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Summary

Small scale model tests for a multi-torus concept, designed as a platform for a floating solar
island, have been conducted with and without the solar panel deck modelled as a membrane.
Models are tested in regular and irregular waves. The hydro-elastic response is investigated
through measurements with a Qualisys motion capture system. The behaviour of the models
was also methodically documented through videos of all regular wave series. Numerical
implementation of a coupled truss and floater model in Python is rendered by the use of
the Implicit-Explicit Euler and 4th order Runge-Kutta method as numerical time integration
schemes. Verification studies during the implementation of the truss model are conducted using
simple 2-dimensional cases with known dynamic behaviour. The coupled numerical model was
debugged using a single moored torus, where the mooring lines are modelled using trusses.

Since the multi-torus has never been tested with a solar panel deck previously, one of the main
goals of the experiments was to document the effect of the membrane on the multi-torus floater
previously studied. The experimental results show that the membrane does not significantly
affect the response of the model. In surge, a resonant behaviour has been observed. The natural
period in surge is approximated to 2.71s and 2.39s with and without membrane respectively.
This corresponds well with the position of the resonance peak. Both heave and pitch responses
from the model tests are compared to a zero-frequency theory (ZFT) for a single floater. Results
are corresponding well. For increasing wave numbers, a phase shift of the results compared to
the theory is observed. In addition, the shape of the RAO changes. This can be explained by
that the ZFT used only corresponds to the RAO of a single-torus. The response of the ovalizing
modes shows that the model has a limited response in the horizontal radial direction, which is
beneficial for the equipment mounted on the platform.

Results from irregular wave tests show that the calculated vertical RAOs correspond well with
the results presented for regular waves. However, the response spectra from irregular wave tests
are influenced by higher order effects for increasing wave numbers. The results also show that
the higher order effects are larger for the model with membrane. Overtopping, water that floats
over the tori, has previously been regarded as one of the main challenges of the multi-torus
concept. Especially since it is a non-linear behaviour which is difficult to estimate. Comparison
with mooring parameters from previous studies shows that overtopping is highly dependent
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on pre-tension and the spring stiffness of the mooring lines. This is an interesting subject for
further studies. The numerical implementation of the truss model is able to correctly describe
the behaviour of simple systems with known dynamic behaviour. Unfortunately, the coupled
truss and floater model has an unresolved bug that causes the geometry to explode and the
results to become non-physical. Even after countless attempts, the error has not been found.
Therefore, the numerical simulation model could not be used to compare the results with the
model tests.

Concluding remarks can be summarized by the multi-torus concept both with and without
showing potential for the wave conditions investigated. The models follow the waves well and
the elastic properties of the design can be considered an advantage. Including the membrane did
not change the behaviour in any significant way and the multi-torus interconnected with trusses
has little ovalizing behaviour, which is beneficial for the equipment on the solar panel deck.
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Sammendrag

En flytedel som skal brukes til plattform for en flytende soløy er testet i modellskala både med
og uten solcellepaneldekket. En realistisk skalert membran er brukt for å tilsvare dekket. Begge
modellene ble testet både i regulære og irregulære bølger, og den hydroelastiske responsen
ble målt ved bruk av Qualisys-markører som målte bevegelsen i 3 retninger. Oppførselen
til modellene ble også systematisk dokumentert på video. En numerisk modell som kopler
en tidsavhengig fagverksmodell og flytermodell er implementert i Python. De numeriske
integrasjonsmetodene Implisitt-Eksplisitt Euler og 4. ordens Runge-Kutta, henholdsvis, er
brukt til å finne bevegelsen til modellen ved å løse hvert tidssteg i en simulering. Den koplete
numeriske modellen ble feilsøkt ved bruk av én forankret sirkulær flyter, der forankringene er
modellert ved bruk av fagverksbjelker. Enkle 2D-tilfeller med kjent dynamisk oppførsel er også
brukt til å verifisere fagverksmodellen før den ble koplet med flytermodellen.

De eksperimentelle resultatene med regulære bølger viser at modellen oppfører seg svært
likt med og uten membran. I jag er det observert en resonanstopp. Egenperioden i jag er
tilnærmet til 2.71s og 2.39s med og uten membran henholdsvis. Dette stemmer godt overens
med posisjonen til resonanstoppen. Resultatene viser at bevegelsen i svai er begrenset, og
antagelsen om at disse kan neglisjeres i den numeriske modellen er derfor bekreftet. Både
hiv og trim-respons er sammenlignet med en null-frekvens teori (ZFT) for en enkelt flyter
og stemmer godt overens med denne. For økende bølgetall ser man en faseforskyvning av
resultatene sammenlignet med teorien og i tillegg endres fasongen på responskurven. Dette
skyldes at teorien kun er tilpasset én flyter, sammenlignet med fem som den testede modellen
har. Responsen i ovaliserende moder viser at modellen har veldig begrenset respons i horisontal
radiell retning, noe som er positivt for utstyret og solcellepanelene som skal festes på toppen
av flyteren. Tester med én flyter har tidligere vist at ovalisering kan være et problem og det
er derfor positivt at denne modellen viser forbedring i forhold til dette. Legg også merke
til at bølgemålerne viser at desto mindre bølgene generert av bølgemaskinen er, desto større
usikkerhet er det knyttet til at amplituden er lik input.

Resultatene fra irregulære bølgetester samstemmer med de regulære bølgetestene, men
responsspektrene er påvirket av høyere ordens krefter for økende bølgetall. Spektrene viser også
at det er knyttet større høyere ordens krefter til modellen med membran enn uten. Overtopping,
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vann som slår over flyterne, har tidligere vist seg å være en av hovedutfordringene ved konseptet,
fordi dette er ulineær oppførsel som er vanskelig å beregne. Ved å sammenligne parametrene
fra tidligere studier viser det seg at overtopping er svært avhengig av forspenningen og stivheten
i forankringslinene. Observasjoner fra modelltestene viser at overtoppingen avtar når stivheten
i forankringslinene og forspenningen avtar. Dette bør studeres nærmere. De numeriske
verifikasjonsstudiene viser at implementasjonen av fagverksmodellen klarer å fremstille enkle
dynamiske modeller med riktig resultat i forhold til teorien. Dessverre har den koplede flyter- og
fagverksmodellen en feil i implementasjonen som gjør at geometrien eksploderer og resultatene
blir ikke-fysiske. Selv etter utallige forsøk er feilen ikke funnet, og modellen kunne derfor ikke
brukes til å sammenligne resultatene med modellforsøkene.

For å konkludere viser multi-torus modellen potensial, selv med membran klarer den å beholde
de elastiske egenskapene som skal til for å følge bølgene den blir utsatt for på en god måte. Den
begrensede ovaliseringen er også positiv for utstyret som skal installeres på toppen av flyteren.
Videre studier med fokus på å optimalisere dimensjonering bør være neste steg.
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Chapter 1

Introduction

According to The Sustainable Development Goals (SDGs) of the United Nations Development
Programme [UNDP, 2015], Affordable and Clean Energy (No. 7) is a necessity of the near
future. As the access of energy increases throughout the world and the world’s population
is still increasing, the need for larger amounts of energy every year makes it necessary to
create reliable, affordable and clean energy sources. [UNDP, 2015] states that fossil fuels
are causes of climate change and renewable energy sources as solar and wind are the future.
[Lewis and Nocera, 2006] estimates that global energy consumption will increase from 13.5
TW in 2001 to 27 TW within 2050. As climate change becomes a fact and the world’s oil
reserves decrease, there are few other known options that are as interesting as solar and wind
energy. Also, taking into account the limited amount of land areas, offshore wind and floating
solar energy plants can be more optimal alternatives. To be able to supply 27 TW of energy
within 2050, which is an increase of about 10 TW from 2016, it would be necessary to install
20 million 10MW wind turbines [Kristiansen and Borvik, 2018]. This signifies an installation
rate of 2000 turbines a day for the next 30 years, which is unrealistic considering the status of
expansion. A solar plant of 10 TW is estimated to cover approximately 500x500 [km2] with a
panel efficiency of 20 % [Kristiansen and Borvik, 2018]. That is manageable considering the
enormous amounts of surface area available in the oceans.

[Patterson et al., 2015, p.76] proposes a concept of an artificial floating island which supports
a membrane of photovoltaic (PV) panels producing solar energy and further powers a factory
of synthetic methanol either on a Floating Production Storage and Offloading unit (FPSO), as
illustrated by 1.1. Synthetic methanol can be produced through an electrochemical process
of capturing CO2 in seawater. By recycling CO2 from seawater, this creates a zero-emission
process where equal amounts of carbon are used in production as burned through consumption.
Liquid fuel from methanol has about half the energy density of gasoline [Goeppert et al., 2014],
which means it is a good alternative to fossil fuels. The concept proposed needs a convenient
marine floater which can support impact from waves up to a significant wave height Hs = 7m.
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In this master thesis, an experimental and numerical study of a floating solar island concept will
be presented. The motivation is to contribute to the research of an adequate marine platform
which is affordable and suited to the demands of wave conditions. Model tests will be conducted
to investigate the seakeeping properties of the concept. Numerical implementation of a coupled
truss and floater model will have the intention to better describe the motion of the concept
numerically than what is possible with existing models. Verification studies using simple
famous dynamic models will be used to test the truss model, before implementing the floater
model. The future goal is to gradually be able to compare a numerical model of increasing
complexity with the model tests, to verify the behaviour of the concept in waves.

Figure 1.1: Illustration of solar island production plants installed in a facility and connected to
FPSO for production of solar fuels. Idea by Bruce Patterson & Frode Mo. Courtesy of [Frode
Mo, 2019].
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1.1 Objectives

1.1 Objectives
As only limited research is performed concerning a multi-torus floating solar island concept
previously, this master’s thesis will investigate the hydro-elastic response of the multi-torus
concept, with and without a solar panel deck, in wave conditions of interest. Responses in
regular and irregular waves are investigated through small-scale model tests with a developed
multi-torus model. The multi-torus concept is a model consisting of five circular elastic tori
interconnected through pre-tensioned elastic trusses. A weighted membrane will be used as
a scaled version of a solar panel deck. In addition to measurements with a Qualisys motion
capture system, the behaviour of the model will be observed and documented through videos
of all wave series in regular waves. This will permit to document overtopping behaviour
thoroughly, with focus on differences between the model with and without membrane.

A numerical implementation of a moored torus model by use of the truss model
[Marichal, 2003] and the floater model based on zero-frequency theory (ZFT) [Faltinsen, 2011]
will be attempted in the open-source object-oriented programming language Python. Numerical
methods like the Implicit-Explicit Euler and 4th order Runge-Kutta (RK4) will make it possible
to simulate the behaviour of the model in regular waves.

The project is a continuation of a preliminary study performed from August to December 2018.
With the goal to contribute to the present knowledge of the behaviour of a multi-torus floating
solar island concept, the main objectives of this master’s thesis are summarized by the following
steps:

1. Present a background and previous research relevant to this master’s thesis

2. Give an overview of the theoretical approaches used in the model tests and in the
numerical implementation of the floater and truss models, in addition to the numerical
methods used

3. Conduct small scale model tests with an improved multi-torus model with and without
a weighted membrane to investigate the behaviour of the model in regular and irregular
waves, as well as the effect of the membrane

4. Implement a coupled floater and truss model in Python by use of numerical ordinary
differential equation solvers, making it possible to simulate a single-torus model attached
by mooring lines exposed to regular waves

5. Verify the implementation of the numerical models using case studies with known
dynamic behaviour and compare experimental results with earlier studies

3



1.2 Scope

1.2 Scope
The scope of this master’s thesis is limited to small scale model tests in regular and irregular
waves. The Small Towing Tank, Lilletanken, will be used for the purpose. Two multi-torus
models will be tested. One consisting of the five interconnected tori attached to a set-up of
four symmetrically positioned mooring lines and the other with a weighted membrane stretched
over the surface and attached to each torus. Current is assumed to have negligible effects on the
model and will therefore not be tested.

Limiting the complexity of the numerical implementations, only vertical external forces from
the floater model will be implemented. Sway is assumed to be negligible, while surge response
has not been accounted for. The complete multi-torus will not be implemented in the numerical
code, due to the complexity of the geometry. A single torus attached to mooring lines modelled
by trusses will be a first verification of the code.
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1.3 Outline of Master’s Thesis

1.3 Outline of Master’s Thesis
This section will briefly describe the structure of this master’s thesis.

Chapter 1 further includes a background study and previous research on Solar Islands.

Chapter 2 consists of theoretical approaches and models used in the thesis. This includes theory
on which experimental assumptions are based on and the theoretic models behind the numerical
simulations.

Chapter 3 presents the numerical implementation of the model, as well as numerical iteration
methods and comparative solutions of the case studies used to verify the numerical model.

Chapter 4 includes the presentation and planning of the model tests.

Chapter 5 presents and discusses the results of the experiment and numerical simulation.

Chapter 6 draws conclusions from the study carried out in the thesis and suggests topics for
further research.

Appendix A furnishes the reader with additional theory.

Appendix B includes additional tables.

Appendix C presents the set-up and observations of the model tests conducted in November,
during the work with the project thesis.

Appendix D includes additional information about the numerical verification studies, as well as
the 12 truss case used for testing of the coupled truss and floater model.

Appendix E presents additional numerical results from verification studies.

Appendix F consists of additional plotted results from the experiment.
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1.4 Background

1.4 Background
The section will describe the main parts included in the floating solar island concept studied and
present the previous studies done on the subject. An alternative platform concept that is under
current research is also presented briefly.

1.4.1 Solar Energy and PV cells
According to [Lewis and Nocera, 2006], renewable energy and especially solar energy is the
most future-oriented energy source, regarding the climate goals of reducing CO2 emissions.
Other possibilities as nuclear plants are not realistic since one would have to install a new plant
almost every day for the next 40 years to increase the production only by 10 TW. This is the
least increase needed to keep the emission levels where they are today, not even accounting for
reduction according to the climate goals. Other renewable sources as wind is a good alternative
to contribute to a more carbon neutral future. Increasing global energy production by 10 TW
using only wind energy alone, it is necessary to install more than 2000 wind turbines a day for
the next 30 years. In addition to this, there is a need for large surfaces as illustrated on the
right-hand side of figure 1.2.

According to DNV GL Energy Transition Outlook - Renewables, Power and Energy Use
Forecast to 2050 [DNV-GL, 2017], solar photovoltaic (PV) energy will dominate the global
electricity production. Together with the other renewable sources, it will account for 85% of the
global electricity production in 2050. The energy efficiency of PV cells is currently around 22%
[DNV-GL, 2017] and is expected to increase due to new advanced technology. Solar energy is
promising due to its reliability in areas with high insolation per year. Additionally, the amount
of solar energy available is without bounds. A floating solar plant of 10 TW is estimated to cover
about 500x500 [km2] [Kristiansen and Borvik, 2018]. This is a realistic perspective confirmed
by figure 1.3, that shows the enormous ocean areas that satisfy the wave conditions assumed.

The challenges of solar energy are mainly cost efficiency, available surface and storage. PV
panel technology has been too expensive for solar energy production at a large scale to be
cost-effective earlier. As material technology is developing, new and effective absorbing
materials better suited for large scale more cost-efficient production are being developed.
[DNV-GL, 2017] estimates that the technology and price of PV panels will not be a scaling
factor of the increase in solar energy production over the next 30 years.

1.4.2 Storage and solar fuels as an alternative
There exist three possible storage concepts according to [Lewis and Nocera, 2006]. These
include battery storage, solar thermal technology and an artificial photosynthesis process which
transforms solar energy into liquid fuel. Batteries are expensive, the weight-size capacity ratio
is low and reliability is a problem as the battery ages. Thus, batteries are not well suited for
large scale storage. For thermal technology to be an efficient option, more efficient materials
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1.4 Background

Figure 1.2: Illustration of the proposed concept as an array of floating solar islands. The figure
shows a concept like the multi-torus in an array of several solar islands connected in a mooring
framework. This is a possible mooring arrangement inspired by the fish-farming industry. It
also illustrates how a floating solar energy plant will cover significantly smaller surface areas
than what an offshore wind turbine park does. [Kristiansen et al., 2017]

than what exists today are needed. Transformation of solar energy to synthetic fuel in the form
of hydrogen or methanol is a futuristic option. CO2 can be transformed into liquid methanol
through an electrochemical process. Methanol can easily be used as fuel in existing fossil fuel
burning engines, with only simple modifications. This is a huge advantage, as it currently
does not exist any alternative to fossil fuels that can supply the extreme amounts needed in
the shipping and aeroplane industries. The density of energy in methanol is about half the
density of gasoline [Goeppert et al., 2014]. There exist few other alternatives which have as
high energy density as methanol. [Kristiansen and Borvik, 2018] states batteries, solar thermal
technology, transformation to biofuel, hydrogen or liquid carbon-based solar fuels as options
for energy storage in connection to solar energy. But the only option with global potential as
liquid carbon-based fuels.

[Patterson et al., 2015] proposes an idea of production of solar fuels like methanol on FPSOs,
connected to floating solar islands on the sea surface like illustrated in figure 1.1. The density
of CO2 in seawater is significantly higher than in air, which makes it possible to extract huge
amounts through an electrochemical process powered by the electricity produced on the solar
islands. For this to be possible, the islands must be situated at a location where the currents in
the water are large enough to supply sufficient amounts of CO2 to be extracted without affecting
the vivid environment in the sea.
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Figure 1.3: Illustration of ocean areas which satisfies the conditions of having a floating solar
island. It points out all sea surfaces over the world which has a significant wave height with
100 year return period lower than Hs < 7 [m], an average insolation larger than 175 [W/m2],
a water depth lower than h < 600 [m] and no tropical storms. Courtesy of B. Patterson.
[Kristiansen and Borvik, 2018]

1.4.3 Floating Solar Islands
Several concepts of floating solar islands have been proposed over the last few years. The
concepts vary in size, design and operation limits. It is proposed to connect the solar energy
plants directly to the power grid in proximity to ocean-near cities in need of energy sources.
This is interesting for cities which are lacking surface space to produce sufficient amounts of
electricity. Developing a storage option as the ones already mentioned is also a researched
possibility. Figure 1.3 points out all sea surfaces over the world which has a significant wave
height with 100 year return period lower than Hs < 7m, an average insolation larger than
175W/m2, a water depth lower than h < 600m and no tropical storms. This is all areas that
[Patterson et al., 2015] assume can be well suited for installation of floating solar islands.

For this to be realised, a stable marine platform which can operate in Hs < 7 [m] is necessary
to design. A possible design is the multi-torus which will be studied in this thesis. The
structure must withstand wind, wave and current forces according to the 100 year return period
of the location. The design also needs to be simple enough for production to be affordable
and competitive. Figure 1.2 shows a stand-alone concept like the multi-torus in an array of
several solar islands connected in a mooring framework. This is a possible mooring arrangement
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inspired by the fish-farming industry. The right part of figure 1.2 also illustrates how a floating
solar energy plant will cover significantly smaller surface areas than what an offshore wind
turbine park does. Four 10 MW offshore wind turbines covering a surface of 1km2 corresponds
to an equally producing solar plant covering 1/4 of the area if 20 % panel efficiency is considered
[Kristiansen and Borvik, 2018]. Included in the idea, a rotation of the island with the sun’s
azimuth to keep the angle of the sun rays optimal on the PV panels is subject of investigation.

1.4.4 Solar panel deck
An eventual artificial island concept must include a deck which can carry the weight of the
solar panels. This has not been included in earlier research on the multi-torus concept studied.
A weighted membrane is used in the model tests of this study to simulate the properties of a
deck. Elastic properties of the deck are important, such that it can handle the motions of an
elastic floater and have limited influence on the elastic properties of the floater. It is ideal that
the complete model follows the sea surface motions as much as possible. The deck needs to be
pierced or not water-tight in some way such that rainwater or eventually flooded seawater can
be drained as fast as possible. A pre-tensioned deck is proposed, in order to avoid snap loads. A
pre-tensioned membrane deck is proposed included in the left-hand side of figure 1.2. Further
studies are necessary to investigate whether slamming can be a problem for the deck or the solar
panels mounted on the deck.

Curiosity is related to how a pre-tensioned deck can change the behaviour of the multi-torus
concept which will be studied here. The eigenfrequencies the model will have including a pre-
tensioned membrane is also of interest, but will not be further looked into in this study. In full
scale, a type of material which can match the elastic properties of the model scale needs to be
used. This could be some kind of aquaculture nylon net for example. Challenges related to
ageing and durability in seawater must be considered.

1.4.5 Challenges
There is a wide range of challenges which might be relevant in the design process of a suited
marine platform to be used as a floating solar energy plant at sea. The structure needs to
withstand wind and wave loads from the environment. Current loads are not considered as
a problem, as the draft is very limited in the proposed concept. Wind loads can be an issue
related to the membrane deck supporting the solar panels. These loads may lift the platform
out of the water surface, which can cause large slamming loads or resonance effects on the
structure. This again can lead to fatigue damage, local or global fractures.

It is desired that the model moves as much with the sea surface as possible, instead of working
against the motions of the waves. This increases the complexity of the design process, as
numerous possibilities of sea conditions need to be accounted for. Problematic related to
overtopping is especially interesting in relation to this. Overtopping occurs when the model
does not follow the wave conditions completely and as water follows the top surface of the
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structure, flooding parts of it. This might be relatively undramatic if there are only small
amounts of water and it follows the structure. In worse cases, this may cause flooding of larger
parts of the structure, critical mooring loads, sea spray or slamming loads on the PV panels and
again damage on the structure. To avoid this, the model needs to be relatively flexible.

Salt sea water on the PV panels in case of flooding or sea spray is another issue. It is a well-
known phenomenon that metals, electricity, water and salt has a high probability of malfunction
and corrosion. This means some kind of coating technology must be applied for the PV panels
to avoid corrosion or short-circuiting.

Sloshing effects between the floaters are another issue, as in the multi-torus model where there
are several watertight tori placed one inside the other. Large wave motions can cause sloshing
effects between the rings. This causes large forces which might lead to resonance motions.
In general, all types of resonance motions should be avoided as far as possible. No sloshing
or slamming has been observed in earlier model tests with the multi-torus. Asymmetry in the
model geometry due to large mooring line forces can also cause problems. This can cause yaw
resonance motions and ovalization due to large surge/sway motions. A thorough resonance
study is therefore important to accomplish before the project is further developed.

In total, the challenges mentioned above are just a few of a large amount of small and large
problems which needs to be studied in detail before a full-scale island can realized.

1.5 Previous research on Solar Islands
[Newman, 1977] first introduced studies of motions of a floating slender axisymmetric torus. He
introduced a slender-body theory under the assumptions of axisymmetry and that the incident
wavelength is comparable with the radius of the cross-section and much smaller than the radius
of the complete tori. [Faltinsen, 2011] developed a 3D slender body theory considering the
hydro-elasticity of a single-torus. Matched asymptotic expansions with a far-field and near-
field descriptions are used, and by this follows that strip theory is appropriate. The study was
motivated by the desire of moving fish farms to sites exposed to larger waves and the single-
torus was used to model a single or two closely spaced circular floating collar of a fish farm.
This made the basis for further studies concerning a single-torus by [Li and Faltinsen, 2012].

1.5.1 Single-torus
[Li and Faltinsen, 2012] developed a 3D low-frequency slender body theory for the vertical
added mass, damping and wave excitation loads. The calculated loads on an elastic semi-
submerged torus were derived by asymptotic expansions and a Haskind-type expression for
the wave excitation loads was presented. 3D frequency-dependent interaction was shown to be
significant on the scale of the torus diameter and hydro-elasticity was confirmed to be important
in the studied case of the single-torus. Further, [Li et al., 2014] presented results of experiments
and numerical simulations of a moored single-torus. The experiments were conducted with
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Figure 1.4: Model of air-cushion supported solar island tested in Lilletanken with regular
waves. Mooring-line springs, forces rings and devices measuring motion. Courtesy of
[Kristiansen and Brovik, 2018].

different regular wave conditions defined by the wave period and steepness. Local overtopping
on the torus was observed in steep wave conditions. Vertical acceleration components were
studied. Higher order harmonic acceleration components were found from experiments and
matched with second-order harmonic acceleration components using the weak-scatter method
for all other wave steepnesses than the highest one tested (H/λ = 1/15). Predictions of higher
order vertical accelerations corresponded less with the experimental results.

[Li, 2017] developed a low-frequency linear slender-body theory (LST) for vertical radiation
loads on an elastic semi-submerged torus. The study consisted of theoretical approaches,
numerical simulations and experiments. The previously mentioned reports were used as a basis
for the theory and it is verified by numerical simulations using WAMIT. The analysis showed
that there is a strong dependency related to hydrodynamic frequencies, and essential to consider
hydro-elasticity for the vertical wave loads and responses of the torus considered in the study.
Experiments with two models of different flexibility were conducted. Overtopping and water-
exit of the torus was observed. The results showed a good correlation between theory, numerical
studies and experiments for linear response, but not a satisfactory correlation between numerics
and experiments for the non-linear response. The two latter reports also consider the single-
torus as a circular floating collar of a fish farm.
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1.5.2 Air-cushion supported solar island
[Kristiansen and Brovik, 2018] studied a single-torus covered by an air-supported membrane.
The model was called an air-cushion supported solar island, where the membrane should carry
the weight of PV panels. A vertical skirt was added along the outer part of the torus to avoid
air leakage. Model tests in regular and irregular wave conditions were conducted. A picture of
the model exposed to regular waves is shown in figure 1.4. The study investigated the general
behaviour of the model, as well as failure modes. Overtopping with flooding as a consequence
was observed at certain wave conditions. Out-of-water incidents of the vertical skirt were not
observed, but air leakage due to a fissure of the membrane might be an issue over time. A
modal analysis comparing the first flexible mode motions to theory using linear potential flow
assumption was validated for global behaviour, but important nonconformities were found. Due
to these results, a change in the concept idea to the multi-torus design was suggested.

1.5.3 Multi-torus
[Windsvold, 2018] built, tested and studied a multi-torus model of small scale under supervision
of Prof. T. Kristiansen. The model was built consisting of five concentric cylinders,
connected together by pre-tensioned nylon-covered rubber bands at eight angular positions
symmetrically around the tori. Mooring lines consisting of elastic springs were attached at
four symmetric angular positions during testing. Both a model of a single-torus and a multi-
torus were tested in different regular and irregular wave conditions. The results from the two
different models were compared and in addition, the low-frequency linear slender-body theory
[Li, 2017] was compared to the resulting vertical radiation loads. The zero frequency theory of
[Faltinsen, 2011] was also used for comparison.

The experimental results of the single-torus corresponded well with the predictions of linear
theory. Concerning test results with the multi-torus, there was a certain agreement to theory
for response in long wave periods. However, the results from wave-interaction in small wave
periods showed that the vertical motion of the model relative to the wave amplitude was lower
than the theoretical prediction indicated. This was based on response theory of the single-
torus. The main challenge was overtopping of the outer aft torus in certain of the larger regular
wave conditions tested. In irregular waves, the overtopping phenomenon occurred at random
positions around the tori, but most frequently at the fore of the two outer tori. There was
also a less clear tendency of which wave conditions that caused overtopping in irregular waves
compared to regular waves.

[Windsvold, 2018] concluded that the multi-torus design studied has potential, but that more
research is needed to be able to develop a functioning design of a floating solar island. By
suggestion from supervisor Prof. T. Kristiansen, the previous studies resulted in this study.
The multi-torus previously used by [Windsvold, 2018] is first reused during observation tests
in November. Then, necessary changes to optimize the model is completed and a membrane is
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designed an built during this thesis. The new multi-torus model will be tested in regular and
irregular waves with and without the membrane simulating the solar panel deck in the further
studies. Numerical implementation and coupling of a floater model based on the ZFT developed
by [Faltinsen, 2011] and the truss model developed by [Marichal, 2003] will also be part of this
study.

1.5.4 Alternative concept by Moss Maritime
An alternative concept to the multi-torus design has been suggested by Moss Maritime. This
concept consists of several connected standardized modules. The barge-like modules are
rectangular and will be connected into a large grid of modules. The modular design is said
to ease construction and repair, as all modules are equal and connected together through
links such that each module can be changed individually. The size of the solar park can be
customized, according to desired power demand and availability of surface at the location
[MossMaritime, 2018]. An artistic impression of the solar island is given in figure 1.5. The
concept is currently under study at the Department of Marine technology, as part of a master
thesis by Magnus Onsrud, under supervision of Professor T. Kristiansen.

Figure 1.5: An artistic impression of the solar island concept from Moss Maritime. This concept
consists of several connected standardized modules. The barge-like modules are rectangular and
will be connected into a large grid of modules. The modular design is said to ease construction
and repair, as all modules are equal and connected together through links such that each module
can be changed individually. Courtesy to [MossMaritime, 2018]
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Chapter 2

Theory

In this chapter, the theory which leads to the numerical implementation and model tests will
be presented and described. All relevant theory has been derived and developed by others but
is essential as a basis for both the experimental and numerical study. Additional theoretical
approaches as regular wave theory and Froude scaling can be found in Appendix A.

2.1 Wave generation
The wavemaker installed in Lilletanken and used during the model tests is a piston wavemaker.
A simplified theory for plane wavemakers in shallow water is proposed by Galvin (1964), and
presented in [Dean and Dalrymple, 1984]. The same theory is used to calculate the stroke of the
wavemaker used in the model tests. Figure 2.1 defines the parameters used to find the stroke S
of the wavemaker. Galvin (1964) proposes that ”the water displaced by the wavemaker should
be equal to the crest volume of the propagating wave form” [Dean and Dalrymple, 1984].

Figure 2.1: Plane piston wavemaker in shallow water. S is stroke, H is wave height and h is
water depth in the figure. Theory by Galvin (1964), courtesy to [Dean and Dalrymple, 1984]
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H
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This leads to equation (2.1), where H is wave height, h is water depth, k is wave number and
λ is wavelength. A factor of π/2 is included to account for the ratio of the shaded area on the
wave in figure 2.1. The relation presented is valid for kh < π/10.

2.2 Floater bending stiffness
To find the bending stiffness of each torus, cantilever beam theory can be used. By applying a
force Fc at the end of the torus section of length Lc, the resulting deflection δc can be measured.
The bending stiffness can then be calculated from equation (2.2). Cantilever beam theory from
[Irgens, 2003, p. 69], the formula of maximum deflection at the end with point force.

EI =
FcL

3
c

3δc
(2.2)

2.3 Linear stiffness relationship of trusses
The relative elongation of the trusses attaching the tori together can be assumed small relative to
the force applied. That means a linear load-deflection (F-x) relationship according to equation
(2.3) can be used for simplicity. The same theory can be assumed valid for the mooring-lines
and the stiffness of the springs used as mooring lines can be found by the same formula.

F = kx (2.3)

2.4 Overtopping

Figure 2.2: Illustration of overtopping on a circular floater in beam sea waves. Courtesy to
[Kristiansen, 2010]

The overtopping phenomenon is what happens when seawater flows over the top of the
platform’s structure, which in this case is characterized as the tori. The phenomenon is
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illustrated by [Kristiansen, 2010] in figure 2.2. [Greco, 2001] defines the wave elevation which
exceeds the freeboard in two main groups which are referred to as plunging wave and dam
breaking - type water on deck. The first which is described as a wave plunging directly against
the eventual structures on top of the freeboard and the other where the mass of water above
freeboard flows along the top surface of the structure. A plunging wave will give a greater
impact load on the structure than a dam breaking type of overtopping. Her descriptions are
related to water on the deck of a ship, but the descriptions are also good to describe the
overtopping of a cylindrical torus. Dam breaking type of overtopping is most relevant in this
case, as there is no sharp edge, but a circular wall which the water can follow over the top of
the structure. Overtopping is a non-linear phenomenon, which can not be described by linear
potential flow theory [Kristiansen, 2010].

Overtopping can be a cause of flooding of a structure if a large area is exposed to overtopping
or if the water cannot be drained fast enough. If the overtopping event occurs due to a breaking
wave which hits the structure either at the side or on top, impact loads from a plunging wave-
type of overtopping can cause a local fracture or fatigue damage to the structure. It can also
cause slamming loads on the solar panels. Overtopping is the main challenge to the multi-torus
design of a floating solar island, as the freeboard is relatively low.

2.5 Elastic body modes
Modal analysis is a method to describe the motion of a model by relating the local response from
waves with theoretically known modes described by cosine functions. The elastic response for
each mode n is calculated from a sum of cosine functions multiplied by a constant bn(t) which
describes mode n at time t, as presented in equation (2.4).

2.5.1 Modal analysis of vertical modes
The vertical motion of the floater is measured at 16 points symmetrically distributed around the
outer tori as described in figure 2.3. Through modal analysis, the sum of the vertical response
in M modes is found. wexpm (t) is the recorded vertical motion at a position βm on the outer
torus. Mode n = 0 is heave motion, n = 1 is pitch angle, n = 2 is the first flexible and so on. A
system of equations (2.5) with N unknown constants bn(t), describing vertical modes is used.
The system is solved by transposing and inverting the A matrix as shown in equation (2.6).

wexpm (t) =
N∑
n=0

bn(t) cosnβm (2.4)


wexp1 (t)

wexp2 (t)
...

wexpM (t)

 =


1 cos β1 cos 2β1 · · · cosNβ1

1 cos β2 cos 2β2 · · · cosNβ2

...
...

... . . . ...
1 cos βM cos 2βM · · · cosNβM




b0(t)

b1(t)
...

bN(t)

 (2.5)
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Figure 2.3: Definition of the 16 measurement points where the OQUS globes are positioned at
the outer torus to track the motion of the model. The angle β is used to describe the position of
the globes around the circular floater with radius R = 0.5m.

Ab(t) = w(t)⇐⇒ b(t) =
[
(ATA−1)AT

]
w(t) (2.6)

In total, 7 vertical modes are found by using modal superposition. A physical description of
4 out of 7 modes is seen in figure 2.4. The higher modes, which are not described, are a
development of the flexible modes.

Figure 2.4: Physical description of 4 vertical response modes. Mode n = 0 equals to heave
motion, n = 1 is pitch angle, n = 2 is the first flexible, n = 3 is the second flexible and so on.
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2.5.2 Surge and sway
The horizontal rigid body modes, surge η1 and sway η2, are described through the mean value
of the x - and y - motions measured at the 16 globes distributed over the outer torus, as shown
in equation (2.7) and (2.8). This method is used since the model is circular, which means the
horizontal modes cannot be described directly.

η1(t) =
1

M

M∑
m=1

xp(βm, t) (2.7)

η2(t) =
1

M

M∑
m=1

yp(βm, t) (2.8)

xp(βm, t) and yp(βm, t) are the measured motions in the x- and y-direction respectively.

2.5.3 Modal analysis of elastic horizontal modes
The elastic horizontal modes of the circular model are ovalizing modes of which not all are
possible to describe physically. The elastic horizontal modes are found using modal analysis
of the parameter v(βm), which is defined in equation (2.9). Mode n = 0 is the floater moving
radially, which is not physical and therefore has to be excluded from the modal analysis. The
mode is not physical since the torus is rigid and to a little extent able to stretch. Also, mode n =
1 is surge motion and, therefore, has to be excluded from the modal analysis.

v(βm, t) =
√
x̃p(βm, t)2 + ỹp(βm, t)2 (2.9)

v(βm, t) =
N∑
n=1

an(t) cosnβm (2.10)

The parameters used to describe v, x̃p(βm, t) and x̃p(βm, t), are defined in equations (2.11) and
(2.12).

x̃p(βm, t) = xp(βm, t)− η1(t) = v(βm, t) cos βm (2.11)

ỹp(βm, t) = yp(βm, t)− η2(t) = v(βm, t) sin βm (2.12)
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2.6 Experimental RAO for regular waves
Response amplitude operators (RAO) will be used to describe the response of the model induced
from waves. It is describing the relation between the response amplitude and the wave amplitude
acting on the model. The RAO curves are affected by the proximity between the natural
frequencies and the wave frequency of the interacting wave. The response amplitude an is
defined using the standard deviation of the modal constants σb, found through modal analysis,
as described in equation (2.13). The same method is used to find the wave amplitude, using
measurements from a wave probe which is positioned in front of the model. From this, the
experimental response amplitude operator for mode n is calculated from equation (2.14).

an =
√

2σb, since σb = std(bn(t)) (2.13)

RAOexp
n =

∣∣∣∣ σbσw
∣∣∣∣ (2.14)

2.7 Experimental RAO for irregular waves
As for regular waves, the RAO will be used to describe the response of the model as a function
of wave frequencies. As irregular wave series is intended to represent realistic sea states
[Steen, 2014], a series of wave frequencies are present during one sea state. This makes it
convenient to use spectral analysis of the measured time series to present results from irregular
wave tests. Each sea state is represented by a known spectral peak period Tp and significant
wave height Hs, commonly calculated by use of a JONSWAP spectrum. As shown by equation
(2.15), the response spectrum Syy and the wave spectrum Sxx from a sea state is used to find
the transfer function H(ω). This transfer function represents the irregular RAO for the time
series measured from the present sea state. RAOs for different modes n can be found using the
response time series of mode n calculated from modal analysis.

∣∣H(ω)
∣∣2 =

Syy(ω)

Sxx(ω)
(2.15)

2.8 Zero-frequency theory
The zero-frequency theory (ZFT) was developed by [Faltinsen, 2011] for circular collars in
fish-farms. It is used in numerical simulations to describe the forces and motions of one torus
in this thesis. [Kristiansen, 2012] used this theory in the implementation of the truss model and
developed a couple of aspects. Only vertical motions and forces are developed in this section.
The theory is based on the following assumptions:

• The body cross-section 2c is small compared to the wavelength λ� 2c, which indicates
long-wave theory is valid and wave radiation and scattering from the floater is negligible
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2.8 Zero-frequency theory

• Current loads are negligible

• The torus is semi-submerged

• Deep water ω2 = kg

• Surrounding water has an infinite horizontal extent

• Potential flow theory of incompressible water is valid

• Linear hydrodynamic loads on the floater

Figure 2.5: Left figure shows the coordinate system seen from the far-field description, where
R is the radius of the torus from the circular centre-line and ξ, η describes the position of the
source points. The right figure shows the cross-section of a torus in a coordinate system and
boundary conditions assumed in the near-field solution. c is the cross-section radius, while φ is
the velocity potential. Snapshot from [Faltinsen, 2011]

Slender-body theory based on a rigid free-surface condition is developed. This is valid since the
limiting case where ω → 0 is considered. The slender-body theory is based on the assumption
that the torus cross-section radius is small compared to the radius of the circular centre-line
of the torus R � c. The coordinate systems and boundary conditions used in the theory are
defined in figure 2.5.

A near-field description of the system in question is combined with a far-field description using
a matched asymptotic expansion. When the non-convergent series is matched, this determines
a constant in the near-field solution that gives a unique solution.

Far-field description

In the far-field description, the torus is defined as a distribution of 3D sources with constant
density Q, along the centre-line of the torus. Source points are positioned at (ξ, η, ζ) =
(R cosα,R sinα, 0). The velocity potential of the far-field description is defined from the
definition of 3D sources along a circle, as presented in (2.16). The inner expansion of the
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2.8 Zero-frequency theory

far-field velocity potential φFI is determined from the limiting case r → 0. Coordinate systems
in figure (2.5) can be used to redefine r, generalizing the expression.

φF =
QR

4π

∫ π

0

1

r
dθ, r → 0 ⇒ φFI =

Q

2π
log
(8R

r

)
(2.16)

Near-field description

In the near-field description, a semi-submerged circular cross-section of radius c is assumed.
This means a semi-circle is submerged in water and mirroring the semi-circle about the mean
free surface (z = 0), the rigid free surface condition is satisfied as shown in figure 2.5. The flow
is symmetric about the mean free surface and the near-field velocity potential is defined in two
dimensions in equation (2.17).

φN = η̇

[
C log

( r
R

)
+ A0(β) +

∞∑
n=1

An
cosnθ

rn

]
(2.17)

It is necessary to find the unknown constants C,A0 and An in the expression of the near-field
velocity potential. A0 is found from matching the near-field and the far-field description at the
limiting case φN(r →∞) = φF (r → 0) = φFI , which gives A0 = −C log(8). C is found from
solving the boundary value problem ∂φN

∂n
= ±Vn, which means using the free surface condition

at the limiting case ω → 0. An is found from a mathematical trick, by multiplying the velocity
potential by cosmθ for m ≥ 1 and integrating the expressions from 0 to 2π.

2.8.1 RAO for heave and pitch of single torus using ZFT

RAOZFT
i =

∣∣∣∣ biζa
∣∣∣∣ (2.18)

The theoretical vertical RAO for one torus in regular waves of mode 0 (b0) and 1 (b1) are
defined using ZFT. Mode 0 corresponds to heave motion, while mode 1 corresponds to pitch.
Pitch is presented as dimensionless, so it is important to remark that the expression does not
correspond to the pitch angle, but a general definition of the pitch mode response. As described
by equation (2.18), the response amplitude operator is defined as the absolute value of the
measured amplitude motion, divided by the wave amplitude from incident waves. Equations
(2.19) and (2.20) are developed from the zero-frequency theory developed above, only taking
into account one floater. These equations will be used to compare the theoretical approach to
the results of the experiment.

b0

ζa
=

(ρgbw − ω2a
(0)
33 )J0(kR)

−(m+ a
(0)
33 )ω2 + ρgbw

, n = 0 (2.19)
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2.9 Floater model from equation of motion for curved beam

b1

ζa
=
−(ρgbw − ω2a

(1)
33 )2J1(kR)

−(m+ a
(1)
33 )ω2 + ρgbw + EI

R4

, n = 1 (2.20)

2.9 Floater model from equation of motion for curved beam
In equation (2.21), the equation of motion for a curved beam is presented. It is based on
Newton’s 2nd law and the first term on the left side includes a mass per unit length m and a
vertical acceleration term ∂2w

∂t2
. The second term is accounting for the buoyancy, the third term

includes axial stiffness and the fourth term is a stiffness term accounting for the curvature in
the beam. On the right hand side of the equation, f3 = f added mass

3 + f exc
3 + f truss

3 is the sum
of vertical forces. f added mass

3 is added mass forces, f exc
3 is wave excitation forces and f truss

3 is
truss forces. The last are representing forces from the modelled trusses in the moorings and the
trusses connecting the tori.

m
∂2w

∂t2
+ ρgbww + EI

∂4w

∂s4
+
EI

R2

∂2w

∂s2
= f3(s, t) (2.21)

A vertical motion decomposition as in equation 2.22, is used to define the vertical motion as a
sum of vertical mode components an dependent of time t, and the angular position β along the
torus radial centre-line.

w(t, β) =
∞∑
n=0

an(t) cosnβ (2.22)

The vertical motion decomposition is inserted into the equation of motion for a curved beam
(2.21). Further, both sides of the equation are multiplied with cosmβ and β is integrated from
0 to 2π. The last is a mathematical trick, in order to get the result in equation (2.23). After
including the last mentions into the equation of motion, this results in the simplified expression
in equation (2.24).

∫ 2π

0

cosnβ cosmβdβ =

π, n = m

0, n 6= m
(2.23)

män(t) + ρgbwan(t) + EI
( n
R

)4

an(t)− EI

R2

( n
R

)2

an(t) =
1

απ

∫ 2π

0

f3 cosnβdβ (2.24)

Added mass

An expression for the added mass of the torus is found from the near-field solution as described
in equation (2.25).
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2.9 Floater model from equation of motion for curved beam

a
(n)
33 = −ρ

∫
S1+S2

φ̄Nn3ds (2.25)

= 2ρc2

{
2

π

[
log
(8R

c

)
−Kn

]
+

3− 4 log(2)

π︸ ︷︷ ︸
=0.07238725793

}
(2.26)

Kn presented in equation (2.27) is a definite integral defined by Timokha (2010)
[Faltinsen, 2011]. The expression first is used in the generalized expression of the inner
expansion of the far-field velocity potential.

Kn =
1

2
√

2

∫ 2π

0

1− cosnx√
1− cosx

dx (2.27)

As the added mass force per unit length is known as f added mass
3 =

An
33

2πR
η̈3 = an33än(t), the term

can be moved to the left hand side, as seen in equation (2.28). Further, expressions for the wave
excitation forces and truss forces need to be developed.

(m+ an33)än(t) +
[
ρgbw +

EI

R

4

(n4 − n2)
]
an(t) =

1

απ

∫ 2π

0

(f exc
3 + f truss

3 ) cosnβdβ (2.28)

Wave excitation forces

f exc
3 = fFK3 + fD3 (2.29)

Wave excitation forces f exc
3 is a sum of Froude-Kriloff (FK) and diffraction (D) forces, as

shown in equation (2.29). Froude-Kriloff loads are caused by hydrodynamic loads on the body,
as flow due to φ0 penetrates the body. Diffraction forces are associated with recovering the
body impermeability, as the body presence causes a flow. Velocity potential for diffraction
is unknown, but the rigid free-surface condition can be applied to the Laplace equation is
governing [Greco, 2012]. The loads are defined in equations (2.30) and (2.31), where S0 is
the mean wetted torus surface.

fFK3 = ρ

∫
S0

∂φ0

∂t
n3dS

= <
[
ρgζai

{
J0(kR) +

∞∑
n=1

2inJn(kR) cosnβ
}
bw exp(−iωt)

] (2.30)
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2.9 Floater model from equation of motion for curved beam

fD3 = ρ

∫
S0

∂φD
∂t

n3dS

= <
[
− iω2ζa

{
J0(kR)a

(0)
33 +

∞∑
n=1

2inJn(kR)a
(n)
33 cosnβ

}
exp(−iωt)

] (2.31)

The incident wave velocity potential is shown in equation (2.32) and only the real part of the
velocity potential is physical. Jn is the Bessel function of first kind and order n (eq. (2.33)).
Order n refers to mode number n. kR is the wave number k multiplied by the radius R of the
floater.

φ0 = <
[
gζa
ω

exp(kz + ikx− iωt)
]

where i =
√
−1,

k =
ω2

g
and eikx = J0(kR) +

∞∑
n=1

2inJn(kR) cosnβ

(2.32)

Jn(kR) =
1

π

∫ π

0

cos(n− τ)− kR sin τdτ (2.33)

Truss forces

The truss forces are the tensions from the trusses and mooring lines attached to the floater. These
are unknown and will be approximated using the truss model. This will be further explained
in chapter 3 Numerical Simulations. In equation (2.34), an estimated expression for the truss
forces acting on the floater is presented. The expression is developed in [Kristiansen, 2012].
As there is a finite number of attached trusses, the integral can be estimated by a sum of the
tensions acting on the floater, dependent on the direction of the tension force. NH is the number
of trusses attached to the floater and β is the angular position corresponding to the position of
the truss attachment.

1

αnπ

∫ 2π

0

f truss
3 cosnβdβ ' 1

αnπ

NH∑
p=1

f truss,p
3 cosnβp∆β

=
1

αnπ∆s

NH∑
p=1

[
− Tp(ŝpk̂)

]
cosnβp∆β

=
1

αnπR

NH∑
p=1

[
− Tp(ŝpk̂)

]
cosnβp

(2.34)

Finally, the expressions for the forces explained above can be included in the equation of motion
presented in equation (2.28). This leads to the expression which is written out in equation (2.35).
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2.10 Truss model by [Marichal, 2003]

The system will be further used in the coupling of the floater with the trusses in the numerical
simulations.

(m+ an33)än(t)+
[
ρgbw +

EI

R

4

(n4 − n2)
]
an(t) =

[
ρgbw − ω2a

(n)
33

]
2ζaJn(kR)<

[
in+1 exp(−iωt)

]
+

1

αnπR

NH∑
p=1

[
− Tp(ŝpk̂)

]
cosnβp

⇐⇒ Aän(t) +Ban(t) = F

(2.35)

2.10 Truss model by [Marichal, 2003]
The model described in this section was derived by D. Marichal in 2003 to be used in a
numerical study of a cod-end. It has since then been used in several papers by Prof. O. Faltinsen
& Prof. T. Kristiansen to model the net panels in aquaculture fish farms as trusses. Prof. T.
Kristiansen has suggested this model is used for the mooring lines and elastic trusses between
the floaters in the multi-torus. In this section, the model will be derived and explained, as done
in [Marichal, 2003].

The model is to be used in a numerical simulation to calculate the unknown internal tensions
in the trusses at each time step, using a numerical method. From this, it will be possible to
calculate how the displacement of the model changes over time as loads are applied. The model
consists of a given number of trusses Ntruss and a given number of nodes Nnode. Each truss k
is defined by 2 nodes i and j, as seen in figure 2.6. The nodes have coordinates in 3 directions
{x, y, z}. Remark that the enumeration is somehow different in the description below than in
the original model by [Marichal, 2003].

Figure 2.6: Definition of truss element k and corresponding nodes i and j.

Mechanical equations

The fundamental principle of dynamics is applied to each node i, as described by equation
(2.36). The mass of the truss is lumped into the nodes, such that each node has the mass mi.
The acceleration of the node ai is the only unknown parameter in this equation.
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2.10 Truss model by [Marichal, 2003]

Nnode∑
i=1

~Fi,external = mi~ai

=

{
mi~g +

Nl∑
l=1

T nil ŝ
n
il

} (2.36)

The internal tension or linking forces in each truss is considered as external forces which are
acting on the node connecting the trusses. Nl is the number of adjacent trusses acting on node i,
while Til and ŝil are the axial tensions and corresponding tangential unit vectors acting on node
i. The tangential unit vector is defined by equation (2.44). In the standard case, only gravity
forces and internal tension are considered as forces in the system. Remark that the sum of the
external forces Fi,external also can consist of other external loads acting on the nodes or trusses.
In a case where loads are distributed on the trusses, these are also lumped into the nodes, such
that the sum of the loads are equally distributed between the 2 nodes which form the ends of the
truss. If a floater is connected to a truss through a node, the dynamic equation of motion for the
floater (2.35) needs to be considered, in order to include relevant forces.

l2k = l20k
(
1 + χTk

)2 (2.37)

The model is based on the truss length constraint described in equation (2.37). The length of
a truss is dependent on the initial length and the elasticity properties. Thus, the length of each
truss lk can be defined by the initial length l0k, the elasticity coefficient χ = 1/EA, where E
is Young’s modulus and A the cross-sectional area of the truss and the tension in each truss
Tk. The initial length l0k should be calculated from the truss before pre-tension is applied and
can, therefore, be found using the relation in equation (2.38), developed from the truss length
constraint and using the pre-tension Tp as tension Tk. Remark that lpk is the pre-tensioned length
of the truss and k is the spring stiffness, which is known from the geometry and parameters of
the system.

l0k = lpk −
Tp
k

(2.38)

The length constraint will form a system of equations with Ntruss equations. The system is
currently of second order and non-linear. To solve the system, the Euler methods described
below will be used. Since the method is a time-step method, the constraint needs to be
transferred to be dependent on time, since the tension is time-dependent.
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2.10 Truss model by [Marichal, 2003]

Deriving system of equations

Applying time-dependency to the length constraint in equation (2.37), the definition in equation
(2.39) is valid. This states that the length at time step (n+1) is equal to the norm of the distance
between the nodal positions of node j and i, ~xn+1

j and ~xn+1
i respectively.

l20k
(
1 + χT n+1

k

)2
=
(
~xn+1
j − ~xn+1

i

)(
~xn+1
j − ~xn+1

i

)
(2.39)

Further, the change in tension between two time steps can be defined as T n+1
k = T nk + ∆Tk, as

seen in equation (2.40). Since it can be assumed that the tension in the trusses is low when an
equilibrium position is searched for, the terms which are dependent on change in tension ∆Tk

are neglected.

l20k
(
1 + χT n+1

k

)2
= l20k

(
1 + χ

[
T nk + ∆Tk

])2

= l20k

(
1 + 2χT nk

) (2.40)

After neglecting the ∆Tk dependent terms, the length constraint can be rewritten as in equation
(2.41).

l20k

(
1 + 2χT nk

)
=
( ~xn+1

j − ~xn+1
i

)( ~xn+1
j − ~xn+1

i

)
(2.41)

From here, the definition of nodal positions ~xn+1
i from the Euler method can be used (ref. eq.

(3.3)), as described by equation (2.42).

l20k

(
1 + 2χT nk

)
=
[
∆t
(
~un+1
j − ~un+1

i

)
+
(
~xnj − ~xni

)][
∆t
(
~un+1
j − ~un+1

i

)
+
(
~xnj − ~xni

)]
=
(
~xnj − ~xni

)(
~xnj − ~xni

)
+ 2∆t

(
~un+1
j − ~un+1

i

)(
~xnj − ~xni

)
(2.42)

In equation (2.42), the second order terms (∆t)2 are neglected since ∆t � 1. This is an
approximation made to simplify the system of equations. From this, the definition of velocity at
the next time step (n+1) from the acceleration in time step n in the Euler method (ref. eq. (3.3))
is used. The acceleration ai is then expressed from the fundamental principle of dynamics (ref.
eq. (2.36)).

~un+1
i = ~uni + ∆t~ani

= ~uni +
2∆t

mi

{
mi~g +

Nl∑
l=1

T nil ŝ
n
il

} (2.43)
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2.10 Truss model by [Marichal, 2003]

Equation (2.43) can be applied to node i and j, which is end 1 and 2 of the corresponding truss
k, as shown in equation (2.45). When summing up the contribution of the forces, the direction
of the tension force needs to be taken into account. This is assured by the tangential unit vector
ŝnk of each truss k, defined in equation (2.44).

ŝnk =

(
~xnj − ~xni

)
|
(
~xnj − ~xni

)
|

(2.44)

~un+1
i = ~uni +

2∆t

mi

{
mi~g +

Nl∑
l=1

T nil ŝ
n
il

}

~un+1
j = ~unj +

2∆t

mj

{
mj~g +

Nl∑
l=1

T njl ŝ
n
jl

} (2.45)

Then, by reorganizing equation (2.42), and inserting the expressions for the velocity ~un+1
i and

~un+1
j in node i and j respectively, all terms in the system of equations can be expressed at the

same time step n. This is shown by equation (2.46).

(
~un+1
j − ~un+1

i

)(
~xnj − ~xni

)
=

1

2∆t
l20k

(
1 + 2χT nk

)
− 1

2∆t

(
~xnj − ~xni

)(
~xnj − ~xni

)
⇔[

~unj +
2∆t

mj

{
mj~g+

Nl∑
l=1

T njl ŝ
n
jl

}
− ~uni −

2∆t

mi

{
mi~g +

Nl∑
l=1

T nil ŝ
n
il

}]( ~xn+1
j − ~xn+1

i

)
=

1

2∆t
l20k

(
1 + 2χT nk

)
− 1

2∆t

(
~xnj − ~xni

)(
~xnj − ~xni

)
(2.46)

Finally, equation (2.46) is reorganized with the tension-dependent terms on the left-hand side,
and the others on the right-hand side of the equation. Thus, for a given system consisting of
Ntruss trusses, a linear system of equations AT = b can be defined from Ntruss equations on
the form described in equation (2.47). The system can be solved for T at each time step n, since
the tensions are the only unknown parameters of the system at time step n.

[
2∆t

mj

Nl∑
l=1

T njl ŝ
n
jl −

2∆t

mi

Nl∑
l=1

T nil ŝ
n
il

](
~xnj − ~xni

)
− l20k

∆t
χT nk

=
l20k

2∆t
−

{
1

2∆t

(
~xnj − ~xni

)
+
(
~unj − ~uni

)}(
~xnj − ~xni

)
(2.47)
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2.11 Coupling zero-frequency floater model with truss model

2.11 Coupling zero-frequency floater model with truss model
In order to develop a numerical model that can be compared to the multi-torus, the first step is
to couple the truss model to a floater model. The zero-frequency theory and dynamic equation
of motion described in section 2.9 are used for the floater. The floater equation (2.35) includes
terms with unknown tension forces. The truss model by [Marichal, 2003] described in section
2.10 is used to model the trusses in the system. Trusses are used to describe mooring lines and
elastic links connecting the tori together. In the system, trusses of which at least one of the
node ends are located on a floater will be referred to as floater trusses. For standard trusses, the
ones that are not connected to a floater node, the truss equation (2.47) will remain unchanged
when implementing the floater. These will only change dependent on the boundary conditions.
The floater truss equation is adapted using the expression of the nodal acceleration expressed
by the dynamic equation of motion (2.35), developed for the floater model. When the nodal
acceleration of the floater node j is inserted into the truss equation (2.47), it results in equation
(2.48). Here, NH is the number of trusses attached to the corresponding floater.

[
−∆t

NH∑
p=1

hjpTpŝp−
2∆t

mi

Nl∑
l=1

T nil ŝ
n
il

](
~xnj − ~xni

)
− l20k

∆t
χT nk =

l20k
2∆t

−

{
1

2∆t

(
~xnj − ~xni

)
+
(
~unj − ~uni

)
+ ∆t

∞∑
n=0

{ 1

m+ an33

[
f exc3 − C3nan

]
cosnβj

}
−2∆t~g

}(
~xnj − ~xni

)
where hjp =

∞∑
n=0

cosnθp cosnβj
(m+ an33)απR

C3n = ρgbw +
EI

R

4

(n4 − n2)

(2.48)
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Chapter 3

Numerical Methods and Implementation

In this chapter, the numerical implementation of the model in Python will be described. The
goal is to couple the ZFT floater model with the truss model describing the mooring lines and
trusses, connecting the floaters together. The truss model described in section 2.10 and the
floater model presented in section 2.9 will be implemented to describe the components of the
model. As the multi-torus has a quite complicated geometry, as a first step it is chosen to model
only the outer torus together with the mooring lines. In a later step, another torus could be
connected to the outer torus with trusses and further developing the model.

3.1 Python
The object-oriented programming language Python is used in the numerical implementation of
the model. A Scientific Development Environment named Spyder, in the Anaconda package,
is used working with Python. It is an open-source programming language, with thousands of
available built-in modules and libraries. This makes it flexible and easy to use, which is why it
is chosen for this project.

3.2 Implicit-Explicit Euler method
An Implicit-Explicit Euler method is used as a time integration scheme. It is a time step method
which can be used to solve an ordinary differential equation (ODE). The method can be derived
from a time difference scheme when assuming an initial condition to the problem. The initial
condition is stated as y(t0) = y0, with the initial value problem ẏ(t) = f(t, y(t)) here, to derive
the method by use of finite differences. The method described here is derived in its complete
form in [Atkinson, 1978].

Using a finite difference scheme on the form of equation (3.1), by definition the derivative of y
is approximated to be equal to the finite difference when ∆t > 0 & ∆t� 1.

ẏ(t) = lim
∆t→0

[y(t+ ∆t)− y(t)

∆t

]
≈ y(t+ ∆t)− y(t)

∆t
(3.1)
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3.3 Runge-Kutta 4th order method

That means y(t + ∆t), which is the next value of the next time step (n + 1) can be found
from reorganizing the finite difference equation as done in equation (3.2), using the initial value
problem.

y(t+ ∆t) = y(t) + ∆tf(t, y(t)) = y(t) + ∆tẏ(t) (3.2)

From this, the velocity of the next time step can be solved for explicitly using the acceleration
in the given time step, as done in equation (3.3). An Implicit scheme is then used to solve for
the nodal positions, as done in the second line of equation (3.3). Since the velocity of the next
time step is defined explicitly, this can be used to define the nodal positions of the next time step
explicitly as well. This is valid since the derivative of the acceleration is defined by velocity, and
the derivative of the velocity is defined by a position. Thus, a double finite difference scheme is
used, by redefining the initial value problems ~̈x = ~a, ~u = ~̇x to ~̇u = ~a, ~̇x = ~u.

~un+1
i = ~uni + ∆t~ani

~xn+1
i = ~xni + ∆t~un+1

i

= ~xni + ∆t
(
~uni + ∆t~ani

) (3.3)

3.3 Runge-Kutta 4th order method
Runge-Kutta 4th order (RK4) is an explicit numerical method to approach the solution of
ordinary differential equations (ODE). There exist several Runge-Kutta methods of different
orders, but RK4 is the most well-known since it is easy to implement and gives good
approximations. The reason it gives good results is that a total of four estimates of the next
time step are included in the approximation [Vistnes, 2018].

Aän(t) +Ban(t) = F ⇐⇒ d2a

dt2
=
−B
A
a+

F

A
(3.4)

A second order ODE is defined in equation (3.4), describing the equation of motion developed
from zero-frequency theory. The constants A, B and F are defined in equation (2.35). To be
able to use RK4, it is necessary to transform the second order ODE into two linear ODE. This
is done by introducing a variable y, as shown in equation (3.5).

da

dt
= y

dy

dt
=
d2a

dt2
⇐⇒ dy

dt
=
−B
A
a+

F

A
= C1a+ C2

(3.5)
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3.3 Runge-Kutta 4th order method

When introducing a new variable, it is possible to describe the second order ODE as a system
of two linear ODE, which is introduced on matrix form in equation (3.6).

[
ȧ

ẏ

]
=

[
0 1

C1 0

][
a

y

][
0

C2

]
(3.6)

da

dt
= f(a, y, t)

dy

dt
= g(a, y, t)

(3.7)

In order to use RK4, the two unknowns are defined as functions (ref. eq. (3.7)), dependent on
known parameters at time step n. The functions’ values at the next time step (n+1) can then be
approximated by the RK4. Since the ODE had to be split into a two-equation system, the RK4
has to be applied for both equations, coupling the weighted slopes as explained by equation 3.8.
That means the present value of the function is used to approximate the next value, which also
means the method is explicit. As mentioned earlier, four weighted slopes are used to determine
the next value. The contribution of the four slopes is averaged and added to the present value. k1

and l1 are approximated by the slope at the present value like in standard Explicit Euler method.
k2 and l2 are based on the midpoint of the increment (dt/2) using k1, l1, whereas k3 and l3 are
also based on the midpoint of the time step using k2, l2. k4 and l4 are found from the slope at
the next step using dt and k3, l3. The two midpoint values contribute two times to the average,
and the complete sum of the weighted slopes is divided by 6 and multiplied with the time step
dt.

tn+1 = tn+dt

an+1 = an+
dt

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn+
dt

6
(l1 + 2l2 + 2l3 + l4)

where k1 = f(an, yn, tn)

l1 = g(an, yn, tn)

k2 = f(an +
k1

2
, yn +

l1
2
, tn +

dt

2
)

l2 = g(an +
k1

2
, yn +

l1
2
, tn +

dt

2
)

k3 = f(an +
k2

2
, yn +

l2
2
, tn +

dt

2
)

l3 = g(an +
k2

2
, yn +

l2
2
, tn +

dt

2
)

k4 = f(an + k3, yn + l3, tn + dt)

l4 = g(an + k3, yn + l3, tn + dt)

(3.8)
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3.4 Numerical implementation of truss model

3.4 Numerical implementation of truss model

Figure 3.1: Illustration of the time-stepping loop implemented in the numerical simulation
model in Python. Each step is based on creating the matrix A, which defines the dependencies
of the nodes and trusses with the tension force, and the force vector b in order to solve the
linear equation system for the tensions T . Then the nodal forces, accelerations, velocities and
positions are re-initialized, before the next time step starts. Pay attention to that the RH4 solver
will only be necessary when the model is coupled with the floater.

Implementation of the truss model in Python is mainly done by use of a time-stepping loop,
solving the linear system of equations AT = b where T are the unknown tensions. Equation
(2.47) in section 2.10 is the basis for each line in the system of equations, where the tension
dependent terms are positioned at the left-hand side in matrix form. The system is solved
for each time step, using an Implicit-Explicit Euler time difference scheme (see section 3.2)
to define the necessary unknown parameters of the next time step. The loop calculates time-
dependent parameters and solves the equation system numerically. In figure 3.1, the loop is
illustrated. Pay attention to that the RH4 solver will only be necessary when the model is
coupled with the floater.

The time-stepping process consists of defining the A matrix, the b-vector, solving the system
of equations and then re-calculating the time-dependent parameters before the next time step
starts. The left-hand side of the system in equation (2.47) is dependent of the tensions Tk and
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3.4 Numerical implementation of truss model

Figure 3.2: Numerical implementation of the truss model in Python requires the following steps.
The truss model itself is built into the time integration process, which repeats with increasing
time step n. A is a matrix made from the left-hand side of the truss model equation, whereas
the b-vector is the force-dependent expressions on the right-hand side of the equation. T are the
tensions which are found from solving the linear equation system AT = b. Wave parameters
are only needed when coupling the model with the floater.

is therefore assigned in A, whereas the right-hand side of the same equation is defined in the
force vector b. The matrix A is saved as a sparse in coordinate format to save computational
time since a large number of the entries are equal to zero. The system of equations is solved
by use of a built-in library in Python named scipy and the function scipy.sparse.linalg.spsolve
which solves sparse linear systems on the form AT = b with A and b as input.

The complete implementation model is illustrated in figure 3.2. A pre-definition of parameters,
initial conditions and geometry definitions of the model are necessary prior to the time loop.
In this step, all variables are also pre-allocated, to save computational time. For-loops are used
to define the geometry of the system depending on the shape and the number of trusses, which
are changeable in the model parameters. Using the geometry, initial length and tangential unit
vectors of the system are defined. A connectivity matrix of two columns and Ntruss number of
rows is also defined, where the node number of the end 1 and 2 of truss number k is placed on the
corresponding row and column. Initial conditions for velocity is set, and boundary conditions
are applied by setting the velocity of the fixed nodes to zero, which means the corresponding
nodal positions will be kept constant.
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3.5 Verification studies of truss model

The Implicit-Explicit Euler method is further used to find the corresponding velocity and nodal
positions at time step (n + 1) (ref. eq. 3.3). From this, the new tangential unit vector for each
truss is calculated by use of the new nodal positions (ref. eq. 2.44). The tangential unit vectors
are defined positive from node 1 (i) of the truss, and the change in ŝ-direction for node 2 (j)
needs to be taken into account when calculating the weights of the A-matrix and the b-vector.

Theoretically, trusses can take compression, but in a physical model without bending stiffness,
the trusses will act as chords which have slack when forces are less than zero. Even though, due
to the theory, it has been considered that it is most conform to keep the eventual compression
forces after discussion with Prof. J. Kiendl. As the tensions are solved for at time step n, the
Newton’s 2nd law (ref. eq. 2.36) is solved for the acceleration at time n. The fixed node(s) are
not solved for, instead, the sum of forces is set to zero to keep the acceleration and velocity
vectors equal to zero, such that the nodal position of the fixed node(s) is kept constant. This is
a method for applying the necessary boundary conditions. That means the eventual mass in the
fixed node is ignored. Masses in fixed nodes are therefore only used for numerical reasons.

The nodal positions, mass distribution, initial and boundary conditions are according to
the desired physical model to be implemented. This is the only changes necessary in the
implementation when changing model.

3.5 Verification studies of truss model
Four different verification studies are carried out during the implementation of the truss model.
These include a suspended flexible wire, a simple rigid pendulum, a double rigid pendulum
and a compound flexible pendulum. Elasticity is also applied and tested on all rigid pendulum
models. Note that only 2D cases have been studied. This is not the case in the extended coupled
model, but it is not expected to cause a problem, as everything is implemented in 3D, just
setting the y-coordinates to zero. The physical properties used to define flexibility in the trusses
are defined in table 3.1. The same physical parameters are used in all verification studies, but
for the simple and double pendulum, the trusses are modelled as massless. This is simple to
obtain as a lumped mass principle is used in the model. That means the cross-sectional area is
not used to calculate the mass of the truss, as the truss is expected to be massless.

In the case testing, both the numbers of trusses and time step length is tested for convergence.
Since the pendulum studies are well documented in theory, their expected behaviour will be
compared with the numerical results. The physical properties used to define flexibility in the
trusses during verification studies are defined in table 3.1. The same physical parameters are
used in all cases, but for the simple and double pendulum, the trusses are modelled as massless.
This is simple to obtain as a lumped mass principle is used in the model. The compound flexible
pendulum is compared with a numerical solution by [Marino et al., 2019], using beam elements.
It is expected that the pendulum will act more like a chord and bend more by use of the truss
model, as truss elements without bending stiffness are used.

35



3.5 Verification studies of truss model

Table 3.1: Physical properties used for flexible pendulums. Note that if the pendulums are
considered to be massless, the cross-sectional area and material density are not used.

Physical variable Parameter Unit Value
Truss diameter dtruss [m] 0.01
Material density ρ [kg/m3] 1100
Young’s modulus E [Pa] 5·106

Total length L [m] 1

Considering the pre-tensioned wire, it is modelled by five truss elements with equal length and
mass is uniformly distributed over the wire. As the model includes a pre-tension, it is expected
that the wire will vibrate around its initial position and no stable equilibrium will be obtained
since only gravity is the only external force applied. Gravity will at all times work to equalize
the internal tensions. In Appendix D.1.1, an example where the system of equations is written
out can be found. As the wire is modelled by five truss elements, the system of equations will
contain five equations with five unknown tensions at each time step.

T0 = 2π

√
L

g

(
1 +

θ2
0

16
+

11

3072
θ4

0 + ....
)

(3.9)

For the implementation of the pendulums, point masses of 1 kg have been positioned in the
nodes. Three initial position angles have been tested for each case: 45°, 90°and 135°. As
goes for the simple rigid pendulum, it is expected to move symmetrically around the vertical
axis with the initial position angle as the maximum angle of deflection. The oscillation period
can be estimated by the power series in equation (3.9), which is developed by the ODE of the
simple pendulum. Expected oscillation periods dependent on the initial position can be found in
table 3.2. This will be compared to the numerical solutions using the truss model. As elasticity
is applied to the truss, tension forces will cancel the oscillatory movement and create non-
symmetric oscillations. The truss will now act like a combination of a rigid oscillatory system
and a spring-mass system vibrating in the axial direction.

The double pendulum will be tested both with rigid trusses, flexible trusses and compound mass

Table 3.2: Approximate oscillation periods for rigid simple pendulums estimated by power
series developed from ODE. Only the terms of order less than 5 are included. (Ref eq. (3.9)).

Initial position θ0 [°] Oscillation period T0 [s]
45 2.0861
90 2.3592
135 2.9235
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3.5 Verification studies of truss model

distribution with flexible trusses. The first truss including the first point mass will initially be
expected to oscillate like the simple rigid pendulum, but as the second mass starts influencing
the system, a more unsymmetric and chaotic behaviour is expected. The amount of chaos will
depend on the distribution of mass between the first and second point mass, as well as the initial
position. In all tests, each of the two point masses is kept at an equal initial position angle.
Including flexibility, the behaviour will be even more unpredictable as spring vibrations of the
trusses needs to be included. The rigid pendulum will be compared to a numerical analysis using
the fourth order Adams-Bashforth method [Calvão and Penna, 2015]. As the double compound
pendulum is tested, the rotative behaviour of the second point mass around the first point mass
is expected to increase, as the second point mass is half the first in weight. This is true since
smaller forces are needed to induce rotation of the smaller mass. However, when the mass is
lower, the velocity induced by gravity forces are also smaller.

At last, a compound flexible pendulum is modelled in two different configurations. One with
four trusses, and the other one with 20 trusses. The important difference from the other
pendulum models is that the cross-sectional area and density of the truss material is used to
calculate the mass of the trusses. This is done in order to assure a realistic relationship between
mass and stiffness. Figure 3.3 shows a numerical solution by [Marino et al., 2019], using beam
elements. It shows the position of the pendulum at given time steps from 0 - 1 s and the
vertical tip displacement during the first second. The resulting displacement and deformation
have been compared to other relevant studies and results show good correspondence to the
related articles using both implicit and explicit numerical methods. The results are therefore
used for comparison with the truss model. The mass and flexibility properties in the two cases
are equal. As truss elements without bending stiffness are used in here, an expected difference
between the two models is that the truss model will bend more in the tip and the angle will
change more brutally between the elements. Yet more elements are used in the model by

(a) Position of the pendulum at given time steps with
initial position 90°

(b) Vertical tip displacement of pendulum during first
second of motion

Figure 3.3: Comparison of vertical tip displacement of a swinging flexible pendulum from
[Marino et al., 2019]. The elements are modelled by beams with bending stiffness.

37



3.6 Numerical implementation of coupled floater-truss model

[Marino et al., 2019], than in the truss model also, which makes the movement of the beam
model much more realistic.

In Appendix D.1, more details on the different verification studies can be found. Both numerical
properties, physical parameters and examples of expected behaviour can be found there.

3.6 Numerical implementation of coupled floater-truss
model

In order to develop the numerical simulation script into a model that can be compared to the
multi-torus, the first step is to implement the floater model and couple it with the truss model
already implemented. The zero-frequency theory and dynamic equation of motion described in
section 2.9 are used to implement the floater equation. Trusses are used to describe mooring
lines and elastic links connecting the tori together. Since the floater equation is also time-
dependent, it will be added to the time integration loop. As there will be trusses connected
to the floater, the truss equation (2.47) has to be adapted for the so-called floater trusses. An
adapted equation is developed in section 2.11.

As seen in the adapted floater-truss equation (2.48), the right-hand side of the equation includes
the unknown vertical displacement for mode n, an(t). This can be found by solving the floater
equation at each time step. Remark that n is mode number, since the vertical motion is described
by w(t, β) =

∑∞
n=0 an(t) cosnβ. The Runge-Kutta 4th order method described in section 3.3

is used as solver. In a numerical solver, the infinite sum needs to be limited to a finite number.
N = 10 has been chosen as sufficiently accurate in this case.

Initial geometry from the pre-tensioned wire in the verification study is adapted for a circular
model. Wave parameters are implemented by use of an implicit function iterating the solution
to find the correct wave number k, according to the desired wave period. The connectivity
matrix, mass lumping and tangential unit vector rest unchanged. Initial conditions for velocity
and acceleration are set to zero. The added mass, mooring forces and wave excitation forces
are initialized, a first calculation the dynamic equation of motion and a modal sum to find the
vertical motion are resolved before the time step loop starts.

Figure 3.4 is an example of how a combined floater and truss model can be discretized with
nodes positioned on the floater. As more than one torus is implemented, it will be necessary to
separate the different types of floater trusses, depending on whether there is a floater connected
in both ends or not.

3.7 Single torus attached by four mooring lines
A first step towards simulating the behaviour of the multi-torus is to test the coupled floater and
truss model with one torus and attached mooring lines modelled by trusses. The scale is equal
to the multi-torus tested in the experiment. That means the radius of the torus is R = 0.5 m
and four mooring lines are symmetrically attached at 45°, 135°, 270°and 315°, fixed at ±1.25
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3.7 Single torus attached by four mooring lines

m from the centre of the torus in both x- and y-direction. The model is discretized in figure 3.4.
Truss discretization is shown in table 3.3. Remark that the floater model is only implemented
in the vertical direction, but the nodal coordinates and necessary variables are updated in 3D
for each time step. That means only vertical forces are applied to the system, but the system is
allowed to move in all directions.

When developing the Python script, it has been assured that the number of trusses easily can
be changed, as long as the number of trusses discretizing each mooring line is kept equal. For
simplicity, the model presented here is made with only 12 trusses, which is the least number
possible assuring that all cases of truss combinations are included. This means at least one
floater truss, one standard truss and one truss affected by boundary conditions is present in the
system. Each mooring line has therefore been divided into three trusses. As the number of
trusses is increased, only the number of standard trusses will be increasing as long as the model

Figure 3.4: Defining truss and node numbers of 12 truss model with connected with floater.
Each mooring line is divided into 3 trusses, one which is fixed at end 1, one standard truss and
one truss with end 2 connected to the floater. That means all three possible cases for trusses are
included in the modelling.
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3.8 Two tori connected with trusses

is kept the same. An example of the development of the equation system Ab = T from the
combined truss and floater model for 12 trusses is carried out in Appendix D.2.

3.8 Two tori connected with trusses
As the multi-torus consists of five connected tori, it is complicated to predict its behaviour. It is
likely to believe that the tori are positioned close enough to change the predicted movement
of a single torus exposed to waves. Especially since they are connected by pre-tensioned
links. This is why it is interesting to develop a numerical model with two or more connected
tori and mooring line attachments. As the number of tori increases, the complexity of the
geometry and numerical implementation augments. A model with two tori connected together
at 8 symmetrical positions and four mooring lines attached equally as in the previous case will
be presented. The connecting links between the tori will be modelled by trusses. As a first
step, each connecting link is modelled by one truss, but with the possibility to increase the
number of trusses discretizing this. The discretized model is presented in figure 3.5, with the
corresponding connectivity matrix in table 3.4. A new truss case has been developed, as the
linking trusses will have floater nodes at both ends. The scale of the model is still kept the same
as the two outer tori in the model tests of the multi-torus.

3.9 Limitations of the model
The most limiting feature of the model is that the dynamic equation of motion for the
floater only is implemented in the vertical direction. Sway (y) is assumed to be negligible
[Kristiansen, 2012]. There exist terms for the forces in surge developed in [Kristiansen, 2012]
which are possible to implement, but these have not been a priority due to the limited amount of
time available for the project. Limitations of the used theoretical methods also have to be kept
in mind. Zero-frequency theory assumes that current loads are negligible, the long-wave theory
is valid, the wave radiation from the floater is negligible, the deep water dispersion relation is
valid, surrounding water has infinite horizontal extent potential theory and linear hydrodynamic
loads.

Truss number 0 1 2 3 4 5 6 7 8 9 10 11
Node end 1 0 1 2 4 5 6 8 9 10 12 13 14
Node end 2 1 2 3 5 6 7 9 10 11 13 14 15

Table 3.3: Connectivity matrix of the discretized model in figure 3.4 showing which nodes
corresponds to end 1 and 2 of the truss in between. Since the floater is included, the connectivity
matrix will no longer be banded.
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3.9 Limitations of the model

Figure 3.5: Discretization of the two-tori connected through trusses. The computational solution
time of the linear system of equations will be quite dependent of the bandedness of the matrix.

Truss number 0 1 2 3 4 5 6 7 8 9
Node end 1 0 1 2 3 17 4 5 6 7 18
Node end 2 1 2 3 21 22 5 6 7 23 24
Truss number 10 11 12 13 14 15 16 17 18 19
Node end 1 8 9 10 11 19 12 13 14 15 16
Node end 2 9 10 11 25 26 13 14 15 27 20

Table 3.4: Connectivity matrix of the discretized model in figure 3.5 showing which nodes
corresponds to end 1 and 2 of the truss in between. The discretization of the model will be
important concerning the computational solution time of the linear equation system, therefore
the truss numbers are sorted in a way that will keep as much of the non-zero entries as possible
close to the diagonal of the matrix.
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Chapter 4

Model Tests

In this chapter, the preparation, execution and post-processing of the model tests conducted in
Lilletanken during February will be described. The original multi-torus model was made by
Jonathan Windsvold during his master’s thesis in 2018, but the model has been modified and
rebuilt. During the work with the project thesis, a visualization experiment with the model made
by Windsvold was carried out. Details about this can be found in Appendix C.1.

Trond Innset from NTNU assisted in the modification and building of the model. Terje Rosten
and Torgeir Wahl contributed to the installation of measuring instruments and conduction of the
model tests. The multi-torus has been tested in regular and irregular waves with and without a
weighted membrane. The main goal of the experiment has been to measure the differences in
behaviour between the models with and without membrane. The model was made in scale 1:50
and all dimensions were scaled according to Froude scaling of which the theoretical approach
is presented in Appendix A.1.

4.1 Multi-torus
Figure 4.1 shows the multi-torus model tested during the first stage of the experiment. The
model is composed of 5 floating tori connected with trusses at 8 symmetrical positions around
each torus. The connection points correspond to the blue circles illustrated in figure 4.1 (a).
Each truss has an initial pre-tensioned length of 65.25mm and the tori has a diameter of 32mm.
This gives the total diameter of the floating multi-torus to have a diameter of 1.0m. It should be
noted that the properties of the trusses installed in this model are different from the ones used
in the model tested by [Windsvold, 2018]. Changes and effects seen from this will be discussed
later. The main parameters of the multi-torus in model and full scale can be found in table 4.1.

Corrugated plastic tubes with water-repellent tape wrapped around, as shown in figure 4.2 (c),
is used to model the tori. The tape is applied to make the tubes smoother, as well as increasing
the bending stiffness of the tubes. The bending stiffness EI was calculated from equation (2.2)
after testing done by [Windsvold, 2018]. Elastic rings, attached with a simple knot around the
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4.1 Multi-torus

(a) Definition of multi-torus model components. (b) Multi-torus installed in basin with motion capture
globes registering motion during the tests.

Figure 4.1: Illustration of model with truss attachment points at 8 symmetrical positions around
the tori and 4 mooring line attachment points. The model diameterD is 1.0m, the torus diameter
dt is 32mm and the truss length lt is 65.25mm. The global coordinate system has its origin at
the centre of the tori.

strips at each end, are used as trusses to connect the tori together, as seen in figure 4.2 (a) and
(b). Length of the elastics is adapted such that they are installed with an initial pre-tension to
avoid snap loads in the trusses. Elastics have a diameter of 3 mm and consists of a rubber core
with a polyester coating. As the load-deflection relationship of the truss stiffness is defined
according to equation (2.3), the spring stiffness coefficient kt is found by applying an axial load
and measuring the axial deflection. The model was built after design as in figure 4.1 (a) and the
actual weight/dimension properties in model and full scale are displayed in Appendix B.1.

Table 4.1: Main parameters of multi-torus in model scale and full scale. Some of the data are
taken from [Windsvold, 2018].

Description Parameter Model scale Full scale
Cross-sectional diameter of torus dt 32 mm 1.6 m
Torus mass per unit length mt 0.257 kg/m 642.5 kg/m
Torus bending stiffness EI 0.8467 Nm2 2.65 ×108Nm2

Mooring-line spring stiffness ks 14.0 N/m 35.9 kN/m
Truss spring stiffness kc 57.9 N/m 148.4 kN/m
Cross-sectional diameter of truss dc 3 mm 0.15 m

43



4.2 Multi-torus with membrane

(a) Connecting
tori together.

(b) Elastic knotted on
strips in each end.

(c) Corrugated tube with water-repellent tape.
[Windsvold, 2018]

Figure 4.2: Illustrations of how the tori are connected together with an elastic ring knotted on
strips in each end and the corrugated tube with water-repellent tape. The picture in (c) is from
[Windsvold, 2018].

4.2 Multi-torus with membrane
In the second stage of the experiment, a membrane is installed onto the model as illustrated in
figure 4.3. 5g weights are distributed over the surface to model a realistic total weight of the
membrane, which in reality will be solar panels which are installed on top of the floater. That
means only the floater is tested during the first stage of the experiments, while the complete

(a) Model with membrane and weights
distributed over membrane surface

(b) Model with membrane installed in basin

Figure 4.3: Illustration of model with membrane. The membrane is made of a 2-way stretch
polyamide material and a number of 5g weights is distributed over the surface to model the
correct mass of the solar panels in model scale.
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4.3 Set-up

Table 4.2: Weight distribution on membrane. 5g weights are distributed as symmetrically and
equally as possible over the surface of the membrane. The weights are positions in between the
tori.

Position 5g pieces [-] Total weight [g]
Torus 1 - 2 56 280
Torus 2 - 3 40 200
Torus 3 - 4 24 120
Torus 4 - 5 16 80
Inside torus 5 5 25
Membrane - 80
Total 141 785

planned structure is tested during the second stage. The goal is to compare the results, in order
to see if the behaviour of the model changes when the membrane is installed. It is desired to
use a flexible and elastic membrane, in order to keep most of the floater elasticity disturbed by
waves. The membrane is modelled by a 2-way stretch polyamide material.

As it is assumed that the weight of the solar panels in full scale will be 50kg/m2, the weight
of the membrane will be 1kg/m2 in model scale. As the total area of the membrane covers
0.785 m2, the total weight of the membrane is 785g. The membrane material weighs 80g,
which means 780g should be distributed over the surface. 5g metal weights with a dimension
L × B × H = 1cm × 1.9cm × 0.2cm are chosen to model the solar panels. The distribution
of mass can be found in table 4.2. The weights are positioned symmetrically onto the model, in
between the tori in order to keep as much of the natural membrane behaviour as possible. The
membrane is pre-tensioned when installing onto the model and attached to the top of each torus
by glue. As the first membrane set-up (m1) collapsed after a few days of use and exposure to
waves, a new and more pre-tensioned membrane (m2) was installed to repeat certain tests. The
two membrane set-ups are referred to as m1 and m2 in the rest of the report.

4.3 Set-up
The laboratory basin Lilletanken has a length L of 25m, a width B of 2.5m and the water depth
h is set to 0.7m. The experimental set-up is described by figure 4.4. A piston wavemaker
is installed in the testing facilities, generating waves which are propagating in the negative x-
direction. A parabolic beach together with wave dampers are mounted in the opposite end of the
basin from the wave maker, in order to avoid reflection of the waves and for the water surface
to calm down faster between the wave tests. The centre of the model is positioned 16m from
the wave maker. The global axis system is placed with the origin in the centre of the model and
at the water surface.
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4.3 Set-up

Figure 4.4: Illustration of model test set-up in basin, bird and side view. Global coordinate
system defined from the origin of the model initial position.

The model is moored to an initial position with four mooring lines attached to the outer torus at
45°, 135°, 225°and 315°, as illustrated in figure 4.5. The mooring fixations are situated 1.25m
horizontally and vertically away from the origin, in order to keep the angles of the mooring lines
orthogonal. Each line consists of a force ring, a thin nylon rope, a spring and a chain in the order
mentioned, as illustrated in figure 4.5. The spring stiffness coefficient of the springs used in the
mooring lines are found by a load-deflection test using equation (2.3) and the main parameters
of the mooring lines can be found in table 4.1. Springs are used to modelling the flexibility a
mooring rope in full scale normally would have. The mooring lines are tread through a hoise,
which is assumed frictionless, at the tank wall. The hoise is positioned only 5cm over water
level for the moorings to be horizontally attached. Since the force rings were attached close to
the model and the deflection of the ropes are small compared to the forces applied, it is assumed
that the eventual elasticity does not affect the mooring line forces. The mooring lines were pre-
tensioned with a force of approximately Tp = 2.6 [N ] with accuracy± 0.1 [N ]. The pre-tension
is used to avoid snap loads and submergence of the mooring lines during motion in large waves.

The water depth in the tank is not constant since there is a small leakage from the wave maker.
To keep the water depth as constant as possible, there is a pump which moves the water back
into the basin. The frequency of the water leakage and the pumping is an unknown parameter,
and the water depth, therefore, is assumed to be constant during the tests.
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4.3 Set-up

(a) Mooring system
illustration

(b) Mooring line set-up

Figure 4.5: Illustration of mooring system set-up which is composed of a chain, a spring, a rope
which goes through a frictionless hoise a few centimetres above water level and a force ring
fixed between the mooring rope and the outer torus.

4.3.1 Instrumentation
Motions of the model are measured by 24 Qualisys markers in x-, y- and z-direction. The 24
marker globes are symmetrically distributed over the model in the y-direction. There are 16
globes on the outer torus (No. 1), 4 on torus 2 as well as 2 on torus 3 and 4 on the model
without membrane. No globes are positioned on torus 5. When it comes to the model with
membrane, the globes are positioned equally as earlier explained on torus 1 and 2, while the
4 last globes are positioned between torus 3 and 4 in order to try to catch up the motions of
the membrane during impact from waves. For specific information on position, see figure 4.6.
The waves are propagating in the negative x-direction. The globes’ positions are captured by
4 cameras mounted on the side walls of the laboratory at positions illustrated in figure 4.4. At
least 2 cameras need to be able to capture each marker at all times for the specific position to be
registered. If less than 2 cameras are able to register the marker’s position, the specific marker’s
position will be lost. The sampling frequency of the cameras is 20Hz.

The model is also instrumented by 4 force rings which are positioned in the mooring system.
Each ring is fixed between the outer torus and the corresponding mooring line rope at 45°, 135°,
225°and 315°. Swivel keys are used to connect the force ring to torus and mooring line. 6 wave
probes are installed in the basin, positioned as in figure 4.4. All wave probes are placed in pair
of 2 with 0.5m distance. That means they are all positioned 1.0m from the wall on each side.
WP1/2 are positioned 2m behind the model in the x-direction, WP3/4 2m in front of the model
and WP5/6 6m in front of the model. The sampling frequency of the wave probes and the force
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4.3 Set-up

(a) No membrane (b) With membrane

Figure 4.6: Definition of position of Qualisys globes on model during tests with and without
membrane. During the tests without membrane, all 24 motion capture globes were positioned
symmetrically on top of the tori. 16 globes were placed on the outer torus (No. 1), 4 globes on
torus 2 with position 0°, 90°etc. and 2 at 0°and 180°on torus 3 and 4. No globes were positioned
on torus 5.

rings is 200Hz with a low pass filter with cut-off frequency 20Hz.

The channel description explaining which measurement devices are attached to each channel is
attached in Appendix B.2.

4.3.2 Calibration
Calibration of the physical measuring devices was done by lab technician Terje Rosten from
NTNU. Before calibrating, a zero reference is taken on all measuring equipment. This is done
as the sensors are sensitive to numerous parameters, like temperature, which is not interesting in
these tests. By calibrating, the goal is to find a reference to the signal in a relevant physical unit
[Steen, 2014]. As both wave probes and force rings are transducing voltage, it is necessary to
apply known loads (x) to find an output voltage (y) for several points. From these known values,
a calibration factor a can be found by drawing a calibration curve and assuming a linear relation
y = ax + b. All force rings and wave probes are calibrated separately after a common zero
reference has been taken. Calibration of the Qualisys system was completed by lab technician
Torgeir Wahl from NTNU.
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4.4 Observation studies

4.4 Observation studies
During the model tests with regular waves, two cameras with a slow-motion video possibility
are positioned in the set-up. The cameras are used to systematically record the behaviour of the
different models during exposition to regular waves. This is especially interesting concerning
observation and detection of overtopping, but also to discover other behaviour patterns induced
by the regular waves. Approximately 10 s of video from each wave test of all test matrices in
regular waves are captured during the tests. These are structured and saved in folders according
to model and wave series, in order to thoroughly investigate when overtopping occurs on the
model.

4.5 Test matrix
In advance of the model tests, planning is necessary in order to use the time available in
the laboratory effectively and producing useful test results. Interesting wave periods and
steepnesses were chosen based on the conditions pointed out by [Kristiansen and Borvik, 2018],
shown in figure 1.3. It is assumed that the solar islands should be possible to station at ocean
area’s having a significant wave height with 100 year return period lower than Hs < 7 m and
water depth lower than h < 600 m. As the scale of the multi-torus is 1:50, the produced
wave series is within the limits of the interesting areas, in addition to using experiences from
earlier model tests done by [Windsvold, 2018]. Wave series are made from the Matlab scripts
named generateRegular.m and generateIrregular.m prepared by professor Trygve Kristiansen.
The code takes in a .txt file with input parameters and writes out a binary file that is read by
the program which runs the wave maker and produces the desired wave series. As the sampling
frequency of the wavemaker is 50Hz, the output file is written with sampling frequency 50Hz.

Table 4.3: Input to test matrix generation script for regular waves. k is wave number,D is model
diameter, Nk is number of wave numbers, H/λ is steepness, ∆(H/λ) is change in steepness for
each step, h is water level, NT is number of wave periods, Nramp is number of ramping periods
at start and end of a series and tzero is the pause time between each series of waves.

Test kDmin kDmax Nk (H/λ)min (H/λ)max ∆(H/λ) h NT Nramp tzero

[m2] [m2] [-] [-] [-] [-] [m] [-] [-] [s]
1060 1.3764 12.5759 60 60 60 60 0.7 60 5 180
1050 1.3764 12.5759 60 50 50 50 0.7 60 5 180
1040 1.3764 12.5759 60 40 40 40 0.7 60 5 180
1030 1.3764 12.5759 60 30 30 30 0.7 60 5 180
3000 3.2146 5.5938 1 60 30 30 0.7 60 5 180
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4.5 Test matrix

4.5.1 Regular waves
For the regular wave files, the test matrix gradually runs through the desired wave numbers
k with constant steepness H/λ, before the steepness is changed and the wave number series
are run through again. The reason k is used as the variating parameter for the wave series is
that then the wave number varies linearly. Results will have a better flow since it will be most
interesting to present the results as a function of kR, where R is the radius of the torus.

The necessary input parameters to produce regular waves are the variation in wave number,
the variation in steepness, the water level h, the number of wave periods NT , the number of
ramping wave periods Nramp and the pause time between each wave series tzero. In general, the
water depth is set to 0.7m, there are run 60 wave periods for each wave type and the pause is set
to 180s. Nk describes the number of different wave numbers which are going to be generated
linearly between the minimum and maximum value set. ∆(H/λ) is the variation in steepness
between each test from minimum to maximum. The parameters and test matrices used in the
regular wave series tests can be found in table 4.3.

4.5.2 Irregular waves
For the irregular wave files, the input parameters are different. The spectral peak period Tp and
the significant wave height Hs are the variating parameters. γ, the seed and the amplification
factor are given for reproducibility of the irregular wave series. The wave generation file is

Figure 4.7: The figure illustrates the wave maker motion of a test file named 1060, which runs
through 61 wave periods from 4-14s (full scale) with constant steepness 1/60 (model scale).
Wm is the wave maker motion.
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4.6 Post-processing

Table 4.4: Input to test matrix generation script for irregular waves. Tp is spectral peak period,
Hs is significant wave height, NHs is number of series with variating significant wave height,
dHs is change in significant wave height per step, h is the water level, Seed, Amp. factor and γ
are JONSWAP spectrum parameters and tzero is the pause time between each series of waves.

Test series Tp Hs NHs dHs γ h Seed Amp. factor tzero

[s] [m] [-] [m] [-] [m] [-] [-] [-]
2006 6.0 1.0 4 0.5 0 0.7 101 1 240
2008 8.0 2.0 3 0.5 0 0.7 101 1 240
2010 10.0 2.0 3 0.5 0 0.7 101 1 240
2012 12.0 3.0 3 0.5 0 0.7 101 1 240

using a JONSWAP spectrum. NHs is the number of significant wave heights which are to
be tested for the given spectral peak period, while dHs is the step which the significant wave
height increases by for each test. The pause time tzero between each wave series is 240s. The
combination of parameters run is selected from [Faltinsen, 1993, table 2.2, p.30] which gives
information about the joint frequency of significant wave height and the spectral peak period
for the North Sea.

Figure 4.8: Time series of globe no. 15 in z-direction during wave test 3, test number 3000, on
model with membrane 2. Globe 15 is positioned on the outer torus, at 0°.
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4.6 Post-processing

(a) Original (b) Filtered

Figure 4.9: Chosen time interval to be filtered for wave no. 0, test no. 1030 of globe 15 in
vertical direction. This time series is used when the data from this test number is filtered with
a bandpass filter of 0.7 to 1.3 times the wave period to extract the first harmonic response.
Original data to the left, filtered data to the right.

4.6 Post-processing
Python has been used for post-processing of the experimental results. A total of 88 channels
were recorded during each test. Out of these were 24 Qualisys globes in three directions, 6
wave probes, 4 force rings, the wavemaker flap position and time. Specific information about
each channel can be found in Appendix B.2. 46 tests were collected measurement data from
and 28 out of these produced usable data. A large amount of data makes the job to post-process
relevant and correct results important. Discrete binary Catman files are saved from the tests
and imported to Python by a function named catmanreader.py (version February 2019) made
by David Kristiansen.

All data is saved with a sampling frequency of 200 Hz. That means a sample is saved every
0.005 s. The data collected from the Qualisys system have a sampling frequency of 20 Hz but
are saved with the same sampling frequency as all the other results. This makes filtering of
these measurements even more important, for the data to be usable. In the right plot of figure
4.10, an example of a time series collected from the motion capture system is presented. It can
be discussed whether the sampling frequency of the Qualisys system is high enough to capture
all variations of the model’s behaviour. According to Nyquist frequency, at least 2 samples per
wave period are necessary to draw a reasonable picture of the motion [Steen, 2014]. Looking at
the right plot of figure 4.10 again, it is seen that there are about 12 registered points through one
wave period, which should be enough. Remark that the test presented in the figure is the smallest
wave period tested, corresponding to T = 4.0 s in full scale. For complete wave properties of all
waves tested, see Appendix B.3.
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4.6 Post-processing

Table 4.5: Overview of tests with false measurements in regular waves. Tests with wave
steepnesses 1/40 and 1/50 are not included here, as analyses of these have not been completed
due to too many false tests and lack of time to repeat these steepnesses for both models. Table
B.3 shows the wave parameters corresponding to the test numbers.

Test name Test matrix Model False tests from Qualisys markers
1030 1030 No membrane 31,49,50
1060 complete 1060 No membrane 60
1030 m1 1030 Membrane set-up 1 34-43
1060 m1 1060 Membrane set-up 1 47-52
1030 m2 1030 Membrane set-up 2 All (other error)
1060 m2 1060 Membrane set-up 2 All (other error)

4.6.1 Regular waves
After extracting the binary files using the Catman reader function, the complete time series of
all channels are saved in a large matrix. The different channels are saved into smaller matrices,
corresponding to the signal type before the post-processing starts. Since the finite water depth
function of the wave number k is implicit, an iteration function is needed to find the wave
number corresponding to the smallest largest wave period tested. Further, a linear vector of
wave numbers corresponding to the one made in the test matrices is found. The wave period,
velocity and group velocity are also found, since they will be used later.

A choice is made to run the complete time series of the wave probes and force rings through a
low-pass filter of 0.1 Hz, in order to set the mean value to zero throughout the series. This is
necessary due to 2 different reasons. Since the water level in the basin is not constant throughout
the tests, that would cause an error source when comparing the different waves. By suppressing
the mean value, the water level mean value is set to zero between each wave series. The second
reason is drifting of the force rings since the test matrices are up to 4 hours long. Looking at
the complete test series of globe 15 in the vertical direction in figure 4.8, it is considered that
the Qualisys system is able to stabilize around zero between each wave series and therefore not
necessary to use the low-pass filter on these ahead of the next steps of analysis.

For some of the tests, the results are missing due to loss of signal on the OQUS camera 2 in the
Qualisys system. This causes some of the wave series to be incomplete and some times there
is not enough data to extract a stationary time window. In these cases, the stationary part of
the wave series either has to be deleted from the analysis or replaced by repeated tests. That
means all tests have to be verified before the stationary time window is further used. When it is
possible, usable data is sewn together to create a complete data set of the current steepness and
model. False tests deleted from the measurements used in the results are presented in table 4.5.
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4.6 Post-processing

(a) Original (b) Filtered, sliced

Figure 4.10: Chosen time interval to be saved for further processing. Wave no. 0, test no. 1030
of globe 15 in vertical direction. This time series is extracted after the time series in figure 4.9
has been filtered to signify only the first harmonic response. The time series displayed here
represents 10 wave periods. Original data to the left, filtered data to the right.

The raw data of the flap position is used to find the starting time of the first wave. Further,
the wave velocity, group velocity and distances between the different devices have been used
to find the relevant time interval. In the first place, a time interval of around 150 time periods
around each wave series is chosen for a filtering process to extract the first harmonic response.
A time window like in figure 4.9 is chosen for this matter. The original data series is presented
in the left plot of the figure, while the filtered series is plotted to the right. Further, since the
test matrices include a ramping of 5 wave periods at both start and end of each wave series, the
stationary part of the signal needs to be selected for further ahead of further analysis. A time
window of 10 wave periods is selected in the stationary part of the time series like presented in
figure 4.10. The original and filtered measurements are plotted on top of each other in figure
4.13 to make it possible to see the difference between the steps. Finally, the extracted time
windows are saved in a binary file format named pickle, which is commonly used in Python.

Vertical RAOs from regular wave tests

Wanting to plot the vertical response amplitude operators of the outer torus, the stationary time
intervals extracted from the raw data will be used. As there are 16 Qualisys globes on the
outer torus, a modal analysis, as described in section 2.5, will be used to combine the motions
recorded by each globe and separate them into modal responses. To find the amplitude of the
modal responses, the standard deviation is used. Further, the amplitude of the modal response
of each mode is divided by the amplitude of the corresponding wave. This is described further
in section 2.6.
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4.6 Post-processing

Horizontal RAOs from regular wave tests

Since the model is circular and the motion capture globes are positioned around the tori,
horizontal responses cannot be directly extracted. It is necessary to estimate the responses
in surge and sway by averaging the measured motions in the corresponding directions. This is
described in section 2.5.2 To find the horizontal responses of the outer torus, the measurements
of the 16 motion capture globes are used in the averaging. Finally, the standard deviation is used
to estimate the amplitude and the modal response amplitude is divided by the wave amplitude
of the corresponding wave, like for the vertical modes.

As the model has a circular shape, it will also have modes related to this. Different ovalization
modes are the effect of the shape. A radial parameter is found from the measured motions in the
horizontal directions. Through modal analysis, the modal responses in the radial direction can
also be extracted. From this, the RAOs are found using the same method as described above.
Remark that the first mode (n=0) is unphysical, and the first row and column from the modal
analysis system needs to be deleted.

RAOs for 7 modes are found in the vertical direction, while surge, sway and 6 ovalization modes
are calculated in the horizontal direction for regular waves. All regular wave tests with usable
data are run through the procedure described above.

4.6.2 Irregular waves
As for the regular time series, the measurement files are extracted using the Catman reader.
The file is saved in exactly the same format. Looking at figure 4.11, a complete time series of
an irregular test matrix is shown. From this, each a time interval from each test is chosen out
and filtered before it is saved in a pickle format. Wanting to calculate the vertical RAOs of the
outer torus, as well as wave and response spectra, the time series are treated in a repeating loop
completing the same procedure for each test.

Vertical RAOs from irregular wave tests

As for the regular wave tests, the measurements of the 16 Qualisys markers on the outer torus
have to be run through a modal analysis function, in order to sum up the contribution to each
mode from each marker. Further, the results of the modal analysis are run through a built-in
function in the scipy signal package named welch that completes a spectral analysis and returns
a frequency vector together with the power spectral density of the time series. The result of the
spectral analysis using welch is dependent of the input variables like length of the time window,
the length of the overlapping time window and the length of the segments that are run through
the Fast Fourier. These parameters are carefully tuned in order to give a correct representation
of the resulting spectra.
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4.6 Post-processing

The power spectral density of a modal response time series is thus the response spectrum of
each vertical mode. The same spectral analysis is completed for WP1, which is the wave probe
the least impacted away by the model. This returns the measured wave spectrum. The response
spectrum is divided on the wave spectrum, which returns the transfer function squared. The
square root of the absolute value of the transfer function returns the response amplitude operator
of the irregular wave time series, as described in equation (2.15).

Figure 4.12 shows an example of a heave RAO from a wave series with Tp = 6s and Hs=1.0m.
A response amplitude operator calculated directly from the spectral analysis is plotted towards a
smoothed RAO. The RAO is smoothed by use of a second order Savitzky-Golay filter averaging
the vector over a time window of 11 values.

Figure 4.11: Example of irregular times series, Tp = 6.0s, Hs = 1.0m, 1.5m, 2.0m, 2.5m.
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4.6 Post-processing

Figure 4.12: Example of smoothing of heave RAO. The heave RAO of the irregular wave series
of Tp= 6s and Hs= 1.0m has been run through a smoothing filter for better representation. As
the Welch PSD filter from the scipy signal package is used for the spectral analysis. The input
parameters using this are also tuned in order to give a smoother representation of the RAO. A
second order Savitzky-Golay filter has been used to average the values of selected small value
time windows in order to smooth the RAO.
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4.6 Post-processing

(a) Zoomed

(b) Time window used when filtering

Figure 4.13: Wave no. 0, test no. 1030 of globe 15 in vertical direction. Globe 15 is positioned
on the outer torus, at 0°(see figure 4.6). The red line (behind) is the original measurement. The
green line presents the bandpass filtered signal at 0.7 and 1.3 times the wave period. That means
the response of the first harmonic. The blue signal (sliced mid part) corresponds to the 10 wave
periods of the signal which are saved and will be used in further analysis.
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Chapter 5

Results and Discussion

In this chapter, the experimental and numerical results of the thesis will be presented and
discussed. The discussion will comment on the experimental and numerical results, compare
them with relevant studies and comment on the methods used. From the regular wave tests,
vertical, horizontal and radial response amplitude operators from the outer torus, as well as
overtopping and a sensitivity study of the wave amplitude are presented. Wave and response
spectra and the vertical RAOs of the outer torus, are presented from the irregular wave tests.
When it comes to the numerical study, results of the verification studies are briefly explained
and more details can be found in Appendix E.1. Unfortunately, the numerical results with the
coupled model are not physically correct, as the model has an unresolved bug in the code.
Numerous attempts to find the bug have been carried out, without success. The bug is most
likely related to the scripting and not the theoretical implementation steps.

From a post perspective, problems with the Qualisys motion capture system during the
model tests added another challenge to the post-processing and made it more time-consuming
than planned. It would have been favourable to use more time on the implementation and
development of the numerical simulation model, due to the complexity of the theoretical models
and the coupling between the two. Approximately 65% of the project time has been used on
the experiments including preparation, accomplishing and post-processing, compared to 35%
on the numerical implementation.

The model tests were conducted during February 2019 and are presented in detail in chapter
4. Some illustrative findings will be presented and discussed in the following, to give the
reader an overview of the results and physical phenomenons investigated. More results
from the experiment are found in Appendix F. Observation tests with the old multi-torus by
[Windsvold, 2018] were conducted in November 2018 during the project thesis. More details
and results from these tests can be found in Appendix C.1.
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5.1 Experimental results - regular waves

(a) WP1, H/λ = 1/30 (b) WP2, H/λ = 1/30

(c) WP1, H/λ = 1/60 (d) WP2, H/λ = 1/60

Figure 5.1: Measured wave amplitude at WP1 and WP2 VS theoretical input. m1 signifies the
first membrane multi-torus model and m2 the second membrane set-up on the multi-torus. 1030
signifies wave steepness H/λ = 1/30, whereas 1060 signify wave steepness H/λ = 1/60.

5.1 Experimental results - regular waves
In this section, experimental results from regular wave series are presented and discussed.
First, measured wave amplitudes are presented to verify that these are according to the input
amplitudes. Further, time series and RAOs for the outer torus of the models with and without
membrane are commented on. Then, the overtopping phenomenon observed is documented and
discussed through snapshots from the different wave series. As the first membrane set-up (m1)
collapsed after some days of testing, the model was reinstalled with a new membrane (m2). Due
to this, there was not enough time to repeat the tests for all steepnesses. Therefore, results for
wave steepnesses 1/60 and 1/30 are presented, as these are most complete.
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5.1 Experimental results - regular waves

5.1.1 Measured wave amplitudes
In figure 5.1, the measured wave amplitude from wave probes 1 and 2 are presented for
steepnesses 1/30 and 1/60. The theoretically calculated wave amplitude using regular wave
theory in finite water depth is plotted for comparison. WP1 and WP2 are the wave probes
positioned 6m in front of the wavemaker, the furthest away from the model of all the wave
probes. As wave series without the model in the basin were not conducted, the measurements
from these wave probes were used to avoid radiation of waves and other disturbances on the
waves from the model. Three different models have been exposed to the same test matrices and
measurements from all three are plotted for both wave probes and steepnesses. m1 and m2 refer
to the first and second membrane set-up. It is observed from the figures that the measurements
from WP1 are slightly deviating from WP2 for both steepnesses, especially for the larger wave
numbers.

The measurements show that the smallest wave amplitudes are deviating more from regular
wave theory than the larger. For wave numbers smaller than k = 5.8, the wave amplitudes
correspond well with theory. For larger wave numbers, the measured wave amplitudes are
smaller than the theoretical and fluctuating. As the wave amplitudes are slowly decreasing
for increasing wave number, it becomes evident that the small wave amplitudes have bigger
uncertainty. This observation is reinforced by the fact that both wave probes for both steepnesses
show the same trend. For kR ≥ 5.8, the wave probes show deviating results. The same trend
line of amplitudes is shown for WP1 comparing steepnesses, not accounting for the doubling of
the amplitudes. This is also true for WP2.

5.1.2 Time series of modal response
In figure 5.2, the time series resulting from the vertical modal analysis are presented for mode 0,
1 and 2 from the wave series with kR = 6.0 of four different test matrices. The figure shows that
there are few differences between the modal responses with and without membrane for the same
steepness and wave. This is only true for this exact wave period, as it will depend on how the
different models respond to the different wave periods. When comparing the two steepnesses, it
is seen that the wave height changes as the steepness does, but the quantity of response is equally
distributed over the modes for the same wave number. It is seen that the response amplitude for
mode 0, 1 and 2 is smaller than the wave amplitude inducing the response. Heave response is
dominating, then pitch and finally the first flexible has a small contribution.

5.1.3 RAOs of outermost torus
Response amplitude operators for the outermost torus are obtained by using the method
described in section 4.6.1. Vertical, horizontal and radial direction RAOs obtained from regular
wave tests are presented in this section. As there were found measuring errors on the Qualisys
measurements from all tests of the second membrane model, the results from these tests are
excluded from the analysis. The outer torus had 16 Qualisys markers symmetrically distributed
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5.1 Experimental results - regular waves

(a) H/λ = 1/30 (b) H/λ = 1/60

(c) H/λ = 1/30 (d) H/λ = 1/60

Figure 5.2: Resulting modal response time series of mode 0(heave), 1(pitch) and 2(1st flex)
compared to the wave inducing the response. All time series are from test 61, for wave steepness
1/30 and 1/60 as well as the models with and without membrane. Membrane 1 signifies the first
membrane set-up on the multi-torus. 1030 signifies wave steepnessH/λ = 1/30, whereas 1060
signifies wave steepness H/λ = 1/60. 1060 complete is the name of a file where the correct
measurement results of all wave series in 1060 have been saved and equals the measurements
done from the model without membrane of wave steepness 1/60.

over the model. Effect of wave steepness, the effect of the membrane and effect of the wave
period will be analysed and discussed.

It should be kept in mind that the results of the model with membrane (m1) are affected by
the suppression of tests 47-52 from test matrix 1060, and tests 34-43 from test matrix 1060.
The tests 31, 49 and 50 are deleted from the test matrix 1030 and test 60 is deleted from the test
matrix 1060 for the model without membrane. This results in no documentation of the changing
response in this interval. The tests results are missing as a consequence of the Qualisys system
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5.1 Experimental results - regular waves

falling out, which makes the measurements unrepresentative of the real motion of the model
during these tests.

Vertical direction

The vertical response amplitude operators for the 7 first modes are calculated. Heave, pitch and
the first flexible mode will be presented in this section. The four next modes’ RAOs can be
found in Appendix F.1.1.

Figure 5.3 shows the vertical RAO in heave for steepnesses H/λ = 1/60 and H/λ = 1/30,
with and without membrane. The measured RAOs are compared to the RAO calculated using
ZFT on the outer torus. All four measured response series in figure 5.3 follow the theoretical
representation well from kR 0.69-2.4. The first cancellation period is present at kR = 2.4, which
corresponds to a full-scale wave period of 6.47s. For wave numbers higher than kR = 2.4, an
increasing phase shift between the theoretical and experimental results is observed. The shape
of the response curve for wave numbers higher than kR = 2.4 is also different in the measured
results than in ZFT. This is most likely due to the ZFT representing the RAO of a single torus,
while the presence of multiple tori in the tested models will change the response. It is assumed
that the tori are positioned close enough to affect each other. Presence of water in between the
tori permits radiation of waves, which changes the relative motion. The tori are also connected
through trusses at 8 symmetrical positions. These connections will contribute to the change in
the relative motion of a multi-torus compared to a single-torus model. The effect increases for

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.3: Response amplitude operator for the outermost torus in heave (vertical direction,
mode 0). Comparing model with and without membrane. m1 signifies the first membrane
multi-torus model. 1060 and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30

respectively. ZFT for a single-torus is compared to the measurement results. Remark that tests
with kR = 2.27-2.65 are deleted from the results of test 1030 m1.
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5.1 Experimental results - regular waves

Figure 5.4: Illustration of difference between zero-frequency theory ω → 0 (ZFT) and low-
frequency slender-body theory (LST) [Li, 2017] for heave RAO of the outer torus in the
multi-torus. The pink curve corresponds to ZFT and the black curve LST. The blue crosses
represent the experimental RAO calculated from accelerometer measurements and the blue
circles represent the RAO calculated from Qualisys measurements from the model tests by
[Windsvold, 2018]. Courtesy to T. Kristiansen, 2019.

increasing wave numbers as the effect on the relative motion between the tori is stronger for
waves with less energy.

It is seen from figure 5.3 that the difference between the response of the model with and without
membrane is minimal in heave. This is worth to remark, as the weight of the membrane is
realistically scaled from full-scale solar panels. There are few differences between the response
of two steepnesses presented as well. This means the model’s response in heave is mainly
dependent on the period of the wave inducing the motion. Comparing the heave response
obtained in these tests with results from [Windsvold, 2018] in figure 5.4, the results show good
correspondence. This means the changes that have been made to the multi-torus, including a
decrease in mooring line spring stiffness and pre-tension as well as an increase of truss spring
stiffness, did not affect the resulting responses in heave significantly. Windsvold used 8 Qualisys
markers on the outer torus, which is only half as many as what is used here. It is therefore
expected that at least the higher modes should be better represented in these tests.

Remark that the low-frequency slender body theory (LST), developed by [Li, 2017], presented
in figure 5.4 will represent the response more precisely than the ZFT for increasing mode order
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(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.5: RAO for the outermost torus in pitch b1 (non-dimensional, vertical direction, mode
1). Comparing model with and without membrane. m1 signifies the first membrane multi-torus
model. 1060 and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
ZFT for a single-torus is compared to the measurement results.

and increasing wave frequencies. The reason is that the effect of damping and wave frequencies
are accounted for in the LST model. A curiosity of the multi torus model is that for very elevated
wave frequencies, it has an infinite number of resonance frequencies for each mode. This is due
to the water in between the tori that are causing cancelling effects and negative added mass for
very high wave frequencies.

In figure 5.5, the vertical response amplitude for mode 1, pitch, is plotted non-dimensionally.
Remark that non-dimensional means the curve does not correspond to the pitch angle, but the
non-dimensional RAO b1/ζa representing pitch. The measurements for the models with and
without membrane are compared for steepnesses H/lambda =1/60 and H/lambda =1/30.
The RAO curve calculated from ZFT for a single torus is also included. The maximum response
amplitude is lower for wave steepness H/lambda =1/30, than for H/lambda = 1/60. After the
first cancellation period at kR = 4.0, the measured responses are not corresponding as well to
the ZFT. This can be explained by two main reasons. Firstly, the ZFT only represents a single-
torus. Secondly, compared to LST, ZFT represents the response less accurately as mentioned
previously.

Also in pitch, the phase shift starts to become visible around the first cancellation period, at
kR = 4.0. Again, the phase shift can be explained by that the ZFT is only representing the
response of a single torus. It is expected that the cancelling periods will change as an effect
of the differences between the multi-torus and the single-torus. Comparing the resulting pitch
response with the responses found by [Windsvold, 2018], the results are corresponding well,
but slightly deviating for increasing wave numbers. This can be explained by the difference in
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(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.6: RAO for the outermost torus of 1st flexible (vertical direction, mode 2). Comparing
model with and without membrane. m1 signifies the first membrane multi-torus model. 1060
and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

the number of markers, as 16 markers were used in these tests compared to 8 in the experiment
by Windsvold. It is expected that the increased number of markers should increase the accuracy
of the higher mode responses calculated by modal analysis. The increased number of markers
makes it possible to extend the system of equations and solve for an increased number of modes.

The RAO of the first flexible mode, representing a banana shape seen from the side wall
of the basin, is presented in figure 5.6. The response amplitudes show low dependency to
the wave steepness and which model is used. That means there is almost no differences
between the responses with and without membrane. Compared to the results of the tests by
[Windsvold, 2018], the results correspond well in shape and amplitude. However, already
before the first cancellation period a phase shift is present. The difference can be explained
by the before mentioned difference in the number of markers used to measure the local motion
of the torus.

From this mode on, the measurements have not been compared to a theoretical approach.
Henceforth, the higher vertical modes, in general, show small response amplitudes. This means
the three first modes dominate in vertical response motions of the multi-torus and it is likely
that it would suffice to sum up these three modes to find the convergence of the vertical motion.

Horizontal direction

T1n = 2π

√
M + a11

km
(5.1)
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5.1 Experimental results - regular waves

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.7: RAO for the outermost torus in surge (x-direction). Comparing model with and
without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030 signify
wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

The response amplitude operator in surge is shown in figure 5.7. A tendency of the curve
approaching a resonance frequency as kR decreases is observed. An estimate of the natural
period in surge is found from equation 5.1. M is the total mass of the model, a11 is the added
mass in surge and km is the spring stiffness. The added mass in surge is estimated as half the
mass of the model, whereas the spring stiffness in surge is approximated as the sum of the
spring stiffness from two out of four mooring lines. The surge natural period in model scale is
estimated to T1n = 2.39s without membrane and T1n = 2.71s with membrane. Using the deep
water dispersion relation, natural periods calculated corresponds to kR = 0.70, and kR = 0.55
respectively. This confirms that the RAO in surge approaches resonant behaviour for the largest
wave periods tested. The resonance behaviour around the same wave period is also found in the
results of [Windsvold, 2018]. It is observed that the response of the model without membrane
tested for waves with steepness H/λ = 1/60 does not increase as clearly towards a resonance
peak that the other tests, but it is assumed that this is either caused by inaccuracies in the model
tests or that the response in surge without membrane is dependent of the steepness of the waves.
The first is the most likely cause. The first cancellation period is found for kR = 3.5 for the tests
with wave steepness H/λ = 1/60 and for kR = 3.0-3.5 for the tests with wave steepness H/λ =

1/30.

Sway RAO of the outer torus is presented in figure 5.8. It shows that neither of the models
moves significantly in the tangential direction of the waves and small responses are found in
sway for the measured wave periods. This reinforces the assumption that sway is negligible in
the numerical implementation model.
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(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.8: RAO for the outermost torus in sway (y-direction). Comparing model with and
without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030 signify
wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

Radial direction

In the radial direction, ovalization RAOs for 5 modes are calculated using the modal analysis
described in 2.5.3. Remark that the mode 0 in the radial direction is unphysical, and therefore
not included in the modal analysis steps. Mode 0 would represent that the tori displace radially,
which is not possible as the tori are rigid and elasticity is limited in the radial direction. Mode
1 would represent surge and is therefore also excluded from the modal analysis. That means

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure 5.9: RAO for the outermost torus in ovalization mode 1. Comparing model with and
without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030 signify
wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
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5.1 Experimental results - regular waves

(a) Snap shot (b) Snap shot

Figure 5.10: Fish farm collar of diameter 1.5 made of corrugated pipe with cross sectional
diameter 32 mm. Tested in the MC laboratory in regular waves. Courtesy to [T. Kristiansen
(unpublished), 2011]

n = 2 is the first ovalization mode. Figure 5.9 and F.5 show the RAO of the first and second
ovalization mode for both wave steepnesses and both models tested.

The RAO of the first ovalization mode for wave steepness H/λ = 1/60 shows a possible
resonance period for kR = 2.3. A smaller peak is present at the same wave period for the
model with membrane, but the resonant behaviour is damped as an effect of the membrane. The
same resonance peak is not present in either of the tests with wave steepness H/λ = 1/30. For
the model with membrane, this can be explained by deleted tests around these wave periods,
as a result of measuring errors in these tests. Since the difference of the response is so clear
comparing the two steepnesses, the results should be further looked into, to make sure the
resonance peak does not result from a set of false tests. This possibility has been investigated
thoroughly, but no indication of a problem with these tests have been found.

It should also be mentioned that the eventual resonance peak present has low energy compared
to the response in vertical modes. Neither the second ovalization mode or any of the higher
ovalization modes have significant amounts of energy. This indicates that ovalization, in
general, is very limited for both the model with and without membrane. Ovalizating behaviour
has been indicated as a possible challenge for a floating solar island since the equipment
installed would be affected by this. It is therefore beneficial for the equipment that the
ovalization is limited. Figure 5.10 shows how large ovalizations can be problematic for single-
torus models. The combination of multiple tori and interconnecting trusses is, therefore, a
significant improvement of the model design when it comes to limiting ovalization.
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5.1 Experimental results - regular waves

5.1.4 Overtopping in regular waves
A systematic study by use of cameras recording the model exposed to a stationary part of all
wave series has been conducted. This has resulted in a better understanding and documentation
on where and when the overtopping occurs for the models tested. According to research by
Prof. T. Kristiansen [personal communication, 2019], there is no indication of the overtopping
phenomena being part of the linear behaviour of the model, which makes it impossible to
describe by linear theory. It is therefore assumed that the overtopping phenomenons are induced
by higher order motions induced by the waves.

No membrane

For the model tested without membrane, overtopping is only observed for wave steepness
H/λ = 1/40 for full-scale wave periods higher than Tf =11.69s and wave steepness H/λ =

1/30 during wave periods higher than Tf =10.25s. The steepest waves tested had steepness
H/λ = 1/30. This means the waves with steepness H/λ = 1/60 and H/λ = 1/50 did not lead
to any overtopping behaviour. Observations of overtopping for wave steepness H/λ = 1/30,
with wave periods Tf =10.89s and Tf =14.0s, are shown in figures 5.11 and 5.12.

This is an improvement from the tests conducted in November 2018, of which the results are
further presented in Appendix C.2. In the November tests, overtopping aft on the model was
observed already for waves with steepnessH/λ = 1/60 and wave periods higher than Tf =9.25s
full-scale. For steepness 1/30, overtopping was observed at the aft part of the model for full-
scale wave periods higher than Tf = 6.0s. The mooring line set-up is the main change in the
model test set-up. During November tests, the mooring line spring stiffness was 28.0 N/m,
whereas the springs used in this case has a spring stiffness of 14.0 N/m. The mooring line pre-

(a) H/λ = 1/30, Tf = 10.89s (b) H/λ = 1/30 , Tf = 10.89s

Figure 5.11: Snap shots from video of model without membrane exposed to waves with full-
scale period Tf =10.89s. Wave steepness H/λ = 1/30. Overtopping observed over the two
outermost tori, at angular position 180°(aft). 0°being the point where the waves first hits the
model.
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(a) H/λ = 1/30, Tf = 14.0s (b) H/λ = 1/30 , Tf = 14.0s

Figure 5.12: Snap shots from video of model without membrane exposed to waves with full-
scale period Tf =14.0s. Wave steepness H/λ = 1/30. Overtopping observed over two outer
tori, at angular position 180°(aft). 0°being the point where the waves first hits the model.

tension was also reduced from 5.0 N in November to 2.6 N in these tests. This indicates that
the elastic behaviour of the model is strongly dependent on the mooring-line properties. It is
also likely to believe that the reduction of the mooring line spring stiffness has given the model
flexibility to better follow the waves.

In general, no overtopping was observed at the fore, where the waves first hit the model, for
regular waves. It is observed that the overtopping occurrences are fewer for these tests than
what was found during the tests of [Windsvold, 2018] with the old multi-torus model, where
overtopping was documented for wave periods Tf ≥10.0s and wave steepnesses H/λ ≥ 1/40
during these tests at the aft (180°) of the model.

Membrane set-up 1

In the first membrane set-up, the membrane was not as thoroughly tightened and stretched
on the model as in case of the second membrane set-up. The membrane got wet and started
sagging. That also means no longer pre-tensioned as desired. As the membrane was sagging,
this made the air-gap smaller and overtopping occurred for shorter wave periods and lower wave
steepnesses for this model than the second membrane set-up. Overtopping aft at the two outer
tori occurred for full-scale wave periods higher than Tf = 10.89s at wave steepness H/λ =

1/40 and for full-scale wave periods higher than Tf = 7.96s at wave steepnessH/λ = 1/30. The
highest wave period tested was Tf =14.0 full-scale and aft is the opposite position of where the
waves first hit the model. Snapshots showing overtopping behaviour can be found in figure 5.13
and 5.14. Further, a behaviour looking like slamming, induced by drag forces on the membrane,
was also observed for the same wave periods. This has not been further investigated, but
it would be interesting to measure the force working on the membrane during these occurrences.
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(a) H/λ = 1/30, Tf = 8.52s (b) H/λ = 1/30 , Tf = 12.7s

Figure 5.13: Snap shots from video of model with membrane exposed to waves with full-scale
period Tf =8.52s and Tf =12.7s respectively. Wave steepness H/λ = 1/30. In figure (a), the
membrane starts to get soaked and overtopping on outer torus is observed at 180°. In figure (b),
overtopping on the two outer tori is observed at 180°(aft). This point is the angular position
opposite of the point where the waves first hit the model.

(a) H/λ = 1/30, Tf = 14.0s (b) H/λ = 1/40 , Tf = 14.0s

Figure 5.14: Snapshots from video of model with membrane exposed to waves with full-
scale period Tf =14.0s and wave steepnesses H/λ = 1/30 and H/λ = 1/40 respectively.
Overtopping on the two outer tori is observed around angular position 180°(aft), which is
opposite of the point where the waves first hit the model.

Membrane set-up 2

As the new membrane was installed, new wave tests of the regular wave series with wave
steepness H/λ = 1/60 and H/λ = 1/30 were conducted. It can be seen in figure 5.15, where
the model is exposed to regular waves with steepness H/λ = 1/60 and full-scale wave period
Tf = 7.72s, that the membrane is more pre-tensioned when attached to the tori than in case
of the first set-up. This had a positive effect on the overtopping occurrences. In this case,
overtopping was only observed aft on the two outer tori for tests with steepness H/λ = 1/30
and all wave periods higher than Tf = 7.96s. That means almost no difference in overtopping
behaviour between the model with and without membrane is documented.
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Figure 5.15: Snap shots from video of model with membrane exposed to waves with full-scale
period Tf = 7.72s and wave steepness H/λ = 1/60. No overtopping observed for any of the
waves tested with steepness H/λ = 1/60.

(a) H/λ = 1/30, Tf = 12.7s (b) H/λ = 1/30 , Tf = 12.7s

Figure 5.16: Snap shots from video of model with membrane exposed to waves with full scale
period Tf =12.7s and wave steepness H/λ = 1/30. Overtopping is observed on the two outer
tori at angular position 180°(aft), when 0°is the position where the wave hits first. It is also
observed for wave periods Tf = 10.89-14.0s for the same wave steepness.
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5.2 Experimental results - irregular waves
In this section, experimental results from tests with irregular waves will be presented and
commented. The significant wave height and the spectral peak period have been used as
varying input parameters to represent different sea states. First, some examples of measured
wave and response spectra are illustrated. Then, the vertical RAOs of the outermost torus will
be presented. Further results can be found in Appendix F.2. It should be noted that the first
membrane (m1) collapsed during the irregular wave tests. This started already on the fourth
sea state of test matrix 2006 and became worse throughout tests 2008, 2010 and 2012. A new
membrane (m2) was set up on the model in order to make new measurements of irregular waves
with membrane, but unfortunately, the Qualisys measurements from these tests suffered from
measurement errors and are therefore not presented. The largest sea state of all test matrices
with membrane 1, that were run during the collapse, were also lost due to measuring errors as a
cause of the Qualisys system falling out.

5.2.1 Measured wave spectra
The measurements done by WP1, the wave probe that is expected to be least affected by wave
radiation and disturbances from the model, is used to make the wave spectra presented in
this section. Wave spectra with the same spectral peak period Tp are presented together. It
is expected that the area under the curve increases for increasing significant wave height Hs. As
the spectral peak period rests the same for varying significant wave height, it is expected that
the maximum amplitude peak of the spectrum rests at the same wave frequency.

(a) No membrane (b) With membrane

Figure 5.17: The wave spectra from the tests with Tp = 6s and Hs = 1.0m, 1.5m, 2.0m and 2.5m
are presented for the models with and without membrane. The largest Hs test with membrane
suffered from measuring errors due to the Qualisys system falling out, and is therefore excluded
from the results. Remark that the two vertical axis do not keep the same scale.
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(a) No membrane (b) With membrane

Figure 5.18: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 6s and
Hs = 1.0m are presented in the figure for the model with and without membrane. It is seen that
the pitch response is dominating, while the first flexible and heave response are the two other
main contributors. The other modes have small responses compared to these three.

Figure 5.17 shows the wave spectra for Tp = 6s and Hs = 1.0m, 1.5m, 2.0m and 2.5m for the
model with and without membrane. As the Qualisys system fell out during the highest Hs

for the model with membrane, these results are excluded from the graph. Both graphs show
increasing max amplitude for increasing significant wave height and the maximum amplitude
keeps at the same wave frequency for all plots. The spectra could have been plotted against
the JONSWAP spectrum for the corresponding input parameters for better verification of the
results. Further wave spectra are presented in Appendix F.2.1.

5.2.2 Response spectra
The response spectra for mode 0-6 from tests with Tp = 6s andHs = 1.0m and 2.0m are presented
in figure 5.18 and 5.19 respectively. These have been obtained through spectral analysis of the
modal responses, found through modal analysis of the time series of the 16 markers positioned
on the outer torus. Both figures show that the pitch response is dominating for the sea states
presented. Heave and 1st flexible curves also show that the model is affected by these motions,
while the higher mode responses are small compared to these. The response spectra for the
remaining tests can be found in Appendix F.2.2

5.2.3 Vertical RAOs of outermost torus
The vertical response amplitude operators of the outermost torus from irregular waves are
presented in this section. They are obtained by the method described in section 4.6.2. The
vertical RAOs for irregular waves will be compared to the results from regular waves. The
results are presented by plots where the transfer function is plotted against the wave numbers
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(a) No membrane (b) With membrane

Figure 5.19: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 6s and
Hs = 2.0m are presented in the figure for the model with and without membrane. It is seen that
the pitch response is dominating, while the first flexible and heave response are the two other
main contributors. The other modes have small responses compared to these three. Remark that
the two vertical axis do not keep the same scale.

times the radius of the outer torus, kR. Some illustrative findings are presented below, while the
remaining results are presented in Appendix F.2.3 - F.2.6.

Heave

The response amplitude operators in heave of Tp = 6.0s andHs = 1.0m, 1.5m, 2.0m and 2.5m are
plotted in figure 5.20, for the model tested with and without membrane. Theoretical RAO from
zero-frequency theory for a single torus is also plotted for comparison. As for regular waves,
the measured response follows well the theoretical curve until kR = 2.4. The measured response
also continues to follow the ZFT well until about kR = 3.5. For increasing kR, the phase shift
also commented in the regular wave results becomes more present. For ω ≥ 10.0 rad/s, there
is no energy present in the wave spectra corresponding to this RAO. These wave frequencies
correspond to kR ≥ 5.1. This indicates that the response in the RAO present for wave numbers
higher than kR = 5.1 is coming from higher order effects, and should therefore not be present in
an RAO ideally. Since it is complicated to filter out higher order effects in irregular waves, these
are left in the RAO, but the results for kR ≥ 5.1 cannot be compared to the regular wave RAOs.
The increase in response for kR = 4.0-6.0 in the tests with membrane indicates that the higher
order effects are increased as an effect of the membrane. But this should be further investigated,
as noise from the measurements and the post-processing can also be part of this. It should also
be kept in mind that RAO and spectra are largely dependent on the smoothing parameters used
in the post-processing. The same effects as mentioned for spectral peak period Tp = 6.0s are
found for the higher peak periods tested.
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(a) No membrane (b) With membrane

Figure 5.20: The heave irregular RAO for tests with Tp = 6s and Hs = 1.0m, 1.5m, 2.0m and
2.5m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.

In general, the regular and irregular wave RAOs in heave show the same trends. Both RAOs
show that the first and second cancelling periods are present at kR = 2.4 and kR = 6.0
respectively. In addition to this, the curves correspond well for kR = 1.0-2.4. For higher kR,
the two RAOs show the same trends, but the irregular wave RAOs suffer from larger amounts
of energy, which is probably caused by higher order effects as mentioned.

Pitch

In figure 5.21, the pitch RAO for tests with Tp = 6.0s and Hs = 1.0m, 1.5m, 2.0m and 2.5m are
presented. The measured pitch RAO for all wave heights follows the ZFT well at kR = 1.0-3.0.
Further, the same earlier mentioned phase shift is also present in this case. As for the heave
RAO, there is a max amplitude peak around kR = 5.5 that is higher in the measurements than in
theory. The shape also changes for kR > 4.0, equally as in the measured RAO in regular waves.
Comparing the regular pitch RAOs with the irregular, it does not show the same increase in
response for kR ≥ 4.0, which indicates that this increase is caused by higher order effects. The
results show the same trend and both follow the ZFT well for kR ≤ 4.0.

1st and 2nd flexible

In the case of the first flexible RAO, the response is significantly higher for the model with
membrane, especially around the maximum response amplitude at kR = 5.0. Even though, the
trend of the curve in both cases show the same variations depending on wave period. The trend
also coincides with the trend of the regular wave RAOs. When it comes to the second flexible
vertical RAO, the same statements as mentioned for the first flexible are true. The maximum
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(a) No membrane (b) With membrane

Figure 5.21: The pitch irregular RAO for tests with Tp = 6s and Hs = 1.0m, 1.5m, 2.0m and
2.5m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.

response amplitude occurs around the same wave period. The regular and irregular RAOs for
the first flexible are corresponding well. When it comes to the second flexible, the irregular
wave RAOs have higher response amplitudes than for regular waves. This can be caused by
noise in the signal. Plots corresponding to the first and second flexible RAOs are found in
Appendix F.2.5.

5.3 Discussion on challenges with Qualisys
There were two main reasons for the unusable data collected during the model tests. First, an
error of sampling frequency in the input wave files. The sampling frequency used to make the
tests files did not match the one of the wavemaker. This was corrected early and new input files
were made. Secondly, a repeating error with the Qualisys system made OQUS camera 2 to lose
connection with the measurement system. This problem was not solved all along the test period
and complicated the post-processing. All time series had to be checked thoroughly for missing
or deceptive data. With 24 markers tracking the motions of the model in 3 directions, this was
quite time-consuming. Most probably, an error in the Qualisys program package or an error in
the installation of the system was the reason for one of the OQUS cameras loosing connection.
Some of the test matrices had to be repeated their completeness, under constant surveillance, to
make sure the Qualisys system did not lose connection. Qualisys is a very precise and good tool
to track the motions of a system, but the problems discussed here have been time-consuming and
increased the complexity of the post-processing. The results may also include false responses
as a consequence of measurement errors which have not been caught up and suppressed.
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5.4 Discussion on multi-torus model

From time to time the cameras lost track of some of the markers. The position of the cameras
led to some of the markers getting lost during exposure to large waves. This could have been
improved by installing the cameras higher up towards the ceiling and more concentrated towards
the part of the towing tank where it is interesting to use the system. As the wave probes were
installed into the basin attached to metal beams lying on top of the side walls of the basin, these
also contributed to giving the cameras less visibility. This almost set camera 1 and 4 out of play
completely due to poor visibility. See figure 4.4 for the set-up of the model tests, including the
positions of the cameras.

As the cameras started to lose track of a marker, it was observed that the system had problems
recapturing the position and this disturbed the system such that the number of markers with
lost track increased rapidly. This made it necessary to restart the system manually. When a
restart was completed, tests with the same magnitude of waves could be run without trouble. It
was, therefore, difficult to find the reason why the problem occurred in the first place and this
made it necessary to keep the system under surveillance to avoid these types of errors. A lot of
time was lost while trying to find solutions to the problems with the system. Results from wave
steepnesses H/λ = 1/50 and H/λ = 1/40 were not given priority to post-process, as a lot of
data is missing from these tests and there was not enough time to repeat all wave matrices with
both the model with and without membrane.

5.4 Discussion on multi-torus model
The multi-torus model is built from taped corrugated tubes, hair elastics, polyester material
and 5g weights. It can be discussed whether all components give a realistic picture of a full-
scale solar island with deck. Scaling the parameters of the model up to full-scale gives an
indication of whether the properties of the materials used are realistic. Symmetric design is an
important factor and the model is not made with enough precision to assure that the trusses and
mooring lines are attached at the exact correct angular positions. Neither are the weights on
the membrane. Installation of the membrane on the multi-torus was done by hand and some
inaccuracy and dissymmetry, therefore, have to be accounted for.

It can also be discussed whether the weighted membrane set-up made a realistic representation
of the deck with solar panels. The weights were scaled in order to correctly represent a realistic
weight of a solar panel deck in model scale. A polyester net with small meshes and equal
elasticity in two transverse directions was used. Testing to find the stiffness coefficients of
the material would have made it possible to scale and compare with possibilities of full-scale
materials suitable to be used as a deck.

5.5 Discussion on error sources in experiments
Error sources in experiments are usually divided into bias errors and precision errors
[Steen, 2014]. The first are systematic errors, that can not be limited by repeated tests. Precision
errors are random errors that can be found and decreased through repeated testing. The test

79



5.5 Discussion on error sources in experiments

matrix named 3000 was made in order to repeat the tests 5 times and make an uncertainty
analysis of the model tests. This has not been completed due to lack of time. Repetition tests
could have quantified the uncertainties regarding precision errors on the model tests. Since
these have not been analysed, it is important to keep in mind that the results are not exact and
the uncertainty is unknown. That said, since the results have been compared to the multi-torus
model tests by [Windsvold, 2018], this gives an indication of the relevance of the test results.

There is some uncertainty concerning the accuracy of the force rings, as drifting was a problem
during the model tests. The force rings were calibrated before the set-up was installed and zero
settings were conducted before each test matrix was started, to limit the problem. During a test
matrix of 4 hours, the mooring force time series show drifting of the mean. By running shorter
test matrices, the drifting was limited. Using a high-pass filter on the complete time series in
the post-processing also filtered out the low frequencies caused by the drifting.

Concerning the multi-torus model, it is not perfectly circular and symmetric. In the post-
processing, angular positions of the mooring lines and Qualisys marker’s have been used, but
these are deviating from the exact position in the model. This potentially produces a small
bias error source but is difficult to quantify. Approaches used to find the mooring line spring
stiffness, truss spring stiffness and bending stiffness of the torus are simplistic and resulting in
approximated values. The precision of the Qualisys system can also be discussed. The system
is assumed to be rather accurate, but there are indications of precision being dependent on the
positions and distances of the cameras. As mentioned before, the first membrane set-up (m1)
collapsed after a few days of use. The reason was the material was not enough or symmetrically
stretched, which caused the membrane to get soaked. As it got soaked, it expanded and lost its
pre-tension. This is not desired as the pre-tension prevents snap loads. The glue used to fix the
weights onto the membrane and the membrane onto the torus also contributed to the collapse,
as it was not optimal for use in water.

Measured wave amplitudes show that the inaccuracy of the waves induced by the wave maker
increases for lower wave periods. The waves made by the wavemaker are thus deviating from
the input parameters. There is also a leakage in the wavemaker, that makes water leak out to the
area behind the wave maker. A pump is installed to transport the leaking water into the basin
again. This means the water level in the basin is not constant or exactly equal to 0.7m. The
waiting time between wave series is set to 180s for regular waves and 240s for irregular waves.
This gives time for the water surface to calm down, but it will not be completely calm before
the next wave series start. Since larger waves make more movement in the water, the water
surface will be less calm for increasing wave periods as the wave steepness stays constant in a
test matrix.
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5.6 Numerical results
In this section, the results of the numerical simulations will be presented and commented. The
implementation is presented in detail in chapter 3 First, the verification studies conducted on
the truss model will be verified towards relevant theory. Then, the results of the implementation
of the coupled truss and floater model will be presented. As mentioned before, there is a bug
in the code making these results unphysical and therefore not representable for the model. This
also makes it impossible to compare the results with the experiment.

5.6.1 Verification studies
As mentioned before, several simple verification studies have been conducted in order to make
sure of the functioning of the truss model. Among these a suspended wire, a simple pendulum,
a double pendulum and a compound pendulum. All pendulum models have been tested both
with and without elasticity. Details about the verification studies can be found in Appendix D.1.
Numerical examples and analytical solutions of the cases are presented in the same Appendix.
Further numerical results from the verification studies are included in Appendix E.1.

The resulting behaviour of the suspended wire is a vibrating string, as shown in figure E.1,
in Appendix E.1. As only gravity forces are included in the model, the internal tensions are
working against the gravity forces and making an unstable system which constantly vibrates.
When it comes to the simple rigid pendulum, the vertical tip displacement is equal to the
analytical solution presented symmetrically oscillating around the vertical axis for initial angles
less than 90°. For the case of a larger initial angle, the vertical motion is no longer symmetric,
but the motion of the pendulum mass is still symmetric. This is seen in figure E.2 in the
Appendix. The solution is converging for the smallest time step tested, which is 10−4 s. This is
seen by plotting the change in length of the truss, which is supposed to be constant.

Both the double rigid pendulum and the double compound pendulum has a characteristic
increasing chaotic behaviour as the initial position angle increases. This is complicated to
represent analytically, but a numerical example of this is presented in Appendix D.1. The
resulting behaviour of the double compound pendulum is presented in figure E.3 in the
Appendix. This shows conformity to the expected behaviour.

Compound flexible pendulum

Finally, the compound flexible pendulum solution has been compared to the results of a
numerical case by [Marino et al., 2019]. The numerical solution by [Marino et al., 2019] is
presented in figure 3.3. The results are corresponding well, taking into account that there is
no bending stiffness in the truss model. Since the lumped mass principle is applied, there is
half as much mass in the end node as the others and this makes it easily rotate around its own
centre of rotation, in addition to the lack of bending stiffness. Figure 5.22 shows the position
of the pendulum in the first second of the simulation. It is seen that increasing the number of
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(a) Position in time from 0 - 1 [s] (b) Vertical tip displacement in time

Figure 5.22: Compound flexible pendulum with uniformly distributed mass during first second
of simulation. Initial position θ0 = 90°. Simulation using 20 truss elements.

trusses in the simulation makes the deformation more realistic during the first increments, but
it rapidly becomes a problem that there is no bending stiffness included. Comparing the plots
of the vertical tip displacement in figure 5.22 to the model by [Marino et al., 2019] in figure
3.3, the results corresponds until approximately 0.8 [s], where the rotative movement of the
end node affects the vertical position. This problem is less present as the number of trusses is
reduced, as shown in figure E.4 in the Appendix, but the general motion of the complete model
is less well represented in this case. The model reminds of a hanging rope, which is correct
realistic behaviour of a compound flexible pendulum with lack of bending stiffness.

5.6.2 Single torus coupled with mooring line trusses
The results of the numerical model that includes a single torus coupled with mooring line trusses
are presented in this section. Details about the implementation of the model can be found in
section 3.7 and Appendix D.2. As mentioned above, there is a bug in the Python script which
makes the results non-physical and incorrect. At the initial time step, the models’ position is
equal to the position of the experimental multi-torus model. As the simulation of the model
starts, the horizontal coordinates of the model start expanding, making it look like the model
”explodes”. This explosion of the coordinates is shown in figure 5.23. It should be remarked that
only vertical forces are accounted for in the model, but this is not assumed to cause problems.
This means the code will not show a complete picture of how the model behaves in reality. Sway
is assumed to be negligible, but surge should be accounted for to get a more realistic behaviour.

As the horizontal coordinates explode and the solution is unstable, a hypothesis of an error in
the implementation of the change in coordinates was made. The model was changed in order
for the horizontal coordinates to be kept at their initial position and only the vertical coordinates
were allowed to change. This avoided an explosion but is obviously not a correct solution and
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Figure 5.23: Illustration of explosion for coupled floater-truss model when including change in
horizontal coordinates. Unphysical solution with horizontal coordinates multiplied 10 times.

several other problems were noted. Using the changed model, a new simulation was carried
out. A wave with the same scale as in the experiments is included to induce wave response. As
the simulation is initialized, the model starts to move slowly. First, the z-position of the floater
nodes increases slowly. From this, negative tension forces start to occur in the nodes positioned
at the middle of the mooring lines. This means the mooring lines are not tensioned any more,
which makes the lack of bending stiffness obvious. Already here, the solution is suspicious as
it is expected that the pre-tension in the mooring lines is large enough for the mooring lines to
keep a positive tension throughout the simulation. Then, the model starts sinking and it sinks
to unrealistic vertical values which in reality means the model would be submerged. Further,
the solution stabilizes and starts oscillating around approximately -0.7m depth. This complete
simulation is illustrated by figure 5.24.

Numerous trials have been done to try to find the error in the code, but none have been fruitful
so far. Among many, the complete implementation of the floater model to the floater trusses
has been examined from errors in terms of signs or missing expressions, the time step has been
reduced several times to look at whether the stability of the solution could be a problem, etc.
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5.6.3 Two tori connected with trusses
The implementation of the two-tori model, interconnected with trusses and attached by mooring
lines has been geometrically adapted for in the code to make it possible to simulate. This made
it necessary to adapt for different kind of trusses in the script, that could have floaters connected
at both ends. The pre-tension of these trusses is not as simple to correctly represent as the
mooring-line pre-tensions, but a constant was assumed based on the stiffness calculated in the
experiment.

As the single torus model attached with mooring-lines did not work, a great effort to develop the
code for all changes that are necessary to account for the double-floater trusses have not been
made. The theory is exactly the same as the one developed for the single torus, just including a
case where trusses can have floater nodes in both ends is necessary.

5.7 Discussion of error sources in numerical implementation
There are several possible error sources in the implementation. It is suspected that the error is
a bug in the code, from either a wrong sign in the implementation of forces, an error of coding
etc. There are some indications of error sources among the simulation results. As the truss
model has been tested through numerous verification studies, it is likely to believe that the error
lies in the implementation and coupling with the floater model.

First of all, the mooring lines are expected to keep positive tension throughout the simulation.
As the tension forces at some point are negative, this indicates that there might be an error in
sign in the implementation of the forces. Further, the sinking of the model could also be an
indication of some error in signs of the forces included. As mentioned during the description of
the implementation, tension forces are allowed to be negative, as this is theoretically correct for
trusses. In reality, trusses will not take compression and instead act like a hanging rope attached
between two points.

Further, the explosion can indicate some kind of instability in the solution. A too large time step
could make the solution unstable, but this possibility has already been investigated to a certain
extent. The unrealistic behaviour in the vertical direction of the floater nodes mentioned can
also be an indication of an error in the solution of the equation of motion for the floater of some
kind. This possibility has not been investigated enough.
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5.8 Discussion of numerical methods used
It is expected that the coupled model would better represent the response of the model than what
the simple single-torus ZFT does, as the presence of mooring lines and eventually another torus
would have affected the solution. Especially the effect of the other torus, positioned inside
the single torus and connected with trusses, probably would have made it possible to better
explain the deviation in behaviour for kR ≥ 4.0. The reason is that it is assumed that the tori
are positioned close enough to radiate waves that will affect the others. This assumption is
based on comparing the floaters to the two connected floating fish farm collars discussed in
[Faltinsen, 2010]. As the distance between the collars is less than a given value dependent of
the diameter and the cross-sectional diameter of the tori, it is assumed that the presence of more
than one torus will affect the others. In addition to this, the tori will in this study have interacting
forces as they are interconnected with pre-tensioned trusses.

In a complicated numerical model like this, the implementation is full of pitfalls and it is
therefore not surprising that unresolved errors like this might take time to resolve. From a
post perspective, bugs on the measurement devices during the model tests in addition to the
complexity of the post-processing have taken more time than planned. It would have been
favourable to use more time on the development of the numerical simulation model, due to
the advance in theoretical complexity compared to previous studies. As mentioned before,
approximately 35 % of the time available during the thesis has been used on the implementation
of the numerical model. This has unfortunately not been sufficient, and the final goal of
comparing the numerical solution with the experimental results have not been reached.
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(a) Mooring truss nodes moving in time during the first second of the simulation, only accounting for changes in
the vertical direction. It is observed that the mooring line is not positively tensioned anymore as time passes and
more elastic than what is realistic. Vertical motions are also unrealistically large. The increasing numbers show
how the floater sinks as the simulation goes on.

(b) Mooring truss nodes at 45° moving in time. 45°(red) is the floater truss at 45°, 0 (green) is the fixed node, 1
(blue) is the node the closest to the fixed node, 2 (cyan) is the node the closest to the floater node (45°). It is seen
that the nodes’ motions are stabilizing according to regular wave motions, but the moorings are not tensioned and
the oscillations are unrealistically elevated compared to the wave applied with wave height 0.08m.

Figure 5.24: Mooring truss nodes movements in time for a simulation of 10s, when only z-
coordinates are updated.
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Chapter 6

Concluding Remarks and Further Work

Small scale model tests with a multi-torus with and without membrane are conducted to
investigate the hydro-elastic responses of the model in regular and irregular waves. A
coupled truss and floater model is numerically implemented in Python by using numerical time
integration schemes to simulate the response in time. Design of a floating solar island should
be such that it is suited for wave conditions relevant for adequate open water locations. The
behaviour of the multi-torus in the wave conditions tested looks promising. The model follows
the waves well and the tests with membrane do not change the responses in any significant
matter. Ovalization response of the multi torus is limited, which is beneficial for the equipment
on the solar panel deck. This is an improvement when comparing with a single torus model
exposed to the same wave conditions.

Qualisys motion capture system is a good and precise tool and an unlimited number of markers
can be installed on the model. Unfortunately, the system complicated the model tests, causing
missing data for several wave conditions and need for repeating complete test matrices. More
optimal positions of the OQUS cameras, as well as troubleshooting to find the cause of camera
2 losing connection is necessary to ease the use of the system.

The documentation of model behaviour through videos show that overtopping aft of the two
outer tori is the main observed effect. Amount of overtopping has significantly reduced by
reduction of mooring line spring stiffness and mooring line pre-tension, comparing the results
to the observation tests conducted in November 2018. This indicates that the overtopping aft
of the model is strongly dependent on the mooring line properties. Further studies concerning
these parameters would be interesting, as the forces acting on the floater and membrane during
overtopping are unknown. Overtopping aft increases slightly as an effect of the membrane.
This means the overtopping occurs for slightly lower wave periods and wave steepnesses with
membrane. Slamming-like wave motion on the membrane is observed in combination with
overtopping for the largest waves tested. This is most probably caused by drag forces on
the membrane as the water passes through the meshes and should be further looked into as
slamming can be a major issue for the equipment on deck.
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The numerical implementation of the truss model is shown to be successful, through the
verification studies. Unfortunately, the coupling of the floater model with the already
implemented truss model resulted in a bug in the Python script which has not been resolved. The
bug causes the results to be non-physical and the model coordinates to extend drastically and
unrealistically. As the coupling of the models both combines complex theoretical models and
numerical integration schemes, the implementation is complicated. It is unfortunate that it has
been impossible to simulate the model numerically and compare the numerical and experimental
results. Finally, as only one set of dimensional parameters have been tested, it would have been
interesting to see the effect of changing the dimensions like air-gap, the cross-sectional diameter
of the tori and radius of the circular tori. This study is easier to conduct numerically. It is likely
to believe that an optimization of the model parameters can improve the design. Thus, the model
shows great potential both with and without membrane.

6.1 Further work
In the work with developing the multi-torus concept to a full scale floating solar island,
further research of certain subjects is necessary. The mooring line parameter dependencies to
overtopping behaviour aft on the two outer tori should be further investigated. As the effect of
the membrane is studied for the first time in this thesis, the dimensional and elastic parameters
could be optimized through further studies. This also counts for the other dimensional
parameters of the models. An ocean prototype of larger scale is also of interest to test in further
research.

Elastic properties of the deck and realistic scaling of these is essential. The equipment and solar
panels mounted on the deck will need to keep stable, having possibilities for fixing the solar
panels and be a safe workspace. However, it is important that the membrane is kept elastic so
that the model can keep its properties making it able to follow the waves smoothly. Concerning
overtopping, a study where the forces on the tori and membrane are measured when overtopping
occurs would be interesting. Overtopping behaviour in irregular waves should be more closely
documented, as overtopping earlier has been observed on several angular locations around the
tori for irregular sea states. The eigenfrequencies and vibrations induced on the membrane are
also subjects of interest.

Concerning the numerical implementation, it is left to following studies to investigate whether
the theoretical models used can describe the behaviour of a complex structure like the multi-
torus well. Further numerical studies, coupling the truss and floater models with a membrane
model describing the behaviour of the deck in addition to developing the geometry to equal the
multi-torus model will complete the numerical implementation and make it possible to compare
the numerical simulation results with experiments. Finally, the low-frequency slender body
theory is more complicated to implement but could replace the zero-frequency theory for better
accuracy of the floater motions and forces.
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Appendix A

Additional theory

A.1 Froude scaling
To obtain valid results in an experiment, similarity in forces between model and full scale is
required. According to [Steen, 2014], there are three similarity conditions which need to be
fulfilled. There has to be geometric similarity between the structures, which means the shape
of the structures are independent of the scale. This is true if there exists a constant scale ratio
between the two. A kinematic similarity needs to be fulfilled, which means the non-dimensional
velocity has to be the same in model scale and full scale. A dynamic similarity is achieved if
the force contributions and elastic relative deformations have the same ratio in all scales. If all
similarities are obtained, the model assures a valid representation of the full scale problem.

It will not be possible to satisfy all scaling laws in a practical test condition, since the the density
of water and air are limiting parameters and independent of scale. Similarity in Froude number
can assure similarity in gravity and inertia forces. As the model tested pierces the surface with a
small draft relative to the diameter, it is assumed that gravity forces are governing. This implies
that equality in Froude number is important. The Froude number is defined by equation (A.1),
where U is velocity [m/s], g is the gravitational acceleration [m/s2]and L is the characteristic
length [m] of the model. Geometrical similarity is also achieved, as the model was made with
a constant scale ratio Λ equal to 50. Froude scaling parameters used in the model testing are
defined in table A.1. The eventual difference in water density between full scale and model
scale, ρF/ρM , should be included in the scaling factor.

Fn =
U√
gL

(A.1)

Kinematic similarity could be obtained by equality in Reynolds number (Re). This will affect
the representation of viscous forces. The Reynolds number is defined by equation (A.2), and as
observed it is dependent of kinematic viscosity (ν). As this is independent of scale, kinematic
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A.1 Froude scaling

similarity will be impossible to achieve since the velocity is a limiting parameter in the testing
facility.

Re =
UL

ν
(A.2)

Table A.1: Froude scaling parameters, all represented by the scale ratio λS = LF/LM [-].

Physical parameter Scaling factor
Length λS

Pressure λS

Surface λ2
S

Volume λ3
S

Mass λ3
S

Force λ3
S

Moment λ4
S

Density 1
Acceleration 1
Velocity

√
λS

Time
√
λS

Kinematic viscosity λ
3/2
S

Dynamic viscosity λ
3/2
S
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A.2 Regular wave theory

A.2 Regular wave theory
Regular wave theory in finite water depth is used to calculate the properties of the waves used
in model testing. Equation (A.3) describes the finite water depth dispersion relation in regular
wave theory, in addition to the relation between the wave number and the wave length, as well
as the wave frequency and the wave period. An iterative process using equations (A.3) need to
be applied to find the wave numbers k from the corresponding wave periods T . Wave steepness
H/λ and wave period T will be used as known parameters, to classify the waves. When k is
known, the corresponding wave length λ and wave height H can be found. The wave height
H = 2ζa, where ζa is the wave amplitude. The different parameters are defined in figure A.1.

ω2

g
= k tanh kh k =

2π

λ
ω =

2π

T
(A.3)

Figure A.1: Regular sinusoı̈dal wave. H is wave height, ζa = H/2 is wave amplitude, λ is wave
length and SWL is still water level.
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Appendix B

Additional figures and tables

B.1 Main parameters of the tori used in the model tests
Table B.1: Diameter and weight properties of the tori in full scale and model scale. Torus
1 is largest ring and the diameter is decreasing as the torus number increases. Data from
[Windsvold, 2018].

Torus number
Model scale Full scale

Diameter [m] Weight [kg] Diameter [m] Weight [103kg]
1 1.020 0.83 50 103.8
2 0.825 0.70 40 87.5
3 0.620 0.55 30 68.8
4 0.423 0.40 20 50.0
5 0.228 0.23 10 28.8

B.2 Channel descriptions
Table B.2 presents the channel descriptions of all 88 channels.

B.3 Wave test parameters
Table B.3 presents the the wave number, model and full scale wave period of all 61 tests in the
test matrices.
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B.3 Wave test parameters

Channel Description Channel Description
0 Time 1 - default sample rate 44 y15
1 x01 45 z15
2 y01 46 x16
3 z01 47 y16
4 x02 48 z16
5 y02 49 x17
6 z02 50 y17
7 x03 51 z17
8 y03 52 x18
9 z03 53 y18
10 x04 54 z18
11 y04 55 x19
12 z04 56 y19
13 x05 57 z19
14 y05 58 x20
15 z05 59 y20
16 x06 60 z20
17 y06 61 x21
18 z06 62 y21
19 x07 63 z21
20 y07 64 x22
21 z07 65 y22
22 x08 66 z22
23 y08 67 x23
24 z08 68 y23
25 x09 69 z23
26 y09 70 x24
27 z09 71 y24
28 x10 72 z24
29 y10 73 Time 2 - default sample rate
30 z10 74 F5990 045
31 x11 75 F5994 135
32 y11 76 F8033 225
33 z11 77 F8038 315
34 x12 78 FlapPosition
35 y12 79 Time 3 - default sample rate
36 z12 80 WP1
37 x13 81 WP2
38 y13 82 WP3
39 z13 83 WP4
40 x14 84 WP5
41 y14 85 WP6
42 z14 86 Total Force Front
43 x15 87 Total Force Back

Table B.2: Channel descriptions of all 88 channels measured.
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B.3 Wave test parameters

Test no k [m−1] Tmodel [s] Tfull[s] Test no k [m−1] Tmodel [s] Tfull[s]
0 12.5800 0.5656 3.9994 31 6.7915 0.7698 5.4435
1 12.3933 0.5698 4.0294 32 6.6047 0.7807 5.5201
2 12.2065 0.5742 4.0601 33 6.4180 0.7920 5.6000
3 12.0198 0.5786 4.0915 34 6.2313 0.8038 5.6834
4 11.8331 0.5832 4.1236 35 6.0446 0.8161 5.7708
5 11.6464 0.5878 4.1566 36 5.8578 0.8291 5.8625
6 11.4596 0.5926 4.1903 37 5.6711 0.8427 5.9587
7 11.2729 0.5975 4.2249 38 5.4844 0.8570 6.0599
8 11.0862 0.6025 4.2603 39 5.2977 0.8721 6.1667
9 10.8995 0.6076 4.2966 40 5.1109 0.8880 6.2794
10 10.7127 0.6129 4.3339 41 4.9242 0.9049 6.3989
11 10.5260 0.6183 4.3722 42 4.7375 0.9229 6.5257
12 10.3393 0.6239 4.4115 43 4.5508 0.9420 6.6609
13 10.1526 0.6296 4.4519 44 4.3640 0.9624 6.8054
14 9.9658 0.6355 4.4934 45 4.1773 0.9844 6.9604
15 9.7791 0.6415 4.5361 46 3.9906 1.0080 7.1275
16 9.5924 0.6477 4.5800 47 3.8038 1.0336 7.3086
17 9.4056 0.6541 4.6253 48 3.6171 1.0615 7.5057
18 9.2189 0.6607 4.6719 49 3.4304 1.0920 7.7219
19 9.0322 0.6675 4.7199 50 3.2437 1.1258 7.9605
20 8.8455 0.6745 4.7695 51 3.0569 1.1634 8.2262
21 8.6587 0.6817 4.8206 52 2.8702 1.2056 8.5248
22 8.4720 0.6892 4.8735 53 2.6835 1.2535 8.8639
23 8.2853 0.6969 4.9281 54 2.4968 1.3087 9.2538
24 8.0986 0.7049 4.9846 55 2.3100 1.3730 9.7082
25 7.9118 0.7132 5.0431 56 2.1233 1.4490 10.2463
26 7.7251 0.7218 5.1037 57 1.9366 1.5407 10.8947
27 7.5384 0.7307 5.1666 58 1.7499 1.6536 11.6925
28 7.3517 0.7399 5.2318 59 1.5631 1.7957 12.6976
29 7.1649 0.7495 5.2996 60 1.3764 1.9800 14.0004
30 6.9782 0.7594 5.3701

Table B.3: The wave number, model and full scale wave period of all 61 tests in the test matrices.
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Appendix C

Specifications and observations from
November model tests

C.1 Specifications of model and set-up
The multi-torus model built by [Windsvold, 2018] was tested in Lilletanken during the work
with the project thesis. The connecting trusses between the tori have been replaced before
the new model tests carried out during the master thesis project. In addition to this, set-up is
somewhat different and both the mooring lines spring stiffness and pre-tension are lower than
originally. Below, further differences are presented in detail.

The model is moored to an initial position with four mooring lines attached to the outer torus at
β = 45°, β = 135°, β = 225°and β = 315°. Each mooring line consists of a force ring, a spring
and a rope as illustrated in figure C.2. The stiffness properties of the mooring-line spring can be
found in table 4.1. Since the force rings were attached to the mooring lines between the model
and the spring, and that the deflection of the ropes are small compared to the forces applied, it is
assumed that the elasticity of the ropes is infinite and that the eventual elasticity does not affect
the mooring line forces. The mooring lines were pre-tensioned with a force Tp = 5 [N ] with
accuracy ± 0.1 [N ]. The pre-tension is used to avoid slack and submergence of the mooring

Table C.1: Main parameters of multi-torus in model scale and full scale [Windsvold, 2018].

Description Parameter Model scale Full scale
Cross-sectional diameter of tori dt 32 mm 1.6 m
Torus mass per unit length m 0.257 kg/m 642.5 kg/m
Torus bending stiffness EI 0.8467 Nm2 2.65∗108Nm2

Mooring-line spring stiffness ks 28.0 N/m 70.0 kN/m
Truss spring stiffness kt 45 N/m 112.5 kN/m
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C.1 Specifications of model and set-up

Figure C.1: Illustration of model test set-up in basin. Scale between components is not exact,
but dimensions are described in figure. This corresponds to the set-up of the model tests carried
out during November 2018.

lines during motion in large waves.

The wave generation file that the wave maker uses to make the desired waves is made by
professor Trygve Kristiansen. The input for the test matrix is presented in table C.2. The input
put into a Matlab script that generates a binary .dat file which the wave maker reads. The input
is a combination of full scale and model scale parameters. Test series 1000 is generating waves
with wave periods from 5.0 to 12.0 [s], increasing the period by 0.25 [s] for each run. Be aware
that the wave periods are presented in full scale. The first interval of wave periods are run with
steepness, H/λ = 1/60, while the next interval of wave periods have steepness 1/30. The water
depth is set to 35 [m] full scale, which corresponds to 0.7 [m] in model scale. Each wave series
has 60 wave periods, where the 5 first and 5 last are used to ramp up the wave amplitude to
get a smooth increase and decrease of the waves’ amplitudes. That means 10 waves are needed
before desired wave properties get stationary. Between each run there was a pause of 180 [s] in
order for the water surface to become calm.

Table C.2: Input to test matrix generation script

Test series Tmin Tmax ∆T (H/λ)min (H/λ)max ∆(H/λ) h NT Nramp tzero

[s] [s] [s] [-] [-] [-] [m] [-] [-] [s]
1000 5.0 12 0.25 60 30 30 35 60 5 180
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C.1 Specifications of model and set-up

(a) Model set-up (b) Mooring
line
components

Figure C.2: Model set-up with mooring lines and force rings attached to side walls of basin.
The right-hand side figure illustrates the components of the mooring lines, consisting of an
attachment to the torus, a force ring, a spring and a nylon rope.

During the experiments, each run was filmed by use of a Garmin VIRB camera, in order to
visualize the problems, challenges and phenomenons occurring during the interaction of waves
with the model. The filming was done from different positions, to get as good visual overview
of the interesting areas as possible. High-speed videos and pictures were also taken using a
phone. Each tape is numbered according to wave period and steepness, but as the angle and
position of the cameras were different for all runs, not all are of sufficiently good quality.
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C.2 Observations done during November model tests

C.2 Observations done during November model tests
In general, the model shows good sea keeping abilities, looks stable and follows the water
surface smoothly in most cases when exposed to waves. Expected physical phenomena like
overtopping and surge motions were observed. Overtopping aft on the model is observed for
steep waves with long wave periods, while one event is observed fore on the outer torus for
wave steepness H/λ = 1/30 and wave period T = 7.0 [s]. Large surge motions are observed
for long waves causing ovalization due to large mooring line forces. A resonant type of yaw
motion is observed for the smallest wave periods tested. The overtopping events are exaggerated
compared to [Windsvold, 2018] due to larger pre-tension in the mooring lines, and disturbances
in the water surface due to submerged mooring line springs for elevated wave amplitudes. The
latter problem is caused due to horizontally attached mooring lines.

(a) Overview of overtopping on 3 outer tori (b) Overtopping follows surface of tori, but disturbs water
surface

(c) Overtopping, towards wave crest (d) Overtopping, towards wave trough

Figure C.3: Snap shots of overtopping occurring aft on the model, H/λ = 1/60, T = 11.75 [s]
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C.2 Observations done during November model tests

Overtopping being the most obvious challenge when facing the design concept, the force of the
impact loads caused should be looked further into. Most overtopping occurrences are only small
amounts of water sliding over the top of the structure like a dam breaking event as described
earlier. These events look rather harmless in model scale at least.

C.2.1 Overtopping
The main goal of the experiment conducted was visual observation of the model behaviour
in different wave conditions and wave interaction for different steepnesses and wave periods.
Overtopping at the aft part of the model was observed for wave periods higher than T≥ 9.25 [s]
for waves with steepness H/λ = 1/60 and for wave periods higher than T≥ 6 [s] for waves with
steepness H/λ = 1/30. It is observed that the phenomenon occurs at lower wave periods for
increasing wave steepness. At the aft part of the model, overtopping starts at the outermost tori
and is transmitted to the inner tori as the wave period increases. At the fore part of the model,
overtopping was only observed for wave period T = 7 [s] and steepness H/λ = 1/30, and only
on the outer tori. This is shown in figure C.6.

Overtopping is never observed at the two inner tori for steepness H/λ = 1/60. For this wave
steepness, both the 2 outer tori are exposed to overtopping already for T = 9.5 [s]. The
overtopping occurs only at the aft part between β = 135°and β = 180°. This means there must
be asymmetry in the model set-up, since the model behaviour is supposed to be symmetric.
This tendency continues for all observations of overtopping with this wave steepness. At wave
period T = 10.25 [s], the overtopping phenomena does not only happen when the model is
moving in the negative x-direction as it follows the wave crest, but also when the model moves
in the positive x-direction into the wave trough. From wave period T = 11 [s], the 3 outer
tori are exposed to overtopping. For wave periods higher than T ≥ 11.25 [s], the complete area
between β = 135°and β = 180°is exposed to overtopping, and there is also some exposure below
these angular positions as the wave period increases. As the wave period gets higher than T ≥
11.75 [s], there is observed more water flowing over the tori as the model moves into the wave
trough, than when it moves up on the wave crest. For the complete test with wave steepness Hλ
= 1/60, there is only small amounts of water flowing over the rings. All of the water flowing
over follows the shape of the circular ring, and no signs of sloshing are observed.

For wave steepness H/λ = 1/30, overtopping is first observed at the two outer tori between β
= 135°and β = 180°already at wave period T = 6 [s]. Already at T = 7 [s], the 3 outer tori
are exposed to overtopping. For wave periods higher than T ≥ 7.25, overtopping also occurs
at larger angles than β = 180°, and the exposure for some reason seems to get more symmetric
from here and during the next tests for an unknown reason. Already at T = 8.75 [s], there is
more water flowing over the tori than for wave steepness H/λ = 1/60, and it is observed that the
water is also more disturbed as is flows over. There is no longer a smooth water surface flowing
over the tori. At this point, there is also more water flowing over the tori when the model moves
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C.2 Observations done during November model tests

into a wave trough than when it moves up to the wave crest. For wave periods higher than T
≥ 10[s], the complete 90 °aft on the model is exposed to overtopping. That means between β
= 135°and β = 225°, and as the wave period increases also below these angular positions. At
wave periods higher than T ≥ 10.75 [s], there is also observed overtopping at β = 90°and β =
270 °. This is illustrated by figure C.5.

C.2.2 Surge motion
There is observed surge motion on the model due to the longitudinal waves. It is expected
that the model will follow the waves and being led in the direction of the waves as there is
a wave crest, while moving back towards it’s initial position as it meets a wave trough. The
surge motion increases as the wave period increases. For the lowest wave periods tested, there
is almost no surge motion, as the yaw motion dominates.

C.2.3 Yaw motion
For the lowest wave periods tested, there is a clear tendency of yaw rotation. For wave steepness
H/λ = 1/60, the rotation is mainly observed for wave periods T = 5.5 - 6.75 [s], with the biggest
rotation at wave period T = 5.75 [s]. When it comes to wave steepness H/λ = 1/30, the yaw
rotation is observed for the same wave periods, with the largest rotation at T = 6 [s]. The
observations signalize resonance in yaw around this period. The yaw motion is triggered by
asymmetry in the model. It is observed that the model gets an oval shape when the mooring
lines are pre-tensioned. This means the pre-tension in the set-up is to large compared to the
elasticity of the model. The rotation can be observed in figure C.4.

(a) Yaw rotation (b) Yaw rotation

Figure C.4: Snap shots of yaw motion at H/λ = 1/60, T = 5.75 [s]. The yaw motion can be
seen from the asymmetry in the mooring force attachment points on the model.
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C.2 Observations done during November model tests

(a) Overtopping at front of β = 90°

(b) Zoomed view

Figure C.5: Snap shot of overtopping occurring at β = 90 °, from video of T = 11.25 [s], H/λ
= 1/30. Overtopping occurs at the side, and a run-up from a wave is seen in the zoomed view.
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C.2 Observations done during November model tests

(a) Zoomed view of overtopping fore

(b) Overview of overtopping aft

Figure C.6: Snap shots of overtopping occurring tat H/λ = 1/30, T = 7.0 [s]. Overtopping
occurring at the fore outer torus and at the aft.
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C.2 Observations done during November model tests

(a) Overtopping on 4 outer tori, moving towards wave crest(b) Model moving towards wave trough, overtopping on
tori 2 & 3

(c) Model moving towards new wave crest, overtopping on
4 tori aft

(d) Model moving towards new wave trough, overtopping
on 3 outer tori

(e) Model moving towards new wave trough, overtopping
on 4 tori aft

(f) Overtopping at β = 90°when model is on wave crest

Figure C.7: Snap shots of overtopping occurring atH/λ = 1/30, T = 10.75 [s], aft on the model.
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Appendix D

Additional details on numerical simulation

D.1 Verification studies
D.1.1 Suspended wire
The suspended wire is modelled by the numerical parameters described in table D.1, and its
geometry can be seen in figure D.1. Node 1 and 6 are fixed. This is done numerically by
keeping the nodal position constant, as well as the velocity and acceleration equal to zero in all
time steps. Physical properties are presented in table 3.1, and the only external forces applied
are gravity forces. Using the material density and cross-sectional area, the mass is calculated
for each truss and lumped to the nodes. Normal behaviour would be that the wire vibrates in the
vertical direction as time goes, since the internal tension will change in time and gravity forces
will aim to equalize them. A stable equilibrium position will never be obtained, as there is no
damping forces applied to the system.

From equation 2.47, the system of equations AT = b of the suspended wire can be derived.
For simplification, wi = 2∆t/mi, wji = wj + wi and ~xji = ~xj − ~xi where node i signifies end
1 and j signifies end 2 of truss k. Remark that ŝk and l0k signifies tangential unit vector and
initial length of truss k respectively. Each row in the system of equations corresponds to one
truss element.

Table D.1: Numerical properties of suspended

Variable Parameter Unit Value
Number of trusses Ntruss [-] 5
Time step length ∆ t [s] 10−4
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D.1 Verification studies

Figure D.1: Connectivity formulation of the suspended wire, with node 1 & 6 fixed. Each truss
has initial length of 0.2 [m], and flexibility properties according to table 3.1.

A =


−w21ŝ1 · ~x21 − l201

∆tχ w2ŝ2 · ~x21 0 0 0

w2ŝ1 · ~x32 −w32ŝ2 · ~x32 − l202
∆tχ w3ŝ3 · ~x32 0 0

0 w3ŝ2 · ~x43 −w43ŝ3 · ~x43 − l203
∆tχ w4ŝ4 · ~x43 0

0 0 w4ŝ3 · ~x54 w54ŝ4 · ~x54 − l204
∆tχ w5ŝ5 · ~x54

0 0 0 w5ŝ4 · ~x65 −w65ŝ5 · ~x65 − l205
∆tχ


(D.1)

The A-matrix of the system is presented in (D.1) and the equation system with the corresponding
b-vector is presented in equation (D.2). In the b-vector, the gravity force terms 2∆t

mj
mj~g− 2∆t

mi
mi~g

cancel.

AT = b⇔ A



T1

T2

T3

T4

T5


=



l201
∆t
−
{
~x21
2∆t

+ ~u21

}
· ~x21

l202
∆t
−
{
~x32
2∆t

+ ~u32

}
· ~x32

l203
∆t
−
{
~x43
2∆t

+ ~u43

}
· ~x43

l204
∆t
−
{
~x54
2∆t

+ ~u54

}
· ~x54

l205
∆t
−
{
~x65
2∆t

+ ~u65

}
· ~x65


(D.2)

By using the equation system defined above, the system can be integrated in time to solve for
the unknown tension forces T at each time step n. Knowing these, the corresponding unknown
nodal positions of the next time step can be found from the Implicit-Explicit Euler method.

D.1.2 Simple rigid pendulum

Table D.2: Simulation properties of simple pendulum simulation. A simple sensitivity study of
the time step is conducted, searching for a stable solution. More testing would be necessary to
be sure the solution stays stable.

Variable Parameter Unit Value
Number of truss Ntruss [-] 1
Time step length ∆ t [s] 10−3, 10−4

Initial positions θ0 [°] 45, 90, 135
Point mass Mpoint [kg] 1
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D.1 Verification studies

(a) Simple
pendulum geometry

(b) Vertical point mass displacement in time.

Figure D.2: Simple pendulum geometry and analytic solution of vertical point mass
displacement in time starting from an initial position of angle θ0 and oscillating symmetrically
around θ = 0. Right figure: courtesy to [Kirkby, 2011].

The simple pendulum has a geometry as defined in figure D.2 a) and numerical properties
according to table D.2. It is modelled by one rigid truss element, which is massless and fixed in
end 1. A point mass is placed in node 2. Initial position is defined by the angle θ0. According
to theory, as the truss is rigid and there is no damping forces included, the pendulum should
move symmetrically around θ = 0°, with maximum angular displacement equal to ±θ0, which
corresponds to the initial position. This can be illustrated by figure D.2 b). Oscillation period
T0 is approximated by equation (3.9), which defines a power series developed from the ODE
of the simple pendulum d2θ

dt2
+ g

L
sin θ [Kirkby, 2011]. Thus, the pendulum in this case study

has oscillation periods according to table 3.2. It can be observed from the ODE or the power
series that the model motion is independent of mass, which means the model will act equally no
matter what point mass is used. This is due to the rigid massless truss, which makes the system
only dependent of the gravity force and the length L. For small initial angle θ0, the oscillation
period can be approximated as T0 = 2π

√
L
g

.

D.1.3 Simple flexible pendulum
To model the simple flexible pendulum, the rigid simple pendulum configuration is modified to
include elasticity in the truss. The elasticity coefficient is calculated by use of the properties in
table 3.1, but the cross-sectional area is not used to calculate the mass of the truss, as the truss
is still massless. Since there is no bending stiffness EI implemented in the truss element model,
it is expected that the truss will act as a flexible cable. The simple flexible pendulum model
is tested with use of the same numerical parameters as the simple rigid pendulum (ref. table
D.2). The behaviour is expected to be a combination of a rigid pendulum motion and a spring -
mass system where the spring creates vibration as it stretches and compresses. This means the
oscillation pattern will be changed due to the additional vibrations of the chord. The distance to
the rotational center is changing with time, which over time will cause the oscillation motion to
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D.1 Verification studies

be cancelled by the vibrations. A disturbed and more chaotic behaviour is therefore expected.

D.1.4 Double rigid pendulum

Figure D.3: Double rigid pendulum geometry. θ0 is initial position, L is length and Mpoint is
point mass. Node 1 in red is fixed (pivot).

Table D.3: Properties of double pendulum

Variable Parameter Unit Value
Number of truss Ntruss [-] 2
Time step length ∆ t [s] 10−4

Initial positions θ0 [°] 45, 90, 135
Point masses Mpoint [kg] 1

The double rigid pendulum has geometry according to figure D.3 and numerical properties
according to table D.3. The two point masses are of equal size. Even though it is possible to
define the initial angular position of the two trusses differently, these are kept equal during
all test cases. This simple model is a famous example of chaotic behaviour in dynamics.
Even though the equations of motion of the system can be obtain using Newton’s laws, it is
complicated to predict the position of the second point mass without use of a proper numerical
time evolution tool. As the trusses are rigid, the motion of the first truss will be similar to the
behaviour of the single rigid pendulum, always circulating with the pivot as center of rotation.
The difference is that the motion is no longer symmetric around the axis where θ = 0, as the
behaviour is disturbed by the second mass. Interaction between the two masses creates a chaotic
behaviour.

The second mass is root to the chaotic behaviour. The system is strongly dependent of the initial
conditions and initial angle θ0. The second mass is rotating with the first mass as center of
rotation, and the initial oscillation behaviour creates cancelling and amplification of the rotative
movement of the second mass. In figure D.4, the position of the second mass during a simulation
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D.1 Verification studies

in time is described from different initial positions. The fourth-order Adams-Bashfouth method
is used with time step dt = 10−5. Especially the plots to the right are interesting as the initial
positions of the two masses have equal angle, as in this case study. θ1 and θ2 refers to the
initial position of the first and second mass respectively. The first and second mass as well
as the truss lengths are of equal size. λmax is the Lyapunov exponent which in the article by
[Calvão and Penna, 2015] is used as a measure of chaos in the system. If the exponent is larger
than 0, there is chaos in the system, and the larger the exponent gets, the more chaos. These
results are used for comparison with the results obtained from the numerical simulation.

Unlike the simple pendulum, the system’s behaviour is also dependent of the size of the point
masses.

D.1.5 Double compound pendulum
The double compound pendulum has the same geometry and total mass as the double rigid
pendulum, but the mass is equally distributed over the rigid trusses. This means that by using
the lumped mass principle, there will only be half as much mass in node 3 as in node 2. The
numerical properties in table D.3 are used, and the model is tested from the same initial positions
as the double pendulum. Due to the difference in mass distribution, it is expected that the second
point mass will have an even more chaotic behaviour in this case. Since there is less mass in

Figure D.4: Position of the second mass of a double pendulum with different initial positions
from dynamic analysis with the fourth-order Adams-Bashforth method (dt = 10−5). Initial
positions of the two masses (m1 and m2) are of equal angle. θ1 and θ2 refers to the initial
position of m1 and m2 respectively. m1 and m2 and the truss lengths are equal. λmax is the
Lyapunov exponent which is a measure of chaos in the behaviour of the system. This increases
with initial position. Snap shot from article [Calvão and Penna, 2015].
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D.2 12 truss coupled floater and truss model

the end, smaller forces will be needed to induce rotation of the end truss around its centre of
rotation. However, when the mass is lower, the velocity induced by the gravity forces will be
smaller.

D.1.6 Double flexible pendulum
To obtain a double flexible pendulum, the double pendulum is given flexible properties
according to table 3.1. The geometry and mass distribution are kept as in the double rigid
pendulum, with point masses of 1 [kg] in node 2 and 3. When it comes to the numerical
properties, they are according to table D.3, as for the double rigid pendulum. The behaviour
will in this case depend on the mass-stiffness relationship of the model. If the flexibility is high,
the spring vibratory motions of the truss will be reason for cancelling of oscillatory movement.
It will also amplify chaos as both masses will be affected by the flexibility in the trusses. That
means the first mass will no longer have a circular movement around the pivot, as the distance
to the rotational centre will change with the elongation of the truss. The more flexibility and
mass, the more chaos. As the flexibility is decreased, the behaviour will be more like the rigid
double pendulum. Remark that the system depends of a realistic relationship between the mass
and stiffness. As in the simple flexible pendulum case, there is no bending stiffness included in
the model, so the trusses will act more as chords than beams.

D.2 12 truss coupled floater and truss model
From the truss equation 2.47 and the floater truss equation 2.48, the system of equations AT = b

can be derived. As the model is described by 12 trusses, the system will also be described by 12
equations each referring to one truss. As mentioned above, there are three possible truss types.
If a truss is connected to another truss in both ends and not affected by boundary conditions, it
will be referred to as a standard truss. As one line in the equation system refers to one truss,
the entries of one line are dependent of which other trusses are connected to it. Equation (D.3)
describes the entries in the A matrix for a standard truss k. k− 1 and k+ 1 refers to the trusses
which are connected to truss k’s end 1 and 2 respectively. For simplification, wi = 2∆t/mi,
wji = wj + wi and ~xji = ~xj − ~xi where node i signifies end 1 and j signifies end 2 of truss k.
Remark that ŝk and l0k signifies tangential unit vector and initial length of truss k respectively.

ak,(k−1) = wiŝk−1 · ~xji

ak,k = −wjiŝk · ~xji −
l20k
∆t
χ

ak,(k+1) = wj ŝk+1 · ~xji

(D.3)

In this model, the fixed nodes are consequently positioned at end 1 (k − 1) of a truss. The only
change on the entries of the A matrix in this case will be that ak,(k−1) = 0, since there is no
truss connected to end 1of these trusses. On the other hand, floater trusses will have a rather

XXI



D.2 12 truss coupled floater and truss model

more complicated change. From equation 2.48, it is observed that all trusses connected to the
same truss will affect the entries of each floater truss. Since the floater trusses in this case are
number 2, 5, 8 and 11, the entries of all corresponding positions will have additional terms. The
additional terms are described in equation (D.4). ak,(k+1) will be equal to zero since there is no
truss connected to node 2 for the floater trusses. The diagonal term has lost a mass term, since
the mass term of the floater node is cancelled by the buoyancy of the floater.

ak,k = −∆t[hθp,βj ŝk · ~xji]− wiŝk · ~xji −
l20k
∆t
χ

ak,(k+1) = 0

ak,2+ = −∆t[h1j ŝ2 · ~xji]
ak,5+ = −∆t[h2j ŝ5 · ~xji]
ak,8+ = −∆t[h3j ŝ8 · ~xji]
ak,11+ = −∆t[h4j ŝ11 · ~xji]

(D.4)

The resulting matrix is presented in (D.5), showing the positions of the non-zero terms. The
matrix is symmetric, but no longer banded due to the floater terms. The matrix is saved as a
sparse matrix in Python, due to the numerous entries that are equal to zero.

A =



a00 a01 0 0 0 0 0 0 0 0 0 0

a10 a11 a12 0 0 0 0 0 0 0 0 0

0 a21 a22 0 0 a25 0 0 a28 0 0 a2/11

0 0 0 a33 a34 0 0 0 0 0 0 0

0 0 0 a43 a44 a45 0 0 0 0 0 0

0 0 a52 0 a54 a55 0 0 a58 0 0 a5/11

0 0 0 0 0 0 a66 a67 0 0 0 0

0 0 0 0 0 0 a76 a77 a78 0 0 0

0 0 a82 0 0 a85 0 a87 a88 0 0 a8/11

0 0 0 0 0 0 0 0 0 a99 a9/10 0

0 0 0 0 0 0 0 0 0 a10/9 a10/10 a10/11

0 0 a11/2 0 0 a11/5 0 0 a11/8 0 a11/10 a11/11



(D.5)

The force vector corresponding to the model is presented in (D.6). Gravity force terms
2∆t
mj
mj~g − 2∆t

mi
mi~g cancel in the standard trusses. Fixed nodes do not affect the terms in the

b-vector of the corresponding truss. Two additional terms are added to the expression of the
floater trusses, due to the right-hand side of equation (2.48). The gravity term from node 1 is
kept in this case, since the gravity term of node 2 is cancelled from buoyancy forces.
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D.2 12 truss coupled floater and truss model

b =



l200
∆t
−
{
~x10
2∆t

+ ~u10

}
· ~x10

l201
∆t
−
{
~x21
2∆t

+ ~u21

}
· ~x21

l202
∆t
−
{
~x32
2∆t

+ ~u32 + ∆t
∑10

n=0

{ [F exc
3n −C3nan] cosnβ1

m+an33

}
− 2∆t~g

}
· ~x32

l203
∆t
−
{
~x54
2∆t

+ ~u54

}
· ~x54

l204
∆t
−
{
~x65
2∆t

+ ~u65

}
· ~x65

l205
∆t
−
{
~x76
2∆t

+ ~u76 + ∆t
∑10

n=0

{ [F exc
3n −C3nan] cosnβ2

m+an33

}
− 2∆t~g

}
· ~x76

l206
∆t
−
{
~x98
2∆t

+ ~u98

}
· ~x98

l207
∆t
−
{
~x10/9
2∆t

+ ~u10/9

}
· ~x10/9

l208
∆t
−
{~x11/10

2∆t
+ ~u11/10 + ∆t

∑10
n=0

{ [F exc
3n −C3nan] cosnβ3

m+an33

}
− 2∆t~g

}
· ~x11/10

l209
∆t
−
{~x13/12

2∆t
+ ~u13/12

}
· ~x13/12

l2010
∆t
−
{~x14/13

2∆t
+ ~u14/13

}
· ~x14/13

l2011
∆t
−
{
~x15/14

2∆t
+ ~u15/14 + ∆t

∑10
n=0

{ [F exc
3n −C3nan] cosnβ4

m+an33

}
− 2∆t~g

}
· ~x15/14



(D.6)

By using the equation system defined above, the system can be evaluated in time to solve for
the unknown tension forces T at each time step. Knowing these, the corresponding unknown
nodal positions of the next time step can be found.
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Appendix E

Additional numerical results

E.1 Verification studies
E.1.1 Suspended wire

(a) Positions at time 0 - 1 s (b) Positions at time 0 - 10 s

Figure E.1: Truss model of suspended wire modelled by 5 trusses, with dt = 10−4 s.

E.1.2 Case study: Simple rigid pendulum
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E.1 Verification studies

(a) Initial position θ0 = 45° (b) Initial position θ0 = 45°

(c) Initial position θ0 = 90° (d) Initial position θ0 = 90°

(e) Initial position θ0 = 135° (f) Initial position θ0 = 135°

Figure E.2: Left-hand side: Change in vertical tip displacement of simple rigid pendulum
during 10 seconds simulation, with changing initial position. Right-hand side: Position in time
from 0 - 1 [s] of simple rigid pendulum with point mass 1 [kg] and changing initial position.
The change in position indicates the oscillation period, as the time at the top position multiplied
by two. Simulations with time step dt = 10−4 [s].
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E.1 Verification studies
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E.1 Verification studies

E.1.3 Case study: Double compound pendulum

(a) Initial position θ0 = 45° (b) Initial position θ0 = 45°

(c) Initial position θ0 = 90° (d) Initial position θ0 = 90°

(e) Initial position θ0 = 135° (f) Initial position θ0 = 135°

Figure E.3: Left-hand side: Position in time during first second of simulation with increments
0.1 [s]. Right-hand side: Nodal position in time for complete simulation of 0 - 20 [s]. Double
rigid compound pendulum with point masses of 1 [kg] and changing initial position. Simulation
with time step dt = 10−4 [s].
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E.1 Verification studies

E.1.4 Compound flexible pendulum

(a) Position in time from 0-1 [s] (b) Vertical tip displacement

Figure E.4: Position in time from 0 - 1 [s] and vertical tip displacement of compound flexible
pendulum with uniformly distributed mass. Modelled with 4 trusses. Initial position θ0 = 90°.
It is seen that the tip bending is less of a problem with fewer truss elements, but the general
behaviour is not as well modelled as for 20 trusses.

XXVIII



Appendix F

Additional experimental results

F.1 Regular wave results
F.1.1 Vertical RAOs

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.1: RAO for the outermost torus of 2nd flexible (vertical direction, mode 3). Comparing
model with and without membrane. m1 signifies the first membrane multi-torus model. 1060
and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
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F.1 Regular wave results

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.2: RAO for the outermost torus of 3rd flexible (vertical direction, mode 4). Comparing
model with and without membrane. m1 signifies the first membrane multi-torus model. 1060
and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.3: RAO for the outermost torus of 4th flexible (vertical direction, mode 5). Comparing
model with and without membrane. m1 signifies the first membrane multi-torus model. 1060
and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
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F.1 Regular wave results

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.4: RAO for the outermost torus of 5th flexible (vertical direction, mode 6). Comparing
model with and without membrane. m1 signifies the first membrane multi-torus model. 1060
and 1030 signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

F.1.2 Ovalization RAOs

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.5: RAO for the outermost torus in ovalization mode 2, n = 3. Comparing model with
and without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030
signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
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F.1 Regular wave results

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.6: RAO for the outermost torus in ovalization mode 3, n = 4. Comparing model with
and without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030
signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.7: RAO for the outermost torus in ovalization mode 4, n = 5. Comparing model with
and without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030
signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.
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F.2 Irregular wave results

(a) Steepness H/λ = 1/60 (b) Steepness H/λ = 1/30

Figure F.8: RAO for the outermost torus in ovalization mode 5, n = 6. Comparing model with
and without membrane. m1 signifies the first membrane multi-torus model. 1060 and 1030
signify wave steepnesses H/λ = 1/60 and H/λ = 1/30 respectively.

F.2 Irregular wave results
F.2.1 Wave spectra

(a) No membrane (b) With membrane

Figure F.9: The wave spectra from the tests with Tp = 8s and Hs = 2.0m, 2.5m and 3.0m
are presented for the models with and without membrane. The largest Hs test with membrane
suffered from measuring errors due to the Qualisys system falling out, and is therefore excluded
from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.10: The wave spectra from the tests with Tp = 10s and Hs = 2.0m, 2.5m and 3.0m
are presented for the models with and without membrane. The largest Hs test with membrane
suffered from measuring errors due to the Qualisys system falling out, and is therefore excluded
from the results.

(a) No membrane (b) With membrane

Figure F.11: The wave spectra from the tests with Tp = 12s and Hs = 3.0m, 3.5m and 4.0m
are presented for the models with and without membrane. The largest Hs test with membrane
suffered from measuring errors due to the Qualisys system falling out, and is therefore excluded
from the results.

F.2.2 Response spectra
Tp = 6.0s
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.12: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 6s and
Hs = 1.5m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.

Tp = 8.0s

(a) No membrane (b) With membrane

Figure F.13: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 8s and
Hs = 2.0m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.14: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 8s and
Hs = 2.5m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.

Tp = 10.0s

(a) No membrane (b) With membrane

Figure F.15: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 10s and
Hs = 2.0m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.16: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 10s and
Hs = 2.5m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.

Tp = 12.0s

(a) No membrane (b) With membrane

Figure F.17: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 12s and
Hs = 3.0m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.

XXXVII



F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.18: Modal response spectra for mode 0-6 from irregular wave tests with Tp = 12s and
Hs = 3.5m are presented in the figure for the model with and without membrane. Remark that
the two vertical axis do not keep the same scale.

F.2.3 Heave irregular RAO

(a) No membrane (b) With membrane

Figure F.19: The heave irregular RAO for tests with Tp = 8s and Hs = 2.0m, 2.5m, and 3.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.20: The heave irregular RAO for tests with Tp = 10s and Hs = 2.0m, 2.5m and 3.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.

(a) No membrane (b) With membrane

Figure F.21: The heave irregular RAO for tests with Tp = 12s and Hs = 3.0m, 3.5m and 4.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.
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F.2 Irregular wave results

F.2.4 Pitch irregular RAO

(a) No membrane (b) With membrane

Figure F.22: The pitch irregular RAO for tests with Tp = 8s and Hs = 2.0m, 2.5m, and 3.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.

(a) No membrane (b) With membrane

Figure F.23: The pitch irregular RAO for tests with Tp = 10s and Hs = 2.0m, 2.5m and 3.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.24: The pitch irregular RAO for tests with Tp = 12s and Hs = 3.0m, 3.5m and 4.0m
are presented in this figure, both for the model with and without membrane. The largest Hs test
with membrane suffered from measuring errors due to the Qualisys system falling out, and is
therefore excluded from the results.

F.2.5 First flexible irregular RAO

(a) No membrane (b) With membrane

Figure F.25: The 1st flexible irregular RAO for tests with Tp = 6s andHs = 1.0m, 1.5m,2.0m and
2.5m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.26: The 1st flexible irregular RAO for tests with Tp = 8s and Hs = 2.0m, 2.5m, and
3.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.

(a) No membrane (b) With membrane

Figure F.27: The 1st flexible irregular RAO for tests with Tp = 10s and Hs = 2.0m, 2.5m and
3.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.28: The 1st flexible irregular RAO for tests with Tp = 12s and Hs = 3.0m, 3.5m and
4.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.

F.2.6 Second flexible irregular RAO

(a) No membrane (b) With membrane

Figure F.29: The 2nd flexible irregular RAO for tests with Tp = 6s and Hs = 1.0m, 1.5m,2.0m
and 2.5m are presented in this figure, both for the model with and without membrane. The
largestHs test with membrane suffered from measuring errors due to the Qualisys system falling
out, and is therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.30: The 2nd flexible irregular RAO for tests with Tp = 8s and Hs = 2.0m, 2.5m, and
3.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.

(a) No membrane (b) With membrane

Figure F.31: The 2nd flexible irregular RAO for tests with Tp = 10s and Hs = 2.0m, 2.5m and
3.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.
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F.2 Irregular wave results

(a) No membrane (b) With membrane

Figure F.32: The 2nd flexible irregular RAO for tests with Tp = 12s and Hs = 3.0m, 3.5m and
4.0m are presented in this figure, both for the model with and without membrane. The largest
Hs test with membrane suffered from measuring errors due to the Qualisys system falling out,
and is therefore excluded from the results.
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