
K
rishna Shingala

A
n alternative to P

K
I for IoT

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Krishna Shingala

An alternative to the Public Key
Infrastructure for the Internet of
Things

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski, Katina Kralevska, Torstein
Heggebø

June 2019

An alternative to the Public Key Infras-
tructure for the Internet of Things

Krishna Shingala

Submission date: June 2019
Responsible professor: Danilo Gligoroski, IIK, NTNU
Supervisor: Danilo Gligoroski, IIK, NTNU
Co-Supervisor: Katina Kralevska, IIK, NTNU
Co-Supervisor: Torstein Heggebø, Nordic Semiconductor ASA

Norwegian University of Science and Technology
Department of Information Technology and Electrical Engineering

Title: An alternative to the Public Key Infrastructure
for the Internet of Things

Student: Krishna Shingala

Problem description: Internet of Things (IoT) enables participation of constrained
devices on the Internet. Limited resources, bandwidth, and power on the devices
have led to new protocols. Some examples of IoT driven and driving protocols are:

– MQTT, CoAP that are application protocols for IoT;
– 6LoWPAN enables efficient support of IPv6 on low power lossy networks;
– CBOR enables concise data formatting; and
– DTLS enables secure channel establishment over unreliable transport like the
UDP.

Security is one of the key factors for the success of IoT. TLS/DTLS secures the
channel between the servers and the devices. Confidentiality is an important aspect
of such a secure channel. Establishing the identity of an entity another. Identity and
Access Management (IAM) refers to identity based management of access rights.

IoT services use the new application protocols but reuse the security architecture
from the already existing web service. The security of all services on the Internet
today stand on the Public Key Infrastructure (PKI). The Certificate Authority (CA)
provides the root of trust.

The PKI is designed, improved, and extended till date for communication between
a web service and browser client operated by a user. The IoT devices neither have a
user interface or the resources of a PC. These devices are not general-purpose clients
that connect to many services. Hence, many features of PKI may be ill-suited for
IoT.

The master thesis questions the relevance of PKI for the IoT. Efficiency and
security are the two main aspects evaluated. In addition, a study conducted to
explore any alternative trust models that do not need a certificate authority.

Note: The title of the thesis is updated based on feedback received during the presentation
of the results at the faculty. The problem description and the scope remain unchanged.

Responsible professor: Danilo Gligoroski, IIK, NTNU
Supervisor: Danilo Gligoroski, IIK, NTNU

Katina Kralevska, IIK, NTNU
Torstein Heggebø, Nordic Semiconductor ASA

Abstract

Identity and Access Management (IAM) is an integral part of the
security solution for IoT. Today, the cloud service providers determine the
IAM schemes, and the constrained IoT devices implement them. The IoT
services adapt to use an IoT application layer protocol like the MQTT;
however, for IAM, the authentication of these services is identical to the
web services and mandates the support for Public Key Infrastructure
(PKI) on constrained clients that are no user-operated browsers.

On a constrained device, the verification of the X.509 certificate chain
is resource intensive and requires information like the time - information
that may be missing or unavailable on the device. Further, today, the
resourceful and human-aided browsers struggle to effectively handle the
security exceptions triggered by expired, revoked, and malicious X.509
certificates. These challenges only compound with sleepy, battery powered,
and remotely operated devices with no possibility for human inspection.

PKI may not just be inefficient and demanding but can overwhelm a
minimally equipped IoT device with a large and ever-expanding umbrella
of trust. An IoT device connects to only a handful for services in its entire
lifetime and needs limited trust. PKI may, therefore, be ill-suited for
IoT. A study of the existing alternatives to the PKI provides no solution
suitable for use in IoT. Besides, some alternatives like the OAuth-based
federated identity, rely on PKI for service authentication.

We present a novel trust model, Vriksh: The Tree of Trust (VTT),
tailored for use in IoT. This model aims to provide an embedded device-
friendly entity authentication and limit the trust peripheries. With VTT,
trust trees group the identities with equal access rights in the system
using Merkle trees. We prototype the use of VTT with TLS raw public
keys to compare the energy and resource efficiency of VTT with PKI on
an embedded platform.

With VTT, we show new, efficient solutions for emerging use cases
are possible without the invention of new cryptographic primitives or
modifications to the existing ciphers in TLS. However, to establish VTT as
an alternative to PKI, the verification of the proposed revocation methods
for VTT and independent security reviews are essential. Moreover, PKI

with its wide-scale use, enjoys the privilege of constant improvement with
extensive use, scrutiny, many attacks, and known vulnerabilities.

In the absence of ready alternatives, we make deployment recommen-
dations for the use of PKI in IoT based on findings from this thesis. A
question raised in the thesis, however, remains unaddressed for PKI -
How to handle certificate expiry and revocation in remotely operated IoT
devices? A critical topic to be pursued in the future to secure IoT.

Preface

The Masters and this thesis is an attempt to break free from a
preoccupation - What motivates humans, in particular, me?

Nordic Semiconductor ASA and Norway offers a secure life. The
realization of this secure life came the hard way. Acknowledgment of
complacency had to come first. In India, all the education and Bachelors
was the stepping stone towards a job, financial independence, and security.
I concluded that the motivation is directly proportional to insecurity.
Moreover, security has no relation to fulfillment.

The conclusion conflicted with the natural urge to evolve, to be
fulfilled. I wondered what next? The appeal of research is high; the
opportunity and support offered by the life in Norway conducive. The
industry experience helped reveal enough unaddressed matters demanding
attention and research. Factors that motivate me to take up part-time
Masters alongside my employment at Nordic Semiconductor ASA.

The pleasure of study without pressure is a gift. A gift contributed
to by many - Nordic Semiconductor ASA, NTNU, and the Norwegian
taxpayers. Deep gratitude for the vast access to knowledge and an
opportunity to be curious.

The curse of this gift is - the only limiting factor in my research,
and all my endeavors is me. My imagination, aspiration, and capacity
determine the benchmarks. Fortunately, I have always found support to
live the curse - at work, at university, from friends and family!

So, the revised life equations are:
1. Security can create opportunity.
2. Motivation is proportional to the product of curiosity and opportu-

nity.
3. We seek to be fulfilled. Hence the motivation is to be fulfilled.

So this leads to the new preoccupation is: Why do humans seek fulfill-
ment?

Disclaimer: any information in the preface is personal, including and
particularly the life equations.

Acknowledgment

Heartfelt gratitude to my supervisors, Danilo Gligoroski, Katina
Kralevska, and Torstein Heggebø. They have encouraged me and provided
timely, critical, yet constructive feedback through their review.

I have been fortunate to receive constant support throughout my part-
time studies from Torstein as a boss, and Nordic Semiconductor ASA
as an employer. The many colleagues at Nordic, through their interest
and co-operation in my studies, have transformed my achievement into
our collective achievement. No expression of gratitude exists for such
inclusiveness.

Finally, many thanks to my friends and family that kept me human
and sane through the overload of study during employment.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Scope . 1
1.2 Motivation . 2
1.3 Objective and Methodology . 3

2 Background 5
2.1 Trust Management with PKI . 6

2.1.1 X.509 Certificate . 6
2.1.2 Certificate Issuance . 7
2.1.3 Certificate Validation . 7
2.1.4 Expiry and Revocation . 8
2.1.5 PKI based entity authentication . 9

2.2 PKI Vulnerabilities and Attacks . 11
2.2.1 CA Private Key Compromise . 11
2.2.2 Man in the middle attacks . 12
2.2.3 Revocation . 13

2.3 Use of PKI in IoT . 13
2.4 PKI Challenges for IoT . 14

2.4.1 Time . 14
2.4.2 Revocation . 15
2.4.3 Root Store . 15
2.4.4 Lack of User Interface . 15

3 Existing Alternatives to PKI 17
3.1 Symmetric Keys . 20
3.2 Simple Public Key Infrastructure . 22
3.3 Federated Identity . 23
3.4 Web Of Trust . 24
3.5 Pairing Based Encryption . 24

vii

3.5.1 Certificate-less Public Key Cryptography 25
3.5.2 Milagro . 25

3.6 Enhanced Privacy ID . 26
3.7 Trust On First Use . 26
3.8 Blockchain . 27
3.9 TLS: Raw Public Keys . 28
3.10 Summary . 28

4 Vriksh: The tree of trust 31
4.1 Overview . 32
4.2 Why use a Merkle Tree? . 33
4.3 Setup . 33
4.4 Tree size and depth . 33
4.5 Tree membership . 34

4.5.1 Store all, compute less . 34
4.5.2 Compute all, store less . 35
4.5.3 Store less, compute one . 35
4.5.4 The trade-off . 36

4.6 Identity and Authentication . 36
4.7 The garden of trust . 39

4.7.1 The trust periphery . 40
4.8 The living tree . 40

4.8.1 Autonomous trees . 41
4.8.2 Non-autonomous trees . 41

4.9 Use of VTT with TLS . 42
4.9.1 Client Initiated Communication . 43
4.9.2 Server Name Indication . 43

5 Prototype 45
5.1 Assumptions . 46
5.2 Components and Tools . 46

5.2.1 TLS Library . 46
5.2.2 Merkle Tree . 47
5.2.3 Wireshark . 48
5.2.4 Python . 48

5.3 Actors . 48
5.4 Development Increments . 49

5.4.1 Credential Set Up . 49
5.4.2 X.509 certificates with PKI authentication 51
5.4.3 Raw public keys with no authentication 51
5.4.4 Raw public keys with digest-based authentication 51
5.4.5 Raw public keys with VTT based authentication 52

5.5 Summary . 54

6 Evaluation 55
6.1 Methodology . 55

6.1.1 Why ECDSA? . 56
6.1.2 Why SHA-256? . 56
6.1.3 Platform . 57
6.1.4 Test parameters . 57
6.1.5 Measurement tool . 58
6.1.6 Application . 59

6.2 Energy Consumption - Theory . 60
6.3 Energy Consumption - Crypto . 60

6.3.1 ECDSA Verify . 60
6.3.2 SHA-256 Digest . 61
6.3.3 ECDSA Verify vs. SHA-256 Digest 62

6.4 PKI vs. VTT: Energy consumption - Verify 62
6.5 Dynamic memory . 63
6.6 Persistent Storage memory . 64
6.7 Energy Consumption - Radio . 65
6.8 Consolidated results and analysis . 67

6.8.1 Embedded device-friendly . 69
6.8.2 The cost of limited trust . 70

7 Discussion 73
7.1 Towards a holistic view . 73

7.1.1 The Service Perspective . 73
7.1.2 Key Expiration . 74
7.1.3 System Setup and Management . 75

7.2 The elephants in the room . 78
7.2.1 Detection and Report of Security Exceptions 78
7.2.2 Trust and Access Policy propagation 78
7.2.3 Security Analysis . 78

7.3 Deployment recommendations for PKI . 79

8 Conclusion and Future work 81
8.1 Conclusion . 81
8.2 Future Work . 81

References 83

Appendices

A Evaluation - Code and Scripts 93

B Conference Paper - Draft 99

List of Figures

1.1 IoT use cases and common requirements 1

2.1 PKI: Authentication of a web service . 5
2.2 PKI: X.509 Certificate Structure . 7
2.3 PKI: A self-signed X.509 Certificate . 8
2.4 PKI: A certificate signing request . 9
2.5 PKI: X.509 Certificate Validation . 10
2.6 PKI: Entity authentication with X.509 certificate chain 10
2.7 PKI: Trust propagation in certificate chain 12
2.8 PKI: Authentication of an IoT service 13

3.1 How to Prove Yourself: Classification of Identity schemes 17
3.2 NoT: A sample interaction between the primitives 19
3.3 Message authentication using pre-shared key 21
3.4 ACE-OAuth: Basic protocol flow . 23
3.5 Milagro: Distributed Trust Authority 25

4.1 VTT: A sample trust tree. 32
4.2 VTT: Merkle Tree Authentication with SACL method 34
4.3 VTT: Normative authentication protocol 37
4.4 VTT: Normative authentication using a signature scheme 38
4.5 VTT: Normative mutual authentication protocol 38
4.6 VTT: Sample Identity and Access Management 39
4.7 VTT: Integration with TLS for entity authentication 42

5.1 PKI: Evaluation setup for a long Certificate Chain. 49
5.2 PKI: Evaluation setup for a long Certificate Chain 50
5.3 VTT: The trust tree used for prototype and evaluation 50
5.4 PKI: Successful TLS Handshake with test CA Setup 51
5.5 VTT: Use of SHA-256 digest to detect an adversary 52
5.6 VTT: Use of SHA-256 digest to trust a raw public key 53
5.7 VTT: TLS connection from a non-member is aborted by the client . . . 53

xi

6.1 nRF52840: Evaluation embedded platform 57
6.2 Nordic PPK: Energy measurement hardware 58
6.3 nRFConnect for Desktop: Energy measurement PC tool 59
6.4 ECDSA Verify: Energy consumption on nRF52840 60
6.5 ECDSA Verify: Measurement Interval on nRF52840 61
6.6 SHA-256 Digest: Energy consumption on nRF52840 61
6.7 SHA-256 Digest: Measurement Interval on nRF52840 62
6.8 PKI: Size of Short Certificate Chain . 65
6.9 VTT: TLS Raw public key size . 65
6.10 nRF52840: Estimated energy consumption of the BLE radio 66
6.11 VTT: Plot of energy consumption as a function of tree depth 70
6.12 VTT: Plot of persistent memory requirement as a function of tree depth 71

7.1 IoT Device life cycle . 75

List of Tables

2.1 IoT Client and Server Authentication schemes 14

4.1 Merkle Tree: Resource requirements for membership verification 36

6.1 ECDSA Verify vs. SHA-256 Digest: Performance on nRF52840 62
6.2 PKI vs. VTT: Count of cryptographic operations per authentication . . 63
6.3 PKI vs. VTT: Energy cost for authentication 63
6.4 PKI vs. VTT: Dynamic memory requirements 64
6.5 PKI vs. VTT: Persistent memory requirements 64
6.6 PKI vs. VTT: Energy consumption for the radio on nRF52840 67
6.7 PKI vs. VTT: Evaluation Summary . 68

xiii

List of Acronyms

3GPP The 3rd Generation Partnership Project.

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks.

ACE-OAuth Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework.

AES Advanced Encryption Standard.

ASN.1 Abstract Syntax Notation One.

AWS Amazon Web Service.

BLE Bluetooth Low Energy.

CA Certificate Authority.

CASL Compute all, store less.

CBOR Concise Binary Object Representation.

CoAP Constrained Application Protocol.

CRL Certificate Revocation List.

CSR Certificate Signing Request.

CWT CBOR Web Token.

DAA Direct Anonymous Attestation.

DER Distinguished Encoding Rules.

DNS Domain Name Server.

DTLS Datagram Transport Layer Security.

xv

ECC Elliptic Curve Cryptography.

ECDSA Elliptic Curve Digital Signature Algorithm.

EC-PAKE Elliptic Curve - Password Authenticated Key Exchange.

EPID Enhanced Privacy ID.

EST Enrollment over Secure Transport.

HPKP HTTP Public Key Pinning.

HTTP Hypertext Transfer Protocol.

IAIK The Institute of Applied Information Processing and Communications.

IAM Identity and Access Management.

IBC Identity Based Encryption.

IdP Identity Provider.

IETF Internet Engineering Task Force.

IM Subscriber Identification Module.

IMSI International Mobile SUbscriber Identity.

IoT Internet of Things.

IP Internet Protocol.

ITU International Telecommunication Union.

ITU-T ITU Telecommunication Standardization Sector.

JWT JSON Web Token.

MITM Man-in-The-Middle.

MQTT Message Queuing Telemetry Transport.

NIST National Institute for Standards and Technology.

NoT Network of Things.

NTP Network Time Protocol.

OCSP Online Certificate Status Protocol.

PAKE Password Authenticated Key Exchange.

PBC Pairing-Based Cryptography.

PKCS Public Key Cryptography Standards.

PKI Public Key Infrastructure.

PKIX Public Key Infrastructure X.509 Certificate.

PPK Power Profiler Kit by Nordic Semiconductor ASA.

PSK Pre-Shared Key.

RoT Root of Trust.

RSA Rivest–Shamir–Adleman.

RTC Real Time Clock.

SACL Store all, compute less.

SCEP Simple Certificate Enrollment Protocol.

SCPKI Smart Contract Based Public Key Infrastructure.

SDO Secure Device Onboarding.

SDSI Simple Distributed Security Infrastructure.

SHA Secure Hash Algorithm.

SLCO Store less, compute one.

SNI Server Name Indication.

SNTP Simple Network Time Protocol.

SPKI Simple Public Key Infrastructure.

SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TOFU Trust On First Use.

TPM Trusted Platform Module.

UDP User Datagram Protocol.

VTT Vriksh: The Tree of Trust.

WoT Web of Trust.

WPA2 Wi-Fi Protected Access II.

WPA3 Wi-Fi Protected Access III.

ZKP Zero Knowledge Proof.

Chapter1Introduction

1.1 Scope

The term Internet of Things (IoT) encompasses a vast variety of use cases. The
simple and loose criteria of a constrained device connected to the cloud over the
Internet can be met by a wearable, connected car, smart home appliance, asset
tracker, predictive maintenance sensor and many more. Such a generalization is
excellent for conceptualization and can identify common requirements for all the use
cases. However, such generalization can mask the critical differences between the use
cases and may result in inapt solutions.

Figure 1.1: Some IoT use cases depicted as tracks and few requirements as junctions.
All tracks diverge after the start at the ’Cloud Connectivity’ junction.

Figure 1.1 depicts the commonality and differences between some of the common
IoT use cases. In the figure, the size of the requirement junctions are proportional to

1

2 1. INTRODUCTION

the number of use case tracks passing it. The use cases should have ’Constrained
Device’ as a common requirement junction, not just ’Cloud Connectivity’. However,
this is not the case. The definition of a Constrained Device can vary a lot. Here,
Linux and user operated smart cars are not considered constrained. IETF in [BEK14]
defines the terminology for constrained devices and classifies them based on energy,
data size, and code size.

We cut short the discussion on the use case specific variations in requirements in
Figure 1.1 to focus on the one common requirement - ’Cloud Connectivity’. We refine
the scope further with Cloud Connectivity for devices that can run TLS, however,
with constraints. IETF in [BEK14] classifies such devices as Class 2 devices.

1.2 Motivation

Identity and Access Management (IAM) is critical for the security of the Internet of
Things (IoT) enabled systems. Insecure identity schemes can become launchpads
to large exploits that can compromise the credibility of the system. Most identity
schemes for the IoT devices employ the public key cryptography. Transport Layer
Security (TLS) client certificates, JSON Web Token (JWT), and federated identity
are common device authentication schemes.

In all the schemes, the device authenticates the server via the X.509 certificate
chain during the TLS handshake. The certificate is trusted and verified via the root
Certificate Authority (CA). This root CA must be pre-installed on the devices. The
service authentication in IoT is identical to the authentication of a web service.

X.509 and PKI based authentication in IoT has practical challenges. Exchange
of certificate chains per session demand radio resources, and power. To verify an
entity an X.509 certificate, the prerequisites are knowledge of time and identity of the
trusted anchors - the root CAs. The verifier stores root CA’s certificates persistently
and securely. Secure nonvolatile memory is very limited on many IoT device. PKI
based authentication requires signature verification, ANS.1 and DER decoding of
fields in the X.509 certificate for each certificate in the certificate chain. These are
resource intensive operations.

Handling certificate expiry requires time information and user interface; both may
be available on a constrained device. Today, a browser notify the user of revoked,
expired, or malicious certificates to invoke user action. This strategy is unavailable
to remotely operated IoT devices lacking a user interface. There exists no good
recommendations and standards for handling these exceptions for IoT.

Most IoT service providers offer only X.509 certificate for server authentication.
All IoT devices, therefore, must support PKIX to authenticate servers they connect.

1.3. OBJECTIVE AND METHODOLOGY 3

Such a mandate, despite the limited resources, the missing user interface, and the
inability to detect and report malicious certificates in a remote IoT device.

Another problem for IoT is the PKI architecture that allows spreading a wide
umbrella of trust at the expense of poor visibility. The trust anchor does not know
the entities endorsed by it. Such an architecture already adversely affects the users of
existing web services. The constraints of an IoT device only worsen the situation. A
server compromise that goes undetected has large-scale impact. A compromised CA
has a larger impact, even if detected. The impact spans across services and systems.
Recovering from the effects of such compromise is tedious even with human-aided
browsers and operating systems.

A fundamental difference to consider between an IoT device and a browser is that
a device connects to only a handful of services on the Internet in its entire lifetime.
A browser, on the other hand, must offer its user the ability to access any existing
and future web services. A browser, therefore, benefits as it well-utilizes the wide
trust offered by the PKI. For, the minimally equipped IoT devices, the wider the
umbrella of trust is, the larger are the possibilities of exploits. IoT makes case for
tight and limited trust bounds.

Use of public key cryptography is the right choice for secure and scalable IoT
solutions. In the absence of efficient and well-suited alternate trust models, the use
of public key cryptography implies the use of X.509 and PKI.

IoT changes the landscape of assumptions, requirements, and constraints. Is PKI
appropriate, relevant, and efficient for these new landscapes? Given that IoT devices
connect only to a handful of services in their life cycle, is the umbrella of trust offered
by a CA in a PKI too wide? Does such a wide trust make the constrained devices
more vulnerable? The thesis focuses on exploring answers to these questions.

1.3 Objective and Methodology

The objective of this thesis is to find an entity authentication scheme suitable for the
new challenges and requirements of IoT. PKI provides the trust model for all existing
IAM in use. Therefore, we first, we study PKI in light of the constraints of an
embedded IoT device. The study aims to establish the effectiveness and efficiency of
PKI for IAM in IoT. This study described in Chapter 2, is biased towards constrained
devices, as these are the weakest and most vulnerable links in the security chain.1

1It could be argued that human users are more vulnerable than any constrained machine, as
they are prone to social engineering and very many mistakes. We leave this discussion out for
another day.

4 1. INTRODUCTION

The challenges with use PKI in constrained devices begins the hunt for a suitable
alternative to PKI in Chapter 3. Efforts in this direction lead to a novel alternative
trust model, the Vriksh: The Tree of Trust (VTT), proposed in the thesis. The
alternative described in Chapter 4 designed to make public key cryptography usable
in remotely operated IoT devices with no user interface. It is important to emphasize
that this is no attempt to dethrone PKI in existing, well-functioning web services.
Rather, to address new use cases that cannot be well-addressed with PKI.

A proof-of-concept and a limited prototype of VTT is built and presented in
Chapter 5. The motivation for the prototype is to gather enough information to
compare the use of VTT and PKI with TLS. Existing open source libraries portable on
embedded platforms mbed TLS are used to build the prototype. We use OpenSSL
to generate the necessary credentials. The code and scripts for the prototype are
available on GitHub and necessary references provided in the chapter. The license
on the default mbed TLS Apache 2.0 license.

In Chapter 6, we provide an evaluation of VTT and PKI on Cortex-M4 based
embedded platform. Appendix Chapter A contains the embedded applications to
measure energy consumption ECDSA verify and SHA-256. Notice that we measure
the performance of the individual cryptographic primitives used with PKI and VTT.
For energy consumption of the radio, we extrapolate the information gathered in the
prototype with the model-based estimates. We finally combine the various results to
compare PKI and VTT on the constrained platform.

With Chapter 7, we shift focus to some of the many ignored aspects and highlight
the limited scope of the work in the thesis. Here, we acknowledge that many factors
guide the security choices of a system. Further, we use the results from Chapter 6
to make concrete recommendations for the use of PKI in IoT. Chapter 8 contains
some noteworthy observations, conclusions, and possible future work. We include an
initial draft of a conference paper in Appendix B, the paper is a result of work done
in this thesis.

Chapter2Background

Most web services today are access by human users via a browser client on a PC or
mobile phone. User name and password authenticate the user. OAuth [Har12] and
OpenId Connect [Ope05] enable Single Sign-On and federated identity. A web service
issues user authorized, short-lived, and limited access grants to another service via
JSON Web Token (JWT) [JBS15]. RFC7523 [JCM15] defines the use of JWT in
OAuth. Regardless of the type of user and client authentication, the services typically
rely on the X.509 certificate and the PKI to authenticate the server. The server
provides its certificate during Transport Layer Security (TLS) handshake. HTTP
[FGM+99] is the typical application layer protocol. RFC6818 [Yee13] defines HTTP
over TLS. Figure 2.1 depicts a typical web service.

Figure 2.1: Authentication of a web service with X.509 certificate chain. The Web
Service is authenticated before the client provides its user name and password.

For IoT, HTTP is resource intensive. New constrained device-friendly application

5

6 2. BACKGROUND

protocols like CoAP [SHB14], and MQTT [BG14] are designed and deployed. Today,
most cloud service providers support MQTT as the default IoT protocol.

New IAM schemes for IoT devices are emerging. For example, Google IoT
Cloud [Cor19] uses a JSON Web Token (JWT) generated by the device to identify
the devices. Internet Engineering Task Force (IETF) is drafting OAuth for use in
constrained devices [SSW+19]. All these schemes rely on TLS. The authentication
of the IoT service is identical to any web service - X.509 certificate of the server
provided during TLS handshake.

2.1 Trust Management with PKI

This section provides an overview of entity authentication and certificate management
with PKI.

2.1.1 X.509 Certificate

X.509 certificate [CSF+08] defines the public key format. The X.509 certificates bind
a public key to an entity on the Internet. The entity, referred to as a subject in the
certificate, can be an organization, a server, or a person. An X.509 certificate provides
a digital identity to its subject. The digital identity is time limited. The certificate
may include additional usage restrictions. The binding of the key with the subject
is verified and certified by a certificate authority. The certificate, therefore, also
identifies the issuer. The issuer stamps its certification on the binding with its digital
signature. This digital signature must be included in the certificate for the certificate
to be considered valid. Any entity that uses X.509 certificate proves possession of
the private key corresponding to the public key in the certificate. Typical schemes
used for proof of possession are signature schemes.

Figure 2.2 depicts a sample X.509 certificate in version 1 format and fields
mandatory for version 3. The information in the X.509 certificate is ASN.1 DER
encoded. Abstract Syntax Notation One (ASN.1) is a formal interface description
language and in use in cryptography, telecommunications, and other uses. The
ITU-T X.690 standard defines Distinguished Encoding Rules (DER) encoding rules
for ASN.1. The public keys and the signatures in the certificate are base64 encoded.
RFC4648 [Jos06] defines the base64 encoding rules.

A special case of X.509 certificate is the self-signed certificates. Here, the subject
signs its bindings. Root CA certificates are typically self-signed. Figure 2.3 depicts a
sample self-signed root CA certificate, used for the evaluation of PKI in this thesis.
Notice that the subject and the authority key identifiers are identical. The hash of
the public key is the identifier.

2.1. TRUST MANAGEMENT WITH PKI 7

Figure 2.2: X.509 Certificate Structure. On the left, the fields of the structure
mandatory for version 3 of X.509 certificates are defined. Certificate verification
includes validating various fields of the certificate, not just signature verification.

The certificate in Figure 2.3, with the basic constraints field, sets CA to true to
indicate that the certificate holder can issue certificates to others. Figure 2.2 does
not include this field, indicating that the certificate holder does not have the right
to issue new certificates. All certificates contain mandatory and optional extensions
based on the intended usage and the choice of deployment in the system. Many fields
must be verified in a valid certificate and usage restrictions imposed accordingly.
Ignoring such fields can lead to access escalation and exploits.

2.1.2 Certificate Issuance

Any entity that requires an X.509 certificate generates a Certificate Signing Request
(CSR). This Certificate Signing Request (CSR) describes the entity and its public
key. PKCS#10 standard [NK00] defines the format of a Certificate Signing Request.
Figure 2.4 shows a sample CSR used in this thesis.

The issuer CA must verify the contents of each CSR before signing it. Notice that
unlike an X.509 certificate in Figure 2.2, the CSR in Figure 2.4 does not contain any
issuer information. Hence, any CA contacted with the CSR may sign it. Enrollment
over Secure Transport (EST) [PYH13] and SCEP [PNV11] are two online enrollment
protocols to request a CA to sign a CSR.

2.1.3 Certificate Validation

The root CA is the trust anchor in PKI. Figure 2.5 depicts a sample certificate chain
with one intermediate CA and one entity. The end entity certificate is used to prove
the digital identity of the entity on the Internet. The verifier of this digital identity

8 2. BACKGROUND

Figure 2.3: A sample self-signed X.509 version 3 certificate. The issuer and the
subject are the same. The public key in the certificate verifies the signature in it.

trusts the root CA. The root CA certificate is expected to be pre-installed for the
validation to succeed.

Many global and national organizations play the role of a CA. Around 150 root
CA certificates are on browsers. Operating Systems also maintain their list of trusted
root CA. Root store refers to such a bundle of trusted root CA certificates. On
browsers, any update to the root store typically results in a firmware upgrade of the
browser software.

2.1.4 Expiry and Revocation

Certificates expire when the validity period indicated in the certificate is reached.
Knowledge of time is needed to detect expired certificates. A change in the subject’s
organization and detection of security breech are some of the many revocation reasons
of a certificate.

2.1. TRUST MANAGEMENT WITH PKI 9

Figure 2.4: A sample certificate signing request requested by the entity ’Tree’. The
requesting entity signs the request with its private key. The issuer verifies the
signature in the request with the public key in the CSR.

Certificate Revocation List (CRL) [CSF+08] is periodically updated and published
by the CA to inform users of revoked certificates. To know the revocation status of a
certificate, the users must search the serial number of the certificate in issuer’s CRL.
Delta CRL may be requested to optimize the search. With Online Certificate Status
Protocol (OCSP) [SMA+13], the status of the certificate of interest can be queried
to avoid searching in CRL.

The certification status checks require dedicated protocols on the side of TLS that
use the certificates for authentication. Therefore, it is not adequate to implement
TLS to authenticate an entity. Browsers, to protect their users, detect revoked and
expired certificates for every TLS connection. Browsers generate user notifications on
such security exceptions to get user input to continue or abort the TLS connection.

Also, it is important to note there is no way automated or digital method to detect
malicious servers or use of certificates. Human users manually report suspicious use
of a certificate. The Certificate Authority publish an email address to contact and
request revocation of certificates. After reporting, a response time of 24 hours to
investigate and revoke malicious certificates are typical.

2.1.5 PKI based entity authentication

Any prover, to authenticate itself, presents the X.509 certificate chain leading to the
root CA to the verifier. The verifier is assumed to trust the root CA. Therefore,

10 2. BACKGROUND

Figure 2.5: A sample certificate chain with self-signed X.509 version 3 certificate.
The issuer and the subject are the same. Hence, the public key in the certificate
verifies the signature in the certificate.

entity authentication with PKI requires validation and verification of each subject
that propagates trust from the root CA to the prover.

Figure 2.6: PKI based entity authentication with a signature scheme as the identity
scheme. Authentication with PKI requires verification of the entire CA chain.

Figure 2.6 depicts a normative entity authentication using the PKI and X.509

2.2. PKI VULNERABILITIES AND ATTACKS 11

certificates. The setup assumes one intermediate CA. In practice, there could be
none or many. The signature scheme used by the CAs and the prover need not be
the same. We use a common scheme for simplicity. The figure simplifies the contents
of the certificates and verification of each certificate in the chain. In practice, each
certificate contains many ASN.1 encoded mandatory, optional, and extension fields.
Subject name, issuer name, issuer signature, and expiration date are few examples
of such fields. The verifier must validate each of these fields before verifying the
signature. Refer [CSF+08] for details.

2.2 PKI Vulnerabilities and Attacks

In this section, we consider some of the vulnerabilities and attacks on the PKI. The
scope is limited to most relevant to the subject of the thesis, and therefore, the list
is not comprehensive. Wikipedia [con19b] provides a comprehensive history of risks
and vulnerabilities of PKI since the year 1995. The most recent entry in the list is
from the year 2017, a man-in-the-middle attack on a Brazilian Bank.

Figure 2.7 depicts trust propagation from the trust anchor to various entities
on the Internet. An important feature of the PKI is its scalability - a single root
CA can support many organizational trust structures and users without impacting
its existing users. A downside of this feature, however, is that the root CA has no
visibility of entities anchoring their digital identity on it. To elaborate, in Figure 2.7,
the root CA, does not have any visibility into the number of certificates issued by
the Organizational CAs. Therefore, the lack of visibility propagates along with trust.

All entities in the certificate chain, including the root CA, are vulnerable to
attacks. As explained, in Section 2.1.3, the verification of the certificate requires
verification of the certificate chain up to the root CA. The certificates do not carry
any information about the depth of their certificate chains. Moreover, the verifier
may not check the usage fields of the certificate. These factors can lead to the issue of
malicious certificates and unauthorized certificate chain extensions by compromised
parties.

2.2.1 CA Private Key Compromise

Reference [MS11] categorizes attacks resulting from compromised private key of a CA.
The private keys are typically secured using a hardware security module and good
security measures taken to ensure the use of the hardware security module. These
measures may give an impression that CA private key compromise unlikely. However,
they are not. One of the most publicized cases is that of DigiNotar [vDM13], a
defunct Dutch certificate authority. The hardware security module was left plugged
into a system on the network. A network-exploit resulted in the issuance of around

12 2. BACKGROUND

Figure 2.7: A sample PKI setup to demonstrate trust propagation from an issuer to
its subjects. The issuer has visibility only of its immediate subjects.

500 bogus certificates. The bogus certificates were mostly used to impersonate service
by Google, like the Gmail [Wik19c]. The bogus certificates were used to launch man
in the middle attacks and spy on certain individuals of interest. The attack was large
enough to revoke the trust in DigiNotar as a Certificate Authority.

Higher up the CA in the certificate chain, higher is the incentive to attack it. For
example, in Figure 2.7, an attack on the root CA allows attacking domains across
organizations.

2.2.2 Man in the middle attacks

Section 2.1.1 and Section 2.1.3 emphasize that entity authentication involves more
than verification of the signature in the X.509 certificate of the entity. Overlooking
the verification of additional fields in the certificate can result in Man in the middle
exploits. Reference [MS11] provides an example of such an attack. Unverified Basic
constraints field of the certificate results in bogus certificates for a domain passed
on as valid.

Ensuring the hostname matches the subject name in the certificate is critical as
well. Ignoring this can result in man in the middle attacks by adversaries that do
not own the domain.

2.3. USE OF PKI IN IOT 13

Today, browsers have patched most known vulnerabilities with the use of PKI.
However, when deploying PKI to IoT, these attacks are worth revisiting.

2.2.3 Revocation

The default interval for publishing updated CRL is one week providing a window of
opportunity to adversaries. During this period, an adversary can exploit users as
revoked certificates continue to be trusted. Also, revocation checks require relying on
an additional online service. A denial of service attack on such a service may imply
the users decide to connect to web services regardless of revocation status, or, not
having access to any service at all.

2.3 Use of PKI in IoT

As mentioned at the beginning of this chapter, for IoT, new application layer protocols
are invented to be constrained device-friendly. However, the security architecture
for IoT services remains identical that of web services. Notice that Figure 2.8 looks
identical to a web service depicted in Figure 2.1, except for the application protocol.

Figure 2.8: Authentication of an MQTT based IoT service using X.509 certificate
chain. Here, the light bulb is symbolic of a constrained IoT Device. The IoT Service
is authenticated using TLS before the client.

The need for uniquely identifying an IoT device and the lack of user interface
on the device to input user name and password is acknowledged. Many schemes
are in use today for servers to authenticate devices. Cloud service providers define
these schemes. A comparison of JWT based authentication scheme with mutual
authentication scheme is available at [Shi19a]. Google has defined the JWT based
scheme for IoT. Amazon Web Service (AWS) mandates X.509 certificates for all

14 2. BACKGROUND

clients at TLS handshake. These are two of the many possible mechanisms. Table 2.1
summarizes IAM schemes of some notable cloud providers.

As evident from Table 2.1, all the major IoT service providers rely on PKI for
authentication of the server. Therefore, an embedded device must support X.509
certificate verification and install necessary root CA certificates.

Cloud Service Provider/ Client Server
Authentication
Amazon Web Service X.509 Certificate X.509 Certificate
Google IoT Core JSON Web Token X.509 Certificate
IBM Watson X.509 Certificate X.509 Certificate

Access Token
Microsoft Azure Cloud X.509 Certificate, X.509 Certificate

Access Token

Table 2.1: IoT Client and Server Authentication schemes deployed by major cloud
service providers. All cloud service providers offer the same mechanism for authenti-
cation of the service, TLS Server Certificate.

2.4 PKI Challenges for IoT

2.4.1 Time

Most embedded devices may not have a good way to implement time information.
The battery-operated devices may enter power saving mode often to conserve energy
and hence, may not be able to track time. Such devices may have the possibility to
query time when online using the Network Time Protocol (NTP) [MMBK10] and
Simple Network Time Protocol (SNTP) service [Mil06]. Such online services, however,
are vulnerable to attack themselves. Threat models and security measures for time
synchronization services are available at [Miz14]. Therefore, the dependency on
time to detect expired certificates creates new attack surfaces on embedded devices.
On PCs, user’s observation of time and feedback to correct any suspicious time
information serves as a defense against network manipulated time.

IoT devices with no user interface may need to implement multiple time synchro-
nizations to gain confidence in date and time information in use. GPS can provide
time information independent of NTP, hence a platform may support cross-verification
of date and time. However, such automated countermeasures are expensive and
resource hungry and not adequate. Therefore, validation of Not Before and Not
After certificates fields in Figure 2.2 and Figure 2.3, is not reliable on IoT devices.

2.4. PKI CHALLENGES FOR IOT 15

2.4.2 Revocation

An embedded devices must implement an additional service to query the revocation
list or the status of a certificate received over TLS. An additional service implies
additional resources on the system - more code and data memory, one more socket of
the limited concurrent sockets managed by an embedded IP stack, and contention over
the limited bandwidth with the other services. Moreover, a long certificate chain may
imply querying the status of each certificate with the issuer. Besides, the unavailable
or unreliable time information on the device makes revocation management unreliable.

Revocation is already a challenge for the browsers connecting to the existing web
services. Browsers implement countermeasures for like HTTP Pinning [EPS15] and
OCSP stapling [Pet13] in addition to protocols to check revocation status. HTTP
pinning is available only for HTTP based clients. Hence, are unavailable for IoT that
uses protocols like MQTT and CoAP.

2.4.3 Root Store

Embedded devices have little persistent storage as compared to PCs and mobile
phones. Therefore, storing certificates of all global CA is not possible for an embedded
device. Besides, as already mentioned, these devices connect to only a handful of
services in their entire life cycle. Therefore, these devices do not need to implement
a large root store like the browsers and the operating systems. Moreover, trusting
many CA’s expands the scope of vulnerabilities for an embedded device.

The current model of deployment for IoT devices is to provision root certificates
based on the target eco-system. However, once provisioned, updating the root store
to close any vulnerabilities may be a challenge. No good measures to address this
aspect exist. Firmware update may be an option.

2.4.4 Lack of User Interface

Today, on PCs, the user decides the course of action to handle security exceptions
firmware upgrades. They are aimed with many notifications and warnings to educate
themselves towards a sound decision. Despite the warnings, the user has the final
word, and cannot be forced to abort connections with malicious sites or install
updates. For IoT devices that are only operated remotely and have no user interface,
reporting security exceptions of the remote service to the service may be of little use.
No standards exist to report the use of malicious certificates in devices with no user
interface.

A 2016 study and analysis [Tae16] of 80 million certificates captured through
network scan shows that 65% of certificates in use are invalid certificates. Further,

16 2. BACKGROUND

the invalid certificates are reissued, meaning that invalid certificates would continue
to be the silent majority on the Internet. The study traces the invalid certificates to
specific categories of Internet users - devices like printers, modems, and VoIP phones.
Is this a hint that some Internet participants cannot cope with the demands of the
PKI?

Chapter3Existing Alternatives to PKI

In this chapter, we discuss and assess alternative trust models to PKI for entity
authentication. The assessment gives preference to usability in constrained embedded
devices. This preference is not put before security. The usability, here, encompasses
at least two aspects - efficiency of use, and limited user interface on the device. Before
we study the alternatives, however, we define entity authentication and consider some
relevant threats.

Entity Authentication

Bellare and Rogaway [BR94] point out that there is no common definition for entity
authentication and provide the following informal definition. “Entity authentication is
the process by which an agent in a distributed system gains confidence in the identity
of a communication partner.” Fiat and Shamir in [FS87] create three categories of
protection when proving digital identity. Figure 3.1 is the snapshot of these three
definitions from [FS87].

Figure 3.1: How to Prove Yourself: Classification of Identity schemes from [FS87].

In Figure 3.1, the authentication schemes guard A and B against external threats.
To put this in the current context, IoT device and the cloud services do not compromise
each other. Stolen remote devices that can compromise the cloud service’s identity is
undesirable. Only signature schemes provide the property of non-repudiation. With
Identity schemes, a verifier can generate counterfeit transcripts by choice of challenge
and response. For life-critical applications like insulin delivery, non-repudiation may
be important.

17

18 3. EXISTING ALTERNATIVES TO PKI

In Section 3 of this chapter, we look at threats to identify the right level of
protection needed for entity authentication. An IoT device may speak to third-party
services and therefore may not have the degree of trust required with Authentication
Schemes defined by Fiat and Shamir in Figure 3.1.

Mutual Authentication

Entity authentication of cloud service by the IoT device is as critical as the entity
authentication of the device by the service. However, we do not use the term mutual
authentication as the formal definition in [BR94] as it requires the use of a single
scheme, that is, a common method to authenticate each other. The industry practice,
however, is to use different schemes to authenticate clients and servers.

IoT Threats and Risks

NIST, in its special publication Network of Things (NoT) [Jef16] defines the common
primitives to build a distributed system, including IoT. One of the aims of these
definitions is to analyze security-risk trade-offs. The five primitives defined in [Jef16]
are listed below with a short explanation in the current context.
– Sensor. Constrained IoT devices that measure or control mechanical, electrical,
chemical, optical properties. Transmission of measurement data occurs on a
Communication Channel.

– Communication Channel. Wired or wireless communication interface for informa-
tion transfer between other primitives.

– Aggregator. An edge-node for data collection from clusters of sensors. The data
may be transformed before forwarding to other components.

– eUtility. Composite of current and future cloud service components. Database,
web hosting services, and management portals are some examples of eUtility
components. eUtility is computationally more capable than Aggregator.

– Decision Trigger. Rules to invoke actions based on data events. Decision triggers
may provide immediate feedback or generate predictive information.

Figure 3.2 depicts the interaction between the various primitives. Here, to study
the threats and attacks, we use only the Sensor, Communication Channel, and the
Aggregator primitives. We include the Adversary primitive to explain the attacks
better. An Adversary is any entity with malicious intent, internal or external to the
NoT.

In [DZH18], the authors provide a comprehensive list the security requirements
and possible attacks. Of the various security objectives, entity authentication and
non-repudiation are security objectives relevant to the current scope. Some relevant
attacks are similarly listed below. To explain the attacks in context, we use primitives
from [Jef16].

19

Figure 3.2: A sample NoT model to demonstrate the interactions between the
primitives. The Sensor primitive symbolizes a constrained device and communicates
with the Aggregator primitive. In this thesis, the Aggregator symbolizes the cloud
service endpoint that all devices communicate with over a secure channel.

– Replay attack. The Adversary, with the intent to mislead, or gain unauthorized
access, records one or more sessions on the Communication Channel between a
Sensor and Aggregator to later play it again to one one of the parties.

– Stolen Verifier. If the Aggregator stores the device authentication information,
then the Aggregator once stolen, or compromised, can compromise all the Sensor.

– Stolen Device. If Sensor stores authentication information of the Aggregator,
then a stolen Sensor can compromise the Aggregator. We take the liberty to
include unwiped secrets compromised from disposed, end of lifecycle devices in
this category.

– Man-in-the-middle. Adversary intercepts the Communication Channel be-
tween the Sensor and Aggregator with the intent to eavesdrop, amend, append
and/or withhold data.

– Privileged-insider attack. A trusted user, typically an administrator the NoT
system turns into an Adversary. The Adversary uses the knowledge of the system
to alter system behavior or hold the system hostage illegitimately.

– Impersonation attack. The Adversary successfully assumes the identity of a
legitimate entity in the system with the intent to compromise the data integrity of
the system. Sybil attacks may be considered a subcategory. Here, the Adversary

20 3. EXISTING ALTERNATIVES TO PKI

assumes many identities in the system.
Many of these attacks can be partially or entirely mitigated using strong Identity

schemes. The Identity and signature schemes from Figure 3.1 do not require the
verifier to act in good faith. A downside of the primitives identified by NIST is that
it does not include any primitives for third-party trust anchors like CA that are
critical for identity verification of the primitives.

At each session, introducing an element of freshness on identity verification can
mitigate Replay Attacks. Further, curtailing damages of the compromise of one
entity, to that entity alone can ensure small, constrained devices do not become
launchpads for bigger, system-wide compromise. However, to limit the scope of our
analysis to the relevant attacks for this thesis, the passive attacks that compromise
user privacy are not discussed.

3.1 Symmetric Keys

Password or PIN-based authentication is in wide use today. Authentication in the
wireless networks and user authentication by web services over the Internet is based
on pre-shared key. Wi-Fi Protected Access II (WPA2) [Gro04] is the default authen-
tication protocol for IEEE 802.11 based Wi-Fi networks. The current generations
of 3GPP standards - 2G, 3G, and 4G, all use symmetric keys for authentication of
modules connecting to the cellular network. Bluetooth Low Energy (BLE) uses a
maximum of 6-digit PIN in its 4.0 specification [Blu10]. TLS supports pre-shared key
based ciphers since its inception. For TLS bulk encryption, all ciphers use symmetric
keys. The symmetric key is established during the session and depends on the cipher.
Public key cryptography is too expensive for bulk data and hence used only during
handshake for authentication and key agreement. In HTTP, user authentication
is password based. Most layers of the Internet stack - network, transport, and the
application use symmetric keys. Given this, it is time to address why the thesis
insists on the use of public key cryptography for IoT.

Figure 3.3 demonstrates that the sender does not verify the identity receiver.
The receiver relies on the knowledge of the key to ensure the message originated
from a legitimate sender. The receiver never explicitly verifies the identity of the
sender. Symmetric keys are not designed for the unique identification of entities.
Further, comprised secret compromises all the entities that share the common secret.
A typical technique to limit compromise to use pairwise secrets. An example use of
pairwise keys is in cellular networks. The network providers distribute the SIM cards
with the shared secret known to the IM and the Home Subscriber Register. The IM
identified by IMSI is authenticated to have the secret knowledge on each network
attach request. Use of a common sequence number is a common mitigation against
replay attacks. IM is expected to store the shared key in tamper-proof hardware.

3.1. SYMMETRIC KEYS 21

Figure 3.3: Message Authentication: Knowledge of a shared secret is to verify if the
message arrived from a trusted sender. Source [Wik19e].

Symmetric keys are vulnerable to online and offline dictionary attacks. Weak
passwords further reduce the strength of symmetric keys. Cracking Wi-Fi password
and authentication in university courses is a fun way to grasp the vulnerabilities
of passwords. Dragonfly Key Exchange [Har15] introduced in WPA3 resist some of
these attacks. Dragonfly Key Exchange is an instance of the Password Authenticated
Key Exchange (PAKE), where the password is used to derive the parameters for
key exchange. ITU standard [oI07] provides recommendations for the use of PAKE.
Thread Network [Gro17] uses EC-PAKE for adding new devices to the network.
PAKE can ensure strong security even with weak passwords and invalidates brute
force attacks. For applications with many participants to gain access to a shared
resource, PAKE enables a user-friendly yet secure solution.

Based on the classification provided by Fiat and Shamir in Figure 3.1, PAKE is an
Authentication scheme. Despite the protection against weak passwords, compromised
passwords can enable new rogue devices to gain access to a shared resource. Stolen
Device, Stolen Verifier, and Privileged-insider attacks remain unmitigated even with
PAKE.

Symmetric keys, though simple and computationally fast, are not designed for
unique identification of entities. Non-repudiation cannot be achieved the key to prove
and verify the identity is the same. Key distribution, renewal, and revocation remain
key challenges with symmetric keys.

22 3. EXISTING ALTERNATIVES TO PKI

3.2 Simple Public Key Infrastructure

Authors of Simple Public Key Infrastructure (SPKI) in [Ell99] and [EFL+99] argue
that the binding of globally unique subject name with its public key with X.509
certificates is of little use. SPKI certificates use Simple Distributed Security In-
frastructure (SDSI) [Riv99] names, defined in the local scope instead of globally
unique identifiers. SPKI advocates binding the public key with granted authorization
access to it. Therefore, the SPKI certificates identify permissions to access resources
and invoke actions in the system. SPKI certificates are expressed in LISP format.
Unlike the X.509 certificates, SPKI certificates contain sensitive information about
the system, and hence considered private. SPKI certificates must be easy to parse
and accurately express the authorization. The aim is to enable embedded devices like
smart cards to participate in the system and avoid errors from elaborate, ambiguous
authorization. SPKI and SDSI introduce group certificates to define consistent
authorization for multiple keys. Short-lived certificates for fine grain access control
are possible to implement with SPKI.

Similar to X.509 certificates, SPKI certificates have a validity period, and CRLs
manage certification revocation. SPKI proposes positive and negative online valida-
tion of entities, instead of checking only for revoked entities. Commercial third-party
CA has no role in SPKI, and therefore, it is undefined as who issues certificates and
revocation lists. Wikipedia suggests deployment of SPKI in private systems. Further,
the inability to monetize SPKI and lack of business case to develop any SPKI tools.
Today, there is no implementation of SPKI available with TLS. Reference [Vid05]
provides a formal analysis of SPKI with TLS. Authors in [KL07] propose a model to
enable access control between peers with SPKI. A central server manages certificates
and authorization in the system.

Many of SPKI requirements resonate with IoT requirements. For example, simple
certificates, redundant global names, and, group-based access control. However, like
the PKI, the solution depends on auxiliary services like the time, online revocation
status. SPKI specifications remain experimental draft since 1999. No effort has been
made to address known issues identified in the drafts. For example, the delegation of
trust without resources owners knowledge, and no mechanism to control the depth
of delegation remain open. To elaborate on the impact of these issues in IoT, let
us consider an example. A firmware upgrade server with authorization to upgrade
firmware to IoT devices may delegate the authority to another service. This service
can further delegate the authorization. Each delegator adds its signature to the
delegated certificate. An IoT device may have to accept firmware from a strange
entity after all the signatures in the SPKI certificate verify. Recall that PKI suffers a
similar loss of visibility with trust propagation. SPKI has repackaged the issues with
PKI for IoT, not addressed them.

3.3. FEDERATED IDENTITY 23

3.3 Federated Identity

As mentioned in Chapter 2, OAuth is widely used for web services today. ACE-OAuth
[SSW+19] brings OAuth to the constrained world. Figure 3.4 depicts the basic pro-
tocol between the client (constrained device), an Authorization Server, and resource
server. The response rejecting an access request due to inadequate authorization
may include the address of the authorization server. All clients communicate with
the Authorization Servers using CoAP. By default, clients authenticate an Autho-
rization Server using their X.509 certificates during DTLS handshake. [SE17] defines
authentication methods for the client. Resource Servers are typically authenticated
using PKIX certificates TLS/DTLS handshake. The access claims may be expressed
in JWT [JBS15] or the more concise form CWT [JWET18].

Figure 3.4: ACE-OAuth: Basic protocol. Source [SSW+19]. The authorization server
is typically pre-provisioned in the client.

For federated identities with ACE-OAuth, Authorization play the role of IdP.
The constrained devices prove their identity to a designated IdP. The IdP vouches for
the devices to other service providers (resource servers). Reference [FA18] measures
an OAuth-based federated Identity scheme on an embedded platform.

Federated identities can simplify credential management for the constrained
devices with single credentials to authenticate towards many services. Further, an
IdP can provide access revocation services. The catch, however, is that the framework
relies on TLS and PKI authentication to authenticate the servers, including the IdP.
Therefore, ACE-OAuth is not independent of PKI.

24 3. EXISTING ALTERNATIVES TO PKI

3.4 Web Of Trust

In human societies, existing friends introduce one to new friends. With time and
experience, the friend circle is expanded and trimmed. Web of Trust (WoT) em-
ulates this in the digital space. WoT, used in OpenPGP, allows a trusted user to
introduce a stranger. Trust from know entity to the unknown is propagated using
digital signatures. Physical, face to face verification of key, and thorough inspection
of associated attributes is required before signing the certificate of the new user.
RFC4480 [SGKR06] defines the certificate and signature formats. With WoT each
user builds and maintains its trusted set of certificates. Certificates can expire and
include validity field expressed in time. Therefore, with time, the trust circle expands
and contracts.

Could WoT be used with IoT? One device inducing another device into the system
is not far fetched. The resurrecting duckling [Sta02] draws a similarity between a
duckling and an IoT device. A just-hatched duckling would become the ward of any
creature it first sees. This guardianship typically belongs to the mother duck, but
not necessarily. An IoT device is designed to be as impressionable as a duckling with
the intent to initiate the device into the target eco-system. A dedicated provisioning
device or an already initiated device may take on the role to join new devices in the
eco-system. Therefore, such a device could share its trust circle with a new device.

OpenPGP is a network of equals - each person has the same rights to send
emails, attachments, and files to one another. In IoT, not all participants are equally
capable, and hence, functionality and access rights cannot be the same. IoT benefits
from a layered architecture with clear access policies. A device-to-device network
automatically extending trust and expanding the circle of trust of services may
compromise the security of the entire system. Usually, initiating a new device in the
system requires a secure environment, and so does extending trust. Such a secure
environment is not possible with wireless networks. Human-aided provisioning does
not scale. Also, storing cross-signed certificates from individual entities with their
access right may be inconvenient for all entities, especially the constrained devices.

A constrained IoT device has limited persistent memory to store trusted certificates
and connects to a handful of services. WoT if used for IoT needs modifications to
layer trust and add mechanisms to restrict trust propagation based on access policies.
Besides, the complex question of efficient trust revocation remains.

3.5 Pairing Based Encryption

Pairing-Based Cryptography (PBC) pairs elements between two groups to a third
to construct a cryptographic system. Three-party one-round Diffie–Hellman key

3.5. PAIRING BASED ENCRYPTION 25

agreement [Jou00] secure is one of the first use of PBC. IBC, rooted in PBC, has
become a research topic of its own. PBC maps are in general expensive, with
not many efficient implementations available. However, PBC based research as an
alternative to PKI is popular and looks promising. Therefore, this is covered here
for the sake of completion and future possibilities.

3.5.1 Certificate-less Public Key Cryptography

Certificate-less Public Key Cryptography [ARP03], as the name suggests, enables
public key cryptography without the use of certificates. IBC is extended to include
authentication. The solution relies on a trusted key center to transmit private keys
to registered users. User keys are derived from their identities and the private key of
the trust center. Similarly, the public key of an entity is generated using the public
key of the trust center and the identity of the entity. Topics of key regeneration,
expiry, and revocation are untouched.

3.5.2 Milagro

Milagro [Bud16] aims to make public key cryptography available in TLS without need
for any central authority. PBC based ciphers with distributed authorities dissimilar
but compatible with Bitcoin blockchain. Figure 3.5 depicts a sample system with key
share distributed to cloud service provider and the customers of the service provider
in addition to a distributed trust authority provider. The client and server entities
in the system are depicted to derive their keys/identities on interaction with all of
the trust authorities.

Figure 3.5: Milagro: Distributed Trust Authority. The stakeholders in the system
distribute the role of trust authority among themselves. Source [Bud16]

.

An incubator project [McC16] is created to which has remained dormant since
its inception. The white parer [Bud16] suggests the use of ZKP-based multi-factor

26 3. EXISTING ALTERNATIVES TO PKI

authentication for user authentication of cloud services. The target platforms are
PC and mobile phones. Not many details are available at this point to evaluate this
proposal for use in IoT.

3.6 Enhanced Privacy ID

Enhanced Privacy ID (EPID) [BL12] proposes an Identity scheme using Direct
Anonymous Attestation (DAA) [Ern04]. Under the strong RSA assumption, EPID
and DAA offer remote and anonymous attestation. EPID is deployed with recent
Intel-based laptops to identify legitimate products in the field.

In DAA, a remote attestation service verifies an anonymous signature to authenti-
cate legitimate TPM hardware. The use case for DAA is to prove the authenticity of
products that integrate TPM without compromising the user’s privacy. DAA enables
signature based revocation under one condition - extraction of the private key from
the TPM module. The verifier can check if a signature arrived from a revoked private
key. EPID extends DAA to enable revocation even without the knowledge of the
private key.

EPID is deployed with recent Intel-based laptops. Intel’s Secure Device Onboard-
ing (SDO) [Int18] enables provisioning of legitimate IoT devices. EPID embedded
in a TPM identifies a device. The solution focuses on authentication of devices
to an attestation service. The attestation service can provision cloud-service and
user-specific credentials into the device. Authentication of cloud services by the
devices is left to the cloud service. Though the on-boarding is secure; this does not
ensure a secure cloud communication.

The attestation service is similar to an IdP discussed in Section 3.3. Authentication
of IdP service is achieved with TLS and PKIX. With SDO, this aspect is unclear
and unknown. Authentication of the remote service is necessary to mitigate MITM
attacks. An adversary, at the very least, can eavesdrop and delay messages.

3.7 Trust On First Use

Trust On First Use (TOFU) proposes binding the entity with the public key it
presents on the first contact. On subsequent connections, the entity is verified to
present the same public key. Digest of the public is used to ensure the entity uses
the same key at every session.

Secure Shell (SSH) [YL06] uses this model with public key based authentication.
Reference [WK16] suggests the use of TOFU with OpenPGP to mitigate Man-in-
The-Middle (MITM) attacks. HPKP [EPS15] uses TOFU to detect CA compromise

3.8. BLOCKCHAIN 27

and impostor services. The HTTP client maintains the fingerprint of the server’s
certificate and generates user alerts if an anomaly in server certificate is detected.

The author of [Cer18], with not many details, shares the idea of applying TOFU
in IoT. The intention is to allow an IoT device to generate its own private and public
keys, and register the public key on first use. The registration of the public key is
expected to occur in a secure environment. On registration, the public key is mapped
to an IP address, or, similar identifier. The mapping enables a verifier to ensure the
device uses its registered public key.

TOFU is vulnerable to MITM attacks. Use of TOFU with easily impressionable
IoT devices imply undetected adversaries and devices compromised to impostor
services. DNS poisoning in the network would allow an adversary to imprint their
keys on the device. The legitimate service may then be talking to IoT device via
the impostor service that can easily manipulate the communication and trigger
undesirable decisions in the system. No methods for key expiry and revocation imply
long lasting exploits in the system.

3.8 Blockchain

Blockchain is the trendy new solution for all problems, including IoT. Authors in
[YWN+18] propose the use of blockchain to create a Trustchain between various
actors in the system. The trust, here, means reliability and integrity of data and
device ownership. Secure device life cycle management is emphasized to be critical
to achieving this goal of trust. The implementation in [YWN+18] is based on
Hyperledger Fabric [Hyp19a]. Supply chain and device ownership management are
prominent use cases of Hyperledger Fabric. PKI and X.509 certificate provide entity
authentication Hyperledger Fabric. TLS is optional for inter-node communication.

Authors of [PTM+18] surveys various blockchain technologies for use in IoT. Most
literature today focuses on tamper-proof, reliable data from sensors that can be sold
by owners for analytics, and concerns on privacy with little focus on constraints of an
IoT device. No benchmarks exist on the participation cost incurred by a constrained
device. Also, any security compromises arising with participation in unauthenticated
networks are not analyzed.

Smart Contract Based Public Key Infrastructure (SCPKI) [AB17] suggests
blockchain based certificate management of entities. The design proposed is based on
Ethereum [Eth15]. One motivation for SCPKI is to save any price paid for trust to a
central authority like the Certificate Authority (CA). The other is the slow process to
introduce new trust anchors (root CA certificate) in operating systems and browsers.

Hyperledger Indy [Hyp19b] and Sovrin [Sov19] aim to provide self-sovereign digital

28 3. EXISTING ALTERNATIVES TO PKI

identities to people, organizations, and Internet-enabled things. Prominent features
of this solution include decentralized digital identities and minimal disclosure to the
verifier with Zero Knowledge Proof (ZKP). Certain volunteer organizations referred
to as Stewards host and validate the blockchain. The Hyperledger Internship Program
[Hyp19c] includes a topic to provide a reference implementation on a constrained
device. Hence, no benchmarks are available. Also, it is unclear if a user interface is
mandatory for a device to hold a self-sovereign identity.

3.9 TLS: Raw Public Keys

IETF defines the use of raw public keys with TLS [WTG+14] with the intent to make
public key cryptography constrained device-friendly. CoAP [SHB14] mandates the
use of raw public keys to secure communication between a server and a client. DTLS
implementations like TinyDTLS [Ber16b] exist for use in constrained embedded
devices. IETF with [SE17] drafts the use of raw public keys for client authentication
for ACE-OAuth.

[WTG+14] suggests out-of-band mechanisms for trust and access management.
Therefore today, there exists no trust model proposed to know if a public key identifies
a legitimate authorized entity with certain access rights. Moreover, no model exists
to manage key expiry and revocation.

3.10 Summary

Many alternatives to PKI exist, but none that address the challenges of IoT. Some,
like the raw public keys, are well-suited building blocks for IoT and not a complete
solution. While others like SPKI integrate identity with access, but leave the trust
model open.

Federated identities using OAuth shift the paradigm of IAM management. Despite
the many merits, it relies on PKI for server authentication. Hence it is no alternative
to PKI as the open issues with use PKI on IoT remain.

PBC based schemes are expensive for use in IoT devices and require a central
trusted server to create identities. Access management, key expiry and revocation
with PBC is an open task for security architects and engineers. TOFU and WoT
complicate trust and key management for constrained devices with no user interface.

Blockchain-based solutions, suffer some or all of the following drawbacks for
IoT. The blockchain based solutions rely on PKI for Identity management, TLS for
authentication and confidential communication, address limited use cases suited for

3.10. SUMMARY 29

smart properties like the cars and have no benchmarks for use in the constrained
device.

We see that the alternative approaches considered are either not independent of
PKI, or not suitable for IoT. We therefore, propose a new approach in the Chapter 4.
This novel alternative to PKI borrows the concept of local domains from SPKI and
the building block of a Blockchain - Merkle Tree.

Chapter4Vriksh: The tree of trust

Access to a resource, an action, or a privilege in the system is the motivation to prove
the digital identity. Identity Schemes provide necessary primitives to establish digital
identity. Under the guidance of Kerckhoffs’ Principle [Wik19d], security systems
have evolved to make mechanics of any security scheme public knowledge. The secret
key is the one private asset. System resources are private assets and available only
based on system policy. Given this, any entity may implement an Identity Scheme
to gain access in the system. The knowledge of enrolled entities and their identities
is a prerequisite for identity-based access. Trust adds this layer of knowledge and is
essential for entity authentication.

The novel Vriksh: The Tree of Trust (VTT), provides an alternative to PKI
model of trust. VTT weaves identity, trust, and access management together with
two primary goals:

1. Propose an embedded device-friendly use of public key cryptography for identity
and access management in private IoT deployments.

2. Limit the periphery of trust to only the relevant entities within the closed
system.

The proposed trust model is called the Vriksh: The Tree of Trust (VTT). In
Sanskrit, Vriksh means a tree. Merkle tree is the basis of the proposal, and hence, the
name. Merkle tree is a cryptographic data structure and finds applications requiring
data integrity. Ralph Merkle first proposed the Merkle tree for a one time use digital
signature scheme, see [Mer79].

A wide range of applications use Merkle trees. We mention some of the notable
applications here. Merkle tree is one of the building block of the Bitcoin blockchain,
[Nak08]. Certificate transparency, [Lau14], enables transparent audit logs for X.509
certificates issued by CA. The solution proposes append-only logs built with Merkle
trees. Secure device block, [HWF15], uses a Merkle tree to protect data at rest stored
across files.

31

32 4. VRIKSH: THE TREE OF TRUST

4.1 Overview

Vriksh: The Tree of Trust (VTT) proposes the use of Merkle trees for access based
trust management. All entities under an access role, with equal access rights, are
grouped in a common trust tree. The trust tree is a Merkle tree, identified by it’s
Merkle root. The end node or the leaf of the trust tree is the identity of an individual
entity. Any entity in the system shall be a part of exactly one trust tree. Figure 4.1
shows a sample trust tree of five entities with equal access rights.

A trust tree is similar to an access role, in access management, but not synonymous.
The access role defines the access rights and policies to govern access to one or more
resources. Access roles define policies to manage resources; trust trees enforce them.
Trust trees may have shorter life-spans than access roles. There may be more than
one trust trees attached to the same role but only one access role defined per trust
tree. We elaborate access role and trust trees further in Section 4.7. Section 4.8
provides methods to update trust trees.

Figure 4.1: VTT: A sample trust tree identified by the Merkle root y12345.

The trust tree in Figure 4.1 has five members, each identified by a public key pk.
y12345, the Merkle root, and identifies the tree. The cryptographic hash function H
determines the size of y12345. The operation || indicates concatenation of inputs.
Any entity in the system must belong to a trust tree and is always identified by the
individual identity and the group identity. Such an identification is analogous to a
person’s identification with a first and last name. Entity authentication is explained
in Section 4.6.

4.2. WHY USE A MERKLE TREE? 33

4.2 Why use a Merkle Tree?

Any tree structure, including the Merkle Tree, is organic and can be easily be
updated to include more entities in the system. Expanding the trees is possible
without breaking the existing authentication in sub-tree. The system can intentionally
employ this property of the Merkle to create logical partitions in the system. The
logical partitions could be aimed to create small trust trees to aid constrained
devices, and/or, to facilitate geographical, location separation of remotely connected
components in the system.

4.3 Setup

Let d be a constrained device in a group of many devices D. Each device in D can
connect to the remote service S. S consists of load-balanced many servers. Each
server represented as s. Connection to the service S implies a connection to only
one of the individual servers. A server s can manage simultaneous connections with
many devices in D.

All participants in the system, each device d in D and each server s in S, have
unique key pair (sk, pk) of a cryptographic identity algorithm C . 1 Here, sk, is the
secret key and the pk is the public key.

All entities must belong to a trust tree. A Merkle tree groups the identities of all
relevant entities to form a trust a tree. The Merkle root of the tree identifies the
trust tree. A cryptographic hash function H is used to hash the public keys and to
create the Merkle tree. 2 Figure 4.1 depicts a sample trust tree with five entities.

4.4 Tree size and depth

The size of the tree determines it’s depth. The size, here, refers to the number of
end or leaf nodes in the tree. For example, the size of the tree in Figure 4.1 is 5. In
Figure 4.1, the depth of the tree is 3.

If m is the number of end nodes in the tree, and then the depth of the tree, n, is
given by (4.1).

n = dlog2me (4.1)

1Generation of keys and authentication are determined by the algorithm used. Any identity
algorithm may be used for the proposed scheme. Therefore, choice and details of algorithm are not
discussed here.

2The exact size of hash output, and the hash algorithm can be chosen based on the use case.

34 4. VRIKSH: THE TREE OF TRUST

4.5 Tree membership

The membership of an entity requires ensuring that the computed Merkle root or
the group identity matches the stored root for the Merkle Tree. Three possible are
possible for establishing membership in a Merkle Tree based on the trade-off between
computation and storage are described here.

The choice of algorithm for tree membership is local to the verifier and not visible
to the prover of membership.

4.5.1 Store all, compute less

With Store all, compute less (SACL), complete Merkle tree is stored. Here, complete
implies storing hash values of the all end nodes, the intermediate nodes, and the root
of the tree. Storing the raw values of the ends nodes is not necessary. This method
is analogous to the authentication path described in [Mer79] for signature scheme.
Here, the number of transmissions needed to verify the signature establishes the
efficiency of the scheme. Reference [DPP16] suggest further efficiency improvisations
to the scheme.

(a) Authentication of Entity with siblings (b) Authentication of Entity with no siblings

Figure 4.2: Merkle Tree Authentication with SACL method. The number of hash
computations needed to establish membership is identical for an entity with and
without siblings.

Figure 4.2 depicts the number of hashes required when the complete tree, including
the intermediate hashes, is pre-computed and stored. Here, for a tree of depth n, the
maximum number of hashes cmax, needed for authentication is given by equation
(4.2) and the maximum storage size, smax, needed in bytes, given by (4.3).

cmax = n+ 1 (4.2)

smax = hs ∗ (2(n+1) − 1) (4.3)

4.5. TREE MEMBERSHIP 35

In Figure 4.2, the depth of the tree is n is three. For membership verification in
the tree, by (4.2), we compute maximum of four hashes. From (4.3), the maximum
storage space needed for a hash of 256-bits (hs = 32 bytes) is 480 bytes.

4.5.2 Compute all, store less

With CASL, only the leaf nodes and the Merkle Root. Here, only the hashes of the
end nodes and the Merkle root hash is stored. Here, we trade more computation
power and hence energy for storage. For this method, for a tree of depth n, the
maximum number of hashes and the maximum storage size are (4.4) and (4.5),
respectively.

cmax = (2(n+1) − 1) (4.4)

smax = hs ∗ (2n + 1) (4.5)

For the tree in Figure 4.1, the depth of the tree, n is 3. With this method, the
maximum number of hashes needed to verify is 16. The maximum storage needed
for a hs = 32 bytes, is 288 bytes.

4.5.3 Store less, compute one

For very constrained devices, further optimization is possible. Here, the verifier can
store only the hashes of the end entities and the root of the Merkle tree. During
verification, the identity of the entity to be authenticated is hashed. The membership
algorithm is reduced to search in look up in the end entities entry of the look-up
table. In other words, the maximum number of hashes, cmax in (4.6), needed for
authentication is one for any depth of the tree. This method is referred to as the
SLCO. The maximum storage size, smax is given by (4.3).

cmax = 1 (4.6)

smax = hs ∗ (2n + 1) (4.7)

This method has limited use for client devices that, before requesting a connection
to a server, know which group of servers it wishes to connect to. Therefore, it can
limit the search to the database identified the Merkle Tree root. In addition, since
the intermediate hash values are not stored, or computed, authentication of subtrees
is not possible for such clients.

36 4. VRIKSH: THE TREE OF TRUST

4.5.4 The trade-off

The space-time trade-off may not be significant enough for small trees. However,
with larger trees, the cost of storage may be significant to consider the trade-off. As
depicted in table 4.1, the storage requirement doubles with every increment of the
depth of the tree regardless of the algorithm. The cost of computing each hash on
target can aid the choice of method used for tree membership.

SACL vs. SLCO

One might wonder why the SACL method is considered when SLCO is an efficient
variant. However, SACL verifies data-at-rest tree. Hence, may be important for
systems that do not have secure storage in hardware. Also, the SLCO can authenticate
in subtrees. SLCO, therefore, has limited use and fine-tuned for very constrained
devices. SLCO, if not used under the condition of prior knowledge of group identity
of the prover, can lead to access privilege escalation, and hence, is not secure.

Depth/Cost mmax
SLCO SACL CASL
cmax smax cmax smax cmax smax

3 8 1 288 4 480 15 288
4 16 1 544 5 992 31 544
5 32 1 1056 6 2016 63 1056
6 64 1 2080 7 4064 127 2080

Table 4.1: Merkle Tree: Resource requirements for membership verification. The
depth of the tree and the membership verification method determine the resource
requirements.

4.6 Identity and Authentication

VTT requires every participant in the system to a part of a trust tree. Authentication
involves verification of both the group identity and the individual identity. Preferably,
in that order. Verification of the two identities is detailed below.

1. Group identity. The group identity depicted in Figure 4.1 is verified by mem-
bership proof of the individual identity in the Merkle tree. Section 4.5 describes
methods for membership proof.

2. Individual identity. The identity verification procedure is determined by the
Identity Scheme. Any Identity Scheme of choice may be used with VTT. VTT
recommends the use of a common scheme for all the members in the tree. The
group identity should be verified before the individual identity. As it is typically
cheaper to verify the group identity as compared to the individual identity.

4.6. IDENTITY AND AUTHENTICATION 37

To elaborate with an example, consider the trust tree in Figure 4.1. Let us assume
represents the trust tree for remote service S with five load balanced servers s1,
s2, s3, s4, s5. A client, to authenticate the service, must be provisioned with the
server’s trust tree in 4.1. Only one of the servers will communicate with the client
at any given time. Let us say the server s5 connects to the client. The client must
authenticate the service by verifying:

1. The public key, pk5, is a member of the Merkle tree y12345.
2. The server has the secret key corresponding to the public key pk5. The

cryptographic algorithm C determines the exact verification algorithm.

Figure 4.3: A normative protocol to demonstrate entity authentication of VTT
manged entities. For authentication, both the group identity yp and the individual
identity pkp are verified.

Figure 4.3 depicts VTT based entity authentication. The prover identified by pkp,
in trust tree yp is authenticated on the access request. The membership verification
in step 3 is a function of the depth of the Merkle tree, as described in Section 4.5.
The protocol depicts a successful run of the protocol. The protocol could fail at
any stage, and access request will fail. Note that the protocol messages exchanged,
their format and count depend on the choice of application layer protocol, transport
protocol, and the Identity Scheme. The normative protocol depicted in Figure 4.3 is
tailored to emphasize verification of the group identity before the individual identity.

Figure 4.4 depicts a sample run with signature-based Identity Scheme. With
the signature scheme, there is no challenge needed from the verifier. Therefore, the
verifier does not have to be online. Regardless of the Identity Scheme used, and if
the verification happens online or offline, the group identity verification remains the
same. The group identity is always verified by membership in the Merkle tree.

Most use cases require mutual authentication, that is the prover must be sure
that it is talking to the right verifier. Mutual authentication is a measure to prevent
man in the middle attacks. Mutual authentication is not depicted in Figure 4.3 and
Figure 4.4 for simplicity.

38 4. VRIKSH: THE TREE OF TRUST

Figure 4.4: VTT based normative entity authentication using a signature scheme for
identity. With the signature scheme, the verifier may be offline. The verifier must
verify both the group identity yp and the individual identity pkp.

Figure 4.5 depicts a normative mutual authentication between a client and a
server. In any system, servers and clients have different access rights and therefore,
belong to different trust trees. Notice that in the figure the client and the server
are members of different trust trees identified by yc and ys respectively. The client
verifies pks to be a part of the trust tree ys. Similarly, the server verifies the client
to belong to yc and also the signature using the pkc.

Figure 4.5: VTT based normative mutual authentication protocol run between a
client and a server. The server and the client belong to different trust trees.

In Figure 4.5, for simplicity, the client and the server use the same Identity Scheme
I . The Identity Scheme for each tree and access role used may be different. Regardless
of the Identity Scheme for the individual identity, verification of identity remains the
same. Group identity is always verified by the membership of an individual’s identity
in the trust tree corresponding to the access role. Also, the choice of hash function

4.7. THE GARDEN OF TRUST 39

H to construct each trust tree can vary with each tree. However, for simplicity and
consistency, in this thesis, this is not considered or discussed.

4.7 The garden of trust

Identity and Access Management (IAM) involves defining and managing the access
policies for each resource in the system. Access policies are attached to each entity in
the system to determine it’s access in the system. Every access request must ascertain
the identity of an entity requesting access to enforce the corresponding access policy.
Access roles enable governing entities within a role with common policies.

Figure 4.6: VTT: Sample Identity and Access Management. Each access role has
one trust tree attached to identify the entities with the access rights defined by the
access role.

VTT proposes an access role-based approach for IAM. It is typical for IAM to
define many roles for granular access management. Notice that in Figure 4.6, two
server roles are defined. Only the firmware upgrade servers can push new firmware

40 4. VRIKSH: THE TREE OF TRUST

to the devices grouped under the access role ’Things’. Data servers do not enjoy
this right. Since the data servers and firmware upgrade servers have different access
rights in the system, these are a part of separate trust trees.

With VTT, all entities must be a member of a trust tree. An entity is added
to a trust tree corresponding to it’s access rights in the system. Each trust tree is
attached to an access role. Each member of the trust tree has equal access rights
in the system. There can be more than one trust tree attached to an access role;
however, only one access role per trust tree.

The distinction between trust tree and access roles enables the system to separate
the entities with certain access rights from the access rights. Trust trees determine
and manage entities that exercise the access rights by the access role. While the
access roles define and manage the rights and policies to access the system’s resources.

Trust tree based management of entities is discussed in Section 4.8. In Figure 4.6,
for simplicity, each access role has only one trust tree attached to it. There could be
more. In the figure, the interface defines the interaction methods, if any, between
access roles. The entities in the trees execute the interaction methods.

The sample access management in Figure 4.6 depicts trust trees of different sizes,
age, and each with a role. Hence, IAM with the model implies gardening of these
trust trees through their life cycle. As detailed in Section 4.8, the trust trees are born,
live, and die. The death of a tree may be due to age (expiry) or sickness (revocation).

4.7.1 The trust periphery

With trust comes vulnerability. The VTT aims to limit the trust periphery, and
hence the vulnerability. In VTT, trust is not extended to all entities within the
system. The interactions and interfaces between access roles determine the trust
periphery. Any entity trusts only trust trees attached to other access roles that it
interacts with. To clarify with an example, consider the access roles and interfaces
in Figure 4.6. Notice that in the figure, data server and the firmware upgrade server
do not have any interfaces defined. This implies no access claims are made by any
entities in these access roles to resources in each other’s realm.

4.8 The living tree

All sections until now assume that the trust trees exist. We now discuss the formation
and management of trust trees.

VTT assumes that at the initial setup of the system, all entities in the system,
their identities, access rights, and hence, access roles are known. Therefore, at setup,

4.8. THE LIVING TREE 41

initial trust trees can be formed. For example, based on the load and availability
requirements of the system, the number of servers can be determined. Similarly, the
types of sensors in the system, and their count can also be determined based on
requirements.

In VTT, each trust tree in the system is of different size, function, and life span.
However, all trust trees are assumed to be updated since the initial setup. The scheme
makes two different recommendations for updating the tree. The recommendations
are based on the resourcefulness of the entities that form the trust trees. For example,
a gateway device, implementing a proxy server cannot belong to the trust tree of
load balanced servers. As such a gateway, though plays a server, it neither equal in
rights and resourcefulness.

4.8.1 Autonomous trees

For trees with resourceful and always available members of the system, like the
servers, the tree could self-managed, and hence autonomous. VTT proposes the
use of threshold ring signature to update a trust tree. The ring signatures must be
generated by the entities of the trust tree. Therefore, a tree can be updated and
maintained by the entities within the tree. Much research exists on ring signature and
threshold signature. Authors in [OTYO18] have proposed the use of a ring signature
for the update problem. Similarly, reference [BSS02] describes the application of
a threshold signature for ad hoc groups. Multi-signature transactions in Bitcoin,
[Con19a], use the threshold of k-out-n signatures to validate them.

VTT recommends the use of a common threshold and a minimum threshold of
60%. The exact threshold needed is system dependent and defined as applicable.
The minimum is to ensure majority approved updates to the tree. To elaborate with
an example, to update a server trust tree with 8 members, 6 out of the 8 servers
must approve the update. The assumption, here, is that not all the servers in the
system are compromised at the same time. The uncorrupted majority replaces any
malicious minority servers. If the system is compromised such that no majority can
be reached, then the system must be set up again.

This member majority approved update of the tree is used for system expansion,
replacement of faulty components, etc. as well. Any new servers added to the system
must get the approval of the majority of the existing servers. Digital schemes may
be the most practical way to indicate digital approval.

4.8.2 Non-autonomous trees

The threshold based scheme is not practical for sleepy constrained devices. Getting
all devices to collaborate within a time window may be a challenge. User-initiated

42 4. VRIKSH: THE TREE OF TRUST

updates either via user web portals, and/or other dedicated management devices,
may be a suitable approach to update trust trees of constrained devices. In this
case, the tree is updated by other entities, and hence, such trees are considered to be
non-autonomous. Any updates to the tree, however, should be verifiable. Here too,
threshold signatures may be used.

4.9 Use of VTT with TLS

We have looked at the novel scheme in detail to understand trust and access manage-
ment from a theoretical perspective. To use VTT in a practical application, we now
discuss it’s integration with TLS. As discussed in Section 2.3, TLS is in wide use
and default mechanism for server authentication. Therefore, the integration of any
new scheme with TLS provides a good basis to evaluate the scheme.

Figure 4.7: TLS raw public keys and VTT based entity authentication. The server
certificate, a raw public key, must belong to the server trust tree for successful
authentication.3

In Section 3.9, we considered the use of raw public keys for TLS defined in
RFC7250 [WTG+14] and evaluated it to be a building block; a building block to
make public key cryptography efficient on a constrained device, but lacking a trust
model. VTT fills in this gap and provides a workable scheme. For the use of VTT
with TLS, the thesis proposes the use of public key expressed in raw format to be
the individual identity of all entities. The group identity would then be the Merkle
root of all the raw public keys that identify individual members of the tree.

4.9. USE OF VTT WITH TLS 43

We use the TLS handshake depicted in Figure 4.7 to explain the use of VTT
for entity authentication. For the figure, the handshake exchange is copied from
[WTG+14] and VTT specific depictions. In the figure, the client first verifies the raw
public key of the server to be a member of the server trust tree. In other words, the
client verifies the servers group identity. On successful verification, proceeds with
the handshake according to the methods already defined for the cipher with TLS.
Therefore, to use VTT with TLS, no new methods or alterations are needed.

The server can similarly authenticate the client using the VTT and raw public
keys. Alternatively, JWT based or other eco-system specific schemes may be used.
It is possible to use VTT with JWT and any other Identity Scheme. However, these
are not elaborated to limit the scope of the thesis.

4.9.1 Client Initiated Communication

The design of TLS secure communication between client and servers in a client-server
model; a client initiates TLS session with a server to access one or more specific
resources in the system. For example, the client may check the availability of new
firmware with the firmware upgrade servers. Therefore, it is reasonable to assume
that the client already knows the trust tree to authenticate the server.

4.9.2 Server Name Indication

Server Name Indication (SNI), a TLS extension defined in RFC6066 [Eas11], enables
the client to identify the service of interest to the server. Current practice is to
use the hostname of the service. With VTT, the group identity of the service, the
Merkle root, is indicated SNI extension. The client then authenticates the server
raw public key to be a part of the indicated trust tree only. Any other entity not
belonging to the indicated trust, even if known to the client, will fail the group
identity verification. In this event, the client would abort the connection with the
reason ’Unknown certificate’.

Chapter5Prototype

This chapter documents the prototype phase of the thesis. The prototype demon-
strates the use of VTT with TLS raw public keys, as described in Section 4.9. The
prototype is built to provide:

1. a limited proof of concept for VTT, and
2. data to compare PKI with VTT.
For VTT, the prototype limits the scope to allow TLS connections from members of

hard-coded, pre-provisioned trust tree and reject any connections from non-members.
For PKI, no development is needed. We only capture of data captured needed for the
evaluation phase. In addition, the implementation is tested for correctness; however,
it is neither robust nor production-ready.

The high-level requirements that guide the design and implementation choices
are listed below.

1. Portability. Portability of prototype to embedded platforms. The prototype
is hence implemented in C. 1

2. Reusability. The prototype is built with existing components already in use
for embedded platforms.

3. Test and validation. The prototype is correct even if not robust.
To build the prototype, the development model used is the Incremental and

Iterative approach [con15] as it seems essential and instinctive to:
1. Develop in small incremental steps.
2. Iterate the plans and requirements.
The implementation increments used for the prototype are described in Section 5.4.

Any assumptions made are stated in Section 5.1, and all components and tools are
described in Section 5.4. Justification for choices is provided where necessary.

1 The TLS server role is not ported to embedded platform, hence could be implemented in any
high level language. However, C is used for TLS server as well as most TLS implementations are
implemented in C. This also enables reusing implementation common to server and client roles.

45

46 5. PROTOTYPE

5.1 Assumptions

The assumptions made for implementation are:
1. DTLS and TLS. Any evaluation of TLS applies for DTLS and vice versa. 2 So,

it is adequate to implement and evaluate one of them.
2. TLS Role. Embedded devices play the TLS client role and are resource

constrained. Cloud services play the TLS server role and are very resourceful.
3. Cryptographic Hardware acceleration. Use of hardware acceleration of crypto-

graphic primitives is not considered for the evaluation. 3

4. Application layer protocols for IoT, example MQTT, CoAP, are not relevant for
the current scope. They have no impact on TLS and VTT based authentication.

5.2 Components and Tools

5.2.1 TLS Library

Multiple open source implementations of TLS available. Wikipedia [Wik19b] provides
a comprehensive list of most TLS implementations along with feature and cipher
based comparison. Portability is also compared. Of the many implementations of
TLS, we limit ourselves to three - OpenSSL, mbed TLS, TinyDTLS4.

TinyDTLS is written to have a minimal footprint on embedded devices, with
just the features needed to support two ciphers mandated by CoAP in RFC7252
[SHB14]. TinyDTLS is now available as a part of the Eclipse IoT project at [Ber16a].
TinyDTLS is one of the first implementation of Raw Public Key for TLS.

OpenSSL [The] is the most widely used TLS library for Desktop applications.
OpenSSL provides a wide variety of command line tools and applications for key
generation, certificate signing, hashing, etc. OpenSSL includes pre-compiled server
and client applications that can be invoked using the command line. ASN.1 and
X.509 certificate parsing and decoding tools are also included in the library.

mbed TLS library [ARM] is a popular choice for TLS implementation on embedded
platforms. The library supports a wide variety of TLS features and ciphers and
includes many test applications. It also includes clear documentation for configuring
and porting the library.

2TLS assumes reliable transports, for example TCP. DTLS is an adaptation of TLS for use
over UDP-like unreliable, connection-less transports. DTLS addresses issues typical to an unreliable
transport -packet loss, out-of-order packet reception. DTLS accounts for fragmentation of packets
typical to connection-less transports. DTLS does not introduce any new cipher suites.

3Reception and parsing of certificates are not hardware accelerated. Verification of certificates
chains use hash and signature verification algorithms. Hence, hardware acceleration may be a
beneficial, but left out of scope.

4Wikipedia [Wik19b] does not list TinyDTLS as a TLS implementation

5.2. COMPONENTS AND TOOLS 47

For the prototype implementation, we choose the mbed TLS library. We use
OpenSSL as a Desktop tool to generate credentials and test. The factors that
influenced our choice are listed below.

1. Support for Raw Public Key.
TinyDTLS implements PSK and raw public key but does not support X.509
certificates. Some clones add limited support for this feature.
mbed TLS implements PSK and X.509 certificates and has an open pull request
[Kah15] to add support for the raw public key.
OpenSSL supports PSK and X.509 certificates. There is no support for the
raw public key yet.

2. Portability to embedded platforms. OpenSSL is not well suited for Cortex-M
devices. TinyDTLS is optimized for resource-constrained devices. mbed TLS
is configurable for limited features on embedded platforms.

3. Test and support. mbed TLS is used in commercial products and has a very
wide variety of unit tests and test applications with a large, active commu-
nity. TinyDTLS enjoys smaller adoption and community base as compared to
mBedTLS.

4. Future feature extension. To continue any work on the topic at a future date,
the flexibility to extend the prototype beyond the use of limited primitives is
necessary. TinyDTLS supports very limited crypto toolbox - SHA-256, ECDSA,
ECC curve secp256r1 and AES in CCM mode. mbed TLS provides a much
wider range.

5.2.2 Merkle Tree

We evaluate two C libraries for the Merkle tree.
1. IAIK Merkle tree library. The IAIK library [HW15] uses SHA256 as the hash

function to build the Merkle tree.
2. Vector Gua’s Merkle tree library. This [Guo12] library constructs the Merkle

tree using MD55.
For the prototype, we use the IAIK library. Factors that influence our choice are

listed below.
1. Code and repository structure. The IAIK library has better structure, with

usage example in the form of tests. The library identifies and documents the
configuration parameters like the tree size, the size of the hash function size,
etc.

2. Test and use. The IAIK is tested and in use in another project; this gives
better confidence in the implementation. The IAIK library is used in the secure

5The prototype replaces the default hash implementation in the library with the mbed TLS
SHA-256 function. Therefore, the hash function used in the library is not used as an elimination
criterion.

48 5. PROTOTYPE

device block library [HWF15] to ensure confidentiality and integrity protection
of data-at-rest.

5.2.3 Wireshark

Wireshark [Wir06] is a popular tool for network packet capture and analysis. It
supports many protocols, including TLS. During the development of the prototype,
Wireshark is used for debugging, verifying, and analyzing the TLS handshake messages
exchanged between a server and a client.

5.2.4 Python

Python [Tea05] is a high level, interpreted programming language. Python scripts
have been used here for two purposes.

1. Automation. Setup required creating CA, Server, and Client credentials and
signing them where applicable. Automated scripts ensure an efficient and
consistent process. The scripts also document the process used. The scripts
execute OpenSSL shell commands to generate ECC keys, create certificate
signing request Sing certificates, create raw public key and generation of the
Merkle tree of these raw public key digest. OpenSSL is invoked in the scripts
for most cryptographic operations.

2. Verification. For correctness, verification of the Merkle tree created by the C
library is necessary. Python scripts enable quick independent implementation
of the Merkle tree for the purpose.

All scripts used are available included at [Shi19d].

5.3 Actors

For the prototype, we create limit ourselves to a minimal set of actors. These are
enumerated below.

1. Certificate Authority (CA).
2. Servers.
3. Clients.
4. Adversary.

Servers and clients belong to separate trust trees and play the role of TLS server
and client, respectively. By NIST definitions discussed in Section 3, the servers
represent the Aggregator primitive, and the clients represent the Sensor primitive.
The adversary is essential to ensure the prototype can detect non-members, and take
necessary action. CA are included for the comparison of VTT with PKI. PKI cannot
function without a CA.

5.4. DEVELOPMENT INCREMENTS 49

5.4 Development Increments

The development increments used for prototype implementation are described here.
The incremental build of the prototype provides better clarity on scope and outcome
at each step. The order of the increments does not necessarily define or determine
the chronology of execution. For ease of development and debug, the development
environment used is Linux. The developed code, as it is in C, is portable to an
embedded platform. In Chapter 6, we use mbed TLS port to an embedded platform
for performance evaluation. However, in the prototype phase, we use only the Linux
environment on a PC.

5.4.1 Credential Set Up

For the prototype, we need keys for each actor in the system. An important aspect
during the evaluation is the data exchanged and energy usage for PKI and VTT.
For this, we need to define the evaluation set up for PKI and VTT. The scope of
this increment is to generate ECC keys and certificates to be used for prototype and
evaluation.

The process of key generation and certificate signing is automated using Python
and OpenSSL. Two certificate chains are used for evaluation of PKI. A Long
Certificate Chain as depicted in Section 5.1, and, a Short Certificate Chain as
depicted in Section 5.2. The choice of certificate chains is based on observation of
industry practices. In particular, the choice is influenced by two major cloud service
providers for IoT, Google, and Amazon. Google uses a long certificate chain while
Amazon uses a shorter one.

Figure 5.1: CA setup for a long certificate chain used to evaluate PKI.

In Figure 5.1 and Figure 5.2, CA’s are depicted in blue. The end entities, the
servers are depicted in yellow. The boxes indicate X.509 certificates. All certificates
are signed using ECDSA_SCEP256r1_SHA256. The justification of choice is

50 5. PROTOTYPE

provided in Section 6.1.1 and Section 6.1.2. The subject names used for each entity
are test names chosen for normative purposes.

Figure 5.2: CA setup for a short certificate chain used to evaluate PKI.

We set up 8 servers based on input from deployment choices made by colleagues
in the industry. A system with 8 servers can handle 100,000 incoming requests per
second. However, this aspect is not independently researched. Credentials for 128
clients are generated; however, only one of them is used. Client authentication using
trust tree is not evaluated as the servers are resourceful. An adversary is needed to
ensure no malicious party is able to participate in the system.

At the end of this increment, the following setup is available at [Shi19e].
1. ECC private and public key pair for all entities.
2. Self-signed certificate for the root CA and the adversary.
3. Two certificate chains for server and clients.

a) Short certificate chain as depicted in Figure 5.1 and

b) Long certificate chain as depicted in figure Figure 5.2.

4. Public keys in raw public key format for servers, clients, and the adversary.
5. Merkle trees generated in Python to cross-check the C implementation.
The Merkle tree setup is to create a trust tree for the eight test servers, as depicted

in Figure 5.3. The raw public keys itself are not a part of the Merkle tree, and are
not stored in the prototype, only their digests are. Hence these are depicted in yellow
in the figure.

Figure 5.3: The trust tree for server constructed using the SHA-256 digest of raw
public keys of eight test servers for prototype and evaluation.

5.4. DEVELOPMENT INCREMENTS 51

5.4.2 X.509 certificates with PKI authentication

In this increment, the client and the server applications included in the mbed TLS
library are used with the prototype configurations at [SmTc19]. The configuration is
to test and develop the prototype on Linux. The ssl_server2.c and ssl_client2.c are
the application run for testing.

This increment servers two purposes:
1. Ascertains that the TLS engine, and the client and the server applications are

in working state.
2. Provides the data for short and long certificate chains to evaluate PKI.

Figure 5.4: Successful TLS Handshake with test CA Setup and the long certificate
chain depicted in Figure 5.1.

Figure 5.4 depicts a successful handshake with when the server uses the long
certificate chain created in Section 5.4.1 and mbed TLS is configured accord-
ing to prototype requirements. The mbed TLS configuration includes only the
cryptographic primitives needed for verification of the certificate and using the
TLS_ESDA_ECDHE_AES. The necessary platform defines for time, and file
system access for Linux are defined.

5.4.3 Raw public keys with no authentication

The raw public key pull request for mbed TLS [Kah15], is more than three years old.
mbed TLS development has witnessed many new features, bug fixes, and restructure.
The main objective of this increment is to rebase the pull request such that a common
master is used for raw public keys and X.509 certificates.

This increment resulted in a new pull request [Shi19c] towards the existing pull
request implementing the raw public key [Kah15].

5.4.4 Raw public keys with digest-based authentication

The original raw public key implementation in the pull request for mbed TLS, [Kah15]
does not provide any verification callback to the application. This implies that all

52 5. PROTOTYPE

entities that offer a raw public key are accepted. Therefore, to authenticate entities
using VTT, additional hooks are necessary. In this increment [Shi19f] we add an
application registered verification callback to verify the public key of the peer during
the handshake. The application, via the return value of the callback, may indicate
the mbed TLS library to continue or abort the ongoing TLS connection.

To verify the feature, we use a pre-provisioned SHA-256 digest in the client
application. The client on every TLS connection computes the SHA-256 digest of the
server’s raw public key in the verification callback. The computed digest is compared
with the expected pre-provisioned value. If the values match, then, the connection
continues, else, the connection is aborted.

Figure 5.5: The client aborts the TLS connection with the server on a mismatch
of computed SHA-256 digest of the server’s raw public key with the expected. The
expected value of the is pre-provisioned digest in the client.

Console output for acceptance of a trusted key and rejection of an adversary or
non trusted key based on SHA-256 digest is depicted in Figure 5.6 and Figure 5.5,
respectively. The client aborts TLS handshake if the digest does not match the
expected. The aborted handshake sequence appears identical to Figure 5.7 to an
onlooker.

5.4.5 Raw public keys with VTT based authentication

This increment [Shi19b] completes the proof of concept for the use Vriksh: The Tree
of Trust (VTT) with TLS for server authentication by the client, as depicted in
Section 4.7. The trust tree used to authenticate the raw public key of the server is
as depicted in Figure 5.3. Any non-member raw public is rejected, as depicted in
Figure 5.7.

The membership verification algorithm used here is SACL. This method described
in Section 4.5.1. The proposal of use of Server Name Indication (SNI) to identify the
trust tree of interest is not implemented in the prototype due to lack of time.

5.4. DEVELOPMENT INCREMENTS 53

Figure 5.6: The TLS client successfully authenticates the server based on the SHA-256
digest of the raw public key presented by the server.

Figure 5.7: The prototype client aborts TLS Handshake when the raw public key of
the server does not belong to the server trust tree.

54 5. PROTOTYPE

5.5 Summary

A limited prototype to demonstrate practical use of VTT with TLS is developed in
C on Linux environment. The prototype is portable to any embedded platform. The
prototype client authenticates a server connection based on the trust tree hard-coded
in the client. Connections to adversary not belonging to the server entities in the
hard-coded tree are rejected as visible in Figure 5.7.

Evaluation of VTT with PKI is described in Chapter 6. However, already notice
that the raw public key provided by the server in Figure 5.7 is much smaller than
the certificate chain in Figure 5.4.

The revocation schemes proposed for VTT, Section 4.8 have not been implemented
due to lack of time. As compared to Section 4.7, the prototype assumes only two
access roles, server, and client. While this is sufficient for evaluation, it is far from
real deployments. The prototype, however, as planned, serves the purpose of proof
of concept.

Chapter6Evaluation

In this chapter, we evaluate PKI with VTT based on the performance of ECDSA
verify and SHA-256 digest operations on an embedded platform. Dynamic memory
and persistent storage requirements are also compared. For energy consumption of
radio, the data exchanged on air for authentication during the handshake is compared.
For this, a model based output for the target platform is used.

Notice that for the performance comparison, we measure the fundamental cryp-
tographic operation, ECDSA verify and SHA-256. We do not measure the energy
consumption for the entire handshake. This is to eliminate the use of other resource
hungry components and conditions that can impact timing on target. Network
conditions, radio power, other peripherals, and resources needed to run a protocol
stack are examples of these.

6.1 Methodology

For the prototype, ECDSA_SCEP256r1_SHA256 signature scheme verifies the
PKI based X.509 certificate chain. 1 The length of the certificate chain is proportional
to the number of ECDSA_SCEP256r1_SHA256 based verification needed. The
prototype setup, Section 5.4.1, defines a short chain, Figure 5.2, of length two, and
a long certificate chain, Figure 5.1, of length eight. The number of ECDSA verify
operations needed is two and eight, respectively.

VTT employs a Merkle tree with SHA-256 for the construction of the tree and
tree membership verification. The depth of the tree is proportional to the number
of hash operations needed to establish membership in the tree and the membership
algorithm chosen. This is described in Section 4.5. The (4.6), (4.2) and (4.4) provide

1This signature algorithm is indicated in the signature_algorithm extension of the ClientHello
message. TLS 1.3 [Res18] includes an explicit signature_algorithm_cert for signatures algorithm
used for certificate verification.

55

56 6. EVALUATION

the number of hashes needed for a tree of depth n with SLCO, SACL and the CASL
methods respectively.

The method chosen for the prototype is SLCO. The depth of the trust tree, as
described in Section 5.4.1, is three with eight members, as depicted in Figure 5.3.

Comparison of ECDSA_SCEP256r1_SHA256 verification and SHA-256
digest operations are good indicators of performance indicators for the PKI and
VTT. Knowledge of cost of each operation and system setup provides extrapolated
performance numbers for both the methods in any system.

6.1.1 Why ECDSA?

ECC based cryptography is chosen for the prototype as it provides better security
strength with smaller key sizes as compared to RSA. 256-bit prime groups are
adequate to achieve 128-bit security. Therefore, the key sizes and the signature size
for ECC based ECDSA are shorter. With RSA, 3072-bit key length is needed for
the same level of security. ECC is generally faster than RSA for key and signature
generation. Verification, on the other hand, is slower. A white paper on public key
cryptography on embedded applications [Mal15] reports RSA signature generation
to be fifty to a hundred times slower than ECDSA.

For mutual authentication in TLS, signature generation is required. A downside
of ECDSA is that verification is slower than RSA. Since ECDSA is used for the TLS
cipher, ECDSA is also used for the signature verification on the X.509 certificates.
Use of different schemes for the cipher and certificate signatures is possible. However,
to keep the code base and toolbox limited on the embedded on the device, only ECC
based cryptography is used.

6.1.2 Why SHA-256?

According to Wikipedia [Wik19g], SHA-1 is no longer considered collision resistant.
In 2015, NIST issued an advisory to discontinue use of SHA-1. According to the
advisory, any new application must support SHA-256 for interoperability. SHA-256 is
one of the four hash functions offered in the SHA-2 family of hash functions. For 32-bit
processors, SHA-256 provides a good balance between security and performance.

In the thesis, SHA-256 is used both for the construction of the trust trees and
the verification of the X.509 certificates. The signatures are generated and verified
for the hash of the certificate.

6.1. METHODOLOGY 57

6.1.3 Platform

The device chosen for benchmarking is nRF52840 development kit by Nordic Semi-
conductor ASA. The development kit, Figure 6.1, is referred to as the nRF52840 DK
or the PCA10056 and is the development platform for the nRF52840 SoC. The user
guide for the development is available at [ASA19c].

The nRF52840 SoC [ASA19d] has a 32-bit ARM Cortex-M4 running at 64 MHz
clock. The platform has 1MB flash and 256 kB RAM. The platform supports floating
point unit and hardware accelerators for cryptographic operations. Originally, an
evaluation for performance with and without hardware accelerators was planned.
However, due to lack of time, the current work only results without the use of
hardware accelerators.

Figure 6.1: Nordic’s nRF52840 is used to benchmark performance numbers for PKI
and VTT.

6.1.4 Test parameters

The verify operation in ECDSA or any signature scheme, verifies the signature of the
message digest and not on the message itself. SHA-256 is the digest function used
with ECDSA for the evaluation. The message size chosen is to be 512 bytes. The
raw public keys used with VTT are never more than 128 bytes for ECC based ciphers.
The X.509 certificates are typically at least 512 bytes, if not more. Therefore, 512
bytes is seen as a good compromise. Since ECDSA verifies the signature of a hashed
message. Therefore, ECDSA performance measures do not change very much with
the message size2.

2This is true for reasonably sized messages. In theory, if the message is too large, the hash
operation may overshadows the ECDSA verification process.

58 6. EVALUATION

Test vector generation

Python is used for key and signature generation. The signature and the public key
form the test vectors for the measurement application run on nRF52840. Python
ECDSA module [Dev17a] is used to generate the test ECDSA signature. The
test signature is verified with Python before use as a test vector on target. The
Python script used for sign and verify operation is the Section A.2 of Appendix A.
Python hashlib module [Dev17b] is used for SHA-256 message digest to confirm the
correctness of the output of the embedded application. The script used is included
in Section A.1.

6.1.5 Measurement tool

Nordic’s Power Profiler Kit by Nordic Semiconductor ASA depicted in Figure 6.2,
is the hardware used for performance measurement on the nRF52840. The PPK is
quick and easy to use power measurement tool for Nordic’s nRF5 series of SoCs.

Figure 6.2: A Nordic Power Profiler Kit can be mounted on any variant of Nordic
nRF52 DK to measure energy consumption of the application.

The nRF Connect for Desktop PC tool provides the needed software package
(power profiler in Figure 6.3) to connect to the PPK. The nRFConnect Power Profiler
software can update firmware on the PPK, start, stop measurements. Other features
like setting the markers, setting the supply voltage, trigger events, etc. are offered

6.1. METHODOLOGY 59

as well. The complete user guide for the PPK is available at [ASA19b]. The nRF
Connect for Desktop can be downloaded at [ASA19a].

The nRFConnect for Desktop is open source, [ASA19f], Javascript and HTML5
based ensemble of all PC tools by Nordic Semiconductor ASA. Each tool offered has
its own scope purpose and revision history, as evident from Figure 6.3. Of the many
tools, Power profiler is one of the tools offered and used here to measure the time of
execution and current consumption during the measurement. Windows 10 operating
system is used to run the PC software.

Figure 6.3: Nordic’s nRFConnect for Desktop offers many PC tools to aid development
on Nordic Development Kits. The Power Profiler PC software is one such tool for
use with the PPK.

6.1.6 Application

The application(s), used is based on nRF SDK version 15.3.0, [ASA19g], from Nordic
Semiconductor ASA. An RTC timer, a low power, high accuracy hardware timer
is used to trigger the operation to be measured. The operation to be measured is
either ECDSA or SHA-256. Once the measurement operations are complete, the
CPU is put a sleep mode until woken up again by the RTC time interrupt. Many
measurements are taken to ensure the measurements are consistent and hence reliable.
The application used for measuring the ECDSA verification is included at Section A.5.
The application used for SHA-256 is included at Section A.3.

60 6. EVALUATION

Compiler

GNU Embedded Toolchain for Arm, [Hol19], version 7 2018-q2-update is used to
compiling and debugging the embedded applications included at Section A.5 and
Section A.3. The Makefile used for the compilation is based on the examples included
in nRF SDK release 15.3.0 [ASA19g].

6.2 Energy Consumption - Theory

Average current, Iaverage in ampere (A)is measured by the power profiler at a constant
supply voltage, V supply in volt (V). The average current is measured over time tm in
second (s). The average power, P average in watt(W), is computed using (6.1) and
the energy consumption for the measurement, Em, in joule(J) is computed using
(6.2).

P average = Iaverage × V supply (6.1)

Em = P average × tm (6.2)

6.3 Energy Consumption - Crypto

Time and current consumption on nRF52840 for ECDSA and SHA-256 is measured
and compared here.

6.3.1 ECDSA Verify

Figure 6.4 depicts the duration and the average current consumption for the ECDSA
verification of the test signature on nRF52840. Figure 6.5 depicts the interval
between each measurement. Notice that in Figure 6.4 and Figure 6.5, the multiple
measurements appear consistent in form.

Figure 6.4: Measurements of the duration of the ECDSA Verify and the average cur-
rent in the duration on nRF52840. At a constant voltage of 3.3 V, these measurements
provide the energy consumption for the operation.

On nRF52840, each successful ECDSA verify operation requires 1937 ms, and
the average current during this duration is 6.374 mA at 3.3 V . Therefore, from

6.3. ENERGY CONSUMPTION - CRYPTO 61

(6.1), the average power consumption for ECDSA verify operation is 21.0342 mW .
The energy consumption, by (6.2) is 40.743 mJ .

A side observation is that the power and energy consumption for failure in verifica-
tion is the same as a successful verification. Additionally, the current consumption of
6.3 mA for ECDSA suggests that the load on the CPU is 100%. Refer the electrical
specification of the nRF52840 SoC [ASA19e] for details.

Figure 6.5: The measurement of ECDSA verify is triggered at a regular interval
of 10 seconds using the RTC peripheral. Multiple measurements help identify
any inconsistencies in the measurements. Notice that the current consumption is
consistent across three measurements.

6.3.2 SHA-256 Digest

Figure 6.6 and Figure 6.7 depict the measurements captured for SHA-256 digest
operation for a 512-byte message. The execution time for SHA-256 is very short (< 1
ms) and may appear to be just a pulse, as seen in Figure 6.7. Each SHA-256 digest
operation requires 0.928 ms, and the average current during this period is 5.004
mA at 3.3 V . Therefore, for SHA-256 operation on nRF52840, the average power,
and the energy consumption, by (6.1), and (6.2), are 16.513 mW and 15.324 nJ ,
respectively.

Figure 6.6: The measurement of the duration of the SHA-256 Digest and the average
current in the duration on nRF52840. The digest is computed on a 512 byte message.

The cause of the initial spike at the start of measurement in Figure 6.4 and
Figure 6.6 is likely due to switching from low-frequency clock to high-frequency clock

62 6. EVALUATION

on CPU wake up. This is the hypothesis provided by the engineers at Nordic. They
share that this is the observed and hence the expected behavior. However, this is
neither documented nor further analyzed.

Figure 6.7: The application on target triggers a SHA-256 digest operation every 10
seconds using the RTC. Therefore, we observe small sleep currents when the CPU is
in the power saving mode. Notice that the duration of each SHA-256 digest is very
small, and therefore, has the appearance of a pulse.

6.3.3 ECDSA Verify vs. SHA-256 Digest

Table 6.1 summarizes the performance of ECDSA verify and SHA-256 digest on
nRF52840. For the measurements, the application is executed from flash. This is the
most typical configuration for embedded firmware. Execution from RAM, though
faster, is not considered as most embedded software have limited RAM and is not
intended for code execution.

Measurement/ SHA-256 ECDSA Verify
Function
tm (s) 928 × 10−6 1.937
Iaverage (A) 5.004 × 10−3 6.374 × 10−3

Paverage (W) 16.513 × 10−3 21.0324 × 10−3

Em (J) 15.324 × 10−9 40.743 × 10−3

Table 6.1: ECDSA Verify vs. SHA-256: Performance comparison on nRF52840 DK
at 3.3 V . As expected, SHA-256 performs better than ECDSA verify.

From 6.1, the execution time for one ECDSA verify operation is equivalent to
2000 times execution time that of SHA-256 digest operation. Moreover, the energy
consumption of 2000 SHA-256 operations would be at least a 1000 times lower than
one SHA-256 verify operation.

6.4 PKI vs. VTT: Energy consumption - Verify

The energy consumption comparison of an ECDSA verify operation with a SHA-256
digest in Section 6.3.3 provides the basis for the comparison of PKI with VTT. The

6.5. DYNAMIC MEMORY 63

number of ECDSA verify operations needed for certificate chain verification depends
on the depth of the certificate chain. For VTT, as described in Section 4.5, the
number of digest operations depends on the depth of the tree, and the choice of
membership algorithm. Table 6.2 summarizes the count of operations needed for the
setup described in Section 5.4.1.

Method/ PKI VTT
Operation Long Short SLCO SACL CASL
SHA-2563 N/A N/A 1 4 15
ECDSA Verify 9 2 N/A N/A N/A

Table 6.2: PKI vs. VTT: Count of cryptographic operations per authentication for
evaluation setup. For PKI, depth of certificate chain determines the count. For VTT,
a combination of depth of trust tree and the membership algorithm.

Table 6.3 summarizes the performance parameters of PKI and VTT based on
parameters for ECDSA and SHA-256 measurements in Table 6.1 and the number
of operations needed in Table 6.2. As is evident, the smallest configuration for the
PKI is very expensive for a system that has clients communicating to eight servers.
These results are revisited in Chapter 7 to provide a better comparison based on the
system as a whole.

Performance/ PKI VTT
Authentication Long Short SLCO SACL CASL
tverify (s) 17.433 3.874 928 × 10−6 3.712 × 10−3 13.93 × 10−3

Everify (J) 0.366 0.081 15.324 × 10−9 61.296 × 10−9 229.863 × 10−9

Table 6.3: PKI vs. VTT: Energy consumption for authentication. This table is the
prodcut of the measured energy consumption for ECDSA verify and SHA-256 Digest
in Table 6.1 and the count of these operations in Table 6.2.

6.5 Dynamic memory

The dynamic memory, that is, the heap-allocated memory at run time, for authenti-
cation using PKI and VTT, is compared here. The memory, Heapparse, needed for
parsing an X.509 certificate or a raw public key is evaluated separately from the mem-
ory needed for computing the ECDSA signature or the SHA-256 digest, Heapverify.
This Heapverify depends only on the choice of the cryptographic algorithm, while
Heapparse depends on the length of the certificate chain in case of PKI.

The mbed TLS library allocates 1400 bytes per X.509 certificate and ECDSA
public key context. 1400 bytes are observed to be allocated for each certificate in

3ECDSA verify and hence PKI requires a digest operation, here, SHA-256. These are excluded
as the measured of time and performance already account for this.

64 6. EVALUATION

the chain. For the raw public key, 500 bytes are allocated for public key context and
additional memory to parse ASN.1 encoded signature algorithm id.

For ECDSA verify operation, 7200 bytes are allocated on the heap for computing
the group operations needed for signature verification. SHA-256 digest requires only
500 bytes. Based on these measurements, a comparison of PKI and VTT is provided
in Table 6.4.

Table 6.4 summarizes the dynamic memory requirements for PKI and VTT. The
heap size for VTT is considerably smaller than PKI. Additionally, the larger heaps
are not required for bigger trust trees.

Dynamic Memory/ PKI VTT
Authentication Long Short SLCO SACL CASL
Heapparse (B) 12600 2800 400 400 400
Heapverify (B) 7200 7200 500 500 500

Table 6.4: PKI vs. VTT: Dynamic memory(heap) requirements. Memory require-
ments are determined only by the choice of signature verification and digest functions.

6.6 Persistent Storage memory

PKI and VTT, both require an initial seeding of trust in each entity. The trust seed
in case of PKI is the X.509 certificate of the root CAs. In the case of VTT, the
provisioning of the trust tree is a prerequisite for authentication. There may be more
than one trust anchors in the system; however, here, we assume only one is used.

The trust seed must be stored persistently in the embedded device, and should
preferably be guarded against any tamper. Table 6.5 compares persistent memory
requirements for trust seed with PKI and VTT.

Persistent Memory/ PKI VTT
Authentication Long Short SLCO SACL CASL
Storagetrust (B) 476 476 288 480 288

Table 6.5: PKI vs. VTT: Persistent memory requirements for evaluation setup on
nRF52840. For PKI, the count of root CA and the size of each root CA certificate
determines the needed non-volatile memory. For VTT, the count and size of each
trust determines the needed memory.

The size of the root certificate is determined by choice of the signature algorithm
and the additional fields included in the certificate. The additional fields describe the
entity and the use and the validity of the certificate. The public key and signature
for ECDSA are 64 bytes each. Therefore, here, of 476, adds only 128 bytes to the

6.7. ENERGY CONSUMPTION - RADIO 65

certificate. With RSA of minimum 2048-bit key size, the key and signature are of
256 bytes each. We discuss this further in Chapter 7.

6.7 Energy Consumption - Radio

Radio is the primary contributor to current consumption in an embedded system
apart from the CPU. Each byte exchanged on air, therefore, contributes to the energy
consumption on an embedded device. The actual current consumption depends on
the access technology, modulation, radio conditions, and several other factors. Given
the energy consumed to exchange one byte on air, the amount of data needed per
TLS handshake per entity authentication can be used to compare VTT with PKI.

Figure 6.8: Size of Short Certificate Chain. The depth of the short certificate chain
is determined by the setup in Figure 5.2.

Figure 6.9: The size of the raw public key for any ECC 256-bit curve exchanged
during the TLS handshake. With VTT, the client verifies the server’s raw public key
to be a member of the server trust tree.

66 6. EVALUATION

In the case of PKI, the entire certificate chain is exchanged during the TLS
handshake. As depicted in Figure 5.4, the long certificate chain is of size 3727 bytes
and depth 8. For the short certificate chain in Figure 6.8, an embedded client must
receive 927 bytes to authenticate the server. The depth of the certificate chain and
the size of each certificate contribute to the use of the radio resources. Similarly, the
client must transmit its certificate chain to authenticate itself. In comparison, for
VTT, as we see in Figure 6.9, an exchange of a raw public key of 91 bytes in each
direction is adequate for entity authentication.

Figure 6.10: Model-based estimate of the energy consumption for each BLE 7.5 ms
connection interval on nRF52840.

We use Nordic’s online power profiler tool [ASA16] to estimate the energy con-
sumption on the radio on nRF52840. BLE, a low power access technology supported,
[Wik19a], supported on nRF52840, is used for the estimates. As seen in Figure 6.10,

6.8. CONSOLIDATED RESULTS AND ANALYSIS 67

at 3.3 V , with the connection interval of 7.5 ms for 2.0 Mbps data rate, each
interval receives a maximum of 297 bytes. From this model-based estimate, the
average current during the interval of 7.5 ms is 5.49 mA. Therefore, from (6.1) and
(6.2), the energy consumed to receive 297 bytes of data is 135.8775 µJ . Therefore,
energy consumed by the radio to receive one byte is 457.5 nJ/byte.

One BLE connection event is adequate to receive a raw public key of 91 bytes.
Therefore, VTT requires one BLE event. However, for PKI, multiple BLE events are
necessary to receive the large certificates chain. A minimum of 4 and 13 connection
events are used to receive the short and long certificate chains, respectively. Based
on the bytes exchanged for authentication, and the energy consumed to receive one
byte, Table 6.6 summarizes the average energy consumed for the radio with PKI and
VTT.

Performance/ PKI VTT
Authentication Long Short SLCO SACL CASL
Datarx (B) 3727 927 91 91 91
tradio s 97.5 × 10−3 30 × 10−3 7.5 × 10−3 7.5 × 10−3 7.5 × 10−3

Eradio J 1.705 × 10−3 0.428 × 10−3 41.632 × 10−6 41.632 × 10−6 41.632 × 10−6

Table 6.6: PKI vs. VTT: Energy consumption for the radio on nRF52840. The
comparison PKI and VTT based on the amount data exchange on air to exchange
for authentication using BLE @ 2.0 Mbps.4

Notice in Table 6.6, the energy consumption for the radio for VTT based authen-
tication is at least 10 times less than the smallest possible with PKI. The energy
consumption for VTT only depends on the size of the raw public key, and hence,
the identity algorithm. The depth of the trust tree or the choice of membership
algorithm do not influence the radio resources. However, for PKI, apart from the
size of the X.509 certificate, the depth of the certificate chain is directly proportional
to the radio resources needed.

6.8 Consolidated results and analysis

In Section 4 of Chapter 4, when describing the alternative to the Public Key In-
frastructure (PKI), two goals are defined. Here, we evaluate if the two goals are
met. The various individual results are consolidated to investigate any dependen-
cies or correlation between memory, storage, and energy consumption for the two
schemes. Table 6.8 combines performance and resource usage numbers from Table 4.1,
Table 6.4, Table 6.5, and Table 6.6.

4The time needed on the radio is computed based on the number of connection events needed
to exchange data, and the duration of the interval. As there is a minimum time to wait before the
next connection interval is scheduled.

68 6. EVALUATION

Performance/ PKI VTT
Authentication Long Short SLCO SACL CASL
tverify (s) 17.433 3.874 928 × 10−6 3.712 × 10−3 13.93 × 10−3

Everify (J) 0.366 0.081 15.324 × 10−9 61.296 × 10−9 229.863 × 10−9

Heapparse (B) 12600 2800 400 400 400
Heapverify (B) 7200 7200 500 500 500
Storagetrust (B) 476 476 480 480 288
Datarx (B) 3727 927 91 91 91
tradio s 97.5 × 10−3 30 × 10−3 7.5 × 10−3 7.5 × 10−3 7.5 × 10−3

Eradio J 1.705 × 10−3 0.428 × 10−3 41.632 × 10−6 41.632 × 10−6 41.632 × 10−6

Table 6.7: PKI vs. VTT: Evaluation Summary. All membership verification for VTT
fairs better than the most optimistic setup for PKI. The results are consistent with
the expected as VTT uses SHA-256 while PKI uses ECDSA Verify for authentication.

We find that the energy required for ECDSA verify is equivalent to the energy
needed to receive 87 kB on BLE radio at 2.0 Mbps. Further, it comparable to
the energy needed to compute 2.5 million SHA-256 digests on 512 B messages.
The results in Table 6.8 are consistent with the findings in [WGE+05] on an 8-bit
processor. The exact values differ, as the test parameters and the target processors
are not identical. However, energy consumption wise, ECC being most predominant,
even marginalizing the energy needed for the radio is consistent with the findings in
this thesis. Reference [WGE+05] confirms that the SHA operations adding negligibly
to energy consumption in comparison to radio. The hash-based VTT is more efficient
than PKI.

Many of the findings are specific to the choice of the evaluation parameters used.
For example, the persistent memory requirement for VTT increases with the depth
of the tree. The choice of the signature verification function, the certificate chain
depth and size, the depth of the trust tree, and the choice of radio are all factors that
influence the performance and the resource usage. However, based on the findings,
some generalizations may be derived. These generalizations are useful for later in
Section 7.3 to make deployment recommendations for PKI.

For PKI, the following generalizations apply.

Everify ⊥⊥ AlgorithmHash

⊥⊥ DepthCertChain
(6.3)

Heapverify ⊥⊥ AlgorithmSignature (6.4)
StorageTrust ⊥⊥ AlgorithmSignature (6.5)

Eradio ∝ DepthCertChain ×KeySizeAlgorithmSignature (6.6)
Heapradio ∝ DepthCertChain ×KeySizeAlgorithmSignature (6.7)

Everify >>> Eradio (6.8)

6.8. CONSOLIDATED RESULTS AND ANALYSIS 69

For VTT, the following generalizations apply.

Everify ⊥⊥ AlgorithmHash

⊥⊥ AlgorithmTreeMembership

⊥⊥ DepthTrustTree

(6.9)

Heapverify ⊥⊥ AlgorithmHash

⊥⊥ AlgorithmTreeMembership

⊥⊥ DepthTrustTree

(6.10)

StorageTrust ⊥⊥ AlgorithmHash

⊥⊥ AlgorithmTreeMembership

⊥⊥ DepthTrustTree

(6.11)

Eradio ∝ KeySizeSignatureAlgorithm (6.12)
Heapradio ∝ KeySizeSignatureAlgorithm (6.13)

Eradio >> Everify, if n < 10 (6.14)

6.8.1 Embedded device-friendly

With the evaluation set up for VTT, the energy consumption for radio is the more
predominant than the membership verification in a trust tree. From equation 6.12,
the radio requirements can be kept in check by the apt choice of key agreement
algorithm. From equation 6.9, the energy consumption for membership verification
in a tree depends on the depth of the tree and membership algorithm. Notice in
Figure 6.11, the energy consumption for membership verification with the CASL
method surpasses the energy consumed by the radio for large trees (depth n ≥ 10)
with 1024 members or more. The order of energy consumption, however, remains
marginal in comparison to PKI.

The VTT heap requirements are trivial in comparison to PKI, and constant
across various membership methods - the computation of digest operation is not
heap intensive, and the message digested is the ECC raw public key of size 91 bytes.
In comparison, PKI requires heap intensive computation of ECC group operations,
and publick key context per certificate.

The storage requirements, however, increase with the depth of the tree as depicted
in Figure 6.12. In light of persistent memory requirements, the energy efficient SACL
method may be less lucrative in comparison to CASL. For the very constrained
devices in a system with large trust trees, the insecure SACL may be the only viable
option to curb the cost of energy and persistent memory.

70 6. EVALUATION

Figure 6.11: The plot of energy consumption as a function of tree depth for VTT
shows that the energy consumption for CASL method surpasses energy consumption
for radio for very large trees.

6.8.2 The cost of limited trust

VTT, to limit the vulnerability stemming from trust, tightens the trust periphery.
Only the entities that interact with each in the system are trusted. Such trust
boundaries, as evident in Figure 6.12, come at the cost of persistent memory. With
VTT, a constrained device persistently stores one trust tree per service.

To explain with an example, consider again Figure 4.6. The constrained device
in access role ’Thing’, interfaces with three other access roles in the system - ’Data
Server’, ’Firmware Upgrade server’ and ’User device’. Therefore, must be
provisioned with, trust trees of depths 2, 1, and 1. For these sizes, the persistent
memory requirement is less than 1k and hence, nominal. However, if each of these
trees were of depth 5, with 32 entities in each trust tree, then, 6kB of persistent
memory would be needed.

PKI, by design, allows trust propagation to many entities with trust anchored in

6.8. CONSOLIDATED RESULTS AND ANALYSIS 71

Figure 6.12: The plot of persistent memory requirement as a function of tree depth
for VTT shows that SACL may not be a viable method for large trust trees.

a single CA. Therefore, a single CA could be set up for all the services in the system.
This way, the persistent memory requirements on a device are minimized. However,
recall the problems discussed in Section 2.2 with such a design.

Further, most systems hope to expand their system based on the success of their
deployment. For PKI, this is no problem. With VTT, new entities require more
persistent memory. Lack of necessary memory provisions in embedded devices may
limit the aspirations of systems and hence, businesses.

Chapter7Discussion

Until now, the constraints of an embedded device have defined all the narrative. With
Section 7.1, by including alternative narratives and otherwise ignored considerations,
we demonstrate that one-sided narratives can never lead to a secure, and usable
solution. In Section 7.2, we discuss the open addressed topics. Also, based on the
findings in Section 6.8, concrete deployment recommendations based on results are
made to make PKI more constrained device-friendly.

In this chapter, we see that VTT leaves many aspects open and hence not
considered ready for deployment. Hence, we offer no deployment recommendations
for VTT.

7.1 Towards a holistic view

If PKI based IoT solutions are guilty of ignoring the weakest links in the system, VTT,
and this thesis should be charged with a limited and narrow one-sided perspective to
evaluate solutions. We rectify this with the discussion on some aspects that have
intentionally been left out to keep the focus on the constraints of an embedded device
is discussed here. With this discussion, we advocate the need to take a holistic view
is needed to make the right choice for current and future needs of functioning and
secure system.

7.1.1 The Service Perspective

The perspective of IoT service has been dismissed throughout the thesis as the servers
are considered very resourceful. While this is true, ignoring the server efficiency gain
with authentication resourceful may not be and the efficiency gain offered VTT may
be a neutralized if

VTT assumes prior knowledge of all services, the number of servers in each
services, and identity of each server in the system. In closed, private IoT systems,

73

74 7. DISCUSSION

this may not be a challenge. However, most cloud service providers today provide
elastic, load based auto-scaling of the servers used for a service. Existing trusted CA
signs certificates for any additional certificates. Therefore, the scaling of servers may
not be visible to other components on the system.

VTT, with its tightening of trust, imposes rigidity on services. Such auto-scaling
may be a challenge for VTT. Trust trees to group all the servers in the pool to
scale to the load requirements can be large. Large trees impose a storage cost on a
constrained device.

An alternate practice visible with PKI is the installation of certificates on the
load balancer instead of servers. In these cases, all server would appear to be using
a common certificate. Here, the certificates do not identify physical servers in the
system, rather only a service. Such a model is possible with VTT as well. Not
tying server identities in the trust tree to physical servers is an option. This way,
many servers could share the common individual identity and therefore, the group
identity. Circulating private key across many servers, however, is not recommended.
Time-limited security token to gain access to centralized key management services
are worth consideration. Such a service would allow key usage without revealing the
key to any of the servers.

7.1.2 Key Expiration

The X.509 certificates and the PKI determine the expiry of the key already at
validity. Such predetermined expiry can limit the damage caused by key compromise
or weakening of cryptographic systems with hitherto unknown vulnerabilities. As
discussed in Section 2.3, the use of time for managing the life of each key is cumbersome
and susceptible to exploits. Despite this, PKI, by attaching the terms of use for the
key, provides a security feature that is not considered or intentionally ignored by
VTT.

VTT in Section 4.8, specifies that the members of any tree may update the tree.
The update may evict members from the tree. The eviction may be a result of key
expiry. However, in case of a weakening of cryptographic system, the entire trust
tree may need to be revoked. VTT does not offer any Seppuku1, nor any means for
resurrection with a stronger replacement cryptographic primitive.

Systems that chose PKI for the ability to limit key usage must plan mechanisms
to update the root certificates across all entities devices as these too expire. For
VTT, multiple trees could collaborate and authorize eviction and replacement of
other trees. Management protocols and interfaces for the entities in trust tress would

1Japanese voluntary suicide ritual to die with honor, source [Wik19f]

7.1. TOWARDS A HOLISTIC VIEW 75

then become necessary. The recommendation in Section 4.7, however, is to limit
interaction between the trust trees. Recall in Figure 4.6, the Data Server and the
Firmware Upgrade Server interact only with two other access roles and trust trees.
Expecting sleepy devices to collaborate to evict servers may be ill-advised. In such
cases, master trust tree to manage other trees may be designed. Keep in mind,
however, that additional trees come at the cost persistent memory in the system.

In practice, regardless of PKI or VTT, to replace weak security schemes, distri-
bution of new keys, and firmware updates to support the new schemes is necessary.
Firmware updates are typically managed remotely; any remote operation would need
entity authentication. Diligent planning and foresight are needed to update weakened
security primitives. Fixing a key expiration date is one step towards it and not a
complete solution.

7.1.3 System Setup and Management

Internet Engineering Task Force (IETF) has taken the initiative to draft the security
challenges for IoT devices [GMKS18]. Figure 7.1, borrowed from this draft, describes
the life cycle of the device. We do not detail the life cycle states. Rather, discuss
some of the challenges that manifest for installation and maintenance of devices.

Figure 7.1: IoT device life cycle. Source [GMKS18].

Key Generation

Most deployments make an assumption of provisioning credentials into the system at
installation. Key generation on the device at first boot, and exporting the public key
as the device identity is not a popular norm. Though, this may be more secure as

76 7. DISCUSSION

the private key of the device is known only to device. The knowledge of the private
key can break the strongest of identity schemes. Despite this, the private key or
other entities are generated one entity and provisioned into the constrained device
by another.

The reasons for not using such a scheme could be many. Devices may be assumed
to be incapable of key generation. Or, the target eco-system determines the identity
scheme. The heterogeneous nature of IoT components and devices is a huge challenge
to identify the right policies and mechanisms to enforce them.

Root of trust

PKI and VTT, each identify the prerequisites for an entity to participate in the
system. The setup in case of PKI includes the installation of root certificates for
target services and device credentials. For VTT, peer trust tress must be installed
before a device becomes operational. This installation assumes a secure channel.

Rogue root certificates or trust trees may make their way into the device during
the commissioning phase. A compromised commissioning phase has been identified as
a major challenge for IoT. Any requirements for remote commissioning only make the
problem more acute. Intel’s Secure Device Onboarding (SDO) [Int18] offers secure
remote installation of credentials. The solution comes with a mandate of Enhanced
Privacy ID (EPID) based Root of Trust (RoT). Such mandates need a security and
efficiency evaluation of their own.

The many actors

Many actors - device manufacturers, cloud service providers, integrators, and end
users play a role in the installation and maintenance of any IoT system. There may
be many more. Each of these actors contributes to the configuration of the system at
different life cycle states on their components, and play a role in keeping the system
functional.

Device manufacturers build and manage firmware and, any needed updates for
released firmware. The cloud service provider defines the IAM scheme; the integrator
installs credentials, and the end users personalize the system and hence the individual
devices.

A particular challenge here is that the device manufacturers and cloud service
providers want to make their products and services generic and flexible for any IoT
use case. As we already stated in Chapter 1, the use cases vary a lot. Therefore,
generic solutions imply implementations with many options and features that must
be fine-tuned at integration.

7.1. TOWARDS A HOLISTIC VIEW 77

The integrators and the end users, on the other hand, expect fine-tuned compo-
nents that can be quickly pieced together to realize their use case. Many choices
and decisions are needed to lock down the needed features from the very many
offered by the vendors. The target IoT system integrates many devices from many
vendors. This only compounds the decision stress for integrators and end-users.
Making security choices is not easy and requires special attention and competence.
Appropriate choices may not be clear under these circumstances.

Firmware upgrade

Securities vulnerabilities in the system may arise due to drawbacks in individual
implementations, the security model of the eco-system, and, or a combination of
both. It may not be possible to address all vulnerabilities with firmware updates;
hardware limitations may be one reason for this. Therefore it is important to set
clear scope and requirements of the firmware update feature before deployment.

It is critical to isolate any patch update from updates that add new features in the
system. It may be undesirable that a patch update wipes or tamper the provisioned
credentials and end-user configuration. This would trigger a reconfiguration of the
system. On the other hand, updates that require additional features to secure the
system may require additional configuration and new credentials too. In this case,
it may be acceptable to require a reconfiguration of the device. Remember that
seems practical in the scope of one device, but may be quite tedious in context many
devices. Cost of replacements may become more practical and affordable.

Firmware upgrades are critical to patch device firmware. In most cases, the
upgrades are managed remotely for efficiency. It is unpractical to update devices
manually with physical access. Most deployments would disable access ports on the
device for security reasons. This leaves remote updates as the only viable option.
In such cases, credentials needed to verify firmware before installation need to be
provisioned and guarded against tamper. This is an important element for the
trusted execution environment. Updating the cryptographic primitive used firmware
verification may not be possible. Therefore, some critical and far-sighted deployment
choices are needed.

End of life cycle

Awareness of misuse of keys extracted from a discarded product at the end of its
life cycle can lead to good security practices like wiping keys and any personal
information and configuration from the device. These security practices, however,
need planning and support. Identification of the exploitable and critical assets in the
device and methods to treat them according to life cycle state are necessary. This
may require collaboration between various actors.

78 7. DISCUSSION

7.2 The elephants in the room

Open issues raised but addressed are collected in this section. This to emphasize
there is much left to be done to secure IoT, it’s a big puzzle.

7.2.1 Detection and Report of Security Exceptions

The problem Section 2.4 points out that humans manually detect and report the
misuse of certificates. VTT provides no automated methods to address this issue.
Key expiration policies may address one part of the problem.

Key expiration need not be detected in the constrained device. Components, like
routers, and cellular networks, that already peek into the network packets for the
purpose of fire-walling and value-added services take on an additional role of the
certificate-police. These components could curb routing packets on TCP stream that
use expired and revoked certificates. With TLS 1.2, the X.509 certificates are visible
in plain text. Therefore, such measures may be possible to detect, report, and even
act against by observers of the traffic. Such measures, however, may remain limited
to cellular network based IoT deployments.

7.2.2 Trust and Access Policy propagation

VTT, in Chapter 4, claims to weave together identity, trust, and access management
together. Organization of identities in a trust tree attached to an access role is not
adequate of access management. In the absence of mechanisms to formally describe
and verify an access policy, and to attach the policy to the right trust tress, the VTT
falls short on its claim.

With PKI, the hostname of a service is bound to its certificate, and usage
descriptions can be included. The embedded devices must have prior knowledge of
service host-names. This knowledge must be provisioned in the device before the
operational phase. Moreover, revising service information may be trigger firmware
upgrades and reconfiguration.

7.2.3 Security Analysis

Merkle trees are fundamental VTT design. A Merkle tree is known to be as secure
as the hash function used to construct it. However, VTT extends the functionality
of a Merkle tree. VTT defines autonomous trees that can self-update to expand and
shrink themselves. Such extensions need thorough analysis, but none is provided in
the current work.

The limited evaluation looks promising for VTT makes it worthy of further
scrutiny and formal assessment. PKI is a mature architecture with decades of

7.3. DEPLOYMENT RECOMMENDATIONS FOR PKI 79

feedback and many iterations to refine the solution. Any solution proposed as an
alternative will need to be thorough and time tested to be considered seriously.

7.3 Deployment recommendations for PKI

PKI is in use despite the challenges. Findings from this work could provide recommen-
dations to strengthen PKI-based deployments. We provide these recommendations
here.

From equations 6.3, 6.4, 6.6, and 6.7, the certificate chain depth and the choice of
the certificate verification algorithm determine the energy and heap requirements on
a constrained device. Any deployment that must use PKI should, therefore, minimize
certificate chain depth.

From equation 6.8, the energy needed for signature verification overshadows the
energy needed to receive the certificates. Therefore, despite larger key and signature
sizes, the RSA signature on certificates may be more energy efficient than ECDSA.
Results from [PRRJ03] and [Ime15] show that verify operation for RSA is cheaper
than verify operation for ECDSA.

For signature generation, however, ECDSA is more efficient. Therefore, use of dif-
ferent algorithms for certificate verification and entity authentication is recommended.
RSA for certificate verification and ECDSA for authentication and key agreement.
TLS version 1.3 [Res18] defines the signature_algorithms_cert extension in ad-
dition to the signature_algorithms. This enables any client to specify distinct
preferences for certificate verification and key agreement. This recommendation,
however, implies that an embedded client shall support both RSA and ECC based
cryptography.

Further, limiting the number of trust anchors to a handful of root CAs implies
smaller persistent memory requirements on the constrained device. A common CA
for the various services is recommended. Even though this may not be practical if
the service providers are third parties that do not collaborate.

Finally, the problems with lack of time information, revocation management, and
CA compromise do not go away. If PKI must be used, an embedded device capable
enough to implement the needed services for time synchronization, and revocation
management should be used. All current countermeasures implemented in a browser
should be considered for the constrained device as well. Any device not capable of
implementing these features should be avoided in the system.

Application layer measures like the OCSP stapling and HTTP pinning serve as
an additional layer of security for existing web clients. HTTP pinning is unavailable

80 7. DISCUSSION

for IoT devices as the application layer protocol is no longer HTTP. Attempts must
be made to ensure that countermeasures are available to all clients regardless of the
application layer protocol. Making these available with TLS instead of application
protocol-specific may be a reusable and consistent solution for all services on the
Internet.

Chapter8Conclusion and Future work

8.1 Conclusion

We established the disparity between the terms of use of PKI and IoT requirements
and constraints. Such disparity can compromise the security offered with PKI. There
is no effort to adapt PKI for IoT. Therefore, IoT must adapt to PKI. IoT devices
must implement time synchronization and revocation management services. These
services are not optional for PKI.

Our novel approach, VTT tailored for IoT, is efficient in comparison to on an
embedded platform. However, we lack security analysis and leave the proposed
revocation methods unverified. Such critical yet missing pieces imply that the model
needs more effort and analysis. Besides, PKI, with its use in web services, has enjoyed
the privilege of feedback. Feedback through use, attacks, analysis, and the many
implementation mistakes; this has strengthened PKI that now has a compilation of a
comprehensive list of known vulnerabilities and their countermeasures. Therefore,
as an alternative to PKI, VTT needs more effort and scrutiny, but with its novel
approach shows that practical new designs tailored for emerging use cases are possible.

Thorough use case and security analysis, requirement planning, and foresight
are essential to identify the right security model and features for IoT, even for PKI.
Remotely distributed firmware update feature may not be capable of retrofitting
these elements into the system. Also, as we see in this work, system choices impact
the constrained device greatly IoT, short certificate chains, choice of right algorithms
may improve the PKI experience for the constrained devices.

8.2 Future Work

As mentioned multiple times earlier, to complement the assessment of the practical
application of VTT in IoT, VTT much work and scrutiny. The implementation and

81

82 8. CONCLUSION AND FUTURE WORK

analysis of the proposed revocation management for autonomous trees is a starting
point for further work on VTT.

For PKI, threat analysis and risk assessment that includes third-party actors like
the CA and the limited capability of IoT devices can guide us towards sound design
and implementation. Such analysis is missing today.

Work to provide mechanisms for automated detection and report of security
exceptions in IoT devices is critical to avoid large-scale exploits. Use of remote
services to report such exceptions may be the only option for devices lacking a user
interface. However, this brings us back to the problem of entity authentication. Out-
of-the-box thinking and innovations are needed to solve these issues. In the meanwhile,
observers of network traffic may provide interim relief if ideas in Chapter 7.2.1 are
converted to design specification and implementations.

References

[AB17] Mustafa Al-Bassam. SCPKI: A Smart Contract-based PKI and Identity System. In
Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
BCC ’17, pages 35–40, New York, NY, USA, 2017. ACM.

[ARM] ARMmbed. mbed TLS – An Open Source, Portable, Easy to Use, Readable and
Flexible SSL Library. https://tls.mbed.org/.

[ARP03] SS Al-Riyami and Kg Paterson. Certificateless public key cryptography. Advances
In Cryptology - Asiacrypt 2003, 2894:452–473, 2003.

[ASA16] Nordic Semiconductor ASA. Nordic Online Power Profiler.
https://devzone.nordicsemi.com/, 2016.

[ASA19a] Nordic Semiconductor ASA. nRF Connect for Desktop.
https://www.nordicsemi.com, 2016-2019. Rev. 2.6.2.

[ASA19b] Nordic Semiconductor ASA. nRF Power Profiler Kit: User Guide.
https://infocenter.nordicsemi.com, 2016-2019. Rev. 2.3.

[ASA19c] Nordic Semiconductor ASA. nRF52840 DK: User Guide.
https://infocenter.nordicsemi.com, 2017-2019. Rev. 1.2.

[ASA19d] Nordic Semiconductor ASA. nrf52840 product specification.
https://infocenter.nordicsemi.com, 2017-2019.

[ASA19e] Nordic Semiconductor ASA. nRF52840 Product Specification: Current consump-
tion. https://infocenter.nordicsemi.com, 2017-2019.

[ASA19f] Nordic Semiconductor ASA. nrfConnect for Desktop: Source Code. Tech-
nical report, GitHub, 2017-2019. https://github.com/NordicSemiconductor/
pc-nrfconnect-core.

[ASA19g] Nordic Semiconductor ASA. nRF SDK v15.3.0.
https://infocenter.nordicsemi.com, Feb 2019.

[BEK14] C. Bormann, M. Ersue, and A. Keranen. Terminology for Constrained-Node
Networks. RFC 7228, RFC Editor, May 2014. http://www.rfc-editor.org/rfc/
rfc7228.txt.

83

https://tls.mbed.org/
https://github.com/NordicSemiconductor/pc-nrfconnect-core
https://github.com/NordicSemiconductor/pc-nrfconnect-core
http://www.rfc-editor.org/rfc/rfc7228.txt
http://www.rfc-editor.org/rfc/rfc7228.txt

84 REFERENCES

[Ber16a] Olaf Bergmann. TinyDTLS eclipse IoT project proposal. Eclipse.org, 2016.

[Ber16b] Olaf Bergmann. TinyDTLS official page. SourceForge.net, 2016.

[BG14] Andrew Banks and Rahul Gupta. MQTT 3.1.1 Specification, 2014. [Online;
accessed 22-May-2019].

[BL12] E Brickell and Jiangtao Li. Enhanced Privacy ID: A Direct Anonymous Attes-
tation Scheme with Enhanced Revocation Capabilities. IEEE Transactions on
Dependable and Secure Computing, 9(3):345–360, 2012.

[Blu10] Bluetooth SIG. Bluetooth Core Specification. url="https://www.bluetooth.com/
specifications/bluetooth-core-specification/, 2010. [Online; accessed 03-June-
2019].

[BR94] M. Bellare and P. Rogaway. Entity authentication and key distribution. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 773:232–249, 1994.

[BSS02] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring signatures
and applications to ad-hoc groups. In Moti Yung, editor, Advances in Cryptol-
ogy — CRYPTO 2002, pages 465–480, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[Bud16] Budroni, Alessandro and McCusker, Kealan. Milagro TLS Library - White
Paper. http://docs.milagro.io/en/tls/milagro-tls-library-white-paper.html, 2016.
[Online; accessed 01-June-2019].

[Cer18] Vinton Cerf. Self-authenticating identifiers. Communications of the ACM, 61(12):5–
5, 2018.

[con15] Wikipedia contributors. Iterative and incremental development, 2015. https:
//en.wikipedia.org/wiki/Iterative_and_incremental_development.

[Con19a] Bitcoin Contributors. Bitcoin: Multisignature. https://en.bitcoin.it/, 2015-2019.

[con19b] Wikipedia contributors. Certificate Authority, 2019. https://en.wikipedia.org/
wiki/Certificate_authority.

[Cor19] Google Cloud IoT Core. Google Cloud: IoT: Using JSON Web Tokens (JWTs),
2018-2019.

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280, RFC Editor, May 2008. http://www.rfc-editor.org/rfc/rfc5280.
txt.

[Dev17a] "Python Developers". Python ECDSA cryptographic signature library.
https://pypi.org/project/ecdsa/, 2001-2017. [Online; accessed 03-June-2019].

url = "https://www.bluetooth.com/specifications/bluetooth-core-specification/
url = "https://www.bluetooth.com/specifications/bluetooth-core-specification/
http://docs.milagro.io/en/tls/milagro-tls-library-white-paper.html
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt

REFERENCES 85

[Dev17b] "Python Developers". Python hashlib module - a common interface to many
hash functions. https://pypi.org/project/hashlib/, 2001-2017. [Online; accessed
03-June-2019].

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse merkle trees:
Caching strategies and secure (non-)membership proofs. In Secure It Systems,
volume 10014, pages 199–215, 2016.

[DZH18] Ashok Kumar Das, Sherali Zeadally, and Debiao He. Taxonomy and analysis of
security protocols for Internet of Things. Future Generation Computer Systems,
89:110–125, 2018.

[Eas11] D. Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions.
RFC 6066, RFC Editor, January 2011. http://www.rfc-editor.org/rfc/rfc6066.txt.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and
Tatu Ylonen. SPKI Certificate Theory. RFC 2693, RFC Editor, September 1999.
http://www.rfc-editor.org/rfc/rfc2693.txt.

[Ell99] C. Ellison. SPKI Requirements. RFC 2692, RFC Editor, September 1999.

[EPS15] C. Evans, C. Palmer, and R. Sleevi. Public key pinning extension for http. RFC
7469, RFC Editor, April 2015. http://www.rfc-editor.org/rfc/rfc7469.txt.

[Ern04] Ernie Brickell and Jan Camenisch and Liqun Chen. Direct Anonymous Attestation.
https://eprint.iacr.org/2004/205.pdf, 2004. [Online; accessed 4-June-2019].

[Eth15] Ethereum. Ethereum Homepage. url="https://www.ethereum.org/, 2015. [Online;
accessed 03-June-2019].

[FA18] Paul Fremantle and Benjamin Aziz. Cloud-based federated identity for the
Internet of Things. Annals of Telecommunications, 73(7):415–427, 2018.

[FGM+99] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol –
http/1.1. RFC 2616, RFC Editor, June 1999. http://www.rfc-editor.org/rfc/
rfc2616.txt.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 263, pages 186–194. Springer Verlag, 1987.

[GMKS18] Oscar Garcia-Morchon, Sandeep Kumar, and Mohit Sethi. State-of-the-art
and challenges for the internet of things security. Internet-Draft draft-irtf-
t2trg-iot-seccons-16, IETF Secretariat, December 2018. http://www.ietf.org/
Internet-drafts/draft-irtf-t2trg-iot-seccons-16.txt.

http://www.rfc-editor.org/rfc/rfc6066.txt
http://www.rfc-editor.org/rfc/rfc2693.txt
http://www.rfc-editor.org/rfc/rfc7469.txt
https://eprint.iacr.org/2004/205.pdf
 url = "https://www.ethereum.org/
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.ietf.org/Internet-drafts/draft-irtf-t2trg-iot-seccons-16.txt
http://www.ietf.org/Internet-drafts/draft-irtf-t2trg-iot-seccons-16.txt

86 REFERENCES

[Gro04] IEEE 802.11 Working Group. IEEE Standard for information technology-
Telecommunications and information exchange between systems-Local and
metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6:
Medium Access Control (MAC) Security Enhancements. IEEE Std 802.11i-2004,
pages 1–190, July 2004.

[Gro17] Thread Group. Thread Specification. Thread Group, Feb 2017. Rev. 1.1.1.

[Guo12] Vector Guo. C implementation for merkle-tree use md5 as hash function, 2012.
https://github.com/weichaoguo/Merkle-tree.

[Har12] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, RFC Editor,
October 2012. http://www.rfc-editor.org/rfc/rfc6749.txt.

[Har15] D. Harkins. Dragonfly Key Exchange. RFC 7664, RFC Editor, November 2015.

[Hol19] Arm Holdings. GNU Embedded Toolchain for Arm. https://developer.arm.com,
2012-2019.

[HW15] Daniel Hein and Johannes Winter. A c implementation of a dynamically resizeable
binary sha-256 hash tree (merkle tree), 2015. http://www.iaik.tugraz.at/content/
research/opensource/merkle_tree/.

[HWF15] Daniel Hein, Johannes Winter, and Andreas Fitzek. Secure device block: A
software library that applies cryptographic confidentiality and integrity protection,
including data freshness, to arbitrary block device like storage mechanisms,
2015. http://www.iaik.tugraz.at/content/research/opensource/secure_block_
device/.

[Hyp19a] Hyperledeger. Hyperledeger Fabric: A Blockchain Platform for the Enterprise.
url="https://hyperledger-fabric.readthedocs.io, 2017-2019. [Online; accessed
03-June-2019].

[Hyp19b] Hyperledeger. Hyperledeger Indy. url="https://hyperledger-indy.readthedocs.io/
en/latest/index.html, 2017-2019. [Online; accessed 03-June-2019].

[Hyp19c] Hyperledeger Internship Program. Microcontroller (ESP32/ESP8266) IOT
Indy Agent. url="https://wiki.hyperledger.org/pages/viewpage.action?pageId=
6425293, 2019. [Online; accessed 03-June-2019].

[Ime15] Ali Al Imem. Comparison and evaluation of digital signature schemes employed
in ndn network. CoRR, abs/1508.00184, 2015.

[Int18] Intel. Intel Secure Device Onboarding. url="https://www.intel.com/content/
www/us/en/Internet-of-things/secure-device-onboard.html, 2018. [Online; ac-
cessed 28-May-2019].

[JBS15] M. Jones, J. Bradley, and N. Sakimura. Json web token (jwt). RFC 7519, RFC
Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7519.txt.

https://github.com/weichaoguo/Merkle-tree
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.iaik.tugraz.at/content/research/opensource/merkle_tree/
http://www.iaik.tugraz.at/content/research/opensource/merkle_tree/
http://www.iaik.tugraz.at/content/research/opensource/secure_block_device/
http://www.iaik.tugraz.at/content/research/opensource/secure_block_device/
 url = "https://hyperledger-fabric.readthedocs.io
 url = "https://hyperledger-indy.readthedocs.io/en/latest/index.html
 url = "https://hyperledger-indy.readthedocs.io/en/latest/index.html
 url = "https://wiki.hyperledger.org/pages/viewpage.action?pageId=6425293
 url = "https://wiki.hyperledger.org/pages/viewpage.action?pageId=6425293
 url = "https://www.intel.com/content/www/us/en/Internet-of-things/secure-device-onboard.html
 url = "https://www.intel.com/content/www/us/en/Internet-of-things/secure-device-onboard.html
http://www.rfc-editor.org/rfc/rfc7519.txt

REFERENCES 87

[JCM15] M. Jones, B. Campbell, and C. Mortimore. Json web token (jwt) profile for oauth
2.0 client authentication and authorization grants. RFC 7523, RFC Editor, May
2015.

[Jef16] Jeffrey Voas. NIST Special Publication 800-183: Networks of ‘Things’. url=
"https://wiki.hyperledger.org/pages/viewpage.action?pageId=6425293, July 2016.
[Online; accessed 03-June-2019].

[Jos06] S. Josefsson. The base16, base32, and base64 data encodings. RFC 4648, RFC
Editor, October 2006. http://www.rfc-editor.org/rfc/rfc4648.txt.

[Jou00] A Joux. A one round protocol for tripartite diffie-hellman. Algorithmic Number
Theory, 1838:385–393, 2000.

[JWET18] M. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig. Cbor web token
(cwt). RFC 8392, RFC Editor, May 2018.

[Kah15] Bryce Kahle. mbed TLS: Support Raw Public Key mode (RFC7250) pull request.
Technical report, GitHub, Oct 2015. https://github.com/ARMmbed/mbedtls/
pull/336.

[KL07] J.G. Kim and D.-H. Lee. An access control using SPKI certificate in peer-
to-peer environment. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
4706(2):148–156, 2007.

[Lau14] Ben Laurie. Certificate Transparency. Commun. ACM, 57(10):40–46, September
2014.

[Mal15] Kerry Maletsky. RSA vs ECC Comparison for Embedded Systems.
http://ww1.microchip.com/, 2015.

[McC16] McCusker, Kealan. Apache Milagro MFA TLS Incubator Repository. https:
//github.com/apache/incubator-milagro-tls, 2016. [Online; accessed 01-June-
2019].

[Mer79] Ralph Merkle. Secrecy, authentication and public key systems/ a certified digital
signature. Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University,
6 1979.

[Mil06] D. Mills. Simple network time protocol (sntp) version 4 for ipv4, ipv6 and osi.
RFC 4330, RFC Editor, January 2006. http://www.rfc-editor.org/rfc/rfc4330.txt.

[Miz14] T. Mizrahi. Security requirements of time protocols in packet switched networks.
RFC 7384, RFC Editor, October 2014. http://www.rfc-editor.org/rfc/rfc7384.txt.

[MMBK10] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network time protocol version
4: Protocol and algorithms specification. RFC 5905, RFC Editor, June 2010.
http://www.rfc-editor.org/rfc/rfc5905.txt.

 url = "https://wiki.hyperledger.org/pages/viewpage.action?pageId=6425293
 url = "https://wiki.hyperledger.org/pages/viewpage.action?pageId=6425293
http://www.rfc-editor.org/rfc/rfc4648.txt
https://github.com/ARMmbed/mbedtls/pull/336
https://github.com/ARMmbed/mbedtls/pull/336
https://github.com/apache/incubator-milagro-tls
https://github.com/apache/incubator-milagro-tls
http://www.rfc-editor.org/rfc/rfc4330.txt
http://www.rfc-editor.org/rfc/rfc7384.txt
http://www.rfc-editor.org/rfc/rfc5905.txt

88 REFERENCES

[MS11] Moez Ben MBarka1 and Julien P. Stern. Observations on certification authority
key compromise. In Public Key Infrastructures, Service and Applications, volume
6711, pages 178–192, 2011.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 10 2008.

[NK00] M. Nystrom and B. Kaliski. PKCS #10: Certification Request Syntax Specifica-
tion Version 1.7. RFC 2986, RFC Editor, November 2000.

[oI07] Telecommunication Standardization Sector of ITU. ITU-T Recommendation
X.1035: Password-authenticated key exchange (PAK) protocol. Telecommunication
Standardization Sector of ITU, Feb 2007.

[Ope05] OpenID Foundation. OpenID Connect Core 1.0, 2005.

[OTYO18] Takeshi Okamoto, Raylin Tso, Michitomo Yamaguchi, and Eiji Okamoto. A k-
out-of-n Ring Signature with Flexible Participation for Signers. IACR Cryptology
ePrint Archive, 2018:728, 2018.

[Pet13] Y. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension. RFC 6961, RFC Editor, June 2013. http://www.rfc-editor.
org/rfc/rfc6961.txt.

[PNV11] Max Pritikin, Andrew Nourse, and J Vilhuber. Simple certificate enrollment
protocol. Internet-Draft draft-nourse-scep-23, IETF Secretariat, September 2011.
http://www.ietf.org/Internet-drafts/draft-nourse-scep-23.txt.

[PRRJ03] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha.
Analyzing the Energy Consumption of Security Protocols. In Proceedings of the
2003 International Symposium on Low Power Electronics and Design, ISLPED
’03, pages 30–35, New York, NY, USA, 2003. ACM.

[PTM+18] A Panarello, N Tapas, G Merlino, F Longo, and A Puliafito. Blockchain and
IoT Integration: A Systematic Survey. Sensors, 18(8), 2018.

[PYH13] M. Pritikin, P. Yee, and D. Harkins. Enrollment over secure transport. RFC
7030, RFC Editor, October 2013.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

[Riv99] Ron Rivest. Simple Distributed Security Infrastructure. https://people.csail.mit.
edu/rivest/pubs/RL96.slides-rsalabs96.pdf, September 1999.

[SE17] Ludwig Seitz and Samuel Erdtman. Raw-Public-Key and Pre-Shared-
Key as OAuth client credentials. Internet-Draft draft-erdtman-ace-rpcc-
02, IETF Secretariat, October 2017. http://www.ietf.org/Internet-drafts/
draft-erdtman-ace-rpcc-02.txt.

http://www.rfc-editor.org/rfc/rfc6961.txt
http://www.rfc-editor.org/rfc/rfc6961.txt
http://www.ietf.org/Internet-drafts/draft-nourse-scep-23.txt
https://people.csail.mit.edu/rivest/pubs/RL96.slides-rsalabs96.pdf
https://people.csail.mit.edu/rivest/pubs/RL96.slides-rsalabs96.pdf
http://www.ietf.org/Internet-drafts/draft-erdtman-ace-rpcc-02.txt
http://www.ietf.org/Internet-drafts/draft-erdtman-ace-rpcc-02.txt

REFERENCES 89

[SGKR06] H. Schulzrinne, V. Gurbani, P. Kyzivat, and J. Rosenberg. Rpid: Rich presence
extensions to the presence information data format (pidf). RFC 4480, RFC Editor,
July 2006. http://www.rfc-editor.org/rfc/rfc4480.txt.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252, RFC Editor, June 2014. http://www.rfc-editor.org/rfc/
rfc7252.txt.

[Shi19a] Krishna Shingala. JSON Web Token (JWT) based client authentication in
Message Queuing Telemetry Transport (MQTT), 2019.

[Shi19b] Krishna Shingala. mbed TLS: VTT based verification of the raw public key.
Technical report, GitHub, Feb 2019. https://github.com/KShingala/mbedtls/
tree/raw_public_key_with_merkle_tree_verification.

[Shi19c] Krishna Shingala. particleiot: mbed TLS: RF7250 rebase. Technical report,
GitHub, Jan 2019. https://github.com/particle-iot/mbedtls/pull/2.

[Shi19d] Krishna Shingala. Python-based automation scripts for the VTT prototype.
Technical report, GitHub, Feb 2019. https://github.com/KShingala/certs/tree/
master/scripts.

[Shi19e] Krishna Shingala. VTT and PKI: Evaluation keys, certificates and scripts.
Technical report, GitHub, Feb 2019. https://github.com/KShingala/certs.

[Shi19f] Krishna Shingala. VTT prototype: SHA-256 digest based authentication. Techni-
cal report, GitHub, Feb 2019. https://github.com/KShingala/mbedtls/tree/raw_
key_with_sha256_verification.

[SMA+13] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.
X.509 internet public key infrastructure online certificate status protocol - ocsp.
RFC 6960, RFC Editor, June 2013. http://www.rfc-editor.org/rfc/rfc6960.txt.

[SmTc19] Krishna Shingala and mbed TLS contributors. mbed TLS configuration for
the VTT prototype. Technical report, GitHub, Feb 2019. https://github.com/
KShingala/mbedtls/blob/ee44afc3d406418de76e088bca2af8bea3d4432e/include/
mbedtls/config.h.

[Sov19] Sovrin Alliance. Sovrin. url="https://sovrin.org/, 2017-2019. [Online; accessed
03-June-2019].

[SSW+19] Ludwig Seitz, Goeran Selander, Erik Wahlstroem, Samuel Erdtman, and Hannes
Tschofenig. Authentication and authorization for constrained environments (ace)
using the oauth 2.0 framework (ace-oauth). Internet-Draft draft-ietf-ace-oauth-
authz-24, IETF Secretariat, March 2019. http://www.ietf.org/Internet-drafts/
draft-ietf-ace-oauth-authz-24.txt.

[Sta02] Frank Stajano. Security for Ubiquitous Computing. John Wiley and Sons, February
2002.

http://www.rfc-editor.org/rfc/rfc4480.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
https://github.com/KShingala/mbedtls/tree/raw_public_key_with_merkle_tree_verification
https://github.com/KShingala/mbedtls/tree/raw_public_key_with_merkle_tree_verification
https://github.com/particle-iot/mbedtls/pull/2
https://github.com/KShingala/certs/tree/master/scripts
https://github.com/KShingala/certs/tree/master/scripts
https://github.com/KShingala/certs
https://github.com/KShingala/mbedtls/tree/raw_key_with_sha256_verification
https://github.com/KShingala/mbedtls/tree/raw_key_with_sha256_verification
http://www.rfc-editor.org/rfc/rfc6960.txt
https://github.com/KShingala/mbedtls/blob/ee44afc3d406418de76e088bca2af8bea3d4432e/include/mbedtls/config.h
https://github.com/KShingala/mbedtls/blob/ee44afc3d406418de76e088bca2af8bea3d4432e/include/mbedtls/config.h
https://github.com/KShingala/mbedtls/blob/ee44afc3d406418de76e088bca2af8bea3d4432e/include/mbedtls/config.h
 url = "https://sovrin.org/
http://www.ietf.org/Internet-drafts/draft-ietf-ace-oauth-authz-24.txt
http://www.ietf.org/Internet-drafts/draft-ietf-ace-oauth-authz-24.txt

90 REFERENCES

[Tae16] Taejoong Chung and Yabing Liu and David Choffnes and Dave Levin and Bruce
M. Maggs and Alan Mislove and Christo Wilson. Measuring and Applying Invalid
SSL Certificates: The Silent Majority. http://www.ccs.neu.edu/home/amislove/
publications/Invalid-IMC.pdf, 2016. [Online; accessed 05-June-2019].

[Tea05] Python Core Team. Python: A dynamic, open source programming language,
2005.

[The] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.
openssl.org.

[vDM13] Nicole S. van Der Meulen. Diginotar: Dissecting the first dutch digital disaster.
Journal of Strategic Security, 6(2):46–58, 2013.

[Vid05] Alexander G Vidergar. Simple public key infrastructure protocol analysis and
design, 2005.

[WGE+05] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz. Energy
analysis of public-key cryptography for wireless sensor networks. In Third IEEE
International Conference on Pervasive Computing and Communications, pages
324–328, March 2005.

[Wik19a] Wikipedia contributors. Bluetooth Low Energy — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Bluetooth_Low_Energy&
oldid=895821514, 2019. [Online; accessed 28-May-2019].

[Wik19b] Wikipedia contributors. Comparison of TLS implementations — Wikipedia, The
Free Encyclopedia, 2019. [Online; accessed 3-June-2019].

[Wik19c] Wikipedia contributors. DigiNotar — Wikipedia, The Free Encyclopedia. https://
en.wikipedia.org/w/index.php?title=DigiNotar&oldid=894653086, 2019. [Online;
accessed 22-May-2019].

[Wik19d] Wikipedia contributors. Kerckhoffs’s principle — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Kerckhoffs%27s_principle&
oldid=891035763, 2019. [Online; accessed 6-June-2019].

[Wik19e] Wikipedia contributors. Message authentication code — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Message_
authentication_code&oldid=896310957, 2019. [Online; accessed 4-June-2019].

[Wik19f] Wikipedia contributors. Seppuku — Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 30-May-2019].

[Wik19g] Wikipedia contributors. SHA-1 — Wikipedia, The Free Encyclopedia, 2019.
[Online; accessed 23-May-2019].

[Wir06] Wireshark.org. Wireshark official website, 2006.

http://www.ccs.neu.edu/home/amislove/publications/Invalid-IMC.pdf
http://www.ccs.neu.edu/home/amislove/publications/Invalid-IMC.pdf
www.openssl.org
www.openssl.org
https://en.wikipedia.org/w/index.php?title=Bluetooth_Low_Energy&oldid=895821514
https://en.wikipedia.org/w/index.php?title=Bluetooth_Low_Energy&oldid=895821514
https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=894653086
https://en.wikipedia.org/w/index.php?title=DigiNotar&oldid=894653086
https://en.wikipedia.org/w/index.php?title=Kerckhoffs%27s_principle&oldid=891035763
https://en.wikipedia.org/w/index.php?title=Kerckhoffs%27s_principle&oldid=891035763
https://en.wikipedia.org/w/index.php?title=Message_authentication_code&oldid=896310957
https://en.wikipedia.org/w/index.php?title=Message_authentication_code&oldid=896310957

REFERENCES 91

[WK16] Neal H. Walfield and Werner Koch. TOFU for OpenPGP. In Proceedings of the
9th European Workshop on System Security, EuroSec ’16, pages 2:1–2:6, New
York, NY, USA, 2016. ACM.

[WTG+14] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen. Using raw
public keys in transport layer security (tls) and datagram transport layer security
(dtls). RFC 7250, RFC Editor, June 2014.

[Yee13] P. Yee. Updates to the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 6818, RFC Editor, January 2013.
http://www.rfc-editor.org/rfc/rfc6818.txt.

[YL06] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC
4252, RFC Editor, January 2006. http://www.rfc-editor.org/rfc/rfc4252.txt.

[YWN+18] B. Yu, J. Wright, S. Nepal, L. Zhu, J. Liu, and R. Ranjan. IoTChain: Estab-
lishing Trust in the Internet of Things Ecosystem Using Blockchain. IEEE Cloud
Computing, 5(4):12–23, Jul 2018.

http://www.rfc-editor.org/rfc/rfc6818.txt
http://www.rfc-editor.org/rfc/rfc4252.txt

AppendixAEvaluation - Code and Scripts

Script A.1 Python SHA256 Digest

Progroam to g e n e r a t e SHA256 o f t e s t data .
from h a s h l i b import sha256

The message here could match the m_message i n sha256_digest . c
message = b ’ \x89 ’ ∗ 512

I n s t a n t i a t e SHA256 o b j e c t .
sha256_object = sha256 ()

P r i n t the d i g e s t i n hex format to compare the output from sha256_digest . c
p r i n t (sha256_object . d i g e s t (message) . hex ())

Script A.2 Python ECDSA Sign and Verify

Generate ECDSA keys and s i g n a t u r e on t e s t data .
import ecdsa
from h a s h l i b import sha256

The message here could match the m_message i n e c d s a _ v e r i f y . c
message = b ’ \x89 ’ ∗ 512

Key Generation .
NIST256p = SCEPr1 , the curve used f o r e v a l u a t i o n .
SHA256 i s used f o r message hash b e f o r e s i g n i n g .
sk = ecdsa . SigningKey . g e n e r a t e (curve=ecdsa . NIST256p , hashfunc=sha256)

Create v e r i f i c a t i o n key .
vk = sk . get_ver i fy ing_key ()

#P r i n t v e r i f i c a t i o n key i n hex format .
The output i s appended and used as t e s t v e c t o r f o r the t a r g e t .
m_raw_public_key i n e c d s a _ v e r i f y . c i s s e t to 0 x04 f o l l o w e d by t h i s output .
p r i n t (vk . t o _ s t r i n g () . hex ())

Generate s i g n a t u r e f o r message i n DER format .
s i g n a t u r e = sk . s i g n (message , s i g e n c o d e=ecdsa . u t i l . s igencode_der)

P r i n t S i g n a t u r e .
The output i s the t e s t v e c t o r f o r the t e s t a p p l i c a t i o n on t a r g e t .
m_signature i n e c d s a _ v e r i f y . c i s s e t to t h i s output .
p r i n t (s i g n a t u r e . hex ())

#V e r i f y s i g n a t u r e to gain c o n f i d e n c e i n the t e s t . True i s the expected outcome on
the s c r e e n

p r i n t (vk . v e r i f y (s i g n a t u r e , message , hashfunc=sha256 , s i g d e c o d e=ecdsa . u t i l .
s igdecode_der))

93

94 A. EVALUATION - CODE AND SCRIPTS

Source code A.3 SHA256 Digest measurement application - Part 1.
/∗ ∗

∗ Copyright (c) 2018 − 2019 , Nordic Semiconductor ASA
∗
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i bu t i on and use in source and binary forms , with or without modi f i cat ion ,
∗ are permitted provided that the f o l l ow ing cond i t i on s are met :
∗
∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not ice , t h i s
∗ l i s t o f c ond i t i on s and the f o l l ow ing d i s c l a ime r .
∗
∗ 2 . Red i s t r i bu t i on s in binary form , except as embedded into a Nordic
∗ Semiconductor ASA in t eg ra t ed c i r c u i t in a product or a so f tware update f o r
∗ such product , must reproduce the above copyr ight not ice , t h i s l i s t o f
∗ cond i t i on s and the f o l l ow ing d i s c l a ime r in the documentation and/or other
∗ mate r i a l s provided with the d i s t r i b u t i o n .
∗
∗ 3 . Neither the name of Nordic Semiconductor ASA nor the names o f i t s
∗ con t r i bu to r s may be used to endorse or promote products der ived from th i s
∗ so f tware without s p e c i f i c p r i o r wr i t ten permiss ion .
∗
∗ 4 . This software , with or without modi f i cat ion , must only be used with a
∗ Nordic Semiconductor ASA in t eg ra t ed c i r c u i t .
∗
∗ 5 . Any so f tware provided in binary form under t h i s l i c e n s e must not be r ev e r s e
∗ engineered , decompiled , modi f ied and/or disassembled .
∗
∗ THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS " AND ANY EXPRESS
∗ OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
∗ OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
∗ DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
∗ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
∗ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
∗ GOODS OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
∗ OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗
∗/

#inc lude <stdboo l . h>
#inc lude <s td i n t . h>
#inc lude <s t r i n g . h>
#inc lude "sdk_common . h"
#inc lude " nr f_as s e r t . h "
#inc lude " app_error . h "
#inc lude " nrf_log . h "
#inc lude " nr f_log_ctr l . h "
#inc lude " nrf_log_default_backends . h "
#inc lude "mem_manager . h "
#inc lude " mbedtls / plat form . h"
#inc lude " mbedtls / sha256 . h"
#inc lude " boards . h "
#inc lude " nr f . h "
#inc lude " nrf_drv_rtc . h "
#inc lude " nrf_drv_clock . h"

/∗∗< Measurement i n t e r v a l in seconds . ∗/
#de f i n e MEASUREMENT_INTERVAL (10UL)

/∗∗< Dec lar ing an in s tance o f nrf_drv_rtc f o r RTC0. ∗/
const nrf_drv_rtc_t r t c = NRF_DRV_RTC_INSTANCE(0) ;

/∗∗< Tr igger s measurement in thread context . ∗/
s t a t i c v o l a t i l e bool m_measure = f a l s e ;

/∗ ∗ @br ie f Create SHA256 d i g e s t o f message . ∗/
void sha256_digest (void)
{

NRF_LOG_INFO("SHA256␣Message␣Digest ") ;

uint8_t m_message [5 1 2] ;

memset (m_message , 0x89 , 512) ;
}

/∗ ∗ @brie f I n i t i a l i z e the log module , used f o r debugging ∗/
s t a t i c void l og_ in i t (void)
{

ret_code_t err_code = NRF_LOG_INIT(NULL) ;
APP_ERROR_CHECK(err_code) ;

NRF_LOG_DEFAULT_BACKENDS_INIT() ;
}

95

Source code A.4 SHA256 Digest measurement application - Part 2.
/∗ ∗ @brie f RTC Callback t r i g g e r ed every MEASUREMENT_INTERVAL. ∗/
s t a t i c void rtc_handler (nrf_drv_rtc_int_type_t int_type)
{

i f (int_type == NRF_DRV_RTC_INT_COMPARE0)
{

m_measure = true ;
}

}

/∗ ∗ @brie f I n i t i a l i z e LFCLK XTAL o s c i l l a t o r . ∗/
s t a t i c void l f c l k_c on f i g (void)
{

ret_code_t err_code = nrf_drv_clock_init () ;
APP_ERROR_CHECK(err_code) ;

nr f_drv_clock_l fc lk_request (NULL) ;
}

/∗ ∗ @brie f I n i t i a l i z e and con f i gu r e RTC ins tance . ∗/
s t a t i c void r tc_con f i g (void)
{

uint32_t err_code ;

// I n i t i a l i z e RTC ins tance
nrf_drv_rtc_config_t con f i g = NRF_DRV_RTC_DEFAULT_CONFIG;
con f i g . p r e s c a l e r = 4095;
err_code = nrf_drv_rtc_init (&rtc , &conf ig , rtc_handler) ;
APP_ERROR_CHECK(err_code) ;

//Enable t i c k event & in t e r rup t
nrf_drv_rtc_tick_enable(&rtc , t rue) ;

// Set compare channel to t r i g g e r i n t e r rup t a f t e r MEASUREMENT_INTERVAL seconds
err_code = nrf_drv_rtc_cc_set(&rtc , 0 , MEASUREMENT_INTERVAL ∗ 8 , true) ;
APP_ERROR_CHECK(err_code) ;

//Power on RTC ins tance
nrf_drv_rtc_enable(& r t c) ;

}

/∗ ∗ @brie f Wrapper f o r c a l l o c to measure dynamic memory usage . ∗/
s t a t i c void ∗ app_cal loc (s i ze_t count , s i ze_t s i z e)
{

return nr f_ca l l o c (count , s i z e) ;
}

i n t main (void)
{

l og_ in i t () ;
NRF_LOG_INFO("App␣ s t a r t !\n") ;
l f c l k_c on f i g () ;

r t c_con f ig () ;

uint32_t err_code = nrf_mem_init () ;
APP_ERROR_CHECK(err_code) ;

(void) mbedtls_plat form_set_cal loc_free (app_calloc , n r f_ f r e e) ;

whi le (t rue)
{

i f (m_measure)
{

m_measure = f a l s e ;
sha256_digest () ;
err_code = nrf_drv_rtc_cc_set (

&rtc ,
0 ,
nrf_rtc_cc_get (r t c . p_reg , 0) + MEASUREMENT_INTERVAL ∗ 8 ,
true) ;

APP_ERROR_CHECK(err_code) ;
}
// Save power un t i l t r i g g e r ed again .
__SEV() ;
__WFE() ;
__WFE() ;

}
}

96 A. EVALUATION - CODE AND SCRIPTS

Source code A.5 ECDSA Verify measurement application - Part 1.
/∗ ∗

∗ Copyright (c) 2018 − 2019 , Nordic Semiconductor ASA
∗
∗ Al l r i g h t s r e s e rved .
∗
∗ Red i s t r i bu t i on and use in source and binary forms , with or without modi f i cat ion ,
∗ are permitted provided that the f o l l ow ing cond i t i on s are met :
∗
∗ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight not ice , t h i s
∗ l i s t o f c ond i t i on s and the f o l l ow ing d i s c l a ime r .
∗
∗ 2 . Red i s t r i bu t i on s in binary form , except as embedded into a Nordic
∗ Semiconductor ASA in t eg ra t ed c i r c u i t in a product or a so f tware update f o r
∗ such product , must reproduce the above copyr ight not ice , t h i s l i s t o f
∗ cond i t i on s and the f o l l ow ing d i s c l a ime r in the documentation and/or other
∗ mate r i a l s provided with the d i s t r i b u t i o n .
∗
∗ 3 . Neither the name of Nordic Semiconductor ASA nor the names o f i t s
∗ con t r i bu to r s may be used to endorse or promote products der ived from th i s
∗ so f tware without s p e c i f i c p r i o r wr i t ten permiss ion .
∗
∗ 4 . This software , with or without modi f i cat ion , must only be used with a
∗ Nordic Semiconductor ASA in t eg ra t ed c i r c u i t .
∗
∗ 5 . Any so f tware provided in binary form under t h i s l i c e n s e must not be r ev e r s e
∗ engineered , decompiled , modi f ied and/or disassembled .
∗
∗ THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS " AND ANY EXPRESS
∗ OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
∗ OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
∗ DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
∗ LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
∗ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
∗ GOODS OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
∗ OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗
∗/

#inc lude <stdboo l . h>
#inc lude <s td i n t . h>
#inc lude <s t r i n g . h>
#inc lude "sdk_common . h"
#inc lude " nr f_as s e r t . h "
#inc lude " app_error . h "
#inc lude " nrf_log . h "
#inc lude " nr f_log_ctr l . h "
#inc lude " nrf_log_default_backends . h "
#inc lude "mem_manager . h "
#inc lude " mbedtls / plat form . h"
#inc lude " mbedtls / sha256 . h"
#inc lude " mbedtls /pk . h"
#inc lude " mbedtls / ecdsa . h"
#inc lude " boards . h "
#inc lude " nr f . h "
#inc lude " nrf_drv_rtc . h "
#inc lude " nrf_drv_clock . h"

/∗∗< Measurement i n t e r v a l in seconds . ∗/
#de f i n e MEASUREMENT_INTERVAL (10UL)

/∗∗< Dec lar ing an in s tance o f nrf_drv_rtc f o r RTC0. ∗/
const nrf_drv_rtc_t r t c = NRF_DRV_RTC_INSTANCE(0) ;

/∗∗< Tr igger s measurement in thread context . ∗/
s t a t i c v o l a t i l e bool m_measure = f a l s e ;

/∗ ∗ @br ie f Publ ic key generated us ing pyecdsa ∗/
s t a t i c const uint8_t m_raw_public_key [] =
{

0x04 , // Point format .
0x82 , 0xc0 , 0x16 , 0xb1 , 0xd9 , 0x4c , 0x3f , 0x67 ,
0x14 , 0xd5 , 0x9c , 0x36 , 0x43 , 0x66 , 0x1c , 0xf4 ,
0xee , 0x35 , 0xaf , 0xde , 0x73 , 0x5c , 0xe6 , 0xa6 ,
0x18 , 0x67 , 0x21 , 0x94 , 0x70 , 0xcb , 0x34 , 0xf4 ,
0x7a , 0xe1 , 0xce , 0xa5 , 0x61 , 0xc0 , 0xf0 , 0x2d ,
0xb7 , 0xfa , 0x7c , 0x98 , 0xd7 , 0xf5 , 0x3e , 0xa1 ,
0xb8 , 0xaf , 0x44 , 0x7a , 0xaf , 0xc4 , 0xb1 , 0xb3 ,
0x71 , 0x89 , 0x74 , 0x0c , 0x37 , 0xd6 , 0x6d , 0x43

};

97

Source code A.6 ECDSA Verify measurement application - Part 2.
/∗ ∗ @brie f ECDSA s igna tu r e in DER format generated us ing pyecdsa f o r

∗ 512 byte array o f 0x89 . ∗/
s t a t i c unsigned char m_signature [] =
{

0x30 , 0x45 , 0x02 , 0x21 , 0x00 , 0xf3 , 0xec , 0x9a ,
0x5c , 0xf3 , 0xdc , 0x31 , 0x99 , 0xb8 , 0x9a , 0x03 ,
0x2b , 0xdd , 0xa9 , 0x09 , 0xdf , 0xc1 , 0xd8 , 0xc8 ,
0x44 , 0x39 , 0xe5 , 0 xfc , 0xa6 , 0x48 , 0xad , 0xe0 ,
0x1c , 0xd7 , 0xf2 , 0x93 , 0x6a , 0x02 , 0x20 , 0x1a ,
0x03 , 0xbe , 0x1d , 0x6e , 0xcd , 0x49 , 0x56 , 0xfb ,
0xd8 , 0xf4 , 0xd4 , 0x69 , 0xe0 , 0xb6 , 0x69 , 0x94 ,
0x98 , 0x19 , 0x42 , 0x9b , 0xb8 , 0x53 , 0x77 , 0xa4 ,
0xb0 , 0xb3 , 0x2d , 0x5c , 0x60 , 0x5a , 0x51

};

/∗ ∗ @br ie f Ver i fy ECDSA s igna tu r e . ∗/
void ecdsa_ver i fy (void)
{

NRF_LOG_INFO("ECDSA␣message␣ v e r i f i c a t i o n ") ;

uint8_t m_message [5 1 2] ;

memset (m_message , 0x89 , 512) ;

unsigned char hash [3 2] ;
mbedtls_sha256 (m_message , s i z e o f (m_message) , hash , 0) ;

mbedtls_pk_context context ;

mbedtls_pk_init(&context) ;

i n t r e t v a l = mbedtls_pk_setup(&context ,
mbedtls_pk_info_from_type (MBEDTLS_PK_ECKEY)) ;

NRF_LOG_INFO(" ␣mbedtls_pk_setup␣ returned ␣%x\n" , r e t v a l) ;

i f (r e t v a l == 0)
{

r e t v a l = mbedtls_ecp_group_load(&mbedtls_pk_ec (context)−>grp ,
MBEDTLS_ECP_DP_SECP256R1) ;

NRF_LOG_INFO(" ␣mbedtls_ecp_group_load␣ returned ␣%x\n" , r e t v a l) ;

i f (r e t v a l == 0)
{

r e t v a l = mbedtls_ecp_point_read_binary(&mbedtls_pk_ec (context)−>grp ,
&mbedtls_pk_ec (context)−>Q,
m_raw_public_key , 65) ;

NRF_LOG_INFO(" ␣mbedtls_ecp_point_read_binary␣ returned ␣%x\n" , r e t v a l) ;
i f (r e t v a l == 0)
{

r e t v a l = mbedtls_pk_verify (&context , MBEDTLS_MD_SHA256,
hash , 32 ,
m_signature , 71) ;

i f (r e t v a l != 0)
{

NRF_LOG_INFO(" mbedtls_ecdsa_read_signature ␣ returned ␣%x\n" ,
r e t v a l) ;

}
e l s e
{

NRF_LOG_INFO(" Signature ␣ va l i d !\n") ;
}
mbedtls_pk_free(&context) ;

}
}

}
}

/∗ ∗ @brie f I n i t i a l i z e the log module , used f o r debugging . ∗/
s t a t i c void l og_ in i t (void)
{

ret_code_t err_code = NRF_LOG_INIT(NULL) ;
APP_ERROR_CHECK(err_code) ;

NRF_LOG_DEFAULT_BACKENDS_INIT() ;
}

98 A. EVALUATION - CODE AND SCRIPTS

Source code A.7 ECDSA Verify measurement application - Part 3.
/∗ ∗ @brie f RTC Callback t r i g g e r ed every MEASUREMENT_INTERVAL. ∗/
s t a t i c void rtc_handler (nrf_drv_rtc_int_type_t int_type)
{

i f (int_type == NRF_DRV_RTC_INT_COMPARE0)
{

m_measure = true ;
}

}

/∗ ∗ @brie f I n i t i a l i z e LFCLK XTAL o s c i l l a t o r . ∗/
s t a t i c void l f c l k_c on f i g (void)
{

ret_code_t err_code = nrf_drv_clock_init () ;
APP_ERROR_CHECK(err_code) ;

nr f_drv_clock_l fc lk_request (NULL) ;
}

/∗ ∗ @brie f I n i t i a l i z e and con f i gu r e RTC ins tance . ∗/
s t a t i c void r tc_con f i g (void)
{

uint32_t err_code ;

// I n i t i a l i z e RTC ins tance
nrf_drv_rtc_config_t con f i g = NRF_DRV_RTC_DEFAULT_CONFIG;
con f i g . p r e s c a l e r = 4095;
err_code = nrf_drv_rtc_init (&rtc , &conf ig , rtc_handler) ;
APP_ERROR_CHECK(err_code) ;

//Enable t i c k event & in t e r rup t
nrf_drv_rtc_tick_enable(&rtc , t rue) ;

// Set compare channel to t r i g g e r i n t e r rup t a f t e r MEASUREMENT_INTERVAL seconds
err_code = nrf_drv_rtc_cc_set(&rtc , 0 , MEASUREMENT_INTERVAL ∗ 8 , true) ;
APP_ERROR_CHECK(err_code) ;

//Power on RTC ins tance
nrf_drv_rtc_enable(& r t c) ;

}

/∗ ∗ @brie f Wrapper f o r c a l l o c to measure dynamic memory usage . ∗/
s t a t i c void ∗ app_cal loc (s i ze_t count , s i ze_t s i z e)
{

return nr f_ca l l o c (count , s i z e) ;
}

i n t main (void)
{

l og_ in i t () ;
NRF_LOG_INFO("App␣ s t a r t !\n") ;
l f c l k_c on f i g () ;

r t c_con f ig () ;

uint32_t err_code = nrf_mem_init () ;
APP_ERROR_CHECK(err_code) ;

(void) mbedtls_plat form_set_cal loc_free (app_calloc , n r f_ f r e e) ;

whi le (t rue)
{

i f (m_measure)
{

m_measure = f a l s e ;
ecdsa_ver i fy () ;
err_code = nrf_drv_rtc_cc_set (

&rtc ,
0 ,
nrf_rtc_cc_get (r t c . p_reg , 0) + MEASUREMENT_INTERVAL ∗ 8 ,
true) ;

APP_ERROR_CHECK(err_code) ;
}
// Save power un t i l t r i g g e r ed again .
__SEV() ;
__WFE() ;
__WFE() ;

}
}

AppendixBConference Paper - Draft

99

Vriksh trust model for IoT
Krishna Shingala∗ and Danilo Gligoroski† and Katina Kralevska† and Torstein Heggebø∗

∗Nordic Semiconductor ASA, Trondheim, Norway
†Department of Information Security and Communication Technologies, NTNU, Norway,
Email: {krishna.shingala, torstein.heggeboe}@nordicsemi.no, {danilog, katinak}@ntnu.no

Abstract—Today, an IoT service, like any web service, uses
PKI for service authentication. However, the clients are no longer
user-operated browsers. Rather, constrained devices with limited
resources. IoT use cases are not identical to that of web services
either. IoT has changed the landscape of requirements and
constraints; and warrants a fresh treatment. We present a novel
approach called the Vriksh: The Tree of Trust for use in IoT.
This model aims to provide an embedded device-friendly entity
authentication and limit the trust peripheries. With VTT, trust
trees group the system identities with equal access rights in the
system using Merkle trees. We verify the energy and resource of
efficiency VTT on an embedded platform, as expected, SHA-256
based ECDSA based VTT is more efficient than PKI.

Index Terms—IoT, Entity Authentication, IAM, PKI

I. INTRODUCTION

The exponential growth of the number of IoT devices that
lack a user interface for management of the user name and
password, makes the need for their unique identification a
pressing and challenging problem [1]. An industry trend is
to invent new authentication schemes for authentication of
clients without user input like the use of JWT. However, the
authentication of IoT services is identical to the web services
- the client must verify the X.509 certificate chain of the
server during a TLS handshake. Such an architecture choice
overlooks the various assumptions and prerequisites to use
PKI for entity authentication. Time information to validate
certificates, and revocation management are not optional to
implement with PKI. The resources needed to implement
such additional services is a burden on embedded devices
that already find verification of the X.509 certificate chain is
resource intensive. Moreover, we seem to forget that human
inspection and action are critical to handling of all X.509
related security exceptions and detection of compromises.
Many remotely operated constrained devices in IoT exist to
save costs arising from manual inspection and maintenance.

Regardless of the computational powers of the devices in
the network, an appropriate Identity and Access Management
(IAM) policy must be defined. IAM involves defining and
managing the access policies for each resource in the system.
Access policies are attached to each entity in the system to
determine it’s access in the system.

A problem for IoT is the fact that PKI allows spreading
a wide umbrella of trust at the expense of poor visibility.
The trust anchor does not know the entities endorsed by
it. Such an architecture already adversely affects the users
of existing web services. The constraints of an IoT device
only worsen the situation. A server compromise that goes

undetected has large-scale impact. A compromised CA has
a larger impact, even if detected. The impact spans across
services and systems. Recovering from the effects of such
compromise is tedious even with human-aided browsers and
operating systems. However, the clients accessing the services
have changed, these are no longer user operated browsers.
Rather, constrained devices with limited resources. The IoT
use case is not identical to that of the web services either.

IoT changes the landscape of assumptions, requirements,
and constraints. The changed landscape demands a fresh
treatment tailored to effective and efficient.
A. Objective, Methodology and Our Contribution

The objective of this paper is to find an entity authentication
scheme suitable for the new challenges and requirements of
IoT. PKI provides the trust model for all existing IAM in use.
Therefore, we first study PKI and any alternatives in light of
the constraints of an embedded IoT device. The study aims to
establish their effectiveness and efficiency for use in IoT. This
study is biased towards constrained devices, as these are the
weakest and most vulnerable links in the security chain.

Our contribution is a novel proposal of an alternative trust
model named Vriksh. It is designed to make public key
cryptography usable in remotely operated IoT devices with no
user interface. Additionally, we report on the first prototype
implementation of Vriksh and its energy consumption in
comparison with the existing PKI IoT authentication solutions.
B. Structure of the Paper

In section II, we study existing alternatives to PKI for entity
authentication in IoT. The novel scheme, VTT is presented
in section III. A proof-of-concept and a limited prototype of
VTT is built and presented in section IV. Section V contains
some noteworthy observations, conclusions, and possible fu-
ture work.

II. EXISTING ALTERNATIVES TO PKI

Here we survey existing alternate approaches to PKI in light
of the IoT use cases. From this survey we seek a way to
provide entity authentication with simple key management,
and limited trust periphery.

1) Simple Public Key Infrastructure: Simple Public Key
Infrastructure (SPKI) [2] advocates the use of local domains
and binding an identity, with its authorization in a SPKI
certificate. SPKI certificates expressed in LISP format, use
Simple Distributed Security Infrastructure (SDSI) [3] names,
defined to local scope instead of globally unique identifiers.
The SPKI certificates are not therefore public information.

SPKI is promising, however, requires additional services to
implement time and revocation lists.

2) OAuth and Federated Identity: The paper [4] presents
identity and access management schemes for smart homes
based on Personal OAuth servers. The IETF has started an
initiative to enable the use of OAuth called the Authentication
and Authorization for Constrained Environments (ACE) using
the OAuth 2.0 Framework (ACE-OAuth) (OAuth-ACE). The
IETF draft [5] defines a profile over the ACE-OAuth frame-
work. As for OAuth, OAuth-ACE relies on TLS or DTLS for
securing the communication between servers and clients. All
schemes rely on server authentication using on server certifi-
cate provided during the TLS handshake. The authentication
requires trusted root CA. Therefore, federated identifies with
OAuth, despite a new approach is not independent of PKI.

3) Web Of Trust WoT, used in OpenPGP, allows a trusted
user to introduce a stranger. Trust from know entity to the
unknown is propagated using digital signatures. Physical,
face to face verification of key, and thorough inspection of
associated attributes is required before signing the certificate
of the new user. OpenPGP and WOT are designed to provide
equal rights to all participants. In IoT, not all participants are
equally capable, and hence, functionality and access rights
cannot be the same. IoT benefits from a layered architecture
with clear access policies. A device-to-device wireless network
automatically extending trust may compromise the security of
the entire system.

4) Pairing Based Cryptography PBC pairs elements between
two groups to a third to construct a cryptographic system.
Three-party one-round DiffieHellman key agreement [6] se-
cure is one of the first use of PBC. IBC, rooted in PBC, has
become a research topic of its own. PBC maps are in general
expensive, with not many efficient implementations available.

4) Enhanced Privacy ID EPID [7] proposes an identity
scheme using Direct Anonymous Attestation (DAA) [8]. Un-
der the strong RSA assumption, EPID and DAA offer remote
and anonymous attestation. EPID is deployed with recent Intel-
based laptops to identify legitimate products in the field.

Intel’s Secure Device Onboarding (SDO) enables provision-
ing of legitimate IoT devices. EPID embedded in a TPM
identifies a device. The solution focuses on authentication of
devices to an attestation service. The attestation service can
provision cloud-service and user-specific credentials into the
device. Authentication of cloud services by the devices is left
to the cloud service.

5) Trust On First Use TOFU binds the entity with the public
key it presents on the first contact. On subsequent connections,
the entity is verified to present the same public key. Secure
Shell (SSH) and HPKP uses TOFU. The author of [9], shares
the idea of applying TOFU in IoT. The intention is to allow
an IoT device to generate its own private and public keys, and
register the public key on the first use. The registration of the
public key is expected to occur in a secure environment. On
registration, the public key is mapped to an IP address, or,
similar identifier. The mapping enables a verifier to ensure the
device uses its registered public key.

TOFU is vulnerable to many attacks such as: MITM attacks,
impersonation attack, imprinting false identities vis DNS
poisoning. Since there are no methods for key expiry and
revocation, it exposes the system to long lasting exploits.

6) Blockchain Blockchain is the trendy new solution for
all problems, including IoT. Authors in [10] propose the
use of blockchain to create a Trustchain between various
actors in the system. The trust, here, means reliability and
integrity of data and device ownership. Secure device life cycle
management is emphasized to be critical to achieving this goal
of trust. The implementation in [10] is based on Hyperledger
Fabric. Supply chain and device ownership management are
prominent use cases of Hyperledger Fabric. PKI and X.509
certificate provide entity authentication. TLS is optional for
inter-node communication.

7) TLS: Raw Public Keys IETF defines the use of raw
public keys with TLS [11] with the intent to make public
key cryptography constrained device-friendly. CoAP mandates
the use of raw public keys to secure communication between
a server and a client. In [11] the authors suggest out-of-
band mechanisms for trust and access management. Therefore
today, there exists no trust model proposed to know if a public
key identifies a legitimate authorized entity with certain access
rights. No model exists to manage key expiry and revocation.

III. VRIKSH: TREE OF TRUST

We see the existing alternatives to PKI are either not
independent of PKI, or are not suitable for IoT. We therefore,
propose a new approach, Vriksh: The Tree of Trust (VTT) 1

with the goal of providing an embedded device-friendly use of
public key cryptography for identity and access management
and to limit the periphery of trust to only the relevant entities in
the system. As in SPKI, VTT confines IAM to local domains
and identical to Blockchain, uses Merkle Tree as a building
block.
A. Setup

All participants in the system, have unique key pair (sk, pk)
of a cryptographic identity algorithm C. Here, sk, is the secret
key and the pk is the public key.

Fig. 1: A sample trust tree with identity y12345.

A Merkle tree, using a cryptographic hash function H
groups together the member public keys pk as seen in Figure 1.
The grouping of identities is based on access roles and rights
as explained in section III-E.

1In Sanskrit, Vriksh means a tree.

B. Tree size and depth
The size of the tree determines it’s depth. The size, here,

refers to the number of end or leaf nodes in the tree. For
example, the size of the tree in figure 1 is 5. In 1, the depth
of the tree is 3. In general, if m is the number of end nodes
in the tree, and then the depth of the tree, n, is dlog2me.
C. Tree membership

The membership of an entity requires ensuring that the
computed Merkle root or the group identity matches the stored
root for the Merkle Tree. Three possible are possible for
establishing membership in a Merkle Tree based on the trade-
off between computation and storage are described here.

The choice of algorithm for tree membership is local to the
verifier and not visible to the prover of membership.

1) Store all, compute less: With Store all, compute less
(SACL), complete Merkle tree is stored. Here, complete im-
plies storing hash values of the all end nodes, the intermediate
nodes, and the root of the tree.This method is analogous
to the authentication path described in [12] for signature
scheme. Here, the number of transmissions needed to verify
the signature establishes the efficiency of the scheme. With
this method, for a tree of depth n, the maximum number of
hashes cmax, needed for authentication is given by equation (1)
and the maximum storage size, smax, needed in bytes, given
by (2).

cmax = n+ 1 (1)

smax = hs ∗ (2(n+1) − 1) (2)

2) Compute all, store less: With CASL, only the leaf nodes
and the Merkle Root. Here, only the hashes of the end nodes
and the Merkle root hash is stored. Here, we trade more
computation power and hence energy for storage. For this
method, for a tree of depth n, the maximum number of hashes
and the maximum storage size are (3) and (4), respectively.

cmax = (2(n+1) − 1) (3)

smax = hs ∗ (2n + 1) (4)

3) Store less, compute one: For very constrained devices,
further optimization is possible. Here, the verifier can store
only the hashes of the end entities and the root of the Merkle
tree. During verification, the identity of the entity to be
authenticated is hashed. The membership algorithm is reduced
to search in look up in the end entities entry of the look-up
table, that is, the maximum number of hashes in (5) is always
one and the maximum storage size, smax, needed in bytes,
given by (6).

cmax = 1 (5)

smax = hs ∗ (2n + 1) (6)

This method has limited use for client devices that, before
requesting a connection to a server, know which group of
servers it wishes to connect to. Therefore, it can limit the
search to the database identified the Merkle Tree root. In
addition, since the intermediate hash values are not stored, or
computed, authentication of subtrees is not possible for such
clients.

4) The trade-off: The space-time trade-off may not be
significant enough for small trees. However, with larger trees,
the cost of storage may be significant to consider the trade-
off. The storage requirement doubles with every increment of
the depth of the tree regardless of the algorithm. The cost of
computing each hash on target can aid the choice of method
used for tree membership.

SACL vs. SLCO SACL verifies data-at-rest tree. Hence, may
be important for systems that do not have secure storage in
hardware. Also, the SLCO can authenticate in subtrees. SLCO,
therefore, has limited use and fine-tuned for very constrained
devices.
D. Identity and Authentication

VTT requires every participant in the system to a part of
a trust tree. Authentication involves verification of both the
group identity and the individual identity. Preferably, in that
order. Verification of the two identities is detailed below.

1) Group identity. The group identity depicted in Figure 1 is
verified by membership proof of the individual identity
in the Merkle tree. Section III-C describes methods for
membership proof.

2) Individual identity. The identity verification procedure
is determined by the Identity Scheme. Any Identity
Scheme of choice may be used with VTT. VTT recom-
mends the use of a common scheme for all the members
in the tree. The group identity should be verified before
the individual identity. As it is typically cheaper to verify
the group identity as compared to the individual identity.

Let us assume represents the trust tree in Figure 1 represent
a remote service S with five load balanced servers s1, s2, s3, s4,
s5. A client, to authenticate the service, must be provisioned
with the server’s trust tree in 1. At any given time, only one
of the servers will communicates with a given client, say s5.
The client to authenticate the server must verify:

1) The public key, pk5, is a member of the Merkle tree
y12345.

2) The server has the secret key corresponding to the public
key pk5. The cryptographic algorithm C determines the
exact verification algorithm.

Fig. 2: VTT based normative entity authentication using a
signature scheme for identity. The verifier verifies the group
identity yp before verification of the signature to verify pkp.

Figure 2 depicts VTT based entity authentication using a
signature-based Identity Scheme. The prover identified by pkp,
in trust tree yp is authenticated on the access request. The
membership verification in step 3 is a function of the depth of

the Merkle tree, as described in Section III-C. The protocol
depicts a successful run of the protocol. The protocol could
fail at any stage, and access request will fail.

Most use cases require mutual authentication, i.e. the prover
must be sure that it is talking to the right verifier. Mutual
authentication is not depicted in Figure 2 for simplicity. In
any system, servers and clients have different access rights
and therefore, belong to different trust trees. Regardless of the
Identity Scheme for the individual identity, the group identity
is always verified by the membership of an individual’s
identity in the trust tree corresponding to the access role.

E. The garden of trust

Fig. 3: Trust trees attached to access role to identify entities
with certain access right in a hypothetical system.

VTT proposes an access role-based approach for IAM. It is
typical for IAM to define many roles for granular access man-
agement. Notice that in Figure 3, two server roles are defined.
Only the firmware upgrade servers can push new firmware
to the devices grouped under the access role ’Things’. Data
servers do not enjoy this right. Since the data servers and
firmware upgrade servers have different access rights in the
system, these are a part of separate trust trees.

With VTT, every entity must be a member of a trust tree.
An entity is added to a trust tree corresponding to it’s access
rights in the system. Each trust tree is attached to an access
role. Each member of the trust tree has equal access rights in
the system. There can be more than one trust tree attached to
an access role; however, only one access role per trust tree.

The distinction between trust tree and access roles enables
the system to separate the entities with certain access rights
from the access rights. Trust trees determine and manage
entities that exercise the access rights by the access role.

In Figure 3, for simplicity, each access role has only one
trust tree attached to it. There could be more. In the figure,
the interface defines the interaction methods, if any, between
access roles. The entities in the trees execute the interaction

methods. The sample access management in Figure 3 depicts
trust trees of different sizes, age, and each with a role. Hence,
IAM with the model implies gardening of these trust trees
through their life cycle. As detailed in Section III-G, the trust
trees are born, live, and die. The death of a tree may be due
to age (expiry) or sickness (revocation).

F. The trust periphery

With trust comes vulnerability. VTT aims to limit the
vulnerability by limiting the trust expansion to all entities
within the system. The interactions and interfaces between
access roles determine the trust periphery. Any entity trusts
only trust trees attached to other access roles that it interacts
with. To clarify with an example, consider the access roles and
interfaces in Figure 3. Notice that in the figure, data server and
the firmware upgrade server do not have any interfaces defined.
This implies no access claims are made by any entities in these
access roles to resources in each other’s realm.
G. The living tree

VTT assumes that at the initial setup of the system, all
entities in the system, their identities, access rights, and hence,
access roles are known. Therefore, at setup, initial trust trees
can be formed. In VTT, each trust tree in the system is
of different size and function with a life span, and can be
independently updated. The update may be to retire existing
members or add new members. We offer two different methods
to update a tree based on the capabilities of its members.

1) Autonomous trees: For trees that group resourceful and
always available members of the system, like the servers,
the tree could be self-managed and hence autonomous. VTT
proposes the use of threshold ring signature to update a trust
tree. The ring signatures must be generated by the entities of
the trust tree. Therefore, a tree can be updated and maintained
by the entities within the tree. Much research exists on
ring signature and threshold signature. Authors in [13] have
proposed the use of a ring signature for the update problem.

2) Non-autonomous trees: The threshold based scheme is
not practical for sleepy constrained devices. Getting all devices
to collaborate within a time window may be a challenge.
User-initiated updates either via user web portals, and/or other
dedicated management devices, may be a suitable approach
to update trust trees of constrained devices. In this case, the
tree is updated by other entities, and hence, such trees are
considered to be non-autonomous. Any updates to the tree,
however, should be verifiable. Here too, threshold signatures
may be used.

H. Use of VTT with TLS
To demonstrate practical use of VTT, we integrate VTT

with TLS. We use of raw public key as individual identity of
all entities in the system grouped based on access roles. The
group identity would then be the Merkle root of the tree built
with the raw public keys of the members of the tree.

In Figure 4, the client first verifies the raw public key of the
server to be a member of the server trust tree. On successful
verification, it proceeds with the handshake according to the

Fig. 4: VTT based server authentication in TLS using raw
public key. The handshake exchanged is copied from [11] with
VTT specific depictions added.

methods already defined for the cipher with TLS. Therefore, to
use VTT with TLS, no new methods or alterations are needed.
The server can similarly authenticate the client using the VTT
and raw public keys. Alternatively, JWT based or other eco-
system specific schemes may be used.

IV. PROTOTYPE AND RESULTS

We compare PKI operations that use ECDSA signatures and
SHA-256 digest operations with VTT. Both models are imple-
mented on nRF52840 SoC with a port of mbed TLS library.
Dynamic memory and persistent storage requirements are also
compared. For energy consumption of radio, we combine the
amount of data exchanged on air with a model based estimate
for energy consumption for BLE on for nRF52840 SoC.

A. Set-Up

For PKI, we create two certificate chains. A Long Cer-
tificate Chain of X.509 certificate chain of depth eight,
and, a Short Certificate Chain of depth 2. The choice of
certificate chains is based on observation of industry practices.
In particular, the choice is influenced by two major cloud
service providers for IoT, Google, and Amazon. Google uses
a long certificate chain while Amazon uses a shorter one.

For VTT, we construct a trust tree with the raw public
keys of eight evaluation servers. The client is pre-provisioned
with this trust tree and allows TLS connections only from the
members of the tree.
B. VTT Evaluation

We evaluate VTT against the two goals defines for in
section III. We compare energy consumption on radio, and
the energy consumption for authentication along with dynamic
and persistent memory requirements on the target embedded
device.

We find that the energy required for ECDSA verify is
equivalent to the energy needed to receive 87 kB on BLE
radio at 2.0 Mbps. Further, it comparable to the energy needed
to compute 2.5 million SHA-256 digests on 512 B messages.
The results in Table I are consistent with the findings in [14]
on an 8-bit processor - energy consumption wise, ECC is

predominant and marginalizes the energy consumption of the
radio. Reference [14] confirms that the SHA operations adding
negligibly to energy consumption in comparison to radio. The
hash-based VTT is more efficient than PKI.

Many of the findings are specific to the choice of the eval-
uation parameters used. For example, the persistent memory
requirement for VTT increases with the depth of the tree. The
choice of the signature verification function, the certificate
chain depth and size, the depth of the trust tree, and the
choice of radio are all factors that influence the performance
and the resource usage. However, based on the findings,
some generalizations may be derived. For VTT, the following
generalizations apply.

Everify ⊥⊥ AlgorithmHash
⊥⊥ AlgorithmTreeMembership
⊥⊥ DepthTrustTree

(7)

Heapverify ⊥⊥ AlgorithmHash
⊥⊥ AlgorithmTreeMembership
⊥⊥ DepthTrustTree

(8)

StorageTrust ⊥⊥ AlgorithmHash
⊥⊥ AlgorithmTreeMembership
⊥⊥ DepthTrustTree

(9)

Eradio ∝ KeySizeSignatureAlgorithm (10)
Heapradio ∝ KeySizeSignatureAlgorithm (11)

Eradio >> Everify (12)

Note however that for trees of depth larger than ten, the energy
needed for verification surpasses the energy needed to receive the
raw public key.

C. Embedded device-friendly
For test values of VTT, energy consumption for radio is the most

predominant and not the verification itself. From equation 6.12, the
radio requirements can be kept in check by the apt choice of key
agreement algorithm. From equation 6.9, the energy consumption for
verification depends on the depth of the trust tree and membership
algorithm. In Figure 5, the energy requirements for CASL method
surpasses the energy consumed by the radio for large trees. The order
of energy consumption, however, remains marginal in comparison to
PKI.

The VTT heap requirements are trivial in comparison to PKI, and
constant across various membership methods. The storage require-
ments, however, increase with the depth of the tree as depicted in
Figure 6.

D. The cost of limited trust
VTT, to limit the vulnerability, tightens the trust periphery. Trust

is extended only between entities that interact with each other in the
system. Such trust boundaries, as evident in Figure 6, come at the
cost of persistent memory. For example, a device that communicates
to three services would need 6kB to store one tree of depth five each
per service.

V. CONCLUSIONS

The proposed Vriksh: The Tree of Trust (VTT) tailors an access
based solution for IoT using existing cryptographic primitives. In
comparison to the traditional PKI for IoT, the energy savings offered
by VTT is considerable on an embedded platform. However, the
proposed revocation methods unverified and no security analysis is
included. Also, as a newly proposed model, independent security
analysis in unavailable. Moreover, PKI with its use in web services,
has enjoyed the privilege of the users feedback for many years. Feed-
back through use, attacks, analysis, and the many implementation

Performance/ PKI VTT
Authentication Long Short SLCO SACL CASL
Everify (J) 0.366 0.081 15.324× 10−9 61.296× 10−9 229.863× 10−9

Heapparse (B) 12600 2800 400 400 400
Heapverify (B) 7200 7200 500 500 500
Storagetrust (B) 476 476 480 480 288
Datarx (B) 3727 927 91 91 91
Eradio J 1.705× 10−3 0.428× 10−3 41.632× 10−6 41.632× 10−6 41.632× 10−6

TABLE I: PKI vs. VTT: Evaluation Summary. VTT fairs better than PKI for the chosen evaluation parameters on most counts.

Fig. 5: Energy consumption as a function of tree depth for
VTT. The energy consumption for CASL method surpasses
energy consumption for radio for very large trees.

Fig. 6: Persistent memory as a function of tree depth.

mistakes; this has strengthened PKI that now has a compilation of
a comprehensive list of known vulnerabilities and their countermea-
sures. Therefore, as an alternative to PKI, VTT needs more effort
and scrutiny, but with its novel approach shows that practical new
designs tailored for emerging use cases are possible.

REFERENCES

[1] G. M. Lee, J. Park, N. Kong, and N. Crespi, “The internet of
things : concept and problem statement : 01,” Dépt. Réseaux et
Service Multimédia Mobiles ... , Research Report, Mar. 2011. [Online].
Available: https://hal.archives-ouvertes.fr/hal-00634616

[2] C. Ellison, “SPKI Requirements,” Internet Requests for Comments, RFC
Editor, RFC 2692, September 1999.

[3] R. Rivest, “Simple Distributed Security Infrastructure,” https://people.
csail.mit.edu/rivest/pubs/RL96.slides-rsalabs96.pdf, September 1999.

[4] S. W. Jung and S. Jung, “Personal OAuth authorization server and push
OAuth for Internet of Things,” International Journal of Distributed
Sensor Networks, vol. 13, no. 6, p. 1550147717712627, 2017. [Online].
Available: https://doi.org/10.1177/1550147717712627

[5] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth),” Working
Draft, IETF Secretariat, Internet-Draft draft-ietf-ace-oauth-authz-24,
March 2019. [Online]. Available: http://www.ietf.org/Internet-drafts/
draft-ietf-ace-oauth-authz-24.txt

[6] A. Joux, “A one round protocol for tripartite diffie-hellman,” Algorithmic
Number Theory, vol. 1838, pp. 385–393, 2000.

[7] E. Brickell and J. Li, “Enhanced Privacy ID: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 3, pp.
345–360, 2012.

[8] Ernie Brickell and Jan Camenisch and Liqun Chen, “Direct Anony-
mous Attestation,” https://eprint.iacr.org/2004/205.pdf, 2004, [Online;
accessed 4-June-2019].

[9] V. Cerf, “Self-authenticating identifiers,” Communications of the ACM,
vol. 61, no. 12, pp. 5–5, 2018.

[10] B. Yu, J. Wright, S. Nepal, L. Zhu, J. Liu, and R. Ranjan, “IoTChain: Es-
tablishing Trust in the Internet of Things Ecosystem Using Blockchain,”
IEEE Cloud Computing, vol. 5, no. 4, pp. 12–23, Jul 2018.

[11] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen, “Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS),” Internet Requests for Comments,
RFC Editor, RFC 7250, June 2014.

[12] R. Merkle, “Secrecy, authentication and public key systems/ A
certified digital signature,” Ph.D. dissertation, Dept. of Electrical
Engineering, Stanford University, 6 1979. [Online]. Available: http:
//www.Merkle.com/papers/Thesis1979.pdf

[13] T. Okamoto, R. Tso, M. Yamaguchi, and E. Okamoto, “A k-out-
of-n Ring Signature with Flexible Participation for Signers,” IACR
Cryptology ePrint Archive, vol. 2018, p. 728, 2018.

[14] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy
analysis of public-key cryptography for wireless sensor networks,” in
Third IEEE International Conference on Pervasive Computing and
Communications, March 2005, pp. 324–328.

K
rishna Shingala

A
n alternative to P

K
I for IoT

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Krishna Shingala

An alternative to the Public Key
Infrastructure for the Internet of
Things

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski, Katina Kralevska, Torstein
Heggebø

June 2019

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Scope
	Motivation
	Objective and Methodology

	Background
	Trust Management with PKI
	X.509 Certificate
	Certificate Issuance
	Certificate Validation
	Expiry and Revocation
	PKI based entity authentication

	PKI Vulnerabilities and Attacks
	CA Private Key Compromise
	Man in the middle attacks
	Revocation

	Use of PKI in IoT
	PKI Challenges for IoT
	Time
	Revocation
	Root Store
	Lack of User Interface

	Existing Alternatives to PKI
	Symmetric Keys
	Simple Public Key Infrastructure
	Federated Identity
	Web Of Trust
	Pairing Based Encryption
	Certificate-less Public Key Cryptography
	Milagro

	Enhanced Privacy ID
	Trust On First Use
	Blockchain
	TLS: Raw Public Keys
	Summary

	Vriksh: The tree of trust
	Overview
	Why use a Merkle Tree?
	Setup
	Tree size and depth
	Tree membership
	Store all, compute less
	Compute all, store less
	Store less, compute one
	The trade-off

	Identity and Authentication
	The garden of trust
	The trust periphery

	The living tree
	Autonomous trees
	Non-autonomous trees

	Use of VTT with TLS
	Client Initiated Communication
	Server Name Indication

	Prototype
	Assumptions
	Components and Tools
	TLS Library
	Merkle Tree
	Wireshark
	Python

	Actors
	Development Increments
	Credential Set Up
	X.509 certificates with PKI authentication
	Raw public keys with no authentication
	Raw public keys with digest-based authentication
	Raw public keys with VTT based authentication

	Summary

	Evaluation
	Methodology
	Why ECDSA?
	Why SHA-256?
	Platform
	Test parameters
	Measurement tool
	Application

	Energy Consumption - Theory
	Energy Consumption - Crypto
	ECDSA Verify
	SHA-256 Digest
	ECDSA Verify vs. SHA-256 Digest

	PKI vs. VTT: Energy consumption - Verify
	Dynamic memory
	Persistent Storage memory
	Energy Consumption - Radio
	Consolidated results and analysis
	Embedded device-friendly
	The cost of limited trust

	Discussion
	Towards a holistic view
	The Service Perspective
	Key Expiration
	System Setup and Management

	The elephants in the room
	Detection and Report of Security Exceptions
	Trust and Access Policy propagation
	Security Analysis

	Deployment recommendations for PKI

	Conclusion and Future work
	Conclusion
	Future Work

	References
	Evaluation - Code and Scripts
	Conference Paper - Draft

