
Development of a low-dissipation
solver for large eddy simulation
based on OpenFOAM®

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Sondre Relling

2019
Sondre Relling

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f E
ne

rg
y

an
d

Pr
oc

es
s

En
gi

ne
er

in
g

Development of a low-dissipation solver
for large eddy simulation based on
OpenFOAM®

Sondre Relling

Mechanical Engineering
Submission date: June 2019
Supervisor: Terese Løvås
Co-supervisor: Tian Li

Norwegian University of Science and Technology
Department of Energy and Process Engineering

1 av 3

Master`s Agreement

Faculty IV - Fakultet for ingeniørvitenskap

Institute Institutt for energi- og prosessteknikk

Programme code MTPROD
Course code 194_TEP4925_1

Personal information
Family name, first name Relling, Sondre

Date of birth 22.02.1994

Email address sondrrel@stud.ntnu.no

The Master`s thesis
Starting date 15.01.2019
Submission deadline 13.06.2019

Thesis working title
Development of a low-dissipation solver for large-eddy
simulation based on OpenFOAM

Thematic description

Open source Field Operation And Manipulation
(OpenFOAM@) is a C++ toolbox for the development of
customized numerical solvers, and pre-/post-processing
utilities for the solution of continuum mechanics
problems, including computational fluid dynamics (CFD).
Benefiting from its wide variety of implemented
turbulent models and its high customizability,
OpenFOAM@ has been extensively used to simulate
complex fluid flows across most areas of engineering
and science, from both commercial and academic
organizations. Like in other typical commercial codes,
such as Ansys Fluent@ and STAR-CD@, OpenFOAM@
also primarily utilizes low-order integration and
discretization schemes in order to get robust simulations
on low quality meshes. The low-order methods are
acceptable in most of the Reynolds-averaged
Navier–Stokes (RANS) simulations. However, high-order
time-integration and spatial discretization methods are
preferred for ensuring minimal influence of numerical
diffusion and dispersion on the flow in large-eddy
simulation (LES). Several previous works have
demonstrated that the default OpenFOAM solver
pisoFoam (an incompressible solver using the pressure
implicit with splitting of operator method) has a

2 av 3

relatively high dissipative nature. This master thesis,
therefore, aims at developing an incompressible solver
with low numerical diffusion using OpenFOAM. The
developed solver will be thoroughly compared to the
pisoFoam under various conditions, for example, two-
and three-dimensional spatially developing mixing
layers. The comparison results as well as the
implementation details will be documented in the thesis.

Supervision and co-authors
Supervisor Terese Løvås
Any co-supervisors Tian Li
Any co-authors

Topics to be included in the Master`s Degree (if applicable)

Guidelines – Rights and Obligations
Purpose
Agreement on supervision of the Master's thesis is a cooperation agreement between the student, supervisor and the
department that governs the relationship of supervision, scope, nature and responsibilities.

The master's program and the work of the master's thesis are regulated by the Act relating to universities and
university colleges, NTNU's study regulations and current curriculum for the master's program.

Supervision

The student is responsible for
• Agre upon supervision within the framework of the agreement
• Set up a plan of progress for the work in cooperation with the supervisor, including the plan for when

the guidance should take place
• Keep track of the number of hours spent with the supervisor
• Provide the supervisor with the necessary written material in a timely manner before the guidance
• Keep the institute and supervisor informed of any delays

The supervisor is responsible for
• Explain expectations of the guidance and how the guidance should take place
• Ensure that any necessary approvals are requested (REC, ethics, privacy)
• Provide advice on the formulation and demarcation of the topic and issue so that the work is feasible

within the standard or agreed upon study time
• Discuss and evaluate hypotheses and methods

3 av 3

• Advice on professional literature, source material / data base / documentation and potential resource
requirements

• Discuss the presentation (disposition, linguistic form, etc.)
• Discuss the results and the interpretation of them
• Stay informed about the progression of the student's work according to the agreed time and work

plan, and follow up the student as needed
• Together with the student, keep an overview of the number of hours spent

The institute is responsible for
• Make sure that the agreement is entered into
• Find and appoint supervisor(-s)
• Enter into an agreement with another department / faculty / institution if there is a designated external

supervisor
• In cooperation with the supervisor, keep an overview of the student's progress, an overview of the

number of hours spent, and follow up if the student is delayed by appointment
• Appoint a new supervisor and arrange for a new agreement if

 supervisor will be absent due to research term, illness, travel, etc., and if the student wishes
 student or supervisor requests to terminate the agreement because one of the parties does not

follow it
 other circumstances make the parties find it appropriate with a new supervisor

• Notify the student when the guidance relationship expires.
• Inform supervisors about the responsibility for safeguarding ethical issues, privacy and guidance ethics
• Should the cooperation between student and supervisor become problematic for one of the parties, a

student or supervisor may ask to be freed from the Master`s agreement. In such case, the institute must
appoint a new supervisor

This Master`s agreement must be signed when the guidelines have been reviewed.

Signatures

Institute Supervisor Student

place and date place and date place and
date

PREFACE

This thesis is a part of my master’s degree in mechanical engineering, with
specialization in fluid mechanics. Written in spring 2019 at the department
of Energy and Process Engineering at the Norwegian University of Science
and Technology.

I would like to thank both of my supervisors Terese Løv̊as and Tian Li
for excellent guidance and support. Also the advices from my fellow student
Simen Havneraas Røstum have been very helpful in this project.

I also want to express my gratitude for the impressive and thorough
work in the article ”On the implementation of low-dissipative RungeKutta
projection methods for time dependent flows using OpenFOAM” written by
Vuorinen et al.

Sondre Relling

ABSTRACT

A necessity in computational fluid dynamics (CFD) is to provide accurate
results at a reasonable cost. This has been a challenge since the industry
started utilizing the engineering tool in 1960’s [1]. Due to its complexity, it
requires strong computational power. Therefore, it gained popularity along
with the growth of computer power during the 90’s and until today. The
Industry started to take advantage of this tool, replacing expensive experi-
ments and facilities, and the potential is to keep extending this trend.

In order to make that happen, two main things are needed. First a
broader knowledge of CFD and the concepts behind it are essential. There-
fore, this thesis covers some of the fundamental theory of numerics and fluid
mechanics, including a brief study of the OpenFOAM® solver ”pisoFoam”,
which is an iterative transient incompressible solver based on the SIMPLE-
algorithm. The application of it is tested in several cases.

Secondly, more low-dissipative methods need to become more commonly
available, providing accurate and beneficial results. The theory presented is
used to reconstruct the solver in the article: ”On the implementation of low-
dissipative RungeKutta projection methods for time dependent flows using
OpenFOAM®” and implementing it into OpenFOAM® [2].This is a solver
with the projection method, and Runge-Kutta method in time. The proce-
dure is presented in this thesis. Verification and a comparison between the
results from the article showed that the ”pisoFoam” solver and the results
from the newly constructed solver were a close match in the lid driven cav-
ity, and therefore strengthens the credibility of the newly constructed solver.
Also, a numerical dissipation of energy test was conducted, confirming that
the Runge-Kutta projection method had significantly less numerical dissi-
pation. In the temporal mixing layer case, the projection method was able
to capture the energy characteristics, such as the 5/3 law, vortex structures,
confirming it models the turbulence well.

SAMMENDRAG

Det er en absolutt nødvendighet å ha nøyaktige resultater innenfor numerisk
fluidmekanikk(CFD). Dette har vært en utfordring helt siden industrien tok
nytte av dette verktøyet p̊a 60-tallet. P̊a grunn av de komplekse og krevende
kalkulasjonene, fikk CFD en oppsving p̊a 90-tallet i lag med prosessorene
som stadig kunne takle flere kalkulasjoner per sekund. Industrien kunne
dermed redusere antall eksperiment og potensiale ligger i å videreføre denne
utviklingen.

For å kunne videreføre denne trenden, er det to ting som st̊ar sentralt.
Den første er at det trengs kunnskap om CFD og teorien bak, alts̊a i hovedsak
fluidmekanikk og numerikk. Derfor er teorien brukt i denne masteroppgaven
presentert. I tillegg er to sentrale numeriske metoder presentert. En kort
oppsummering av stegene til ”pisoFoam” er ogs̊a inkludert. Dette er en
standard ”solver” i OpenFOAM®, alts̊a en algoritme laget for å løse Navier
Stokes ligningene. Det har blitt gjennomført flere tester av denne algoritmen
for å danne et sammenligningsgrunnlag.

Det andre er at nøyaktige algoritmer burde være lettere tilgjengelig,
slik at resultatene er mer reelle og troverdige. Rekonstruering av en algor-
time fra artikkelen: ”On the implementation of low-dissipative RungeKutta
projection methods for time dependent flows using OpenFOAM®” er derfor
gjennomført i denne oppgaven. Dette er en eksplisitt algortime, med Runge-
Kutta metoden som tidsintegrasjon. Prosedyren og koden for å gjøre dette
er presentert i denne masteren, sammen med en verifisering der den blir
sammenlignet med tidligere resultater og ”pisoFoam”. I ”lid driven cavity”
viste den samme resultater som tidligere arbeid og ”pisoFoam”. En un-
dersøkelse av bevaring av energi ble testet i ”Taylor Green Vortex”. I denne
oppgaven ble viskositeten satt til null, derfor burde det ikke være noe tap av
energi. Den nye algortimen bevarte betydelig mer energi enn ”pisoFoam”,
som bekrefter en mer nøyaktig algoritme. I ”temporal mixing layer” klarte

IV

den nye algoritmen blant annet å følge den anerkjente 5/3-loven og hadde
kjente turbulente strukturer, som viser at den ogs̊a kan simulere turbulente
strømninger.

CONTENTS

Preface . I

Abstract . II

Sammendrag . III

1. Introduction . 2

2. Theory . 5
2.1 Explicit and implicit schemes 5

2.1.1 Backward Euler . 6
2.1.2 Runge-Kutta method 7
2.1.3 Comments on the implicit and explicit methods 8

2.2 Incompressible Navier Stokes equations 9
2.3 Large eddy simulation . 9

2.3.1 Smagorinsky . 10
2.3.2 One equation eddy-viscosity model 11
2.3.3 Dynamic one equation eddy-viscosity model 12
2.3.4 WALE-model . 12

2.4 Temporal Mixing layer . 13

3. Method . 15
3.1 Cases . 15

3.1.1 The lid driven cavity case 15
3.1.2 2D Taylor Green Vortex 16
3.1.3 Mixing layer . 17

3.2 Solvers . 20
3.2.1 Projection method and its implementation 20
3.2.2 The OpenFOAM® solver ”pisoFoam” 22

3.3 Modification, pre and post-processing 23

Contents 1

4. Results . 26
4.1 The lid driven cavity . 26
4.2 2D Taylor Green Vortex . 27
4.3 The temporal mixing layer . 31

4.3.1 Turbulence behaviour 31
4.3.2 Momentum thickness 36
4.3.3 Energy . 36
4.3.4 Numerical error . 43
4.3.5 Reynold stresses . 43

5. Conclusion . 45

Appendices . 50

A. Projection method solver RK4 . 51

B. Modifying pisoFoam and the projection method solver for the Taylor
Green vortex . 54

C. Risk assesment . 55

1. INTRODUCTION

Describing the behavior of liquids and gases, is the main purpose of com-
putational fluid dynamics (CFD). Applications of this, are essentially in all
sections where fluids have an influence, from small scale micro fluid prob-
lems to big scale global weather forecasts. Maybe the most obvious and most
known example is aerodynamics. Drag forces and air resistance seem to be
a source of fascination. Reducing these forces on for example cars, planes
and rockets can be experimented with in CFD [3, 4, 5]. These industries
have implemented CFD in theirs design phase, recognizing its power and
advantages. They also use it in combustion processes like in engines. Sim-
ulations are also used to prevent damaged equipment and accidents in the
oil industry, for example, ensuring that neither critical pressure is reached
nor that the flow induced vibration matches the natural frequency of the
pipe. In medical science, hemodynamics is the study of blood flow. CFD
has a great influence, simulating and presenting the dynamics of blood flow.
Predicting strokes, based on the hemodynamics in the cerebral hemisphere
is a research field [6].

An advantage of CFD is the unlimited possibility to sample data from
the whole domain, since a value is stored in each cell or cell face. This
cannot be done in a real life because of the obvious reasons that you need
nearly infinite measuring devices, and this will even disrupt the flow. A full
scale test is an expensive arrangement, especially if there is an uncertainty
in a design, and changes are likely to occur, requiring multiple experiments.
Also, there are limitations in the conditions of the flow, for example the
wind speed in a wind tunnel and the tunnels size. This is not the case in
CFD, boundary conditions are easily changed, so is the size of your domain.
Therefore, in CFD, a full-scale test is not a problem, nor testing in extreme
conditions. However, experiments are still a necessity in parts of the indus-
try. With a rapid set up, CFD has already replaced numerous experiments,
but has potential to replace even more, this opportunity should be explored.

1. Introduction 3

As one can imagine, the problems can be quite complex and impossible to
do by hand. A computer is therefore strongly associated with CFD, which
can handle a huge amount of computations per second. The domain is di-
vided into a grid or collection of points, where numerical schemes are used
to solve the governing equations, mainly the Navier Stokes equations. This
division of physical space and the numerical schemes are an approximation.
This leads to the main concern in CFD, namely the accuracy. Like in other
aspect in science, CFD is under constant improvement, and a lot of research
points out the numerical weaknesses and propose more accurate solvers and
models in CFD. Two of those articles are to be researched in this thesis.

How to solve the Navier Stokes equations is the main question in CFD.
The amount of alternative solvers is large covering all the aspects of fluid
mechanics, from laminar to turbulent, incompressible to compressible and
transient to steady state etc. Coupling velocity and pressure is the main
task. There are several suggestions on how to do so. In this thesis the projec-
tion method [2] and the PISO-algortihm [7] are two methods to be studied.
The former is an explicit algorithm decoupling the velocity and pressure.
After the temporary velocity field is obtained it is projected back into the
decomposition, leaving an equation for the pressure field. The latter algo-
rithm is an iterative method and is used by a default solver in OpenFOAM®,
namely ”pisoFoam”. A drawback of this solver can be numerical dissipation
[2]. The dissipation of energy is a great challenge. Therefore, the main goal
is to reduce its influence. A solution can be to refine the mesh,i .e increasing
the amount of grid points or use a more accurate solver. Not acknowledg-
ing this dissipation is a source to get inconsistent result, making CFD an
inaccurate tool. An alternative low-dissipative solver of high order is needed.

Whereas high order methods using Large eddy simulations (LES) or Di-
rect numerical simulations (DNS) are more common to find in scientific and
academic studies, Low order methods with RANS are still widely used and
are often set by default in commercial softwares [2], like OpenFOAM®. If
the high order methods were more available it would also benefit the indus-
try [2]. Therefore, an alternative to the widely used PISO-algorithm with
2nd order time integration is proposed in the reference article, and instruc-
tions on how to set up the new 4th order projection method is also presented.
Higher order than 4 requires more computational steps ”n” than the ”nth”
order[8]. For example an order of 5 requires 6 steps which makes a ”4th”
order method a natural point to choose, when time efficiency is a factor.

1. Introduction 4

The object of this thesis is to reconstruct the solver in the reference
article [2] and present the essential theory, in order to enlighten the oppor-
tunities mentioned. Both methods are to be explained further, along with
an implicit time scheme and the explicit Runge Kutta method. Thereby a
deeper understanding of the solver and how to reconstruct it are presented
in this thesis. Verifying is done on a basic lid driven cavity case and the
energy dissipation is investigated with the Taylor-Green vortex case. The
main case in the thesis is a turbulent mixing layer with LES, which is a clas-
sical turbulent free shear flow. LES solves the resolved part of the domain,
whereas DNS solves the domain at every scale. Since the small scales are of
importance, they need to be modeled in LES. The goal of each model is to
replicate the DNS with less computational effort. Therefore a study of how
well the subgrid models perform is done, along with a comparison of the
solvers. In the mixing layer two streams with different velocities interact,
creating a shear layer. Applications of this can be seen in fuel injections in
engines [9], where the main goal is to maximize the efficiency. Wakes behind
a wind turbine also contain mixing layers [10], where understanding these
effects are important because it gives an indication of where the windmills
can be located without a negative influence of the other mills.

The setup in this thesis is with periodic boundary conditions which is called
”temporal mixing layer”. The main advantage is saving computational time
because the mixing layer develops with time within the domain, opposed
to the ”spatial mixing layer” where it develops in the streamwise direction,
forcing a long domain. However, one can study the same effects in both
cases, making it possible to test the projection method’s ability to capture
turbulence characteristics such as the energy cascade, momentum thickness
and more, which are presented in the ”Result” chapter.

2. THEORY

2.1 Explicit and implicit schemes

For solving differential equations numerically, there are two main techniques
to consider: an explicit approach or an implicit approach. In both categories
there are numerous variants to choose from, some of them even combine the
two techniques. Crank-Nickolson is such a method, combing backward and
forward Euler, which is later used in the mixing layer case. An explicit
method can be simply defined by when a future quantity only depends on
the current state, opposed to implicit methods where the equation contains
elements from the same time step as the desired quantity. Since the ex-
plicit cases use extrapolation, the time step becomes a critical quantity. If
it is chosen too large, the extrapolation is inaccurate, and a lot of informa-
tion disappears within the time step. Too small, the computational time
grows. Typically in CFD, the ”Courant Friedrichs Lewy” condition is used
for setting a limitation for the time step compared to the grid spacing [11]:

C =
u∆t

∆x
6 Cmax, (2.1)

where C is the Courant number, and Cmax is the maximum Courant-
number allowed according to the Courant Friedrichs Lewy condition. In-
tuitively, equation (2.1) can be understood as how far the information prop-
agates expressed with the propagation speed multiplied with the change in
time, divided by the spatial step, i.e. the length of space in between two
adjacent grid points. A general concept of this condition in explicit meth-
ods is that the distance covered by the advection of information should not
exceed the distance between two adjacent grid points. That means a fluid
particle is bounded to move from maximum one cell to another within a
time step. Otherwise having a fluid particle move through multiple cells
can cause divergence [11], hence the condition Cmax = 1. Typically it is
set significantly lower, which increases the accuracy [2]. In the implicit case
Cmax can typically obtain larger values, since extrapolation is not used,
but rather iteration containing information from the next time step. In this

2. Theory 6

chapter, one implicit and one explicit method are to be investigated to get a
deeper analysis and understanding of the differences between the methods.

2.1.1 Backward Euler

Backward Euler is an implicit method. Consider this simple ODE, describing
a particle position:

dx

dt
= u(x, t). (2.2)

To obtain the next x-position of the particle, a discretized version of back-
ward Euler method (2.2) is used [8]:

xn+1 = xn + ∆t · u(xn+1, tn+1), (2.3)

where ∆t is the step size, in this case change in time. In equation (2.3)
elements for step n + 1 appear on both sides, i.e. two unknowns. Solving
this can be done for instance by iteration techniques, or Newtons method.
The local truncation error is O(∆t)2 and the global truncation error O(∆t)
, thus making the backward Euler method to a 1st order method [8]. The
advantage of the backward Euler method is the large stability region, which
can be found by setting:

z =
∆t · u(xn+1, tn+1)

xn+1
. (2.4)

Notice the resemblance between (2.1) and (2.4). Inserting equation (2.4) in
(2.3) and rearrange yields:

xn+1 =
xn

1− z
. (2.5)

To bound the next position of the particle it is clear from (2.5) that the
condition: |1 − z | 6 1 needs to be satisfied, hence covering the whole com-
plex plane except a region of a circle with radius 1 centered around (0 , 1),
illustrated in figure 2.1. Thereby the whole left complex plane is covered,
which is a preferred quantity for bounded cases and it is generally accepted
that it is essential for stiff problems as well [8].

2. Theory 7

Fig. 2.1: Backward Euler stability region

2.1.2 Runge-Kutta method

There are several different types of Runge-Kutta methods. In this thesis
the explicit classical Runge-Kutta method is used. Keeping the same fluid
particle case as the previous section, the setup is:

xn+1 = xn +
1

6
· (k1 + 2k2 + 2k3 + k4), (2.6)

Where:

k1 = ∆t · u(xn, tn),

k2 = ∆t · u(xn +
k1

2
, tn),

k3 = ∆t · u(xn +
k2

2
, tn),

k4 = ∆t · u(xn + k3, t
n).

The four k’s can be seen as four different estimates of xn+1, where k1 is
computed by forward Euler method. k2 and k3 are found by evaluating u at
a predicted midpoint by the previous k′s respectively k1 and k2. The final
k4 is determined by evaluating u at the estimate of k3’s final location. After
all these steps, equation (2.6) takes a weighted average to receive the final
value of xn+1.Although this method has four times the computational steps
of Euler’s method, it returns the favor providing a 4th order accuracy.

2. Theory 8

Fig. 2.2: Explicit Runge-Kutta stability region

Following the same procedure as for the Backward Euler method, one
can obtain the stability region for the explicit Runge-Kutta method as well
[8]. Figure 2.2 presents it. The resulting region clearly restrict the case
setup and has to be strictly followed during the computation and the initial
settings of the grid and the time step.

2.1.3 Comments on the implicit and explicit methods

Seemingly implicit method should be for choice, due to its preferable sta-
bility region. However, it is not that simple. As implicit methods require
iterations per time step, simulating a transient flow with a small time step is
expensive to calculate. Therefore, explicit methods are generally preferred
in this case with less computations per time step. On the other hand, if a
steady state solution is expected and the transition is not of great impor-
tance, rather large time steps can be used in order to get the final steady
state solution. Here an implicit method is generally preferred. Although, it
is slower per time step, it can be quicker than the explicit method since it
has fewer time steps. Increasing the time step in an explicit method is not
an option, as it leads to unstable solutions as previous discussed.

2. Theory 9

2.2 Incompressible Navier Stokes equations

The incompressible Navier Stokes equation in vector form is as follows:

∂u

∂t
+ (u · ∇)u = −∇p + ν∆u. (2.7)

Approaching the Navier Stokes numerically, there is a need for coupling the
velocity and the pressure. This can be done by taking divergence [2] on both
sides of (2.7). Due to the continuity equation:

∇ · u = 0 (2.8)

the unsteady and the viscous term disappear. Therefore, equation (2.7)
leads to the following elliptic relationship behavior between the velocity and
pressure :

∆p = ∇ · ((u · ∇)u). (2.9)

2.3 Large eddy simulation

As discussed in the introduction, sometimes there is a need for more accu-
rate solutions than the RANS-modelling can offer. For example in complex
geometry cases, DNS is possible to use, but it has an extremely high com-
putational cost, and is therefore often not an option. Fortunately, there is
an option that lies in between those two, namely LES. Since the small scale
dynamics stand for the majority of the computation time in DNS, there is
a potential to only explicitly solve the large scale dynamics, in order to save
time [12]. It is also very important that the large scales are dominating
the transport equations for mass, momentum and energy. This idea is in-
troduced in LES, with a filter decomposing the velocity field in two terms.
The effects of the small scales velocity field are not irrelevant for the flow,
therefore they must be modeled. This is a whole field of research and there
are various models to choose from, where four of them are used in this thesis.
They are briefly introduced in this chapter to present a slight overview of
their concepts.

The filter in LES is defined by:

Ū(x, t) =

∫
G(r, x) ·U(x− r, t)dr. (2.10)

The filter function G(r, x) contains a length scale ∆, which decompose the
velocity into two components, the large scale velocity Ū and the remaining

2. Theory 10

small velocity residual u′, with the following relation:

U(x, t) = Ū(x, t) + u′(x, t). (2.11)

This is known as the filter width and marks the difference between the re-
solved domain and the subgrid domain. In default settings in OpenFOAM®,
this is the length of a single cell, or more accurately the third root of the
volume of the cell if the cell is not cubical.

The filtered momentum equation becomes [12]:

∂Ūj
∂t

+
UjUi
∂xi

= − ∂p̄

∂xj
+ ν

∂2Ū

∂xi∂xi
. (2.12)

It differs from the Navier Stokes equation (2.7) because the filter product is
not equal to the product of the filter velocities:

UjUi 6= ŪjŪi, (2.13)

where the difference is the residual stress tensor:

τij = UjUi − ŪjŪi. (2.14)

This formulation is a similar reasoning and analogous to the Reynolds stress
tensor in RANS, but not the same. Thereby, equation (2.12) and (2.14)
yields following momentum equation:

∂Ūj
∂t

+
ŪjŪi
∂xi

= − ∂p̄

∂xj
+ ν

∂2Ū

∂xi∂xi
− ∂τij
∂xi

. (2.15)

The residual tensor is unknown, and is modelled in order to solve equation
(2.15).

2.3.1 Smagorinsky

The classic subgrid model of LES is the ”Smagorinsky” model, which is based
on the eddy viscosity assumption that proposes a linear relation between the
subgrid shear stress and the strain tensor [13]:

τij −
1

3
τkk∂ij = −2νsgS̄ij , (2.16)

where νt is the eddy viscosity and S̄ij is the strain rate tensor given by:

1

2

(∂Ūi
∂xj

+
∂Ūj
∂xj

)
, (2.17)

2. Theory 11

and the subrgid energy is:

κsg =
1

2
τkk, (2.18)

and νsg is computed by the following equation:

νsg = Ck
√
κsg ·∆, (2.19)

where Ck has a default value of 0.094, which is also used in this thesis.
The subgrid kinetic energy κsg is calculated assuming a local equilibrium
between subgrid production and dissipation:

τij
∂(U j)

∂xj
+ Cε

κ
3/2
sg

∆
= 0. (2.20)

A weakness of the Samgorinsky model is that it can be to dissipative
in the laminar region [14], which is caused by the fact of that equation
(2.19) outputs an excessive eddy viscosity. From equation (2.20), as long
as a velocity gradient is present, it will induce subgrid kinetic energy and
therefore produce eddy viscosity through equation (2.19).

2.3.2 One equation eddy-viscosity model

This model follows the same procedure as the Smagorinsky model from equa-
tion (2.16) to (2.19). The difference lies in the calculation of the subgrid
kinetic energy κsg. As the name suggests it uses a transport equation instead
of assuming local equilibrium. The balance of the subrgid dissipation and
production in the ”Smagorinsky” model can be questioned, especially be-
cause the velocity can be obtained independently of the pressure [15], which
contradicts the Navier Stokes equations (2.7). The transport equation is as
follows:

∂(κsg)

∂t
+
∂(U jκsg)

∂xj
− ∂

∂xj

[
(ν + νsg)

∂κsg
∂xj

]
= −τij

∂(U j)

∂xj
− Cε

κ
3/2
sg

∆
, (2.21)

where Cε is an additional constant and has a default value of 1.048. From left
to right the terms are referred to as: time derivative, convective, diffusion,
production and dissipation term. The later used term ”subgrid dissipation”
is a part of the production term in this equation. That means subgrid
dissipation is a transfer of energy between the resolved domain and the
subgrid domain. Hence it appears as a part of the production term in the
transport equation of κsg. The dissipation term in (2.21) is therefore not
the same as subgrid dissipation.

2. Theory 12

2.3.3 Dynamic one equation eddy-viscosity model

It follows the same procedure as the One equation eddy-viscosity model,
but the coefficients in the transport equation (2.21) for the subgrid kinetic
energy κsg is dependent on the local flow, i.e Cε is not a constant. The same
regards for Ck [16].

2.3.4 WALE-model

WALE model also utilize the eddy viscosity assumption (2.16), but the eddy
viscosity is modeled as follows [17]:

νsg = C2
w∆2

(SdijS
d
ij)

3
2

(S̄ijS̄ij)
5
2 + (SdijS

d
ij)

5
4

(2.22)

where Sdij is a constructed operator considering the symmetric part of the

square velocity gradient tensor. C2
w is a constant and in OpenFOAM® set

to 0.325. The length scale is set equal to the third root of a single cell
∆ = V

1
3 . This model is often preferred to the Smagorinsky model, due to

the eddy viscosity naturally goes to zero at the wall, and also handles the
transition between laminar and turbulence better, since the WALE-model
also outputs zero eddy viscosity in laminar regions [17].

2. Theory 13

2.4 Temporal Mixing layer

The temporal mixing layer is a free shear flow, where two parallel stream
with opposite velocity profiles pass each other, and shear arises in the inter-
action zone. This can be seen in figure 2.3 in the transitional region. Where
the upper free stream velocity is U1. Red color indicates velocity rightwards.
The lower velocity stream is referred to as U2, where U2 = −U1 and has blue
colouring in the figure.

Fig. 2.3: Velocity for the temporal mixing layer in the transition to turbulence

Naturally, the dominant direction is the streamwise direction, which is
denoted by x. The normal direction is y, which is the direction responsible
for the shear according to newton viscosity law. This and the 2D modes
induces the coherent vortices, which is the main feature of the mixing lay-
ers. The last is the spanwise direction z, which plays an important part in
creating the second instabilities because of initialized longitudinal vortices
of 3D modes. A more detailed explanation of the modes can be found later
in the chapter ”Method”.

A mixing layer is known for self similarity [18] from experiments [19, 20],
which means the momentum thickness is expected to grow linearly in time
when turbulence is present:

δ =
1

(∆U)2

+∞∫
−∞

(U1 − U(y)) · (U(y)− U2) dy, (2.23)

which is a length, describing the momentum lost due to the dissipation in
the mixing layer. Due to the random motion of turbulence and its spreading,

2. Theory 14

the momentum thickness is expected to grow faster in time in the turbulent
regime, compared to in the laminar region.

An important length scale for the initial settings and the description of
the mixing layer is vorticity thickness, which is defined by:

δω =
U1 − U2

∂U0
∂y max

, (2.24)

which leads to the vorticity thickness Reynolds number :

Reδω =
(U1 − U2) · δω

ν
. (2.25)

It is as all Reynolds number a measurement of the relation between the
advection and viscous momentum term and in this case based on a relevant
length scale in the mixing layer. It is later used to define the flow in this
thesis.

3. METHOD

A description of the cases and how they are set up in OpenFOAM® are to be
presented in this chapter. Although the domains are fairly simple with 2D
squares and 3D cubical domains, mesh geometry and size should be chosen
with caution in CFD. Therefore a verification function of the mesh was
executed, and the Courant number were kept at a sufficiently low level. In
addition to mesh geometry, boundary conditions are often a source of errors
in CFD and are therefore presented and explained. As mentioned in the
introduction, low dissipative solvers need to be more commonly available in
commercial softwares. How the solver is programmed is therefore presented
in this chapter along with a brief description of how the ”pisoFoam” solver
operates.

3.1 Cases

3.1.1 The lid driven cavity case

The lid driven cavity flow is a well-known benchmark in CFD. The case is
set in a 2D enclosed box with the top wall moving at a constant velocity,
while the other three walls are fixed. Boundary conditions need to be im-
plemented with awareness of fluid mechanics theory and the specific case.
The boundary conditions for the lid driven cavity are presented in table 3.1.

No slip is a well-known assumption, where shear stress from solid walls
are far superior to fluid momentum, keeping the fluid at rest. The same
regards for the moving wall, but here the no slip condition is implemented
with equalizing the velocity of the fluid with the velocity of the moving wall.

Tab. 3.1: Boundary conditions in the lid driven cavity

Property Fixed Walls Moving Wall Front and Back

Velocities No slip Fixed Value Empty
Pressure Zero gradient Zero gradient Empty

3. Method 16

Because of the assumption of the flow being attached to the wall, an order of
magnitude analysis from boundary layer theory suggest that pressure gra-
dient close to the wall is approximately zero [1]. An intuitive approach to
this is to evaluate the velocity component perpendicular to the wall. Due
to the no penetration condition and the flow being attached as mentioned,
it is close to zero in practical sense. Inserting zero velocity into the Navier
Stokes equation (2.7) leads to a zero-pressure gradient. The empty condition
is used in OpenFOAM® to reduce the number of dimensions, from three to
two. In this case the front and back panels need to be eliminated.

Between the steps in the projection method, the boundary conditions need
to be corrected back to its settings. This is done by hard coding [2], with
the following syntax:

U.correctBoundaryConditions();

which is a built-in function in OpenFOAM® that updates the boundary
conditions to the ones set in the case files, i.e. the 0-folder, where the initial
settings and boundary conditions are in OpenFOAM® .

3.1.2 2D Taylor Green Vortex

A 2D Taylor Green vortex is a case of a unsteady fluid vortex, which can
be simulated with cyclic boundary conditions. This periodic phenomenon
can be used to study a large or infinite system in an enclosed small domain.
The original Taylor-Green vortex reduced to 2D is a problem consisting
these initial conditions [21]:

u = A · cos(ax)sin(by), (3.1)

v = B · sin(ax)cos(by), (3.2)

Where u and v is velocity in x and y direction respectively. If A = 1, a =

1, b = 1, B = −1, 0 < x < 2π and 0 < y < 2π, the solution reads [21]:

u = cos(x)sin(y)e−2νt, (3.3)

v = −sin(x)cos(y)e−2νt, (3.4)

p = −1

4
(cos(2x) + cos(2y))e−4νt. (3.5)

3. Method 17

A reason for this case being chosen, is its simple setup along with the
possibility of studying a solver’s energy conservation. Exit energy enters
at opposite side, due to the periodic boundaries. Thus making it possible
to monitor the change in total energy, since the energy is kept within the
domain.

3.1.3 Mixing layer

The simulations are done in a 3D cubical domain configured like ([0, L], [−L
2 ,

L
2], [0, L]),

where L is approximately set to 4 times the most unstable wavelength ac-
cording to linear stability theory [14], that is L ≈ 14 · δω2 . Thereby, the
domain can contain 4 large vortex rollers and it is possible to observe two
different pairings. The grid size is n = 323 for the coarse mesh and n = 1083

for the fine mesh which should be sufficiently accurate [14]. Uniform spacing
has been implemented in x and z directions. In the y-direction a built-in
function called ”simpleGrading” is used. The input to this function is the
expansion rate between the first cell in the block and the last. This is used
in order to increase the resolution in the mixing area. The aspect ratio is set
to be 2 at the center line. Following the reference article,the velocity profile
is initialized by [14]:

U(y)

U1
= tanh(

2y

δω
). (3.6)

The figure 3.1 shows the initial profile varying with y/L and the length of
the arrows corresponds to the value U/U1. Noise is added as [22]:

u′ = ar · e−y2 , (3.7)

where a is amplitude and chosen to be 0.0001 of the free stream velocity
and r is a random function uniformly distributed from −0.5 to 0.5. This
ensures that the mean velocity profile (3.6) is intact. In addition the free
stream is not disrupted, due to the exponential function eliminates any per-
turbations in that area. The same procedure for the perturbations is done
for the velocities in the remaining directions.

In order to induce turbulence, mixing layer disturbances are imposed
with modes with a specific wavelength and a phase shift. This can be ini-
tialized with vortices in z direction, which creates Kelvin-Helmholtz insta-
bilities in the xy-plane. Vortices in the streamwise direction is added too,
and 3D instabilities occur in the yz-plane. A single disturbance mode in 2D

3. Method 18

Fig. 3.1: Velocity profile for the temporal mixing layer

is added with a stream function defined as [23]:

ψz = A · e−(
2y
δω

)2 · sin (kx · x+ φx). (3.8)

Taking the appropriate derivatives of equation (3.8) lead to the following
disturbances:

u′ = A · −8y

δ2ω
· e−(

2y
δω

)2 · sin (kx · x+ φx), (3.9)

v′ = A · kx · e−(
2y
δω

)2 · cos (kx · x+ φx), (3.10)

where kx is the wave number:

kx =
2π

λx
, (3.11)

which describes the frequency of vortices in streamwise direction x (λ is wave
length in x-direction). Further on, φx is the phase shift number, which can
relocate the position of the vortices and therefore avoid symmetry if needed.
Finally, A is an amplitude set as:

A = U1 ·
λx
2π
, (3.12)

which is scaled such that the v′ disturbances never exceed the free stream
velocity.

3. Method 19

Multiple modes are added just by summation of all the individual modes.
They are denoted with (α, β) where α and β are scaled wave numbers in x
and z direction respectively, so that they represent the number of periods a
specific mode provides within the domain. The stream function for multiple
modes becomes:

ψz = e−(
2y
δω

)2
∑
n

Ax,n · ξn sin (kx,n · x+ φx,n), (3.13)

and the disturbances are therefore:

u′ =
−8y

δ2ω
· e−(

2y
δω

)2
∑
n

Ax,n · ξn sin (kx,n · x+ φx), (3.14)

v′ = ·e−(
2y
δω

)2
∑
n

Ax,n · kx,n · ξn cos (kx,n · x+ φx), (3.15)

where 0 < ξn < 1 is the individual scaling factor. The 3D-modes are very
similar to the 2D modes. So starting off with the stream function with
multiple vortices in x-direction reads:

ψx = e−(
2y
δω

)2
∑
n

∑
m

Bz,m · ξn,m sin (kx,n · x+ φx,n,m) sin (kz,m · z + φz,n,m).

(3.16)
Hence, v′ = ∂ψx

∂z and w′ = ∂ψx
∂y become:

v′ = e−(
2y
δω

)2
∑
n

∑
m

Bz,m · kz,m · ξn,m sin (kx,n · x+ φx,n,m) cos (kz,m · z + φz,n,m),

(3.17)

w′ =
−8y

δ2ω
· e−(

2y
δω

)2
∑
n

∑
m

Bz,m · ξn,m sin (kx,n · x+ φx,n,m) sin (kz,m · z + φz,n,m).

(3.18)

B is set with the similar idea to the 2D-case such that the v′ disturbances
do not exceed the free stream velocity:

B = U1 ·
λz
2π
. (3.19)

It is worth pointing out that:

Ax,n · kx,n = Bz,m · kz,m = U1, (3.20)

3. Method 20

and whenever these products occurred, it was kept for illustrative purposes.

The main ideas in the reference article is followed [14], but it is not the
purpose to replicate the exact results, mainly because simulations are de-
pendent on the initial settings, and for example information about phase
shift numbers are withheld in the article. Also, temperature and viscosity
modeling are not included in this thesis. The vorticity Reynolds number is
set to 200 [14]. Note that its value is 50 there, but that is due to a different
definition of the viscosity Reynolds number. Further on, the same modes are
chosen, and that is the (4,0), (2,0), (1,0) for the 2D modes and (4,4), (4,-4),
(2,2), (2,-2), (1,1), (1,-1) for the 3D modes. In order to break symmetry,
phase shift are chosen randomly within the range of [−π

2 ,−
π
2] for the 3D-

modes. Scaling factors are set to 0.05 and 0.15 in 2D and 3D respectively
[14].

Tab. 3.2: Boundary conditions in the mixing layer

Property XZ-Walls XY-Planes YZ-planes

Velocities Slip cyclic cyclic
Pressure Zero gradient cyclic cyclic

As one can see from table 3.2 the XY and YZ - planes in the cubical
domain are cyclic. This is not physical correct, but is done to simulate an
infinite large region. Slip boundary condition has been set at the XZ-walls,
where the walls are sufficiently far away to avoid wall effects also known
as ground effects. The reason why cyclic boundaries are not implemented
at the XZ walls is that properties such as velocity is strongly dependent
on y. That means the two different free stream velocity would meet at the
boundary and probably create an additional mixing layer. As explained in
the lid driven cavity case, pressure is set to zero gradient at the walls.

3.2 Solvers

3.2.1 Projection method and its implementation

It is quite challenging solving Navier Stokes equations numerically as the
velocity in the next time step depends on the pressure in the next time

3. Method 21

step and vice versa. The idea of the Chorin’s projection method is based
on the procedure from section 2.2 and the Helmholtz-Hodge decomposition
theorem, which states that a vector field can be decomposed into the sum
of a divergence free part and a curl free part [24]. Applied in this method,
one can construct a temporary velocity field:

u∗ = un+1 + ∆t · ∇p, (3.21)

where u is the real velocity field and becomes the divergence free part be-
cause of the continuity equation (2.8). According to calculus, the curl of a
gradient is zero, hence ∇p becomes the curl free part of the decomposition.
The temporary velocity u∗ be calculated with discretization of equation (2.7)
[24] :

u∗ = un + ∆t ((−un · ∇)un + ν∆un) , (3.22)

dU=runTime.deltaT()*(-fvc::div(phi,U)+...

...turbulence->nuEff()*fvc::laplacian(U));

U=Uold+dU;

where the syntax shows the numerical setup of equation (3.22) in OpenFOAM®.
”runTime.deltaT” and ”turbulence-nuEff” and change in time and the sum
of eddy viscosity and molecular viscosity respectively. ”div” is naturally di-
vergence and ”laplacian” is divergence squared. Finite volume discretization
in OpenFOAM® is done by using ”fvc::” followed by any term that needs
to be discretized [25]. Euler method is chosen for simplicity of presenting.
The Runge Kutta method is implemented using the same principles, but
four times. The idea is to use this temporary velocity field in order to solve
the Poisson equation for the pressure, similar to equation (2.9). Taking the
divergence of equation (3.21), u disappears because of continuity, leaving:

∆p =
∇ · u∗

∆t
. (3.23)

solve(fvm::laplacian(p)==fvc::div(U)/runTime.deltaT());

The ”fvm::” syntax is finite volume method, where fvm::laplacian(p) returns
a coefficient matrix based on the finite volume discretization of the pressure
field [25]. After the field is obtained, the pressure and the temporary velocity
field is projected back to equation (3.21) to ensure a divergence free velocity
field:

un+1 = u∗ −∇p ·∆t (3.24)

3. Method 22

U=U-fvc::grad(p)*runTime.deltaT();

The flowchart of one time step in the projection method is shown in figure
3.2, and the complete solver can be found in the appendices.

Fig. 3.2: Flowchart of the projection method

3.2.2 The OpenFOAM® solver ”pisoFoam”

The PISO (Pressure-Implicit with Splitting of Operators) is an extension
of the iterative method SIMPLE with an additional corrector step. A brief
summary of the PISO-algorithm can be seen in figure 3.3. The performance
of a PISO-solver, i.e how fast it converges, is dependent on the flow case [1],
which makes it challenging to generally compare solvers. Therefore, in this
thesis, specific cases are to be represented and compared.

3. Method 23

Fig. 3.3: Flowchart of the PISO algorithm

3.3 Modification, pre and post-processing

In order to extract results of the desired quantities, some modifications of
the built-in functions in OpenFOAM® have been done. The energy decade
in the mixing layer case is normalized by the initial energy which is defined
before the main loop as:

forAll(U,cellI)

{

initialEnergy = initialEnergy + 0.5*sqr(U[cellI].x()) + 0.5*

sqr(U[cellI].y())+0.5*sqr(U[cellI].z());

}

This loops through all cells and adds all the filtered kinetic energy into
the total one. In order to detect numerical dissipation, the two viscous

3. Method 24

terms in the energy equation are calculated directly from the filtered velocity
field inside the main loop. Also the kinetic energy from each time step is
calculated:

forAll(U,cellI)

{

energy = energy + 0.5*sqr(U[cellI].x()) + 0.5*sqr(U[cellI].y())+0.5*

sqr(U[cellI].z());

}

volScalarField subepsilon(turbulence->nut()*(fvc::grad(U)&& dev(

twoSymm(fvc::grad(U)))));

forAll(subepsilon,cellI)

{

subtotal=subtotal+subepsilon[cellI]*dt;

}

volScalarField molepsilon(laminarTransport.nu()*(fvc::grad(U)&& dev(

twoSymm(fvc::grad(U)))));

forAll(molepsilon,cellI)

{

moletotal=moletotal+molepsilon[cellI]*dt;

}

here ”energy” is the total kinetic energy for each time step, ”subepsilon”
is subgrid dissipation, and ”molepsilon” is molecular dissipation. The sub-
grid dissipation and the molecular dissipation are the only dissipating terms
in the energy equation for the filtered variables [12]. Hence the difference in
energy between the steps should be:

Ent − En+1
t = Enm + Ens + Eξ, (3.25)

where subscript ”t” is for total energy, ”m” for molecular dissipation, ”s”
for subgrid dissipation, and Eξ has to be numerical diffusion.

Both the momentum thickness and the Reynold stress are obtained with
modification of the built in function ”postChannel”. Momentum thickness
(2.23) is programmed as:

forAll(UMeanXvalues,I)

{

momThick=momThick+(freeStreamU-UMeanXvalues[I])*(freeStreamU-

UMeanXvalues[I]+70)*(1/sqr(deltaU));

}

where ”UmeanXvalues” are spatial averaged velocities in streamwise and

3. Method 25

spanwise directions, and the remaining constants are self-explanatory. For-
tunately Reynold stresses are already in ”postChannel”, but only filtered
and not subgrid. Subgrid Reynold stresses are expressed in equation (2.16)
together with (2.18) and can be implemented by this code:

volTensorField DU = fvc :: grad (U);

volSymmTensorField DR = -nut*twoSymm (DU) +((2.0/3.0))*k*I ;

where DR becomes the sub grid shear tensor and ”nut” is eddy viscosity,
”k” is subgrid kinetic energy and ”I” is the identity matrix.

4. RESULTS

4.1 The lid driven cavity

The vorticity magnitude after the simulation is visualized in figure 4.1. Fur-
ther on, in this case the cell number is 1282 and Reynolds number is set
to 2500, matching the setup in the reference article [2]. This is a suitable
problem for a laminar backward Euler ”pisoFoam” solver, since as previ-
ously discussed, an implicit method is chosen since a steady state solution
is expected. The result of this can be seen in figure 4.2, where the velocity
in x-direction on the vertical center line is plotted.

Fig. 4.1: Vorticity magnitude over the whole domain

The projection method was found to correlate well with the results found
with the ”pisoFoam” solver as seen in figure 4.2. Where a maximum devia-
tion of 0.5% was found relative to the reference velocity. Both cases conform
to previous work [2]. The simulations of the cases were running on a grid di-
vided in four sections and parallel computing. The hardware used was: Dell
PE630 with 2 x E5-2630 v4 10 cores (20 cores per node), 2.20GHz, 128GB
RAM, using only 1 node and 4 tasks per node. The same time step was
used in both solvers, therefore the fairness of these results are questionable,
because as explained in the theory, implicit schemes have iterations per time

4. Results 27

step, but can handle a larger time step in return, whereas explicit schemes
are limited to the ”CFL” condition. Therefore having the time step shorter
may favour the explicit scheme, since it can be quicker per time step. These
ratios are only used to present a slight overview of the time usage. The
times are presented in table 4.1. Where the execution times are normalized
to the execution time of the ”pisoFoam” solver.

Tab. 4.1: Execution times

Solver Time

Projection method 0.83
”pisoFoam” 1

Fig. 4.2: Velocity plotted over the x-center line after the simulation of the lid driven
cavity

4.2 2D Taylor Green Vortex

An important note in this case is that the viscosity is set to zero. The only
source of energy dissipation is therefore numerical, thus making this an ideal
set up for error analysis. An inviscid case yields according to equations (3.3)
to (3.5) a steady solution identical to the initial conditions.

4. Results 28

All of the original coefficients such as the amplitude and frequency have
been set to 1, because of illustrative purposes (except B = −1 in equation
(3.2)). Keep in mind that as long as consistency is kept, it is possible to flip
or reverse the initial settings as desired. This is done in the reference case
and therefore also in this thesis, with the initial settings of:

u = sin(x)cos(y), (4.1)

v = −cos(x)sin(y), (4.2)

p =
1

4
(cos(2x) + cos(2y)), (4.3)

which is also the analytic solution. The grid is set to n = 1282. A visual
presentation of this solution is in figure 4.3. Initial settings are set by editing
and recompiling both solvers, with the procedure attached in the appendices.

Fig. 4.3: Flow field in the Taylor Green vortices case

A ratio between energy and initial energy is shown in figure 4.4 where
the projection method conserved 99.98% and the ”pisoFoam” solver 97.220%
after ten seconds with the Courant number at maximum around 0.035. Al-
though the Courant number and duration of the simulation do not corre-
spond to the reference case, it still shows the same trend; a significant gap

4. Results 29

between the solvers. It is stated that the ”pisoFoam” solver dissipates by
least an order more than the projection method [2]. This is confirmed in
this thesis with an energy error of order 10−4 compared to 10−2 for ”piso-
Foam”. This is found true for the velocity as well, which can be observed
in figures 4.5 and 4.6. Notice the change of order in the z-axis.

Fig. 4.4: The ratio between initial energy and the current energy

4. Results 30

Fig. 4.5: Absolute error of velocity in x-direction for ”pisoFoam”

Fig. 4.6: Absolute error of velocity in x-direction for projection method

4. Results 31

4.3 The temporal mixing layer

Simulations were carried out in a similar manner as described in a previous
work [14], but different initial settings, numerical schemes and filter width
were used, so the exact same results are not expected. A ratio of about
4/5 in simulation time was found between ”pisoFoam” and the projection
method, favoring the ”pisoFoam” solver. The most computational expensive
procedure in the projection method is solving the laplacian equation (3.23)
four times. Allthough ”pisoFoam” has an iteration process for each step, it
is still quicker in this case. In the original work [14], a filter width of twice
the cell size was used, but in this thesis it was kept at the default setting in
OpenFOAM® as the third root of the cell volume, meaning one cellwidth if
the cell is cubical. Four different subgrid models were tested by both solvers
on two grids, so 16 different cases in total, hence making it possible to inves-
tigate differences between the solvers, mesh dependency, and also between
different subgrid models. Of the subgrid models tested in this thesis, the
”Smagorinsky” model is the only one present from the reference article [14].
The results from the ”Smagorinsky” model are therefore often compared to
the ones found in the article. It turns out to be the least accurate model
both there and in this thesis.

The numerical scheme used in space is ”cubic” which is a 3rd order op-
tion in OpenFOAM®. Crank Nicholson is used for the ”pisoFoam” solver in
time, which is second order as mentioned in the introduction. The variable
t in this case is a time scale calculated by t = δω/∆U , which is the vorticity
thickness divided by the difference between the velocity free streams.

4.3.1 Turbulence behaviour

In terms of turbulence behaviour, every solver and subgrid model seem to
capture the characteristic energy cascade, meaning large eddies are cascad-
ing into smaller ones. This can be seen in figure 4.7, where figure 4.7(a)
shows the streamwise energy spectrum for the fine mesh case with the
”WALE” model and figure 4.7(b) shows the coarse mesh case. In the fig-
ures, nondimensionalization is done by the velocity in the upper stream and
the initial vorticity thickness. The ”Smagorinsky” model has limited con-
tributions from small scales compared to the ”WALE” model. A previous
simulation has similar graph for the ”Samgorinsky” model where it goes far
below the DNS solution [14]. The ”WALE” model performs better in the
small scale region having more energy resolved. None of the eddy-viscosity

4. Results 32

(a) Streamwise energy spectrum, projec-
tion method, ”WALE”, n = 1083,
5/3-law is included.

(b) Streamwise energy spectrum, projec-
tion, ”Smagorinsky”, ”WALE”, n =
323.

Fig. 4.7: Energy spectrum

(a) t=20 (b) t=40

(c) t=80

Fig. 4.8: Magnitude of vorticity for three different time steps, Projection method
with ”WALE” with n = 1083, zoomed in on shear layer and rescaled colors
for visual purposes

4. Results 33

(a) ”One equation” n = 323 (b) ”One equation” n = 1083

Fig. 4.9: Contour plot of the magnitude of the vorticity by the ”one equation”
subgrid model by projection method at t=80

models reaches the levels of the DNS case in the previous article, however the
”Dynamic Smagorinsky” is pretty close. A lack of backscatter, transferring
energy from the subgrid to the resolved domain, could be a reason for this.
Clearly this happens in a real fluid and in DNS, making a contradiction to
the eddy viscosity assumption, where subgrid dissipation is always positive.
The result from the fine mesh case can be seen in figure 4.7a. It is approx-
imately parallel to the 5/3 law, and probably would be even closer with
a higher Reynolds number [14]. The spectrum shows the typical cascade
where energy transfers from large scale eddies into the small scale scales.

As one can see from figure 4.8 the large vortices successfully start to
take form at around t=20, which is expected [2]. Pairings start occurring
around t=40 which figure 4.8 confirms. At time 80, one large structure is
left due to an additional pairing between the structures from t = 40. In
terms of different solvers, they are fairly similar and it is hard to point out
any weaknesses in any of them visually, i.e by the vortex structures. The
differences in mesh resolution can be seen in figure 4.9 at t = 80. Where the
shape is somewhat equal, but the coarse does not capture as much detail as
the fine mesh naturally. The coarse mesh predicted only two vortex rollers
instead of four in the transition.

The Q-criteron is an acknowledged method to investigate vortex struc-

4. Results 34

tures and their development [26]. It uses the second invariant of the velocity
gradient tensor, Q, which describes the rate between the rotation rate and
strain tensor. Both lambda-vortices in figure 4.10 and hairpin-vortices in
figure 4.11 are occurring in this simulation. These coherent structures are
typical in the mixing layer [26]. The lambda-vortices are initiated by shear
layers in the beginning, thereby it is claimed that these vortices evolve into
”hairpin”-vortices by stretching in the shear layer. The theory and detailed
development of these are not studied in this thesis. The most important in
this case, was verifying that the projection method was able to predict these
structures in the flow.

Fig. 4.10: Isosurfaces of Q=10, normalized by the time scale, at t=15, positive
streamwise direction is forward into the picture.

Fig. 4.11: Isosurfaces of Q=10, normalized by the time scale, at t=30, positive
streamwise direction is forward into the picture.

4. Results 35

Fig. 4.12: Momentum thickness for the ”WALE” model, solid lines represents the
n = 1083 mesh and dashed lines are n = 323.

Fig. 4.13: Momentum thickness for the ”Smagorinsky” model, solid lines represents
the n = 1083 mesh and dashed lines are n = 323.

4. Results 36

4.3.2 Momentum thickness

As described in the theory, momentum thickness is a length scale containing
information about how much momentum is lost due to viscous dissipation
and spreading of the mean velocity profile. In order to compare with the
fine mesh in the figures, the fine mesh momentum thickness is scaled ap-
propriately to the coarse case. Momentum thickness should grow slower in
the laminar region and linear in the turbulent region. These effects were
captured by the fine mesh as shown in figure 4.12, where the red dashed line
is linear. When it comes to the coarse mesh, where subgrid scales have more
influence, none of the solvers combined with models had a linear growth in
the turbulence region. However, there were differences in the laminar region
where the ”Smagorinsky” model grows rapidly and surpasses the fine mesh
case in figure 4.13, this does not happen in figure 4.12 which is the ”WALE”
model. This is caused by the overestimated subgrid dissipation and thereby
too rapidly spreading of the mean velocity profile. Further on, it grows too
slow in the transition and the turbulent region, which indicates that it is
hindering turbulence [14]. The ”WALE” model however, is closer to the fine
mesh case, but clearly grows slower than it should in the turbulence region
too, but has a better turbulence modelling since it is not hindering as much
spreading as the ”Smagorinsky” model. In terms of comparison in between
”pisoFoam” and projection method they showed similar results.

4.3.3 Energy

Conservation and dissipation of energy is another benchmark in testing of
solvers and models. For the fine mesh, the energy left after a period of
120 timescales ranges from approximately 71% to 74% and for the coarse
mesh the range is 72-75%. This is expected as more of the turbulence
motion is resolved in the finer mesh causing higher dissipation. The least
dissipative model was the ”Smagorinsky” model. On the opposite side, the
”WALE” and ”Dynamic one equation” models were rather similar in being
the most dissipative models. They have more molecular dissipation than the
”Smagorinsky” and ”One equation” models, but lesser subgrid dissipation.
A further discussion on this can be read in the molecular and subgrid dissi-
pation sections. The two solvers showed different behaviour on the energy
decade. For the coarse mesh, ”pisoFoam” has the most dissipation of en-
ergy, making a closer fit to the fine mesh case. However, the reason behind
it turns out to be numerical dissipation, which means in other cases, ”piso-
Foam” could be wrong and dissipate more than it should. In the fine mesh

4. Results 37

(a) Dynamic one equation

(b) ”Smagorinsky”

Fig. 4.14: Total kinetic energy dissipation

4. Results 38

case, the accuracy between the solvers were more similar. However, the pro-
jection method has more dissipation, which can indicate better turbulence
modeling.

4. Results 39

Fig. 4.15: Differences of molecular dissipation between the models on the coarse
mesh 323 with projection method.

Fig. 4.16: Molecular dissipation for the ”Dynamic one equation” model for both
solvers and meshes.

4. Results 40

Molecular dissipation

Molecular dissipation is caused by the viscous term in the Navier Stokes
equations in the resolved region of the domain. All figures are nondimen-
sionalized by the initial energy, i.e they show the amount of energy dissipated
and not the rate. This regards for every dissipation figure in this chapter.
For the coarse mesh, the molecular dissipation is decreasing for every solver
in the start from figure 4.15. A possible explanation is too large gradients
due to large grid spacing, causing overestimated dissipation. The fine mesh
cases from figure 4.16 have an oscillating curve in the laminar/transition
phase and proceeds to grow in the turbulence region. This should be logical
due to instabilities and molecular dissipation is known to grow along with
turbulence.

The ”WALE” and ”Dynamic one equation” models have a minor growing
phase as turbulence develops seen in figure 4.15. It is not as significant as
in the fine mesh case. As the coarse mesh has a different separation point
between the resolved and the subgrid domain, it is hard to conclude whether
it is growing rapidly enough or not, compared to the fine mesh case. Fig-
ure 4.14 suggests that it is not, as it is not able to follow the decreasing
energy as in the turbulence region in the fine mesh case, but it could be due
to underestimated subgrid dissipation as well.

A convex curve is the result of the ”One equation” model and the ”Smagorin-
sky” model. It is possible that this comes from an excessive subgrid dissi-
pation and it overrules the molecular dissipation where it is not supposed
to. From around t = 60, it finally starts to grow. It seems that these
two models have delayed the turbulence influence too far, and the assump-
tion of local equilibrium for the ”Smagorinsky model” is more appropriate
for a turbulent region rather than in a laminar/transition region. This is
a counter-productive behaviour, which hinders the transition to where the
model performs the best. Although the ”One equation” model has a trans-
port equation for the subgrid kinetic energy, it seems to behave very similar
to the ”Smagorinsky” model. Most likely, this is due to the dissipation and
the production term are the most dominant terms in the transport equa-
tion for the subgrid kinetic energy (2.21), creating a resemblance to the
”Smagorinsky” model which only contains those two terms. This is exactly
the point of the ”Dynamic one equation” model, which reduces the dissipa-
tion term in the transport equation. This is not to be confused with subgrid
dissipation which is a part of the production term in that equation, which

4. Results 41

is further discussed in the next section.

The ”Smagorinsky” and the ”One equation” model are the furthest away
from the profile that the DNS from previous work and the fine mesh case in
this thesis displayed [14]. This conclusion is also supported by figure 4.14
where the ”Dynamic one equation” model behaves similar to the fine mesh
case, whereas ”Samgorinsky” model differs more. A similar conclusion was
drawn in the previous work, where the results were compared to a filtered
DNS-solution on the coarse mesh [14].

Fig. 4.17: Differences of subgrid dissipation between the models on the coarse mesh
323 with projection method

Subgrid dissipation

The models should output minimal eddy viscosity at t = 0 and this is
successfully done by every model except the ”Smagorinsky” model seen in
figure 4.17. It assumes local equilibrium, as mentioned in theory, this means
the dissipated subgrid kinetic energy is equal to the production term which
contains subgrid dissipation. As long as velocity gradients are present, it
produces eddy viscosity. Therefore it is excessive at the beginning of the
simulation when large velocity gradients exists. Further on, it decreases in
the process of transition to turbulence. Finally, after t = 70 it is increasing.
This development is almost opposite compared to previous DNS-results [14].
For the ”One equation” model the subgrid dissipation is rightfully minimal

4. Results 42

Fig. 4.18: Subgrid dissipation for the ”Dynamic one equation” model for both
solvers and meshes

at the start, because equation (2.21) is able to output a minimal eddy vis-
cosity. One of the reasons can be that the diffusion term reduces the amount
of subgrid kinetic energy, which lessen the influence of the dissipation term

(growing proportional with k
3
2
sg), oppose to the ”Smagorinsky” model where

there is no diffusive term. A dimension analysis of the diffusion versus the
dissipation term in the ”One equation” and the ”Dynamic one equation”
models can be derived as:

∂

∂xj

[
(ν + νsg)

∂κsg
∂xj

]
∼ Cε

κ
3/2
sg

∆
(4.4)

(ν + νsg)κsg
∆

∼ Cεκ3/2sg (4.5)

dissipation

diffusion
∼ Cε∆

√
κsg

(ν + νsg)
(4.6)

As one can see from equation 4.6, as subgrid kinetic energy increases,
the diffusion term has less influence and the energy has to be produced
from the production term through subgrid dissipation. When the amount of
subgrid energy for the ”One equation” model reaches the same magnitude as
the ”Smagorinsky” they show similar behaviour, since now the dissipation
term is in the same order of magnitude. When Cε is not a constant, but is
dependent on the local flow like in the ”Dynamic one equation” model, it

4. Results 43

seems to yield more logical subgrid dissipation. Now equation (4.6) is also
influenced by ” Cε ”. This variable being close to zero in the initial state,
results in a low subgrid dissipation and stays that way until the transition to
turbulence starts. There it starts to grow as it should, because the energy
cascade of turbulence states that energy is transferred down to the small
scales. Although the ”WALE” model produces eddy viscosity through a
algebraic equation using the strain rate and rotation rate, it agrees very
well with the ”Dynamic one equation” model.

4.3.4 Numerical error

It is important to keep the numerical error sufficiently small in CFD. Con-
servation of energy is one way to investigate such an error. The only source
of dissipation in this case should be either molecular or subgrid dissipation.
Therefore if a summation of these two terms is different from the loss of
the total filtered kinetic energy, it should be due to numerical issues. This
principle is also explained by equation(3.25). Hence figures 4.16 and 4.18
should conform to figure 4.14a. For the projection method, the summation
of energy dissipated by the two former figures lead to the numerical value
of 0.2473 of the initial energy. The total kinetic energy loss was 0.2568 from
figure 4.14. This means that the numerical dissipation is only 3.72% by the
projection method, which is in the same order as from previous work [14].
The same procedure yields a total dissipation of 0.2491 and a total kinetic
loss of 0.2756 by ”pisoFoam”, which yields a 9.63% error. It further confirms
the result from the Taylor Green vortices case, where the ”pisoFoam” solver
has significantly more numerical dissipation than the projection method. It
seems that the numerical diffusion hinders the ”pisoFoam” in developing
as much turbulence as the projection method. The lack of subgrid dissipa-
tion and molecular dissipation by ”pisoFoam” compared to the projection
method, support this statement. In the next section about Reynold stress,
a consequence of lacking subgrid dissipation is discussed.

4.3.5 Reynold stresses

The Reynold stresses shown in figure 4.19 are exclusively the subgrid stresses.
It is normalized by the velocity of upper free stream. The projection method
gave higher values for the Reynolds stresses for both solvers. The reason is
that the projection method has more energy in the subgrid domain, making
the shear stress tensor larger for the projection method cases. A ratio about
3/4 was observed at t = 70 for the ”Dynamic one equation” model. The re-

4. Results 44

solved scale perturbations were the same for both solvers, therefore the figure
shows only the subgrid Reynold stress. This may come from the numerical
dissipation by ”pisoFoam”. Energy that were supposed to be transferred to
the small scales, dissipated instead artificially. Thus the Reynolds stresses
are larger for the projection method. When it comes to the spreading of the
shear layer, they seem to agree very well, that is again no surprise because
of the momentum thickness were fairly similar in the solvers too.

Fig. 4.19: The subgrid Reynold stresses in streamwise (R11) direction at t=70 with
”Dynamic one equation” model

5. CONCLUSION

The projection method was successfully reconstructed and matched the re-
sults found in the lid driven cavity case with the standard transient solver
”pisoFoam” in OpenFOAM®. Both solvers agreed with results from pre-
vious simulations of the lid driven cavity [2]. Further on, an agreement of
the hypothesis of the projection method being less numerically dissipating
is confirmed in the inviscid Taylor Green vortex case. It showed a clear dif-
ference, where the projection method preserved 99.98% of the initial energy,
whereas the ”pisoFoam” solver had only 97.220% left.

A similar outcome was found for the temporal mixing layer case. Two
parallel streams interact and create a shear layer, which was studied with
periodic boundaries. The projection method had a total error of 3.72% when
”pisoFoam” had a 9.67% further supporting the dissipation hypothesis. For
subgrid modeling the ”Dynamic one equation” and the ”WALE” model were
found to have the best performance, whereas an overestimated subgrid dis-
sipation were found to be destructive for both the ”Smagorinsky” and ”One
equation” model. As for turbulence behaviour, the projection method per-
formed well and seemed to display the characteristics. For example, known
vortex structures were captured in the simulations. Also, the energy spec-
trum showed tendency to the 5/3 law, which means it captured the typical
energy cascade.

As for computational efficiency, the solvers seem to be comparable. The
projection method were faster in the lid driven cavity flow, but slower in the
temporal mixing layer which is a more complex case. Therefore, whether
to use ”pisoFoam” or the projcetion method, is a question about time and
precision. This means the cost of accuracy is, as expected, measured in
the amount of time. However, 25% more computational time should be
reasonable, especially having the significant difference in accuracy in mind.
However, the same time step was used, which can be favorable for the ex-
plicit solver as discussed in the theory part. Further work should asses this,
and investigate the accuracy/time ratio of both solvers. Expanding with

5. Conclusion 46

more cases is also recommended, to investigate the case dependency and
further clarify its strengths and weaknesses.

REFERENCES

[1] H. K. Versteeg and W. Malalasekera, An introduction to computational
fluid dynamics - the finite volume method. Addison-Wesley-Longman,
2007.

[2] V. Vuorinen, J.-P. Keskinen, C. Duwig, and B. Boersma, “On the
implementation of low-dissipative runge–kutta projection methods for
time dependent flows using openfoam®,” Computers & Fluids, vol. 93,
pp. 153–163, 2014.

[3] W. Kieffer, S. Moujaes, and N. Armbya, “Cfd study of section charac-
teristics of formula mazda race car wings,” Mathematical and Computer
Modelling, vol. 43, no. 11-12, pp. 1275–1287, 2006.

[4] P. Tucker, S. Menon, C. Merkle, J. Oefelein, and V. Yang, “An ap-
proach to improved credibility of cfd calculations for rocket injector
design,” in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Confer-
ence & Exhibit, p. 5572, 2007.

[5] C. Rhie and W. L. Chow, “Numerical study of the turbulent flow past
an airfoil with trailing edge separation,” AIAA journal, vol. 21, no. 11,
pp. 1525–1532, 1983.

[6] M. Raschi, F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela,
T. Tanoue, K. Tanishita, and J. R. Cebral, “Cfd and piv analysis of
hemodynamics in a growing intracranial aneurysm,” International jour-
nal for numerical methods in biomedical engineering, vol. 28, no. 2,
pp. 214–228, 2012.

[7] R. I. Issa, “Solution of the implicitly discretised fluid flow equations
by operator-splitting,” Journal of computational physics, vol. 62, no. 1,
pp. 40–65, 1986.

[8] J. C. Butcher, Numerical methods for ordinary differential equations.
John Wiley & Sons, 2016.

References 48

[9] B. Jayashankara and V. Ganesan, “Effect of fuel injection timing and
intake pressure on the performance of a di diesel engine–a parametric
study using cfd,” Energy Conversion and Management, vol. 51, no. 10,
pp. 1835–1848, 2010.

[10] A. Crespo, J. Hernandez, and S. Frandsen, “Survey of modelling meth-
ods for wind turbine wakes and wind farms,” Wind Energy: An Interna-
tional Journal for Progress and Applications in Wind Power Conversion
Technology, vol. 2, no. 1, pp. 1–24, 1999.

[11] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference
equations of mathematical physics,” IBM journal of Research and De-
velopment, vol. 11, no. 2, pp. 215–234, 1967.

[12] S. B. Pope and S. B. Pope, Turbulent flows. Cambridge university press,
2000.

[13] J. Smagorinsky, “General circulation experiments with the primitive
equations: I. the basic experiment,” Monthly weather review, vol. 91,
no. 3, pp. 99–164, 1963.

[14] B. Vreman, B. Geurts, and H. Kuerten, “Large-eddy simulation of the
turbulent mixing layer,” Journal of Fluid Mechanics, vol. 339, pp. 357–
390, 1997.

[15] A. Yoshizawa and K. Horiuti, “A statistically-derived subgrid-scale ki-
netic energy model for the large-eddy simulation of turbulent flows,”
Journal of the Physical Society of Japan, vol. 54, no. 8, pp. 2834–2839,
1985.

[16] W.-W. Kim and S. Menon, “A new dynamic one-equation subgrid-scale
model for large eddy simulations,” in 33rd Aerospace Sciences Meeting
and Exhibit, p. 356, 1995.

[17] F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the
square of the velocity gradient tensor,” Flow, turbulence and Combus-
tion, vol. 62, no. 3, pp. 183–200, 1999.

[18] M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar
turbulent mixing layer,” Physics of Fluids, vol. 6, no. 2, pp. 903–923,
1994.

References 49

[19] G. L. Brown and A. Roshko, “On density effects and large structure
in turbulent mixing layers,” Journal of Fluid Mechanics, vol. 64, no. 4,
pp. 775–816, 1974.

[20] F. Champagne, Y. Pao, and I. J. Wygnanski, “On the two-dimensional
mixing region,” Journal of Fluid Mechanics, vol. 74, no. 2, pp. 209–250,
1976.

[21] G. I. Taylor and A. E. Green, “Mechanism of the production of small ed-
dies from large ones,” Proceedings of the Royal Society of London. Series
A-Mathematical and Physical Sciences, vol. 158, no. 895, pp. 499–521,
1937.

[22] N. Sandham and W. Reynolds, “Three-dimensional simulations of large
eddies in the compressible mixing layer,” Journal of Fluid Mechanics,
vol. 224, pp. 133–158, 1991.

[23] Y. Wang, M. Tanahashi, and T. Miyauchi, “Coherent fine scale eddies
in turbulence transition of spatially-developing mixing layer,” Interna-
tional Journal of Heat and Fluid Flow, vol. 28, no. 6, pp. 1280–1290,
2007.

[24] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
methods: evolution to complex geometries and applications to fluid dy-
namics. Springer Science & Business Media, 2007.

[25] F. Moukalled, L. Mangani, M. Darwish, et al., “The finite volume
method in computational fluid dynamics,” An Advanced Introduction
with OpenFOAM and Matlab, pp. 3–8, 2016.

[26] Q. Zhou, F. He, and M. Shen, “Direct numerical simulation of a spa-
tially developing compressible plane mixing layer: flow structures and
mean flow properties,” Journal of Fluid Mechanics, vol. 711, pp. 437–
468, 2012.

Appendices

50

Appendix A

PROJECTION METHOD SOLVER RK4

1 /*--*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration |

5 \\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation

6 \\/ M anipulation |

7 --

8 while (runTime.run())

9 {

10

11 #include "CourantNo.H"

12

13

14

15

16 Info<< "Time = " << runTime.timeName() << nl << endl;

17

18

19

20 Uold = U; Urk= U;

21

22 //---

23 phi = (fvc::interpolate(U) & mesh.Sf());

24 dU = dt*(fvc::laplacian(turbulence->nuEff(), U) - fvc::div(phi,U));

25

26 Urk = Urk +dU/6;

27 U = Uold + 0.5*dU;

28 U.correctBoundaryConditions();

29 solve(pEqn == fvc::div(U)/runTime.deltaT());

30 U = U - (fvc::grad(p) * runTime.deltaT());

31 U.correctBoundaryConditions();

32

33 //---

Appendix A. Projection method solver RK4 52

34 phi = (fvc::interpolate(U) & mesh.Sf());

35 dU = dt*(fvc::laplacian(turbulence->nuEff(), U) - fvc::div(phi,U));

36

37 Urk= Urk +dU/3;

38 U = Uold + 0.5*dU;

39 U.correctBoundaryConditions();

40 solve(pEqn == fvc::div(U)/runTime.deltaT());

41 U = U - (fvc::grad(p) * runTime.deltaT());

42 U.correctBoundaryConditions();

43

44 //---

45 phi = (fvc::interpolate(U) & mesh.Sf());

46 dU = dt*(fvc::laplacian(turbulence->nuEff(), U) - fvc::div(phi,U));

47

48

49

50 Urk = Urk+dU/3;

51 U = Uold + dU;

52 U.correctBoundaryConditions();

53 solve(pEqn == fvc::div(U)/runTime.deltaT());

54 U = U - (fvc::grad(p) * runTime.deltaT());

55 U.correctBoundaryConditions();

56

57 //---

58 phi = (fvc::interpolate(U) & mesh.Sf());

59 dU = dt*(fvc::laplacian(turbulence->nuEff(), U) - fvc::div(phi,U));

60

61

62

63 Urk = Urk +dU/6;

64 U = Urk;

65 U.correctBoundaryConditions();

66 solve(pEqn == fvc::div(U)/runTime.deltaT());

67 U = U - (fvc::grad(p) * runTime.deltaT());

68 U.correctBoundaryConditions();

69

70

71 phi = (fvc::interpolate(U) & mesh.Sf());

72 turbulence->correct();

73

74

75

76

77 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

78 << " ClockTime = " << runTime.elapsedClockTime() << " s"

Appendix A. Projection method solver RK4 53

79 << nl << endl;

80

81 runTime.write();

82

83

84 }

85

86 Info<< "End" << endl;

87

88 return 0;

89 }

90

91

92 // ** //

Appendix B

MODIFYING PISOFOAM AND THE PROJECTION METHOD
SOLVER FOR THE TAYLOR GREEN VORTEX

1

2

3 forAll(U,cellI)

4 {

5 U[cellI].x() = Foam::sin(U.mesh().C()[cellI].x())*

6 Foam::cos(U.mesh().C()[cellI].y());

7

8 U[cellI].y() = -Foam::cos(U.mesh().C()[cellI].x())

9 *Foam::sin(U.mesh().C()[cellI].y());

10

11 p[cellI] = 0.25*(Foam::cos(2*U.mesh().C()[cellI].x())

12 +Foam::cos(2*U.mesh().C()[cellI].y()));

13

14 initialEnergy = initialEnergy + 0.5*sqr(U[cellI].x()) + 0.5*

sqr(U[cellI].y());

15

16 }

Appendix C

RISK ASSESMENT

NTNU

Risk assessment

Prepared by Number Date

HSE section HMSRV2603E 04.02.2011

Approved by Replaces

HSE/KS The Rector 01.12.2006

 Unit: EPT Date: 04.02.2019

Line manager: Terese Løvås

Participants in the identification process (including their function):

Short description of the main activity/main process: Master project for student Sondre Relling: Development of a low-
dissipation solver for large-eddy simulation based on OpenFOAM

Activity from the
identification process
form

Potential
undesirable
incident/strain

Likelihood: Consequence: Risk
Value
(human)

Comments/status
Suggested measures Likelihood

(1-5)
Human
(A-E)

Environm
ent
(A-E)

Economy/
material
(A-E)

Writing, programming,
simulating on a computer

None 1 A A A A

Likelihood, e.g.: Consequence, e.g.: Risk value (each one to be estimated separately):
1. Minimal
2. Low
3. Medium
4. High
5. Very high

A. Safe
B. Relatively safe
C. Dangerous
D. Critical
E. Very critical

Human = Likelihood x Human Consequence
Environmental = Likelihood x Environmental consequence
Financial/material = Likelihood x Consequence for Economy/materiel

NTNU

Risk assessment

Prepared by Number Date

HSE section HMSRV2603E 04.02.2011

Approved by Replaces

HSE/KS The Rector 01.12.2006

Potential undesirable incident/strain
Identify possible incidents and conditions that may lead to situations that pose a hazard to people, the environment and any materiel/equipment
involved.

Criteria for the assessment of likelihood and consequence in relation to fieldwork
Each activity is assessed according to a worst-case scenario. Likelihood and consequence are to be assessed separately for each potential
undesirable incident. Before starting on the quantification, the participants should agree what they understand by the assessment criteria:

Likelihood

Minimal
1

Low
2

Medium
3

High
4

Very high
5

Once every 50 years or less Once every 10 years or less Once a year or less Once a month or less Once a week

Consequence

Grading

Human Environment Financial/material

E
Very critical

May produce fatality/ies Very prolonged, non-reversible
damage

Shutdown of work >1 year.

D
Critical

Permanent injury, may produce
serious serious health
damage/sickness

Prolonged damage. Long
recovery time.

Shutdown of work 0.5-1 year.

C
Dangerous

Serious personal injury Minor damage. Long recovery
time

Shutdown of work < 1 month

B
Relatively safe

Injury that requires medical
treatment

Minor damage. Short recovery
time

Shutdown of work < 1week

A
Safe

Injury that requires first aid Insignificant damage. Short
recovery time

Shutdown of work < 1day

The unit makes its own decision as to whether opting to fill in or not consequences for economy/materiel, for example if the unit is going to use
particularly valuable equipment. It is up to the individual unit to choose the assessment criteria for this column.

Risk = Likelihood x Consequence
Please calculate the risk value for “Human”, “Environment” and, if chosen, “Economy/materiel”, separately.

About the column ”Comments/status, suggested preventative and corrective measures”:
Measures can impact on both likelihood and consequences. Prioritise measures that can prevent the incident from occurring; in other words,
likelihood-reducing measures are to be prioritised above greater emergency preparedness, i.e. consequence-reducing measures.

NTNU

Risk matrix

prepared by Number Date

HSE Section HMSRV2604 8 March 2010

approved by Page Replaces

HSE/KS
Rector

4 of 4 9 February
2010

MATRIX FOR RISK ASSESSMENTS at NTNU

C
O

N
S

E
Q

U
E

N
C

E

Extremely
serious

E1 E2 E3 E4 E5

Serious D1 D2 D3 D4 D5

Moderate C1 C2 C3 C4 C5

Minor B1 B2 B3 B4 B5

Not
significant

A1 A2 A3 A4 A5

 Very low Low Medium High Very high

 LIKELIHOOD

Principle for acceptance criteria. Explanation of the colours used in the risk matrix.

Colour Description

Red Unacceptable risk. Measures must be taken to reduce the risk.

Yellow Assessment range. Measures must be considered.

Green Acceptable risk Measures can be considered based on other considerations.

