
Master in Security and Mobile Computing
June 2010
Danilo Gligoroski, ITEM

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Secure data aggregation for wireless
sensor network

Trang Tran-Thi-Thuy

Problem Description
Smartdust the company produces perimeter guarding systems, consisting
 of wireless sensors. Currently, the sensors have an 8-bit processor
 (with no specific functionality for cryptography), 8kB RAM and 4kB ROM.
 Any node may possibly want to talk to any other node.
 Currently the traffic between sensors is not protected.
Smartdust, however, would like to ensure the _integrity_ of data reported by
 sensors. The task of the proposed MSc project is to basically design and
 implement a solution for authenticating the data produced by sensors.
 The thesis work should result in:
 * an overview of possible solutions. Consider solutions for
 securing point-to-point communications, as well as solutions based on
 group key agreement. Keep in mind the restricted computational
 capabilities.
 * Selection / design of a particular solution and its implementation.
 * Testing and analysis of the implemented solution.
 * If possible: Smartdust's next steps in developing perimeter guarding
 systems.

Assignment given: 15. January 2010
Supervisor: Danilo Gligoroski, ITEM

Abstract

Like conventional networks, security is also a big concern in wireless sensor
networks. However, security in this type of networks faces not only typical
but also new challenges. Constrained devices, changing topology or suscep-
tibility to unprecedented security threats such as node capture and node
compromise has refrained developers from applying conventional security so-
lutions into wireless sensor networks. Hence, developing security solutions
for wireless sensor networks not only requires well security analysis but also
offers a low power and processing consuming.

In this thesis, we implemented security solution targeting IRIS sensor motes.
In our implementation, a public key-based key exchange is used to estab-
lish shared secret keys between sensor nodes. These secret keys are used
to provide authenticity, integrity and freshness for transmission data. Our
implementation ensures the flexibility in integrating our solution with avail-
able TinyOS operating system. Additionally, the thesis work also focuses on
evaluating the performance in wireless sensor networks both in memory and
energy consuming.

i

Acknowledgements

First, I would like to express my gratitude and heartiest thanks toward my
home and host supervisors: Professor Danilo Gligoroski from Norwegian Uni-
versity of Science and Technology and Professor Antti Ylä-Jääski from Aalto
University School of Science and Technology for giving me opportunity to
work on this thesis. Especially, I would like to thank wholeheartedly to my
instructor : Professor Peeter Laud from University of Tartu for his collabo-
ration, inspiring discussion and realistic suggestion at all stages of my thesis
work. Additionally, I owe my gratitude to Raido Pahtma and Jurgo Preden
who kindly offers helps in my thesis work. Without their support, this work
would not have been completed.

Secondly, I would like to thank all my friends in TKK for keeping me up
during my depressed thesis work.

Last but not least, I am indebted with my parents who have been there with
me all the time. Their never ending love and support beyond boundaries of
field and geography have encouraged me to pursue my interest. Especially,
I would like to thank my brother Huy Tran Quoc has been a patient and
valuable advice giver.

Espoo June 29th, 2010

Trang Tran Thi Thuy

ii

Abbreviations and Acronyms

AES Advanced Ecryption Standard
CA Certificate Authority
ECC Elliptic Curve cryptogrpahy
ECDH Elliptic Curve Diffie Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
FIFO First In First Out
MAC Message Authentication Code
MTU maximum transmission unit
nesC network embedded system C
PKI Public Key Infrastructure
RSA Rivest, Shamir and Adleman
STS Station-to-Station
TripleDES Triple Data Encryption Standard
WSN Wireless Sensor Network

iii

Contents

Abstract i

Acknowledgements i

Abbreviations and Acronyms iii

1 Introduction 1

1.1 Motivation . 1

1.2 Two-tier security problem in Wireless Sensor Network 2

1.2.1 Message confidentiality, authenticity and integrity . . . 3

1.2.2 Key management problem 3

1.3 Thesis outline . 5

1.3.1 Thesis goal . 5

1.3.2 Thesis structure . 5

2 Background 6

2.1 Cryptography primitives . 6

2.1.1 Symmetric cryptography 6

2.1.2 Public key cryptography 8

2.2 TinyOS and nesC programming language 11

2.2.1 TinyOS - sensor node operating system 11

2.2.2 nesC - programming language for sensor node 13

2.3 Related work . 13

2.3.1 Key management proposals 13

iv

CONTENTS v

2.4 Authenticity, integrity and confidentiality solution 16

3 Design 18

3.1 Platform . 18

3.2 Design Goals . 20

3.2.1 Security Goal . 20

3.2.2 Performance . 21

3.2.3 Ease of use . 22

3.3 Protocol Design . 22

3.3.1 Our security model . 22

3.3.2 Key management module 23

3.3.3 Packet handling module 28

4 Implementation 32

4.1 Key exchange module . 32

4.1.1 Architecture description 33

4.2 Packet handling module . 36

4.2.1 Architecture description 37

4.2.2 Transparency solution 38

5 Evaluation 40

5.1 Experiment platform . 40

5.2 Key Exchange module . 40

5.2.1 TinyECC optimization 40

5.2.2 Memory usage . 43

5.2.3 Energy consumption 45

5.3 Packet handling module . 49

5.3.1 Execution time . 49

5.3.2 Memory consumption 50

6 Conclusion and Future work 51

6.1 Conclusion . 51

CONTENTS vi

6.2 Future work . 52

List of Tables

2.1 Rule A and Rule B . 8

3.1 Computational overhead between ECDH and EC-based STS . 26

3.2 Security strength comparison between ECDH and EC-based
STS . 27

5.1 Memory overheads. All figures are in bytes 45

5.2 Memory usage between Key exchange module and the whole
system. All the figures are in bytes. 45

5.3 Energy consumption for Full message key exchange 48

5.4 Energy consumption for Fragmented message key exchange . . 49

5.5 Memory consumption in Packet handling module. 50

vii

List of Figures

2.1 CBC-MAC operation . 8

3.1 IRIS sensor mote from Crossbow 19

3.2 IEEE 802.15.4 packet format 19

3.3 Security architecture . 22

3.4 Certificate format . 23

3.5 Key exchange protocol . 28

4.1 Key Exchange module decomposition 33

4.2 Key Exchange module decomposition - Fragmented exchange
message version . 35

4.3 Packet fragmentation . 36

4.4 Packet Handling architecture overview 37

4.5 Encapsulation of packet through Packet handling layer 38

5.1 Experiment platform . 41

5.2 Comparing TinyECC optimization 42

5.3 Energy experiment setup . 46

5.4 Power consumption Full message key exchange with execution
time optimization . 47

5.5 Power consumption for Full message key exchange with mem-
ory optimization. 47

5.6 Power consumption for Fragmented message key exchange with
execution time optimization. 47

viii

LIST OF FIGURES ix

5.7 Power consumption for Fragmented message key exchange with
memory optimization. 47

5.8 Time spent for sending one packet 50

Chapter 1

Introduction

1.1 Motivation

Wireless sensor network — an emergent application of computer systems
— has gradually attracted a lot of attention due to its broad application
potential. As a heterogeneous network, wireless sensor network consists of
low-cost constrained devices, namely sensor motes, responsible for sensing
environmental events such as temperature, pressure or lighting. This data
later is transmitted to a back end server where it is processed and infor-
mation about state of monitored environment is deduced. This transmission
happens through hop-by-hop wireless communication where collaboration be-
tween sensor nodes is required in order to finally forward sensor readings to
the destination. Wireless communication alleviates the workload of sensor
node deployment since sensor mote can be easily placed at any places with-
out worrying about wiring of the network. Such easy deployment together
with low cost in implementing sensor network, thank to inexpensive devices,
has broadened the applicability of wireless sensor networks. Wireless sensor
network’s applications range from civil applications such as habitat moni-
toring, environmental observation to critical military applications such as a
battlefield surveillance or intrusion detection application.

Due to the increasing usage of wireless sensor networks, security also be-
comes a growing concern in this type of network. The properties of a wireless
sensor network make it more susceptible to certain types of attackers, com-
pared to wired network . Wireless communication channel is one of those
properties. As a broadcast communication media, wireless channel is easily
intercepted. The adversary can inject packets into communication stream
without difficulties or direct all traffic into bogus node and thus control the

1

CHAPTER 1. INTRODUCTION 2

data stream of the whole network. As the adversary can filter traffic at his
will, a seized network can provide false information about the environment
state. Additionally, bogus sensor node can intentionally tear down routing
protocol, partition network or increase end-to-end latency. Another property
that makes wireless sensor networks is more vulnerable than wired networks
is non-attendance. As wireless sensor network is usually remotely controlled
and operates under no observation, the adversary can easily occupy any sen-
sor node and read data from sensor node. This so-called node capture attack
can lead to reveal of security information which probably nullifies the whole
security system. For example, if the whole sensor network shares only one
secret key, capturing one sensor node can compromise all other sensor nodes.
Furthermore, constrained devices create their own problems for wireless sen-
sor network. As powered by batteries, sensor node needs to save energy to
gain longer life which refrains sensor nodes from using complex computations.
Security solution thus has to be redefined to match sensor node limitations.
That’s the reason why many security mechanisms in conventional networks
are inapplicable or require modification and serious testing in order to be
implemented in wireless sensor networks.

1.2 Two-tier security problem in Wireless Sen-

sor Network

Like conventional networks, message confidentiality, authenticity and in-
tegrity are also major concerns in wireless sensor networks. In order to
address those concerns, conventional network , such as Internet, uses sym-
metric cryptographies. A disadvantage in symmetric cryptography is that
two communicating parties have to share the same secret before they can
actually securely talk to each other. This requirement is not a problem for
Internet network where communicating parties can transfer shared secrecy
out-of-channel or more popular solution is using asymmetric cryptography.
Asymmetric cryptography as a solution to problem of exchanging shared se-
cret keys is widely deployed in conventional networks with many security
protocols such as SSH, SSL or IPSec. However, applying such computa-
tionally complex cryptographic suite for wireless sensor network seems not
a straight forward solution since sensor nodes are famous for not only their
limitation in processing ability but their memory and energy constraints as
well. Hence, solving key management problem is as important as ensuring
message confidentiality, authenticity and integrity.

CHAPTER 1. INTRODUCTION 3

1.2.1 Message confidentiality, authenticity and integrity

Wireless sensor networks share the same problem with normal wireless net-
works as message transmission is carried over-the-air. The problem is that
this type of communication is subject to eavesdropping and interference.
Nevertheless, wireless sensor networks are mainly used for sensing environ-
mental conditions, so the adversaries can easily deduce that transferred data
in wireless sensor networks are mainly environmental measurements. This
explains why preventing eavesdropping is not the main security concern in
wireless sensor networks. In fact, wireless sensor network security is more
against interference. Inserting malicious information, into broadcast channel
can cause big impact on accuracy of the whole network. Moreover, the at-
tacker can even use incorrect sensor reading to cause severe consequences. For
example, injecting false information in a perimeter intruder detection system
can direct security guards away from the correct location of intrusion.

Protecting message transmission from eavesdropping or altering has been a
well-researched subject among security researchers.Together with the arrival
of higher processing power computers, security solutions become stronger
and stronger. More and more complex computation need cryptographic pro-
tocols and primitives that are stronger and stronger. However, the case is
not the same for wireless sensor networks. While the usage of the same com-
plex cryptographic solution is impossible, other selected security solutions for
wireless sensor network should not be easily broken by using common high
processing power computers.

Due to the efficiency of symmetric cryptography which provides the same
security level as asymmetric cryptography but requires less computational
power, it becomes the key security solution for wireless sensor networks. Nev-
ertheless, in the context of these networks, symmetric cryptography brings
out another problem, namely key management.

1.2.2 Key management problem

In order to prevent malicious nodes from sending false information, only pairs
of legitimate nodes which share secret keys with each other can exchange in-
formation. Secret keys are the only way to differentiate legitimate nodes from
malicious nodes. Thus, key management involves generating and distribut-
ing secret keys among sensor network and also taking care of revoking key
and re-keying. Solutions to key management in wireless sensor network are
divided into two categories: key pre-distribution and online-key generation.

CHAPTER 1. INTRODUCTION 4

In the context of wireless sensor network, each of these key management has
it own advantages and disadvantages.

Key pre-distribution enables sensor nodes by storing shared secret key be-
fore being deployed in to the field. Compared to online-key generation, this
method alleviates computation overhead for sensor nodes which in turn saves
energy consumption. However, this method shows some disadvantages for
wireless sensor networks. Firstly, in order to be able to communicate with
each and every sensor node in network, a sensor node has to store all shared
keys with each and every node. This means the number of total shared se-
cret keys for network increases quadratically with the number of nodes in
network. Storing such a large number of keys causes memory problems in
sensor nodes. Knowing topology of network in advance can help reducing
number of needed key since only two nodes that can speak to each other
should save their shared key. However, this case only plays a little role
in wireless sensor network scenarios since most topology of wireless sensor
network is constructed during deploying phase or network topology is also
subject to change. E.g one sensor node happens not to work as normal any
more or some nodes are added to the network. Second disadvantage and also
the biggest problem with key pre-distribution is re-keying. Because keying
phase happens before deploying phase, the only way to re-keying all nodes is
to transfer secret keys into sensor nodes again. If one nodes is exposed, all
nodes sharing secret with this node need to be re-keyed.

On the other hand, on-line key generation solves the problem of key pre-
distribution. This key management solution allows sensor nodes to establish
mutual secret key on-the-fly when needed. This solution doesn’t require
sensor nodes to store secret key in advance and even works well in unknown
topologies, as sensor nodes only need to store their own information in order
to generate secret keys. Since this information is private to each sensor node,
exposing one node only has local impact on that specific node. The other
advantage of this method is ability to re-keying on-line. Key are generated on-
the-fly, it’s easy to generate another key if old keys are exposed. In order to
achieve this, public key cryptography is the most notable solution. However,
public key cryptography is famous for its complex computation. This means
a drawback of this method is heavy energy consumption. Thus, searching
for an efficient way to choose and implement public key cryptography is a
problem that need to be solved when deploying security for wireless sensor
networks.

CHAPTER 1. INTRODUCTION 5

1.3 Thesis outline

1.3.1 Thesis goal

The goal of this thesis is to design and implement a complete security so-
lution for wireless sensor network. This security solution has two aspects,
that respectively solve aforementioned tow-tier security problem in wireless
sensor networks. First, design and implement a security solution which pro-
vides authenticity, integrity and freshness. Second, design and implement a
suitable key exchange protocol which establishes secret keys between every
two sensor nodes. This security solution is targeted towards the sensor net-
work platform of Defendec [2] that uses Iris motes [4] and TinyOS operating
system [30]. So security solution needs to work on Iris mote and can be
integrated into TinyOS operating system. Ability to run on other motes is
optional. The implementation needs to be lightweight and stable.

1.3.2 Thesis structure

The thesis describes an overall security solution for wireless sensor networks
including sending message in an authenticated manner (integrity and authen-
ticity checking) and solution to securely establish keys between two arbitrary
nodes.

Chapter 2Description about the thesis background is presented. First, we
describe cryptographic primitives used to perform secure communication and
secure key exchange. Additionally, this chapter also give an overview about
TinyOS operating system and nesC programming language. The end of
chapter 2 discusses other security proposals for wireless sensor node.

Chapter 3Description about design goal, a security design for secure com-

munication and a security design for key exchange are presented in this
chapter. Moreover, this chapter also discusses why these security designs
are chosen to implement.

Chapter 4Implementation issues are covered in this chapter.

Chapter 5Performance of our implementation are quantified. Both energy

and memory consumptions are addressed in this chapter.

Chapter 6Conclusion of the thesis is provided and so are some future work

suggestions.

Chapter 2

Background

This chapter presents some fundamentals related to our thesis work. As
the background to our security solution, we start this section with some
cryptographic primitives. The symmetric and asymmetric cryptography we
aim to use in our security solution is discussed in general. Description about
selected algorithms are given in more detail. Next, we describe an overview
of the operating system TinyOS and programming language nesC which are
used in our sensor motes. Finally, related work introduces some prominent
security proposals and available solutions for wireless sensor networks.

2.1 Cryptography primitives

Originated from the ancient time, cryptography is always a strong choice
everytime human want secret communication. As developing together with
human’s need, modern cryptography is classified into two categories: sym-
metric cryptography and asymmetric cryptography or also called public key
cryptography. Possessing exclusively different properties, these two categories
are usually used together in many security solution in order to achieve the
most reasonable and effective result.

2.1.1 Symmetric cryptography

As the oldest cryptographic method, symmetric cryptography has come into
use since the birth of cryptography. The basic concept of symmetric cryp-
tography is that if two communicating parties want to talk in private, they
needs to share the same secret key and use that key to perform modification

6

CHAPTER 2. BACKGROUND 7

on conversational data. Symmetric cryptography is used for many purposes
including providing data secrecy using encryption and decryption or ensuring
data integrity and authenticity by constructing Message authentication code.

Encryption algorithm

Encryption algorithms are used to transform transmitted message from un-
derstandable format , namely plaintexts , into ciphertexts which are unread-
able to any uninvolved parties. In symmetric encryption, senders encrypt
plaintexts using secret keys which later also is used by receivers to decrypt
ciphertexts. Symmetric encryption algorithms can be classified into two dif-
ferent types : stream cipher and block cipher. These two types of cipher
differ in the way that plaintexts are encrypted. While stream ciphers process
input messages bit-by-bit, block ciphers operate on invariable large block of
input messages. Some examples of stream ciphers are Linear feedback shift
register [14], RC4 [36] and some well-known block ciphers are DES [18], AES
[19] or Blowfish [38].

SkipJack [16] is a NSA-developed 32-round block cipher using 80-bit key
on 64-bit data blocks. As a NSA invention, the block cipher was classified
by NSA until 1998. In SkipJack, every 64-bit block first is divided into four
16-bit words w1, w2, w3 and w4 and then go through 32 rounds of either Rule
A or Rule B. The first eight rounds use Rule A, then followed by 8 rounds
of Rule B , then followed by 8 rounds of Rule A and finalized by 8 rounds of
Rule B. Rule A and Rule B can be described as in Table 2.1.1. G function is
a Feistel function which permutes 16-bit words using 80-bit key. Used to be
a NSA application, SkipJack has been well examined and considered secure
by a group of independent cryptographers in 1993 [17]. The most noticeable
weakness of SkipJack is short key size – 80-bit key size compared with AES
128, 192 or 256 bit; otherwise SkipJack is secure [16], has a good performance
and is wireless sensor network friendly [29].

Message authentication code

Message authentication code(MAC) is a type of data used to provide au-
thenticity and integrity of its corresponding message. There are two types of
algorithms used to calculate MAC : hash-based MAC such as HMAC [27] or
Cipher-based MAC as CBC-MAC [15].

CBC-MAC is an MAC-constructing algorithm using a block cipher E in CBC
mode with zero initialization vector 0 . Suppose that we need to calculate

CHAPTER 2. BACKGROUND 8

Rule A Rule B

wk+1
1 = Gk(wk

1) ⊕ wk
4 ⊕ counterk wk+1 = wk

4

wk+1
2 = Gk(wk

1) wk+1
2 = Gk(wk

1)
wk+1

3 = wk
2 wk+1

3 = wk
1 ⊕ wk

2 ⊕ counterk

wk+1
4 = wk

3 wk+1
4 = wk

3

wk
i output word from round k, i = 1, 2, 3, 4

Gk() keyed permutation function
counter starts at 32 and decrements by one after every round

Table 2.1: Rule A and Rule B

Figure 2.1: CBC-MAC operation

a message m with secret key k. The message m is split into block size of
cipher E m = m1||m2||...||mx. Then these blocks are used as input into
cipher E in CBC mode as in Figure 2.1. CBC-MAC is widely known to to be
insecure toward variable length message. If the adversary happens to know
two plaintexts and their corresponding MACs, he can forge a legitimate MAC
for a new message. However, prepending the message length to the message
is suggested to solve this weakness [15].

2.1.2 Public key cryptography

Contrary to symmetric cryptography, public key cryptography does not re-
quire the sender and the receiver to share any secret information beforehand.
In fact, each end possesses a pair of keys : private key and public key. While
private key is kept secretly to the owner, public key is publicly known to
every parties. The sender uses private key to encrypt or sign message while
the receiver uses public key to decrypt or verify received message.

CHAPTER 2. BACKGROUND 9

Elliptic curve cryptography

Elliptic curve cryptopraphy (ECC) is a domain for defining public-key cryp-
tosystems. The domain was first suggested by Neal Koblitz and Victor
S.Miller in 1985 [23, Chap. 3] . An elliptic curve is a collection of points
(x, y) ∈ K

2, where K is a field, satisfying the equation:

y2 = x3 + ax + b

together with an extra point O that could be thought of as the point in
infinity. We say that elliptic curve E over field K, denote E/K.

Let two points P = (x1, y1) and Q = (x2, y2) in E/K be given, P and Q are
two distinct and not negative of each other. The sum of two points P and Q
is R = P + Q = (x3, y3) where

x3 = (y2−y1

x2−x1

)2 and y3 = (y2−y1

x2−x1

)(x1 − x3) − y1

Together with addition operation just defined, all of points on the Elliptic
curve with O as its identity form an abelian group. The proof can be found
in [23, Sec. 3.1.2]. The scalar multiplication KP can be calculated as kP =
P + P + ... + P (k times).

Elliptic curve cryptosystems make use of elliptic curves defined either over
GF (p) or GF (2m). Prime domain has parameters (p, a, b, G, n, h) while bi-
nary domain has parameter (m, f(x), a, b, G, n, h) (from now on, (E, a, b, G, n, h)
is used as presentation of one of these two domains) where

• p, a, b in prime domain defines elliptic curve y2 = x3 +ax+ b over field
GF (p).

• m ,f(x), a and b in binary domain defines elliptic curve y2 = x3+ax+b
over field GF (2m) = F2(x)/f(x) with f(x) is an irreducible polynomial.

• G base point or generator. The set of {0, G, 2G, ..} is a cyclic group
and can be used analogously to subgroup of Zp∗ in cryptographic con-
struction.

• n order of G so that nG = O.

• h the cofactor h = #E(Fp)/n .

CHAPTER 2. BACKGROUND 10

Signature scheme

Signature is a new functionality which only exists in public key cryptography,
not in symmetric cryptography. Signature is a piece of information ensuring
authenticity of messages between two parties without any shared secret infor-
mation in advance. The sender creates the signature by using his private key
while the receiver verifies a signature by using the sender’s public key. One
of the most well-known signature schemes is Elliptic curve digital signature
algorithm ECDSA [23, Sec. 4.4.1] as follows :

• Set up
Let an Elliptic curve domain be given, (E, a, b, G, n, h) and a hash
function H . If sensor mote A wants to send an authenticated mes-
sage to sensor mote B. Sensor mote A randomly generates private key
dA ∈ [1, n − 1], public key QA = dAG and mesage m. From now
on, something (e.g. taking inverses) happens modulo n, is denoted
(mod n).

• Signing

1. Compute e = H(m).

2. Select k ∈ [1, n − 1].

3. Compute r = x1 mod n with (x1, y1) = kG. If r = 0, return to
previous step.

4. Compute s = k−1(e + rdA) (mod n). if s = 0, go back to step 2.

Signature of message m is (r, s).

• Verification

1. Check whether r and s are integers within [1, n−1]. If not, return
fail. Otherwise continue.

2. Compute e = H(m).

3. Compute w = s−1 (mod n)

4. Compute u1 = ew (mod n) and u2 = rw (mod n)

5. Compute (x′
1, y

′
1) = u1G + u2QA.

6. Check whether r = x′
1 (mod n). If yes, signature is valid; Oth-

erwise invalid

CHAPTER 2. BACKGROUND 11

• Proof If (r, s) is legitimate on message m, we have s = k−1(e + dAr)
(mod n). Rearrange this equation, we have :

k ≡ s−1(e+dAr) ≡ s−1e+ s−1rdA ≡ we+wrdA ≡ u1 +u2dA (mod n)

Thus (x′
1, y

′
1) = u1G + u2QA = (u1 + u2dA)G = kG, and so r = x′

1

(mod n)

Key exchange scheme

Key exchange scheme in public key cryptography allows two entities to mu-
tually agree upon the same secret key without any shared prior knowledge.
As one of the most well-known key exchange scheme, Elliptic Curve Diffie
Hellman (ECDH) is the Elliptic curve version of discrete logarithm-based
Diffie Hellman key exchange. It can be described as follows :

Let an Elliptic curve domain be given, (E, a, b, G, n, h). Two sensor motes
A and B want to mutually establish shared secret key. Each sensor mote, A
and B, picks a private key dA and dB (randomly generated numbers between
[1, n−1]). From dA and dB , they can deduce their corresponding public key
QA = dAG and QB = dBG. So in order to generate shared key, mote A has
to send its own public key QA to B and B, in return, has to reply with its own
public key QB. After both sides receive each other’s public key, while mote
A can compute k = dAQB, and mote B can compute k = dBQA. Shared
secret is derived from the x coordinate of point k.

Among key exchange schemes, ECDH is the simplest one which performs
mutual key establishment in the fastest way. Nevertheless, this scheme does
contains several security vulnerabilities such as : no key freshness (only one
key is established during entities’ lives) or no entity authentication (no mech-
anism to clearly verify whether either of two sensor motes really participated
in key exchange).

2.2 TinyOS and nesC programming language

2.2.1 TinyOS - sensor node operating system

Being constrained devices, sensor motes require lightweight operating sys-
tems which are designed to focus on reliable low-power operations. TinyOS
[30], a collaboration between University of California, Berkeley and Intel Re-
search and Crossbow Technology, is the most popular operating system for

CHAPTER 2. BACKGROUND 12

wireless sensor motes. TinyOS design goals are to provide a robust system
which can operate with limited resources, support various platforms and wide
range of applications.

In order to achieve these goals, TinyOS operating system is designed as a set
of components with an objective to increase the flexibility of the whole sys-
tem. As separate modules, components are certainly easier to develop, use
and replace. The effortless component replacing is attained by defining the
common interface between interacting components. Interfaces are the set of
functions which specify the communication rules between two different com-
ponents. Developers can replace or switch two components at ease if these
two follows exactly the same interface. Furthermore, interfaces and compo-
nents design model also makes module replacing or interchanging transparent
to developers.

Besides the ability of switching between dissimilar software implementations,
TinyOS also provides ability to switch between software implementations
and hardware devices. For example, software implementations and hardware
devices of a cryptography service should be interchangeable. As hardware
is mainly developed with split-phase operation model other than blocking in
other operating system. In blocking operations, a function calling is returned
only when its whole operation is completed. In split-phase operation, a func-
tion calling, on the other hand, is returned immediately. The actual function
operation still runs to completion and then a separate callback function is
signalled. For example, an application call a function to request radio chip to
send a message. This function is returned immediately while the radio chip
continues sending message. When sending is finished, radio chip issues an in-
terrupt to signal the application about the completed job. Hence, in order to
provide compatibility with hardware components, many TinyOS components
are developed with split-phase model.

Another issue in hardware and software components interchanging is the
internal concurrency inside hardware components. For example our radio
chip above, the radio chip with internal processor is capable of signalling
the interrupt while the main processor is busy performing other operations.
However, all software implementations use the same core processor which
is allowed to perform only one operation at a time. To solve this problem,
TinyOS introduce task model. Every time an application wants to perform
an operation, it posts a task into a FIFO task queue. By splitting a whole
operation of a software component into several short tasks and posting into
task queue, TinyOS allows interleaving different software components’ tasks
inside task queue and more importantly it allows different components to

CHAPTER 2. BACKGROUND 13

virtually run in concurrency. To programmer, a task is no more than a
deferred procedure which is ensured by TinyOS operating system to run in
the near future but not immediately.

2.2.2 nesC - programming language for sensor node

nesC (netword embedded system C) [22] is mainly used for developing ap-
plication for TinyOS operating system. As mainly used for network sensor
motes, nesC is extended from C programming language to be able to provide
codes targeting a specific platform and low-level functionalities interacting
with underlying hardwares. Unlike C programs, in nesC language, separate
modules are not allowed to compile individually. Instead, the whole nesC
programs are compiled altogether so that it can get overall analysis and op-
timization. Moreover, aim to work on constrained devices, nesC program
is a "static language" as it provides no dynamic memory allocation at run-
time and fixed call-graphs at compile time. These constraints not only make
TinyOS easier in managing memory but also reduce difficulties and uncer-
tainties in program analysing. As designed for TinyOS operating system,
nesC language provides features that helps programming in TinyOS such as
supporting components concept, task implementation or concurrency model.

2.3 Related work

This section describes some prominent researches in security for wireless sen-
sor network. Researches in this area mainly focuses on solving either key
management problem or authenticity, integrity and confidentiality problem.

2.3.1 Key management proposals

As one of the main problem in wireless sensor network security, key man-
agement schemes have been widely studied for the last several years. Due
to various constraints both in sensor motes and the whole network, there
hasn’t been an efficient key management scheme for all type of WSNs. In
fact, every scheme is designed based on several assumptions about structures,
goals or even deployment environment of WSNs. However, key management
protocols for WSNs can be divided into two categories : key pre-distribution
and online key generation.

CHAPTER 2. BACKGROUND 14

Key pre-distribution

A key management scheme is categorized as key pre-distribution if secret keys
are already loaded into sensor motes before deployment. Hence, this scheme
causes no communication overhead to WSNs as the shared keys are already
somehow established and stored inside each sensor motes. As network size
prevents sensor motes from storing all per-link keys, researchers has proposed
several scheme in order to reduce the size of key collection.

The very first key pre-distribution was suggested by Eschenauer and Gligor
[21], namely Random key Pre-distribution Scheme. In this scheme, instead
of storing all per-link keys, each sensor note is only loaded with a key ring —
a subset which is randomly drawn from a common large key pool S. After
deployment, sensor motes go through shared key discovery stage to discover
other peers sharing common keys. Two sensor motes sharing the same key
can use that key to communicate securely. If two sensor motes having no
common key want to exchange messages, they have to rely on other parties
who shares common keys with both of them. These trusted third parties
generate new keys and distributes them to two sensor motes. This procedure
is called path key establishment stage. The advantage of this algorithm is that
it clearly helps sensor motes by reducing key storage size while still maintains
a reasonable theoretical connectivity. Eschenauer and Gligor have proved
that [21] with a key pool S of 10000 keys, each sensor mote is required to
store only 75 keys wit probability that every two sensor mote share common
key is 50%. However, the connectivity of WSNs is physically reduced by
many other practical reasons such as deployment area or weather condition.
Moreover, this proposal provides a weak resilience against node capture. If
a sensor node is compromised, all other sensor nodes sharing common keys
with that node are exposed also.

In order to improve resilience of previous scheme, Chan and Perrig [11] pro-
posed a modified version called The q-composite Random Key Pre-distribution
Scheme. The difference between this scheme and the previous one is that in-
stead of only 1 key, q keys are required between two sensor motes to be
able to communicate securely. Certainly, this scheme enhances the network
resilience against node capture since attackers need to capture more sensor
motes in order to possibly break a certain link. However, in return, the key
ring size gets bigger to ensure the same connectivity probability.

Chan and Perrig [11] also proposed Random pairwise scheme. In this scheme
, a certain number of pairwise keys are generated and loaded to corresponding
sensor motes. Hence, only two sensor motes that are stored with a pairwise
key can communicate. As not all per-link keys are pre-distributed, only a

CHAPTER 2. BACKGROUND 15

fraction of sensor motes can communicate and unconnected pair of sensor
motes can communicate through trusted third sensor motes. The advantage
of this scheme is that pairwise keys are only loaded into their corresponding
sensor motes, thus if one sensor mote is captured, communication among
the rest sensor motes are still safe. This scheme however provides a weak
scalability and causes difficulties in adding new sensor motes into already
deployed network.

In general, key pre-distribution schemes promise to provide a little processing
overhead since key already stored in every sensor motes. Nevertheless, they
are usually susceptible to node capture attacks. Additionally, it is difficulty
to add new sensors into network or re-key compromised sensor nodes because
every sensor node has to be loaded with new keys if new sensor nodes join
network.

Another branch of key pre-distribution scheme is that rather than storing
directly secret keys, sensor motes can be loaded with a secret information
which is used to generate shared secret key. One simple example of this type
is Master key based pre-distribution scheme proposed by Lai and Kim [28].
In this scheme, a master key is stored to every sensor node. This master
key later is used together with random number generated by sensor motes to
established shared secret key.

Alternatively, another proposal by Liu and Ning [32], namely Polynomial-
based key pre-distribution scheme, uses polynomials in order to generate
shared secret key. These polynomials are in form of a bivariate t-degree func-
tion f(x, y) =

∑t
i,j=0 aijx

iyj with aij = aji over a finite field G(q) where q is a
large enough prime number. Since aij = aji, f(x) satisfies f(x, y) = f(y, x).
Subsequently, a sensor node ID A can produce a shared key with a sensor
node ID B by substitute A, B into the polynomial, that is, f(A, B). On sen-
sor node ID B side, the same operation is repeated to generate the shared key
f(B, A). As special property of polynomial f(x), we have f(A, B) = f(B, A),
hence sensor node A and B are now carrying the same shared key. This
scheme is proved to be resilient against t/2 compromised key. As t-degree
function f(x, y) with aij = aji, only t/2+1 different coefficients are unknown.
By knowing t/2 + 1 compromised keys, the attacker can build up a system
of t/2+1 linear equations with t/2+1 unknown variables. This set of linear
equations is solvable which leads to expose the whole polynomial.

Generally, Master key based pre-distribution scheme and Polynomial-based
key pre-distribution scheme provide an excellent scalability and little memory
requirement. However, as one sensor node is compromised and the common
secret information — master keys, polynomials or matrices — is extracted,

CHAPTER 2. BACKGROUND 16

the whole communication inside WSNs are exposed. Thus, these schemes
provide no resilience at all. Furthermore, like previous key exchanges, adding
new sensor nodes or re-keying already deployed sensor nodes in this type
of key pre-distribution schemes are not straightforward and require human
interference.

Online key-generation

In online key-generation, pairwise secret keys are not loaded into sensor motes
before deployment. Contrarily, every pairwise key is created on-the-fly and
on demand. Online key-generation normally involves cryptographic opera-
tion in order to mutually establish shared key in a secret way. Cryptographic
key management scheme for WSNs are mostly based on available solutions
for conventional network, especially public key cryptography solution. Key
exchange between two sensor motes in public key cryptography involves using
of one sensor mote’s private key and other sensor mote’s public key. In fact,
every sensor mote only has to store it own key pair and it receives the other
sensor mote’s public key during exchanging key. Hence, this key exchange
provides an infinite scalability and an excellent resilience against node cap-
ture. That is because if one sensor mote is captured, the attackers can extract
no more information than mere information about the compromised node.
However, using public key cryptography in constrained devices such as sen-
sor motes is very processor, memory and time consuming. This is the reason
why originally developers hesitated using public key cryptography solution in
WSNs. However, recently there are several public key cryptography libraries
aiming to run on constrained sensor motes such as RSA-based TinyPK [40],
ECC-based EccM [33] and TinyECC [31], Pairing-based TinyPBC [35] and
NanoPBC [12].

2.4 Authenticity, integrity and confidentiality

solution

The first proposal published by Perrig et al is SNEP (Secure Network encryp-
tion protocol) [37]. SNEP promises to provide all confidentiality, authenticity,
integrity and freshness during transmission. Following is the message struc-
ture that a sensor node A sends to a sensor node B :

CHAPTER 2. BACKGROUND 17

A → B : E〈Kencr ,C〉(D), MACKmac
(C|E〈Kencr ,C〉(D))

with E〈K,IV 〉(D) means encryption of data D using a block cipher under any
cipher-block chaining with encryption key K and initialization vector IV .
And MACKmac

(D) means calculating MAC of data D with Kmac key. Kencr

and Kmac are encryption and MAC key. C is freshness counter. M1|M2

denotes concatenation of messages M1 and M2. This protocol provides se-
mantic security, data authentication, replay protection, weak freshness and
low communication overhead.

Another solution was proposed by Karlof, Sastry and Wagner, namely Tiny-
Sec [25] has become default link layer security solution in TinyOS 1.x. This
security solution offers two operation modes: TinySec-AE (authentication
and encryption) and TinySec-Auth (authentication). TinySec-AE allows sen-
sor mote sending messages as follows:

A → B : IV, E〈K,IV 〉(D), MACK(D)

and TinySec-Auth :

A → B : D, MACK(D)

Comparing TinySec’s TinySec-AE with SNEP, we can see that SNEP pro-
vides a better overhead as it does not send initialization vector IV together
with the packet. Additionally, SNEP also provides freshness while TinySec
does not. However, maintaining freshness counter at sensor motes causes
memory increases.

Chapter 3

Design

This chapter discusses the design of our complete security solution. Due to
our constrained wireless sensor nodes, our security solution mainly focuses
on checking integrity, freshness and authenticity of sent packets. First, in
order to understand the limitation of our platforms, the chapter starts with
the information about the sensor nodes that we are going to apply our se-
curity solution on. Then, from the limitation, since it’s unlikely to have an
"all-in-one" solution, we need to restrict the requirements of our security
solution. Since the importance of preventing packet injection or alteration
is higher than preventing from eavesdropping, our security implementation
mainly concentrates on checking integrity, freshness and authenticity of the
packets. In order to fulfil these requirements, we implement a secure key ex-
change protocol which generates shared key between any two arbitrary sensor
nodes. Later on, these shared keys are used to produce Message Authentic-
ity Code (MAC) in order to ensure integrity and authenticity of every sent
packet. Freshness of sent packet is ensured by a counter.

3.1 Platform

The hardware platform that we are going to deploy our solution are IRIS
from Crossbow [4], shown in Figure 3.1. IRIS sensor mote is equipped with
an 8-bit processor Atmel ATmega1281, 8KB RAM, 128KB programming
memory and an additional 512KB serial flash memory. TinyOS serves as
sensor mote’s operating system. Sensor node uses radio transceiver which
follows IEEE 802.15.4 standard [7] and supports sending data at maximum
rate 250 kbps.

18

CHAPTER 3. DESIGN 19

Figure 3.1: IRIS sensor mote from Crossbow

Figure 3.2: IEEE 802.15.4 packet format

-

IEEE 802.15.4 specification is designed for low rate wireless networks. IEEE
802.15.4 standard also has security specification which uses AES-CTR for
encryption, AES-CBCMAC for calculating MAC and AES-CCM for both
encryption and calculating MAC. Other Crossbow sensor motes such as
Micaz motes, are equipped with CC2420 Radio Frequency transceiver where
these security solutions are implemented. Our Iris sensor motes, unfor-
tunately, uses RF2320 Radio Frequency transceiver which doesn’t support
IEEE 802.15.4 security solution. On the other hand, IEEE 802.15.4 security
specification doesn’t include specification about key management.

IEEE 802.15.4 uses two types of packets for data exchange: Data packet
and Acknowledgement packet. As their names, data packets are mainly used
to exchange data between two nodes while acknowledgement packets are
intended to ensure that packets have truly arrived at their destinations. Be-
tween these two types of packets, data packets, due to its function, are the
only type that is used for key management solution. An IEEE 802.15.4 data
packet consists of several fields as seen in Figure 3.2.

The most important field that we need to pay attention is Data payload.
This is the field that carries the actual payload from the upper layer. IEEE
802.14.5 only allows this field to be less than 102 bytes. This number defines
the longest transmittable packet which in turn limits the possible length of
key management messages. We see that, the longer the key management
messages are, the less overhead our security solution makes toward sensor
node. However, according to [26], increasing the packet length also leads to

CHAPTER 3. DESIGN 20

increase packet loss rate which in turn, affects the efficiency of our security
solution. The trade-off between overhead and packet loss needs considering
while designing security solution.

3.2 Design Goals

As sensor platforms are constrained, our security solution needs to limit our
security goals and performance is, of course, a must to consider. Besides,
the variety of sensor platforms requires security solution to be flexible, which
means, it is easy to integrate with current operating systems.

3.2.1 Security Goal

As mentioned previously, in order to maintain high performance in sensor
nodes, a security solution is implemented to serve an essential limited set of
security goals : integrity, authenticity and freshness. We decided to elimi-
nate secrecy because of the special nature of wireless sensor networks. The
purpose of wireless sensor networks in general is to monitor physical or en-
vironmental conditions which is inherently public information, everyone can
easily get access to these information. For example, consider a tempera-
ture sensor network. An attacker can easily guess that transferred data are
temperature figures so encryption is unnecessary. In the meanwhile, that
attacker can cause a bigger trouble, for example false fire alarm, if he can
intentionally insert a large temperature number into sensor network. Hence,
eliminating encryption doesn’t cause much difference in security properties
but actually saves latency and power consumption compared to if encryption
is implemented.

Integrity and Authenticity

Our security solution is designed to mainly focus on ensuring integrity and
authenticity. A security solution promising to provide integrity means that
every message is ensured to be received exactly the same as it is sent. If
the adversary tries to modify a message such as inserting new information or
altering information, the receiver should be able to recognize those changes
in the message. While integrity is to prevent altering message, authenticity is
to prevent packet injection. A security solution offering authenticity means
that packets from illegitimate sources can be detected and discarded.

CHAPTER 3. DESIGN 21

Freshness

To ensure freshness for every packet means to make sure every packet legiti-
mately received is recent. More specifically, freshness is about how to prevent
malicious nodes from using replay-attacks. We think that offering integrity
and authenticity but no freshness still can give the adversary chances to
cause consequences as severe as if integrity and authenticity were not pro-
vided. Consider our example — the temperature sensor network — again.
In this case, every packet sent through this network is checked whether it
has been modified or whether it is sent from where it claims to be sent. The
adversary now is incapable of inserting new packets or modifying packets
at his will. Yet he is capable of re-sending legitimate packets. This ability
allows him to cause the same attack as mentioned above, false fire alarm.
He can perform this attack whenever a high temperature message has been
legitimately sent through this sensor network. Hence, freshness is another
important goal in our security solution.

3.2.2 Performance

As security solution is going to work on constrained sensor nodes, perfor-
mance is a must to pay attention to. Performance involves power consump-
tion, RAM consumption or even time delay. Time delay here could be a delay
at each sensor node where security solution is applied. A more important
delay is latency in total when packets are transferred from sender to receiver.
There are many factors that greatly affect sensor node’s performance. One
of those is the cryptographic algorithm. While cryptographic computation
happens at constrained sensor node, the attacker, unfortunately, can use
computers with high processing power to break cryptographic algorithm.
Yet, to avoid such problem, increasing security level by using computational
complex cryptographic algorithm consumes more power, processor or even
RAM. Hence, trade-off between security level and performance largely lies on
choosing an appropriate cryptographic algorithm. Another factor affecting
performance is packet design. Since in order to provide security, additional
information, such as Message Authenticity Code (MAC), is added into nor-
mal packet, the actual message length is shortened which, in turn, decreases
the throughput of network. Because time-sensitiveness can be a requirement
in some sensor networks, such as intrusion detection system or fire detec-
tion system, latency in message transmission should be carefully taken into
account.

CHAPTER 3. DESIGN 22

Figure 3.3: Security architecture

3.2.3 Ease of use

As our security application acts as a service to other applications on top, in
order to alleviate programming work, our aim is to design a module which
provides APIs similar with the original interface as much as possible. This
helps our module to easily integrate with current TinyOS model. Addition-
ally, if in the future, other modules are added into TinyOS such as routing
module, our module still can be easily placed into TinyOS module stacks.

3.3 Protocol Design

3.3.1 Our security model

As presented as in Figure 3.3, our security model for wireless sensor net-
works consists of two modules: Key management module and packet han-
dling module. These two modules target to solve each tier in two-tier problem
in wireless sensor network as in Section 1.2. Packet handling module is the
lower layer module which is responsible for providing integrity, authenticity
and freshness. In order to do so, packet handling module requires a shared
secret key between every two nodes. This shared secret key is offered by
upper module, key management module. In order to generate shared secret,
two key management modules can mutually agree on secret keys with or
without communicating with each other depending on the types of key man-
agement solution. In our security solution, we decided to use cryptographic
key exchange algorithm as key management solution, while using MAC and
freshness counter in order to provide integrity, authenticity and freshness.

CHAPTER 3. DESIGN 23

Figure 3.4: Certificate format

3.3.2 Key management module

As we aim to implement security solutions for various purpose WSNs, public
key cryptographic key exchange is the most versatile solutions. We decided
to use Elliptic Curve cryptosystem as the key exchange solution. Elliptic
curve cryptography is observed as suitable solution for constraint devices.
The advantage of elliptic curve cryptosystems (ECC) lies in keylength. It is
widely believed that ECC uses shorter keys but provides the same security
level as other public-key cryptosystem. According to RSA Lab [1] in 2000,
breaking a 160-bit key length ECC cryptosystem requires 600 months with
4300 machines consuming 4GB memory. The same resources are needed for
breaking a 760 bit key length RSA cryptosystem [1]. And some organizations
such as ECRYPTII [8] consider 160-bit key length ECC equivalent to 1024-bit
key length from other asymmetric cryptosystem based on discrete algorithm
problem. Shorter secret not only helps sensor motes saving memory and
allows storing more secret keys but managing smaller keys promisingly saves
processor and RAM. Additionally, since public key needs to be exchanged
between sensor motes in order to generate shared secret key, the shorter
public key is, the shorter exchange message which in turn reduces the number
of exchanged packets.

Public key Infrastructure(PKI)

In practical implementation, the issue of using public key cryptography is
that public keys have no connection with their owner, sensor nodes. Thus, we
designed a PKI in order to bind public keys with their corresponding sensor
nodes and also maintain this binding. In our PKI, Certificate is used as a
mean to testify the sensor node’s ownership towards public key. Certificates
contains certificate ID, sensor node address, public key, expiration date and
signature as in Figure 3.4.

Certificate ID is unique among all certificates issued by CA. Certificate ID

CHAPTER 3. DESIGN 24

is required in certificate so that sensor nodes don’t have to store the whole
lengthy certificate; instead they only have to store Certificate ID and essential
information such as expiration date. Because only one secret key is generated,
other sensor motes’ public keys and signatures - the longest parts in certificate
- are trivial.

Sensor address is the unique address in the whole network which is assigned
to each sensor node in the beginning. In TinyOS operating system, it’s 2-byte
value TOS_NODE_ID.

Public key is the sensor node’s public key, an Elliptic curve point. The size of
public keys depends on ECC key size. The corresponding public key sizes of
systems using a 128-bit, 160-bit and 192-bit ECC key are 35 bytes, 43 bytes
and 51 bytes.

Expiration date is the date from that onward the certificate is invalid.

Signature is issued by Certificate Authority (CA) who signed certificate ID,
sensor address, public key and expiration date all together with public key
using ECDSA signature algorithm. In order to differentiate trusted CA from
malicious one, sensor nodes are initially loaded with a set of trusted public
keys. These public keys belong to trusted CA and are used to verify certifi-
cates that sensor nodes receive during their operating lives. Similar to public
key, signature lengths also vary with ECC key sizes. Systems using 128-bit,
160-bit and 192-bit ECC key respectively results in 35-byte, 43-bytes and
51-byte signature.

However, beside CA’s public key, each sensor node has to be loaded with its
own unique private key and certificates. And every time, when a sensor node
makes an key exchange with other sensor node, it has to store certificate
information which are Certificate ID and expiration date. It is essential to
keep information about certificate and its expiration date since certificate
can become invalid later due to compromised certificate or expired key.

The big problem of our security solution is secret key storage. Static infor-
mation such as CA’s public key, sensor node’s certificate and private key can
be easily stored into flash memory from where sensor nodes can read when
necessary. However, per-link secret key is established on demand and thus
the required memory increases together with the number of communicating
nodes. In order to solve this problem, a memory swapping [41] between RAM
and flash memory is recommended, however this mechanism is not covered
in this thesis.

Node capture attacks is a common security threat to wireless sensor networks
which may happen at any time. Attackers can purposely extract information

CHAPTER 3. DESIGN 25

from sensor node’s memory which leads to private key leakage. Compromised
keys then results in "false node" attack. In order to prevent attackers from
using compromised private key to set up "false node", revocation list — a
list of all compromised certificates —- is broadcast to every node in network
to inform about "broken certificate". Revocation list should be signed by
CA to make it unforgeable.

Design alternatives

As cryptographic solutions involves CPU-intensive calculation, we examined
two simplest key exchange solutions ECDH and EC-based Station-to-Station
(STS) protocol. 160-bit key length was used to examine both schemes, hence
certificates are 92 bytes. These two schemes can be described briefly as fol-
lows:

Let an Elliptic curve domain be given, (E, a, b, G, n, h). Two sensor motes
A and B want to establish shared key secret key, A is loaded with private
key dA (a number between [1, n − 1] and certificate certA which contains
A’s public key QA signed by CA. Similarly, B has private key dB, certificate
certB with public key QB.

• ECDH

– A sends to B : certA (92 byte message).

– B verifies certA. if correct, B replies with certB (92 byte message)
and then computes shared key k = dBQA.

– On receiving certB, A verifies it. If correct, A computes shared
key k = dAQB which equals to dBQA.

• EC-based STS

– A generates a random number a ∈ [1, n − 1] and sends aG to B
(43 byte message).

– On receiving, B also generates randomly b ∈ [1, n − 1], computes
bG and replies with a message (bG, certB, EncK(SigdB

(aG, bG)))
(177 byte message) with K = b(aG), EncK() any symmetric
encryption scheme using key K, SigdB

() ECDSA signature scheme
using key dB.

– On receiving, A verifies certB. If correct, A continues to com-
pute K = a(bG) and use K to decrypt EncK(SigdB

(aG, bG)).

CHAPTER 3. DESIGN 26

Key exchange scheme
ECDH EC-based STS

Hash 1 2
Modulo calculation 3 6
ECC multiplication 3 4
ECC addition 1 1
Symmetric encryption 0 1
estimated total runtime on MicaZ sensor mote 9.8s 20.1s

Table 3.1: Computational overhead between ECDH and EC-based STS

Then, A verifies SigdB
(aG, bG). If correct, A replies with message

certA, EncK(SigdA
(aG, bG)) (134 byte message).

We compare these two schemes based on the following criteria :

• Computational overhead

• Communication overhead

• Security strength

Computational overhead Table 3.1 shows the computational overhead
between these two schemes. EC-based STS certainly costs more computa-
tions than ECDH. In order to quantify the computational difference, we uses
the performance of TinyECC [31] library running on MicaZ platform to see
the real runtime between two schemes. As we can see, EC-based STS scheme
does take double runtime compared with ECDH.

Communication overhead With ECC 160-byte key length, the ECDH
scheme requires each sensor mote to send a 92 byte message, while in EC-
based STS scheme, the key exchange initiator has to send 2 messages (43
bytes and 134 bytes) and the responder only sends 177 byte message. So
EC-based STS scheme requires a higher communication overhead. Impor-
tantly, the impact of heavy communication in EC-based STS scheme proba-
bly increases together with the distance between two sensor motes. Since the
further two sensor motes are, the more intermediate sensor motes are used
to forward messages.

CHAPTER 3. DESIGN 27

ECDH EC-based STS
number of key can be established one many

Key freshness No Yes
Key confirmation No Yes
Forward secrecy Not defined Yes

Entity authentication No Yes
Non-repudiation No Yes

Table 3.2: Security strength comparison between ECDH and EC-based STS

Security strength Even though EC-based STS is more processor and en-
ergy consuming, it does offer a better security solution. This can be seen
as in Table 3.2. As in wireless sensor network scenario, entity authentica-
tion and non-repudiation are not necessary since sensor motes can be easily
captured and forged. A forged sensor node can easily perform illegitimate
key exchanges with other sensor motes while such key exchanges are still
considered entity authenticated and non-repudiated. This hardly happens in
conventional network as taking control over a base station or a network entity
costs more effort than in WSNs.

Another drawback of ECDH is one key over sensor node’s lifetime. This
causes danger for the network where key disclosure can happen easily. Be-
cause if a shared key between two sensor nodes is compromised, even though
two sensor nodes run the key exchange scheme again, the same already-
exposed key is generated. However, unlike conventional network, wireless
sensor networks, due to their limited battery, can only operate for several
years. As the experiment conducted by RSA lab [1], the requirement for
breaking ECC 160 bit key length is 600 months - longer than lifetime of a
sensor node - proving that brute-force attack is not a security concern in
our security solution. In other cases, such as node capture, the whole sensor
node is exposed, using EC-based STS also could not differentiate between
compromised and uncompromised sensor motes.

Key exchange protocol In conclusion, after considering between two de-
sign alternatives, we decided to use ECDH to achieve a better performance
with an acceptable security strength. The result from ECDH is later hashed
using SHA1 in order to produce final shared secret key. Because of simple
ECDH key exchange protocol, our key management happens as in Figure
3.5. Both key exchange request and key exchange response only contain sen-
sor node’s certificate which is used to legitimately bind public key with sensor

CHAPTER 3. DESIGN 28

Figure 3.5: Key exchange protocol

node address.

3.3.3 Packet handling module

Packet handling module acts as a middleware layer that calculates the MAC
for every packet received from the upper layer. This MAC is inserted into
the packet later on, and the whole new packet is transferred to the lower
layer. In conventional network, this type of security module is usually placed
at the IP network layer with the intention to secure packet transmission
between two arbitrary network entities. This end-to-end security solution
however seems not receiving much support in wireless sensor networks. Many
security solutions such as TinySec [25] in wireless sensor networks are placed
at the link layer of network protocol stack which offers hop-by-hop secure
packet transmission. We think that these two types of secure transmission,
hop-by-hop and end-to-end, are all important in wireless sensor network.

Hop-by-hop security mechanism such as TinySec is a security solution which
is suitable for environment monitoring sensor networks. In this type of net-
work, sensor readings are collected from many sensor nodes and forwarded
back to a base station. Nevertheless, due to gradually changing or broadly
happened environment events, neighbouring sensor nodes normally report the
same or similar data readings. In order to save energy and traffic, data aggre-
gation or selection can happen at some intermediate nodes in network that
are better at processing power and energy, before data finally reaches base
station. Since this type of data transmission requires intermediate nodes
to access and modify packet content, combining security processing with
data processing is a good solution. Additionally, hop-by-hop security mech-
anism can protect network from packet injection at a lower cost of power

CHAPTER 3. DESIGN 29

consumption. Unlike end-to-end security mechanism where packet injection
can only be found at the destination, hop-by-hop solution is able to discard
false packets at the edge of the network. This early packet discard certainly
saves intermediate sensor nodes from saving precious energy and processor
in forwarding packets to the destination. The other advantage of hop-by-hop
security solution lies in saving precious memory by storing less shared secret
keys. In hop-by-hop security mechanism, only neighbouring sensor nodes
securely communicate with each other, thus a sensor node only have to store
shared keys with its surrounding nodes. This reduces greatly key storage
requirement which is a problem in end-to-end network.

End-to-end security mechanism, on the other hand, is suitable for wireless
sensor network where end-to-end reliable transmission is a requirement. Such
sensor networks are battlefield surveillance network, intrusion detection ap-
plications, etc ... In this type of network, unlike aforementioned type of
wireless sensor network - environment monitoring sensor network, every sen-
sor reading is critical and required to reliably transferred back to base station.
A shortage of hop-by-hop security mechanism in providing end-to-end reli-
able transmission is failure to prevent tamper attack. While node captures
in sensor network can happen easily and compromised nodes are difficult
to discover, in hop-by-hop security mechanism attackers can easily control
compromise and control sensor nodes in order to intercept data forwarded
through these nodes. Unlike end-to-end security mechanism where attackers
can only drop packets forwarded through compromised nodes, hop-by-hop
security mechanism gives attackers chances to modify packet contents which
leads to the failure of packet-critical network. Thus, end-to-end security
mechanism gives a better resilience in network where undetected compro-
mised nodes exist. The other advantage of end-to-end security which makes
it surpass hop-by-hop sensor network in mission-critical network is shorter
total end-to-end latency together with less energy and processor consump-
tion. While hop-by-hop saves power and process consumption during packet
injection attack, end-to-end security solution certainly requires less power
and processor due to absence of in-network data processing which results in
less total end-to-end transmission delay.

As the different role of security solution in various types of wireless sensor
network, it’s difficult to have an "all-in-one" security mechanism. Thank to
the flexibility of TinyOS operating system, we decided to design our packet
handling module so that our module can be easily integrated into TinyOS
protocol stack at any layer. This helps users adjust our security solution
to suit their needs. As mentioned earlier, our security solution provides
freshness together with integrity and authenticity.

CHAPTER 3. DESIGN 30

Freshness

There are two types of freshness : weak freshness and strong freshness. The
former ensures freshness by checking the arrival order of received packets.
This is achieved by maintaining counters between two communicating par-
ties. Packets are considered valid if packets received later contains higher
value counter than packets received earlier. This mechanism produces a
low communication overhead but instead cost sensor nodes memory. As the
number of communicating nodes increases, the required RAM increases. The
other freshness solution, strong freshness, uses request-response method to
provide total packet order. For example : the receiver sends a randomly gen-
erated nonce together with a request to the sender, then the sender response
with the same nonce or a modified version of nonce to ensure freshness.
This mechanism causes high communication overhead (extra packet, extra
computation) but in return, valuable memory is saved.

Between these two types of freshness, we decided to use weak freshness as our
freshness mechanism. The first reason is weak freshness can easily provide
total transparency to upper layer. Secondly, weak freshness is enough for
wireless sensor networks which only expect transmitting sensor readings back
to base station. Thirdly, as we are going to implement per-link shared secret
key, solving the problem of placing key storages can cover the problem of
storing freshness counter.

In weak freshness solution, the longer counter is, the higher security the so-
lution offers. However, longer counter means more RAM and higher commu-
nication overhead. So the question is how to choose a suitable long counter
in order to balance security and memory trade-off ? Our IRIS mote is able
to send up to 250 kbps [4] and the default packet length in TinyOS is 54
bytes which means if a sensor node sending at maximum speed use 2 byte
counter in nearly 2 minutes. However, sensor node rarely uses maximum
data rate due to energy saving. For example, in the experimental wireless
sensor network deployed at Great Duck Island [39] , sensor motes only read
once every 70 seconds. Additionally, since each counter is kept specific be-
tween every two sensor node, the frequency of increasing one specific counter
is even lower. So in order to save memory and provide reasonable security,
2-byte counter is default option in our design. With this 2-byte counter, if
one packet is sent every minute between the same two sensor nodes, counter
is used up during 45 days.

CHAPTER 3. DESIGN 31

Integrity and authenticity

Integrity and authenticity is ensured by calculating MAC for both data and
aforementioned freshness counter. We used CBCMAC with SkipJack as block
cipher to generate message authentication code. According to [20], CBC-
MAC with AES does outperform HMAC with SHA1. A survey for block
cipher in wireless sensor network has been conducted in TinySec, as AES,
and TripleDES, two commonly known block ciphers, are implemented and
tested their speed, the author has suggested SkipJack as block cipher for
sensor motes. Hence, we decided to use CBCMAC with SkipJack to provide
a better runtime.

The output from Skipjack is 64 bits which means the longest possible MAC
is 8 bytes. With 8 byte MAC, the adversary needs to generate blindly about
263 packets in order to forge a valid packet. To test whether the packet is
valid or not, the adversary needs to probingly send to a sensor node. With
250 kbps, 28 packets are sent within one minute, thus 263 packets requires 255

minutes. The attack probably couldn’t complete due to sensor node’s power
depletion.

Chapter 4

Implementation

This chapter presents how security design described in the previous chapter
is implemented. Since our security solution comprises of two modules: Key
exchange module and Packet handling module, this chapter is organized into
two sections. Section 4.1 describes our key exchange module implementa-
tion. Section 4.2 describes our integrity and freshness checking module with
an overview of transparent implementation of this module toward other mod-
ules in TinyOS. All of the implementation was developed in nesC language.
Additionally, thesis worker also put effort in porting TinyECC and TinySec
libraries from TinyOS 1.x into TinyOS 2.x and modified these two libraries
in order to work on IRIS motes.

4.1 Key exchange module

Key exchange module is implemented as a single-threaded module in TinyOS
which provides key exchange functionality to other modules. Besides, accord-
ing to the design in previous chapter, we are going to use Certificate as a
proof of sensor node address, thus key exchange module also contains other
components which are responsible for managing sensor node’s Certificate and
trusted public keys. As key exchange module serves as a underlying daemon
which might receive many requests from other modules above or even han-
dle requests in form of Request key exchange packet sent from other sensor
nodes, key exchange module requires having Request queue to avoid loosing
any incoming request. As long key exchange message containing Certificate
and Signature results in long packet size which increases packet loss rate, we
decided to implement two versions of key exchange module: the full mes-

32

CHAPTER 4. IMPLEMENTATION 33

Figure 4.1: Key Exchange module decomposition

sage key exchange where request and response messages are sent in only one
packet and the fragmented message key exchange where request and response
messages are split into a number of smaller packets according to the possible
longest packet that a sensor node is able to send.

4.1.1 Architecture description

Full message key exchange

Architecture overview from key exchange module is presented as in Figure
4.1. The whole module is divided into several smaller components: Key
Exchange, Certificate Manager and Algorithms.

The core component is Key Exchange whose functionality is receiving re-
quests either from upper layer or from other sensor nodes. Request from
upper layer consists of sensor node address and certificate type indicating,
while request from other sensor nodes come in form of key exchange request
message (as in Section 3.3.2). Since Key Exchange module involves time-
consuming activities such as signature verification or key generation, newly
arrived request can easily get lost while Key Exchange module is still in busy
processing old request. In order to avoid such loss, a Request Queue is placed
at input of Key Exchange module to store arriving requests before they are
getting processed. Key exchange request from application layer is queued so
that our module is able to serve many applications reducing probability that
application layer modules access key exchange service while our module is in
use. Request Queue also can buffer key exchange request from other sensor
node which is delivered through radio transceiver. As Radio transceiver is a

CHAPTER 4. IMPLEMENTATION 34

frequently used component in sensor node, the longer that one Key exchange
packet occupies radio buffer due to our busy module, the higher possibility
that it could prevent other applications from receiving their specific packets.
Hence, Request Queue also improves the whole system response. Addition-
ally, as the lower layer such as Link Layer probably serves only one task at
a time, Key Exchange module needs an Output Queue to store packets wait-
ing until the lower layer is ready to handle new packet. Optimizing queue
size is a reliability-memory trade-off, as increasing queue size helps security
module buffer more packets which avoids loosing request but in return, in-
creases memory usage. Our IRIS sensor mote uses RF230 radio transceiver
for which TinyOS operating system implements a buffer of 3 received packets
capacity [6]. As our Key exchange module relies on top of this radio layer,
we applied the same capacity for Request Queue and Output Queue. Since
our Key exchange module requires bidirectional communication, even if we
offers a higher capacity queue, Key exchange response or Key exchange re-
quest sent from other sensor nodes still get lost if radio layer is not able to
handle more than 3 packets.

Certificate Manager module manages Certificate, private keys, trusted public
keys. Certificate Manager also provides shared key calculation functionality
to Key Exchange module.

Algorithms module provides essential algorithms for Certificate Manager such
as signature verification or shared key calculation. Algorithm module is
based on TinyECC library [31] . As TinyECC library is only working on
TinyOS 1.x, we ported it into TinyOS 2.x. However, TinyECC is originally
designed as blocking model which means whenever an operation from one
module takes control of the processor, other modules have to wait until that
operation is totally completed. Unfortuanately, as TinyECC library contains
mainly long-running operations such as signature verification or certificate
signing, this blocking model prevents other operation from running leading to
unresponsive system in such constrained processor as sensor mote. In order to
fix this problem, we modified TinyECC from blocking model into split-phase
model. In split-phase system , on the other hand, when a time consuming
operation is called, the call returns immediately which allows the caller can
be scheduled for other operations. As soon as that time consuming operation
completes, it signals a callback function provided by the caller. However, even
when the library is changed into new running model, many heavy functions
in TinyECC still cause unresponsiveness in IRIS mote. Hence, in this new
model, by restructuring long running operation into short TinyOS tasks, we
also modified time and processor consuming operations allowing TinyECC
library to be able to run in constrained IRIS mote.

CHAPTER 4. IMPLEMENTATION 35

Figure 4.2: Key Exchange module decomposition - Fragmented exchange
message version

The fragmented message key exchange

In Internet network, Internet layer provides functionality of IP fragmenta-
tion which helps passing large packets through links with smaller maximum
transmission unit (MTU). Since wireless sensor network is expected to con-
vey small packet such as sensor readings, such functionality has not been
supported in TinyOS operating system. The maximum transmission unit in
IEEE 802.14.5 can carry 102 bytes pay load, yet TinyOS allows developers
to re-define this number into a smaller one in order to save memory. In fact,
the default payload in TinyOS for IEEE 802.14.5 link layer is 29 bytes which
means every time sensor node buffers a packet in preparation for sending,
only 29 bytes of memory are required instead of 102 bytes. Nevertheless, our
key exchange request and key exchange response are certainly long packets. If
an ECC 160 bit key is used, a key exchange request or a key exchange response
cost a 92 byte packet. Especially, in case of an ECC 192 bit key, a 108 byte
packet definitely needs packet fragmentation. Additionally, since currently
TinyOS only provides a simple link layer transmission, every packet is sent
without reliability and susceptible to packet loss. As wireless transmission
media is unstable and easily causes corruption, large packet size results in
higher packet loss rate [26]. Thus, minimizing packet size improves reliabil-
ity and stability of the whole sensor network. As security module probably
is the only one that requires sending such long packets, we decided to split
our key exchange messages into smaller transmission unit. The architecture
overview for this solution is presented as in Figure 4.2

CHAPTER 4. IMPLEMENTATION 36

Figure 4.3: Packet fragmentation

Two new components, Splitter and Joiner, are integrated into Key Exchange
module. As their self-explanatory names, Splitter is responsible for frag-
menting packets before sending into the Output Queue and Joiner has to
buffer arriving packets and push a complete key exchange message to Re-
quest Queue whenever all fragmented packets of a single message have ar-
rived. The fragmented packet is constructed as in Figure 4.3. The number of
fragmentation depends on the MTU of underlying layer. In order to reduce
communication overhead, header only costs one byte. Inside header byte,
MORE flag is turned on in all except the last fragment and FRAGMENT
OFFSET indicates the position of the fragment in key exchange message.
As our possible maximum packet size is 108 bytes (when 192 bit key is in
use), 7 bit FRAGMENT OFFSET with maximum value 128 can cover all
possibilities.

4.2 Packet handling module

Packet handling module provides integrity checking for every application
above it. The most important requirement in implementing packet handling
module is low running time and transparency toward upper and lower layer.
As this module is frequently used by many applications lying on top, we
expect short running time of this module in order to cause not much la-
tency in end-to-end transmission. Transparency in implementation not only
relieves developers work but also increases flexibility in module integration.
As packet handling module requires handling shared secret key (MAC key)
between sensor nodes, a separate component for managing MAC key is im-

CHAPTER 4. IMPLEMENTATION 37

Figure 4.4: Packet Handling architecture overview

plemented.

4.2.1 Architecture description

Figure 4.4 show the architecture overview of Packet handling module.

As mentioned earlier, we design our security module with a purpose that it
can be used as either hop-by-hop or end-to-end security solution. In hop-
by-hop security architecture, our module can be placed right on top of link
layer to modify each packet before being sent to neighbouring node. In
this scenario, upper layer could be network layer and lower layer is link
layer. In end-to-end security architecture, lying just on top of transport
layer security module can transparently serve application layer. The packet
handling consists of three components: Integrity/Fresness checking, MACKey
storage and Dispatcher.

Integrity/Fresness checking module is the core component modifying packet
received from upper layer and transferring to lower payer. As a packet from
upper layer arrives this module, the whole packet and 2 byte freshness counter
are input to MAC calculation function. The result and counter is placed at
the beginning of the whole new packet. And this packet as in Figure 4.5 is
passed down to lower layer. Placing MAC and counter value at the beginning
of new packet allows a fixed MAC and counter value with a variable-sized
data.

Because there are many applications at upper layer such as reading temper-
ature, pressure,.. using security solution service as well as many types of
service at lower layer such as broadcast sending, end-to-end sending or dif-
ferent routing protocol that applications want to use, Distpatcher examines

CHAPTER 4. IMPLEMENTATION 38

Figure 4.5: Encapsulation of packet through Packet handling layer

message header in order to direct packet into correct service at lower layer
or return packet into correct application at upper layer.

MAC key manager stores and manages all MAC keys shared with other sen-
sor nodes in the network. A MAC key manager also contains other MAC
key-related information such as address of sensor node that this key is shared
with, information about Certificate including Certificate ID and expiration
date in order to drop this MAC key when it is expired and freshness counter.
Such information together with key itself costs maximum 18 bytes of memory
for each established MAC key. As the cost of memory increases when the
number of entities that a sensor has to communicate with grows, we expect
that a memory swap mechanism between RAM and flash memory needs to
be implemented to solve memory problem. However, in hop-to-hop security
model, the number of entities that a sensor node can talk with should not be
too large since sensor node applies security mechanism only with neighbour-
ing node. In end-to-end security model, since there is no restriction in type
of entities that a sensor node could communicate with, capacity of reserved
memory for MAC key could partly decide the maximum number of possible
communicating entities which in turn leads to the decision of wireless sensor
network size.

Algorithms provides encryption and CBC MAC algorithms required by Packet
handling module. This component is based on TinySec library. Like TinyECC
library, TinySec library is also designed for TinyOS 1.x and follows blocking
model. Thus, we also ported TinyECC into TinyOS 2.x, converted TinyECC
into split-phase model and split long running functions (ECDSA verification
and ECDH shared key computation function).

4.2.2 Transparency solution

As we mentioned earlier, transparency is our goal in implementing Packet
handling module since it relieves developers’ workload in addition to gain
flexible and successful integration into TinyOS operating system. In order to

CHAPTER 4. IMPLEMENTATION 39

achieve transparency, several other additional modules were implemented in
order to provide a consistent architecture from lower layer up to upper layer.
In TinyOS, every layer communicates with upper layer through interface
AMSend and with lower layer through interface Receive. Additionally, each
layer needs to provide following services AMPacket, Packet and Acks [30,
Sec. 9.2.3]. In order to provide transparency and flexible integration, we
implemented our module according to two aforementioned interfaces and
provides above services also.

Chapter 5

Evaluation

Due to constrained resources, each application in sensor mote needs analysing
in many aspects such as memory usage, running time or energy consumption.
In this chapter, we analyse and discuss the performance of our implementa-
tion by presenting several experiments that we have conducted on IRIS sensor
mote. The chapters starts with the section about Key exchange module and
then the second discusses about Packet handling module.

5.1 Experiment platform

The test environment consists of two IRIS sensor motes (as described in
3.1) running our applications. Since communications involve only two sensor
motes, we deployed Key exchange module and Packet handling module right
on top of IEEE 802.14.5 link layer. Test platform can be visualized as in
Figure 5.1 . These two sensor nodes use TinyOS 2.1.0 operating system.
For Key exchange module, we used secp160r1 elliptic curve recommended by
SECG [10] which uses 160 bit key parameters.

5.2 Key Exchange module

5.2.1 TinyECC optimization

Memory usage in Key exchange module involves programming memory ROM
and , more important, working memory RAM. The TinyECC library provides
several optimizations to save either running time or working memory RAM.

40

CHAPTER 5. EVALUATION 41

Figure 5.1: Experiment platform

Those optimizations are :

* Barrett reduction [13]: a method to quickly compute modular reduction
y = x(modn) using fast division algorithm.

* Curve optimization is applied for Elliptic curves recommended by NIST
[9] and SECG [10] which uses pseudo-Mersenne prime. This optimiza-
tion helps improving module reduction on pseudo-Mersenne prime.

* Projective coordinate system [23, Sec. 3.2.1] . The library will use
projective coordinate to present and perform Elliptic curve operations
rather than using affine coordinate

* Sliding window for scalar multiplication [23, Sec. 3.3.3]. This optimiza-
tion is meant to boost multiplication of an integer and an ECC point.

* Shamir trick optimization [23, Sec. 3.3.3] is used to improve signature
verification.

All of these optimizations aim to reduce processing time by compensating
working memory and programming memory. However, not all of these op-
timizations are essential to our application. In order to select suitable ap-
propriate optimization for our application, we measured ROM and RAM
when each of these optimization is turned on. Additionally, execution time
for exchanging key was also measured. This execution time was recorded
since a sensor mote starts from verifying certificate until calculating shared
key is completed. We only conducted test using Full message key exchange

CHAPTER 5. EVALUATION 42

Figure 5.2: Comparing TinyECC optimization

version. As using fragmented message key exchange doesn’t affect the com-
parison among TinyECC optimization, we believed that conducting with Full
message key exchange gives a similar result.

Experiment result The result is presented in Figure 5.2. In this experi-
ment, as Barrett reduction and Curve optimization together improves module
reduction, both these optimizations are turned on at the same time in one ex-
periment (Modular reduction). One notice about our experiment is that that
ROM and RAM are listed including memory used by TinyOS operating sys-
tem and other necessary modules also. Since TinyOS operating system and
other modules are kept untouched during switching between optimizations,
memory usage still can be correctly compared in this experiment.

As seen from the result, the most effective optimization is project coordinate
which largely reduces the running time but only causes increment in pro-
gramming memory ROM and no change in working memory RAM. Modular
reduction and Shamir trick improves a bit in processing time but also leads
to increase in both ROM and RAM. Sliding window is a special optimization
since it only reduce execution time a bit but occupies so much RAM (from
3916 bytes to 5808 bytes). Additionally, if Sliding window and projective co-
ordinate are combined, runtime is even larger than projective window alone.

CHAPTER 5. EVALUATION 43

The reason is that sliding window costs a lot of time in the initialization
phase due to heavy pre-computations and those precomputed values then
are expensively stored into RAM. However, these pre-computations are re-
lated to sensor node’s public keys which are different in every key exchange.
(Because each key exchange session is carried out with different communicat-
ing sensor node). Hence, those stored value are required to be recomputed
for every single key exchange session causing wasting memory usage and even
processing time. So, we decided to run our application with all optimization
except sliding window. The execution from this combination of optimization
gave the best performance, lowest execution time but quite acceptable mem-
ory usage. From all above experiments, we select two optimization settings
:

* Memory optimization This optimization is achieved by only switching
projective coordinate on.

* Execution time optimization This optimization is accomplished by us-
ing all optimizations except sliding window.

Actually, memory optimization results in a bit larger ROM usage but still
maintains the same RAM usage. Since our sensor mote IRIS contains 128KB
ROM but only 8KB RAM, compensating a bit ROM usage (from 36KB to
37 KB) to maintain a reasonable runtime (from 120.57s to 50.2 s) is worthy.
Of these two optimizations, memory optimization certainly offers minimal
RAM usage (3916 bytes) but causes longer execution time (50.2s). On the
other hand, execution optimization compensates RAM usage (4558 bytes) for
shorter execution time (17.34s).

5.2.2 Memory usage

This section describes the impact of Key exchange module on memory usage
(both working memory and programming memory) in IRIS mote.

In TinyOS operating system, an nesC application has similar memory model
like in Unix operating system. The whole working memory RAM can be
divided into : stack segment and data segment. Stack segment is placed in
higher memory address which stores data related to calling a function or
handling an interrupt. Data segment, which starts from the end of memory
space and grows upward, consists of Heap, Data and BSS. Heap is used
for dynamic allocation memory. In TinyOS programming, dynamic memory
allocation is advised not to use in order to maintain a stable working memory

CHAPTER 5. EVALUATION 44

that is essential for constrained memory devices like sensor motes. Data —
might be also called program constant — is the storage of global and static
variables which are initialized. Bss contains global uninitialized variables
and zero-initialized static variables.

When an application is developed for a sensor mote running TinyOS, the
compiler translates that application into CPU-readable instructions and static
data. Then, CPU instructions are linked with other required components
such as libraries or the most important component — TinyOS operating sys-
tem. Next, the whole linked files together with static data are aggregated
into different segments of an executable file — TinyOS image which can be
deployed directly into sensor mote. In TinyOS image, CPU instructions are
placed at .text segment, initialized global static data go into .data segment
and uninitialized global data or zero-initialized static data are stored at .bss
segment. In our evaluation, in order to measure working memory and pro-
gramming memory, we examined this TinyOS image to extract the size of
.text, .data and .bss segment. Hence, from this we can calculate the working
memory and the programming memory as follows :

Working memory (RAM) ≃ .bss size + .data size
Programming memory (ROM) = .text size + .data size

Since RAM usage also consists of Stack segment which is not reflected in
TinyOS image, our RAM estimation does not provide an overall estimation.
However, a relative comparison between our module implementation can be
achieved through this estimation and more importantly the memory overhead
of our implementation toward the whole sensor mote.

To examine the TOS image, we used objdump [5] tool to extract the size of
each module and the result is presented in Table 5.1. As we can see from the
table, Fragmented message key exchange certainly consumes more ROM and
RAM compared with Full message key exchange. This is certainly due to
additional packet processing and data buffer to split key exchange message.

Next, we compare memory usage between our key exchange module and
the whole system as in Table 5.2. As shown in the table, in our specific
key exchange module, there is higher memory requirements in Fragmented
message key exchange than Full message key exchange. But in the whole
system, the result is the other way around. The reason lies in reduction in
maximum link layer packet. As Fragmented message key exchange is used,
maximum link layer packet is set to a lower value which results in smaller
sending buffer. The sending buffer decrease happens not only in link layer
but in other components which rely on on link layer service also. Compared

CHAPTER 5. EVALUATION 45

Full message key exchange Fragmented message key exchange
Execution opt. Memory opt. Execution opt. Memory opt.

.bss 1940 1362 2011 1366
.data 1 1 1 1
.text 12286 8160 12740 8552
ROM 12287 8161 12741 8553
RAM 1941 1363 2012 1367

Table 5.1: Memory overheads. All figures are in bytes

Key exchange Whole system
ROM RAM ROM RAM

Full message Execution opt. 12287 1941 42752 4558
key exchange Memory opt. 8161 1363 38312 3916

Fragmented message Execution opt. 12741 2012 43528 4278
key exchange Memory opt. 8553 1367 39276 3636

Table 5.2: Memory usage between Key exchange module and the whole sys-
tem. All the figures are in bytes.

to the whole system, our key exchange component is in charge of around 45%
RAM consumption in execution time optimization version and about 27% in
memory optimization.

5.2.3 Energy consumption

Key exchange module is the most energy-consuming in our implementation
since it contains long running and processor consuming operations. Hence, by
knowing exact consumed energy helping developers to estimate their sensor
nodes’ survival time.

As sensor mote consumes a little energy, in order to accurately measure en-
ergy consumption, we wired our sensor mote to a 0.15 Ω resistor in serial
connection and both of them are connected to power source which provides a
stable 3.9V DC. Our set up can be visualized as in Figure 5.3. By recording
the resistor’s voltage U , using the following formula we can estimate energy
consumption E in one time unit

E = (3.9 ∗ U − U ∗ U)/0.15.

CHAPTER 5. EVALUATION 46

Figure 5.3: Energy experiment setup

We used a voltmeter to sample the resistor’s voltage every one second. The
voltmeter records every 50ms and report the average voltage for each sec-
ond. From the average voltage and with the above formula, the total power
consumption during execution time can be computed.

Experiment result We conducted a serie of experiments with two versions
of Key exchange module and two aforementioned optimizations. Figure 5.4
and Figure 5.5 present the voltage measured on the resistor in case of the
full message key exchange was used with execution time optimization and
memory optimization respectively. As seen in the graph, we can clearly see
the impact of our module in sensor mote. The voltage increase which results
in higher power consumption started when the sensor mote starts exchange
key. High voltage remains when sensor mote verifying certificates and cal-
culating shared key. The duration that the voltage remains high indicates
the execution time of our module. By measuring the area underneath the
curve in the graph, we can calculate the energy consumed for the whole key
exchange. We found that the total energy spent for doing key exchange with
Full message key exchange version with execution time optimization is 1.87J
and similarly, 5.46J was consumed in order to do key exchange with memory
optimization.

Similar experiments were carried out with the Fragmented message key ex-
change version. In this experiment, we used a payload of 40 bytes to carry
key exchange message. Thus, it is required 3 packets in total to send one key
exchange message. Figure 5.6 and Figure 5.7 correspondingly presents the
voltage sample of 0.15Ω resistor with execution time optimization and mem-
ory optimization. Using the same aforementioned method, we deduced the
energy consumed by this version with execution time and memory optimiza-

CHAPTER 5. EVALUATION 47

 2.5
 3

 3.5
 4

 4.5
 5

 0 5 10 15 20 25

V
ol

ta
ge

 (
m

V
)

Time (s)

Figure 5.4: Power consumption Full message key exchange with execution
time optimization

 2.5
 3

 3.5
 4

 4.5
 5

 0 10 20 30 40 50

V
ol

ta
ge

 (
m

V
)

Time (s)

Figure 5.5: Power consumption for Full message key exchange with memory
optimization.

 2.5
 3

 3.5
 4

 4.5
 5

 0 5 10 15 20 25

V
ol

ta
ge

 (
m

V
)

Time (s)

Figure 5.6: Power consumption for Fragmented message key exchange with
execution time optimization.

 2.5
 3

 3.5
 4

 4.5
 5

 0 10 20 30 40 50 60

V
ol

ta
ge

 (
m

V
)

Time (s)

Figure 5.7: Power consumption for Fragmented message key exchange with
memory optimization.

CHAPTER 5. EVALUATION 48

Optimization Execution time Energy consumption Key exchanges number
Execution time 17.34 s 1.87 J 2076

Memory 50.2 s 5.46 J 717

Table 5.3: Energy consumption for Full message key exchange

tion are 2.02J and 5.69J respectively. As we can see, this version costs more
energy than Full message key exchange due to extra processing on handling
fragmented packets (splitting and joining). However, compared with ECC
operations, these extra computations only cost a small portion of energy in
the whole key exchange operation.

In order to examine the impact of energy consumption caused by key ex-
change module in sensor node’s life, we count the number of key exchanges
which can be performed during sensor node’s survival time. Like other sen-
sor mote, our IRIS sensor mote is powered by two AA batteries. Let us take
Energizer EV15 battery [3] as an example. From Figure 5.4 to Figure 5.7 we
can see that, when sensor motes perform key exchange operation, the voltage
of the 0.15Ω resistor could be approximately to 4.3 mV, which leads to the
current of the whole circuit is nearly 28 mA. According to the performance
datasheet of Energizer EV15 [3], with this discharge current, a sensor mote
can roughly operate in 10 hours. With this 10 hours, a sensor node can
perform about 2076 key exchanges with execution time optimization and 717
ones with memory optimization if the sensor mote uses full message key ex-
change. Similarly, in case fragmented message key exchange is in use, sensor
mote can approximately execute 1986 and 697 key exchanges corresponding
to execution time and memory optimization. Knowing the amount of key ex-
changes can help developers in deciding how large the sensor network might
be. More precisely, the network size can be limited if a sensor mote can talk
with only a certain number of communicating entities in their life. However,
as our key exchange is carried only with two sensor motes and there was
no packet routing in between, this estimated energy consumption is only a
fraction of the whole energy a sensor mote might spend. Moreover, power
consumption happens not only at two communicating sensor motes but key
exchange might cause energy spending at other intermediate sensor mote if
routing between two involved sensor motes is required. In summary, Table
5.3 and Table 5.4 presents execution time, energy and possible number of
key exchanges for Full message key exchange and Fragmented message key
exchange respectively.

CHAPTER 5. EVALUATION 49

Optimization Execution time Energy consumption Key exchanges number
Execution time 18.12 s 2.02 J 1986

Memory 51.63 s 5.69 J 697

Table 5.4: Energy consumption for Fragmented message key exchange

5.3 Packet handling module

5.3.1 Execution time

In order to measure the delay caused by using Packet handling module, we
measured the time needed for a packet to be completely sent over radio
interface. In our implementation, as described in 4.2.1, we used 8 additional
bytes for MAC and 2 bytes for freshness counter, so originally the maximum
payload is 102 bytes but now only 92 bytes. We performed experiments with
one sensor mote sending packets with various payload sizes — from minimum
1 byte to maximum 92 bytes. Then we measured the duration that packets
are completely sent. In order to compare the latency when packets were
passed through Packet handling packet, packets were sent in two way: initial
plain sending and sending in authenticated way using our implementation.
The test was conducted 10 times and we noticed not much difference between
each run’s result. The results are taken average of and shown as in Figure
5.8.

As seen from chart, runtime for computing MAC and checking freshness is
larger than sending just with plain packets. The reason is that the sensor
node running with our security implementation actually sends more data
(additional MAC and freshness counter) than in plain way. Nevertheless,
the main reason is of course the cryptographic operation. As carried pay-
load grows, cryptographic operations are performed on large amount of data
which in turn results in longer execution time. The running time difference
can go up to 0.06s if the payload size reaches nearly the maximum payload
value — 92 bytes. This latency in sending probably might not cause much
trouble if the security solution is meant for end-to-end transmission since se-
curity processing only takes place at two ends. But with hop-by-hop security
solution, this might cause an unwanted delay in communicating.

CHAPTER 5. EVALUATION 50

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Packet size (byte)

Integrity checking
Normal

Figure 5.8: Time spent for sending one packet

.bss .data .text ROM RAM
453 bytes 256 bytes 6720 bytes 6976 bytes 709 bytes

Table 5.5: Memory consumption in Packet handling module.

5.3.2 Memory consumption

We performed the same method to measure memory consumption of Packet
handling module. The result is presented in Table 5.5. Compared with the
whole system, Packet handling module consumes a small portion of mem-
ory. With the least RAM-consuming version — Fragmented message key
exchange and memory optimization , packet hanndling module accounts for
19.5% RAM consumption and 17.8% ROM consumption.

Chapter 6

Conclusion and Future work

This chapter presents the conclusion of the thesis work and suggests some
directions for future work.

6.1 Conclusion

The thesis has presented a flexible and TinyOS friendly security solution
for IRIS sensor mote. Our security solution has solved two-tier security
problem in wireless sensor network: Key management problem and integrity,
authenticity and freshness problem.

For key management problem, we aim at offering a solution which allows two
arbitrary sensor nodes can communicate to mutually establish shared secret
key. We have considered and examined theoretically two designs and select
ECDH as our cryptographic solution.

For integrity, authenticity and freshness problem, our objective is to im-
plement flexible module which can be used at an end-to-end or hop-by-hop
security implementation. We did some surveys and selected sensor node
friendly cryptographic algorithms — CBC-MAC and SkipJack — to use in
our implementation.

Finally, we implemented the designed solution and evaluated its performance.
The key management problem is implemented as Key exchange module. We
tested and selected two versions of this module : memory optimized and
runtime optimized. The performance of key management solution requires
at least 1363 bytes of RAM or runs at least 17.34s. For authenticity, integrity
and freshness solution, our Packet handling module occupies a small amount

51

CHAPTER 6. CONCLUSION AND FUTURE WORK 52

of memory and performs at an acceptable speed which grows linearly with
the message length.

6.2 Future work

Several interesting future directions can improve or extend our security im-
plementation to give a better performance. First, as we can recognize from
the performance result of key exchange module, our key exchange module run
on IRIS motes much slower than the estimated time on MicaZ motes. As
seen in Table 3.1 in Section 3.3.2, we estimated that exchanging key can
take at least about 9.8s which is half of the minimum runtime in our current
IRIS platform 17.34s (as seen in Table 5.3). The reason is that the library
TinyECC that we used is specified for MicaZ motes but not for IRIS motes.
Hence, we can customize TinyECC for IRIS platform in order to improve
sensor motes’ performance. Since both MicaZ and IRIS use 8-bit and sim-
ilar processors (Atmegal128), optimizing TinyECC for IRIS platform might
reduce runtime to approximately the estimated time on MicaZ platform.

Secondly, as our implementation currently provides only authenticity, in-
tegrity and freshness for transmission layer, our implementation can be ex-
tended with confidentiality functionality. There are cases where confiden-
tiality in WSNs is needed. For example, in battlefield surveillance network,
developers want to prevent other illegitimate users from collecting battlefield
information by using their sensor network.

Thirdly, even though our implementation has been already measured perfor-
mance, all of the experiments were conducted with indoor environment and
with a small size network. As the environmental events such as changing
temperature can greatly affect sensor motes and reduce the performance. In
order to gain more precise evaluation, our implementation should be tested
with larger network size with outdoor environment.

Fourthly, as wireless sensor networks are unattended, several security threats
such as node capture, false node are hardly discovered. Unfortunately, such
attacks also cannot be prevented by using our security implementation. In
fact, they can invalidate security solution. For example, with legitimate keys
from any compromised nodes, false nodes can send "legitimate" message in
presence of any security solution. Thus, since detecting compromised and
false nodes are as important as securing transmission data, a mechanism
[24][34] to detect malicious nodes should be developed to provide a stronger
protection for WSNs.

Bibliography

[1] A Cost-Based Security Analysis of Symmetric and Asymmetric Key
Lengths. Tech. rep., RSA Laboratories.

[2] Defendec’s Homepage. http://www.defendec.com/ (Last checked June
29th, 2010).

[3] Energizer E15 Product Datasheet. http://data.energizer.com/

PDFs/EV15.pdf (Last checked June 29th, 2010).

[4] Iris sensor mote. http://www.memsic.com/support/documentation/

wireless-sensor-networks/category/7-datasheets.html?

download=135\%3Airis (Last checked June 29th, 2010).

[5] objdump - Info from object files. Linux manpage.

[6] TinyOS Source Code, May 20010. http://tinyos.cvs.

sourceforge.net/viewvc/tinyos/tinyos-2.x/tos/chips/

rf2xx/layers/MessageBufferLayerP.nc?content-type=text\

%2Fplain(LastcheckedJune29th,2010).

[7] IEEE 802.15.4-2006 Standard. Tech. rep., IEEE Standard for Informa-
tion technology, 2006.

[8] ECRYPT2 Yearly Report on Algorithms and Keysizes. Tech. rep., Net-
work of Excellence - Information and Communication Technologies, 2008
- 2009.

[9] Recommended Elliptic Curves for Federal Government Use. Tech. rep.,
National Institute of Standards and Technology, August 1999.

[10] Standards for efficient cryptography - SEC 2: Recommended elliptic
curve domain parameters. Tech. rep., Certicom Research, September
2000.

53

BIBLIOGRAPHY 54

[11] Adrian, H. C., Perrig, A., and Song, D. Random Key Predistribu-
tion Schemes for Sensor Networks. In In IEEE Symposium on Security
and Privacy (2003), pp. 197–213.

[12] Aranha, D. F., Oliveira, L. B., Lopez, J., and Dahab, R.

NanoPBC: Implementing Cryptographic Pairings on an 8-bit Platform.
In Conference on Hyperelliptic curves, discrete Logarithms, Encryption,
etc., Frutillar, Chile (2009).

[13] Barrett, P. Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor. In
Proceedings on Advances in cryptology—CRYPTO ’86 (London, UK,
1987), Springer-Verlag, pp. 311–323.

[14] Beker, H., and Piper, F. Cipher Systems: The Protection of Com-
munications. John Wiley & Sons, 1982.

[15] Bellare, M., T, J. K., and Rogaway, P. The Security of the Cipher
Block Chaining Message Authentication Code, 2001.

[16] Biham, E., Biryukov, A., and Shamir, A. Cryptanalysis of Skipjack
Reduced to 31 Rounds Using Impossible Differentials. J. Cryptol. 18, 4
(2005), 291–311.

[17] Brickell, E. F., Denning, D. E., Kent, S. T., Maher, D. P.,

and Tuchman, W. SKIPJACK review: Interim Report. 119–130.

[18] Coppersmith, D. The Data Encryption Standard (DES) and its
strength against attacks. IBM J. Res. Dev. 38, 3 (1994), 243–250.

[19] Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer Verlag, Berlin, Heidelberg,
New York, 2002.

[20] Deepakumara, J., Heys, H. M., and Venkatesan, R. Perfor-
mance Comparison of Message Authentication Code (MAC) Algorithms
for the Internet Protocol Security (IPSEC).

[21] Eschenauer, L., and Gligor, V. D. A Key-Management Scheme
for Distributed Sensor Networks. In In Proceedings of the 9th ACM
Conference on Computer and Communications Security (2002), ACM
Press, pp. 41–47.

BIBLIOGRAPHY 55

[22] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E.,

and Culler, D. The nesC Language: A Holistic Approach to Net-
worked Embedded Systems. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and imple-
mentation (New York, NY, USA, 2003), ACM, pp. 1–11.

[23] Hankerson, D., Menezes, A. J., and Vanstone, S. Guide to
Elliptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2003.

[24] Junior, W. R. P., de Paula Figueiredo, T. H., Wong, H. C.,

and Loureiro, A. A. F. Malicious Node Detection in Wireless Sensor
Networks. Parallel and Distributed Processing Symposium, International
1 (2004), 24b.

[25] Karlof, C., Sastry, N., and Wagner, D. TinySec: a link layer se-
curity architecture for wireless sensor networks. In SenSys ’04: Proceed-
ings of the 2nd international conference on Embedded networked sensor
systems (New York, NY, USA, 2004), ACM, pp. 162–175.

[26] Korhonen, J. Wang, Y. Effect of packet size on loss rate and delay
in wireless links. Wireless Communications and Networking Conference,
2005 IEEE 3 (2005).

[27] Krawczyk, H., Bellare, M., and Canetti, R. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (1997), 1–12.

[28] Lai, B., Kim, S., and Verbauwhede, I. Scalable Session Key Con-
struction Protocol for Wireless Sensor Networks. In In IEEE Workshop
on Large Scale RealTime and Embedded Systems (LARTES (2002), p. 7.

[29] Law, Y. W., Doumen, J., and Hartel, P. Survey and Benchmark
of Block Ciphers for Wireless Sensor Networks. ACM Trans. Sen. Netw.
2, 1 (2006), 65–93.

[30] Levis, P., and Gay, D. TinyOS Programming, 1 ed. Cambridge
University Press, April 2009.

[31] Liu, A., and Ning, P. TinyECC: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks. In IPSN ’08: Pro-
ceedings of the 7th international conference on Information processing
in sensor networks (Washington, DC, USA, 2008), IEEE Computer So-
ciety, pp. 245–256.

BIBLIOGRAPHY 56

[32] Liu, D., and Ning, P. Establishing Pairwise Keys in Distributed
Sensor Networks. In CCS ’03: Proceedings of the 10th ACM conference
on Computer and communications security (New York, NY, USA, 2003),
ACM, pp. 52–61.

[33] Malan, D. J., Welsh, M., and Smith, M. D. A Public-Key In-
frastructure for Key Distribution in TinyOS based on Elliptic Curve
Cryptography. In Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. 2004 First Annual IEEE Communications
Society Conference on (2004), pp. 71–80.

[34] Mukherjee, P., and Sen, I. Using Learned Data Patterns to Detect
Malicious Nodes in Sensor Networks.

[35] Oliveira, L. B., Scott, M., López, J., and Dahab, R. TinyPBC:
Pairings for Authenticated Identity-Based Non-Interactive Key Dis-
tribution in Sensor Networks. Cryptology ePrint Archive, Report
2007/482, 2007. http://eprint.iacr.org/ (Last checked June 29th,
2010).

[36] Paul, S., and Preneel, B. A New Weakness in the RC4 Keystream
Generator and an Approach to Improve the Security of the Cipher. 2004,
pp. 245–259.

[37] Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar,

J. D. SPINS: Security Protocols for Sensor Networks. In Wireless
Networks (2001), pp. 189–199.

[38] Schneier, B. Description of a New Variable-Length Key, 64-bit Block
Cipher (Blowfish). In Fast Software Encryption, Cambridge Security
Workshop (London, UK, 1994), Springer-Verlag, pp. 191–204.

[39] Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D.

Lessons From A Sensor Network Expedition. pp. 307–322.

[40] Watro, R., Kong, D., Cuti, S.-f., Gardiner, C., Lynn, C., and

Kruus, P. TinyPK: Securing Sensor Networks with Public Key Tech-
nology. In SASN ’04: Proceedings of the 2nd ACM workshop on Secu-
rity of ad hoc and sensor networks (New York, NY, USA, 2004), ACM,
pp. 59–64.

[41] Zuger, R. Paging in TinyOS. Tech. rep., Swiss Federal Institute of
Technology Zurich, August 2006.

	Title Page
	Problem Description
	integrity.eps

