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Abstract

This study covers a hydrodynamic assessment of a wave energy converter device, and on a
heaving point-absorber configuration in specific. Many commonly used analysis tools used to
evaluate point-absorbing wave energy converters are based on linear models. The foundation
in which the linear models are based on is the assumption of small motions. In those cases
linear models are efficient and provide good approximations. A contradiction is therefore
inevitable as point-absorbers are designed to induce large motions to optimise the power
absorption. Many cases and operating conditions are therefore by nature nonlinear. Hence,
it is important to have an understanding of which hydrodynamic effects are dominating
in different load situations and where it is necessary to model effects of higher order. The
main focus of the numerical assessment is to evaluate the impact of nonlinear Froude-Krylov
and hydrostatic forces. That is essentially done by accounting for the instantaneous wetted
body surface, instead of the mean wetted surface used in a linear analysis. This weak
nonlinear model is compared to results from a linear model in which considers the mean
wetted surface. Three geometries are assessed; sphere, cylinder and a model scale WEC
float. The devises are evaluated in uncontrolled conditions and with optimum PTO force.
A secondary objective is to evaluate the impact of the geometrical shape of a point-absorber
with respect to absorbed power.

It appears from the results of this study that when the immersed cross-sectional area(CSA)
of the device is constant and the waves are rather linear, the linear model can remain accu-
rate. At least in terms of the Froudy-Krylov and hydrostatic forces. When the immersed
CSA changes over time, such as for the sphere, nonlinear geometrical effects were induced in
large waves and in resonance. The effect was most prominent when an additional damping
was applied in large incident waves. There it was seen that the weak nonlinear solution
predicted a reduced heave response compared to the linear model, which resulted in a dras-
tically reduced mean power estimation. Based on the findings in this thesis, the linear
solution can in this case give an overoptimistic estimation of mean power and consequently
give a misleading guide to economic predictions. In linear conditions on the other hand,
the linear and weak nonlinear model were in good agreement also for the sphere.

The second objective was to investigate the three geometries with respect to absorbed
energy. It was seen that the WEC float absorbed most energy out of the three geometries
at resonance and in longer waves. The sphere performed at a similar rate as the two other
geometries at resonance, but absorbed substantially less power for larger waves due to the
small size. It was argued with the following reasoning: the magnitude of the exciting forces
acting on the body increases with size due to the pressure from the incident and diffracted
waves being integrated over a larger area. Since the mean power is proportional to the
square of the excitation forces, an increase in size will subsequently increase the mean
power. Lastly, it was seen that the geometry has a severe impact at resonance, but seem
to have less effect when oscillating off resonance. That implies that when control methods
are applied, which forces the device to oscillate in resonance, the geometry is important.
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1. Introduction

1 Introduction

The world is in need of renewable energy solutions to withstand the rapid temperature
increase in the atmosphere. Energy solutions offshore has a huge potential to contribute
to the inevitable change, as approximately 70 percent of the earth’s surface is covered in
water. Ocean waves is an energy source in order of terrawatts worldwide, which to date has
not been commercialized. It has the potential to be an important contributor in the mix of
renewable energy sources needed to replace fossil fuel as the world’s main energy source.

Figure 1: Different operating regions for wave
energy devices. Retrieved from [49]

This thesis will contribute with a hydrody-
namic assessment of wave energy converter
device, and on heaving point-absorber con-
figuration in specific. Many commonly
used analysis tools used to evaluate point-
absorbing wave energy converters are based
on linear models. The foundation in which
the linear models are based on is the as-
sumption of small motions. In those cases
linear models are efficient and provide good
approximations. A contradiction is there-
fore inevitable as point-absorbers are de-
signed to induce large motions to optimise the energy generation. Many cases and operating
conditions are therefore by nature nonlinear. Hence, it is important to have an understand-
ing of which hydrodynamic effects are dominating in different load situations and where it is
necessary to model effects of higher order. The main focus of the numerical assessment is to
evaluate the impact of nonlinear Froude-Krylov and hydrostatic forces. That is essentially
done by accounting for the instantaneous wetted body surface, instead of the mean wetted
surface used in a linear analysis. A secondary objective is to evaluate the impact of the
geometrical shape of a point-absorber with respect to absorbed power.

The thesis will firstly present the relevant theoretical background regarding linear and
nonlinear potential theory. A brief introduction to the foundation of boundary element
method(BEM) based software will also be given. Thereafter, a mathematical formulation
of power absorption for a point-absorber will follow. The results and discussion regarding
the numerical assessment will then be presented. The numerical simulations are separated
into three categories:

• Chapter 4: Sphere

• Chapter 5: WEC float

• Chapter 6: Sphere, WEC float and Cylinder

The first two follows the cases from an ongoing project IEA OES Task10 [56] with two
different geometries. The first regards a heaving sphere, with focus on assessing the effect

1



1. Introduction

of weak nonlinearities in small and rather steep waves. The second considers a model scaled
WEC float which is evaluated against experimental results from the Sandia Laboratiries[10]
in linear conditions. Lastly, in chapter 6, three geometries are evaluated with main focus on
absorbed energy. The thesis ends with a final conclusion and suggestions for further work.

1.1 Background and motivation

The outline of this master thesis was proposed by Dr. Ken-Robert G. Jakobsen at EDRMedeso,
and is a continuation of a project thesis written in the fall of 2018. EDRMedeso have been a
part of an ongoing project lead by the Ocean Energy Systems(OES) Task 10 Wave Energy
Converter Modeling verification and validation group. The group was established under the
OES Technology Network program under the International Energy Agency. OES was estab-
lished in 2001, and the Task 10 project was proposed by Bob Thresher from the National
Renewable Energy Laboratory(NREL) in 2015. Task 10 was approved by OES in 2016,
and the first workshop took place in September of the same year. A total of 25 different
organizations from 11 different countries participated.

Many numerical design tools today are potential theory codes, which are based on linear
potential flow assumptions. These assumptions are often violated for WECs operating in
resonance or are exposed to other nonlinear load conditions. Potential codes have been
successfully utilized in other marine sectors such as Oil and Gas for decades. But how well
do these codes perform for WEC’s which by nature operates in rather nonlinear conditions?
That is the main motivation behind the IEA OES Task10 project. Some of the objectives
for the project includes

• Assessing the accuracy of, and establishing confidence in, the use of numerical models

• Validating a range of existing computational modelling tools

• Identifying simulation methodologies that will lead to reduced risk in technology de-
velopment, improved WEC energy capture estimates, load estimates and reduced
uncertainty in LCOE(levelized cost of energy) models

• Defining future research

The main focus of the first phase of the project was to validate different codes through
code-to-code comparison. A floating sphere, restrained to move in heave only, was investi-
gated. Three model configurations(fixed, free to move in heave and free to move in heave
with external PTO damping) were tested in a set of regular and irregular wave conditions.
The simple geometry and load cases were meant to ensure good understanding and com-
parable results between the codes. The sphere is by no means a simple geometry from a
hydrodynamic aspect, but it is well-examined, easy to model correctly and therefore suit-
able for a code-to-code comparison study. Both fully linear, weak nonlinear and nonlinear
codes participated, highlighting the impact of including/excluding higher order effects. A

2



1. Introduction

joint reference paper presented on the European Wave and Tidal Energy Conference se-
ries(EWTEC) 2017[56] was written, which describes the process and results of the first
phase. The aim of future phases is to increase in complexity and move towards more re-
alistic WEC geometries and other WEC concepts. The second phase(IEA OES Task 10.2)
is currently ongoing, and regards a model-scale point-absorber WEC, designed to provide
dynamics ranging from mostly-linear for a single degree-of-freedom problem to increasingly
nonlinear in multiple degrees-of-freedom [9]. The focus in this phase is validation with ex-
isting experimental data, retrieved from a testing campaign lead by Sandia National Labs.
A more detailed description of the WEC model and the test cases are found later, in section
5.1. A paper of the second phase is under development.

The IEA OES Task10 project has been the inspiration for the majority of the simulations
performed in this study. Investigation of the same geometry and test cases allowed for easy
comparable results and validation, both with other codes and experimental data.

Figure 2: IEA OES Task 10.2 float geometry. The picture is retrieved from [10]

1.2 An overview of wave energy

History and development

The idea of extracting energy from waves is not new. Although it is not the first attempt
to make use of energy from waves, the first known patent was filed by two Frenchmen in
1799 [3]. It was a shoreline device which intention was to use waves to pump fresh water to
a nearby village. Ever since, the idea of generating energy from waves has led to a sporadic
journey, with a lot of failures and set-backs, and some success-full achievements. Leishman
and Scobie[41] estimated that over 340 patents on wave-powered generators were granted in
Britain alone between 1856 and 1973, and that the rate of invention was highest in the early
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1900’s and up to the 1930’s. The interest for utilization of wave energy slowly faded away
during the interwar period as petroleum became the world’s main energy source. However,
history has shown that ocean energy solutions boom in times of oil crisis. A sudden increased
interest in research and development regarding wave energy emerged in the aftermath of
the oil crisis in 1973. Stephen Salter and Kjell Budal(1933-1989) initiated in 1973 research
projects at universities in Scotland and Norway. In Norway, a research program was initiated
at former NTH, Trondheim. Several universities and other institutions in Europe and the
U.S followed in the next few years [24]. The oil price declined again in the early 1980’s and
consequently were the investments and focus regarding wave power drastically reduced[50].
Nevertheless, a first generation of prototypes were tested at sea and the scientific progress
and development laid a lot of the foundation for later work. Even though several concepts
were developed, no design emerged as an efficient and feasible solution. The main reason
for this was the lack of successful large-scale implementations of the technology.

Figure 3: Front page of the Norwegian maga-
zine Magne from 1901. The article suggested
using energy from waves to light up electrical
light buoys

Another boom started in the mid 1990’s,
which we currently are at the end of. Sev-
eral large-scale developments were initiated
by countries like Portugal, Japan, India
and Scotland. The world’s first commercial
wave energy device, Islay LIMPET,was in-
stalled in 2000 at the coast of Islay in Scot-
land, and connected to the United King-
dom’s National Grid. In 2008 the first
experimental, wave farm, the Aguçadoura
Wave Farm, was opened 5km north of Porto
in Portugal. It was however shut down two
months after the opening. One might say
that this paints a picture of the status of
wave energy today. One strives to commer-
cialize the industry, but there are still sev-
eral issues to overcome. Today’s research
and development within the field of wave
energy is driven by the need of low carbon
and consistent energy solutions.
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The wave energy resource

The wave energy present in the worlds
oceans origins from the sun. The varying
distribution of sunlight over the earth’s sur-
face creates winds which travels from high
pressure areas to areas of lower pressure. As the winds travel over the oceans, waves are
created due to friction between the wind and sea surface. This is an energy source in order
of terrawatts worldwide[15], which to date not has been commercialized. The transforma-
tion of energy from solar to wind to waves is an ascending chain of energy density. Ocean
waves has in fact the highest energy density out of all presently known renewable energy
sources, and it has the second largest energy potential among the ocean energy sources[36].
Although the waves has a high energy potential, the amount of extractable energy is limited.
Opinions on the exact amount varies. Some studies regarded as conservative has estimated
the amount of energy possible to exploit to be around 10-20% of the total potential [1].
This is however a considerable amount of the world’s total power consumption[14]. Data
from the International Renewable Energy Agency(IRENA) shows estimations of the wave
energy resource potential in different parts of the world. These numbers are based on yearly
average and represents an overview of the potential only.

Regions Wave Energy Potential(TWh/y)

Mediterraniean Sea and Atlantic Archipelagos 1300
Central America 1500

Western and Northern Europe 2800
Africa 3500

North America and Greenland 4000
South America 4600

Australia, New Zealand and Pacific Islands 5600
Asia 6200

TOTAL 29500

Table 1: Theoretical Potential. Data from IRENA, retrieved from [1]

An important remark is that renewable energy sources complements each other. Areas with
good conditions for ocean thermal energy aren’t necessarily the same areas which contains
a high amount of wave energy. In fact ocean thermal energy has a high potential along
the equator, whilst the energy contained in the ocean waves are highest in latitudes 40-50
degrees [24]. This is connected with the solar power, and it’s seen that in countries with a
significant wave energy potential the solar energy tends to be less[6]. Moreover, wind and
waves are traveling with different speeds and are consequently often present at different
times. An advantage of wave energy is, according to Akar et al.[2], that the electricity
power extraction is continuous 90% of the day, which for wind and solar are 20% and 30%
in comparison. A combined utilization of these energy sources can therefore contribute to
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more reliable and continuous electricity supply. A study by Mørk et al. [43] obtained the
data illustrated in figure 4. It shows that the largest power levels in general occur along
the west coast. In Europe, the largest power levels occur ouside Scotland and Ireland. The
power level along the Norwegian coast is large as well, and the potential for utilizing wave
energy is huge.

Figure 4: Annual net theoretical coastal power worldwide. Retrieved from [43]

Status of the wave energy industry today

Today one strives to commercialize the industry, making it competitive with other energy
sources. Data from IRENA shows that ocean energy is much less utilized compared to other
renewable resources such as hydropower, wind and solar energy(see figure 5). Ocean energy
here includes wave energy, tidal energy, salinity gradient energy and ocean thermal energy.
One of the issues which prevents commercial use is that it can be challenging to integrate
the power from large WEC’s into electricity grid due to the variable wave properties, re-
ferring to high variability in height, period and direction in both space and time. As a
consequence of the wave energy not yet being commercialized, there are little grid facilities
in areas where the wave resource is prominent, which makes it even more difficult to in-
stall large scale WEC’s at desirable locations. Another issue is extreme weather. Extreme
weather conditions influence the design of the construction, operations and provides chal-
lenges regarding the maintenance. Altogether, this makes it difficult to plan and harvest
the energy.
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Figure 5: Trends in renewable energy. The plot shows installed capacity(MW) worldwide.
Data from IRENA [37]

There are however countries which regardless has focused on development within wave
energy. Numbers from the Annual Report Ocean Energy Systems 2016 [46] shows that
the interest and awareness of the wave energy resource is increasing. Table 2 contains an
overview of WEC installations around the world. Not all of the WEC’s included in the
table were yet commercialized.
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Country Planned Installed Operational Total

Canada 0 0 11 11
New Zealand 0 20 0 20

Denmark 39 12 1 52
Italy 0 150 0 150

Mexico 200 0 0 200
Ghana 0 0 450 450
Spain 0 230 296 526
Korea 0 0 665 665
China 0 400 300 700

Portugal 350 0 400 750
United States 1335 500 30 1865

Sweden 0 0 3200 3200
Ireland 5000 0 0 5000

Table 2: Wave Energy Converters measured in kilowatt (kW). The numbers are valid as
the end of 2016 and are retrieved from the Annual Report Ocean Energy Systems 2016[46]

Estimations from IRENA further indicates that approximately 10.3 million people world-
wide were employed within the renewable energy sector in 2017. Out of these, a very small
amount are working with wave energy. As can be seen in figure 6, the combined labour
within tidal, wave and other ocean energy sources are the lowest out of all the listed ones.
Although these numbers comes with an uncertainty related to them, it clearly reflects the
fact that the industry not yet is commercialized. For wave energy technology to be commer-
cialized, it’s important to ensure recruitment of more people to contribute to research and
development and to create awareness of the energy potential that the ocean waves contain.
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Figure 6: Number of jobs within each branch of renewable energy. The numbers origins
from IRENA jobs database

Principles of extracting wave energy

There are several principal ideas of how to utilize the energy from waves. These different
ideas leads to a vast variation of wave energy converters, referred to as a WEC. A wave
energy converter is the device which harness energy from waves. There have been a lot of
different WEC configurations throughout the years, and there are still a lot of ideas of how
to efficiently extract the energy. There are mainly three categories of WEC devices

• Oscillating water column(OWT)

• Overtopping devices

• Wave activated bodies

The concept of the OWT is to use an oscillating water column inside a chamber to create
a fluctuating air pressure which drives a turbine. Several different configurations based on
this principle has been tested. The japanese naval officer Yoshio Masuda (1925–2009) is
considered a pioneer within the wave energy technology, and used the principle of OWT
to power a navigation buoy. The utilization of this technology has further developed, and
one of the most famous concepts is ”The Mighty Whale”[34], developed by the Japanese
research group at the Japan Marine Science and Technology Center.
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Figure 7: Principle sketch of an OWT configuration. The blue oval shape represents the
turbine

The idea behind the second configuration, referred to as Overtopping devices, is to lead
the waves into an ascending ramp and let the water overflow a certain threshold. The
waves are led into a chamber which stores the water at a higher level than the free surface
level. The potential energy created by the height difference can then be used to run a low
headed hydraulic turbine[1]. Some concepts which are based on this technology today are
Tapchan(tapered channel) [42] , Seawave Slot Cone Generator [55] and Wave Dragon[52].

Figure 8: Principle sketch of an overtopping device.The blue oval shape represents the
turbine

The third category(i.e wave activated bodies) includes all devices that are based on the
principle of extracting energy from wave induced motions of a solid body. Several different
ideas within this category have been explored. Two concepts are to exploit the relative
motion between different parts of a system(multibody) or use the relative motion between
a body and a fixed reference point(e.g at the seabed). Pelamis [58] is an example of the
former. An advantage of these so called multibody solutions is that it avoids the challenge
of having something react relative to a system at the seabed when the water depth is
large. The PowerBouy 1 is an example of the latter, and is a heaving system where the
motion relative to the seabed is used. Several other heaving motion concepts exists, and
also concepts which uses oscillating modes in surge/sway and pitch. These types of methods
are suitable in deep waters where the waves are powerful. They are most efficient when

1https://www.oceanpowertechnologies.com/powerbuoy
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the body is oscillating in resonance with the ocean waves. This thesis will focus on a
wave activated body configuration, and on a point-absorber in specific. The principle is
illustrated in figure 9. Figure 10 contains an overview of some of the devices which have
been developed throughout the years.

Figure 9: Principle sketch of a point absorbing buoy

Figure 10: Overview of WEC devices throughout the years and until today. Retrieved form
[19]
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2 Numerical Model

This chapter will present the relevant mathematical theory necessary to describe the dy-
namic behaviour of a floating object in regular monochromatic waves. Two mathematical
models will be presented which are based on the foregoing theory. A brief review of the
software used to conduct the calculations is also included. It is expected that the reader
has some knowledge within the field of linear and nonlinear potential theory and boundary
element methods(BEM).

2.1 Theoretical background

2.1.1 Linear wave theory

The basic assumptions of linear wave theory, also known as Airy wave theory, is the as-
sumption of homogeneous, incompressible, inviscid fluid and irrotational flow. The wave
amplitude is further assumed to be small compared to the wave length and water depth.
A natural starting point to introduce the theory is by looking at the velocity potential.
The velocity potential, φ has turned out to be mathematically very convenient, and can
be used to describe the fluid velocity vector V(x, y, z, t) = (u, v, w) at a time t in a point
X = (x, y, z). The velocity in terms of the potential yields

V = ∇φ ≡ i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
(2.1)

where i, j and k denotes the unit vectors along the x-, y- and z-axes. Conservation of mass
for an incompressible fluid with constant density gives the relation ∇·V = 0, also referred
to as the continuity equation. By inserting equation (2.1) for V in the continuity equation,
it follows that the velocity potential must satisfy the Laplace equation

∇2φ = 0 (2.2)

The pressure p follows from conservation of momentum(i.e Navier-Stokes equation). When
assuming inviscid fluid, the associated term of the Navier–Stokes equation is zero. The
resulting conservation equation for the fluid momentum is known as the Euler equation

∂V

∂t
+ V· ∇V = −p

ρ
+ g (2.3)

where ρ is the fluid density and g is the gravitational acceleration. With the assumption of
irrotational fluid motion, the velocity vector can be expressed with the velocity potential,
which results in the well known Bernoulli’s equation
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Figure 11: Movement of a water particle at the free surface in deep and finite water.
Retrieved from [47]

p+ ρgz + ρ
∂φ

∂t
+
ρ

2
|∇φ|2 = C(t) (2.4)

where C(t) is an arbitrary function dependent on time. The time dependence is included
in the velocity potential, hence C(t) → C. As a consequence of the assumptions made,the
equation above is true for unsteady, irrotational and inviscid fluid motion [27].

Kinematic boundary conditions

For a moving body in a fluid the impermeability (no fluid enters or leaves the body surface)
condition yields

∂φ

∂n
= U·n (2.5)

on the body surface. ∂
∂n denotes the differentiation along the normal of the body. U is any

type of body motion. For a rigid body, U can be both translatory and rotary motions.

The kinematic boundary condition at the free surface states that a fluid particle on the
free-surface remains at the surface, which is described by the following equation

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
+
∂φ

∂y

∂ζ

∂y
− ∂φ

∂z
= 0 on z = ζ(x, y, t) (2.6)

where z = ζ(x, y, t) is the free-surface. When assuming small wave height compared to
length and water depth, the product of two terms are negligible. By a Taylor expansion
one can transfer the free surface conditions from z = ζ(x, y, t) to the mean surface(i.e at
z = 0). Thus, equation (2.6) can be abbreviated to

∂ζ

∂t
− ∂φ

∂z
= 0 on z = 0 (2.7)
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Dynamic free-surface condition

The dynamic free-surface condition states that the water pressure on the free-surface is
equal to the atmospheric pressure, p0. By inserting p0/ρ for C in Bernoulli’s equation, then

gζ +
∂φ

∂t
+
ρ

2
|∇φ|2 = 0 on z = ζ(x, y, t) (2.8)

By only keeping linear terms, and transform the condition from the free-surface position to
the mean free-surface, equation (2.8) yields

gζ +
∂φ

∂t
= 0 on z = 0 (2.9)

Combined linear free-surface condition

By combining the kinematic and dynamic free surface condition(i.e combine (2.7) and (2.9)),
a combined free surface equation can be written as

∂2φ

∂t2
+ g

∂φ

∂z
= 0 on z = 0 (2.10)

For a harmonically oscillating velocity potential in time, equation (2.10) can be expressed
in terms of the circular frequency

−ω2φ+ g
∂φ

∂z
= 0 on z = 0 (2.11)

Linear regular wave

By assuming a horizontal sea bottom and a free-surface of infinite horizontal extent one
can express the Airy wave theory for propagating waves. Through implementation of the
combined free-surface condition in the Laplace equation, the sea bottom condition is derived

∂φ

∂z
= 0 for z = −h (2.12)

where h denotes the mean water depth. With the assumptions of ideal, irrotational fluid, a
velocity potential which satisfies the linear free surface conditions, the impermeable bottom
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condition and the Laplace equation in the whole fluid domain in finite water depth, can be
expressed as

Φ0(X, t) = φ0(X)e−iωt = − igζacosh[k(z + h)]

ωcosh[kh]
ei[−wt+k(xcos(θ)+ysin(θ))+α] (2.13)

where X = (x, y, z) denotes the location in the Cartesian coordinate system, ζa is the wave
amplitude, ω is the wave frequency(rad/s), k is the wave number, θ is the wave propagating
direction and α is the wave phase. For infinite water depth(h →∞), the velocity potential
in (2.13) can be simplified to

Φ0(X, t) = φ0(X)e−iωt = − igζa
ω

ei[−wt+k(xcos(θ)+ysin(θ))+α] (2.14)

which is the equation of interest since the numerical simulation performed in this assignment
assumes infinite water depth. The elevation of the water surface at a position (x, y) can
then be found from the dynamic surface condition, and in complex notation be expressed
as

ζ = ζae
i[−wt+k(xcos(θ)+ysin(θ))+α] (2.15)

The relation between the wave frequency and the wave number(i.e the linear dispersion
relation) is further described as

ω2 = kg tanh(kh) (2.16)

The wave number, k, is expressed as k = 2π
λ where λ denotes the wavelength. The wave

period, T is expressed as T = 2π
ω . For infinite water depth, the linear dispersion relation is

simplified to

ω2 = kg (2.17)

First order hydrostatic forces

The hydrostatic force on a floating body occur from the balance between buoyancy and
gravity. The buoyancy of a partially or totally immersed body is the vertical upthrust from
the displaced water:

FB = ∇ρg (2.18)

where ∇ is the volume of displaced water. When the body is in the equilibrium position
in still water, the buoyancy force equals the structural weight of the body. More generally,
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the hydrostatic force is the fluid force acting on the body in still water. It is calculated
by integrating the pressure over the wetted surface in undisturbed conditions, which is
embodied in the static term in Bernoulli’s equation. In a fully-linear representation, the
pressure integral considers the mean wetted surface S0

Fhys = −
∫
S0

psndS (2.19)

where ps = −ρgz. From this expression a restoring force emerges when the body is mov-
ing. When a body is freely floating, the restoring forces acts on the body to bring it back
to the equilibrium position. The restoring force can be represented by a hydrostatic stiff-
ness(analogously to a spring), which in the case of a heaving body is proportional to the
cross-sectional area at the still water level(SWL).

Fs = −C33z = −ρgASWLz (2.20)

where ASWL is the cross-sectional area at the still water level. The hydrostatic force in
heave can then be expressed as [47]

Fhys = ∇ρg + ρgASWLz (2.21)

which consist of the hydrostatic buoyancy and restoring term. The linearitzation of the
hydrostatic force provides a reasonably accurate approximation when the body motions are
small.

First order hydrodynamic forces

When a freely floating body is present in the fluid domain, new effects arise. These factors
are, due to linearity, separated into two problems; the radiation problem and the diffraction
problem. The diffraction problem derives from the case where the floating body is held
stationary and exposed to an incoming wave field. The diffraction problem considers the
velocity potential of the incident wave field in the absence of the floating body, and the
scattering velocity potential, which is scattering of the waves due to the body presence.
The incident wave potential will be denoted φ0, and is described above. The scattering
velocity potential is denoted φ7, and is referred to as the diffraction potential. The sum of
the two loads corresponding to these two potentials gives the wave excitation loads. The
contribution from the incident wave potential is known as Froude-Krylov loads, and the
contribution from the scattered waves are known as diffraction loads.

In the radiation problem the body is forced to oscillate in otherwise still water, which
generates waves that radiates away from the body. These waves are associated with the
radiation velocity potential, φr, and is subjected to hydrodynamic loads identified as added
mass, damping, and restoring terms. The restoring terms are related to the hydrostatic
pressure(see(2.19)), whilst the damping and added mass are connected to the dynamic
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pressure caused by the body motions. First order potential theory of diffraction and radia-
tion waves allows for linear super-positioning of the velocity potential in the fluid domain.
The flow field around a free floating body may be described by

Φ(X, t) = ζaφ(X)e−iωt (2.22)

where φ(X) consists of the contribution from the radiated waves, diffracted waves and the
incident waves. The velocity potential can therefore be written as

φ(X)e−iωt =
(

[φ0 + φ7] +

6∑
j=1

φrjηj

)
e−iωt (2.23)

where ηj for j = 1, 6 denotes the translational and rotational motions of the body. φ0 is
the first order incident wave potential, φ7 is the corresponding diffraction potential, whilst
φrj denotes the radiation wave potential due to the j-th motion. Although the potential
functions are complex, the physical quantities such as fluid pressure and body motion in
time domain analysis are obtained from the real part of the expression. The first order
hydrodynamic pressure is obtained from the dynamic part of the linearized Bernoulli’s
equation

p(1) = −ρ∂Φ(X, t)

∂t
= iωρφ(X)e−iωt (2.24)

The first order hydrodynamic forces are obtained from integration of the pressure along the
body surface, and can thus be written as

Fje
−iωt = −

∫
S0

p(1)njdS (2.25)

By inserting equation (2.23) and (2.24) into equation (2.25), the total first order hydrody-
namic force can be further expressed as

Fj = FIj + Fdj +

6∑
k=1

Frjkηk for j = 1, ..., 6 (2.26)

FI j , Fdj and Frjk denotes the force due to incident wave, diffraction and radiation respec-
tively. The forces due to the incident waves and diffraction yields

FI j = −iωρ
∫
S0

φ0(X)njdS (2.27)
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Fdj = −iωρ
∫
S0

φ7(X)njdS (2.28)

The j-th radiation force due to the unit amplitude of the k-th body motion can be expressed
as

Frjk = −iωρ
∫
S0

φrk(X)njdS (2.29)

The added mass and radiation damping coefficient are embedded in the radiation force, and
can be expressed by the velocity potential of the radiation problem. Equation (2.29) can
be separated into a real part and an imaginary part

Frjk = −iωρ
∫
S0

Re
(
φrk(X)

)
+ iIm

(
φrk(X)

)
njdS = ω2Ajk + iωBjk (2.30)

where

Ajk =
ρ

ω

∫
S0

Im[φrk(X)]njdS (2.31)

Bjk = −ρ
∫
S0

Re[φrk(X)]njdS (2.32)

denotes the added mass and damping coefficients, respectively.

2.1.2 Second order forces and moments

The estimation of second order forces and moments are based on the same underlying as-
sumptions as for liner theory; inviscid, incompressible, irrotational and homogeneous fluid.
It is also assumed that the wave amplitude and the corresponding structural response are
small. The major difference is that while in the linear solution, both the free-surface condi-
tion and the body boundary condition are solved at the linear free surface and at the mean
wetted surface respectively, the second order solution accounts for the instantaneous body
position, the wave profile along the body, and non-linearities in the fluid particle velocity at
the free-surface[27]. The most common way to solve such nonlinearities in hydrodynamics
is through application of perturbation analysis. With the above assumptions, the fluid po-
tential, wave elevation, the position of the point on a structure and corresponding forces can
be expressed with a perturbation approach. The principle of the this method is to expand
a variable, y, into a convergent power series with respect to a small parameter, ε

y =
∞∑
n=0

y(n)εn (2.33)
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In accordance to classical hydrodynamic theory(see for example Pinkster[48]), it will be
assumed that the velocity potential and other quantities such as wave amplitude and body
motion, which are derivable from the flow, will be expanded in such a manner

φ = εφ(1) + ε2φ(2) +O(ε3)

ζ = ζ(0) + εζ(1) + ε2ζ(2) +O(ε3)

X = X(0) + εX(1) + ε2X(2) +O(ε3)

(2.34)

where ε << 1. The affix (0) then denotes the static value, while (1) and (2) denotes the
first and second order variations, etc. Only higher order terms proportional to ε2 will be
considered. Contributions of higher order than second are denoted O(ε3), and are not
discussed further. Before introducing the force and moment expression of second order,
let’s look at the motion and velocity of a point on the body surface when taking into
consideration the perturbation methodology. If an object is moving with small amplitudes
in six degrees of freedom due to oscillatory linear and second order waves, a point on the
body relative to the OXYZ axis, referred to as the fixed reference axis(FRA), is

X(0) = X(0)
g + x

X(1) = X(1)
g + α(1) × x

X(2) = X(2)
g + α(2) × x

(2.35)

X(0) denotes the mean position vector, X(1) is the first order oscillating vector and X(2) is

the second order motion vector. X
(0)
g , X

(1)
g and X

(2)
g denotes the mean, first and second

order of motion for the centre of gravity in the FRA. α(1) and α(2) denotes the first and
second order angular motion vectors in the FRA, and x denotes a point on the body surface
relative to the local structure axis(LSA). The velocity responces of that same point will then
yield

V = Ẋ = εẊ
(1)

+ ε2Ẋ
(2)

(2.36)

where

Ẋ
(1)

= V(1) = Ẋ
(1)
g + α̇(1) × x

Ẋ
(2)

= V(2) = Ẋ
(2)
g + α̇(2) × x

(2.37)

Similarly, the acceleration is

V̇ = Ẍ = εẌ
(1)

+ ε2Ẍ
(2)

(2.38)

where

Ẍ
(1)

= V̇
(1)

= Ẍ
(1)
g + α̈(1) × x

Ẍ
(2)

= V̇
(2)

= Ẍ
(2)
g + α̈(2) × x

(2.39)
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Figure 12: System of coordinates. The first system of co-ordinate axes is the fixed OXYZ
system, which is referred to as the fixed reference axes(FRA) or global axes. The origin
is located at the mean free surface, and is marked with blue in the figure. The second
system of coordinates is the Gx1x2x3 system, which is referred to as the local strucutre
axis(LSA) or body fixed axes. The origin is located in the centre of gravity of the body.
The axes through the origin will initially be parallel to the FRA when the body is in the
mean position. It is marked with orange in the figure. The third system of co-ordinates is
the GX ′1X

′
2X
′
3 system which has it’s origin in the centre of gravity. It is at all times parallel

to the fixed OXYZ system, and is marked with green in the figure.

The normal vector of a surface element on a structure in it’s equilibrium position in still
water relative to the Gx1x2x3 axes is oriented outwards and denoted n. Relative to the
fixed co-ordinate systems, which are parallel at all times, the normal vector of a surface
element is written as N = N(0) + εN(1) + ε2N(2) of which

N(0) = n

N(1) = α(1) × n

N(2) = α(2) × n

(2.40)

Now the location of a position at the body surface and it’s velocity and acceleration
responses are defined, as well as the normal vector of a surface element up to the second
order variation. Let’s continue by evaluating the pressure at a point in the fluid. The fluid
pressure at a given point can be described by Bernoulli’s equation. By applying a Taylor
expansion of the pressure, evaluated at the mean position, the following expression is valid

p = p(0) + εp(1) + ε2p(2) (2.41)
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where p(0) denotes the hydrostatic pressure, p(1) is the first order pressure and p(2) is the
second order pressure.

p(0) = −ρgZ(0)

p(1) = −ρgZ(1) − ρ∂φ
(1)

∂t

p(2) = −ρ
2
|∇φ(1)|2 − ρ∂φ

(2)

∂t
− ρ(X(1) · ∇∂φ

(1)

∂t
)− ρgZ(2)

(2.42)

Notice that a quantity is of second order if it is proportional to ε2, denoted by the affix
(2), or if the component is the product of two first order quantities. Thus, it is seen that
the second order pressure only contains one term with the second order velocity potential.
The fluid forces and moments working on the body are found by direct integration of the
pressure over the body surface. Unlike linear theory, the pressure is now integrated over
the instantaneous wetted surface S(t).

F (t) = −
∫∫

S(t)
pNdS (2.43)

M(t) = −
∫∫

S(t)
p(X−Xg)NdS (2.44)

One can divide the instantaneous wetted surface into two parts; a constant part, S0, which
goes up to the static waterline on the body surface and an oscillating part, s, between the
static waterline and the wave profile along the body. By taking this into consideration and
substituting the expanded expressions for the pressure and normal vector, one can write

F =−
∫∫

S0

(p(0) + εp(1) + ε2p(2))(N(0) + εN(1) + ε2N(2))dS

−
∫∫

s
(p(0) + εp(1) + ε2p(2))(N(0) + εN(1) + ε2N(2))dS

= F (0) + εF (1) + ε2F (2) +O(ε3)

(2.45)

The first term, F (0) is the hydrostatic force, the second term, F (1) is the total first order
fluid force. The third term, F (2) is found by integrating all second order contributions over
the constant and oscillating surface. The moments are expanded analogously. The total
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second order wave exciting force and moment can then be described as(see Pinkster [48])

F (2) =− 1

2
ρg

∮
WL

ζ(1)
r · ζ(1)

r ndl Water line integral

+
1

2
ρ

∫∫
S0

(∇φ(1) · ∇φ(1))ndS Bernoulli

+ ρ

∫∫
S0

(
X(1) · ∇∂φ

(1)

∂t

)
ndS Acceleration

+ α(1) × F (1) Momentum

+ ρ

∫∫
S0

∂φ(2)

∂t
ndS Second order potential

(2.46)

M (2) =− 1

2
ρg

∮
WL

ζ(1)
r · ζ(1)

r (n× x)dl Water line integral

+
1

2
ρ

∫∫
S0

(∇φ(1) · ∇φ(1))(n× x)dS Bernoulli

+ ρ

∫∫
S0

(
X(1) · ∇∂φ

(1)

∂t

)
(n× x)dS Acceleration

+ α(1) ×M (1) Momentum

+ ρ

∫∫
S0

∂φ(2)

∂t
(n× x)dS Second order potential

(2.47)

where ζ
(1)
r is the relative wave elevation. F (1) and M (1) are the total first order fluid force.

This is the total second order fluid force and moment including the hydrostatic restoring,
wave exciting and hydrodynamic radiation force and moment. These are however practically
difficult to solve on this form . Thus, time independent quadratic transfer functions(QTF)
are introduced. By means of quadratic transfer functions, it is possible to express the
second order wave exciting forces in terms of force spectra in the frequency domain, or time
histories of second order forces in the time domain. The total QTF can be split up into
contributions arising from the five different terms described in equation (2.46) and (2.47).
The first four terms, which are second order force terms due to being a product of first
order components, can be evaluated based on three-dimensional linear potential theory(see
section 2.1.3, Source distribution method). The last term is dependent on the second order
velocity potential, which is found by solving the inhomogeneous free-surface boundary value
problem

φ
(2)
tt + gφ(2)

z = − ∂

∂t
(φ(1)
x

2 + φ(1)
y

2φ(1)
z

2) +
1

g
φ

(1)
t

∂

∂z
(φ

(1)
tt + gφ(1)

z ) on z = 0 (2.48)

The effect of current is here neglected. The subscripts denotes the quantity which the

potentials are differentiated with respect to. To exemplify, φ
(2)
tt = ∂2

∂t∂tφ
(2). Finding the
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solution to the second order potential is difficult due to the complexity of the free-surface
boundary condition. In practice, approximations are often used. Aqwa applies Pinkster’s
approximation[48] to solve this potential. Note that φ(2) does not contribute to mean wave
drift force effects[27], and it is therefore not necessary to solve the second-order potential
in those cases.

2.1.3 Source distribution method

The theory presented in this section is retrieved from Faltinsen [27], Pinkster [48] and the
Aqwa Theory Manual[5]. ANSYS Aqwa applies a source distribution method to solve the
diffraction and radiation velocity potentials described in equation (2.23). Note that this
method applies for first order potentials. Thus, the affix (1) and (2) to distinguish between
first and second order variations are not used here, as all potentials described below are of
first order.

The technique is based on the use of point sources to derive an expression for the velocity
potentials. A source is defined to have a velocity component in the radial direction only.
The corresponding velocity potential at any point at a radial distance R from a point source
in three dimensions in infinite fluid, is then defined as

φ =
−Q
4πR

(2.49)

where Q is referred to as the source strength. The idea is to discretize the body surface into
smaller elements, and place a source in the centre of each of them. The potential function
φ can now be represented by a continuous distribution of single sources on the surface.
However, the source potential differs from equation (2.49) when wave effects are included.
The velocity potential then has to fulfill the following boundary conditions

• The Laplace equation everywhere in the fluid domain Ω

∇2φ = 0 (2.50)

• The linear free surface equation

−ω2φ+ g
∂φ

∂z
= 0 on z = 0 (2.51)

• The seabed surface condition

∂φ

∂z
= 0 on z = −h (2.52)

or
|∇φ| → 0 when z → −∞ (2.53)
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• The body boundary condition

∂φ

∂n
= −iωηj for j = 1, ..., 6 for the radiation problem (2.54)

∂φ

∂n
= −∂φ0

∂n
for the diffraction problem (2.55)

on the mean wetted body surface, S0

• The radiation condition

As a consequence, the source expression gets far more complicated, and the source density
itself is actually complex in the wave problem. The representation of the potential function
by a continuous distribution of sources on the boundary surface S0, can be expressed on
the form

φj(X) =
1

4π

∫∫
S0

σj(ξ)G(X; ξ;ω)dS for j = 1, ..., 7 (2.56)

The coordinates along the body surface are defined as ξ = (ξ, η, ζ) while X = (x, y, z) are
the coordinates in the fluid domain. G(X; ξ;ω) denotes Green’s function of a source, which
is singular in (ξ, η, ζ), and σj is the complex source strength. The Green’s function is on
the form

∇2G(X; ξ;ω) = δ(X− ξ) (2.57)

where δ is the Dirac-Delta function. G(X; ξ;ω) is referred to as pulsating. A Green’s
function which fulfills the Laplace equation and the boundary conditions at the sea bottom,
linear free surface and at infinity(radiation condition) is

G(X; ξ;ω) =
1

r1
+

1

r2
+

∫ ∞
0

2(k + ν)e−kdcosh
(
k(z + d)

)
cosh

(
k(ζ + d)

)
ksinh(kd)− νcosh(kd)

J0kRdk

+i2π
(k0 + ν)e−kdcosh

(
k0(z + d)

)
cosh

(
k(ζ + d)

)
sinh(k0 + d) + k0dcosh(k0d)− νdsinh(k0d)

J0k0R

(2.58)

where r1 =
(
(x − ξ)2 + (y − η)2 + (z − ζ)2

) 1
2 , r2 =

(
(x − ξ)2 + (y − η)2 + (z + ζ)2

) 1
2 and

R =
(
(x− ξ)2 + (y− η)2

) 1
2 . J0 is the Bessel function of the first kind of zero order, d is the

water depth, ν = ω2

g , k is the wave number and k0tanh(k0d) = ν. Note that this function
(2.58) satisfies the homogeneous free surface condition only, i.e not the second order free
surface boundary condition. The unknown source strength funtion, σj is determined by
satisfying the body boundary condition described in equation (2.54) and (2.55), where
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∂φ(X)

∂n(X)
= −1

2
σ(X) +

∫∫
S0

σ(ξ)
G(X; ξ;ω)

∂n(X)
dS where X ∈ Ω ∪ S0 (2.59)

Due to the linearization in which linear first order solutions are based on, this boundary
condition is applied at the surface in it’s equilibrium position, S0. The Aqwa solver uses
the Hess-Smith constant panel method[33] to solve the body boundary equation. The body
can be discretized into quadrilateral or triangular panels and it’s assumed that the source
density is constant over each element. The discrete form of equation (2.56) and (2.59) can
thus be expressed as

φ(X) =
1

4π

Np∑
m=1

σmG(X; ξm;ω)∆Sm (2.60)

∂φ(Xk)

∂n(Xk)
= −1

2
σk +

Np∑
m=1

σm
G(Xk; ξm;ω)

∂n(Xk)
∆Sm where X ∈ Ω ∪ S0 (2.61)

Np is the number of panels over the mean wetted body surface, ∆Sm is the area of the m-th
panel, and Xk and ξm are the coordinates of the geometrical centre of the k-th and m-th
panel respectively.

After the above equations are solved for the source strengths, the first order potential
function is known. One can then evaluate the pressure over the surface and the first order
wave exiting forces and moments as described in section 2.1.1. Finally, the first order motion
response is calculated through the well known equation of motion in the frequency domain:

6∑
j=1

(
−ω2(Mkj+Akj)sin(ωt+εj)+Bkjωcos(ωt+εj)+Ckjsin(ωt+εj)

)
ηaj = Fksin(ωt+δk)

(2.62)
where Mkj is an inertia matrix, Fk denotes is the wave exited force in the kth mode, and εj
and δk are phase angles. ηaj is the amplitude of the oscillating motion given by ηj = ηaje

−iωt.

2.2 Linear and weak nonlinear model

The theory presented above is quite substantial and briefly explained. In this study there are
mainly two different methods to solve the equation of motion; a linear and a weak nonlinear
one. This section will clarify exactly which nonlinear effects which are considered, and which
terms that are remained linear throughout the study. The formulation of the methods are
adopted from Retes et al.[49]. Let us start by looking at the governing equation of the
problem. With the assumptions of linear theory described above, Newton’s second law can
be utilised to specify the following equation

mẍ = Fg −
∫∫

S
pndS + FPTO (2.63)
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where m is the body mass, x is the position of the body relative to the static equilibrium
position and Fg is the gravity force, p is the total pressure acting on the surface and n is the
normal vector pointing outwards. FPTO denotes the force from the Power Take-off(PTO)
system. As will be seen later, this term is modeled as a linear damper. In cases with no PTO
force, this term is simply neglected. By separating the forces into each of the individual
pressure integrals, i.e hydrostatic, incident wave, diffraction and radiation, the body motion
can be expressed as

mẍ = FS + FI + Fd + Fr + FPTO (2.64)

where FS = Fg + Fhys is the hydrostatic restoring term. FI is the force from the inci-
dent wave and Fd and Fr denotes the diffraction and radiation force respectively. FS and
FI are often referred to as the static and dynamic Froude-Krylov force, respectively. To
avoid any misunderstandings, FS is referred to as the hydrostatic restoring force, and FI
as the incident wave or Froude-Krylov force. Each of these terms are previously described
under the presentation of linear wave theory. Two different methods of solving this inves-
tigated; a linear method and a weak nonlinear model. The difference which distinguishes
the two methods are that the weak nonlinear model considers nonlinear Froude-Krylov and
hydrostatic forces.

A) Linear model

The linear method is based on the linear assumptions, and the problem is solved at the
mean free surface, S0. In this study a BEM tool(Aqwa) is used to solve the equation of
motion in the frequency domain (2.62). This equation cannot be directly converted into
the following equation in time domain if the external force is not periodic with constant
amplitude [5]

Mẍ(t) +Bẋ(t) + Cx(t) = F (t) (2.65)

where M,B and C denotes the inertia, radiation damping and stiffness matrix respectively.
For that reason, the equation of motion in time domain is in Aqwa solved with Cummin’s
equation[11]. It is a second order differential equation with a convolution integral. With
his formulation, (2.64) can be written as

(m+A)ẍ = −Cx−
∫ ∞
−∞

KEx(t− τ)η(τ)dτ −A∞ẍ−
∫ ∞
−∞

KR(t− τ)ẋ(τ)dτ −Bgẋ (2.66)

The hydrostatic restoring term −Cx acts as a mass-spring system as described in (2.20).
The excitation force is represented by a convolution integral between the excitation-impulse
response matrix(KEx) and the surface elevation(η). The radiation force is expressed by the
sum of the asymptotic added mass term(A∞ẍ) and the convolution integral between the
radiation impulse-response matrix(KR) and the velocity of the device. Lastly, it is seen
that the PTO force is expressed by a linear PTO damping(Bg).

B) Weak nonlinear model
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To improve the accuracy of the linear model, the Froude-Krylov and hydrostatic restoring
terms are estimated nonlinearly by integrating the incident wave pressure and hydrostatic
force over the instantaneous wetted surface,S(t). The wetted surface will then vary with
time and has to be re-calculated for each time step. The diffraction and radiation forces
remains linear. Hence, only the second order variations for the incident wave and hydrostatic
forces are calculated. Note that the second order potential is not solved. Second order and
quadratic terms in the diffraction and radiation potential are neglected, as for any other
linear model. Equation (2.64) can be written as

(m+A)ẍ = Fg −
∫∫

S(t)
Ps + PIndS −

∫ ∞
−∞

KD(t− τ)η(τ)dτ −A∞ẍ

−
∫ ∞
−∞

KR(t− τ)ẋ(τ)dτ −Bgẋ
(2.67)

The hydrostatic(ps) and incident wave pressure(pI) are integrated over the instantaneous
wetted surface S(t). The diffraction force is computed through the diffraction impulse-
response matrix(KD) and the free surface elevation η. It is still linear, but is now estimated
independently of the incident wave force. The radiation and PTO force remains the same
as for the linear method.

2.3 Software

ANSYS is a powerful multidicsiplinary tool which contains a broad portfolio of engineering
simulation software. Aqwa is a module in ANSYS specialized in hydrodynamic analysis.
It provides the possibility to investigate environmental loads on floating and fixed ma-
rine structures through implementation of three-dimensional radiation/diffraction theory,
and/or Morison’s equation in regular waves in the frequency domain. Aqwa can simulate
first order (Airy wave) and second order regular waves (2nd order Stokes wave) in deep and
finite depth water. Additionally, unidirectional or multi-directional irregular waves can be
modeled by using the linear superposition approach, and it offers the possibility to include
wind and current loads. See the Aqwa Theory Manual[5] for further information.

ANSYS Discovery SpaceClaim is the CAD tool used to create the model geometry. It is a
3D modeling application providing efficient solutions to common modeling tasks, and which
is directly compatible with the Aqwa solver.

2.3.1 Mesh generation

Aqwa contains a buildt-in mesh generator, which automatically generates a mesh based
on maximum element size and defeaturing tolerance defined by the user. The defeaturing
tolerance controls how small details shall be treated in the mesh. For details smaller than

27



2. Numerical Model

this user defined limit, one element can span over it. Otherwise, the element size will reduce
in this area to ensure the feature is meshed properly. When a mesh is created in Aqwa,
an interior, imaginary set of panels are introduced, referred to as the internal lid method.
The reason is that in cases of surface piercing bodies, irregular frequencies in unsteady
hydrodynamic analysis can occur. That causes errors in the solution for a frequency band
of considerable size around these frequencies, which Du et al.[12] showed, leads to abrupt
and inaccurate variations in the calculation of hydrodynamic coefficients. The internal lid
method is applied to avoid these numerical problems. This method will not be be discussed
in detail here, other than that it is based on creating a fluid field inside the surface S0,
which satisfies the same free-surface boundary condition as the floating body. The interior
imaginary surface is discretized into a number of imaginary panels, denoted NLid. Thus,
the potential function described in equation (2.56) is extended to include integration of the
source distribution over the mean wetted surface, S0, and the imaginary fluid bounded by
S0. All panels included in the source distribution integration is referred to as diffracting
panels. The number of diffracting panels is denoted Ndif = Np + NLid, where Np is the
number of panels on S0 and NLid is the number of panels used to discretize the imaginary
fluid interior of S0.

Furthermore, Aqwa applies a mesh quality check to ensure sufficient element distribution,
size and shape. The following criteria has to be fulfilled:

• The surface has to be represented by triangular and/or quadrilateral panels, and the
normal of each panel must point out towards the surrounding fluid.

• The body surface has to be fully covered with panels without any gaps or overlaps
between the elements.

• In the source distribution method described in section 2.1.3, the mean wetted body
surface is required to perform frequency domain analysis. In cases of nonlinear time-
domain analysis, the body surface above the mean water level may be necessary to
include. In these cases, it’s required that no panel cuts the mean water surface. It’s
further required that each panel fulfills the following requirements

– The area of each panel should be nearly similar to all adjacent elements

1

3
≤ ∆Sm

∆Sk
≤ 3 where m = 1, ..., Np +NLid (2.68)

∆Sm is the panel area of the m-th panel and ∆Sk is the panel area of any adjacent
element.

– The aspect ratio of each panel should not be too low

C
∆Sm
Lmax

≥ 1

3
where m = 1, ..., Np +NLid (2.69)

and Lmax denotes the length of the longest side of the m-th panel. C = 2.3 for
triangular elements and C = 1.0 for quadrilateral elements.
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• The wave length should be large compared to the panel size

Lmax ≤
1

7
λ (2.70)

where λ denotes the wave length

• The center of each panel has to be a certain range from any adjacent panel center

dmk ≥ rfm where m = 1, ..., Np +NLid (2.71)

where dmk denotes the distance between the center of the m-th panel and the center of

the adjacent panel. rfm is the radius of the adjacent panel, defined as rfm =
√

∆Sm
π

• There can’t be any panel centers below the seabed. That is to avoid any singularities
in Greens function described in equation (2.58). Thus, the center of any diffracting
panel has to be above the seabed, ensured by

zm + d ≥ 1

2
rfm where m = 1, ..., Np (2.72)

where zm denotes the z-coordinate of the m-th panel, d is the water depth and rmf is
the panel radius described above.
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3 Wave energy

3.1 Absorption of waves is generation of waves

To understand the principle behind a point-absorbing buoy, it is important to note that
the term absorbing wave energy is equivalent to removing or stealing energy from the
ocean waves. The terms constructive and destructive wave interference are two types of
wave interference extremities, illustrated in figure 13 with two sinusoidal waves with unit
amplitude. There one can see that constructive interference amplifies the resulting wave,
while the waves in destructive interference are canceled out. Let these waves represent any
type of energy. As we all know, energy doesn’t disappear. Hence, what figure 13b shows
is that in the case of destructive interference, the energy is removed from the waves. This
removed energy is what one tries to utilize and convert into electrical power.

(a) (b)

Figure 13: Illustration of constructive(a) and destructive(b) interference between two sinu-
sodial waves y1 and y2 with unit amplitude. In (a) y1 and y2 are in phase, while in (b) y1

and y2 are 180 °out of phase

Thus, to absorb wave energy one somehow need to reduce or cancel the waves passing the
wave energy device. Such a reduction can be achieved with an oscillating body configuration
which creates waves in counter-phase with the incoming and/or reflected waves. In other
words, the basic principle is to arrange for a WEC to generate waves which interferes
destructively with the sea waves [7]. Budal and Falnes [25] illustrated (figure 14) the
principle with an example where 100% power absorption is theoretically possible. Figure
14a represents an undisturbed incident wave. Figure 14b illustrates a symmetric wave
generation due to a body oscillating in heave, while figure 14c is non-symmetric radiated
waves due to pitch motion. 14d represents the super positioning of the three above. Fully
absorption of the incident wave is possible in this two-dimensional case when the body is
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oscillating vertically and horizontally in an optimum manner, which is illustrated in figure
14d. The radiated waves from case 14b and 14c cancel out towards the left, and amplifies
towards the right. This amplification cancels out the incoming wave on the right hand
side, i.e 100% of the wave is absorbed. Nevertheless, when a symmetric body generates
fully symmetric waves through one mode of motion only(14b), it can be shown that it is
theoretically possible to only absorb up to 50% of the incident wave energy. This upper limit
also applies for a symmetric body radiating anti-symmetric waves(14c). However, when a
sufficiently anti-symmetric body is restricted to oscillate in one mode, it’s possible to exceed
the 50% limit, and extract almost all of the incident wave energy. The principle of an anti-
symmetric geometry was investigated by Stephen Salter at the University of Edinburgh,
resulting in the device known as the Duck [51], which came rather close to ideal conditions.
This was the origin of the concept ”Salter’s Duck”, which many later ideas have been based
on.

Figure 14: Illustration of two-dimensional in-
terference: (a) represents an undisturbed in-
cident wave; (b) illustrates a symmetric wave
generation due to a body oscillating in heave;
(c) non-symmetric radiated waves due to pitch
motion; (d) superposition of the three above.
Retrieved from [22]

While Salter’s concept is based on a anti-
symmetric body configuration fixed to one
mode of rotation, this thesis will focus on a
axisymmetric point-absorber fixed to oscil-
late in heave, which principle is illustrated
in figure 9. The heave motions of the buoy-
ant relative to the base is converted into
electrical power by directly transmitting the
motions to a Power Take Off(PTO) sys-
tem. The PTO system is the part of the
device which uses the relative motion to
generate electricity. The PTO system ap-
plies an extra damping to the oscillatory
motion, which is equivalent of absorbing en-
ergy. Models of a point absorber with a non-
linear PTO system has shown to give quite
accurate results compared full-scale exper-
iments(see e.g. [17]). This thesis will for
simplicity consider a linear PTO force.
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Figure 15: Principal sketch of the duck. Designed to rotate around O. Incoming waves from
the right. Retrieved from [51]

3.2 Optimum energy absorption

Size

In terms of size, the fundamental idea is that the larger the buoy, the more volume can
be used to displace the fluid and thus more energy can be absorbed. However, it is seen
that this is not the case when the size of the buoy gets too large, as the diffraction forces
starts to dominate[15]. Moreover, several proposals of large buoy configurations have had
relatively large proportions of ”dead” volume[24], volume which doesn’t participate in the
wave generation. The dimensions of the device are in fact often small compared to the wave
length, and Budal and Falnes actually defined a point absorber buoy as a floating body with
characteristic length much shorter than the length of the incoming waves [7]. One are not
necessarily interested in the amount of power that is absorbed, but rather how much of the
available power that is actually converted. Thus, the point absorber configuration has to be
optimized in such a way that it absorbs as much power as possible from the incoming waves,
where effects such as damping from the PTO and control system, size of the buoy and the
systems inertia, has to be accounted for. These parameters, geometry, inertia and PTO
damping are in fact the controllable parameters regarding the hydrodynamic behaviour of
an oscillating body configuration.

Phase and amplitude

The body is ideally oscillating in resonance with the incoming waves, which is referred to
as optimum destructive interference. In order to achieve this state of oscillation, the sys-
tem needs to have optimum amplitude and optimum phase response. Optimum amplitude
response for a given geometry can be found through estimating a proper PTO damping
to the incoming wave loads. However, when considering a real sea state, several frequen-
cies are present. Hence, an optimum amplitude response is not necessarily equivalent to
maximum overall power production, as a small but large resonance peak merely covers a
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fraction of all the frequencies in the sea state. Consequently, a wider an lower resonance
peak might be better in terms of overall power production. The optimum phase response on
the other hand, can be achieved through optimization of the draft. A WEC of reasonable
size normally has an optimal phase response which lies outside the normal range of wave
frequencies. This is a consequence of the low inertia of this type of configuration. Thus, by
increasing the draft, one can increase the inertia until desired phase response is achieved.
This is the foundation of a dilemma within point-absorbing buoys; an increased draft to
improve the phase response reduces the amplitude response. Thus, in order to achieve
both optimum amplitude response and optimum phase response, control mechanisms which
forces the phase response to coincide with the incident waves have been developed.

Control methods

A method for controlling the motion of a point absorber configuration was independently
suggested by Budal[8], French[28] and Guenter[31] in the 1970’s, and is referred to as
latching. The principle behind this method is to lock the body motion at the turning
points of the oscillations(i.e at zero velocity), and then release the body when the velocity
is in phase with the predicted excitation force from the incident ocean waves. Another,
relatively new concept to increase the power capture is the use of a pneumatic machinery
component referred to as WaveSpring. The component was invented at NTNU and a WEC
which utilizes this idea is currently under development by the company CorPower Ocean
2. The idea is based on reducing the heave-motion stiffness of the body and thus increase
the response bandwidth. The component can be tuned to give both broad-banded response
and resonance, as well as it can be detuned to decrease the response in high-energy sea
states. An experimental laboratory test performed in 2014 [53] showed that, compared to
pure linear damping, the WaveSpring unit typically gave a three-fold increase in delivered
energy. This is of the same order as for phase control methods such as latching in terms
of captured power. However, the required force from the machinery is less, which reduces
PTO costs. The motion of the device is continuous, unlike the latching method which
has a rather abrupt motion. This improves the lifetime, as it avoids the wear and fatigue
challenges connected to such motions.

3.3 Mathematical description of wave energy extraction

This section contains a brief and step-wise mathematical description of the principle behind
wave-energy extraction. A more thorough description can be found in Engstrøm, 2011[15]
and Falnes, 2007[24].

2http://www.corpowerocean.com/corpower-technology/wave-spring-technology/
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3.3.1 Active and reactive power. Exemplified with a linear mass-spring-damper
system

In order to understand the mathematical principle behind extraction of wave energy, it’s
important to fully understand the concept of active and reactive power. Let’s start by
looking at the mass-spring-damping system described by a linear differential equation with
constant coefficients

mẍ(t) + bẋ(t) + cx(t) = F (t) (3.1)

where a mass m is connected to a spring c and a mechanical damper, b. F (t) represents an
external force applied to the system. The overdot represents differentiation with respect to
time. We shall now look at the mechanical power delivered to the oscillating system by the
external force F (t), and how this energy exchanges between absorbed or consumed energy
in the damping resistance b, and the kinetic and potential energy stored in the spring c.
The mechanical power delivered by the external force F (t) is

P (t) = F (t)u(t) = F (t)ẋ (3.2)

where
F (t) = Fm(t)− Fb(t)− Fc(t) = mẍ(t) + bẋ(t) + cx(t) (3.3)

The mechanical power can now be described as

P (t) = PR(t) + [Pk(t) + Pp(t)] (3.4)

where

• PR = −Fbẋ = bẋ2 is the power delivered to the mechanical damper

• Pk(t) = Fm(t)ẍ = mẍẋ is the power delivered to the mass

• Pp(t) = −Fc(t)ẋ = cẍẋ is the power delivered to the spring

Thus, when looking at equation (3.4), one can say that the delivered power consists of two
components; 1) PR(t) which is consumed by the system’s damping resistance and is referred
to as the instantaneous active power, and 2) Pk(t) + Pp(t) which exchanges between the
stored kinetic energy in the mass and stored potential energy in the spring, and is referred
to as the instantaneous reactive power. We shall further look at active and reactive power
with harmonic oscillations. Let’s start by defining an sinusoidal oscillation as

x(t) = x0cos(ωt+ θ) (3.5)

where x0 is the amplitude, ω is the angular frequency and θ is a phase angel. The complex
amplitude is here denoted with a hat, and yields

x̂ = x0e
iθ (3.6)
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This can be used to express x(t) on a complex form as

x(t) =
x̂

2
eiωt +

x̂

2
e−iωt (3.7)

By assuming that the delivered power is harmonically oscillating, and applying the identity
above, the expression in equation (3.2) can be expanded as follows

P (t) = F (t)u(t) =
( F̂

2
eiωt +

F̂ ∗

2
e−iωt

)( û
2
eiωt +

û∗

2
e−iωt

)
=

1

4
(F̂ û∗ + F̂ û∗ + F̂ ûe2iωt + F̂ ∗û∗e−2iωt)

(3.8)

where F̂ ∗ and û∗denotes the complex conjugate of F̂ and û. The reason for this expansion
is that one can now see that the last two terms are harmonically oscillating with a frequency
2ω, and are complex conjugates of each other. When taking the time-average during one
period of oscillation of the delivered power, the sum of these last two terms is zero. Thus,
one can write the time-average delivered power as

P ≡ P (t) =
1

2
Re(F̂ û∗) (3.9)

Note that one takes the real part of the expression to obtain the physical power. To give more
meaning to the above equation, we shall introduce the mechanical impedance. Impedance
in general is the complex generalization of resistance, and the mechanical impedance is
a measure of a structures ability to resist motion when subjected to a harmonic force. It
relates the forces and velocities acting on the mechanical system. The mechanical impedance
can be expressed through the following relation

F (ω) = Z(ω)u(ω) (3.10)

where Z(ω) denotes the impedance. It’s a complex value, where the real part is the resis-
tance and the imaginary part is the reactance, here denoted R and X respectively.

Z = R+ iX (3.11)

In other words, the real part represents the resistive effect and the imaginary part represents
the reactive effect. Let’s take a short digression to set this into a hydrodynamic context;
the mechanical impedance can be related to the radiation problem when evaluating an
oscillating body in waves, and can be expressed as[4]

Z = R+ iX = −iωρ
∫
S0

φrknjdS = Bjk + iωAjk (3.12)

Thus it is seen that R and X are directly related to the radiation damping and added
mass respectively. Back to the mass-spring-damper system; when relating (3.11) to the
mass-spring-damper problem described in (3.1), the resistance is R = b and reactance
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X = ωm− c
ω . Now, inserting the impedance into equation (3.9), the time-average delivered

power yields

P ≡ P (t) =
1

2
Re(Ẑûû∗) =

1

2
b|û|2 (3.13)

Note that the real part of Z includes the damping coefficient only. We continue by looking
at the consumed power PR described above. By following the same logic as for the time-
average delivered power, one can derive an expression for the time-average consumed power
as

PR = PR(t) =
1

2
b|û|2 = P (t) (3.14)

Thus, consumed and delivered power is equal when time-averaged. This is not the case for
the instantaneous values, hence generally P (t) 6= PR(t). However, the important remark
here is that the time-average of the active power, PR, describes the average power taken up
in the system by the delivered power P . The reactive power simply describes the energy
exchanging between kinetic and potential, and therefore contributes zero to the average
power taken up by the system. When relating this to wave energy conversion, the time-
average or mean power absorbed by a WEC corresponds to the mean power consumed by
the mechanical damper of the PTO system during one wave period.

3.3.2 Oscillating body in one mode in regular waves

The underlying principle of energy and power relations in the mass-spring-damper system
described above are the same as for a system consisting of a body subjected to harmonic
ocean waves. The mathematical description is for simplicity based on a oscillating body
in one mode only(e.g. heave), and the notation used is adapted from Falnes[24]. Both the
waves and oscillations are assumed small in order for linear theory to be applicable. The
dynamic equation governing the problem can be described by Cummin’s equation[11]. In
this case, when the movement of the structure is generated by the incident waves only, the
Cummin’s equation is a second order differential equation with a convolution integral in it.
An additional damping term due to mechanical losses in the machinery is also included,
which results in the following dynamic equation[20]

(m+Ar∞)ẍ(t) +Bf ẋ(t) + kr(t) ∗ ẋ(t) + Cx(t) = Fe(t) + Fu(t) ≡ Fext(t) (3.15)

where m is the body mass, C is the restoring-force coefficient, Fe is the excitation force
due to incoming waves and Fu is an intentionally applied force from the control and PTO
system. The added mass is denoted Ar(w), and Ar∞ is the asymptotic value when ω →∞,
i.e Ar∞ = Ar(∞). Bf is the damping from mechanical loss due to for example friction
and viscosity. This contribution is referred to as the loss force, denoted Ff (t) = −Bf ṡ(t),
which in in this case is simplified and could for a more realistic approach be replaced with
a non-linear loss force. The sign ∗ represent the mathematical operation of convolution.
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Furthermore, kr(t) is the impulse-response function for the radiation force, which is zero
for all t < 0. It is the inverse Fourier transform of Kr(ω), which is written as

Kr(w) = Zr(ω)− iωAr∞ = Br(ω) + iω(Ar(ω)−Ar∞) (3.16)

where Zr(ω) is the mechanical(or radiation) impedance(see (3.12)) and Br is the radiation
damping coefficient. The last term of the expression, which regards the added mass is often
denoted by iD(ω). Thus, by implementing this into Kr(w) and take the Fourier Transform,
kr(t) can be separated into kr(t) = br(t) + dr(t) where br(t) contains the contribution from
the radiation damping and dr(t) from the added mass. The dynamic behaviour described
by equation (3.15) can now be written in a more compact way with the impulse response
function gi(t)

gi(t) ∗ s(t) = Fe(t) + Fu(t) = Fext (3.17)

where
gi(t) = Bf δ̇ + ḃr(t) + ḋr(t) + (m+Ar∞) ¨δ(t) + Cδ(t) (3.18)

δ(t) is the Dirac-Delta function and gi(t) is zero for t < 0. Each term in the dynamic
equation describes a force. Thus, the power can be found by multiplying each term by the
velocity ẋ(t). The instantaneous power delivered to the PTO and control system, Pu(t),
can then be found as

Pu(t) ≡ −Fu(t)ẋ(t) = Pb(t) + Pd(t) (3.19)

where Pb(t) is the instantaneous active power and yields

Pb(t) = Fe(t)ẋ(t)−
[
br(t) ∗ ẋ(t)

]
ẋ(t)−Bf (ẋ(t))2 (3.20)

Pd is the instantaneous reactive power, and can be written as

Pd(t) = −(m+Ar∞)ẍ(t)ẋ(t)−
[
dr(t) ∗ ẋ(t)

]
ẋ(t)− Cx(t)ẋ(t) (3.21)

An important remark is that, as explained in section 3.3.1, the reactive power doesn’t
contribute to the average power delivered to the PTO system. The active power, Pb(t),
contains all the resistance (or damping) terms. The instantaneous reactive power, Pd(t),
simply describes how the stored energy exchanges between the machinery(PTO and control
system) and the moving oscillatory system. By time-averaging the instantaneous active
power over a time interval, one can find the average power delivered to the PTO and
control system

Pu ≡ Pu(t) = Pb(t) = Fe(t)ẋ(t)−
[
br(t) ∗ ẋ(t)

]
ẋ(t)−Bf (ẋ(t))2 (3.22)

The actual wave absorption lies within the two first terms. The third term contains the
damping coefficient Bf which is the mechanical loss resistance. One can write the absorbed

power with the first two terms as Pa = Fe(t)ẋ(t) −
[
br(t) ∗ ẋ(t)

]
ẋ(t), where the radiated

power is subtracted from the power from incident wave forces. Falnes writes that ”one
should note think of this as a loss of energy, but a necessity”[24]. By this he refers to the
principle that the equivalent of absorbing wave energy is to generate waves which interferes
destructively with the incident waves.
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3.3.3 Estimation of optimum PTO damping coefficient

The dynamic equation describing a floating buoy oscillating in 1DOF was described in the
time-domain by Cummin’s equation. When evaluating the force from the PTO system,
it is practical to express the equation of motion in the frequency domain, as the force is
represented with a frequency dependent damping coefficient, Bg. It is assumed that the
mooring force is sufficiently small to be neglected, and that the PTO force is linear, that is,
it is proportional to the vertical buoy velocity as described in (3.2). The frequency domain
transformation of Cummin’s equation is often referred to as the Ogilvie equation, which for
uncoupled heave motion and with additional PTO damping yields

X(iω) =
Fext(iω)

−ω2(m+A33) + iω(B33 +Bg) + C33
(3.23)

When speaking in wave energy terms, X is referred to as the capture displacement. This
can be rewritten in terms of the velocity in heave, U , which gives

U(iω) =
Fext(iω)

iω(m+A33) + (B33 +Bg) + C33/iω
(3.24)

From (3.14) it is seen that the time-averaged useful power absorbed by the PTO is dependent
on the damping coefficient due to the PTO and the square of the velocity. By substituting
the velocity, the time-averaged absorbed power can be expressed as

Pu =
1

2
Bg |U(iω)|2 =

1

2

BgFext(ω)2

(B33 +Bg)2 + (ω(m+A33)− (C33/ω))2
(3.25)

To maximise the amount of absorbed energy one can estimate the optimal PTO damping

through following optimum condition; ∂Pu
∂Bg

= 0(see [38]). The optimum PTO damping
coefficient is then found to be

Bg,opt = B33

√
1 +

(C33 − ω2(m+A33)

ωB33

)2
(3.26)

This damping coefficient is the input utilized by Aqwa to simulate the optimum PTO force.
Note that Bg,opt indicates that the optimum damping is independent of the wave height.
The time-averaged absorbed power can further be expressed as [54]

Pu,opt =
|Fext|2

4(B33 +Bg,opt)
(3.27)

which is at it’s maximum at resonance, i.e Bg,opt = B33. The maximum absorbed power is
therefore

Pu,max =
|Fext|2

8B33
(3.28)

at resonance, which suits with previous and well known results(see for example Evans[18]).
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3.3.4 Energy in waves and theoretical limitations of absorption

The energy in surface gravity waves consists of potential energy which arises from the wave
elevation and kinetic energy due to the fluid motion. For harmonic waves in deep water,
the total amount of energy can be retrieved from the power spectrum of the waves

E = ρg

∫ ∞
0

S(f)df (3.29)

where S(f) denotes the wave spectrum as a function of the frequency, f . The wave power
spectra is a way of representing the wave elevation. It is defined as

S(f) =
2

T0
|
∫ T0

0
ζ(t)e2πftdt|2 (3.30)

where ζ(t) is the time-dependent wave elevation and T0 denotes the total measured time.
By including directions of the propagating waves, one obtains a directional wave specter.
Convenient statistical information can be estimated through the power spectrum moments,
defined as

mn =

∫ ∞
0

fnS(f)df (3.31)

The significant wave height, Hs = Hm0 =
√
m0 and the energy period Tp = T−1,0 = m−1

m0

are two examples of such statistics. The transportation of wave energy is denoted J and is
the energy flux through a vertical wall of unit width. It’s defined as

J = ρg

∫ 0

−∞
puxdz (3.32)

where ux is the particle velocity in the horizontal direction, and p is the pressure. The
energy in sinusodial waves with period T = 1/f is transported with the group velocity of
the waves. Thus, one can express a relation between the energy end the energy transport
as follows

J = cgE (3.33)

where cg is the group velocity. From this relation one can further express the wave-power
level(average energy transport) for a real wave in terms of the wave spectrum

J = ρg

∫ ∞
0

cg(f)S(f)df =
ρg2

4π
m−1 =

ρg2

64π
T−1,0H

2
m0 (3.34)

where cg = g
4πf in deep water. For a heaving, axisymmetric body exposed to harmonic

waves, it can be shown[7] that the system can absorb at most

Pmax = Jλ/2π (3.35)
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where λ = gT 2

2π is the wave length and T is the wave period. This corresponds to the
optimum destructive interference for this geometry and motion. By inserting (3.34) and

λ = gT 2

2π into (3.35), the upper limit for absorbed power yields

PA = c∞T
δH2 (3.36)

where H is the wave height, c∞ = 1
128ρ(g/π)3 and δ = 3[24]. There is also a theoretical

upper bound due to the volume of the body, of how much power possible to absorb when in
optimum destructive interference. It is dependent on the wave period and height [15] and
yields

PB = c0
V H

T
(3.37)

where c0 = πρg/4. V is referred to as maximum swept volume and is for a semi-submerged
heaving buoy the difference between maximum and minimum water displacement. PB is
referred to as Budal′s upper bound, and a derivation of this expression can be found in
Falnes[21]. Together with the incident power from the incoming energy transport which is
expressed as Pc = LJ , where L denotes the characteristic length of the body, it sets the
upper limits for the energy absorption as illustrated in figure 16. These are theoretical
values which holds for any axisymmetric body oscillating in heave. The actual amount of
absorbed power is however unique for every system, and depends on the geometry, PTO
damping, control system etc.

Figure 16: Budal diagram. Amount of power possible to absorb for a semi-submerged sphere
exposed to a sinusoidal wave in optimum conditions for three different control techniques.
In this specific case H = 2.26m, V = 524m3 and deep water is assumed. Retrieved from
[26]
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4 Hydrodynamic assessment of a sphere

The numerical simulation performed with the sphere follows the cases from the first phase in
the task 10 project; a free-decay test with different initial displacements and two different
configurations in regular waves. The results of the numerical simulations are presented
and discussed consecutively. Lastly a conclusive summary will follow. The main focus
throughout the analysis is to investigate the difference between analysis with and without
weak nonlinearities. Weak nonlinearities reffers in this case to the calculation of nonlinear
hydrostatic and Froude-Krylov forces as described under section 2.1.

4.1 Geometrical model description

The model created in ANSYS SpaceClaim is defined as a surface body with surface normal
pointing outwards and with the mass of the model defined as a point mass located in the
centre of gravity. The origin of the coordinate system is located at the geometric centre of
the sphere, with the z−axis positive upwards. The free water plane is defined at z = 0 and
splits the sphere such that the model consists of two hemispheres of equal size, one above
and one below the free surface. As linear potential theory solves the problem at the mean
surface(i.e z = 0), only the lower half of the sphere is necessary to obtain a solution. The
upper part was however added for visualization purposes, but could be suppressed during
simulations. The physical properties of the sphere are described in table 3. The natural
period of the heave motion of the sphere can be computed analytically as [23]

T0 =
2π

1.025

√
R

g
(4.1)

where R is the sphere radius and g is the gravitational acceleration. This yields a natural
period of T0 = 4.4s.

Parameters Values

Radius of the sphere 5 m
Initial sphere location 0.0,0.0,0.0 m

Centre of gravity 0.0,0.0,-2.0 m
Mass of sphere 261800 kg
Natural period 4.4 s
Water depth Infinite

Water density 1000 kg

Table 3: Physical properties
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(a) Isometric view (b) The blue line marks the water line

Figure 17: Display of the model in ANSYS SpaceClaim. Radius of 5m. The z-axis is
positive upwards.
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4.2 Mesh refinement by validation of hydrodynamic coefficients

The element size and it’s impact on the solution is an important aspect of numerical so-
lutions based on a finite number of elements. Analytic solutions of the added mass and
damping associated with the periodic motions of a half-immersed sphere exists. An ana-
lytic solution was first given by Havelock[32] and later simplified and generalized by Hulme
[35]. The numerical solutions of the added mass and damping should converge towards
these analytic solutions, which therefore are suitable to use as reference in a mesh refine-
ment study. Furthermore, the asymptotic value of the added mass when ω → ∞ can be
estimated by studying the linear free surface condition(2.10). It is seen that φ→ 0 on z = 0
as ω →∞. This problem is equivalent to a sphere in infinite fluid and the analytic solution
is (see Newman [45])

A∞ =
m

2
(4.2)

where m denotes the mass of the sphere. The asymptotic value of the analytical and nu-
merical solution of the added mass should therefore converge towards a value equal to half
of the mass. The asymptotic value of the heave damping is zero. Table 4 below contains
the general properties of the investigated mesh refinements, which are the total number
of elements on the model, Nele, the number of diffracting elements, Ndif (see section 2.3.1
regarding diffracting and non-diffracting elements), the element size ∆S, and the corre-
sponding maximum allowed wave frequency fmax. The element size is in Aqwa explicitly
related to the maximum frequency which can be utilized in the diffraction analysis, where
finer mesh allows for analysis of higher regular wave frequencies.

Nele Ndif ∆S [m] fmax [Hz]

1064 532 1.00 0.574
5610 2805 0.40 0.884
14522 7261 0.25 1.122
39424 19712 0.15 1.444

Table 4: Properties of the mesh refinement. The 64-bit version of the Aqwa solver is limited
to 40000 elements, of which 30000 may be diffracting.

The dimensionless added mass, µ33 = A33
m , is in figure 18 plotted for the different mesh

refinements. The numerical solution coincides quite well with Hulme, and it is seen that
the solution converges toward the asymptotic value of 0.5 for high frequencies. The 64-bit
version of the Aqwa solver is limited to a maximum 40000 elements, of which 30000 may
be diffracting. The finest mesh described in table 4 consists of 39424 elements, which is
close to the maximum capacity of Aqwa. The corresponding added mass is described with
a blue line in figure 18 and 19. It is observed that for values between 2 and 10 along
the axis of abscissa, which is equivalent of a frequency between 0.32Hz and 0.71Hz(or
a period between 1.41s and 3.13s), the numerical solution seem to diverge slightly from
Hulme. Thus, the numerical solution converges towards a slightly erroneous value in this
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frequency range. The reason for this deviation is not clear. A mesh refinement allowing
a maximum element size of 0.25 was chosen(marked with * in figure 18 and 19), as the
solution converges toward the same value as for finer mesh refinements. The dimensionless
radiation damping for this mesh is plotted and compared to Hulme’s solution in figure 20.
It follows the analytic solution without any significant deviations.

Figure 18: Non-dimensional added mass for different mesh refinements. Max element size
refers to the maximum allowed element size generated by Aqwa. The dotted line represents
the analytic value
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Figure 19: Non-dimensional added mass, µ33 for different mesh refinements. Close-up of
the plot in figure 18, focused on the frequency range where Hulme’s solution applies.

Figure 20: Non-dimensional added mass, µ33, and damping, λ33, compared to analytic
results from Hulme [35]. The dotted lines represents the analytic value. ∆S = 0.25
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4.3 Observation of fundamental assumptions

The foundation of complex simulation tools such as Aqwa boils down to simple assumptions
and phenomenons. From a learning perspective, it was interesting to investigate and observe
some of the basic assumptions of potential theory.

Soluiton up to the mean free surface

Figure 21 shows the hydrodynamic pressure distribution over the sphere for an arbitrary
incoming wave. The main purpose of this plot is to visualize that the potential is solved
up to the mean free water level, a result of the linearization in (2.10). It is seen that the
dynamic pressure is large under the wave crest, and low in a wave through. The green color
along the upper half denotes zero, which can bee seen in the color scale.

Figure 21: Dynamic pressure distribution for an arbitrary incident wave

Furthermore, the mean wetted body surface, which is the lower hemisphere, is constant and
previously denoted S0.

Particle behaviour at the free surface

When the sphere is exposed to waves with significantly long periods, the sphere would
according to theory(see for example [27] or [47]) act as a particle at the surface, as described
in figure 11. Hence, the occurrence of this motion was investigated. The position of the
sphere during one wave period is illustrated with a series of pictures below, when exposed to
a wave with unit amplitude and period of 200s. The expected circular motion is observed.
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(a) t/T = 0.00 (b) t/T = 0.13 (c) t/T = 0.25

(d) t/T = 0.38 (e) t/T = 0.50 (f) t/T = 0.63

(g) t/T = 0.75 (h) t/T = 0.88 (i) t/T = 1.00

Figure 22: Illustration of the sphere motion at the surface for a wave with unit amplitude
and period T = 200s. The illustrations from (a) to (i) shows that the sphere acts as a fluid
particle with circular motion at the surface when exposed to a sufficiently large wave. The
motion can be seen relative to the red, fixed coordinate system.

4.4 Free decay test

In a free-decay test the initial displacement of the body is ascended to desired heights above
the mean water line. The test is initiated with the sphere falling back into the water. It
is initially immersed below the equilibrium position before it floats back up again but with
lower amplitude than the initial displacment. The result is a damped oscillation around the
equilibrium position, which highlights geometric nonlinearities.

A decay test was performed for three different initial displacements; 1m, 3m and 5m above
the mean waterline from the geometric centre of the sphere in the initial mean position(see
figure 23). It is important to note that the validity of the results themselves for the largest
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initial displacement, 5m, are highly questionable, as the premise for both linear and weak
nonlinear solutions are small motion amplitudes. The initial drop height would give rise to
slamming and other water entry effects which are outside of the area if evaluated effects in
this thesis. Hence, one would expect deviations to solutions in which considers these effects
such as heavy CFD simulations. Nevertheless, these tests were in the task 10 project part
of a numerical code-to-code comparison with focus on detecting similarities and differences,
and is why these extreme cases were included.

Figure 23: Illustration of the initial displacements of the free-decay test

In accordance with the task 10 project, 40 second long time-series of the free-decay tests
in heave were performed. The linear and weak nonlinear time-series are illustrated figure
25 to 27 below. From the power spectral density(see figure 24 ) it is seen that the natural
frequency obtained numerically in Aqwa is 0.225 Hz for all three initial displacements. It
almost coincides up to three decimals with the analytic value of 0.227 Hz. For an arithmetic
precision of one, that corresponds to a numerical natural period of 4.4 s, which is the same
as the analytic value described in section 4.1.
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Figure 24: Power spectral density of the heave mo-
tion, for an initial displacement of 1 m, 3 m and 5
m. The marked points describes the frequency(X-
value) at the first order peak in the heave response
PSD(Y-value) for each initial displacement

Figure 25: Initial displacement of 1 m

Figure 26: Time-series of the free decay test
with initial displacement of 3 m

Figure 27: Time-series of the free decay test
with initial displacement of 5 m

The linear model describes the motion well for the two lower initial displacements. For
the highest displacement the nonlinear calculation of hydrostatics caused a phase shift in
the motion response. Remember that the weak nonlinear model considers the instantaneous
wetted surface when calculating the restoring force. For a sphere, which geometry is nonlin-
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ear, the impact of these effects increase with larger oscillation amplitudes. For a geometry
with constant CSA, such as a long vertical cylinder, these effects would not be prominent.

An important remark is that the linear solution coincides with the weak nonlinear solution
for the low initial displacements. It illustrates that the linear assumption is reasonable for
small motions, and simulation tools based on pure linear theory gives realistic solutions
when used appropriately.

4.5 Regular waves

Several runs for a wide range of wave periods and heights were tested(table 5). Ten wave
periods were tested for three different levels of wave steepness and two different model
configurations; free to move in heave and free to move in heave with additional optimum
PTO damping. That is a total of 60 regular wave simulations. The wave steepness S was
computed for deep-water conditions as

S =
H

gT 2
(4.3)

Note that the wave steepness formally is the relation between the wave height and wave
length, which in deep water yields H

λ = 2π H
gT 2 = 2πS. Hence, a factor of 1

2π is implemented
in the expression of S. The different heights for each wave period described in table 5 are
determined from (4.3) in order to maintain the desired wave steepness. Figure 28 illustrates
the regular waves in a context with the wave breaking limit and the relative importance of
mass and diffraction forces.

T[s] f [Hz] λ [m] H1 [m] H2 [m] H3 [m]
S = 0.0005 S = 0.002 S = 0.01

3.0 0.333 14.04 0.044 0.177 0.883
4.0 0.250 24.96 0.078 0.314 1.570
4.4 0.227 30.20 0.095 0.380 1.899
5.0 0.200 39.00 10.123 0.491 2.453
6.0 0.167 56.16 0.177 0.706 3.532
7.0 0.143 76.44 0.240 0.961 4.807
8.0 0.125 99.84 0.314 1.256 6.278
9.0 0.111 126.36 0.397 1.589 7.946
10.0 0.100 156.00 0.491 1.962 9.810
11.0 0.091 188.76 0.594 2.374 11.870

Table 5: Regular wave properties

Similarly to the diffraction test, the waves are propagated according to (equation)
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Figure 29 illustrates the estimated validity limits of several theories for predicting ocean
waves. The vertical axis expresses the steepness while the water depth is expressed along
the horizontal axis. The red dots marks the validity area in which the waves tested in this
report are located. Based on this model, Airy waves are only sufficient to accurately model
the lowest steepness, H1. It is seen that Stokes 2nd and 3rd order wave theory is preferable
to fully capture the waves of steepness H2 and H3 respectively. However, the primary
goal is to study the effects of nonlinear device modeling and not those of nonlinear wave
modelling. Thus, regular Airy waves are used to ensure that the background for the observed
nonlinear effects are well understood. This do however highlight that the representation of
the steep waves with Airy’s theory does not necessarily describe a realistic wave shape, and
that associated nonlinear wave modelling effects will not be captured in this study.

Lastly, it is common practice to calculate the response amplitude operator(RAO) when
evaluating the motion of a body oscillating in a certain sea state and direction. The heave-
motion response amplitude operator for each regular wave was calculated as

RAO =
√
mpeak/ηpeak (4.4)

where mpeak is the first order peak in the power spectral density(PSD) of the heave motion,
and ηpeak is the first order peak in the wave elevation PSD. This equation arises from
the connection between the spectrum of a single input, Sx(ω) and the spectrum of the
corresponding single output Sy(ω)

Sy(ω) = |H(ω)|2Sx(ω) (4.5)

where it is seen that the RAO is a transfer function, commonly denoted H(ω). A thorough
description is found in Newland[44]. The RAO described in (4.4) was computed likewise by
the participants in the IEA OES Task 10.1. Note that this RAO only contains information
of the first order response of a system. To evaluate eventual response of higher order it is
necessary to investigate the PSD over a broader frequency range.
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Figure 28: Relative importance of mass and diffraction forces for the regular waves. The
figure shows the importance of mass, viscous drag and diffraction forces on marine struc-
tures. Viscous drag forces are not dominant until λ/D is approximately 90, and for that
reason is not visible in this plot. The figure is adopted from Faltinsen[27] and Pettersen[47]

Figure 29: The steepness of the analyzed waves and validity limits. H is the wave height, g
is the gravitational acceleration, τ is the wave period and h is the water depth. Retrieved
from IEA OES Task10[56], who adopted it from Le Méhauté[40]
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4.5.1 Freely floating in heave

Linear solution

The behaviour of the sphere in regular waves was first investigated with the linear model.
The RAO of the heave motion, retrieved directly from Aqwa, is illustrated in figure 30.
A peak occurs at a frequency that coincides with the natural frequency of the heave mo-
tion, which implies resonance. The RAO has a value of one in the stiffness dominated
area(i.e when the load frequency is lower than the eigen frequency of the structure) and
goes towards zero in the inertia dominated area(i.e when the load frequency is higher than
the eigen frequency). The behaviour of the heave motion is in accordance with theoretical
expectations(see for example[39]).

Figure 30: Response Amlitude Operator of the heave motion

The time-series of the heave motion of the sphere when exposed to incoming waves with
periods of 3s, 4.4s, 11s and steepness S = 0.0005, are illustrated in figure 31 to 33, and
illustrates the foregoing. These wave periods are highlighted in specific, as they corresponds
to the cases where the system is strongly inertia dominated, in the resonant area and stiffness
dominated. As expected, and in accordance with the RAO, the motion of the sphere is
clearly larger than the wave elevation when T = 4.4s. The sphere is barely moving for high
frequencies, and follows the wave elevation one to one when the frequency is low.

Figure 31: Response in heave for an incoming regular wave with period T = 3.0s. The blue
line represents the heave motion and the red line is the wave elevation
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Figure 32: Response in heave for an incoming regular wave with period T = 4.4s. The blue
line represents the heave motion and the red line is the wave elevation

Figure 33: Response in heave for an incoming regular wave with period T = 11.0s. The
blue line represents the heave motion and the red line is the wave elevation

The oscillating behaviour observed above gives rise to variation in the impact from different
force components. Figure 34 to 36 shows the heave force contributions from the radiation
force, diffraction force, Froude-Krylov force and the hydrostatic restoring force. For T = 3s,
in the inertia dominated area, the diffraction force amplitude is of highest magnitude. The
diffracted wave field is a result of the interaction between the incident wave and a fixed
body. As a result, the diffraction force is large compared to the other force terms as the
body motion is small(see figure 31).

For T = 4.4s(resonance) the hydrostatic restoring term is dominant. It is directly related
to the displacement of the body from the equilibrium position (see equation (2.20)). Due
to the resonant motions which are large relative to the wave amplitude (see figure 32), this
term increases. Analogously, the radiation force is of greater impact due to large motions.
The radiation force is caused by the displacement of water in the vicinity of the body when
the body moves. Therefore, when the body oscillation is large compared to the surface
elevation, this term increases.

Figure 36 illustrates the force components for the longest wave, T = 11s. In that case
the Froude-Krylov and hydrostatic restoring forces are dominant. The radiated wave field
as well as the disturbance from the incident waves are small as the sphere acts as a wave
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follower(see figure 33). This a typical load condition for point-absorbers since they are small
compared to the wave length. For this reason, as previously mentioned in section 2.1.1,
the diffraction force is often neglected in practical applications and early design stages
as the Froude-Krylov force is a good representation of the wave excitation force[4]. By
avoiding to solve the body boundary condition for the diffraction potential one can reduce
computational costs.

Figure 34: Froude-Krylov, diffraction and radiation force in heave for T = 3s and S =
0.0005. The diffraction force is largest

Figure 35: Froude-Krylov, diffraction and radiation force in heave for T = 4.4s(resonance)
and S = 0.0005. The hydrostatic force is largest. The radiation force amplitude is higher
than the diffraction and Froude-Krylov force amplitudes.
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Figure 36: Froude-Krylov, diffraction and radiation force in heave for T = 11s and S =
0.0005. The Froude-Krylov and hydrostatic forces are dominant.

Weak nonlinear solution

The effect of including weak nonlinearities was further investigated. Figure 37 to 39 below
shows the amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr) and hydro-
static restoring(FS) forces for the linear(LINS) and weak nonlinear(NLINS) solution for the
floating sphere. Due to nonlinearities, forces may in general be asymmetric[29]. The force
amplitude is therefore calculated as half of the variation between the crest and through.
The force amplitudes in the transient part of the time series are excluded.

Firstly, it is clearly visible how the hydrostatic restoring and Froude-Krylov term dominates
for long wave periods. It highlights the importance of properly estimating these forces when
point-absorbers operates in such conditions. In figure 39 it is also observed that the Froude-
Krylov force is increasingly dominating compared to the restoring term for steeper waves.
That is reasonable as the steep waves are substantially larger than the small waves, and
the corresponding force is therefore greater. For evaluation of heaving point-absorbers in
survival mode, this term will most likely dominate.

Secondly, it is seen that the linear and weak nonlinear solution coincide quite well in small
waves and shows decent agreement in steep waves. For the small waves(S = 0.0005), the
difference is neglectable. The wave heights are in that case too small compared to the
dimensions of the device to induce motion amplitudes large enough to see any significant
nonlinear effects. For the steep waves(S = 0.01), noticeable deviations are observed in
the case of resonance and in long waves. That follows the expectations as the nature of
the problem is increasingly nonlinear with increased steepness, and especially in resonance
where the relative motions between the surface and buoy are large. In the resonant case,
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the linear solution predicts a somewhat smaller Froude-Krylov force and overpredicts the
hydrostatic restoring force relative to the weak nonlinear solution. For the longest and steep
wave(figure 39(b)) on the other hand, the linear solution underpredicts the restoring force.
These differences are a result of the geometric nonlinearities related to the spherical shape,
which most likely are better captured when the instantaneous wetted surface is considered.
This should preferably be validated with a strong nonlinear simulation or experimental
results before one concludes that the weak nonlinear solution is a better approximation.

(a) S = 0.0005 (b) S = 0.01

Figure 37: T = 3s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr) and
hydrostatic restoring(FS) force
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(a) S = 0.0005 (b) S = 0.01

Figure 38: T = 4.4s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr)
and hydrostatic restoring(FS) force

(a) S = 0.0005 (b) S = 0.01

Figure 39: T = 11s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr)
and hydrostatic restoring(FS) force

Figure 40 shows the RAO’s for the linear and weak nonlinear solution for the lowest and
highest steepness respectively. As can be seen, there are some slight deviations in the first
order motion response when the waves are steep. Although the deviations are small, it’s
arguably largest in the resonant area, where the linear solution is slightly over predicting
the heave response compared to the weak nonlinear solution. That is reflected through
figure 38, where the linear solution predicts a higher restoring force. Other than that, the
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differences observed in the force components between the linear and weak nonlinear solution
for the steep waves does not greatly affect the first order motion response.

(a) S = 0.0005 (b) S = 0.01

Figure 40: First order heave response RAO, no PTO damping

The RAO’s above only contain information about the first order motion of a system, as
described in(4.4). By taking a look at the force power spectral densities, one can evaluate
higher order motion and force responses. The PSD is generated through a Fast-Fourier
transform(FFT) of the respective time-series. In general, the force and heave motion PSD’s
of the linear and weak nonlinear solution coincide in relatively linear load cases. In in-
creasingly nonlinear cases, such as when resonance is induced in steep waves, higher order
effects in the form of energy peaks at sub-harmonics are observed when the instantaneous
wetted surface is considered. Figure 41 illustrates the foregoing for the Froude-Krylov and
restoring force. The first order peak at the wave frequency is well captured for both codes.
In the PSD of the weak nonlinear Froude-Krylov force, peaks occur at frequencies equal
to higher multiples of the wave frequency(2fw, 3fw), which are not captured by the linear
solution. Although not so apparent, two higher order peaks are also present at 2fw and
3fw for the restoring force. The second peak is seemingly captured by the linear solution,
while the third order peak is only captured by the weak nonlinear solution. This illustrates
that some higher order force effects are mitigated when only accounting for linear effects in
rather nonlinear conditions. That might sound self explanatory, but it is important to note
as point-absorbers designed for optimum energy capture most often are under the effect of
a control system(i.e latching) and consequently operates in relatively nonlinear conditions.
Similar observations were recently found by Giorgi and Ringwood[30] who investigated the
possibility of analytical representation of nonlinear Froude-Krylov forces. They stated that
in terms of energy absorption, this may transfer some energy from the exciting frequency
to its multiples.
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(a) PSD Froude-Krylov force (b) PSD restoring force

Figure 41: PSD of the Froude-Krylov and restoring force. T=4.4s, S=0.01

Lastly, the impact of including the instantaneous wetted surface also affect the phase.
Similarly to what one observed in the free decay test for a high initial displacement, a
difference in the phasing between the two solutions occur when the waves are steep. For
small waves, the phase is not affected by excluding weak nonlinearities. As an example,
figure 42 illustrates phase difference for the heave force when the sphere is exposed to a
wave with T = 3s and S = 0.01. The heave force is the sum of the foregoing force terms;
FI , Fd, Fr, FS .

Figure 42: Heave force for a wave with T=3s and S=0.01. Phase difference between LINS
and NLINS for steep waves
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4.5.2 Oscillating in heave with optimum PTO damping

An additional linear damping force in heave was applied to simulate the optimum PTO
damping. The damping is for simplicity linear, and calculated as described in section 3.3.3.
In this study the hydrodynamic coefficients estimated in section This method of estimating
optimum PTO damping is also used by the participants in IEA OES Task 10 [56]. The
resulting damping coefficients for each wave are described in table 6. b

T[s] Optimum Damping T[s ] Optimum Damping
[Ns/m] [Ns/m]

3.0 398736.034 7.0 479668.979
4.0 118149.758 8.0 633979.761
4.4 90080.857 9.0 784083.286
5.0 161048.558 10.0 932117.647
6.0 322292.419 11.0 1077123.445

Table 6: Optimum PTO damping properties. Retrieved from IEA OES Task 10[56]

Freely floating vs external PTO damping

The heave response RAO for each regular wave was calculated as for the case with zero
additional damping(4.4). The effect of the PTO system can be observed in the heave
position RAO in figure 43. The heave response amplitude is drastically reduced, and the
RAO is below one for all periods. It converges towards 0.7 for large wave periods, which
illustrates that the body will to a larger extent meet the waves, compared to the freely
oscillating case where the sphere acts as a wave follower for long waves. This gives reason to
expect that nonlinear effects are more prominent. The reduction in relative motion between
the structure and the surface elevation can in a sense be seen as the energy absorbed from
the system through the power take-off system.
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Figure 43: Linear solution. Heave position RAO

Figure 44 shows how the force amplitudes are affected by implementing the external damp-
ing. The force amplitudes for the case with and without PTO damping for the weak
nonlinear solution are plotted. It is seen that the wave excitation forces(FI , Fd) are equal
in both cases. The incident wave potential is found by evaluating the wave without the
body being present, which is corrected through the diffraction potential. Since the incident
waves are the same in the two cases, and the diffraction potential is linearly calculated, they
remain the same and independent of external damping. The radiation and restoring force
on the other hand are both significantly reduced due to the reduction in heave response
when PTO damping is applied.

(a) T = 3s (b) T = 4.4s (c) T=11s

Figure 44: Force amplitudes with and without external damping for three different wave
periods with S = 0.0005. The plots are from the weak nonlinear model
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Linear model vs weak nonlinear model

The effect of accounting for the instantaneous wetted surface are initially studied by look-
ing at the force amplitudes of the the Froude-Krylov, diffraction, radiation and hydrostatic
restoring forces separately for the linear(LINS) and weak nonlinear(NLINS) solution. Simi-
larly to the case with no external damping force. The force amplitudes are plotted in figure
45 to 47 below. As expected, the Froude-Krylov and restoring force are of most importance
in long waves. The diffraction force is largest for small waves and the restoring force is
dominates in resonance. The reason behind this observation is the same as for the sphere
without external damping, which was discussed in section 4.5.1. It is seen that the two
solutions(LINS, NLINS) coincide well for the lowest waves. For the steepest waves there
are observed some differences. In the case of resonance, the linear solution overpredicts the
radiation and restoring force and underpredicts the Froude-Krylov force. The same trend
was observed for the sphere without external damping(figure 38). For the longest wave it is
seen that the linear model substantially overpredicts both the Froude-Krylov and restoring
force. As will be discussed later in this section, this greatly affects the heave response and
energy output.

(a) S = 0.0005 (b) S = 0.01

Figure 45: T = 3s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr) and
hydrostatic restoring(FS) force
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(a) S = 0.0005 (b) S = 0.01

Figure 46: T = 4.4s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr)
and hydrostatic restoring(FS) force

(a) S = 0.0005 (b) S = 0.01

Figure 47: T = 11s. Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr)
and hydrostatic restoring(FS) force

The heave response RAO for the linear and weak nonlinear model are plotted for S = 0.0005
and S = 0.01 in figure 48. In small waves the motion is well described by the linear solution.
The difference is however substantial for wave periods over 6s in steep waves. That is
reflected in figure 47(b), where it is seen that the linear model predicts a significantly higher
Froude-Krylov and restoring force. This overprediction results in a larger body motion
which could give unreasonably optimistic predictions regarding energy harvesting. This
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reduction in heave response was also observed between several linear and weak nonlinear
codes in Task 10[56]. In the case of the free floating sphere, these effects were not observed.
In that case the sphere acts as a wave follower, which implies that nonlinearities induced by
changes in relative position between the instantaneous free-water surface and the heaving
sphere are mitigated. That is however not the case when PTO damping is considered, which
highlights that accounting for linear effects only is not necessarily sufficient to fully capture
the behaviour when external damping is applied.

(a) S = 0.0005 (b) S = 0.01

Figure 48: Heave position RAO with optimum PTO damping. LINS denotes the results
which only includes linear effects. NLINS includes weak nonlinearities.

Power absorption

The absorbed wave energy is expressed through the mean(time-averaged) useful power. A
quick reminder; the mean or time-averaged useful power refers to the power consumed by
the mechanical damper of the PTO system during one wave period. A brief derivation in
optimal conditions is described in section 3.3.3, where it was seen that the the mean power
can be estimated as

Pu,opt =
|Fext|2

4(B33 +Bg,opt)

which is dependent on the excitation force, radiation and optimum PTO damping. The
relation between the radiation damping and optimum PTO damping are illustrated in figure
49. B33 and Bg,opt are equal in magnitude when the wave period coincides with the natural
period of the body(resonance), which in this case is at 4.4s. BTOT has a local minimum
at this wave period, which by looking at the expression above indicates that the maximum
mean power should occur in the proximity of the natural frequency. In the frequency range

65



4. Hydrodynamic assessment of a sphere

spanning from the resonant area and towards longer waves, Bg,opt varies approximately
linearly with the incoming wave period.

Figure 49: Radiation damping coefficient, B33, and optimum PTO damping coefficient,
Bg,opt for the studied range of wave periods. BTOT is the sum of B33 and Bg,opt. Task10
denotes the optimum damping coefficient values retrieved from the Task10 project described
in table 6

The mean power, normalized by the square of the incident wave height, is plotted for regular
waves with steepness S = 0.0005 and S = 0.01. For incident waves with low steepness, the
two models show good agreement. For the steep waves, the models show decent agreement
up to wave periods of 6s. For longer wave periods the two models start to diverge, and the
effect of including the instantaneous wetted surface is clearly affecting the power estimation.
That is directly connected to the reduced heave motion for wave periods over 6s seen in
the heave response RAO for the weak nonlinear model in figure 48(b). Small motions
generate less power. This divergence between the two models is caused by the geometric
nonlinearities related to the spherical shape, which in large waves induces severe nonlinear
hydrostatic and Froude-Krylov forces. The difference is seen in figure 47(b). The same trend
between linear and weak nonlinear models was generally observed in IEA OES Task10.

In terms of energy production in steep conditions, the linear model suggests that the mean
power level maintains a value slightly above 2 W/m2 for wave periods longer than 6s.
This could lead to an overoptimistic estimate of energy generation and related economic
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predictions.

(a) S = 0.0005 (b) S = 0.01

Figure 50: Mean power normalized by the square of the wave height for the studied incident
wave periods

4.6 Concluding remarks of the sphere assessment

• The free decay test for small initial displacements showed good agreement between the
linear and weak nonlinear solution. For the large initial displacement(5m), differences
in terms of phasing and amplitude were observed, visualizing the effect of accounting
for variations in the hydrostatic stiffness. The linear assumption is good for small
motions.

• Evaluation of the dynamic behaviour of the freely floating sphere showed that diffrac-
tion forces dominates for high wave frequencies, the hydrostatic restoring and the
radiation force are largest in resonance, and hydrostatic and incident wave (Froude-
Krylov) forces dominates for frequencies lower than the natural frequency. It sub-
stantiates the commonly used approximation of the Froude-Krylov force often being
a good representation of the excitation forces for point-absorbers operating in long
waves(wave periods significantly larger than the natural period). For point-absorbers
operating in resonance this approximation is not necessarily valid.

• For the free floating sphere the linear and weak nonlinear solutions showed in general
good agreement. For the small waves (S = 0.0005) the wave height were too small
compared to the dimensions of the device to induce motion amplitudes large enough
to see any significant nonlinear Froude-Krylov or hydrostatic effects. Some deviations
were observed in steep waves, arguably largest in resonance, where the linear solution
seem to over-predict the restoring force. The PSD of the resonant Froude-Krylov
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force in steep waves further showed that some higher order force peaks are mitigated
in the linear solution. The effect of accounting for the instantaneous wetted surface
did however not have a big impact on the resulting first order heave motion response
in small or steep waves.

• The impact of including weak nonlinearities showed a greater impact when an exter-
nal PTO damping was applied to the system. For low waves and wave periods in
the diffraction dominated area(wave periods lower than the natural frequency), the
two solutions showed good agreement. Deviations were however observed for steep
incident waves oscillating with resonant frequency, and waves with higher period than
the natural period. The impact of nonlinearities was most prominent for steep waves
with period longer than 6 seconds. The weak nonlinear solution predicted a reduced
heave response compared to the linear model, which resulted in a drastically reduced
mean power estimation. This can be explained by the fact that the linear model
significantly overpredicted the hydrostatic restoring and Froude-Krylov force. The
reduced estimate from the weak nonlinear solution is caused by accounting for geo-
metrical nonlinearities related to the sphere surface. This effect was not so prominent
for the freely floating sphere without PTO damping, as it acts as a wave follower in
long waves.

• To summarize; accounting for linear effects only is not necessarily sufficient to fully
capture the behaviour when external damping is applied to the system. Based on this
study the weak nonlinearities should be considered in steep waves or other nonlinear
cases such as resonance where the body motions are large. The linear solution can
give an unrealistic and overoptimistic estimate of energy generation and economic
predictions in those cases compared to the results from the weak nonlinear model.
The weak nonlinear model does only consider the effects of the nonlinear Froude-
Krylov and hydrostatic restoring force. Nonlinear effects from higher order modelling
of the waves, kinematics above the mean waterline such as Wheeler-stretching, effects
related to viscosity or other effects are not considered. Implementation of such effects
could affect the results and give rise to different conclusions.
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5 Hydrodynamic assessment of the WEC float

The analysed WEC float is a real model stationed in Sandia National Laboratories(SNL).
For that reason experimental data is available for validation of the simulations. The analysis
will also be compared to results from other participants in IEA OES Task 10.2. The experi-
mental data is available for public usage online at https : //mhkdr.openei.org/submissions/151.

The steepness of the incident are limited, as a point of the experiment was to avoid oscil-
lations outside of the linear area of the WEC float to ensure comparable results to linear
codes. For that reason it is not expected to see large variations between the linear and weak
nonlinear model. This section will contain the following

• Description of the WEC float

• Validation of hydrodynamic coefficients. The added mass and radiation damping
estimated in Aqwa will be validated against experimental results and a linear WAMIT
simulation performed by NREL SNL

• A free-decay test to ensure that the model performs as expected and in accordance
with other codes. Will be compared to a linear WAMIT simulation performed by
NREL SNL and a strongly nonlinear CFD simulation in OpenFOAM conducted by
RISE. No experimental data is available.

• A radiation test to evaluate the numerical radiation model.

• A diffraction test to evaluate the numerical diffraction model.

It was initially intended to perform a regular wave test as well, with the experimentally
measured wave elevation and PTO force as input. However, some trouble with the imple-
mentation in Aqwa due to a minor bug in the lastest version(ANSYS v/2019 R2) at the
time of writing made this difficult. This bug will according to ANSYS be fixed in the next
version. The float is exposed to simulated regular waves with and without PTO force in
section ??.

5.1 WEC float model description

The WEC model geometry to be numerically assessed is made in Sandia National Laborato-
ries. It is 1/17 of it’s full-scale equivalent, which is not designed with intention of it to be a
commercial WEC, but rather as a test reference for numerical WEC dynamics modelling and
control. The geometric configuration and set-up is described in figure 51 below. The upper
part of the float which pierces the mean water level is shaped as a cylinder, and the bottom
half is shaped like a cone. The surface of the float therefore has a linear part(cylinder) and a
nonlinear geometrical part(cone). It has the option of locking or unlocking multiple degrees
of freedom, and thus able to consider a wide range of complexities. However, the model was
in this test campaign restricted to heave motion only. The model was ballasted to obtain
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the draft described in figure 51a. The test cases were further designed such that the model
would oscillate with linear hydrostatics, i.e within 0.20m above and 0.16m below the mean
water line. The model can be deballasted to provide a system in which the hydrostatics
are strongly nonlinear. That is not the intention in this study, but provides possibilities for
future research. The physical properties of the model are tabulated in table 7.

Parameters Values

Rigid body mass(float only) 660 kg
Rigid body mass(float and slider) 858 kg

Displaced volume 0.858 m3

Float radius 0.880 m
Float draft 0.530 m

Water density 1000 kg/m3

Table 7: Physical properties

The model is equipped with linear translatory actuators in surge and heave, and a rotary
actuator to simulate pitch/roll. Load cells are located at the surface of the model to measure
forces experienced by the WEC device. These were used to measure the force output of
the actuator and force input from the incident waves. With this set-up the float can be
fixed, freely floating or forced to oscillate by the actuator. Further details regarding the
experimental set-up and implementation can be found in the Sandia Report[10].

(a) Sketch of the float geometry (b) Illustration of the set-up

Figure 51: IEA OES Task 10.2 WEC float geometry. The illustrations are retrieved from
[10]
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Figure 52: WEC model in ANSYS SpaceClaim

5.2 Validation of hydrodynamic coefficients

Unlike the well studied sphere geometry, there are no analytic solutions to hydrodynamic
coefficients such as added mass and radiation damping for the WEC float. In order to
validate the modeling in ANSYS, the added mass and radiation damping were compared to
experimental and numerical data from Sandia National Laboratories[10]. There WAMIT
was used as the tool to conduct the numerical assessment. Both ANSYS Aqwa and WAMIT
are based on linear and second-order potential theory, and applies the panel method to solve
for the velocity potential and fluid pressure on the submerged surfaces. Thus, similarity in
the solutions is to be expected.

The mesh refinement found to be sufficient for the sphere was scaled down by using the
ratio between the radius of the two geometries as a scaling parameter.

SWEC =
rWEC

rsphere
Ssphere = 0.176 Ssphere (5.1)

where SWEC and Ssphere denotes the element size of the WEC and sphere respectively,
rsphere is the sphere raduis, while rWEC is the radius of the circular water plane area of the
WEC in the mean position(see table 7). This resulted in an initial element size of approxi-
mately 0.045. As can be seen in figure 53(a) and 53(b) below, the added mass and damping

Nele Ndif ∆S [m] fmax
16504 10207 0.045 2.889

Table 8: Properties of the mesh refinement

coincide with the simulations in WAMIT. Deviations here would indicate inaccurate mod-
eling or coarse mesh. Figure 54 contains the plotted experimental and numerical results
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from Sandia. It shows that the WAMIT simulation coincide with experimental data. This
observation validates the WAMIT data, which also boosts the confidence in the data from
the Aqwa simulations. Conclusively, the estimated added mass and damping from potential
theory in general suits well with experimental results.

(a) Added mass (b) Radiation damping

Figure 53: Added mass and damping for simulations in WAMIT(Sandia National Labora-
tories) and ANSYS Aqwa

Figure 54: Data from Sandia National Laboratories. Added mass and damping. The
plot shows smoothed experimental data and the data obtained in WAMIT. The figure also
includes a parametric model, which is not further discussed. Note that the frequency is
plotted logarithmic. Retrieved from [10]
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5.3 Decay test

Figure 55: PSD of the heave response for an
initial displacement of 0.1m. Peak at a fre-
quency of 0.63 Hz

Introduction to the case:A free decay
test of the WEC model was performed. No
experimental data is available for the decay
test, thus the results were compared to data
from other participants in OES Task 10.2.
It is a convenient way to further ensure that
the model performs as expected and in ac-
cordance with other codes. Both linear and
weak nonlinear analysis were conducted in
Aqwa. Two decay test were performed with
initial displacement of 0.1m and 0.2m, re-
ferred to as DC1 and DC2 respectively. The
first initial displacement is within the ver-
tical surface piercing cylindrical shape of
the WEC. Therefore one avoids geometrical
nonlinearities. For the second case, the up-
per part of the coned surface exits the mean
water level by a vertical distance of 0.04m.
That gives rise to occurrence of geometrical
nonlinear effects due to a change in water plane area for the first oscillation(s). The water
plane area will quickly become constant when the motion is damped.

Results: The results from figure 56 shows that there are no significant deviation between
the linear and weak-nonlinear solution. Compared to the free decay test of the sphere, the
impact of evaluating geometric nonlinearities is small. A look at the PSD of the motion
response in figure 55 shows that the WEC model has a natural frequency of f0 = 0.63Hz,
which corresponds to a natural period of 1.59s.

The linear solution in Aqwa was further compared to a linear solution in WAMIT(conducted
by SNL NREL) and a strong nonlinear solution from OpenFOAM(conducted by RISE). The
results are described in figure 57. It is seen that the linear codes are good approximations,
and are close to identical to the CFD simulation. It is however interesting to observe
that in the first oscillation for the highest initial displacement, i.e when the CSA is not
constant, the WAMIT code slightly over-predicts the motion amplitude compared to both
OpenFOAM and Aqwa. Altough Aqwa and WAMIT are based on the same theory, different
BEM softwares utilises different numerics to solve same equations. This might be visible
here. Other than that the codes are in good agreement.
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(a) DC1: Initial displacement 0.1m (b) DC2: Initial displacement 0.2m

Figure 56: Linear and weak nonlinear solution of the heave response for DC1 and DC2 in
ANSYS Aqwa

(a) DC1: Initial displacement 0.1m (b) DC2: Initial displacement 0.2m

Figure 57: Code-to-code comparison. Aqwa LINS and WAMIT LINS are linear solutions.
OpenFOAM is CFD analysis which is strongly nonlinear
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5.4 Radiation test

Introduction to the case: A radiation test was performed to evaluate the numerical radi-
ation model. The float is subjected to a harmonically oscillating vertical force in otherwise
still water. The test is designed to maintain motions within the linear regime, which means
that the coned part of the float will not exit the water. In other word, the cross-sectional
area is constant. Differences between the linear and weak nonlinear model are therefore
expected to be neglectable. Actuator frequencies in the range 0.25 Hz to 1.00 Hz were
conducted experimentally in the Sandia Lab. This range ensures that the natural period is
covered, which based on numerical models was predicted to be approximately 0.6 Hz [10].
Table 9 illustrates the cases which were evaluated in this study and by other participants in
IAE OES Task10. The time history of the actuator force used in the experiment was used
as input in Aqwa. Note that the excitation forces are zero in a radiation test, and the force
components of interest are the hydrostatic restoring force,FS , and radiation force, FR.

Test ID Actuator frequency [Hz] Wave Amplitude [m] Steepness [m]

RA1 0.25 0.05 0.0006
RA2 0.60 0.05 0.0009
RA3 0.80 0.05 0.0016
RA4 1.00 0.05 0.0025

Table 9: Properties of the radiation test

Results: Figure 58 illustrates the heave response for the selected cases. It is seen that
the response is well described by the Aqwa simulations in general. There are no deviations
between the linear or weak nonlinear model in any of the cases. When the device is exited
with a frequency of 0, 6Hz, which is in the proximity of the natural frequency, the numerical
model overpredicts the motions response. This is most likely due to viscous effects which
are prominent in the experiment and consequently reduces the motion amplitude. Neither
the linear or weak nonlinear model considers viscous effects. Thus, to give some verification
to this statement, the effect of including a viscous drag force in the numerical simulation
was tested. It was implemented as a Morrison drag force, which can be described as

Fdm = Cdm|u|u (5.2)

where Cdm is a drag coefficient and u is the vertical water particle velocity. An educated
guess of the drag coefficient of Cdm = Mass WEC float

Diameter at SWL was selected. The result is illustrated
in figure 60, where it is seen that the viscous impact indeed improves the estimation of
the motion response, and may explain the reduced motion observed in the experiment.
The addition of a constant term to represent the effect of viscosity does not increase the
computational time an appreciable extent. It could be a good improvement to the simulation
with little extra cost in certain load conditions. The applied drag force is linear and the
drag coefficient is only a good guess. Hence, this should be investigated further to obtain
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more certainty around this observation. Is therefore suggested as an interesting topic for
further work.

(a) RA1: 0.25 Hz (b) RA2: 0.60 Hz

(c) RA3: 0.80 Hz (d) RA4: 1.00 Hz

Figure 58: Compared heave position between experiment and numerical simulations

The PSD of the heave response were also of interest to investigate. The accuracy in the
estimation of higher order effects vary for the different actuator frequencies. Firstly, higher
order sub-harmonics induced by a harmonic motion are observed. In the experiment they
occur at frequencies two and three times the wave frequency. The same phenomenon as
was observed in some force PSD’s during the sphere assessment. Some discussion regarding
this observation can be found there, in the end of section 4.5.1. In the first(RA1) and
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last(RA4) case, both higher order peaks are well captured by the numerics. In the case
of resonant oscillation(RA2), the first and third order peak(1.8 Hz) are well captured, but
the second peak(1.2 Hz) is slightly underpredicted by both numerical models. In the PSD
of RA2 the numerical models are in general in good agreement with the experiment. The
exception being that the numerical models predict a peak at a frequency of 1.6 Hz, which
is not present in the experiment. This is somewhat strange, and it is more evident in RA3.
There the first(0,80 Hz) and third(2,40 Hz) order peak are well described in Aqwa, but in
the range between 1,2 Hz and 2,2Hz, Aqwa predicts three peaks which are not present in
the experiment, as well as the second order peak(1.6 Hz) is not captured.

A part from RA3, the higher order peaks are generally well resolved. It was a bit unexpected
that both the linear and weak nonlinear model would capture these effects so well. However,
by looking at the PSD of the actuator force(input signal), it was observed that second and
third order peaks were present(see figure 61). Hence, the reason the higher order peaks are
so well resolved in the numerical simulation is most likely due to the peaks being present
in the actuator force input signal.
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(a) RA1: 0.25 Hz (b) RA2: 0.60 Hz

(c) RA3: 0.80 Hz (d) RA4: 1.00 Hz

Figure 59: PSD of the heave response. Comparison between experiment and numerical
simulation. Note that the spectrum of the linear solution(LINS) is difficult to see as it
aligns with the spectrum of the weak nonlinear solution(NLINS)

78



5. Hydrodynamic assessment of the WEC float

Figure 60: RA2 heave position. Comparison of the linear model(LINS), linear model with
implemented Morrison drag(LINS + Cdm) and experimental data

Figure 61: PSD of the actuator force in RA1. It shows that higher order peaks are present
in the input force signal
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5.5 Diffraction test

Figure 62: Wave spectrum for the Airy waves
simulated in Aqwa and the waves generated
in the experiment. Illustrated for waves with
frequency 0.25 Hz and amplitude 0.05m

Introduction to the case: A diffraction
test was performed to investigate the nu-
merical diffraction model. In a diffraction
test the float is fixed at the mean position
and subjected to incident waves. The forces
of interest are the wave excitation forces;
Froude-Krylov and diffraction. Waves in
the frequency range 0.25 Hz to 0.9 Hz and
with amplitude 0.050m were tested in the
experiment. An extra wave with frequency
0.60 Hz but half the amplitude (0.025m)
was also tested. The waves are within the
linear regime and covers the natural fre-
quency of the float. Four cases were se-
lected for numerical evaluation in IEA OES
Task 10.2, which are presented in table 10.
These cases include low frequency, resonant
frequency and high frequency waves. These
are also evaluated in this study.

The time-series of the measured wave eleva-
tion in the Sandia Lab were supposed to be used as input in order to reproduce model test
wave conditions as accurately as possible. However, some trouble with the implementation
in Aqwa due to a minor bug in the lastest version(ANSYS v/2019 R2) at the time of writing
made this difficult. This bug will according to ANSYS be fixed in the next version. Thus,
the waves described in table 10 were simulated as regular Airy waves. Figure 62 illustrates
the wave spectrum of the measured experimental waves and the simulated waves in Aqwa
for DF1. This shows that higher order peaks are present in the waves generated in the
experiment. Hence, eventual effects due to these sub-harmonics will not be captured in this
study. Based on the results which will be presented below, this did not have any significant
impact when compared to other participants in IEA OES Task 10.2, who used the wave
elevation time-series from the Sandia Lab as input.

Test ID Wave frequency [Hz] Wave Amplitude [m] Steepness [m]

DF1 0.250 0.050 0.0006
DF2 0.600 0.050 0.0037
DF3 0.600 0.025 0.0018
DF4 0.900 0.050 0.0083

Table 10: Properties of the diffraction test
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Results: Figure 64 below illustrates the heave force related to the selected load conditions
for the linear model, weak nonlinear model and the experimental data. Firstly, it is seen
that the linear and weak nonlinear solution coincide in all four cases. The CSA is main-
tained constant, and consequently no weak nonlinearities are observed. Secondly, higher
order frequencies are clearly present in the experiment. This could be due to the higher
order peaks in the PSD of experimental wave time series in figure 62, which are not included
regular waves simulated in Aqwa. However, when comparing to results from participants in
IEA OES Task10.2, who used the experimental waves as input, these higher order frequen-
cies are not present in the resulting heave force time series. The high frequency content
could therefore rise from effects in the experimental set-up.

It is further observed that the heave force is underpredicted by simulations in the low
frequency waves(DF1). The force amplitude seem to be closer for in DF2 and DF3. In
DF4 the simulations seem to overpredict the heave force, and it is further noticed that
the graph of the experimental heave force is shifted downwards. This latter observation is
further discussed below. In figure 63 the heave force estimated in the numerical simulation is
separated into contributions from the diffraction and Froude-Krylov forces. As seen before
in this study, the Froude-Krylov force dominates when the wave period is long compared
to the natural period of the body, and the diffraction forces tends to dominate when the
frequency is high. In the experiment, the total heave force is measured through force sensors,
and it is difficult to separate the force into incident wave and diffraction forces. However,
if one relates the impact of these two force terms described in figure 63 to the comparison
in heave force between experimental data and the numerical solutions illustrated in figure
64,it is evident that the heave force is underpredicted by the numerical models when the
Froude-Krylov force is dominating and slightly overpredicted when the diffraction force is
dominating. This could indicate that the numerical solutions underpredicts the Froude-
Krylov force and overpredicts the diffraction force.

Lastly, the impact of including kinematic stretching was investigated. Kinematic stretching
is the process of extending the Airy waves to predict the fluid velocity and acceleration at
points above the mean water level. This subject is not covered in the theoretical background
of this thesis, but information can be found in a study by Du et al.[13] who discussed and
developed several approaches. Aqwa applies a method referred to as Wheeler stretching[57].
Figure 65 illustrates the estimated heave force acting on the float with and without the
inclusion of Wheeler stretching for the weak nonlinear model. It is seen in figure 65(a) that
there are no significant difference in DF1. In DF2 the waves are steeper and the kinematics
above the mean water level are consequently more prominent. As can bee seen figure 65(b),
the graph is shifted downwards. To physically interpret this, it is of importance to note
that the heave force is in phase with the surface elevation. Positive heave force values
occur during a wave crest and negative values occur during a wave through. Thus, the
fact that the graph is shifted downwards implies that the magnitude of the estimated heave
force during a crest is reduced and oppositely increased during a through when Wheeler
stretching is applied. It is difficult to say weather this improves the estimation of the heave
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force or not, due to the severe impact of higher order frequencies in the experimental data.
However, when looking at the experimental data from DF2(figure 65(b)), one can see that
the force graph is shifted downwards in a similar manner as for the numerical simulation
with kinematic stretching. Meaning that the magnitude of the heave force is larger during
a wave through than it is during a wave crest. This is not captured when considering the
weak nonlinear model only, as the force amplitudes are equal during a wave crest and wave
through. Furthermore, higher order effects are better described when Wheeler stretching is
accounted for. Figure 66 shows the PSD of the heave force acting on the float during DF1
for the weak nonlinear model with and without Wheeler stretching. There on can see that
the weak nonlinear model captures the first(0.25Hz) and third(0.75Hz) order peak, but not
the one of second(0.50Hz) order. This peak is however somewhat captured when Wheeler
stretching is included in the analysis.

Figure 63: Impact of the Froude-Krylov and diffraction force for the selected test cases.
The force amplitudes are here shown for the weak nonlinear model. The results from the
linear solution were more or less identical.
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(a) DF1: Wave frequency 0.25 Hz, amlitude 0.050m (b) DF2: Wave frequency 0.60 Hz, amlitude 0.050m

(c) DF3: Wave frequency 0.60 Hz, amlitude 0.025m (d) DF4: Wave frequency 0.90 Hz, amlitude 0.050m

Figure 64: PSD of the heave force acting on the float during the tabled diffraction tests.
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(a) DF1: Wave frequency 0.25 Hz, amlitude 0.050m (b) DF2: Wave frequency 0.60 Hz, amlitude 0.050m

Figure 65: Heave force acting on the float. Comparison of the weak nonlinear solution with
and without Wheeler stretching and experimental data

Figure 66: PSD of the heave force acting on the float in DF1. NLINS denotes the weak
nonlinear model and NLINS+Wheeler implies that Wheeler stretching is included. In the
magnification of the graph around the second order peak, one can clearly see that the peak
is somewhat captured by the numerical solution when Wheeler stretching is applied. The
third order peak is captured by both models.
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5.6 Concluding remarks of the WEC float assessment

• The estimated added mass and radiation damping estimated with potential theory in
Aqwa suited well with results from WAMIT and experimental data from Sandia Lab,
which improves the vaidation of the numerical model.

• In the free-decay test the linear and weak nonlinear solution showed good agreement.
The heave motion further coincided well with a strong nonlinear CFD simulation
conducted in OpenFOAM.

• Weak nonlinear effect were generally not observed in any of the cases. That is be-
cause the load conditions in the test cases were remained within the linear regime,
meaning that the CSA was kept constant. Thus, from this study it appears that when
the immersed CSA is constant and the waves are rather linear, the linear model is
sufficiently accurate. At least in terms of the Froudy-Krylov and hydrostatic forces.

• One of the advantages with validation against experimental data, is that it is easy to
see weather certain effects improves the numerical modelling or not. Hence, during
the radiation test a Morrison drag force was applied to simulate the effect of viscosity.
An educated guess of the drag coefficient improved the numerical estimation. This
have to be studied more closely before stating a conclusion. The addition of a viscous
force term is however not computationally heavy, and could prove to be an efficient
improvement for point-absorber analysis.

• On a similar basis as for the inclusion of a viscous term in the radiation test, the effect
of kinematics above the mean water level was briefly evaluated in the diffraction test.
Aqwa applies the method of Wheeler stretching. Due to the severe effect of higher
order frequencies in the experimental data, it was rather difficult to see to what extent
the inclusion of Wheeler stretching was an improvement or not. An effect that was
observed however, was that the heave force amplitude during a wave through was
larger than during a wave crest. This resulted in the time series of the heave force
being shifted downwards. This was effect also evident in the experiment, but not
in the weak nonlinear solution without Wheeler stretching. Lastly, it was seen that
higher order peaks in the heave force PSD were better described.
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6 Comparison of three float geometries with focus on ab-
sorbed power

This section compares three different geometries with focus on assessing the relevance of
modelling nonlinear Froude-Krylov and hydrostatic forces in normal operating conditions,
and to see how the geometry itself affects the absorbed power. The studied geometries are
the sphere, a cylinder and the WEC float presented in section 5. The previous study of
the sphere showed that nonlinear modelling of Froude-Krylov and hydrostatic forces are
increasingly significant in steeper waves. The dimension of the sphere are however different
in this case, as it is adapted to be comparable to the model scale WEC float. The cylinder
is also dimensioned to be as comparable as possible to the WEC model.

Firstly, the geometries and load conditions as well as relevant body characteristics will be
presented, followed by a decay test to ensure all geometries oscillates at the same and desired
natural frequency. The geometries are thereafter evaluated when floating freely in regular
waves without any PTO force. Lastly, the geometries are evaluated with focus on absorbed
energy. A damping coefficient is applied to simulate a PTO force. The same formulation
as described in (3.26) and (3.27) are used for the optimum damping and mean power.

Figure 67: ANSYS SpaceClaim. Illustration of the investigated geometries
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6.1 Model geometries and sea-states

The geometries are designed to have as much comparability as possible, to be able to
compare the result. Obviously, it is not possible to obtain similar natural period, draft,
radius or displaced volume etc. for all three geometries. Equality in the natural period
was chosen as the main comparability criterion. That ensures that the body response
characteristics are similar when exposed to the same load conditions. As a consequence the
body mass and draft will be different.

To achieve similarity in the natural period, the body geometries had to be adapted appro-
priately. For the sphere, the radius is the controllable parameter. It was found through
equation (4.1) with the desired natural period as input. For the cylinder the radius and
draft can be adjusted. To obtain similar force magnitudes as the WEC float the radius
was set equal to the WEC float, and the draft was adjusted to achieve the desired natu-
ral frequency. The algebraic equation for the natural frequency in heave for a cylinder as
described in (6.1)was applied

ω0 =

√
C33

M +A∞
=

√
ρgπR2

c

πρR2
cdc + 4

3ρR
3
c

=

√
πg

πdc + 4
3Rc

(6.1)

where Rc is the cylinder radius and dc is the draft. The expression used for the added mass
is the analytical formulation for a heaving cylinder at infinite frequency A∞ = 4

3ρR
3
c [27].

This equation was solved with respect to the draft, which resulted in a rather flat cylinder
with the same radius as the WEC float. This will lead to equality in the linear hydrostatic
stiffness and forces acting on the bodies will be of similar magnitude. The sphere has the
same natural period as the other two other geometries and consequently different radius.
Table 11 summarizes the geometrical characteristics.

Parameters Sphere WEC float Cylinder

Radius 0.658 m 0.880 m 0.880 m
Draft 0.658 m 0.530 m 0.253 m

Body mass 596 kg 858 kg 615 kg
Natural period 1.59 s 1.59 s 1.59 s

Natural frequency 0.63 Hz 0.63 Hz 0.63 Hz

Table 11: Physical properties

The WEC float is a model scale buoy. Hence, the size of the regular waves are determined
thereafter, meaning that the incident waves in this study are smaller than operational
ocean waves. The steepness can however remain the same as for full scale waves to simulate
realistic conditions. A study by Retes et al.[49] investigated modelling with nonlinear
Froude-Krylov forces on two full scale point absorbers. There it was argued that a steepness
of 0.018, based on a wave with 6s period and 1m height in deep water, is appropriate. It
describes realistic waves in operating conditions. This philosophy was adopted in this study,
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and the steepness of the waves were set to 0.018. Note that this steepness is the direct ratio
between the height and length of the wave. In terms of the expression for steepness used
during the sphere assessment in section 4 and in IEA OES Task 10, it corresponds to
S = 0.0029. Similarly to the sphere assessment, the steepness of the waves is remained
constant to easily be able compare responses for different wave periods. Thus, the wave
heights vary with the wave periods. The range of wave frequencies is chosen to cover the
natural frequency of the geometries and to obtain some information of the behaviour in the
diffracted and inertia dominated area. From the sphere assessment it was evident that the
inertia dominated area is the one of interest regarding energy absorption. For that reason
only one wave period lower than the natural period is investigated. The properties of the
investigated waves are described in table 12.

Wave period [s] Wave frequency[Hz] Wave height[m] Wavelength[m]

1.00 1.00 0.0281 1.5613
1.59 0.63 0.0708 3.9323
2.00 0.50 0.1124 6.2452
2.50 0.40 0.1756 9.7582
4.00 0.25 0.4497 24.9810

Table 12: Wave properties for the analysed sea-states with steepness 0.018
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6.2 Decay test

To ensure that the sphere and cylinder have the natural frequencies estimated algebraically
and to see weather the impact of nonlinearities are prominent or not, a decay test was per-
formed. A third purpose with the decay test was to see how the hydrostatic characteristics
differs for the geometries. The draft of the cylinder is rather limited, as it is only 0.253m.
A decay test with initial displacement of 0.2m was therefore considered suitable, as the
cylinder don’t exit the water. A free-decay test with the WEC float is previously conducted
in section 5.3. Those results showed that the linear and week nonlinear solution were in
good agreement. Figure 68 shows the linear and weak nonlinear simulation of the free-decay
for the sphere and cylinder. As for the WEC float the two models produce close to identical
results. That is expected for the cylinder as the CSA is constant. The initial displacement
was too low to induce any geometrical nonlinear effects in the sphere simulation.

(a) Cylinder (b) Sphere

Figure 68: Linear(LINS) and weak nonlinear(NLINS) free-decay simulation for the sphere
and cylinder

More importantly, a look at the PSD in figure 69(b) verifies that all three geometries have
a natural frequency of approximately 0.63 Hz. That implies that the design based on the
algebraic equations were reasonable. One quickly notices that the sphere oscillates with
highest amplitude. The behaviour of the WEC float and the cylinder are rather similar,
with the cylinder oscillating with a slightly higher amplitude. This is also reflected in
the height of the peaks in the heave position PSD plot. These differences arise from the
fact that the geometries have different body mass and different added mass and damping
characteristics. Figure 70 and 71 illustrates the hydrodynamic coefficients for all geometries.
They are also plotted dimensionless to better illustrate the effect of the geometry regardless
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of the mass difference. By looking at the radiation damping, one can clearly see that the
one of the sphere is lowest. This is in line with the large motion amplitudes seen in the
free-decay test. It comes as no surprise that the sphere geometry is more hydrodynamic in
the vertical direction, which is visible in the relatively low added mass value. Regarding
the two other geometries, it is seen in figure 70(a) that the damping coefficient for the
WEC float is larger than for the cylinder, which is why the motion amplitudes of the WEC
float is slightly smaller than the cylinder motion in the free-decay test. In the graph of
the dimensionless radiation damping on the other hand, it is seen that the cylinder has
a substantially larger damping coefficient than the WEC float. Hence, the reason for the
lower WEC float motion amplitude is due to it being heavier than the cylinder. When the
mass is excluded(dimensionless), and one only evaluates the geometry, it is seen that the
WEC float has a lower damping than the cylinder. Furthermore, it is evident in the plot of
the added mass that the coned shape of the lower part of the WEC float reduces the added
mass compared to a cylinder, and one can state that the coned shape makes the WEC float
more hydrodynamic.

As a short side note, in figure 71(a) one can see the added mass for the WEC float for
low frequencies differs from the previously estimated added mass in the WEC assesment in
section 5(see figure 53(a)). The reason for this observation is simply different water depths.
To be able to compare the simulations to the experiment, the depth of the basin in the
Sandia Lab of 6.1m was used, as opposed to in this section, where the water depth is deep.
It somewhat highlights the importance of accounting for shallow water in cases where the
deep water assumption is not viable.

(a) Heave position time series (b) Heave position PSD

Figure 69: Free-decay simulation for all three geometries. Initial displacement of 0.2m
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(a) Radiation damping coefficient (b) Dimensionless radiation damping coefficient

Figure 70: Radiation damping for all three geometries. The dimensionless damping coeffi-
cient is expressed as λ = B33f

m

(a) Added mass coefficient (b) Dimensionless added mass coefficient

Figure 71: Added mass for all three geometries. The dimensionless added mass coefficient
is expressed as µ = A33

m
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6.3 Uncontrolled motions in regular waves

Although the previous sphere assessment in section 4 highlights the effect of weak nonlin-
earities during uncontrolled motions in regular waves, it is interesting to analyse the effect
the different geometries have in terms of motion response and the importance of modelling
weak nonlinearities. It is of course expected that the effect of accounting for the instanta-
neous wetted surface is more prominent for the sphere than for both the WEC float and the
cylinder. The responses of the devices are first analysed through the heave response RAO
in the case where they move freely without any PTO damping. The results are plotted in
figure 72 to 74. It is seen that there are little difference between the linear and nonlinear
computation of Froude-Krylov and hydrostatic forces for all geometries. This is similar
to what was observed during the assessment of the sphere, even for substantially steeper
waves. It is further seen that the sphere is substantially excited in resonance compared to
the two other geometries. Firstly, it is important to note that due to the steepness of the
waves being maintained constant, the wave amplitude at resonance is quite low compared
to the draft(see table 11 and 12). Hence, even though the RAO of the sphere at resonance
is slightly below, it does not exit the water. This is also why no weak nonlinearities are
induced at resonance, as the motions not are sufficiently large. Based on these results it is
seen that the sphere obtains the largest motion amplitudes at resonance when the natural
frequency is used as a similarity constraint. For longer wave periods it is seen that the
geometry does not affect the motion response, as they all act as wave followers.

Figure 72: Heave response RAO in regular
waves for the sphere

Figure 73: Heave response RAO in regular
waves for the WEC float

A quick look at the force components described in figure 76 shows that the excitation forces
are significantly larger for the WEC float and cylinder than for the sphere. That arises
from the small radius of the sphere, which results in the pressure from the incident wave
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and diffraction potential being integrated over a smaller area and consequently the force
acting on the body is less. The radiation force is larger for the cylinder and WEC, which is
reflected in the plots of the added mass and radiation damping under the free-decay test.

Figure 74: Heave response RAO in regular
waves for the sphere

Figure 75: Heave response RAO in regular
waves for all geometries for the weak
nonlinear solution

Figure 76: Amplitude of the Froude-Krylov(FI), diffraction(Fd), radiation(Fr) and hydro-
static restoring(FS) forces for all three geometries at resonance
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6.4 Motions with optimum PTO force in regular waves

The geometries are further analysed in the same regular wave conditions but with an applied
PTO force. The mean absorbed power and optimum PTO damping coefficient are estimated
as previously described in section 3.3.3. The resulting optimum PTO damping for all three
geometries are plotted for the relevant frequency range in figure 87. The optimum PTO
damping for the sphere is smaller than for the cylinder and WEC float, which means that
the required PTO force is less. For the two latter geometries the PTO damping coefficients
are quite similar, and for wave periods in the inertia dominated area, they are close to
identical.

T[s] Sphere WEC float Cylinder
Bg,opt[Ns/m] Bg,opt[Ns/m] Bg,opt[Ns/m]

1.00 3175 5753 6236
1.59 571 1527 1381
2.00 1556 2803 2675
2.50 2906 5012 4992
4.00 6777 11751 11705

Table 13: Optimum PTO damping properties

Figure 77: Optimum PTO damping coefficient for the studied frequency range. Tabulated
values in table 13 are marked with ∗, o and x for the sphere, WEC float and cylinder
respectively
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The resulting RAO’s are plotted in figure 78 to 81. Firstly, one can see that the linear and
weak nonlinear models are in good agreement. The nonlinear solution is barely lower than
the linear model in the sphere RAO. For the cylindrical geometries with constant CSA the
models are seemingly identical. Secondly, the RAO of the sphere has a steeper resonance,
and the relative motion is substantially larger than the two other devices. That is much
due to the low optimum PTO damping, which can be seen in table 13. When looking at
the mean power absorbed by the devices in figure 85, it is seen that the WEC float has
the best performance, slightly above the cylinder. In spite of the large motions seen in
the RAO, the sphere is inferior in terms of energy capture for large wave periods. It is
important to note that this is highly effected by the fact that the excitation forces acting
on the devices are larger for the cylindrical geometries due to the difference in size. In the
formulation of the mean power in (3.27), it is seen that it is proportional to the square of
the excitation force. Since the excitation force acting on a body increases with size, so do
the absorbed mean power. Figure 86 illustrates the foregoing for the longest wave(T=4s).
This is a consequence of forcing the devices to oscillate with similar natural period.

Figure 78: Heave response RAO in regular
waves for the sphere

Figure 79: Heave response RAO in regular
waves for the WEC float

An effort was done to better visualize the geometrical effects regarding absorbed power by
plotting the mean power normalized by the weight of each device. The result showed that
the cylinder geometry is superior in terms of captured energy per body weight in long wave
periods. At resonance the sphere and cylinder performs at the same rate, while the WEC
float is slightly below. Thus, according to this finding, a cylinder is more mass effective
when designing a heaving point-absorber with respect to a predetermined natural frequency.
Note that the cylinder is rather flat, and the impact from other rotational degrees of freedom
is expected to be significant. Inclusion of such effects could give rise to other conclusions.
The sphere performs well at resonance, but absorbs less power for increased waves periods.
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A previous study by Eriksson [16] argued that the shape of the buoys of similar size don’t
have a significant impact considering energy absorption when the body is operating off
resonance. That is in line with the resulting mean power for the WEC float and cylinder in
figure 85, who are considered of similar size. It is seen that absorbed power is increasingly
similar further away from the resonant wave period. At resonance on the other hand, the
geometry has a greater impact. This can be seen in the same figure, where it is evident
that the WEC float performs slightly better than the cylinder. This do highlight that in
practical applications where control methods such as latching is applied to force the device
to oscillate in resonance, the geometry is indeed of importance.

Figure 80: Heave response RAO in regular waves
for the cylinder

Figure 81: Heave response RAO in regular
waves for all geometries

Based on the results regarding nonlinear modelling of Froude-Krylov and hydrostatic forces,
it appears that the linear model remains a good approximation when the CSA is constant.
It has to be mentioned that the regular waves applied in this section are linear, and the
amplitude of the motion in relation to the free surface elevation did not exceed the dimen-
sions of the devices. For the sphere , the effect of weak nonlinearities were only prominent
when a PTO force was applied(see figure 82). The same observation was done in the sphere
assessment, where it was seen that the weak nonlinear solution predicts a significantly lower
vertical Froude-Krylov force.
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6. Comparison of three float geometries with focus on absorbed power

Figure 82: Mean power normalized by the
square of the wave height for the sphere

Figure 83: Mean power normalized by the square
of the wave height for the WEC float

Figure 84: Mean power normalized by the
square of the wave height for the cylinder

Figure 85: Mean power normalized by the square
of the wave height for all geometries. The weak
nonlinear model is plotted here
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6. Comparison of three float geometries with focus on absorbed power

Figure 86: Amplitude of the Froude-Krylov(FI) and diffraction(Fd) forces for T = 4s

Figure 87: Mean power normalized by the square of the wave height and the weight of the
devices for the weak nonlinear solution
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6.5 Concluding remarks

• Free-decay:The free-decay test showed that designing the size of the cylinder and
sphere based on analytical formulations for the natural period were good, as the same
natural frequencies were obtained numerically. No deviations between the linear and
weak nonlinear model were observed for any of the geometries. It was further seen
that the coned shape of the WEC float reduces the added mass. The WEC float is
heavier than the cylinder, and therefore has a higher radiation damping. However,
the dimensionless radiation damping coefficient, which excludes the mass and high-
lights the geometrical effects, showed that the coned shape reduces the damping. The
vertical added mass and damping of the sphere is substantially lower, illustrating it’s
hydrodynamic shape.

• Uncontrolled motions in regular waves: The same trend as observed in the
free-decay test regarding motion amplitudes were seen in the heave response RAO’s.
The sphere oscillates with the highest amplitude of the geometries at resonance. The
WEC float and the cylinder oscillates rather similar, with the cylinder having a slightly
higher amplitude. The devices acts as wave followers for longer periods. The linear and
weak nonlinear model coincides and are in good agreement for all three geometries.
The excitation force acting on the sphere was reduced compared to the two other
geometries due to the short radius, which turned out to affect the mean power.

• Motions with optimum PTO force in regular waves: Based on the results
regarding nonlinear modelling of Froude-Krylov and hydrostatic forces, it appears
that the linear model remains accurate when the CSA is constant. For the sphere
where the immersed CSA varies over time, the weak nonlinear effects were prominent
when PTO damping was considered. This is the same observation which was seen
during the sphere assessment under section 4. More detailed discussion is found
there. In terms of absorbed energy the WEC float performed best out of the three
geometries, both in resonance and for longer periods given the constraint of similar
natural period. For the longest period(T=4s), the mean power coincided with the
mean power absorbed by the cylinder. Based on these result the geometry is of less
importance when oscillating off resonance. The size of the device is then of major
importance, which was evident in the performance of the sphere. This was explained
as follows: the magnitude of the exciting forces acting on the body increases with
size due to the pressure from the incident and diffracted waves being integrated over
a larger area. Since the mean power is proportional to the square of the excitation
forces, an increase in size will subsequently increase the mean power. That is why
the sphere captures less power in large waves, i.e when the incident wave force is
dominant. In resonance, where the waves and consequently Froude-Krylov forces are
smaller, the sphere performs at a similar rate as the two other geometries despite the
small radius.
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7 Conclusion

The first objective of the thesis was to assess the effect of accounting for the instantaneous
wetted body surface in the estimation of Froude-Krylov and hydrostatic forces. It appears
from the results of this study that when the immersed cross-sectional area(CSA) is constant
and the waves are rather linear, the linear model can remain accurate. At least in terms
of the Froudy-Krylov and hydrostatic forces. When the immersed CSA changes over time,
which is the case for the sphere, nonlinear geometrical effects were induced in large waves
and in resonance. The effect was most prominent when an additional damping was applied
in large incident waves. There it was seen that the weak nonlinear solution predicted
a reduced heave response compared to the linear model, which resulted in a drastically
reduced mean power estimation. Based on the findings in this thesis, the linear solution
can in this case give an overoptimistic estimation of mean power and consequently give a
misleading guide to economic predictions. In linear conditions on the other hand, the linear
and weak nonlinear model were in good agreement also for the sphere.

The second objective was to investigate the three geometries with respect to absorbed
energy. It was seen that the WEC float absorbed most energy out of the three geometries
at resonance and in longer waves. The sphere performed at a similar rate as the two other
geometries at resonance, but absorbed substantially less power for larger waves due to the
small size. It was argued with the following reasoning: the magnitude of the exciting forces
acting on the body increases with size due to the pressure from the incident and diffracted
waves being integrated over a larger area. Since the mean power is proportional to the
square of the excitation forces, an increase in size will subsequently increase the mean
power. Lastly, it was seen that the geometry has a severe impact at resonance, but seem
to have less effect when oscillating off resonance. That implies that when control methods
are applied, which forces the device to oscillate in resonance, the geometry is important.

Other findings which are not discussed here can be found under the concluding remarks for
each numerical assessment.
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8 Suggestions for future work

The numerical assessments only accounts for heave motion, and the only external force is
the PTO damping. To describe a WEC in more realistic conditions, the points below could
be included in future analysis.

• Include PTO damping and mooring stiffness.

• Increase the amount of DOF’s. Firstly it is suggested look at the rotary pitch/roll
motion.

• Further investigate the effect of viscosity.

• Further investigate the effect of Wheeler stretching.

• Optimise the absorbed power with the use of a control mechanism, i.e latching.

• Look at the behaviour in irregular waves.
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