the explicit Euler method was applied

to march the solution forward. The number of mesh adaptations Nadapt is how many times the

complete procedure of flagging, grading, refining and merging was executed. The flux/residuals

time is how much of the total runtime that was spent computing time steps. It is mostly spent

computing and transfering fluxes, updating primitive variables and spectral radii, computing

the 1-norm and some minor book-keeping, e.g. producing the data we are currently discussing.

The mesh adaptation time is the portion of the total runtime that was spent by the flagging,

grading, refining and merging procedures. The first thing that these four numbers tell us is that

the main time consumer is the numerical method. For the shock reflection test case this was

76

Table 11: Miscellaneous technical output from the AMR solver. Values from the structured solver

are given where applicable, for comparison. The right column is the ratio between the left

and middle columns. The meaning of each row is explained when commented in the text.

AMR Structured Structured
AMR

Total CPU time τ [s]: 92.6 187 2.02

Average no. of cells N̄i : 200 321 1 638 400 8.18

Final no. of cells Nnmax
i : 206 677 1 638 400 7.93

No. of time steps nmax : 891 891 1

No. of mesh adaptations Nadapt : 133

Flux/residuals time [s]: 75.0 (which is 81% of τamr)

Mesh adaptation time [s]: 17.6 (which is 19% of τamr)

Flagging time: 37.9 % (of adaptation time)

Grading time: 34.3 % (of adaptation time)

Refining time: 18.0 % (of adaptation time)

Merging time: 9.78 % (of adaptation time)

much more distinct, where only 3-5% of the runtime was used for mesh adaptation. Giuliani

and Krivodonova [10] have conducted a similar profiling of their AMR code, where 4-45% of

the CPU time was used for mesh adaptation. The 4 latter numbers also show that the average

runtime spent per adaptation 132 ms, is comparable to the average time used per time step,

84 ms. Furthermore, the mesh was adapted much more often in the 2D Riemann problem,

Nadapt,Riemann

nmax ,Riemann
=

133

891
= 0.149 , (156)

than in the shock reflection case, cf. Table 5 and Figure 33,

Nadapt,reflect

nmax ,reflect
=

42

2248
= 0.0187 , (157)

where Nadapt is the number of adaptations and nmax is the number of time steps computed.

The final information we extract from Table 11 comes from the 4 bottom rows. These 4

percentages show how the mesh adaptation time is distributed among the flagging, grading, re-

fining and merging procedures. They show that refining and merging, i.e. adding and removing

cells and faces, takes much less time than flagging and grading. This is related to the linked

list data structure, which allows elements to be added and removed efficiently. The refining

and merging loops use only (0.18 + 0.0978) 0.19 = 0.053 ⇒ 5.3% of the total CPU time τ ,

77

in this simulation. Merging is more efficient than refining, because the merging loop does not

need to loop over all the cells in the mesh (see subsection 5.6).

Since the numerical method is the main time consumer, future optimizations should focus on

the numerical method. I.e., we should optimize the data structure to make the numerical

method more efficient, even if this sacrifices some efficiency in the refining and merging loops.

One optimization I propose is to store the faces in dynamically allocated arrays and keep the

cells in linked lists. The face objects (see subsection 5.1) are very small in terms of bytes, and

they are looped over a lot. Therefore, they can benefit from the spatial locality of an array.

Conversely, the cell objects are much larger, and less frequently looped over. The size difference

in bytes means that inserting and deleting faces in an array is less costly than with cells. This

is further discussed in section 8.

78

7 Conclusions

An AMR finite volume solver using unstructured Cartesian grids has been developed for the

2D Euler equations of gas dynamics. The adaptation trigger, i.e., the criterion for when to

adapt, is based on accumulating an approximated mass redistribution rate, cf. subsection 5.2.

To the best of our knowledge, this is a new approach. The results indicate that this approach

works well for both steady-state problems and transient simulations, though many more flow

cases must be tested before we can assert this. For the transient test case of a 2D Riemann

problem, and the development of a regular shock reflection, the new adaptation trigger keeps the

mesh updated, avoiding that large gradients leave the highly resolved areas. If the resolution

demanding features slow down or stop moving, the trigger activates more seldom. During

convergence of the steady-state simulations this is especially evident. This adaptation trigger

is also very easy to implement and inexpensive in terms of CPU time.

The benefit from the AMR approach was measured by comparing the number of cells and the

CPU time of simulations that give similar errors. The cases that benefit the most from AMR are

the simulations where we allow the smallest cells, i.e., the simulations with the smallest errors

and highest CPU times. In these cases, the number of cells for the AMR solver was only about

5% of the number of cells for the standard solver. The efficiency gain for CPU time is much

lower, but still significant. The AMR solver used 36-40% of the runtime of the standard solver

to give similar errors in the most beneficial cases. The difference between these percentages is

most likely related to the mesh data structure. The mesh adaptation procedures only comprise

3-20% of the AMR solver’s total runtime, whereas the numerical method consumes the rest of

the runtime.

The criterion for where to refine and coarsen the mesh was varied. This proved to have a big

effect when examining runtime, number of cells and error. A relaxed criterion gives lower cell

counts and runtimes and higher errors than a strict criterion, as expected. The results indicate

that to maximize the benefits from this AMR approach, the refine and merge tolerances should

be set depending on the smallest allowed cell size. Specifically, with smaller cells the tolerances

should be smaller, and with larger cells the tolerances should be larger, to give a good balance

between CPU time and error.

79

8 Future Outlook

More simulations should be run, with much higher cell counts. This would show if the benefit

from the AMR approach continues to increase as the resolution and number of unknowns

increase. If it does, then the benefit from the approach would be tremendous if it is used in

supercomputing. More simulations with higher resolutions could also substatiate, or falsify, the

relation between the optimal refine and merge tolerances and the smallest cell size.

The approach should be expanded to handle 3D problems, higher order approximations in time

and space, and parallell computing. These expansions are necessary for the method to realize

its potential. It would require several changes in the data structure and algorithms.

The adaptation trigger worked very well for the test cases in this project. We can use the

approach for many different test cases to check its potential.

Evidently there is overhead related to the data structure. It would be interesting to conduct

a more detailed profiling of the AMR solver to find out why its data structure slows down the

numerical method so much. We could also do a detailed comparison between linked lists, trees

and arrays, analyzing the complexities of the most used operations. If it has not been tested

already, I propose the following combination: storing the faces in dynamic arrays, since they

are small (in bytes) and looped over a lot; and storing the cell objects in a linked list, since

they are large and more seldomly looped over. The faces’ small sizes would increase the gain

from spatial locality, and reduce the cost for insertion and deletion, in an array. Furthermore,

for my previous AMR solver [1] I proposed an algorithm for handpicking and deleting multiple

elements in an array and correcting invalidated pointers to the remaining elements in said array.

The complexity was still higher than deleting nodes in a list, but it was much faster that

deleting array elements one by one. If this algorithm can be inversed, to allow cheaper insertion

(at handpicked positions in an array) as well, then we could store the faces in arrays without

sacrificing the ordering scheme (see Figure 15 and subsection 5.5). The bottom line is that we

could benefit from spatial locality of faces, and temporal locality of cells, when looping over

faces.

The approach for ordering the interior faces, discussed in subsection 5.5, should be improved to

better sustain a cache-friendly order. For the linked list approach we could use move-semantics

[18] to splice broken chains and further reduce the number of cache misses.

The impaired convergence rate towards steady state should be investigated. The solution

disturbances caused by the actual adaptations surly affect the convergence indicator, but we

suspect there is another, more important reason for the slower convergence rate.

80

References

[1] F. Kristoffersen. “Adaptive Mesh Refinement for Conservation Laws”. Pre-Master project

thesis. Trondheim: Department of Energy and Process Engineering, NTNU, 2018.

[2] M. J. Berger and R. J. Leveque. “Adaptive Mesh Refinement Using Wave-Propagation

Algorithms for Hyperbolic Systems”. SIAM Journal on Numerical Analysis 35.6 (1998),

pp. 2298–2316. issn: 0036-1429.

[3] R. Löhner. Applied computational fluid dynamics techniques : an introduction based on

finite element methods. 2nd ed. Chichester: Wiley, 2008. isbn: 9780470519073.

[4] G. W. Zumbusch. Parallel multilevel methods : adaptive mesh refinement and loadbal-

ancing. Ed. by H. G. Bock et al. 1st ed. Wiley-Teubner series, advances in numerical

mathematics. Stuttgart, Germany: Teubner, 2003. isbn: 3-322-80063-6.

[5] T. Linde T. Plewa and V. G. Weirs. “Adaptive mesh refinement, theory and applications

: proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept.

3-5, 2003”. Vol. 41. Lecture notes in computational science and engineering. Chicago

Workshop on Adaptive Mesh Refinement Methods. Berlin: Springer, 2005. isbn: 1-280-

41225-9.

[6] J. A. Trangenstein. Numerical Solution of Hyperbolic Partial Differential Equations. Cam-

bridge: Cambridge University Press, 2009. isbn: 978-0-521-87727-5.

[7] O. P. Jacquotte. “Grid Optimization Methods for Quality Improvement and Adaption”.

N. P. Weatherill J. F. Thompson B. K. Soni. Handbook of Grid Generation. Ed. by Nigel

P. Weatherill Joe F. Thompson Bharat K. Soni. Boca Raton Fla: CRC Press, 1998.

[8] M. J. Aftosmis, M. J. Berger, and J. E. Melton. “Adaptive Cartesian Mesh Generation”.

J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid Generation. Ed. by

Nigel P. Weatherill Joe F. Thompson Bharat K. Soni. Boca Raton Fla: CRC Press, 1998.

[9] Michael J. Aftosmis. What is Cart3D? NASA. 2018. url: https://www.nas.nasa.

gov/publications/software/docs/cart3d/pages/cart3Dhome.html.

[10] A. Giuliani and L. Krivodonova. “Adaptive mesh refinement on graphics processing units

for applications in gas dynamics”. Journal of Computational Physics 381 (2019), pp. 67–

90. issn: 0021-9991. doi: 10.1016/j.jcp.2018.12.019.

[11] S. Müller. Adaptive Multiscale Schemes for Conservation Laws. Ed. by T. J. Barth et al.

Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg: Springer,

2003. isbn: 978-3-540-44325-4.

[12] M. Paszynski, D. Pardo, and V. M. Calo. “A direct solver with reutilization of LU fac-

torizations for h -adaptive finite element grids with point singularities”. Computers and

Mathematics with Applications 65.8 (2013), pp. 1140–1151. issn: 0898-1221.

81

https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3Dhome.html
https://www.nas.nasa.gov/publications/software/docs/cart3d/pages/cart3Dhome.html
http://dx.doi.org/10.1016/j.jcp.2018.12.019

[13] Randall J LeVeque. Finite volume methods for hyperbolic problems. eng. Cambridge,

2002.

[14] T. H. Cormen et al. Introduction to algorithms. 3rd ed. Cambridge, Mass.: MIT Press,

2009. isbn: 1-62870-913-8.

[15] B. Müller. Introduction to Computational Fluid Dynamics - Lecture notes for the course

Computational Heat and Fluid Flow. NTNU. Trondheim, 2017.

[16] J. Zierep. Theoretische Gasdynamik. Karlsruhe: G. Braun, 1976. isbn: 3765020230.

[17] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz. “Numerical Solution of the Riemann

Problem for Two-Dimensional Gas Dynamics”. SIAM Journal on Scientific Computing

14.6 (1993), pp. 1394–1414. issn: 1064-8275. doi: 10.1137/0914082.

[18] B. Stroustrup. Programming : principles and practice using C++. 2nd ed. Upper Saddle

River, N.J: Addison-Wesley Professional, 2014. isbn: 978-0-321-99278-9.

[19] A. S. Tanenbaum and T. Austin. Structured Computer Organization. 6th ed. Boston:

Pearson, 2013. isbn: 978-0-273-76924-8.

82

http://dx.doi.org/10.1137/0914082

Appendix A Article Submitted to Conference Proceed-

ings, MekIT 19

The work presented in this report was also presented at the 10. National Conference on

Computational Mechanics, MekIT’19. On that occation, me and my academic supervisor

Bernhard Müller made an article in collaboration, for inclusion in the conference proceedings.

The content in the article is based on this report and it is therefore included here, as an appendix.

Page numbers, reference numbers, caption numbers and equation numbers are taken from the

article, and do not follow the numbering in the rest of the report.

83

84

10. National Conference on Computational Mechanics
MekIT’19

B. Skallerud and H I Andersson (Eds)

ADAPTIVE MESH REFINEMENT ON UNSTRUCTURED
CARTESIAN GRIDS FOR THE EULER EQUATIONS

FREDERIK KRISTOFFERSEN1 AND BERNHARD MÜLLER2

1 Department of Energy and Process Engineering
Norwegian University of Science and Technology

7491 Trondheim, Norway
e-mail: frederik.regi@gmail.com

2 Department of Energy and Process Engineering
Norwegian University of Science and Technology

7491 Trondheim, Norway
e-mail: bernhard.muller@ntnu.no - Web page: http://folk.ntnu.no/bmuller/

Key words: Computational Methods, Adaptive Mesh Refinement, Euler Equations, Gas
Dynamics, Shock Reflection, 2D Riemann Problem

Abstract. A finite volume solver that utilizes adaptive mesh refinement (AMR) on
unstructured Cartesian grids has been developed for the two-dimensional Euler equations
of gas dynamics. The solver uses the explicit Euler method and the Rusanov method
for time and flux discretization, respectively. The rectangular cells can be refined by
quadrisection through their centers. This preserves their aspect ratios and doubles the
spatial resolution locally. Four cells that were created from the same cell refinement can
be merged by reversing the refinement process. The criterion for refinement and merging
is based on the absolute differences of the density and velocity components in neighboring
cells. For triggering adaptation, i.e., for deciding when to perform AMR, a new criterion
is proposed. It is based on accumulating the absolute rate of change of mass relative to
its initial value.

The development of a regular oblique shock reflection from a plane wall is simulated,
starting from an initial condition corresponding to a Riemann problem. For comparison,
the Euler equations of gas dynamics are also solved by a standard finite volume solver on
a structured Cartesian grid. Using AMR, the number of cells can be reduced by up to
95%, i.e. a factor 20, to achieve the same error as the standard finite volume solver. Even
though mesh adaptation impairs convergence to steady state and there is some overhead
related to the data structure, the AMR solver takes only 36% of the computing time
needed by the standard solver, in the most beneficial cases. The potential of the AMR
solver for unsteady flow is demonstrated for the simulation of a 2D Riemann problem.

1

Frederik Kristoffersen and Bernhard Müller

1 INTRODUCTION

In computational fluid dynamics (CFD), the demand for high mesh resolution is not
equal throughout the computational domain. High gradients or discontinuities in flow
variables require higher resolution, i.e. smaller and more densely packed cells. It is possible
to do this adaptation before simulating, if a priori knowledge, or justified assumptions are
available for the flow. In many flows the regions that require high resolution are moving.
Examples are vortex shedding, and moving shocks. It would be possible to resolve the
vortices or shock by refining the mesh in the entire region the features traverse before
they dissipate. Another approach, that can lower the computational cost, is to detect
resolution demanding features while simulating, and refine or coarsen accordingly [1] [2]
[3] [4]. This approach is known as Adaptive Mesh Refinement, or AMR for short.

An adaptation strategy describes how the AMR is executed on an algorithmic level. It
should answer the questions: When, where and how to adapt?[5] The choice of adaptation
strategy is closely linked with the choice of mesh, and affects how the mesh should be
generated. The AMR solver developed for this project, uses an unstructured Cartesian
mesh. The reason for limiting the mesh to be Cartesian, was to reduce the computation
overhead related to the data structure, as explained in [6]. Marsha J. Berger has con-
tributed to the field of AMR using unstructured Cartesian meshes in cooperation with
Michael J. Aftosmis and John E. Melton [6]. This work has laid the basis for locally
refining AMR softwares such as NASA’s Cart3D project [7].

One method for refining a Cartesian mesh locally, is to quadrisect the cells through
their centers [3]. This allows the refinement state of the cells to be classified by levels [8]
[9]. These refinement levels L correspond to cell sizes, as shown in Figure 1. The largest
permitted cell size corresponds to level L = 0, and gives the lowest possible resolution.
The smallest allowed cell size corresponds to L = Lmax, which gives the highest possible
resolution. Each time L increases by one, the spatial resolution is locally doubled in all
dimensions. This means that when a 2D cell is refined, it is split into four geometrically
similar cells [3], as can be seen in Figure 1. In other words, all the cells have equal aspect
ratio, regardless of the refinement level. For three-dimensional meshes, refined cells are
split into eight cells. Only 2D cases are considered in this project.

An advantage of using this refinement approach is that one can refine very locally. Any
cell can be split into four, as can be seen in Figure 1. Conversely, four cells that were
created by the same cell refinement can be merged. However, it is advantageous to limit
this freedom with a constraint called grading [8]. This constraint sets the lower limit,
denoted by q, for how many cells must come between two level changes. With a grading
degree of q = 0, there is no limit to how close two level changes can be. Essentially, this
means that the refinement level can change multiple times from one cell to another, i.e.
a very small cell can be adjacent to a big cell. This can negatively affect accuracy, and
it can make the local refining and coarsening algorithms more intricate. With a grading
degree of q = 1, like in Figure 1, there needs to be at least one cell between level changes.

2

Frederik Kristoffersen and Bernhard Müller

Refine Refine

L=0 L=1 L=2

Merge Merge

Figure 1: Principle sketch of local grid refinement and merging using quadrisection. L is
the cell refinement level. The grading degree is q = 1, which means that between a cell at
L = 0 and a cell at L = 2, there must be at least one cell at L = 1. This figure is taken
from [10] and adapted slightly.

This means that the resolution level can change for every traversed cell, but only one level
at a time.

Another approach of mesh refinement is known as structured AMR, or S-AMR for
short [1] [6] [3]. This method involves organizing the computational domain into patches.
All the cells that belong to the same patch have the same resolution. This makes the
detection and refinement procedures much simpler [1], which is a an advantage. It also
makes it much easier to implement methods with a higher order of accuracy in space,
due to the fact that each patch is a structured sub-mesh. However, many cells will get
a higher resolution than they require, unless the patches are very small. If the patches
are too small, then the maximum cell size is limited, and the inter-patch communication
becomes costly. The work of Marsha J. Berger must be mentioned here as well. She
has contributed to the field of S-AMR, collaborating with Randall J. LeVeque. Their
work in this field is utilized in the AMRCLAW software package [1], which is part the
CLAWPACK package [11].

A third alternative is to refine locally using a tree structure, instead of an unstructured
mesh. For a 2D solver it would be a quadtree structure. This approach allows for a
relatively simple data structure if combined with the quadrisection method discussed
above. However, tree data structures are more costly to traverse. Neither S-AMR or
quadtrees are used in this project, but they are mentioned as alternatives.

There are multiple ways to detect where the mesh needs refinement, and where it can
be coarsened. One way is to compare the entire solution from the latest time step, with a
solution calculated on a coarsened mesh [1]. If the error of a cell, or patch of cells, is above
a given threshold then the cell or patch is marked for refining. Another way is to evaluate
the gradients in the solution, in pairs of neighbor cells. Then the cell or patch could be
flagged for refinement or merging based on gradient thresholds. An even simpler approach

3

Frederik Kristoffersen and Bernhard Müller

is used in this project. We check the differences between flow variables in neighboring
cells. Regardless of how the detection is done, it will consume CPU time. Therefore it is
common not to detect at every time step, but to have a criterion for when to adapt. A
simple criterion is to specify a number of time steps between each detection routine [1], or
a time interval. The AMR-solver in this project decides when to adapt, by accumulating
an approximated mass redistribution rate. We will elaborate this in subsection 4.1.

This paper is based on the first author’s master’s thesis [12], and continues with the
following sections: In section 2, the 2D Euler equations and their initial and boundary
conditions for two test cases involving shocks are stated. The explicit finite volume method
(FVM) for the discretization of the 2D Euler equations is given in section 3. The present
AMR approach based on unstructured Cartesian grids is outlined in section 4. Results
for a regular oblique shock reflection from a plane wall and for a 2D Riemann problem are
discussed in section 5. The accuracies and efficiencies of the AMR solver and a standard
solver are compared. In section 6, conclusions are drawn.

2 GOVERNING EQUATIONS

2.1 2D Euler Equations

The 2D Euler equations of gas dynamics read:

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= 0 , (1)

where

U =




ρ

ρu

ρv

ρE


 (2)

is the vector of conservative variables,

F(U) =




ρu

ρu2 + p

ρuv

u(p+ ρE)


 and G(U) =




ρv

ρvu

ρv2 + p

v(p+ ρE)


 (3)

are the flux vectors in the x- and y-directions, respectively. The density is denoted
by ρ, the x- and y-components of the velocity by u and v, respectively, the specific total
energy by E, and the pressure by p. For perfect gas considered here the pressure is related
to the conserved variables by

p = (γ − 1)

[
ρE − 1

2
ρ(u2 + v2)

]
, (4)

4

Frederik Kristoffersen and Bernhard Müller

x

y

1 3

2

s
β

s
α

x
R

α β

y
α

(a) Steady-state solution for the shock reflec-
tion case. The numbers denote regions 1, 2
and 3 respectively. The red lines represent the
shocks. The colored arrows represent the ve-
locity vectors.

x

y

x
M

y
M

ρ3 , p3 ρ4 , p4

ρ2 , p2 ρ1 , p1

(b) Initial conditions for the 2D Riemann prob-
lem. The red lines represent diaphragms, which
are instantaneously removed at t = 0.

Figure 2: Principle sketches of the test cases.

using u = ρu
ρ

and v = ρv
ρ

. γ is the constant ratio of specific heats. We shall consider
air with γ = 1.4. The vector of the primitive variables is defined by:

V =




ρ

u

v

p


 (5)

2.2 Initial and Boundary Conditions

We will examine two test cases: regular shock reflection, cf. Figure 2a, and a 2D
Riemann problem, cf. Figure 2b.

The shock reflection case seen in Figure 2a, is a steady-state problem. The figure shows
how the steady solution can be divided into regions 1, 2 and 3. Inside each region, the
flow variables are constant:

V(x, y) =





V1 for x < xR and y < sα(x)

V2 for y > sα(x) or y > sβ(x)

V3 for x > xR and y < sβ(x)

(6)

where subscripts 1, 2 and 3 denote regions illustrated in Figure 2a. sα(x) and sβ(x) are
the shock graphs in the same figure. V1 describes the uniform incoming flow at M1 > 1.

5

Frederik Kristoffersen and Bernhard Müller

V2 describes the flow behind the oblique shock sα with shock angle α. V3 describes the
flow behind the reflected shock sβ. The analytical solution for the variables in (6) is given
in [12].

We use the following initial conditions (IC) for the shock reflection case:

V(x, y, t = 0) =

{
V1 for y < yα
V2 for y > yα

(7)

where yα is shown in Figure 2a. We use the following boundary conditions (BC) for
this case:

V(x = 0, y, t) =

{
V1 for y < yα
V2 for y > yα

(8)

V(x, y = ymax, t) = V2 (9)

v(x, y = 0, t) = 0 (10)

∂U

∂x

∣∣∣∣
x=xmax

= 0 (11)

The second test case is a 2D Riemann problem. This case is defined by its initial
condition:

V(x, y, t = 0) =





V1 for x > xM , y > yM
V2 for x < xM , y > yM
V3 for x < xM , y < yM
V4 for x > xM , y < yM

(12)

which is illustrated in Figure 2b. Subscripts 1-4 in (12) denote the regions in the latter
figure. Physically, we envision this IC being achieved by diaphragms. At time t = 0 the
diaphragms are removed, causing different types of waves to interact with each other. We
will see this in the results.

The artificial boundaries are treated by using homogeneous Neuman boundary condi-
tions, i.e.

∂U

∂x
= 0 at x = 0 and x = xmax (13)

∂U

∂y
= 0 at y = 0 and y = ymax (14)

for the domain [0 , xmax]× [0 , ymax].

3 NUMERICAL APPROACH

In this section the numerical method is outlined.

6

Frederik Kristoffersen and Bernhard Müller

i

(a) The cell i is in focus. It has 6 enclosing faces,
whose normal vectors point away from the cell
i. The vertical faces kF,i are colored blue, and
the horizontal faces kG,i are colored red. There
can be one or two enclosing faces on each side,
giving a minimum of 4 and a maximum of 8 faces
in total.

i
R

i
L

i
R

i
L

k

(b) Two examples where a face k is in focus.
Its adjacent cells are denoted by subscripts L
and R. For vertical faces the subscripts denote
cells on the left and right side of the face, re-
spectively. For horizontal faces the subscripts
L and R denote cells below and above the face,
respectively.

Figure 3: Notation for cells and faces, depending on focus.

3.1 Spatial Discretization

We use Cartesian grids with rectangular cells. This means that all cell faces are either
vertical or horizontal. We also set the cell sizes ∆x = ∆y for all cells, meaning that
all cells are squares. The finite volume method (FVM) is used to approximate the cell
averages of the conserved variables.

The fluxes (3) are approximated at the cell faces by the Rusanov method, also known
as the local Lax-Friedrichs method. The flux approximations at a face k are:

Fk =
1

2
[(F(UR) + F(UL))− ak(UR −UL)] , (15)

Gk =
1

2
[(G(UR) + G(UL))− bk(UR −UL)] , (16)

where Fk and Gk are the flux approximations at the vertical and horizontal faces,
respectively. Subscripts L, R and k are explained in Figure 3b. ak and bk are determined
by the spectral radii of the Jacobian matrices ∂F(U)

∂U
and ∂G(U)

∂U
, respectively, in the cells

iL and iR.

ak = max{|uL|+ cL , |uR|+ cR} , bk = max{|vL|+ cL , |vR|+ cR} , (17)

where c =
√
γp/ρ is the speed of sound.

3.2 Time Discretization

The discretization in time is done by the explicit Euler method

7

Frederik Kristoffersen and Bernhard Müller

Un+1
i = Un

i −
∆tn

Vi


∑

k∈kF,i

[F n
k Akx̂k] +

∑

k∈kG,i

[Gn
kAkŷk]


 (18)

where i is a cell index, superscript n denotes time level, Vi is the volume of the cell
i, kF,i contains the vertical faces enclosing cell i, and kG,i contains the horizontal faces
enclosing cell i, as shown in Figure 3a. Ak is the area of face k, x̂k and ŷk are the x- and
y-components, respectively, of the normal vector of face k, which always points away from
cell i, as shown in Figure 3a. The time step size ∆tn is set at every time level to give the
Courant number

Cmax =
maxi{|ui|+ ci}∆t

mini{∆xi}
+

maxi{|vi|+ ci}∆t
mini{∆yi}

≤ 1 . (19)

3.3 Stopping Criterion for the Steady-State Solution

Steady state is assumed if

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

≤ 10−4

∥∥∥∥
∆ρ0

∆t0

∥∥∥∥
1

, (20)

where

‖∆ρn‖1 =
∑

i

[
Vi
∣∣ρn+1
i − ρni

∣∣] (21)

is the 1-norm of the density change, corresponding to the sum of the modulus of the
mass change in all cells i, from time level n to time level n+ 1.

∥∥∥∥
∆ρn

∆tn

∥∥∥∥
1

=
‖∆ρn‖1

∆tn
(22)

approximates the rate of mass redistribution between time levels n and n + 1. It is
required to be lower equal to its initial value by the factor 10−4.

4 AMR APPROACH

In this section we will see how the mesh is adapted in 4 sub-procedures: Flagging,
grading, refining and merging. The data structure of the AMR-solver will not be discussed
here, but can be found in [12]. We note that the cell- and face objects are stored in doubly
linked lists.

4.1 Adaptation Trigger

An adaptation strategy should specify when, where and how to adapt [5]. The answer
to the when is what will be referred to as the adaptation trigger. When the trigger

8

Frederik Kristoffersen and Bernhard Müller

activates, the flagging, grading, refining and merging procedures are run, in that order.
The trigger is related to the mass redistribution rate ‖∆ρn‖1 /∆t

n, as defined in (22) and
(21).

The first mesh adaptations are triggered at time level n0 = 0, i.e., based on the initial
condition (IC). The number of initial adaptations is equal to the upper limit Lmax for
the refinement level. Thus, if there are large gradients or discontinuities in the IC, the
nearby cells will be refined to the highest level before the first time step starts. After an
adaptation, say at n = na, the subsequent values of ‖∆ρn‖1 /∆t

n are accumulated until

na+1−1∑

n=na

‖∆ρn‖1

∆tn
≥ 5
‖∆ρ0‖1

∆t0
(23)

Then, mesh adaptation is triggered at time level n = na+1. The factor 5 above was
found by trial and error and may be case specific. However, it has given good results for
both test cases in all the simulations this far.

4.2 Flagging

The flagging procedure is the first step of each mesh adaptation. It decides where the
mesh will be refined, and where it can be coarsened. To decide this, a refine criterion,
based on absolute differences in the flow variables ρ, u and v is used. These 3 variables
will be referred to as the indicators.

The flagging procedure is a loop over all the interior faces. For each face k we check
the absolute difference in all the indicators, between the 2 adjacent cells.

∆ρk = |ρR − ρL| , ∆uk = |uR − uL| , ∆vk = |vR − vL| (24)

where subscripts R and L denote values in the right and left adjacent cells if the
face is vertical. For horizontal faces, the subscripts R and L denote the cells above and
below the face, respectively, like in Figure 3b. By looping over interior faces we check all
combinations of adjacent cell pairs exactly once. The differences (24) are compared to
the refine thresholds

δr,ρ = ηr ∆ρmax , δr,u = ηr ∆umax , δr,v = ηr ∆vmax (25)

and the merge thresholds

δm,ρ = ηm ∆ρmax , δm,u = ηm ∆umax , δm,v = ηm ∆vmax (26)

where

9

Frederik Kristoffersen and Bernhard Müller

∆ρmax = max
i,0≤m≤n

{ρmi } − min
i,0≤m≤n

{ρmi }

∆umax = max
i,0≤m≤n

{umi } − min
i,0≤m≤n

{umi }

∆vmax = max
i,0≤m≤n

{vmi } − min
i,0≤m≤n

{vmi }
(27)

are the largest spreads for all the indicators, evaluated over all cells i and all time levels
m until n. That is, maxi,0≤m≤n{ρmi } is the largest density that has existed in any cell i at
any time level m until time level n. Conversely, mini,0≤m≤n{ρmi } is the lowest cell density
until time level n. The same applies for the other indicators.
ηr is a multiplier that affects all the refine thresholds (25). It sets the thresholds δr

as fractions of the largest spreads (27). We will refer to ηr as the refine tolerance. In a
similar way, ηm sets the merge thresholds δm in (26), also as fractions of the largest spreads
(27). ηm will be referred to as the merge tolerance. Both these tolerances are given as
parameters for the AMR solver to adjust the strictness of the refinement criterion.

The comparisons between absolute differences and thresholds are used to flag the cells
in the following way:

• Cells are flagged for refinement if any of the indicators has large absolute differences,
over any of the enclosing faces, and the cell is not at the maximum refinement level
Lmax. I.e. cell i with refinement level Li < Lmax is flagged for refinement, if at least
one of its enclosing faces k has ∆ρk > δr,ρ or ∆uk > δr,u or ∆vk > δr,v.

• Cells are flagged for merging if all of the indicators have small absolute differences,
over all of the enclosing faces, and the cell is not at the minimum refinement level
0. I.e. cell i with refinement level Li > 0 is flagged for merging, if all of its enclosing
faces k have ∆ρk < δm,ρ and ∆uk < δm,u and ∆vk < δm,v.

• No cell has both the refine flag and the merge flag. They have either one of them,
or none of them.

4.3 Grading

As discussed in the introduction, we will use mesh grading to prevent adjacent cells to
be more than 1 refinement level apart. Thus, we require

∆xL ∈
{

1

2
∆xR , ∆xR , 2 ∆xR

}
, (28)

at all interior faces, where ∆xL and ∆xR are the cell sizes of the adjacent cells. To
achieve it we adjust the flags in a another loop over interior faces, which we call the grading
loop. Examples of this are shown in Figure 4. We limit the number of combinations to
handle, by assuming that (28) holds when the grading loop starts.

10

Frederik Kristoffersen and Bernhard Müller

m r r

(a) Merge flag is removed.

r
r

r

(b) Refine flag is added.

Figure 4: Examples of illegal flag and level combinations, and following countermeasures
to avoid size ratio 4. m and r denote the merge and refine flags. The figures are taken
from [10], with small changes.

If the adjacent cells are at equal levels LL = LR there is only one illegal flag combi-
nation, which is shown in Figure 4a. The figure also shows how it is solved. If the cells
are at different levels, there are multiple illegal flag combinations that call for different
countermeasures. These are given in [12] and so are the implementation details.

4.4 Refining and Merging

The refining and merging of cells are done separately in two loops. The refine loop
is a loop over all the cells in the mesh, where we check the refine flag ri for each cell i.
If ri = 1 we split cell i into four new cells, where the flow variables are copied from the
refined cell. Similarly, the merge loop checks the merge flag mi for all cells i. However,
cells are only allowed to merge if all the four cells that came from one cell refinement have
merge flags. When four cells merge, the flow variables in the resulting cell is set to the
average from the merging cells, i, i+ 1, i+ 2 and i+ 3,

Ui + Ui+1 + Ui+2 + Ui+3

4
. (29)

This changes the solution, but still conserves U. The implementation of the refine and
merge loops are detailed in [12].

5 RESULTS AND DISCUSSION

In this section, the obtained results will be presented and discussed.
A simple structured solver was implemented to act as a basis for comparison. This

solver uses the same numerical approach as the AMR-solver, but its data structure is
based on arrays. The mesh in this solver will always be structured and equidistant and
cannot be adapted. However, the grid spacing can be varied from one simulation to
another. This was done to provide a justified comparison that will show the potential
overhead of the AMR data structure.

5.1 Development of Shock Reflection

The shock reflection test case was introduced in subsection 2.2. We set the incoming
Mach numberM1 = 2.5 and the shock angle α = π

5
. In this subsection we will examine how

11

Frederik Kristoffersen and Bernhard Müller

Table 1: Parameters and derived parameters used by the AMR-solver to simulate the
development of the shock reflection. M1 is the Mach number in the uniform incoming
flow, and α is the incoming shock angle, cf. Figure 2a. ∆xmax is the largest allowed cell
size corresponding to the lowest refinement level L = 0. Lmax is the highest permitted
refinement level. ηr and ηm are the refine and merge tolerances, respectively, defined in
subsection 4.2.

(a) Given parameters.

M1 : 2.5

α : π
5

∆xmax : 1
10

Lmax : 4

ηr : 0.04

ηm : 0.0182

(b) Available refinement levels and corresponding cell sizes. These can always be derived from
∆xmax and Lmax.

Lmax
L : 0 1 2 3 4

∆xamr : 1
10

1
20

1
40

1
80

1
160

∆xmax ∆xmin

the shock reflection flow develops from the initial condition to the steady-state solution.
The main reasons for studying this are:

1. To check that the mesh adapts as intended by checking whether the fine resolution
areas follow the shocks.

2. To provide intuitive understanding of the flow.

3. To control that the solution actually converges and achieves a steady state.

We will primarily study the results from a simulation by the AMR-solver, with parame-
ters as shown in Table 1. The allowed refinement levels and cell sizes are listed in Table 1b.
These are driven parameters, dictated by ∆xmax and Lmax. For later simulations, only
∆xmax, Lmax and ∆xmin will be listed. All the results displayed in this subsection will
be from the AMR simulation with the parameters in Table 1, unless something else is
specified.

Figures 5 and 6 are cell plots of the density ρ and the velocity component u. They
show the development of these variables, from their initial conditions in figures 5a and

12

Frederik Kristoffersen and Bernhard Müller

5b, until steady state in figures 6c and 6d. For both ρ and u we see that the incoming
shock moves towards the lower boundary wall, but with a higher speed for ρ than for u.
Since the refinement criterion discussed in subsection 4.2 is based on differences (24) of
ρ, u and v, we see two distinct branches of highly refined cells. The reflected shocks start
to form in figures 5e and 5f. These figures, and figures 6a and 6b show that the reflected
shocks form differently for ρ than for u. The converged solutions are shown in figures 6c
and 6d, where the shock locations for ρ and u coincide. The developments of the second
velocity component v and the pressure p are not plotted in this paper, but are examined
in [12]. For v and p, the shock locations are almost identical to the shock location for the
density ρ, during the entire development.

To check that the solutions discussed above achieve steady states, the convergence
history of the AMR simulation cf. Table 1 is plotted in Figure 7. Another simulation
was executed, by the standard finite volume solver solver, using a grid spacing ∆xstr =
∆xmin, i.e., equal to the smallest cell size allowed in the AMR-simulation. This standard
simulation is also included in the convergence history plot in Figure 7. In said figure, the
red graph shows that the convergence indicator ‖∆ρn‖1 /∆t

n, scaled by its initial value,
decreases monotonically for the structured solver, until reaching the threshold, 10−4. For
the AMR simulation the convergence indicator is indicated by the blue graph in Figure 7.
It jumps up at the time levels indicated by the dashed vertical lines, because the mesh is
adapted at those times, causing disturbances of the numerical solution. In this particular
case, the convergence threshold is reached at n = 2248 for the AMR solver, and at
n = 1671 for the standard solver. This means that the AMR-solver takes 1.35 times as
many time steps as the structured solver, which is a recurring trend. Although the factor
varies between 1.3 and 1.6, the AMR-solver required more time steps to converge in all
simulations.

Figure 7 makes yet another important point, if we observe the spacing between the
dashed gray lines. It is evident that the mesh adaptations happen much more seldom
later in the simulation. This relates to the adaptation trigger that was introduced in
subsection 4.1. As ‖∆ρn‖1 /∆t

n decreases, more time steps are required before mesh
adaptation is triggered.

5.2 Comparing Error versus Runtime

To measure the gains from the AMR approach, we will compare the runtime, error and
number of cells in multiple simulations. These simulations are grouped into 6 series, where
1 series was executed by the structured solver and the remaining 5 series were simulated
by the AMR-solver. In each of the 5 AMR series, there are 11 simulations, giving a total
of 55 AMR simulations. Inside the series, the parameters that control the available cell
sizes are varied according to Table 2.

The 5 AMR series use different tolerances for the refine- and merge criteria that were
introduced in subsection 4.2. The tolerances are given in Table 3, were the merge toler-
ances have been set as ηm = ηr

2.2
. The first series has high tolerances. This gives relaxed

13

Frederik Kristoffersen and Bernhard Müller

(a) IC for density. (b) IC for velocity component u.

(c) Density. The shock moves downwards, and
the area around it has high resolution.

(d) Velocity component u. The discontinuity
moves downwards, but slower than for ρ. Thus
there are two branches of highly refined cells.

(e) Density. The shock has reached the wall, and
starts to reflect.

(f) Velocity component u. The left part of
the wave has reached the wall. The right part
has become diffuse and exits through the right
boundary.

Figure 5: Cell plots of the developments of density ρ and velocity component u, from
initial conditions until the shock reaches the wall at y = 0. The black lines are the faces
in the mesh. The most highly refined cells, at level L = Lmax, follow the discontinuities
of both ρ and u.

14

Frederik Kristoffersen and Bernhard Müller

(a) Density. The reflected shock is bending
upwards, while the reflection point moves left-
wards.

(b) Velocity component u. The reflected shock
forms extensionally, like a telescope, while bend-
ing upwards.

(c) Converged solution for the density. (d) Converged solution for the velocity compo-
nent u.

Figure 6: Cell plots of the developments of density ρ and velocity component u, from time
t = 1.2 until steady state, at t = 6.74. The black lines are the faces in the mesh. The
most highly refined cells, at level L = Lmax, follow the discontinuities of both ρ and u.

Table 2: Parameters that vary within an AMR simulation series. ∆xmax is the size of all
the cells when the mesh is created and Lmax is the highest permitted refinement level.
∆xmin is the smallest permitted cell size, and follows directly from ∆xmax and Lmax.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11

∆xmax : 1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
10

1
15

1
20

Lmax : 2 2 3 3 4 4 5 5 6 6 6

∆xmin : 1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1280

15

Frederik Kristoffersen and Bernhard Müller

Figure 7: Convergence history plot with logarithmic ordinate axis. The red and blue
graphs show the development of the convergence indicator ‖∆ρn‖1 /∆t

n, normalized by
its initial value. The dashed gray vertical lines show the time levels when the last 15 of
the total 42 adaptations occurred. Both solvers used ∆xmin = ∆ymin = 1

160
.

refine and merge criteria, meaning that fewer cells will be refined and more cells will
merge. The last series has low tolerances. This gives stricter criteria, forcing more cells
to be refined and permitting fewer cells to merge.

The structured series consist of 13 simulations executed by the structured solver using
equidistant grids. The 13 simulations use different mesh resolutions listed as grid spacings
in Table 4. These chosen cell sizes are similar to ∆xmin in Table 2, which was intended to
give errors in the same range. The error considered here is the volume averaged density
error

Table 3: Refinement and merging tolerances for the 5 AMR series. ηr and ηm are defined
in subsection 4.2.

Series no.: ηr ηm

1 0.08 0.0364

2 0.06 0.0273

3 0.04 0.0182

4 0.02 0.0091

5 0.01 0.0045

16

Frederik Kristoffersen and Bernhard Müller

Table 4: Cell sizes, i.e. grid spacings for the structured solver.

Sim. number: 1 2 3 4 5 6 7 8 9 10 11 12 13

∆x : 1
35

1
40

1
60

1
80

1
120

1
160

1
240

1
320

1
480

1
640

1
960

1
1100

1
1200

ερ =
1

VD
‖ρ− ρ̄exact‖1 (30)

where VD =
∑

i Vi is the domain volume and

ρ̄exact,i =
1

Vi

∫

Ωi

ρexact(x, y)dxdy (31)

is the exact average density in cell i.
From these 55 AMR simulations and 13 standard simulations, the computation times

TR, density errors ερ, and cell counts Ncell were logged and presented in plots. In Figure 8
we see that the AMR solver uses much fewer cells than the standard solver to achieve
the same error. The AMR simulation with the lowest error (leftmost blue circle) used
only about 5% of the cells the standard solver used. This simulation also showed a large
saving in runtime, using only about 36% of the time used by the standard solver. The
comparisons of runtime versus error is shown in Figure 9. In this plot the runtimes were
normalized as

T ∗R =
TR
TR,str

, (32)

where TR is the runtime the simulation in focus, and TR,str is the runtime of a simulation
from the structured solver, that gives the same error as the simulation in focus. Since
no two simulations have equal errors, TR,str is found by interpolation between structured
simulations:

TR,str = T rightR + (ερ − εrightρ)
T leftR − T rightR

εleftρ − εrightρ

, (33)

where the superscripts left and right denote the closest structured solution on each side,
in terms of error. The most obvious trend in Figure 9 is that the AMR solver mostly uses
less runtime to achieve the same error as the standard solver. However, the red graph
shows that if the tolerances are too relaxed, we will not achieve this gain in the left part
of the plot. Even though the high tolerance ηr = 0.08 gives low runtimes and cell counts,
it increases the error so much, that the standard solver could achieve the same error
using less runtime. Comparing the AMR series we see that the series with the highest
tolerance gets the largest runtime gain in the right part of the plot. The simulations in

17

Frederik Kristoffersen and Bernhard Müller

Table 5: Comparison between an AMR simulation and a standard simulation, where
we see a large benefit from AMR. For the standard solver the refine tolerance ηr is not
applicable, and ∆xmin was the size of all the cells. Ncell is the final number of cells in the
mesh. ερ is the density error. The ratios are the values from the standard solver divided
by the AMR values.

ηr ∆xmin Ncell TR [s] ερ

AMR: 0.01 1
1280

35 433 327 0.00742

Standard: 1
1100

726 000 903 0.00735

Ratio: 20.5 2.76 0.991

the right part of the plot have larger cells overall and thus higher errors. Conversely,
small tolerances giving strict criteria, seem to give lower gain with fewer larger cells, and
the highest gains with smaller cells, i.e. in the left part of the figure, where the errors are
lower. If this relationship holds, the refine and merge tolerances should be set depending
on the smallest allowed cell size.

5.3 Simulation of a 2D Riemann Problem

The second test case that was studied is a 2D Riemann problem. It was introduced
in subsection 2.2. For this flow case we do not have an analytical solution to verify the
solution. However, there are other gains from simulating this test case:

1. We will check that the AMR-solver finds the same solution as the structured solver.

2. We will check that the mesh adaptation algorithm detects high gradients in a more
complicated flow.

3. We will still compare runtimes between the AMR-solver and the structured solver.

For the initial conditions given in equation (12) and Figure 2b we set the following
numerical values:

ρ1 = p1 = 4 , ρ2 = p2 = 3 , ρ3 = p3 = 1 , ρ4 = p4 = 2 (34)

u(x, y, t = 0) = v(x, y, t = 0) = 0 (35)

The parameter settings that were used to simulate this test case with the AMR-solver
are given in Table 6. The refine and merge tolerances ηr and ηm, and the smallest cell
size ∆xmin = ∆ymin are set relatively small, if compared to the parameters used in
subsection 5.2. This was done to ensure that all the different wave types were resolved.
For the structured solver, the uniform grid spacing ∆xstr was set equal to the smallest

18

Frederik Kristoffersen and Bernhard Müller

Figure 8: Number of mesh cells Ncell plotted versus the density error ερ. Ordinate axis is
logarithmic.

Figure 9: Normalized runtime T ∗R plotted versus density error ερ. The scaling factor for
the runtimes are the runtimes from the structured simulations. Therefore T ∗R = 1 for all
structured simulations.

19

Frederik Kristoffersen and Bernhard Müller

Table 6: Parameters used by the AMR-solver to simulate the 2D Riemann problem.

∆xmax : 1
20

Lmax : 6

∆xmin : 1
1280

ηr : 0.015

ηm : 0.0068

allowed cell size ∆xmin for the AMR-solver. We limit the test case to the time 0 ≤ t ≤ 0.2,
before any of the waves reach the domain boundaries.

Figures 10 and 11 show cell plots of the simulation results from the 2D Riemann
problem test case. The time instant is shown at the top, and the size and symbol of
the plotted variable is shown by the colorbar. Figure 10a shows the initial condition
(34) for the density. Figure 10b shows the final density solution at t = 0.2, computed
by the AMR-solver. In this density field we can identify several different waves. We
see the vertical shock at x ≈ 0.23 and the horizontal shock at y ≈ 0.2. The contact
discontinuities at x ≈ 0.48 and y ≈ 0.43 are not as distinct, especially near the center
of the domain. At x ≈ 0.7 and y ≈ 0.7 we find the rarefaction waves, which are wider
than the other waves. We can also see that the flow variables are constant in the corners,
and that we have 1D Riemann problems along the boundaries. In the central part of the
domain we see complex interactions between the different waves in the form of non-linear
wave fronts. Figure 10c shows that these different waves are all detected, because their
surrounding areas have been refined. The contact discontinuities are not as highly refined
as the shocks and rarefaction waves. Figure 10d shows the solution from the standard
solver, which looks very similar to the AMR solution in Figure 10b.

Figure 11 shows the AMR solutions of the velocity components and pressure. We can
see that none of these plots show all the waves. Conversely, there is no wave front that we
find in Figure 11, that we do not find in Figure 10. This demonstrates that the density
is a very good indicator to use in the criterion for where to refine.

Finally for this test case, we will examine some technical output from the AMR-solver,
and compare some of it with data from the structured solver. Table 7 shows selected
values from the reports that the two solver produced when simulating the 2D Riemann
problem.

The runtime is the measured time that the CPU used to execute the simulation. We
see that the structured solver used about twice as much time as the AMR-solver. This
ratio is lower than than the values we found for the shock reflection case, indicating that
the efficiency gain is a little lower for this case.

19% of the total 92.6 seconds were consumed by mesh adaptation in the AMR sim-
ulation. The remaining 81% is used for computing and transferring fluxes, computing
primitive variables, etc, which is definitely the main time consumer.

20

Frederik Kristoffersen and Bernhard Müller

(a) Initial condition. (b) Final solution by the AMR solver.

(c) AMR solution, with the mesh faces plotted
as black lines.

(d) Final solution by the standard solver. The
uniform grid spacing ∆xstr is equal to the small-
est allowed cell size ∆xmin for the AMR solver,
cf. Table 6.

Figure 10: Cell plots of the density in the 2D Riemann problem.

21

Frederik Kristoffersen and Bernhard Müller

(a) Velocity component u. (b) Velocity component v.

(c) Pressure.

Figure 11: Cell plots of the velocity components and pressure in the 2D Riemann problem.
These are solutions by the AMR solver.

Table 7: Miscellaneous technical output from the AMR solver. Values from the structured
solver are given where applicable, for comparison. The right column is the ratio between
the left and middle columns. The meaning of each row is explained when commented in
the text.

AMR Structured Structured
AMR

Total Runtime [s]: 92.6 187 2.02

Numerical method time [s]: 75.0 (81% of 92.6 s)

Mesh adaptation time [s]: 17.6 (19% of 92.6 s)

Average no. of cells: 200 321 1 638 400 8.18

Final no. of cells: 206 677 1 638 400 7.93

No. of time steps: 891 891 1

No. of mesh adaptations: 133

22

Frederik Kristoffersen and Bernhard Müller

The time-level-averaged number of cells and the final number of cells are approximately
8 times higher for the structured solver. This ratio was typically much higher for the shock
reflection case, as we saw in Figure 8. The many waves that appear in the 2D Riemann
problem require a larger portion of the domain to be well resolved. This decreases the gain
from the AMR approach, as expected. Similar to the shock reflection case, we see much
higher ratios in cell count than in runtime. This indicates that there is much overhead
related to the data structure, since the actual mesh adaptation only used 19% of the CPU
time. In turn this means that there is potential to increase the efficiency gain considerably,
e.g. by optimizing the data structure. The number of time steps is how many times the
explicit Euler method was applied to march the solution forward. The number of mesh
adaptations is how many times the complete procedure of flagging, grading, refining and
merging was executed. We can see that the mesh was adapted much more often for this
test case

Nadapt,Riemann

nmax,Riemann
=

133

891
= 0.149 , (36)

than for the first shock reflection case (cf. Table 1 in subsection 5.1)

Nadapt,reflect

nmax,reflect
=

42

2248
= 0.0187 , (37)

where Nadapt is the number of adaptations and nmax is the number of time steps com-
puted. We also see that the solvers used the same number of time steps, as opposed to
the steady-state case in sections 5.1 and 5.2, which we saw in Figure 7.

6 CONCLUSIONS

An AMR finite volume solver using unstructured Cartesian grids has been developed
for the 2D Euler equations of gas dynamics. The adaptation trigger, i.e., the criterion for
when to adapt, is based on accumulating an approximated mass redistribution rate, cf.
subsection 4.1. To the best of our knowledge, this is a new approach. The results indicate
that this approach works well for both steady-state problems and transient simulations,
though many more flow cases must be tested before we can assert this. For the transient
test case of a 2D Riemann problem, and the development of a regular shock reflection, the
new adaptation trigger keeps the mesh updated, avoiding that large gradients leave the
highly resolved areas. If the resolution demanding features slow down or stop moving, the
trigger activates more seldom. During convergence of the steady-state simulations, this is
especially evident. This adaptation trigger is also very easy to implement and inexpensive
in terms of CPU time.

The benefit from the AMR approach was measured by comparing the number of cells
and the CPU time of simulations that give similar errors. The cases that benefit the most
from AMR are the simulations where we allow the smallest cells, i.e., the simulations
with the smallest errors and highest CPU times. In these cases, the number of cells for

23

Frederik Kristoffersen and Bernhard Müller

the AMR solver was only about 5% of the number of cells for the standard solver. The
efficiency gain for CPU time is much lower, but still significant. The AMR solver used
36-40% of the runtime of the standard solver to give similar errors in the most beneficial
cases. The difference between these percentages is most likely related to the mesh data
structure. The mesh adaptation procedures only comprise 3-20% of the AMR solver’s
total runtime, whereas the numerical method consumes the rest of the runtime.

The criterion for where to refine and coarsen the mesh was varied. This proved to have
a big effect when examining runtime, number of cells and error. A relaxed criterion gives
lower cell counts and runtimes and higher errors than a strict criterion, as expected. The
results indicate that to maximize the benefits from this AMR approach, the refine and
merge tolerances should be set depending on the smallest allowed cell size. Specifically,
with smaller cells the tolerances should be smaller, and with larger cells the tolerances
should be larger, to give a good balance between CPU time and error.

References

[1] M. J. Berger and R. J. Leveque. “Adaptive Mesh Refinement Using Wave-Propagation
Algorithms for Hyperbolic Systems”. SIAM Journal on Numerical Analysis 35.6
(1998), pp. 2298–2316. issn: 0036-1429.

[2] R. Löhner. Applied computational fluid dynamics techniques : an introduction based
on finite element methods. 2nd ed. Chichester: Wiley, 2008. isbn: 9780470519073.

[3] G. W. Zumbusch. Parallel multilevel methods : adaptive mesh refinement and load-
balancing. Ed. by H. G. Bock et al. 1st ed. Wiley-Teubner series, advances in nu-
merical mathematics. Stuttgart, Germany: Teubner, 2003. isbn: 3-322-80063-6.

[4] T. Linde T. Plewa and V. G. Weirs. “Adaptive mesh refinement, theory and ap-
plications : proceedings of the Chicago Workshop on Adaptive Mesh Refinement
Methods, Sept. 3-5, 2003”. Vol. 41. Lecture notes in computational science and
engineering. Chicago Workshop on Adaptive Mesh Refinement Methods. Berlin:
Springer, 2005. isbn: 1-280-41225-9.

[5] O. P. Jacquotte. “Grid Optimization Methods for Quality Improvement and Adap-
tion”. N. P. Weatherill J. F. Thompson B. K. Soni. Handbook of Grid Generation.
Boca Raton Fla: CRC Press, 1998.

[6] M. J. Aftosmis, M. J. Berger, and J. E. Melton. “Adaptive Cartesian Mesh Gen-
eration”. J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of Grid
Generation. Boca Raton Fla: CRC Press, 1998.

[7] Michael J. Aftosmis. What is Cart3D? 2018. url: https://www.nas.nasa.gov/
publications/software/docs/cart3d/pages/cart3Dhome.html.

[8] S. Müller. Adaptive Multiscale Schemes for Conservation Laws. Ed. by T. J. Barth
et al. Lecture Notes in Computational Science and Engineering. Berlin, Heidelberg:
Springer, 2003. isbn: 978-3-540-44325-4.

24

Frederik Kristoffersen and Bernhard Müller

[9] M. Paszynski, D. Pardo, and V. M. Calo. “A direct solver with reutilization of LU
factorizations for h -adaptive finite element grids with point singularities”. Comput-
ers and Mathematics with Applications 65.8 (2013), pp. 1140–1151. issn: 0898-1221.

[10] F. Kristoffersen. “Adaptive Mesh Refinement for Conservation Laws”. Pre-Master
Project. Norwegian University of Science and Technology, 2018.

[11] Randall J LeVeque. Finite volume methods for hyperbolic problems. eng. Cambridge,
2002.

[12] F. Kristoffersen. “Adaptive Mesh Refinement for the Euler Equations of Gas Dy-
namics”. Master thesis. Norwegian University of Science and Technology, 2019.

25

