
Software/OS Updates of Midair Drones

Anders Vik Lysne

Submission date: June 2019
Responsible professor: Peter Herrmann, ITEM
Supervisor: Tor Rune Skoglund, FourC

Norwegian University of Science and Technology
Department of Telematics

Title: Software/OS Updates of Midair Drones
Student: Anders Vik Lysne

Problem description:

The process of updating software usually requires the program that is being updated
to restart in order to apply the update. This will interrupt the service it provides,
which can be critical in certain cases. FourC develops an platform aiming to solve
this issue, by deploying software in separate containers. This way, old software can
provide service while the new software is being deployed. When the new container is
ready, it takes over providing service and the old container is removed. This thesis
attempts to demonstrate the platform developed by FourC using a drone. The thesis
divided into the following tasks:

– Updating application software on the drone while being midair

– Updating the Operating System on the drone while being midair

Responsible professor: Peter Herrmann, ITEM
Supervisor: Tor Rune Skoglund, FourC

Abstract

Embedded systems with IoT-devices are becoming increasingly popular,
having great potential in many areas. Such systems are often vastly
complex, as well as being deployed without the consideration of long-term
maintenance and upgrades. Hence, maintenance of such systems can
be difficult, intimidating and time consuming. Being able to perform
maintenance by accessing and updating embedded systems remotely,
preferably without interrupting its major services, would be beneficial to
both consumers and system maintainers. This Master’s thesis will attempt
to demonstrate such functionality, by updating both application software
and the underlying operating system of a drone while being airborne.
Different drone setups for this task are evaluated, and the chosen one is
described in depth. A solution proposal to realize application software
updates is presented, as well as implementation process and testing results.
The project has been advertised by the company FourC, and is based on
three Bachelor’s thesis conducted earlier.

Preface

This thesis concludes my Master of Science education in Communication
Technology at the Norwegian University of Science and Technology in
Trondheim, Norway, and was carried out in in the spring of 2019 during
my 10th semester. The project was advertised by the company FourC,
and was one of the proposed topics from the Department of Telematics.

I would like to thank my external supervisor and CEO of FourC, Tor
Rune Skoglund, for providing guidance and equipment for this project.
I would like to thank my responsible professor, Peter Herrmann at the
Department of Information Security and Communication Technology, for
guidance related to content and writing style. Finally, I would like to
thank Pål Sturla Sæther at the Department of Information Security and
Communication Technology for assisting with equipment.

Contents

List of Figures viii

List of Tables ix

List of Acronyms xi

1 Introduction 3
1.1 Motivation . 3

1.1.1 Topic area . 3
1.1.2 FourC . 4

1.2 Background . 4
1.2.1 First attempt . 4
1.2.2 Second attempt . 5
1.2.3 Third attempt . 6

1.3 Objectives . 6
1.4 Thesis Layout . 7

2 Theory 9
2.1 Basic Computer Terms . 9

2.1.1 Hardware . 9
2.1.2 Software . 9
2.1.3 Firmware . 9
2.1.4 Operating System . 10
2.1.5 Instruction Set Architecture and x86 10
2.1.6 Updates . 10

2.2 Drone . 11
2.2.1 Internal Measuring Unit . 11
2.2.2 Global Navigation Satellite System 11
2.2.3 Rangefinder . 13
2.2.4 Optical Flow . 13
2.2.5 Ground Control Station . 14

2.3 The FourC Platform . 14

v

2.3.1 Internet of Things (IoT) . 14
2.3.2 Cloud Services . 14
2.3.3 Containers . 15
2.3.4 The Platform . 15

3 Equipment and Planned Setup 17
3.1 Early Choices . 17

3.1.1 General Design Choices . 17
3.1.2 Choice of Drone . 18

3.2 Hardware . 20
3.2.1 Intel Aero Compute Board 20
3.2.2 Flight Controller . 20
3.2.3 Intel Aero Vision Kit . 20
3.2.4 Rangefinder . 20
3.2.5 Power supply . 21

3.3 Software . 22
3.3.1 FC Firmware . 22
3.3.2 MAVLink . 22
3.3.3 Ground Control Station . 22

4 Implementation 23
4.1 Initial Steps . 23

4.1.1 Disk Cloning . 23
4.1.2 Flashing and Calibration . 23
4.1.3 Improving Center of Gravity 24

4.2 Limitations . 24
4.2.1 Position Hold . 24
4.2.2 Operating System and Containers 25
4.2.3 Time Shortage and Scope Reduction 27

4.3 Implementation Method . 27
4.4 Proposed Solution to Midair Software Updates 28

4.4.1 Connecting the Components 28
4.4.2 Container . 28
4.4.3 OS Layer . 29

4.5 Choices of Software . 30
4.5.1 Flight Controller API . 30
4.5.2 Communication Between Drone and GCS 30
4.5.3 Software Environments . 30

4.6 Some Approaches for OS Updates 33

5 Implementation Process and Results 35
5.1 First Flight . 35

5.2 Objective 1: Software Updates . 35
5.2.1 Drone Control over HTTP . 36
5.2.2 File Transfer . 36
5.2.3 Container Management . 36
5.2.4 Test of Proposed Solution . 37

5.3 Objective 2: Operating System Updates 39

6 Conclusion 41
6.1 Summary . 41
6.2 Solution proposal . 41
6.3 Possible Improvements . 41
6.4 Future Research . 42

References 43

Appendices

A FlightControllerHandler 45
A.1 Description . 45
A.2 Code . 46

B Container HTTP Server 53
B.1 Docker Image . 53
B.2 Description . 53
B.3 Code . 54

C Container Handler 57
C.1 Description . 57
C.2 Code . 58

D Proxy Server 61
D.1 Documentation . 61

D.1.1 Forward Class . 61
D.1.2 ProxyServer Class . 61
D.1.3 Container Host Functions 62

D.2 Code . 63

E Ground Station HTTP Client 67
E.1 Description . 67
E.2 Code . 68

F Simulated Cloud Service 71
F.1 Description . 71
F.2 Code . 71

vii

G Application Setup 73

List of Figures

2.1 Computer system stack. 10

2.2 Different multirotor types. Propeller colors indicate direction of rotation. 12

2.3 Altitude/Throttle, Yaw, Pitch and Roll movement. Taken from [droa] . 13

2.4 FourC Platform Architecture. 16

3.1 System architecture . 18

4.1 Screenshot of calibrating accelerometer. Note: Screenshot is taken while
using the PX4 FC firmware, but the calibration process with ardupilot is
similar. 25

4.2 A pillar was blocking the battery from sliding further into the battery
room. The red area shows where this pillar was located. 26

4.3 The small metal lock taped to the front of the drone improves center of
gravity. 27

4.4 Network Architecture of the overall system 29

4.5 The OS layer receives an update from the cloud service. The FC container
is informed to maintain position . 31

4.6 The OS layer creates a new FC container that contains the updated
software . 31

4.7 Proxy server on the OS layer changes forwarding of ground station requests
to the new FC container . 32

4.8 The OS layer stops and removes the old FC container 32

viii

List of Tables

2.1 Different Rangefinders. 14

3.1 Different drone setups . 19
3.2 Intel Aero Vision Kit Camera Modules 21

5.1 Time delays experienced in solution proposal. 39

A.1 Explanation of some of the most important functions 45

C.1 Explanation of some of the most important functions 57

D.1 Explanation of the ProxyServer class functions 62
D.2 Explanation of the container host’s functions, used for updates and

container management . 62

E.1 Explanation of the ground station HTTP client functions 67

List of Acronyms

AMQP Advanced Message Queuing Protocol.

AP Access Point.

API Application Interface.

BIOS Basic Input-Output System.

DSU Dynamic Software Updating.

FC Flight Controller.

FPGA Field-Programmable Gate Array.

FTP File Transfer Protocol.

GCS Ground Control Station.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GUI General User Interface.

IMU Internal Measuring Unit.

Intel Aero RTF Intel Aero Ready To Fly.

IoT Internet of Things.

ISA Instruction Set Architecture.

LiDAR Light Detection and Ranging.

LiPo Lithium Polymer.

NTNU Norwegian University of Science and Technology.

xi

LIST OF TABLES 1

OS Operating System.

RADAR Radio Detection and Ranging.

RAM Random Access Memory.

SITL Software in the Loop.

SONAR Sound Navigation Ranging.

TCP Transmission Control Protocol.

UAV Unmanned Aerial Vehicle.

Chapter1Introduction

This chapter presents the thesis’ motivation and background, as well as the main
objectives that will be addressed. A description of the thesis layout and the following
chapters are presented.

1.1 Motivation

1.1.1 Topic area

Information systems are becoming an increasingly important part of society. Taking
public bus transit as an example, many aspects rely on the availability of information
systems. Time-charts are displayed on digital screens, accompanied with real-time
data of when the next bus departure will occur. For this to be accurate, GPS data
from every single bus has to be constantly available. Ticketing is being moved to the
mobile platform, setting high availability demands on back-end payment systems.
Such availability demands are poorly matched with software updates and system
maintenance. Another problem connected to software updates and maintenance is
the complexity of embedded systems. Updating one component might cause an error
in a second component, possibly taking the overall system into a failed state and
leaving it unable to deliver its service. Having vastly complex dependencies between
components in a system, anticipating how a small software update will influence
the overall service before run-time can be challenging. Hence, a maintainer can
be frightened by having to execute software updates and interfere with an already
working system. However, maintenance of information systems is a necessity, and
the process of rolling out software updates is a part of a system’s life cycle. Breaking
a working system due to a software update is always possible, and measures have to
be taken in order to overcome this issue. This project will address issues related to
software updates in complex embedded systems.

3

4 1. INTRODUCTION

1.1.2 FourC

This project has been advertised by the company FourC [Fou]. They are developing
an Internet of Things (IoT) platform that connects single x86 IoT-devices to a central
management system in the cloud. A lack of focus on long-term costs related to the
operation of distributed solutions can put huge limitations in delivering extended
functionality on top of the same hardware. As the situation is today, performing
debugging, troubleshooting or even rolling out small security patches can be time-
and cost intensive. Also, conducting software updates in embedded systems could
potentially cause complications, making the system unable to deliver its service.
Hence, FourC wants to enable remote software updates of IoT-devices, with the
ability to rollback the last working software if a failure is detected.

This project is conducted solely to demonstrate the platform developed by FourC,
as a marketing tool. The goal is to update some software on an airborne drone while
using FourC’s platform. As drones are not self-stable, they require input from sensors
in order to maintain an airborne state. The challenge this project presents is to make
a drone able to process sensor input and perform adjustments in the air, while also
executing an update. One example of a successful demonstration could be to upload
software that enables the drone to do some acrobatic maneuver, and make the drone
perform this maneuver after the update is completed. All of this without the drone
touching the ground.

1.2 Background

Three similar projects advertised by FourC have been carried out prior to this thesis.
Two of them attempted to solve the exact same challenges as this thesis, but neither
were able to present a working solution. A third group looked into different types of
sensors that could be used to keep a drone in a stable hovering state. This thesis is
based upon knowledge gathered by these projects.

1.2.1 First attempt

The first attempt to enable mid-air software and OS updates of drones through
FourC was conducted as a half-year long bachelor project at Norwegian University
of Science and Technology in 2016 [JST16]. The drone chosen in this project was
Parrot’s AR.Drone 2.0 Elite Edition [parb]. The x86 unit used was Intel Edison
with corresponding Intel Edison Breakout Board [intc]. They stated that their x86
component did not offer direct support of Gentoo, even though this was one of the
criteria from FourC. It was decided to ignore this, having found a guide others had
used to install Gentoo on Intel Edison [genb]. With this setup they came close to
realizing mid-air software updates, but they encountered one major problem. At the
time, FourC’s IoT-platform was not compatible with Intel Edison without performing

1.2. BACKGROUND 5

several modification of the software. This was not achieved due to lack of time at
the end of the project, ultimately leaving them unable to install the FourC’s OS on
their x86 component. As a result, they were not able to test updates mid-air using
FourC’s IoT-platform. They also attempted to install Gentoo following the guide
they had found. Despite others having succeeded doing this earlier, they were not
able to install Gentoo themselves. However, they did perform a successful test of
rebooting Intel Edison mid-air over Internet, while maintaining control of the drone
afterwards. They argue that their developed system would work on any x86-unit
that has a wifi-unit and supports Linux, and with a bit more effort it should be
possible to achieve the goal of mid-air software updates.

One of the biggest possible improvements they stated was to automate the system,
connecting modules by itself. This would save time and give a better user experience.
Having basic configuration files with IP-addresses and port numbers would also ease
development, not having to modify and recompile the source code every time these
had to change. Serial communication between x86 and the drone as oppose to wifi
was mentioned to reduce controller reaction time. Other suggested improvements
included GUI for the manual controller, mobile application for demo purposes and
security measures such as using WPA2 to make outsiders unable to connect to the
drones local network.

1.2.2 Second attempt

The second attempt was conducted as another half-year long bachelor thesis at Nor-
wegian University of Science and Technology [BA17]. Instead of using a commercial
drone, it was decided to 3D-print and build the drone from scratch. A LattePanda
board consisting of an x86 unit and an 8-bit microcontroller was used as the compute
board [Lat]. The idea was to have the microcontroller work as an external FC,
handling the drone’s hovering state while updates were executed on x86. When
updates were executed however, the microcontroller was not able to keep the drone
stable. It was argued that vibrations in the frame could be creating unwanted noise in
the sensors, as well as the sensors could be of poor quality. Installing FourC’s OS was
not completely successful either, having encountered issues in enabling LattePanda’s
wifi and bluetooth interfaces on top of the OS. Even though FourC was able to fix
these issues, the fixed version was not installed or tested due to lack of time. Other
problems included fragile and easy breakable 3D-printed components, as well as
ordering wrong propellers due to inaccurate measurements. The latter was fixed by
3D-printing complex propeller adapters. As a combined result, executing updates on
the drone while being airborne was not successful.

The decision of 3D-printing the drone from scratch increased the scope of the
project drastically. All physical frame parts had to fit each other and second-hand

6 1. INTRODUCTION

parts, which made up a long lasting design phase. Even though purchasing an
existing drone probably would increase the total cost of the project, time spent on
designing parts would be omitted. This had a major impact in [BA17], being unable
to install FourC’s OS due to lack of time. In addition, potential noise problems related
to the 3D-printed frame made this approach seem even less rational in retrospect.
Combining the x86 unit and a microcontroller on the same board was a great idea for
separating the flight-controlling process and the updating process. However, as seen
in the next section, the LattePanda’s integrated microcontroller was not powerful
enough to keep the drone in a stable hovering state by itself.

1.2.3 Third attempt

As a result of the unstable hovering state problem in [BA17], the third attempt
investigated different approaches to maintain such a state on the same 3D-printed
drone [HK18]. Their first modification was to simply dampen the vibration of the
sensors and perform better balancing of the propellers. Even though this drastically
reduced noise in the sensors’ outputs and increased the drones stability, the drone
was still unable to maintain a sufficiently stable hovering state. Out of all the
evaluated sensors, optical flow combined with a SONAR sensor and the already
existing gyroscope and accelerometer was chosen for further testing. Integrating
optical flow and SONAR should increase the drones ability to maintain a fixed height
and position, but realizing this turned out to be difficult. MultiWii, the software used
to handle the sensor data, did not support height stabilization [Mul]. Furthermore,
the microcontroller was not powerful enough to run optical flow algorithms while
processing the gyroscope and accelerometer input. They were not able to perform a
test of their setup, but argued that such a combination of sensors would be sufficient
to maintain a stable hovering state of the 3d-printed drone.

Being unable to utilize sensors beyond the already existing accelerometer and
gyroscope due to lack of computing power, it was suggested to use some other solution
than the LattePanda. The integrated microcontroller on this board was too weak
to handle the processing requirements, and a more powerful microcontroller should
be used for flight control. Having an FC able to handle input from optical flow,
accelerometer and gyroscope simultaneously should be sufficient to keep the drone in
a stable hovering state. Hence, it should be possible to execute updates on a x86
chip while such an FC maintains position.

1.3 Objectives

The overall goal of this thesis is the same as in the projects mentioned above; executing
software and OS updates on midair drones. Prior experiences had made it easier
to make good decisions when it came to equipment and setup, and the people at

1.4. THESIS LAYOUT 7

FourC had gained more competence regarding their platform. Combining knowledge
gathered by prior projects with the increased competence and improvements of
FourC’s platform, this thesis was expected to provide stronger results than before.
Two objectives are extracted from the overall goal, and was to be addressed in the
following order:

1. Execute software updates at the application layer while being airborne

2. Execute OS updates while being airborne

In order to complete this project and deliver a solution that can be used to
demonstrate FourC’s platform in a suitable fashion, a drone able to run their platform
is required. This platform currently runs a 32-bit Linux distribution based on Gentoo
Linux [gena], designed to run on top of Intel’s x86 Instruction Set Architecture
(ISA) (Secttion 2.1.5). Having a circuit board that supports the x86 architecture
is therefore a minimal requirement for this project. Besides this, sensors sufficient
to keep the drone in a hovering state were also required. These two requirements
would be sufficient to achieve objective 1, since the platform of FourC delivers a
container-solution that can run multiple, isolated processes simultaneously. This
will enable Flight Controller software to run in a dedicated container while updates
are being downloaded and executed. In order to achieve objective 2 and update the
underlying OS, a reboot would be necessary. If the reboot is quick enough, simply
keeping the propellers rotating without sensor input might be sufficient. If the reboot
takes some time however, having an external FC able to process sensor data and
perform adjustments accordingly would be required.

As the project went by, problems related to FourC’s platform made it challenging
to realize both objectives. The first working implementation of FourC’sOS was
received towards the end of the project, and a solution to objective 1 using other
systems was close to being finished. It was decided to focus on completing objective
1 without using FourC’s OS, and to completely omit objective 2 due to time running
out. This is also mentioned in section 4.2.3

1.4 Thesis Layout

As this project is highly practical, performing heavy literature surveys and research
are considered marginally applicable. Methods that incorporates collecting, validating
and categorizing research does not apply to this thesis, and a complete methodology
chapter is therefore omitted. The research that formed the background of this thesis
is presented in section 1.2. The development methodology that was used for objective
1 was agile software development, and the complete implementation method is further
described in section 4.3.

8 1. INTRODUCTION

Theory, terminology and concepts related to drones and computing are presented
in chapter 2. Chapter 3 presents the hardware and software that has been used, along
with justification of the equipment setup. Chapter 4 presents the implementation
of the proposed solution to objective 1. As the development process was agile, the
results are tightly connected to the implementation process. Thus, the results are
presented together with the implementation process in chapter 5. Chapter 6 gives
a brief summary of the thesis, an evaluation of the solution proposal as well as
presenting some future research areas.

Chapter2Theory
This chapter presents some basic theory related to computers and drones. The major
features of FourC’s platform is also presented.

2.1 Basic Computer Terms

This section describes some basic computing terms, which also apply to Unmanned
Aerial Vehicles (Section 2.2). Figure 2.1 shows how these terms are connected.

2.1.1 Hardware

Hardware is an encompassing term that refers to all the physical parts that make
up a computer. The internal hardware devices that are essential to a computers
functions, such as the CPU, RAM and hard drive, are called components. External
hardware devices that are not essential to a computer’s functions, such as a mouse
and keyboard, are called peripherals.

2.1.2 Software

Software is a set of instructions or a set of programs that instructs a computer to per-
form specific tasks. Software exist on multiple layers in the computer stack. A single
hardware component’s firmware, a computer’s operating system and applications
that directly interact with the end user are all types of software. Scripts, applications,
programs and instruction sets are all terms often used to describe software.

2.1.3 Firmware

Firmware is a type of computer software that provides the low-level control of a
single hardware component in a device. Firmware usually refers to semi-permanent
software and data that is part of a hardware component, and is specifically designed
to optimize the single component’s performance.

9

10 2. THEORY

Figure 2.1: Computer system stack.

2.1.4 Operating System

An Operating System (OS) is the software that manages all the hardware and
resources of a computer, providing services for computer programs. The OS controls
processes, manages a computer’s memory and file system and allocates resources to
applications. Some of the most common Operating Systems are Linux and Windows
for general-purpose computers, as well as iOS and Android for smart phones.

2.1.5 Instruction Set Architecture and x86

An Instruction Set Architecture (ISA) works as the interface between a computer’s
software and hardware. x86 is a a family of ISAs based on the Intel 8086 micropro-
cessor and its 8088 variant. The Operating System used in this project runs on the
32-bit version of the x86 architecture.

2.1.6 Updates

Software updates are small enhancements of existing software that can provide new
features, improve security or fix known issues of an application. The frequency and
scope of updates vary, having some applications receive small updates multiple times
a week while others receive comprehensive updates maybe once a year. Updates

2.2. DRONE 11

can target all software layers, from a component’s firmware to an application’s
General User Interface (GUI). As a computer has to load fixed code when starting
an application, restarting the application after an update usually has to take place
in order to apply its new enhancements. Hence, applying an OS update requires a
reboot of the computer, while applying an update to a web browser requires restarting
the web browser.

2.2 Drone

Also known as an Unmanned Aerial Vehicle (UAV), a drone is a flying robot that can
be remotely controlled from a Ground Control Station (GCS) or fly autonomously
using software-controlled flight plans in their embedded systems. Flight plans usually
work in conjunction with internal sensors and GPS in order to accomplish desired
missions. Multiple drone types exist, such as multirotor drones, fixed wing drones
and single rotor drones. Multirotor drones are the most common type, and can be
further classified based on its number of rotors. Figure 2.2 shows some common
types of multirotor drones.

A drone is controlled by delivering power to each of its rotors. The terms yaw,
roll, pitch and throttle is used whenever talking about UAVs, and their meanings
are presented in figure 2.3. As the flying environment is dynamic, with constant
changes in areas such as in pressure and wind, controlling a drone with no other
input than a manual controller would be extremely difficult. Sensors are used in
order to reduce the difficulties introduced by the ever changing environment, and
automatically adjusts yaw, roll, pitch and throttle to simplify drone control. The
following sections describe some of the most common sensors used.

2.2.1 Internal Measuring Unit

The Internal Measuring Unit (IMU) is the most essential component of a drones
flight control system. The IMU consist of one or more accelerometers to calculate
the drone’s non-gravitational acceleration, and one or more gyroscopes to calculate
its rotational rate. By combining output from both accelerometer and gyroscope, the
IMU is able to maintain stability of the drone while being airborne. Some IMUs also
have an integrated mangetometer used as a compass, which can determine orientation
and the drone’s heading direction.

2.2.2 Global Navigation Satellite System

GNSS is used to determine an object’s position, by calculating the distance between
the object and a set of satellites. A drone can use such data to maintain a constant
position, or perform autonomous flights from one position to another. This system

12 2. THEORY

Figure 2.2: Different multirotor types. Propeller colors indicate direction of
rotation.

2.2. DRONE 13

Figure 2.3: Altitude/Throttle, Yaw, Pitch and Roll movement. Taken from [droa]

is normally restricted to outside use, as it requires more or less a clear line of sight
between the object and GNSS satellites. Another restriction is that some geographical
areas are not covered by such satellites, and GNSS signals can thus be unavailable.

2.2.3 Rangefinder

A rangefinder is a sensor that is able to measure the distance between an observing
object and a surrounding target. There exist different technologies that enables such
measurements, and some of the most common ones are described in table 2.1.

2.2.4 Optical Flow

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer and a
scene. An optical flow sensor is a vision sensor capable of measuring optical flow
or visual motion [opt], resulting in output that can be used for position holding.
In contrast to GNSS positioning, optical flow are not dependant upon input from

14 2. THEORY

Technology Description
RADAR Uses radio waves to measure distance. Requires a

source (transmitter) and target (receiver) to work.
SONAR Uses sound propagation to measure distance. Used

mainly underwater, as sound does not propagate well
in air.

LiDAR Illuminates a target with pulsed laser light and mea-
sures the reflected pulses with a sensor. Used to
measure distance and make 3D representations of the
target.

Table 2.1: Different Rangefinders.

remote systems. Hence, optical flow can be used for position hold in environments
where GNSS signals are weak or non-existent, such as indoors.

2.2.5 Ground Control Station

A Ground Control Station (GCS) is a land-based control centre that provides tools
for human control of UAVs. Smaller UAVs are usually operated by a single portable
radio transmitter. Extending this transmitter with a display, data and aerial video
telemetry, creates what is effectively a GCS.

2.3 The FourC Platform

As stated in section 1.1.2, the main motivation behind this thesis was to demonstrate
the platform developed by FourC. This section describes concepts related to their
platform and how the platform works.

2.3.1 Internet of Things (IoT)

IoT refers to the concept of having simple devices being able to communicate and
exchange data over the Internet. Such devices can be equipped with different types of
hardware, such as sensors and actuators, and can be integrated in complex embedded
systems, working together to perform a greater common task. IoT devices are highly
specialized to perform specific tasks, and aspects that does not directly contribute to
their functionality are often disregarded.

2.3.2 Cloud Services

When talking about the Cloud in the context of computers and the Internet, one
refers to the concept of storing data somewhere else than locally on a single computer.

2.3. THE FOURC PLATFORM 15

Usually, this is at a centralized location that implements multiple security measures,
such as data redundancy and encryption. The data can be accessed from any remote
end station, given that the end station is connected to the Internet and is authorized
to access the data. Some examples of Cloud Services are Google Drive, iCloud,
Netflix and Amazon Web Services.

2.3.3 Containers

In terms of computing and Operating Systems, a container is a set of one or more
processes that is isolated from the rest of the system. A container packages up
code and all its dependencies into a closed environment, running it as a stand-alone
application. Containers provides benefits in multiple areas, and can be used for
several purposes. Development can be made more efficient, as a container can
easily replicate the development environment, testing environment and production
environment of an application. They can also be used as a sandboxing tool for
security reasons. Containers have many similarities to virtual machines, but are not
as comprehensive as they do not simulate the underlying hardware. They sit on top
of a host OS, sharing its resources such as libraries, binaries and kernel.

2.3.4 The Platform

FourC develops a platform that targets IoT devices and embedded systems. The
platform is comprised by a 32-bit Linux OS based on the Gentoo distribution, and
a Cloud Service that communicates with the OS over the Internet. The goal is to
ease maintenance of embedded systems, by connecting IoT devices to a centralized
management system in the Cloud. The main feature of their OS is the container
solution, making it able to communicate with the cloud service while still running
intended processes. This is done by running these processes in separate containers.
The OS runs on the x86 ISA and communicates with the central management system
over AMQP. Figure 2.4 displays the architecture of FourC’s platform with a single
IoT device and the backend Cloud Service.

16 2. THEORY

Figure 2.4: FourC Platform Architecture.

Chapter3Equipment and Planned Setup

This chapter describes choices in setup and equipment. Three different setups are
evaluated, and the chosen one is described in greater detail.

3.1 Early Choices

3.1.1 General Design Choices

[BA17] decided to design a drone from scratch and use a 3D-printer to create the
necessary parts. Even though this approach had advantages like quick replacements
of broken parts and customizing the frame to fit a given compute board, a significant
amount of disadvantages also existed. First, as already mentioned in section 1.2.2,
having to design the parts from scratch were extremely time consuming. This project
has a comprehensive scope without including the aspects of designing physical drone
parts. Taking the project’s duration into account, using an existing drone on the
market and solely focus on the objectives stated in section 1.3 was considered a better
approach. By using a commercial drone, issues related to sensors and general flight
performance would probably be avoided. Being able to quickly start developing and
testing seemed important, seeing projects conducted earlier had run into shortage of
time.

In order to achieve objective 2 without knowing how long a reboot will last,
having an external FC that can process sensor data while x86 undergoes a reboot
was chosen. An overview of the planned system architecture is shown in figure 3.1.
The 8-bit microcontroller integrated on the LattePanda that was used in [BA17]
and [HK18] was too weak to process data from more sensors than gyroscope and
accelerometer simultaneously. Hence, a more powerful microcontroller was chosen
for this project.

17

18 3. EQUIPMENT AND PLANNED SETUP

Figure 3.1: System architecture

3.1.2 Choice of Drone

Following the decision of using a drone on the market as a starting point, different
approaches could be taken. The first one was to take the same approach as [JST16],
having an external x86 unit “piggy-backed” on a drone already equipped with a
dedicated FC, and attempt to connect them together. A second approach was to use a
drone already equipped with an x86-unit, attaching a microcontroller and transferring
FC functionality to this component. The third and possibly best approach was to use
a drone that was already equipped with a dedicated FC as well as an x86 companion
computer. Table 3.1 shows some setups that was evaluated for this project.

3.1. EARLY CHOICES 19

Drone Intel Aero RTF
[intb]

Qualcomm snap-
dragon Flight
[sna]

Parrot bebop
[para]

Compute board Intel Aero Qualcomm Flight N/A
x86-unit Yes No No
External FC Yes Yes Yes
Relevant inter-
faces

Wifi, Bluetooth,
USB 3.0

Wifi, Bluetooth,
USB 3.0

Wifi

Autopilot software PX4, ardupilot PX4, ardupilot PX4
Price(NOK) 10 000 N/A 4 000
Requires addi-
tional components

Battery Frame, propellers,
motors, x86-unit,
battery

x86-unit, battery

Comments Designed to get
applications air-
borne quickly.
No additional
hardware besides
battery required

Good for de-
velopment, but
does not support
x86 architecture.
Needs much addi-
tional hardware

Results in more
or less the same
setup as in
[JST16], coming
close to realize
objective 1 and 2.
Has to piggyback
an x86-unit

Table 3.1: Different drone setups

Having sufficient funding from FourC to purchase the Intel Aero RTF, this ended
up being the drone of choice. This quadcopter was designed to let developers start
developing and testing right away, without having to spend time on connecting
hardware and components from different vendors. Using an external FC accompanied
by an x86-unit had been successful in past projects, and this architecture would be
preserved with Intel Aero RTF. The included FC also came with more power than
the microcontroller on LattePanda. Combined with a carbon fiber frame rather than
a 3D-printed plastic frame, possible problems in maintaining a stable hovering state
should not be caused by the physical components. All components are designed to be
interoperable, hence running into problems with hardware not working appropriately
against each other seemed unlikely. On the software side, Intel Aero RTF is based
on the Dronecode project [drob], making it compatible with multiple open source
frameworks[PX4][ard][droc] and the standard drone communication protocol [mav],
all which would be highly useful to achieve objectives 1 and 2. On top of this, Intel
has a huge community able to assist if unforeseen problems should occur, as well as
plenty of documentation regarding their drone platform. Having considered different
setups with the issues presented in [JST16][BA17][HK18] in mind, the Intel Aero

20 3. EQUIPMENT AND PLANNED SETUP

RTF seemed like the obvious choice.

3.2 Hardware

3.2.1 Intel Aero Compute Board

The compute board on Intel Aero Ready To Fly is the Intel Aero compute board, a
purpose-built UAV developer kit geared towards developers, researchers and drone
enthusiasts. The Intel Aero has 4GB of RAM, industry standard interfaces and
reconfigurable I/O to facilitate connecting to a broad variety of drone hardware
subsystems. The Intel Aero compute board runs an OS based on the Yocto project
by default, which is preconfigured and highly customized for the compute board. In
addition to the Yocto build, full native Ubuntu* with Intel drivers is also verified by
Intel as user installation. A complete overview of the Intel Aero’s specs can be found
in [Inte]

3.2.2 Flight Controller

The Intel Aero RTF comes with a dedicated FC, consisting of a STM32 microcontroller,
IMU, magnetometer and altitude sensors. The FC connects with the x86-unit over
HSUART serial communication and communicates using the MAVLink protocol. It
can run both Ardupilot [ard] and PX4 [PX4] as the autopilot firmware, and the user
can choose either one.

3.2.3 Intel Aero Vision Kit

The Intel Aero Vision Kit contains 3 different camera modules, and is included in the
Intel Aero RTF. This Kit is mainly aimed towards depth sensing applications, such
as 3D scanning and surface recognition. Objects can be measured and incorporated
into real-world spaces to visualize possibilities, and users can create artistic and
creative depth-based filters. Combined with a drone’s mobility, this technology
opens up numerous possibilities. The kit provides support for optical flow, which
was planned to be used for position hold. Table 3.2 describes the different camera
modules comprised in the kit.

3.2.4 Rangefinder

In order to enable optical flow on Intel Aero RTF, an additional rangefinder has to
be installed. A rangefinder is used to determine the distance between an object and
its surroundings, which can be based on different types of measurements. In this
project, Benewake’s TFMini LiDAR[Ben] was supposed to be used. This is a low
cost, small volume and low power consuming LiDAR with range between 0,3 and 12

3.2. HARDWARE 21

Camera Module Specification Orientation and Intent
Intel® RealSense™ R200
camera [Intd]

Depth Sensing and Vision
Camera

Oriented forwards. In-
tended for depth-sensing
purposes such as collision
avoidance and 3D surface
reconstruction

OmniVision* OV8858
[ov8]

8 MP RGB Camera Oriented forwards. In-
tended for regular video
capturing

OmniVision* OV7251
[ov7]

VGA Camera Oriented downwards. In-
tended for optical flow al-
gorithms

Table 3.2: Intel Aero Vision Kit Camera Modules

meters. The objectives requires the drone to maintain a stable hovering inside at low
altitudes, and the TFMini combined with optical flow would suit this purpose.

3.2.5 Power supply

Even though the Intel Aero RTF is "ready to fly", it does not come with any power
supply. The power interface on the Intel Aero RTF is XT60, and an external battery
with XT60 connector had to be purchased. Intel recommends a LiPo battery with 4
cells that delivers 4000-4500 mAh for their drone. Additionally, it was considered
useful to have a regular socket power supply for development purposes. The power
supply specs used in this project are described below.

Battery:

– Type: LiPo

– Cells: 4

– Nominal voltage: 3.7V Per cell (14.8V total)

– Capacity: 4500mAh

Wall Power Adapter:

– Input: 100-240V AC

– Output: 12V DC, 5A

22 3. EQUIPMENT AND PLANNED SETUP

LiPo batteries requires a balance charger able to charge and balance the voltage
of the battery’s individual cells. The charger used in this project was a fake version
of SkyRC’s imax B6[Sky].

3.3 Software

3.3.1 FC Firmware

As stated in section 3.2.2, the Intel Aero FC supports two types of firmwares. The
first one is PX4, which is the one Intel suggests and the one installed on their FC
by default. This is an open source FC software for drones and other unmanned
vehicles. PX4 is part of the dronecode project, a platform that contains everything
needed for a complete drone solution. This platform includes FC hardware, ground
control station, developer APIs as well as the autopilot software PX4. Using such a
platform ensures that everything needed for a complete drone solution is delivered in
a product that is a well integrated, well tested, easily modifiable and consistently
licensed. Intel is part of the dronecode project, and their Intel Aero RTF is based on
this platform.

The second type of firmware is ardupilot. This autopilot software has been in
development for longer than PX4, and is claimed to be "the most advanced, full-
featured and reliable open source autopilot software available" and "the most tested
and proven autopilot software" on their website [ard]. Out of the two, Ardupilot
is regarded as the more mature FC software in the UAV community. Both will be
tested in this project.

3.3.2 MAVLink

MAVLink is a protocol for communicating with small unmanned vehicles. It is mostly
used for communication between a Ground Control Station and the vehicle, but can
also be used locally for inter-communication between the vehicle’s subsystems. Intel
Aero RTF uses MAVLink for all internal communication as well as with the GCS.
The protocol can be interfaced through python, using either pymavlink [pym] or
dronekit [droc]. Dronekit uses pymavlink as an underlying library, and this project
will implement and test both dronekit and pymavlink.

3.3.3 Ground Control Station

The GCS that is used as an example in Intel’s documentation regarding their UAV
platform is QGroundControl [qgr]. This is an open-source GCS that provides full
flight control and mission planning for any MAVLink enabled drone. It runs on
multiple platforms such as Windows, OS X, Linux, iOS and Andorid. This is also
the GCS software that was used in this thesis.

Chapter4Implementation

This chapter presents the implementation, as well as decisions and limitations that
were made. A solution proposal to objective 1 and the implementation method are
presented. Finally, some approaches to objective 2 are presented.

4.1 Initial Steps

4.1.1 Disk Cloning

As stated in section 3.2.1, the Intel Aero Ready to Fly Drone came shipped with
Yocto Linux preinstalled. As the main motivation for this project was to demonstrate
the platform of FourC, installing their Gentoo-based linux distribution would be
required. The biggest issue in the previous projects had been installing FourC’s OS
on the compute boards. Each of the three prior attempts ran into some trouble with
this task, from not being able to install the OS at all, to having some components of
the board not being recognized due to unsupported or missing drivers. As there were
uncertainties that Intel had some specialized drivers for the Intel Aero’s proposed
OSs, a complete clone of the Intel Aero disk as when the drone was received was
executed.

4.1.2 Flashing and Calibration

Before a flight of the Intel Aero could take place, multiple parts of the drone had
to be flashed. This is to ensure the latest firmware and software is installed, which
hopefully will give users the best possible first flight experience. Instructions on
how to do this was found on the Intel Aero github page[inta]. The components that
required flashing were:

– Linux Operating System

– BIOS

23

24 4. IMPLEMENTATION

– FPGA

– Flight Controller

As stated in section 3.3.1, two firmwares can be used as the FCs autopilot firmware.
First is the PX4 autopilot, which was the one that is installed on Intel Aero RTF
by default. The second choice is ardupilot, an open source autopilot that have been
in development for longer than PX4. Even though Intel Aero uses PX4 by default,
Ardupilot was chosen when flashing the flight controller the first time. This was
because ardupilot have had more exposure and runs on more hardware than PX4,
hence giving the impression of being the more mature FC autopilot software of the
two.

After flashing of the different components was completed, the drone and the radio
transmitter had to be calibrated. This was done using GCS software on a separate
device, in this case QgroundControl on a computer running ubuntu. A complete
calibration process needs to be performed any time the FC firmware changes. The
compass should also be re-calibrated whenever the physical environment changes,
due to possible differences in the magnetic field. Figure 4.1 displays a screenshot of
accelerometer calibration using GCS and the PX4 firmware.

4.1.3 Improving Center of Gravity

The battery that was used for the Intel Aero RTF was just barely small enough to fit
inside the battery room. With the battery attached the drone got quite tail-heavy,
which influenced the flight performance. In order to improve the center of gravity, a
pillar was removed so that the battery could slide further toward the center of the
drone. Additionally, a small metal lock was taped to the front part of the drone.
The weight of the lock was just about right to get a close to perfect center of gravity.
Even though the overall weight of the drone increased, the battery and motors were
more than powerful enough to carry the extra weight. Figure 4.2 and 4.3 shows the
drone with improved battery placement and the taped metal lock respectively.

4.2 Limitations

4.2.1 Position Hold

Making the drone able to maintain a fixed position autonomously while being midair,
sensors beyond accelerometer and gyroscope has to be used. The accelerometer and
gyroscope provides data regarding the drone’s physical planing angle, but does not
provide data that can be used for positioning. GPS and optical flow are positioning
techniques that were considered in this project. As the original plan was to enable

4.2. LIMITATIONS 25

Figure 4.1: Screenshot of calibrating accelerometer. Note: Screenshot is taken
while using the PX4 FC firmware, but the calibration process with ardupilot is
similar.

position hold while being inside, GPS would be insufficient caused by the high
probability of weak or non-existing GNSS signals. A TfMini rangefinder was ordered
to enable the use of optical flow, but the rangefinder was never received. As a result,
GPS remained the only option for position holding. The objectives were still solvable,
but now with the limitation of having available GNSS signals.

4.2.2 Operating System and Containers

The potential challenge of installing FourC’s OS on the Intel Aero ended up being a
real issue. Getting their OS to work took way more time than expected, and as the
project was coming to an end an alternative solution was discussed. Instead of using
the container solution of FourC, the drone would run docker containers[doc] on top of
its default OS instead. Intel Aero had been designed with the possibility of running
docker containers in mind, and this solution would keep the original concept of using
containers to maintain service availability while executing updates. FourC are also
planning to integrate docker containers in their platform in the future. Caused by
the delayed acquisition of a working OS from FourC, a solution using the docker
alternative was pursued.

26 4. IMPLEMENTATION

Figure 4.2: A pillar was blocking the battery from sliding further into the battery
room. The red area shows where this pillar was located.

4.3. IMPLEMENTATION METHOD 27

Figure 4.3: The small metal lock taped to the front of the drone improves center
of gravity.

4.2.3 Time Shortage and Scope Reduction

Much of the equipment that was to be used in this project arrived much later
than expected. This lead to reduced time for implementing and testing possible
solutions. Also, the process of implementing a solution towards objective 1 went on
for longer than expected at the beginning of the project. Because of these reasons,
it was decided to focus on realizing midair software updates and omit objective 2.
Some approaches that can be taken to solve the challenge of midair OS updates are
presented in section 4.6

4.3 Implementation Method

Development of the solution presented in section 4.4 was achieved using an agile
software development process. Sub problems related to objective 1 were isolated
and solved separately before they were stitched together. As there could be misun-
derstandings related to how FourC’s platform was operating, being able to redefine

28 4. IMPLEMENTATION

system requirements and proposed solutions during development was considered a
necessity. Also, having the ability to test portions of the software continuously would
quickly reveal false or sub-optimal solutions.

Having no prior experience controlling a quadcopter or any other types of UAVs,
it was beneficial to use a big and lucid testing area. As a some of the testing was
performed during the winter season while the ground were mostly covered by snow,
a suitable landing ground had to be found. The solution was a football field with
artificial turf. The football field was big, flat and was cleared of snow regularly,
making the ground sufficiently dry for a drone to land. Additionally, artificial turf
is a bit soft which would reduce the consequences of a hard crash. All flight tests
were performed on this football field around noon during weekdays, as the field was
available and free of people at these hours.

Everything related to drone behaviour was tested using the dronekit_sitl simulator
before physical tests at the testing area were performed. Some physical testing was
also performed on a desk without attaching propellers, prior to taking the drone
to the testing area. This was to make sure the communication aspect between the
drone and GCS was working correctly. To ensure that the drone had actually been
updated, attempts to execute the updated functionality were performed both prior
and after the update had been transferred and deployed.

4.4 Proposed Solution to Midair Software Updates

4.4.1 Connecting the Components

Even though FourC’s platform has not been used, a similar setup has been imple-
mented. A separate laptop was used to simulate the backend cloud service of FourC,
and the same laptop also worked as the drone’s ground station. The drone hosts a
closed network with a wifi Access Point (AP), and the laptop connects to the closed
network through the drone’s AP. Figure 4.4 displays the network architecture of
the implemented system. The main difference in this setup is the removal of the
Internet between the cloud service and the drone, using a direct link instead. As the
transport protocol would be TCP in both scenarios, which ensures that packets are
delivered to the application layer in the same order, this architecture was considered
to be a sufficient alternative for transferring updates.

4.4.2 Container

The software that controls the drone behaviour is run within a container, hereby
referred to as an FC container. The FC container consists of two components. The
first component is the FC handler, which communicates with the drone’s physical
Flight Controller. The second component is an HTTP server, which receives HTTP

4.4. PROPOSED SOLUTION TO MIDAIR SOFTWARE UPDATES 29

Figure 4.4: Network Architecture of the overall system

requests from the ground station. Any HTTP client that is connected to the drones
AP can send requests to the drone, which are forwarded to the HTTP server inside
the current FC container instance. The HTTP server makes further calls to the
drones Flight Controller through the FC handler. The client can send HTTP POST
request to change the behaviour of the drone, such as elevating to given altitudes
or changing flight modes. The full documentation on container environment and
initialization, as well as the code running within the container can be found in
appendix B. Documentation and code regarding the client side can be found in
appendix E.

4.4.3 OS Layer

The OS of FourC works as a container host. It manages all containers and their
states, as well as communicating with the backend cloud service. The OS layer in
the solution proposal mimics this behaviour. The OS hosts a proxy server, which
forwards all requests from the ground station to the current FC container instance.
Requests from the cloud service are handled directly on the OS layer, and do not
interfere with the FC container. Whenever an update regarding the FC container
is received, the OS informs the current FC container to keep the drone in a fixed
position. It then creates a new FC container instance that contains the updated
software. Once the new FC container has been initialized and is ready to start
operating, forwarding of GCS requests are changed to this container. When all the
steps have been completed and the new FC container has taken over as the current
functioning instance, the old FC container is stopped and removed. Figures 4.5, 4.6,
4.7 and 4.8 shows the different steps taken, from receiving an update from the cloud

30 4. IMPLEMENTATION

service to having them deployed in a new FC container. Documentation and code
for the proxy server and container management can be found in appendix D and C
respectively.

4.5 Choices of Software

4.5.1 Flight Controller API

After completing the first flight (Section 5.1) and making sure the FC and other
components were working as expected, the next step was to execute drone commands
through code without using the radio transceiver. The first approach to do this was
to use the pymavlink Python library, which makes it possible to send MAVLink
messages to the FC [pym]. A simple script that enabled arming and disarming
of the drone was written, but extending the functionality through pymavlink was
challenging. pymavlink was a low-level MAVLink API with poor documentation,
which made it hard to understand function parameters and their possible values. A
second approach was taken, using the dronekit API instead [droc]. Dronekit was an
easier to understand, higher-level API that also provided better documentation than
pymavlink. The second approach made it easier to write code towards the drone’s
FC, and dronekit became the API of choice.

4.5.2 Communication Between Drone and GCS

To enable communication between the drone and GCS, it was decided to implement a
simple HTTP server on the drone. Since python was already used for communication
withy the FC, the HTTP server was written in python as well. Flask is a simple
python library for web development, and was chosen for implementation of the HTTP
server [fla]. The HTTP client code was written using the requests API, which is a
python framework that generates HTTP requests [req].

Since the HTTP server would run inside a container, subject to being removed at
some point, it was decided to create a proxy server running on the OS layer. The
proxy server would forward HTTP requests to the current FC container instance,
enabling the client to send requests to a fixed IP address of the proxy server. This
way, container management would take place at the OS layer, concealed from both the
HTTP server and HTTP client. Using flask when writing the proxy was attempted,
but for unknown reasons flask would not compile on the Intel Aero RTF’s OS layer.
The proxy was re-written using the built-in python sockets instead [pyt].

4.5.3 Software Environments

The drone itself had three different software environments to consider. The first one
was the OS environment, that would work as the container host. The second one was

4.5. CHOICES OF SOFTWARE 31

Figure 4.5: The OS layer receives an update from the cloud service. The FC
container is informed to maintain position

Figure 4.6: The OS layer creates a new FC container that contains the updated
software

32 4. IMPLEMENTATION

Figure 4.7: Proxy server on the OS layer changes forwarding of ground station
requests to the new FC container

Figure 4.8: The OS layer stops and removes the old FC container

4.6. SOME APPROACHES FOR UPDATES 33

the container environment, running an HTTP server and FC code. The third one
was the physical Flight Controller. Each software environment is briefly described
below

OS Environment

The OS works as the container host, and runs a Yocto Linux distribution. This is
the default OS of Intel Aero RTF. On top of the OS, docker and python 2.7 is used
to manage containers and communicate with the GCS.

Container Environment

The container is based on a Ubuntu 18.02 docker base image, with python 2.7 and
third-party python modules on top. More information on the container image, third-
party python libraries as well as the code can be found in appendix B. Link to the
actual container image that was used can be found in [and]. Version 3 of the image
was used.

Flight Controller Firmware

As described in section 4.5.1, the dronekit API was chosen to communicate with the
FC. The people behind dronekit has also developed a Software in the Loop (SITL)
simulator, dronekit_sitl [drod]. The simulator simulates an Ardupilot version 3.3.0
Flight Controller, making it easy to test code without performing physical flights.
To best utilize this feature, Ardupilot was chosen as the FC firmware. The Ardupilot
version used on the drone was 3.5.7 however, but it was considered to be almost
identical to version 3.3.0.

4.6 Some Approaches for OS Updates

Operating System updates usually requires a complete reboot. Doing this while also
maintaining a stable hovering state is a challenge, and two approaches to overcome
this are presented. The first approach is simply to use redundancy in the hardware.
By having two units capable of controlling the drone behaviour, one can be in control
while the other one performs the reboot and vice versa. Using redundancy was the
original plan for this project, having an external Flight Controller that could maintain
basic control of the drone while the x86-unit performed a reboot. It is uncertain if
this would be possible on this specific drone however, since the FC was integrated
with the compute board and seemed to reboot whenever the Intel Aero rebooted.
Also, the positioning data was computed by the compute board itself and sent to the
flight controller as input, leaving such data unavailable while rebooting the compute
board. If this approach is taken, it could be wiser to use completely independent

34 4. IMPLEMENTATION

components, giving more control of program execution and communication between
the devices.

The second approach that could be taken is called Dynamic Software Updating
(DSU), which is a technique of updating software while the program is running. A
running program can be thought of as a tuple (s, P) where s is the current program
state and P is the current program code. In DSU, a transformer function F can be
used to transform s into the the corresponding state s* of the updated program code
P*, by computing (F(s), P*) = (s*, P*). This would remove the requirement of
rebooting and reloading modules, but introduces other challenges such as validation
of the new program state s*. DSU is still a field of research, and current OSs and
programs are usually not designed with DSU in mind. For a case like objective 2
however, Dynamic Software Updating could be an appropriate solution.

Chapter5Implementation Process and
Results

This chapter presents experiences from the first flight attempts, as well as the results
received throughout the iterative implementation process of the solution proposal
(Section 4.4). The final test of the complete solution proposal is also presented.

5.1 First Flight

The first flight was attempted a few days after receiving the drone, after the flashing
and calibration steps described in section 4.1.2 were performed. The first thing
noticed was that the drone was a bit tail-heavy, lifting the two foremost legs first
when attempting to take off. The Flight Controller quickly corrected this after lifting
the drone completely into the air, but control of the pitch axes was not even. The
second thing noticed was that the drone was spinning in any one of the yaw directions,
constantly increasing in speed. Attempts to compensate the unwanted yaw with the
radio controller did not seem to have any effect. Multiple attempts and crashes were
made, resulting in two broken propellers and breaking the GPS pole. After some
investigation it was found that the FC was falsely calibrated, expecting the propellers
to rotate in the opposite direction of what they were actually doing. By re-calibrating
the FC with the propellers correct rotational directions, the drone stopped rotating
uncontrollably and started to respond on input from the radio transmitter. After
fixing this issue, flights with both the PX4 and Ardupilot firmware were performed.
Both were successful.

5.2 Objective 1: Software Updates

A solution proposal to objective 1 was implemented and tested (Section 4.4. As the
development process of this solution was agile, a continuous cycle of implementing,
testing and evaluating testing results was performed. This section describes the
iterative implementation process together with the results.

35

36 5. IMPLEMENTATION PROCESS AND RESULTS

5.2.1 Drone Control over HTTP

The first sub-problem to be addressed was the communication aspect between the
drone and the GCS. An HTTP server that interfaced the physical FC of the drone
was implemented, along with an HTTP client running on a separate laptop connected
to the drone’s wifi AP. Combining dronekit and flask to create an HTTP interface
between the physical FC and an HTTP client was successful, and it was possible to
change the drone’s behaviour by sending HTTP requests from a laptop to the drone.
Arming the drone, taking off and changing the drone’s altitude using this interface
worked well.

The next step was to put the HTTP server into a container. This was performed
by mapping one of the drone’s ports to the container running the HTTP server,
using built-in docker commands. This way, an HTTP client was able to access the
HTTP server running inside a container. This implementation changed however,
when issues related to container management and port mapping was encountered
(Section 5.2.3). Instead, a proxy server forwarding all requests from the GCS to the
IP address of the current functioning FC container was implemented.

5.2.2 File Transfer

Two approaches of file transfer were implemented and tested. The first approach ran
this functionality in a separate container, hosting an FTP client. A separate laptop
hosted an FTP server, making the drone able to fetch updates from a simulated
cloud service in a dedicated container. The GCS would tell the drone to fetch an
update from the simulated cloud service, and the drone would create the FTP client
container. This approach worked well, but did not match the approach taken by
FourC’s platform.

The second approach was to move the file transfer functionality onto the OS layer,
making the proxy server take care of updates instead of the dedicated FTP container.
This approach was more similar to the way FourC’s platform was operating, and also
simplified container management. Thus, moving file transfer functionality to the OS
layer was considered the better approach, and is the one implemented in the solution
proposal.

5.2.3 Container Management

Two approaches of container management were implemented and tested. In the
first approach, container management was handled by the FC container itself. This
approach had the advantage of not having to inspect the incoming requests at two
different points in the system. However, the disadvantages weighed more than the
advantages. Creating a new FC container through the current instance was possible,

5.2. OBJECTIVE ??: SOFTWARE UPDATES 37

but removing the container from within itself was a problem. There was no way
to inform the new FC container that the old instance was removed after it was
actually removed. A workaround was implemented by making the new FC container
remove the old instance instead, but this spread container management across several
entities. This solution was a bit chaotic, and would not scale well. Additionally,
this approach required the HTTP client to be notified whenever the FC container
was renewed, since each container was assigned to one of the drone’s ports when
initialized. As HTTP is a synchronous protocol, additional client functionality had
to be implemented in order to overcome this issue. Even though this implementation
was tested and actually worked in practice, it was not considered a proper solution.

The second approach was to implement a proxy server at the OS layer that
also handled the management of containers. When initialized, each container was
assigned a unique IP address from a private address space. By using a container’s
IP address rather than a fixed port mapping, it was possible to exclude the client
from the container management. Also, by pulling container management out of the
FC container and placing it on the OS layer, the containers themselves became less
complex. This approach also placed container management on the same layer as
FourC’s platform does, making the overall implementation function more like the
implementation from FourC.

5.2.4 Test of Proposed Solution

A complete test of the solution proposal presented in section 4.4 was first performed
using the dronekit_sitl simulator. This test was run on a single development computer,
which simulated the complete drone, the GCS and the Cloud Service. First, a request
to arm the drone simulator and rise to 5 meters was executed. The simulator
would rise to 5 meters in about 4-6 seconds, printing its current altitude every
second while rising. The time variance experienced is probably due to variance in
simulated factors such as wind and pressure. After the altitude was reached, updated
functionality was requested. As the drone had not learned to handle such requests
yet, it responded with a HTTP 404 response. Now, the update was transferred.
The drone simulator printed an update statement to the console, informing that it
had received new software and was about to deploy it. The proxy server started a
new container containing the new software, continuously printing its progress. The
new FC container took about 10-15 seconds to initialize. The old FC container got
removed, and the drone had changed the current functioning FC container. The
updated functionality was once again requested, and this time the drone responded
with an HTTP 200 response.

The FC simulator was only able to connect to and receive MAVLink messages
from a single entity. To make sure that multiple containers could connect to and send

38 5. IMPLEMENTATION PROCESS AND RESULTS

MAVLink messages to the physical FC, a test with three container instances was
performed. The test was performed inside without propellers, and the FC container
instances are referred to as con1, con2 and con3. All three instances connected to
the physical FC without any issues, and the drone was armed through con1. con2
attempted to change the flight mode, and con3 fetched arming state and the current
flight mode. The state and flight mode presented in con3 reflected the changes
made through con1 and con2. The drone was then disarmed through con3, and it
was demonstrated that the drone could be controlled through multiple containers
simultaneously.

After a successful simulation had been performed, as well as making sure multiple
containers could connect to the physical FC simultaneously, the drone was taken to
the testing area described in section 4.3. The area was free of people, the wind was
low and there was no precipitation at the time of testing. As the simulation had run
on a single development computer, IP addresses was changed so they matched the
setup with Intel Aero RTF and the separate laptop (Figure 4.4). The steps performed
in the simulated environment was performed in the exact same manner, and the
results were identical. The drone would rise to 5 meters when requested, respond
with a HTTP 404 to the updated function request, receive the update, hold position
while initializing a new FC container with the updated software and respond with
an HTTP 200 to the updated function request. After a successful first test, a second
test learning the drone to land was performed. Running the exact same procedure,
the drone learned to land while being midair. Appendix G describes how to setup
and run the tests described.

The time taken from the drone received an update until the drone had deployed
it was about 14 seconds in the simulator and about 8 seconds in the physical scenario.
In the simulated scenario, the new FC container had to create a new FC simulator
before proceeding. This took about 6 seconds, which is approximately the time
difference between FC container initialization in the simulated and physical scenario.
Another difference was the processing of HTTP requests. Independent of the testing
scenario, the time taken from a request was sent until a change was recorded on
the drone was dependant on the type of change that was requested. For instance, a
request to arm the drone took longer than a request to change the drone’s altitude
while already being airborne. The reason for this was probably because the drone
performs a set of pre-flight checks before arming, such as checking the GPS signal,
battery voltage etc. This is a safety measure, and they are not performed again
after the drone has taken off. Additionally, the drone took approximately 1 second
longer to respond to HTTP requests in the physical scenario. This could be caused
by the increased distance between the drone and the GCS, possibly reducing the
performance of the wireless link and increasing the number of TCP retransmissions.
Another source could be delays in the internal communication on the drone itself.

5.3. OBJECTIVE ??: UPDATES 39

Event Simulation scenario Physical scenario
Process arming request 1.5 second 2.5 second
Process altitude change
while being airborne

1 second 2 seconds

Rise to 5m from the
ground

4-6 seconds 4-6 seconds

Transfer update ~0.1 seconds ~0.3 seconds
Create new container 13 seconds 7 seconds
Remove old container 1 second 1 second

Table 5.1: Time delays experienced in solution proposal.

The first reason seems more plausible, as serial communication is considered to
provide stronger performance and be more reliable than wireless communication.
Besides the minor differences in time, the physical and the simulated scenario gave
the same results. Table 5.1 presents delays experienced in both the simulated and
the physical testing scenario.

5.3 Objective 2: Operating System Updates

Objective 2 related to OS updates were omitted due to time constraints. No solution
was implemented or tested for this objective, hence there are no results related to
this objective.

Chapter6Conclusion

6.1 Summary

This thesis has demonstrated how containers can be used to maintain service avail-
ability while software updates are being deployed. This functionality has been
demonstrated by updating a drone while being midair. Attempting to update the
underlying OS while being midair was not attempted due to time constraints, but
two approaches directed towards this issue has been presented.

6.2 Solution proposal

The solution proposal described in section 4.4 realizes software updates of midair
drones. By running FC software within a dedicated FC container, the task of
downloading and executing updates ca be performed without interfering with flight
control. Executing updated software in a new dedicated FC container enables
continuous availability of service, by providing service in the old container until the
new container is ready to take over as the functioning instance. This thesis has
proven that a container solution can be used to maintain the availability of a service
while the host receives updates and maintenance.

6.3 Possible Improvements

The proposed solution was tested by updating two python files. One of them was
code for communicating with the physical FC controller and the second one was code
for the HTTP server. Updating only two files were sufficient to test the solution
proposal, but future versions could increase the size of updates. For instance, being
able to update the complete FC container image could be useful. Also, the proposal
does not perform any validation of the updated software before it is executed. An
improvement would be to make sure the updated software will actually work before
being executed or given any functional responsibility. One approach that can provide

41

42 6. CONCLUSION

some level of safety is to give identical input to both containers and compare their
outputs. In a drone scenario, input can be basic safety commands such as attempting
to land or changing the flight mode to position hold. If the output would be identical,
both containers would handle the input the same way and some level of updating
safety would be achieved.

6.4 Future Research

As there were not enough time to realize objective 2, approaches to solving such
an issue should be researched. This thesis presents two approaches to realize this
objective, but far more research can be directed towards different approaches, as
well as towards how useful DSU would be in such a scenario. As mentioned in
section 6.3, solutions to challenges related to validation of new software should be
pursued. Testing prior to deployment is possible for application software, but testing
OS software without actually deploying it can be a challenge.

Authentication of the entity that issues the update is also an interesting field of
research. Even though there exist a vast amount of authentication protocols, validat-
ing their security and improving their efficiency should be continuously addressed.
Research towards new authentication methods can also be conducted.

References

[and] FC container docker image. https://hub.docker.com/r/andersvl/aero_server.
Accessed: May 27. 2019.

[ard] Ardupilot. http://ardupilot.org/. Accessed: November 7. 2018.

[BA17] Hans Brenna and Ole-Johannes Aasbø. Drone med ota os update. Bachelor’s
thesis, Norwegian University of Science and Technology, May 2017.

[Ben] Benawke (Beijing) Co., Ltd. Product Manual of TFmini. Avail-
able online: https://cdn-shop.adafruit.com/product-files/3978/3978_manual_
SJ-PM-TFmini-T-01_A03ProductManual_EN.pdf, Accessed: March 25, 2019.

[doc] Docker. https://www.docker.com/. Accessed: November 7. 2018.

[droa] Drone movement axes. Accessed: June 13. 2019.

[drob] Dronecode project. https://www.dronecode.org/. Accessed: November 7. 2018.

[droc] Dronekit. http://dronekit.io/. Accessed: November 7. 2018.

[drod] Dronekit software in the loop. https://github.com/dronekit/dronekit-sitl. Ac-
cessed: May 25. 2019.

[fla] Flask documentation. http://flask.pocoo.org/. Accessed: May 25. 2019.

[Fou] Fourc. https://www.fourc.eu/. Accessed: November 7. 2018.

[gena] Gentoo linux. https://www.gentoo.org/. Accessed: November 7. 2018.

[genb] Gentoo on edison. http://gentoo.ed-solutions.de/dokuwiki/start:edison. Accessed:
May 23. 2018.

[HK18] Magnus Storhaug Hammer and Sindre Hammerø Kroknes. Dronekontroll prosjekt.
Bachelor’s thesis, Norwegian University of Science and Technology, Jan 2018.

[inta] Intel aero github page. https://github.com/intel-aero/meta-intel-aero/wiki. Ac-
cessed: April. 3, 2019.

[intb] Intel aero ready-to-fly drone. https://software.intel.com/en-us/aero. Accessed:
November 7. 2018.

43

https://hub.docker.com/r/andersvl/aero_server
http://ardupilot.org/
https://cdn-shop.adafruit.com/product-files/3978/3978_manual_SJ-PM-TFmini-T-01_A03ProductManual_EN.pdf
https://cdn-shop.adafruit.com/product-files/3978/3978_manual_SJ-PM-TFmini-T-01_A03ProductManual_EN.pdf
https://www.docker.com/
https://www.dronecode.org/
http://dronekit.io/
https://github.com/dronekit/dronekit-sitl
http://flask.pocoo.org/
https://www.fourc.eu/
https://www.gentoo.org/
http://gentoo.ed-solutions.de/dokuwiki/start:edison
https://github.com/intel-aero/meta-intel-aero/wiki
https://software.intel.com/en-us/aero

44 REFERENCES

[intc] Intel edison. https://www.arduino.cc/en/ArduinoCertified/IntelEdison#toc4.
Accessed: May 31. 2019.

[Intd] Intel. Intel® RealSense™ Camera R200. Available on-
line: https://software.intel.com/sites/default/files/managed/d7/a9/
realsense-camera-r200-product-datasheet.pdf, Accessed: March 25, 2019.

[Inte] Intel Corporation. Intel®Aero Compute Board.

[JST16] A. Christopher Janjua, John I. Sivertsvik, and Mia Tangvik. Drone med ota
in-the-air sw update. Bachelor’s thesis, Norwegian University of Science and
Technology, may 2016.

[Lat] Lattepanda. https://www.lattepanda.com/. Accessed: November 7. 2018.

[mav] Mavlink. https://mavlink.io/en/. Accessed: November 7. 2018.

[Mul] Multiwii. http://www.multiwii.com/. Accessed: November 7. 2018.

[opt] Optical flow. https://en.wikipedia.org/wiki/Optical_flow. Accessed: March 8.
2019.

[ov7] Omnivision ov7251. https://www.ovt.com/sensors/OV7251. Accessed: March 25.
2019.

[ov8] Omnivision ov8858. https://www.ovt.com/sensors/OV8858. Accessed: March 25.
2019.

[para] Parrot bebop 2. https://www.parrot.com/us/drones/parrot-bebop-2. Accessed:
November 7. 2018.

[parb] Pattor ar.drone 2.0 elite edition.

[PX4] Px4. http://px4.io/. Accessed: May 25. 2019.

[pym] Pymavlink. https://github.com/ArduPilot/pymavlink. Accessed: April 2. 2019.

[pyt] Python sockets. https://docs.python.org/2.7/library/socket.html. Accesses: May
29. 2019.

[qgr] Qgroundcontrol. http://qgroundcontrol.com/. Accessed: April 2. 2019.

[req] Requests: Http for humans™. https://2.python-requests.org/en/master/. Ac-
cessed: May 25. 2019.

[rtf] Intel® aero platform for uavs installation files. Accessed: May 28. 2019.

[Sky] SkyRC Technology Co., Ltd. Instruction Manual of imax B6. Available online:
http://www.ittgroup.ee/files/IMAX_B6_manual.pdf, Accessed: March 25, 2019.

[sna] Snapdragon qualcomm flight kit. https://www.intrinsyc.com/
vertical-development-platforms/qualcomm-snapdragon-flight/. Accessed:
November 7. 2018.

https://www.arduino.cc/en/ArduinoCertified/IntelEdison#toc4
https://software.intel.com/sites/default/files/managed/d7/a9/realsense-camera-r200-product-datasheet.pdf
https://software.intel.com/sites/default/files/managed/d7/a9/realsense-camera-r200-product-datasheet.pdf
https://www.lattepanda.com/
https://mavlink.io/en/
http://www.multiwii.com/
https://en.wikipedia.org/wiki/Optical_flow
https://www.ovt.com/sensors/OV7251
https://www.ovt.com/sensors/OV8858
https://www.parrot.com/us/drones/parrot-bebop-2
http://px4.io/
https://github.com/ArduPilot/pymavlink
https://docs.python.org/2.7/library/socket.html
http://qgroundcontrol.com/
https://2.python-requests.org/en/master/
http://www.ittgroup.ee/files/IMAX_B6_manual.pdf
https://www.intrinsyc.com/vertical-development-platforms/qualcomm-snapdragon-flight/
https://www.intrinsyc.com/vertical-development-platforms/qualcomm-snapdragon-flight/

AppendixAFlightControllerHandler

This document contains documentation regarding the FlightControllerHandler class.
The complete code can be found in A.2

A.1 Description

The FlightControllerHandler is used to communicate with the physical FC. The class
is dependant on the dronekit framework, which is a python API that communicates
with vehicles over MAVLink. The framework contains an interface for communication
with Ardupilot FCs. The complete dronekit documentation can be found in [droc].

The FlightControllerHandler constructor takes a dronekit vehicle-object as input.
Has a set of functions that returns current state information or changes the behaviour
of the drone. Some of the functions in this class are not used in this project. Table
A.1 explains the most important functions that was used.

Function Arguments Return value
get_vehicle None Dronekit vehicle object
get_state None Dict containing state information
get_altitude None The drone’s current altitude
get_vehicle_mode None The drone’s current flight mode
set_vehicle_mode String mode String explaining if the flight mode

changed
arm_disarm_vehicle
Arms or disarms motors

Bool value String explaining arming status

go_to_alt
Drone moves to given al-
titude

Int alt None

Table A.1: Explanation of some of the most important functions

45

46 A. FLIGHTCONTROLLERHANDLER

A.2 Code

NOTE: This code changes during flight in order to demonstrate midair software
updates. This is the updated version of the code. Comments in the code describes
functions and fields that got updated.

1 from __future__ import pr int_funct ion
2 from dronek i t import VehicleMode , Locat ionGloba lRe la t ive
3 import time
4 import math
5
6 # Defines f l i g h t m o d e s t h a t can be used through the c l i e n t . Wil l change

when runnin update
7 ALLOWED_FC_MODES = [
8 ’STABILIZE ’ ,
9 ’GUIDED ’ ,

10 ’LOITER ’ ,
11 ’FLIP ’ ,
12 ’RTL ’ ,
13]
14
15 # Used f o r some movement f u n c t i o n s . They are not t e s t e d ye t .
16 EARTH_RADIUS_EQUATOR = f loat (6378137 .0)
17 EARTH_RADIUS_POLE = f loat (6356752 .3)
18
19
20 class F l i g h t C o n t r o l l e r H a n d l e r :
21
22 s t a t e = {
23 ’ ready_update ’ : ’N ’
24 }
25
26 def __init__ (s e l f , v e h i c l e) :
27 print (" Creat ing new F l i g h t C o n t r o l l e r H a n d l e r ")
28 s e l f . s e t _ v e h i c l e (v e h i c l e)
29
30 print (’ \n {} \n ’ . format (s e l f . v e h i c l e . system_status . s t a t e))
31
32 def get_veh i c l e (s e l f) :
33 return s e l f . v e h i c l e
34
35 def s e t _ v e h i c l e (s e l f , v e h i c l e) :
36 s e l f . v e h i c l e = v e h i c l e
37
38 def get_std_info (s e l f) :
39 return {
40 ’ ve r i on ’ : str (s e l f . v e h i c l e . v e r s i o n) ,
41 ’ l o c a t i o n . global_frame ’ : str (s e l f . v e h i c l e . l o c a t i o n .

global_frame) ,
42 ’ l o c a t i o n . g loba l_re la t ive_frame ’ : str (s e l f . v e h i c l e . l o c a t i o n

. g loba l_re la t ive_f rame) ,

A.2. CODE 47

43 ’ l o c a t i o n . loca l_frame ’ : str (s e l f . v e h i c l e . l o c a t i o n .
loca l_frame) ,

44 ’ a t t i t u d e ’ : str (s e l f . v e h i c l e . a t t i t u d e) ,
45 ’ s e l f . v e h i c l e . v e l o c i t y ’ : str (s e l f . v e h i c l e . v e l o c i t y) ,
46 ’ gps_0 ’ : str (s e l f . v e h i c l e . gps_0) ,
47 ’ gimbal ’ : str (s e l f . v e h i c l e . gimbal) ,
48 ’ bat te ry ’ : str (s e l f . v e h i c l e . bat te ry) ,
49 ’ ekf_ok ’ : str (s e l f . v e h i c l e . ekf_ok) ,
50 ’ l a s t_hear tbeat ’ : str (s e l f . v e h i c l e . l a s t_hear tbeat) ,
51 ’ r a n g e f i n d e r ’ : str (s e l f . v e h i c l e . r a n g e f i n d e r) ,
52 ’ r a n g e f i n d e r . d i s t a n c e ’ : str (s e l f . v e h i c l e . r a n g e f i n d e r .

d i s t a n c e) ,
53 ’ r a n g e f i n d e r . v o l t a g e ’ : str (s e l f . v e h i c l e . r a n g e f i n d e r . v o l t a g e

) ,
54 ’ heading ’ : str (s e l f . v e h i c l e . heading) ,
55 ’ system_status . s t a t e ’ : str (s e l f . v e h i c l e . system_status . s t a t e

) ,
56 ’ groundspeed ’ : str (s e l f . v e h i c l e . groundspeed) , # s e t t a b l e
57 ’ a i r s p e e d ’ : str (s e l f . v e h i c l e . a i r s p e e d) , # s e t t a b l e
58 ’mode . name ’ : str (s e l f . v e h i c l e . mode . name) , # s e t t a b l e
59 ’ is_armable ’ : str (s e l f . v e h i c l e . is_armable) ,
60 ’ armed ’ : str (s e l f . v e h i c l e . armed) , # s e t t a b l e
61 }
62
63 def get_system_status (s e l f) :
64 return s e l f . v e h i c l e . system_status . s t a t e
65
66 def get_state (s e l f) :
67 s e l f . s t a t e [’ system_status ’] = str (s e l f . get_system_status ())
68 s e l f . s t a t e [’ a l t ’] = str (s e l f . g e t _ a l t i t u d e ())
69 s e l f . s t a t e [’ lon ’] = str (s e l f . get_long i tude ())
70 s e l f . s t a t e [’ l a t ’] = str (s e l f . g e t _ l a t t i t u d e ())
71 s e l f . s t a t e [’ l o c a t i o n ’] = str (s e l f . g e t_ locat i on ())
72 return s e l f . s t a t e
73
74 def get_locat ion (s e l f) :
75 return s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame
76
77 def get_long i tude (s e l f) :
78 return s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame . lon
79
80 def g e t _ l a t t i t u d e (s e l f) :
81 return s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame . l a t
82
83 def g e t _ a l t i t u d e (s e l f) :
84 return s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame . a l t
85
86 def get_vehicle_mode (s e l f) :
87 return s e l f . v e h i c l e . mode . name
88
89 def get_self_did_update (s e l f) :
90 return s e l f . s t a t e [’ did_update ’]

48 A. FLIGHTCONTROLLERHANDLER

91
92 def get_ready_update (s e l f) :
93 return s e l f . s t a t e [’ ready_update ’]
94
95 def get_update_f inished (s e l f) :
96 return s e l f . s t a t e [’ update_f in i shed ’]
97
98 def set_ready_update (s e l f , va l) :
99 s e l f . s t a t e [’ ready_update ’] = va l

100
101 def set_update_f in i shed (s e l f , va l) :
102 s e l f . s t a t e [’ update_f in i shed ’] = va l
103
104 def set_sel f_did_update (s e l f , va l) :
105 s e l f . s t a t e [’ did_update ’] = va l
106
107
108 def set_vehicle_mode (s e l f , mode) :
109 i f mode not in ALLOWED_FC_MODES:
110 return ’ Veh ic l e mode {} i s not supported ’ . format (mode)
111
112 print ("Mode to be s e t : " + mode)
113 i f s e l f . v e h i c l e . mode . name == mode :
114 print (" Veh ic l e mode i s a l r eady s e t to {0} " . format (mode))
115 return " Veh ic l e mode i s a l r eady s e t to {0} " . format (mode)
116 print (" \n Changing v e h i c l e mode from {0} to {1} " . format (s e l f .

v e h i c l e . mode . name , mode))
117 s e l f . v e h i c l e . mode = VehicleMode (str (mode))
118 timeout = 0
119 while s e l f . v e h i c l e . mode . name != mode and t imeout <= 5 :
120 print (" Waiting f o r changes to take e f f e c t ")
121 timeout += 1
122 time . s l e e p (1)
123 i f t imeout >= 5 :
124 print (" Exeeded timeout l i m i t . Veh ic l e mode i s {0} " . format (

s e l f . v e h i c l e . mode . name))
125 return " Exeeded timeout l i m i t . Veh ic l e mode i s {0} " . format (

s e l f . v e h i c l e . mode . name)
126 print (" Success ! Veh ic l e mode changed to {0} " . format (mode))
127 return " Success ! Veh ic l e mode changed to {0} " . format (mode)
128
129 def arm_disarm_vehicle (s e l f , va lue) :
130 i f not s e l f . v e h i c l e . armed and value :
131 i f not s e l f . v e h i c l e . is_armable :
132 print (" Waiting f o r v e h i c l e to become armable ")
133 print (" Arming motors . . ")
134 s e l f . v e h i c l e . armed = True
135 while not s e l f . v e h i c l e . armed :
136 print (’ Waiting f o r arming to take e f f e c t . . . ’)
137 time . s l e e p (1)
138 s e l f . set_ready_update (’Y ’)
139 return ’ Veh ic l e i s armed ’

A.2. CODE 49

140
141 e l i f value :
142 print (’ Veh ic l e i s a l r eady armed ! ’)
143 return ’ Veh ic l e i s a l r eady armed ! ’
144 else :
145 print (’ Disarming motors . . . ’)
146 s e l f . v e h i c l e . armed = False
147 while s e l f . v e h i c l e . armed :
148 print (’ Waiting f o r disarming to take e f f e c t . . . ’)
149 time . s l e e p (1)
150 s e l f . set_ready_update (’N ’)
151 return ’ Veh ic l e i s disarmed ’
152
153 def set_guided_mode (s e l f) :
154 i f s e l f . v e h i c l e . mode . name != "GUIDED" : # CHANGE FOR PRODUCTION
155 print (" Changing v e h i c l e mode to GUIDED")
156 s e l f . v e h i c l e . mode = VehicleMode ("GUIDED")
157 while s e l f . v e h i c l e . mode . name != "GUIDED" :
158 print (" Waiting f o r changes to take e f f e c t . . ")
159 time . s l e e p (1)
160 print (" Veh ic l e mode i s {0} " . format (s e l f . v e h i c l e . mode . name))
161 else :
162 print (’ Veh ic l e mode i s GUIDED! ’)
163
164 def go_to_alt (s e l f , a l t , hold=False) :
165
166 # Check i f v e h i c l e i s armed
167 s e l f . arm_disarm_vehicle (True)
168
169 # Check i f v e h i c l e mode i s GUIDED. Has to GUIDED be in order to

change drone p o s i t i o n and a l t i t u d e .
170 s e l f . set_vehicle_mode (’GUIDED ’)
171
172 print (" Going to a l t i t u d e : {0} " . format (a l t))
173 i f s e l f . get_system_status () == ’STANDBY’ :
174 s e l f . v e h i c l e . s imple_takeo f f (a l t)
175 else :
176 l a t = s e l f . g e t _ l a t t i t u d e ()
177 lon = s e l f . get_long i tude ()
178 pos = Locat ionGloba lRe la t ive (la t , lon , a l t)
179 s e l f . v e h i c l e . s imple_goto (pos)
180 i f s e l f . shou ld_al t_increase (a l t) :
181 s e l f . do_increase_alt (a l t)
182 else :
183 s e l f . do_decrease_alt (a l t)
184 i f hold :
185 s e l f . set_ready_update (’Y ’)
186
187
188 def do_increase_alt (s e l f , a l t) :
189 while True :

50 A. FLIGHTCONTROLLERHANDLER

190 print (" Current a l l t i t u d e : {0} " . format (s e l f . v e h i c l e . l o c a t i o n
. g loba l_re la t ive_f rame . a l t))

191 i f s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame . a l t >= a l t ∗
0 . 9 5 :

192 print (" A l t i tude reached ! ")
193 break
194 time . s l e e p (1)
195 return
196
197 def do_decrease_alt (s e l f , a l t) :
198 while True :
199 print (" Current a l l t i t u d e : {0} " . format (s e l f . v e h i c l e . l o c a t i o n

. g loba l_re la t ive_f rame . a l t))
200 i f s e l f . v e h i c l e . l o c a t i o n . g loba l_re la t ive_f rame . a l t <= a l t ∗

1 . 0 5 :
201 print (" A l t i tude reached ! ")
202 break
203 time . s l e e p (1)
204 return
205
206 def shou ld_al t_increase (s e l f , a l t) :
207 return a l t > s e l f . g e t _ a l t i t u d e ()
208
209 #

−−

210
211 # These are f u n c t i o n s contained in the updated F l i g h t C o n t r o l l e r . py
212
213 def get_updated_func (s e l f) :
214 s t r i n g = ’ This i s an updated f u n c t i o n ! \ n ’ \
215 ’ Checking i f s t a t u s b e f o r e update has remained : \ n ’ \
216 ’ Veh ic l e mode : {0}\n ’ \
217 ’ System s t a t u s : {1}\n ’ \
218 ’ A l t i tude : {2}\n ’ \
219 ’ Try to change something through the c l i e n t ! ! ’ . format (

s e l f . get_vehicle_mode () , s e l f . get_system_status () ,
s e l f . g e t _ a l t i t u d e ())

220 print (s t r i n g)
221 return s t r i n g
222
223
224 # These f u n c t i o n s at tempts to move the drone in each o r i e n t a t i o n . Has

not been t e s t e d ye t .
225
226 " " "
227 de f move_east (s e l f , d i s t a n c e) :
228 i f s e l f . g e t _ a l t i t u d e () < 5:
229 p r i n t (’ Aero shou ld be at l e a s t 5m o f f the ground ! ’)
230 re turn False
231 dLat = d i s t a n c e /EARTH_RADIUS_EQUATOR
232

A.2. CODE 51

233
234 s e l f . v e h i c l e . simple_goto (s e l f . g e t _ l a t t i t u d e ()+dLat , s e l f .

g e t_ long i tude () , s e l f . g e t _ a l t i t u d e ())
235
236
237 de f move_west (s e l f , d i s t a n c e) :
238 i f s e l f . g e t _ a l t i t u d e () < 5:
239 p r i n t (’ Aero shou ld be at l e a s t 5m o f f the ground ! ’)
240 re turn False
241 dLat = d i s t a n c e /EARTH_RADIUS_EQUATOR
242 s e l f . v e h i c l e . simple_goto (s e l f . g e t _ l a t t i t u d e ()−dLat , s e l f .

g e t_ long i tude () , s e l f . g e t _ a l t i t u d e ())
243
244
245 de f move_north (s e l f , d i s t a n c e) :
246 i f s e l f . g e t _ a l t i t u d e () < 5:
247 p r i n t (’ Aero shou ld be at l e a s t 5m o f f the ground ! ’)
248 re turn False
249 dLon = d i s t a n c e /EARTH_RADIUS_POLE ∗ 180/math . p i
250 s e l f . v e h i c l e . simple_goto (s e l f . g e t _ l a t t i t u d e () , s e l f .

g e t_ long i tude ()+dLon , s e l f . g e t _ a l t i t u d e ())
251
252 de f move_south (s e l f , d i s t a n c e) :
253 i f s e l f . g e t _ a l t i t u d e () < 5:
254 p r i n t (’ Aero shou ld be at l e a s t 5m o f f the ground ! ’)
255 re turn False
256 dLon = d i s t a n c e /EARTH_RADIUS_POLE
257 s e l f . v e h i c l e . simple_goto (s e l f . g e t _ l a t t i t u d e () , s e l f .

g e t_ long i tude ()−dLon , s e l f . g e t _ a l t i t u d e ())
258 " " "
259
260 #

−−

AppendixBContainer HTTP Server

This document contains documentation regarding the FC container and the HTTP
server running inside the FC container. The complete code for the HTTP server can
be found in B.3.

B.1 Docker Image

The container is based on Ubuntu 18.02, running python 2.7.15 with extra python
modules Flask, dronekit and dronekit_sitl. The complete docker image can be found
at [and].

docker pull andersvl/aero_server:v3

B.2 Description

The HTTP server running within the FC container is written using Flask. Flask
is a micro web framework written in Python that offer simple ways to handle
HTTP requests. The complete Flask documentation can be found online[fla]. The
HTTP server delegates communication with the physical Flight Controller (FC)
to a FlightControllerHandler object (appendix A). To simplify development, the
dronekit vehicle object given to the FlightControllerHandler can be simulated us-
ing dronekit_sitl[drod]. Dronekit_sitl is a Software in the Loop simulation of an
Ardupilot FC.

53

54 B. CONTAINER HTTP SERVER

B.3 Code
1 from f l a s k import Flask , r eque s t
2 from werkzeug . s e r v i n g import WSGIRequestHandler
3 import j son , thread ing
4 import dronekit , d r o n e k i t _ s i t l
5 import F l i g h t C o n t r o l l e r H a n d l e r
6
7
8 PORT = 5000
9 DEV_MODE = False

10
11
12 i f DEV_MODE:
13 # Runs a s imula ted Ardupi lo t v3 .3 F l i g h t C o n t r o l l e r
14 print (" \n Running in DEV_MODE! ! \ n")
15 s i t l = d r o n e k i t _ s i t l . s t a r t _ d e f a u l t ()
16 connect ion_st r ing = s i t l . connect ion_st r ing ()
17 else :
18 # S t r i ng t h a t connects to the docker hos t . The por t i s mapped

to the F l i g h t C o n t r o l l e r
19 connect ion_st r ing = " tcp : 1 7 2 . 1 7 . 0 . 1 : 5 7 6 0 "
20
21 print (’ Attempting to connect to f l i g h t c o n t r o l l e r at : {} ’ . format (

connect ion_st r ing))
22 try :
23 Handler = F l i g h t C o n t r o l l e r H a n d l e r . F l i g h t C o n t r o l l e r H a n d l e r (
24 dronek i t . connect (connect ion_str ing , wait_ready=True)
25)
26 except dronek i t . APIException :
27 print (" Not ab le to connect to v e h i c l e due to being d r o n e k i t s i t l

. ")
28
29
30 app = Flask (__name__)
31
32 # Threads t h a t are used to handle some r e q u e s t s . Might be s u p e r f l o u s
33 t1 = None
34 t2 = None
35
36
37 @app . route (" / is_ready " , methods=["GET"])
38 def i s_ready () :
39 return ’Y ’
40
41
42 @app . route (" /mode" , methods=["POST"])
43 def set_vehicle_mode () :
44 i f r eque s t . method != "POST" :
45 print (" v e h i c l e mode change has f a i l e d due to r eque s t .

method not being POST")
46 return
47 else :

B.3. CODE 55

48 data = json . l oads (r eque s t . data)
49 mode = data ["mode"]
50 return Handler . set_vehicle_mode (mode)
51
52
53 @app . route (" /arm" , methods=["POST"])
54 def arm_disarm () :
55 data = json . l oads (r eque s t . data)
56 value = data ["arm"]
57 return Handler . arm_disarm_vehicle (va lue)
58
59
60 @app . route (" / go_to_alt " , methods=["POST"])
61 def go_to_alt () :
62 i f r eque s t . method != "POST" :
63 print (" Veh ic l e mode change has f a i l e d due to r eq ue s t .

method not being POST")
64 return
65 data = json . l oads (r eque s t . data)
66 a l t = data [" a l t "]
67 response = " Going to a l t i t u d e : {} " . format (a l t)
68 t2 = thread ing . Thread (t a r g e t=Handler . go_to_alt , name=" fc_thread

" , a rgs =(a l t , True ,))
69 t2 . s t a r t ()
70 return re sponse
71
72
73 @app . route (’ / get_alt ’ , methods=["GET"])
74 def get_alt () :
75 a l t = Handler . g e t _ a l t i t u d e ()
76 return str (a l t)
77
78
79 @app . route (’ / get_state ’ , methods=[’GET’])
80 def get_state () :
81 s t a t e = Handler . get_state ()
82 return j s on . dumps(s t a t e)
83
84
85
86 @app . route (’ / update ’ , methods=[’GET’ , ’POST ’])
87 def update () :
88 global t1
89 i f r eque s t . method == ’GET’ :
90 i f not t1 or t1 . i s A l i v e () :
91 # Aero i s s t i l l preparing , i . e going to

a l t i t u d e 5 and ho ld ing .
92 return ’N ’
93 s t a t e = Handler . get_state ()
94 return s t a t e [’ ready_update ’]
95
96 else : #Assumes r e q u e s t . method i s POST

56 B. CONTAINER HTTP SERVER

97 print (’AERO w i l l r e c e i v e an update ! Going to a l t 5m and
ho ld ing p o s i t i o n . . . ’)

98 t1 = thread ing . Thread (t a r g e t=Handler . go_to_alt , a rgs
=(5 , True ,))

99 t1 . s t a r t ()
100 return ’ Aero i s prepar ing to r e c e i v e update ! ’
101
102 #

−−

103
104 # These are f u n c t i o n s contained in the updated conta iner_server . py
105
106 @app . route (’ / new_function ’ , methods=[’GET’])
107 def get_new_func () :
108 return Handler . get_updated_func ()
109
110 #

−−

111
112 i f __name__ == ’__main__ ’ :
113 WSGIRequestHandler . p ro toco l_ver s i on = ’HTTP/1 .1 ’
114 # Probsb ly not needed
115
116 app . run (host=’ 0 . 0 . 0 . 0 ’ , port=PORT, use_re loader=False)

AppendixCContainer Handler

This document contains documentation regarding the management of docker con-
tainers. The complete code can be found in C.2

C.1 Description

The FC container has a set of dependencies in order to work properly. The image
that the FC container uses includes dependencies such as the flask and dronekit
library. Additionally, the container needs access to some of the host’s file paths. The
container host has to know the container’s ip address, server state etc. This container
management are handled by the container_handler module. Table C.1 explains some
of its most important functions.

Function Arguments Description
create_server None Creates an instance of an FC container.

Returns its container ID
start_server String con_id Starts the container with id con_id
start_flask_server String con_id Starts the HTTP server within the FC

container with id con_id
server_is_ready String con_id Checks whether the FC container with

id con_id is ready to receive HTTP
requests from the GCS

get_container_ip String con_id Gets the ip address of container with
id con_id

con_stopped String con_id Checks whether the container with id
con_id has stopped

remove_con String con_id Stops and removes the container with
id con_id

Table C.1: Explanation of some of the most important functions

57

58 C. CONTAINER HANDLER

C.2 Code
1 from subproces s import c a l l , Popen , PIPE
2 import r e q u e s t s
3
4 # Path to the aero r e p o s i t o r y
5 PATH_TO_AERO_DIR = ’ /home/ root / aero ’
6
7
8 CONTAINER_SERVER_PORT = ’ 5000 ’
9

10
11 def remove_con (con_id) :
12 c a l l ([’ docker ’ , ’ s top ’ , con_id])
13 c a l l ([’ docker ’ , ’rm ’ , con_id])
14
15
16 def c r ea t e _se rve r () :
17 print (’ Creat ing s e r v e r c o n t a i n e r . . . ’)
18 p = Popen ([’ docker ’ , ’ c r e a t e ’ , ’− i t ’ , ’−v ’ ,
19 ’ {}/ fc_code / s e r v e r : / aero_server ’ . format (PATH_TO_AERO_DIR) ,
20 ’ ander sv l / aero_server : v3 ’] , s tdout=PIPE)
21 p . wait ()
22 return p . communicate () [0] [: 1 2]
23
24
25 def s ta r t_se rve r_conta ine r (con_id) :
26 c a l l ([’ docker ’ , ’ s t a r t ’ , con_id])
27 return con_id
28
29
30 def attach_server_conta iner (con_id) :
31 s ta r t_se rve r_conta ine r (con_id)
32 c a l l ([’ docker ’ , ’ at tach ’ , con_id])
33 return con_id
34
35
36 def s t a r t _ f l a s k _ s e r v e r (con_id) :
37 c a l l ([’ docker ’ , ’ exec ’ , ’−d ’ , con_id , ’ python ’ , ’ / aero_server /

conta ine r_se rve r . py ’])
38
39
40 def server_is_ready (server_ip) :
41 try :
42 print (’ Trying to connect at : http ://{0} :{1}/ is_ready ’ . format (

server_ip , CONTAINER_SERVER_PORT))
43 r = r e q u e s t s . get (’ http ://{0} :{1}/ is_ready ’ . format (server_ip ,

CONTAINER_SERVER_PORT))
44 print (’ r . t ex t in server_is_ready () : ’ . format (r . t ex t))
45 i f r . t ex t == ’Y ’ :
46 return True
47 else :
48 print (" no connect ion er ror , but not ready ? ")

C.2. CODE 59

49 except r e q u e s t s . e x c e p t i o n s . Connect ionError :
50 return False
51
52
53 def start_server_complete () :
54 id = c rea t e_s e rv e r ()
55 s ta r t_se rve r_conta ine r (id)
56 s t a r t _ f l a s k _ s e r v e r (id)
57 return id
58
59
60 def get_current_servers () :
61 s e r v e r s = []
62 cons = get_con_ids ()
63 for i in range (len (cons)) :
64 image = get_con_image (cons [i])
65 i f image . s t a r t s w i t h (’ ander sv l / aero_server : ’) :
66 s e r v e r s . append (cons [i])
67 return s e r v e r s
68
69
70 def get_con_image (con_id) :
71 con = Popen ([’ docker ’ , ’ ps ’ , ’−a f ’ , ’ id={} ’ . format (con_id)] , s tdout=

PIPE) . communicate () [0] . s p l i t (’ \n ’) [1]
72 print (con)
73 con_image = con . s p l i t () [1]
74 return con_image
75
76 def get_forwarding_port (con_id) :
77 p = Popen ([’ docker ’ , ’ port ’ , con_id] , s tdout=PIPE)
78 p . wait ()
79 return p . communicate () [0] . s p l i t (’ : ’) [1] [: 4]
80
81 # Clear a l l con ta iners
82 def c lear_cons () :
83 print (’ Removing a l l c o n t a i n e r s . . . \ n ’)
84 cons = get_con_ids ()
85 for con in cons :
86 stop_conta iner (con)
87 c a l l ([’ docker ’ , ’rm ’ , con])
88 print (’ \nDone ! ’)
89
90
91 def stop_conta iner (con_id) :
92 return c a l l ([’ docker ’ , ’ s top ’ , con_id])
93
94
95 def get_host_port_ (con_id) :
96 return Popen ([’ docker ’ , ’ port ’ , con_id] , s tdout=PIPE) . communicate ()

[0] [: 4]
97
98

60 C. CONTAINER HANDLER

99 def get_container_ip (con_id) :
100 p = Popen ([’ docker ’ , ’ exec ’ , con_id , ’ hostname ’ , ’− i ’] , s tdout=PIPE)
101 p . wait ()
102 return p . communicate () [0] . s p l i t (’ \n ’) [0]
103
104
105 def get_con_ids () :
106 cons = Popen ([’ docker ’ , ’ ps ’ , ’−aq ’] , s tdout=PIPE) . communicate () [0] .

s p l i t (’ \n ’)
107 return cons [s l i c e (len (cons) − 1)]
108
109
110 def get_sel f_con_id () :
111 return Popen ([’ cat ’ , ’ / e t c /hostname ’] , s tdout=PIPE) . communicate ()

[0] [: 1 2]
112
113
114 def get_stopped_containers () :
115 return Popen ([’ docker ’ , ’ ps ’ , ’−aq ’ , ’−− f i l t e r ’ , ’ s t a t u s=e x i t e d ’] ,

s tdout=PIPE) . communicate () [0] . s p l i t (’ \n ’)
116
117
118 def con_stopped (con_id) :
119 return con_id not in get_stopped_containers ()

AppendixDProxy Server

This document contains documentation regarding the proxy server running on the
OS layer. The complete code can be found in D.2.

D.1 Documentation

D.1.1 Forward Class

The Forward class opens up a new socket between the proxy server and the target
FC container.

D.1.2 ProxyServer Class

The ProxyServer class hosts the actual proxy server. When a client connects to
the proxy server, a Forward object (ref. D.1.1 is initialized, and the proxy saves a
socket mapping between the client socket and forward socket. There can be multiple
mappings. In this way, the proxy can forward data between clients and the FC
container. Table D.1 shows this class’ functions.

61

62 D. PROXY SERVER

Function Arguments Description
main_loop None Server starts listening for incoming

connections
on_accept None Creates a new Forward instance and

adds a mapping entry between the
client and the FC container

on_close None Closes the connection between a client
and the FC container. Socket mapping
is removed

on_recv None Investigates request before it is even-
tually forwarded. Updates are recog-
nized and handled outside the FC con-
tainer

Table D.1: Explanation of the ProxyServer class functions

D.1.3 Container Host Functions

Table D.2 shows functions that are used when the container host receives an update.
These functions do not belong to either of the classes described in D.1.1 and D.1.2

Function Arguments Description
aero_inform_update None Informs the current FC container in-

stance that an update will be executed
aero_is_ready_update None Checks whether the drone is ready to

execute update, i.e hovering at fixed
position

start_new_fc_container None Creates a new instance of the FC con-
tainer and starts its HTTP server. Re-
turns the container’s id and ip address

remove_old_fc_server String con_id Used to remove the old FC container.
Removes container with id con_id

run_update None Receives updates from the cloud ser-
vice. Returns True if files were suc-
cessfully received, False if not

Table D.2: Explanation of the container host’s functions, used for
updates and container management

D.2. CODE 63

D.2 Code
1 import socket
2 import s e l e c t
3 import time
4 import sys
5 import r e q u e s t s
6 import conta iner_handler as con
7
8
9 b u f f e r _ s i z e = 1024

10 de lay = 0.0001
11
12 HOST_ADDRESS = ’ 1 9 2 . 1 6 8 . 8 . 1 ’
13 PORT = 8080
14
15
16 # Path to the d i r e c t o r y t h a t conta ins the f i l e s to update
17 PATH = ’ /home/ root / aero / fc_code / s e r v e r / ’
18
19
20 # Values o f the current docker ins tance t h a t communicates with the

p h y s i c a l FLight C o n t r o l l e r
21 FC_CON_ADDRESS = Non
22 FC_CON_URL = None
23 FC_CON_ID = None
24
25 # IP address o f the c loud s e r v i c e . In t h i s case a s e p e r a t e l a p t o p i s

used .
26 CLOUD_ADDRESS = ’ 1 9 2 . 1 6 8 . 8 . 4 3 ’
27
28 # Used f o r proxy f u n c t i o n a l i t y
29 forward_to = None
30
31 class Forward :
32 def __init__ (s e l f) :
33 s e l f . forward = socket . socke t (socke t .AF_INET, socke t .SOCK_STREAM

)
34
35 def s t a r t (s e l f , host , port) :
36 try :
37 s e l f . forward . connect ((host , port))
38 return s e l f . forward
39 except Exception , e :
40 print e
41 return False
42
43 class ProxyServer :
44 i n p u t _ l i s t = []
45 channel = {}
46
47 def __init__ (s e l f , host , port) :
48 s e l f . s e r v e r = socket . socke t (socke t .AF_INET, socke t .SOCK_STREAM)

64 D. PROXY SERVER

49 s e l f . s e r v e r . s e t s o c k o p t (socke t .SOL_SOCKET, socke t .SO_REUSEADDR,
1)

50 s e l f . s e r v e r . bind ((host , port))
51 s e l f . s e r v e r . l i s t e n (200)
52
53 def main_loop (s e l f) :
54 s e l f . i n p u t _ l i s t . append (s e l f . s e r v e r)
55 while 1 :
56 time . s l e e p (de lay)
57 s s = s e l e c t . s e l e c t
58 inputready , outputready , exceptready = s s (s e l f . i nput_l i s t ,

[] , [])
59 for s e l f . s in inputready :
60 i f s e l f . s == s e l f . s e r v e r :
61 s e l f . on_accept ()
62 break
63 s e l f . data = s e l f . s . recv (b u f f e r _ s i z e)
64 i f len (s e l f . data) == 0 :
65 s e l f . on_close ()
66 break
67 else :
68 s e l f . on_recv ()
69
70 def on_accept (s e l f) :
71 forward = Forward () . s t a r t (forward_to [0] , forward_to [1])
72 c l i e n t s o c k , c l i e n t a d d r = s e l f . s e r v e r . accept ()
73 i f forward :
74 print c l i e n t a d d r , " has connected "
75 s e l f . i n p u t _ l i s t . append (c l i e n t s o c k)
76 s e l f . i n p u t _ l i s t . append (forward)
77 s e l f . channel [c l i e n t s o c k] = forward
78 s e l f . channel [forward] = c l i e n t s o c k
79 else :
80 print "Can ’ t e s t a b l i s h connect ion with remote s e r v e r . " ,
81 print " Clos ing connect ion with c l i e n t s i d e " , c l i e n t a d d r
82 c l i e n t s o c k . c l o s e ()
83
84 def on_close (s e l f) :
85 print s e l f . s . getpeername () , " has d i s connected "
86 #remove o b j e c t s from i n p u t _ l i s t
87 s e l f . i n p u t _ l i s t . remove (s e l f . s)
88 s e l f . i n p u t _ l i s t . remove (s e l f . channel [s e l f . s])
89 out = s e l f . channel [s e l f . s]
90 # c l o s e the connect ion with c l i e n t
91 s e l f . channel [out] . c l o s e () # e q u i v a l e n t to do s e l f . s . c l o s e ()
92 # c l o s e the connect ion with remote s e r v e r
93 s e l f . channel [s e l f . s] . c l o s e ()
94 # d e l e t e both o b j e c t s from channel d i c t
95 del s e l f . channel [out]
96 del s e l f . channel [s e l f . s]
97
98 def on_recv (s e l f) :

D.2. CODE 65

99 data = s e l f . data
100 ip , port = s e l f . s . getpeername ()
101 # here we can parse and/or modify the data b e f o r e send forward
102 i f data . s t a r t s w i t h (’UPDATE’) and ip == CLOUD_ADDRESS:
103 print (’ Received r e q u s e s t to update ! Informing F l i g h t

C o n t r o l l e r . . . ’)
104 global FC_CON_ID, FC_CON_ADDRESS, FC_CON_URL, forward_to
105 aero_inform_update ()
106 i f s e l f . run_update () :
107 server_id , server_addr = start_new_fc_server ()
108 remove_old_fc_server (FC_CON_ID)
109 FC_CON_ID = server_id
110 FC_CON_ADDRESS = server_addr
111 FC_CON_URL = ’ http ://{} :5000/ ’ . format (FC_CON_ADDRESS)
112 forward_to = (FC_CON_ADDRESS, 5000)
113 else :
114 s e l f . channel [s e l f . s] . send (data)
115
116
117 # Receives f i l e s from the c loud s e r v i c e
118 def run_update (s e l f) :
119 try :
120 while True :
121 s i z e = s e l f . s . recv (16) # Note t h a t f i l ename l e n g t h s are

l i m i t e d to 255 b y t e s .
122 i f not s i z e :
123 break
124 s i z e = int (s i z e , 2)
125 f i l ename = s e l f . s . recv (s i z e)
126 f i l e s i z e = s e l f . s . recv (32)
127 f i l e s i z e = int (f i l e s i z e , 2)
128 f i l e _ t o _ w r i t e = open(f i l ename , ’wb ’)
129 chunks ize = 4096
130 while f i l e s i z e > 0 :
131 i f f i l e s i z e < chunks ize :
132 chunks ize = f i l e s i z e
133 data = s e l f . s . recv (chunks ize)
134 f i l e _ t o _ w r i t e . wr i t e (data)
135 f i l e s i z e −= len (data)
136
137 f i l e _ t o _ w r i t e . c l o s e ()
138 print ’ F i l e r e c e i v e d s u c c e s s f u l l y ’
139 return True
140 except IOError :
141 print (" IOError occured ! f a i l e t r a n s e r f a i l e d ")
142 return False
143
144
145 # Checks i f Aero i s ready to execute update
146 def aero_is_ready_update () :
147 return r e q u e s t s . get (FC_CON_URL + ’ update ’) . t ex t == ’Y ’
148

66 D. PROXY SERVER

149
150 # Informs the current FC conta iner t h a t an update i s going to be

executed
151 def aero_inform_update () :
152 r = r e q u e s t s . post (FC_CON_URL + ’ update ’)
153 while not aero_is_ready_update () :
154 print (’ Waiting f o r Aero to get ready f o r update . . . ’)
155 time . s l e e p (2)
156 print (’ Aero i s ready to r e c e i v e update ! ’)
157 return r . t ex t
158
159 # S t a r t s a new f l i g h t c o n t r o l l e r s e r v e r in a new conta iner
160 def start_new_fc_server () :
161 print (’ Creat ing new F l i g h t C o n t r o l l e r c o n t a i n e r . . . ’)
162 new_server_id = con . start_server_complete ()
163 new_server_address = con . get_container_ip (new_server_id)
164 while not con . server_is_ready (new_server_address) :
165 print (’ Waiting f o r new s e r v e r c o n t a i n e r to become ready . . . ’)
166 time . s l e e p (2)
167 print (’New F l i g h t C o n t r o l l e r c o n t a i n e r whit ID {} i s ready ! ’ . format

(new_server_id))
168 return new_server_id , new_server_address
169
170 # Removes the o ld f l i g h t c o n t r o l l e r
171 def remove_old_fc_server (con_id) :
172 print (" Removing o ld F l i g h t C o n t r o l l e r c o n t a i n e r with ID { } . . . " .

format (con_id))
173 con . remove_con (con_id)
174 print (" Old F l i g h t C o n t r o l l e r c o n t a i n e r removed ! ")
175
176
177
178 i f __name__ == ’__main__ ’ :
179 # On star tup , a f r e s h F l i g h t C o n t r o l l e r conta iner i s crea ted and

i n i t i a l i z e d
180 FC_CON_ID = con . start_server_complete ()
181 FC_CON_ADDRESS = con . get_container_ip (FC_CON_ID)
182 FC_CON_URL = ’ http ://{} :5000/ ’ . format (FC_CON_ADDRESS)
183
184 forward_to = (FC_CON_ADDRESS, 5000)
185
186 while not con . server_is_ready (FC_CON_ADDRESS) :
187 time . s l e e p (2)
188
189 s e r v e r = ProxyServer (HOST_ADDRESS, 8080)
190 try :
191 s e r v e r . main_loop ()
192 except KeyboardInterrupt :
193 print " Ctr l C − Stopping s e r v e r "
194 sys . e x i t (1)

AppendixEGround Station HTTP Client

This document contains documentation regarding the ground station HTTP client.
The complete code can be found in E.2

E.1 Description

The ground station works as an HTTP client, sending HTTP requests to the HTTP
server hosted by the FC container. The client side uses the python requests framework,
an HTTP API written in python that provides simple methods to generate HTTP
requests. The full documentation on requests can be found in [req]. Table E.1
describes some of the functions of the ground station HTTP client.

Function Arguments Description
request_arm_disarm Boolean value Requests the FC container to arm or

disarm the vehicle based on value
request_set_vehicle_mode String mode Requests the FC container to change

the current flight mode to mode
request_go_to_alt Int alt Requests the FC container to take

the drone to altitude alt
request_get_state None Requests the FC container to return

current vehicle state information
request_updated_function None Requests the FC container to return

data from an updated function.
Table E.1: Explanation of the ground station HTTP client func-
tions

67

68 E. GROUND STATION HTTP CLIENT

E.2 Code
1 import r eques t s , json , time , sys
2
3
4 # IP address o f the Aero drone
5 SERVER = ’ 1 9 2 . 1 6 8 . 8 . 1 ’
6
7 # Port t h a t maps to the proxy s e r v e r on Aero
8 PORT = " 8080 "
9

10 # URL t h a t i s used to access the proxy s e r v e r on Aero
11 URL = " http ://{0} :{1}/ " . format (SERVER, PORT)
12
13 s t a t e = {}
14
15
16 # Change FlightMode
17 def request_set_vehicle_mode (mode) :
18 data = {
19 "mode" : mode ,
20 }
21 r = r e q u e s t s . post (URL + "mode" ,
22 data=json . dumps(data)
23)
24 print (r . t ex t)
25
26
27 def request_get_current_alt () :
28 r = r e q u e s t s . get (URL + " get_alt ")
29 print (’ Current a l t from s e r v e r : {} ’ . format (r . t ex t))
30 s t a t e [’ a l t ’] = f loat (r . t ex t)
31 return s t a t e [’ a l t ’]
32
33
34 def request_arm_disarm (value) :
35 data = {
36 "arm" : va lue
37 }
38 r = r e q u e s t s . post (URL + "arm" ,
39 data=json . dumps(data)
40)
41 print (r . t ex t)
42
43
44 def request_go_to_alt (a l t) :
45 request_get_state ()
46 data = {
47 " a l t " : a l t
48 }
49 r = r e q u e s t s . post (URL + " go_to_alt " ,
50 data=json . dumps(data)
51)

E.2. CODE 69

52 print (r . t ex t)
53 while s t a t e [’ a l t ’] < a l t ∗ 0 . 9 5 :
54 s t a t e [’ a l t ’] = request_get_current_alt ()
55 print (" Current a l t i t u d e : {} " . format (s t a t e [’ a l t ’]))
56 time . s l e e p (2)
57 return True
58
59
60 def request_update_inform () :
61 r = r e q u e s t s . post (URL + ’ update ’)
62 s t a t e [’ ready_update ’] = ’N ’
63 while s t a t e [’ ready_update ’] != ’Y ’ :
64 print (’ Waiting f o r Aero to get ready f o r update . . . ’)
65 s t a t e [’ ready_update ’] = request_update_is_ready ()
66 time . s l e e p (2)
67 print (’ Aero i s ready to r e c e i v e update ! ’)
68 return r . t ex t
69
70 def request_update_is_ready () :
71 r = r e q u e s t s . get (URL + ’ update ’)
72 return r . t ex t
73
74 def request_do_update (∗ args) :
75 data = {
76 ’ f i l e n a m e s ’ : a rgs
77 }
78 r = r e q u e s t s . post (URL + ’ do_update ’ ,
79 data=json . dumps(data)
80)
81 return r . t ex t
82
83
84 def request_updated_function () :
85 r = r e q u e s t s . get (URL + ’ new_function ’)
86 try :
87 return j s on . l oads (r . t ex t)
88 except :
89 return r . t ex t
90
91
92 def request_get_state () :
93 global s t a t e
94 r = r e q u e s t s . get (URL + ’ get_state ’)
95 s t a t e = j son . l oads (r . t ex t)
96 return s t a t e

AppendixFSimulated Cloud Service

This document contains documentation regarding the simulated cloud service. The
complete code can be found in F.2

F.1 Description

The simulated cloud service is nothing more than a short script that attempts to
transfer files to the Drone.

F.2 Code
1 import socket
2 import os
3
4 b u f f _ s i z e = 1024
5 CONN = socket . socke t ()
6 PORT = 8080
7
8 # Path to the l o c a l f i l e s t h a t w i l l be t r a n s f e r r e d .
9 PATH = ’<PATH_TO_AERO_REPO>/ftp_serve r / f i l e s / ’

10
11 # IP address o f Aero drone
12 HOST = ’ 1 9 2 . 1 6 8 . 8 . 1 ’
13
14 CONN. connect ((HOST, PORT))
15
16 # Name of the f i l e s t h a t w i l l be t r a n s f e r r e d
17 FILENAMES = [’ conta ine r_se rve r . py ’ , ’ F l i g h t C o n t r o l l e r H a n d l e r . py ’]
18
19 CONN. send (’UPDATE’ . l j u s t (b u f f _ s i z e))
20
21 for f i l ename in FILENAMES:
22 f i l en am e_ s i z e = bin (len (f i l ename)) [2 :] . z f i l l (16) # Encode f i l ename

s i z e as 16 b i t b inary
23 CONN. send (f i l e nam e_ s i z e)
24 CONN. send (f i l ename)

71

72 F. SIMULATED CLOUD SERVICE

25
26 f i l e s i z e = bin (os . path . g e t s i z e (PATH + f i l ename)) [2 :] . z f i l l (32) #

Encode f i l ename s i z e as 32 b i t b inary
27 CONN. send (f i l e s i z e)
28 f = open(’ f i l e s /{} ’ . format (f i l ename) , ’ rb ’)
29 CONN. s e n d a l l (f . read ())
30
31
32 f . c l o s e ()
33 print (’ Done sending f i l e : {} ’ . format (f i l ename))
34
35 CONN. c l o s e ()

AppendixGApplication Setup

This document describes how to setup and run the proposed solution presented in
4.4 on the Intel Aero Ready To Fly, step-by-step. Before attempting to run this
application, make sure you are comfortable with using the transceiver to control the
drone and changing flight modes, as well as QGroundControl [qgr] to monitor the
drone state. If something goes wrong, you should be able to take control of the Intel
Aero RTF using the transceiver. It is also suggested to perform all flying in an open,
lucidly area that is clear of people.

When going through the steps, having a monitor and keyboard connected to the
drone would be helpful, as the drone requires Internet access to perform some of the
steps (2, 3, 4, 5). You can also ssh into the drone over usb, but this connection was
experienced to be a bit unreliable.

Step 1: Initial setup

First, make sure the drone is flashed with the latest versions of Operating Sys-
tem, BIOS, FPGA and FC. The OS .iso file can be downloaded from [rtf]. The .iso
file contains the .rpm for the BIOS, .jam for the FPGA and the .px4 for the FC.
Detailed steps of the flashing process can be found on the Intel Aero github wiki
[inta].

Step 2: Connect to the Internet

The Intel Aero RTF is by default using its wireless interface as a hotspot, cre-
ating its own wireless network. In order to connect to the Internet, this hotspot
has to be taken down. Run the following commands to take down the hotspot,
list available APs and connecting to the desired one, substituting <SSID> and
<PASSWORD> with the AP’s ssid and password:

1 $ nmcli con down hotspot
2 $ nmcli dev w i f i

73

74 G. APPLICATION SETUP

3 $ nmcli dev w i f i connect <SSID> password <PASSWORD>

Step 3: Make sure docker is working

The default Intel Aero RTF OS should contain docker by default. You can check
this by running:

1 $ docker −−v e r s i o n
2
3 Docker v e r s i o n 13 . x . x , bu i ld xxxxxxx

The version should be 13 or higher. Then, run the following command to verify that
docker works properly:

1 $ docker run h e l l o −world
2
3 Unable to f i n d image ’ h e l l o −world : l a t e s t ’ l o c a l l y
4 l a t e s t : P u l l i n g from l i b r a r y / h e l l o −world
5 ca4f61b1923c : Pul l complete
6 Digest : sha256 :

ca0eeb6fb05351dfc8759c20733c91def84cb8007aa89a5bf606bc8b315b9fc7

7 Status : Downloaded newer image for h e l l o −world : l a t e s t
8
9 He l lo from Docker !

10 This message shows that your i n s t a l l a t i o n appears to be working
c o r r e c t l y .

11 . . .

This commands pulls a test image from the remote dockerhub and runs it on your
computer.

Step 4: Pull the FC container image

Run the following command to download and extract the FC container image.
This could take a few seconds:

1 $ docker p u l l ander sv l / aero_server : v3
2
3 v3 : P u l l i n g from ander sv l / aero_server
4 f476d66f5408 : Already e x i s t s
5 8882 c27 f669e : Already e x i s t s
6 d9af21273955 : Already e x i s t s
7 f5029279ec12 : Already e x i s t s
8 3 fa3a6069c9e : Already e x i s t s
9 c67ece1384e1 : Already e x i s t s

10 3 da8e716c67a : Already e x i s t s
11 d7fc24564a2b : Already e x i s t s
12 77 be71115a27 : Already e x i s t s

75

13 c2718f1e1e97 : Already e x i s t s
14 da906a80bc4d : Pul l complete
15 c08108ddad2a : Pul l complete
16 7 e6903301d2d : Pul l complete
17 21 aae9eaba70 : Pul l complete
18 Digest : sha256 :7267

c21f46e702b6fd63207fcb9538e9d9a84178fcbd8c8 fa0ceb5a6f76ae793
19 Status : Downloaded newer image for ander sv l / aero_server : v3

Now you should have the FC container image locally.

Step 5: Pyhton and additional modules

Python 2.7, together with pip should already be installed on Intel Aero RTF. To
make sure they are, run:

1 $ python −−v e r s i o n
2 $ pip −−v e r s i o n

Now, install the requests module [req]
1 $ pip i n s t a l l r e q u e s t s

Make sure that python 2.7 and requests are also installed on the separate computer
that is used as the ground station.

Step 6: Cloning the github repository

Git should be installed on the Intel Aero RTF by default. Run the following
command to clone the aero repository containing code for the different components.
This should also be ran on the laptop that is to be used as teh ground station.

1 $ cd
2 $ g i t c l one https : // github . com/ ander sv l / aero

Some variables might have to change in order for the code to work. These are local
path variables and ip addresses, and are presented in step 8.The next steps require
the Intel Aero RTF to host the default hotspot.

Step 7: Enable hotspot and ssh into Intel Aero RTF

To enable the default hotspot, run
1 $ nmcli con up hotspot

Now, on a separate computer, connect to the Intel Aero RTF hotspot. The ssid
should be "AERO-<MAC>" where <MAC> is the mac-address of the Intel Aero

76 G. APPLICATION SETUP

RTF, and the password should be "1234567890". SSH into the Intel Aero RTF
(Assuming running a linux terminal):

1 $ ssh root@192 . 1 6 8 . 8 . 1

192.168.8.1 is the ip address of Intel Aero RTF when hosting its own AP. No password
should be required, but one can be set up after connected.

Step 8: Changing file path and ip address variables

Some of the files contains file paths that has to change in order to work. These
files should reflect the local file paths (i.e paths on Intel Aero RTF), and these files are:

aero/fc_code/server/container_handler.py, line 8
PATH_TO_AERO_DIR
Should hold the complete file path to the aero/ repository.

aero/fc_code/server/proxy_server.py, line 18
PATH
Should hold the complete file path to aero/fc_code/server/

aero/fc_code/server/proxy_server.py, line 27
CLOUD_ADDRESS
Should hold the ip address of the of the computer hosting the cloud service. In the
project, this was the ip address of the laptop connected to the hotspot.

aero/fc_code/server/container_server.py, line 9
DEV_MODE
Should be True when wanting to simulate the FC (develop mode), False to use the
physical FC

aero/ftp_server/files/container_server.py, line 9
DEV_MODE
Should be True when wanting to simulate the FC (develop mode), False to use the
physical FC

aero/ftp_server/filetransferTCPserver.py, line 10
PATH
Should hold the complete file path to aero/ftp_server/files

aero/ftp_server/filetransferTCPserver.py, line 13
HOST

77

Should hold the ip address of Intel Aero RTF (which is 192.168.8.1 by default)

aero/fc_code/client/simpleclient.py, line 5
SERVER
Should hold the ip address of Intel Aero RTF (which is 192.168.8.1 by default)

Step 9: Preparing the updating files

The files that will be transferred to Intel Aero RTF resides in the aero/ftp_server/files
directory. The files that will be overwritten resides in the aero/fc_code/server di-
rectory, and the filenames are "FlightControllerHandler.py" and "container_server.py".
Some of the functions and variables of these files should exist only in aero/ftp_server/files
directory of the file transferring entity, and not in the aerp/fc_code/server directory
of the Intel Aero RTF. These functions and variables are:

FlightControllerHandler.py:
Everything below line 203
line 6, ALLOWED_FLIGHT_MODES should only contain "STABILIZE", "GUIDED",
and "LOITER". When updated, the list will contain flight modes "FLIP" and "RTL"
as well.

container_server.py:
line 106, get_new_function()

When updating, the files will be transferred from the aero/ftp_server/files directory
on the file transferring entity, into the aerp/fc_code/server directory of the Intel
Aero RTF.

Step 10: Running the whole thing

It is suggested to first test the application running the FC simulator,
making sure everything works as expected.

After all the software is installed on the Intel Aero RTF, make sure its default
hotspot is up and ssh into the drone. On the ground station, open QGroundControl
and make sure the drone has GPS signal and that the flight mode is set to "Stabilize".

1 $ ssh root@192 . 1 6 8 . 8 . 1

Then, cd to the /server directory and start the proxy server.
1 root@aero$ cd aero / fc_code / s e r v e r

78 G. APPLICATION SETUP

2 root@aero$ python proxy_server . py
3 Creat ing s e r v e r c o n t a i n e r . . .
4 004 f d 2 9 9 5 f e f
5 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
6 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
7 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
8 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
9 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready

10 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
11 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
12 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
13 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
14 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 2 : 5 0 0 0 / is_ready
15 r . t ex t in server_is_ready () :

When starting the proxy server, a new FC container is created and started. The FC
container connects to the FC (simulated or physical). "r.text in server_is_ready():"
means that the FC container is ready.

Now, attempt to take the drone to altitude 5 meters. On the laptop working
as the ground station, start python and import the simpleclient.py module:

1 $ cd aero / fc_code / c l i e n t
2 $ python
3 Python 2 . 7 . 1 5 rc1 (de fau l t , Nov 12 2018 , 1 4 : 3 1 : 1 5)
4 [GCC 7 . 3 . 0] on l inux2
5 Type " he lp " , " copyr ight " , " c r e d i t s " or " l i c e n s e " for more

in fo rmat ion .
6 >>> import s i m p l e c l i e n t as c l i
7 >>> c l i . request_updated_function ()
8 u ’ <!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 3.2 Fina l //EN">\n<t i t l e

>404 Not Found</ t i t l e >\n<h1>Not Found</h1>\n<p>The reques ted
URL was not found on the s e r v e r . I f you entered the URL
manually p l e a s e check your s p e l l i n g and try again .</p>\n ’

9 >>>

The snippet above attempts to get a function that does not yet exist. Now we will
update the Intel Aero RTF to contain that function while being midair. The following
code makes the drone take off to 3 meters and holding its position.

1 >>> c l i . request_go_to_alt (3)
2 Going to a l t i t u d e : 3
3 True

Now, in a new terminal window on the ground station, cd into the ftp_server
directory:

1 $ cd aero / f tp_serve r
2 $ python f i l e t r a n s f e r T C P s e r v e r . py

79

3 Done sending f i l e : conta ine r_se rve r . py
4 Done sending f i l e : F l i g h t C o n t r o l l e r H a n d l e r . py

If Intel Aero RTF received the files, it will rise to and altitude of 5 meters and apply
the updates. This includes to start a new FC container with the new files, changing
routing so that requests are received by the new container and closing the old FC
container. If successful, the output of the proxy server should look something like
this:

1 Received r e q u s e s t to update ! Informing F l i g h t C o n t r o l l e r . . .
2 Waiting for Aero to get ready for update . . .
3 Waiting for Aero to get ready for update . . .
4 Waiting for Aero to get ready for update . . .
5 Waiting for Aero to get ready for update . . .
6 Waiting for Aero to get ready for update . . .
7 Waiting for Aero to get ready for update . . .
8 Aero i s ready to r e c e i v e update !
9 F i l e r e c e i v e d s u c c e s s f u l l y

10 F i l e r e c e i v e d s u c c e s s f u l l y
11 Creat ing new F l i g h t C o n t r o l l e r c o n t a i n e r . . .
12 Creat ing s e r v e r c o n t a i n e r . . .
13 f d 7 f a 4 f 3 4 6 1 7
14 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
15 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
16 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
17 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
18 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
19 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
20 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
21 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
22 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
23 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
24 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
25 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
26 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
27 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
28 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
29 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
30 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
31 Waiting for new s e r v e r c o n t a i n e r to become ready . . .
32 Trying to connect at : http : / / 1 7 2 . 1 7 . 0 . 3 : 5 0 0 0 / is_ready
33 r . t ex t in server_is_ready () :
34 New F l i g h t C o n t r o l l e r c o n t a i n e r whit ID f d 7 f a 4 f 3 4 6 1 7 i s ready !
35 Removing old F l i g h t C o n t r o l l e r c o n t a i n e r with ID 4928 ed22c8e1 . . .
36 4928 ed22c8e1
37 4928 ed22c8e1
38 Old F l i g h t C o n t r o l l e r c o n t a i n e r removed !

We should now be able to request the new function from the ground station:
1 >>> p r i n t (c l i . request_updated_function ())

80 G. APPLICATION SETUP

2 This i s an updated function !
3 Checking i f s t a t u s b e f o r e update has remained :
4 Veh ic l e mode : GUIDED
5 System s t a t u s : ACTIVE
6 Al t i tude : 4 .99
7 Try to change something through the c l i e n t ! !
8 >>>

We can also attempt to land the drone:
1 >>> c l i . request_set_vehicle_mode ("RTL")
2 Success ! Veh ic l e mode changed to RTL
3 >>>

The drone should now go to a certain altitude, and then start slowly sinking to
the ground. Hurray, we have now update the Intel Aero RTF while being midair!

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Topic area
	FourC

	Background
	First attempt
	Second attempt
	Third attempt

	Objectives
	Thesis Layout

	Theory
	Basic Computer Terms
	Hardware
	Software
	Firmware
	os
	Instruction Set Architecture and x86
	Updates

	Drone
	imu
	gnss
	Rangefinder
	Optical Flow
	gcs

	The FourC Platform
	iot
	Cloud Services
	Containers
	The Platform

	Equipment and Planned Setup
	Early Choices
	General Design Choices
	Choice of Drone

	Hardware
	Intel Aero Compute Board
	fc
	Intel Aero Vision Kit
	Rangefinder
	Power supply

	Software
	fc Firmware
	MAVLink
	gcs

	Implementation
	Initial Steps
	Disk Cloning
	Flashing and Calibration
	Improving Center of Gravity

	Limitations
	Position Hold
	os and Containers
	Time Shortage and Scope Reduction

	Implementation Method
	Proposed Solution to Midair Software Updates
	Connecting the Components
	Container
	os Layer

	Choices of Software
	fc api
	Communication Between Drone and gcs
	Software Environments

	Some Approaches for os Updates

	Implementation Process and Results
	First Flight
	Objective 1: Software Updates
	Drone Control over HTTP
	File Transfer
	Container Management
	Test of Proposed Solution

	Objective 2: os Updates

	Conclusion
	Summary
	Solution proposal
	Possible Improvements
	Future Research

	References
	FlightControllerHandler
	Description
	Code

	Container HTTP Server
	Docker Image
	Description
	Code

	Container Handler
	Description
	Code

	Proxy Server
	Documentation
	Forward Class
	ProxyServer Class
	Container Host Functions

	Code

	Ground Station HTTP Client
	Description
	Code

	Simulated Cloud Service
	Description
	Code

	Application Setup

