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Problem Description

The objective of the Thesis is to study and to possibly reveal the potential security flaws/problems
that Future Internet architectures (and protocols designed in order to implement those) might
have. Future Internet architecture projects that will be studied are, but not limited to, PSIRP,
Accountable Internet Protocol, Networking Named Content, DONA, Postcards-from-the-edge and
Scribe.

Most of these architectures focus on a identifier-location split and make use of paradigms such as
publish-subscribe.

Claims are made that these new architectures can provide strong protection against DoS and DDoS
attacks. Thesis will investigate these claims in order to try to verify whether they are right or not.
Analysis based on RFCs and documentation, possibly confirmation of findings by checking code or
testing it on a live environment when possible.
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Abstract:

During the last decades, Internet has evolved from host-centric to
information-centric in the sense that it is information and data what mat-
ters, regardless of where it is located. Meanwhile, Internet’s architecture
still remains the same as it was in its origins and still focuses on host-to-
host communication, putting too much emphasis on the "where” rather
than putting it on the "what”.

Original Internet’s architecture also introduces several security flaws such
as DoS and DDoS, spoofing and spam, and other non-security related
problems such as availability or location dependence related issues. In
order to address these issues, several new architectures and protocols have
been proposed. Some of them aim at redesigning totally the architecture of
Internet from scratch, while others aim at improving it without redesigning
it totally.

The aim of this Master Thesis is to analyze these new protocols and archi-
tectures from a security point of view in order to determine whether the
security claims made are true or not. The security analysis is made based
on RFCs, technical papers and project deliverables. The results obtained
have uncovered some security issues in several of the new protocols and
architectures and have provided some insight into further improving them.
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Chapter 1

Introduction

"The Internet only just works. The core Internet protocols
have not changed significantly in more than a decade, in spite of
exponential growth in the number of Internet users and the speed
of the fastest links. The requirements placed on the net are also
changing, as digital convergence finally occurs.”, M. Handley [13]

Internet was designed with the goal of resource sharing on mind, thus the
original model of Internet’s architecture aimed at establishing an end-to-
end communication between two hosts. Nowadays, Internet has reached a
point where what matters is the content accessed, regardless of where it is
physically located, but still, Internet’s model remains unchanged and focuses
on the "where"” rather than on the "what"”. This communication model
introduces several issues related with availability, security and location de-
pendence.

The current IP layer has several flaws that allow for DoS and DDoS attacks,
spam sending, and address hijacking and spoofing being easily undetected.
Many solutions have been proposed in order to solve these issues, many of
them being fixes of the current IP layer. However, these kind of solutions
require either implementing new mechanisms that are too intricate in their
own nature, involving external sources to trust into, or require an effort from
the operators in order to work properly.

While these solutions being a best effort and technologically its best and
totally plausible, the problem lies in building them over the existing IP layer
which is somehow trying to fix something broken rather than building from
scratch something that implements everything properly from the beginning.
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During the past few years, many proposals for new architectures and proto-
cols in order to solve these previously mentioned issues have been developed.
The aim of many of these new architectures and protocols is to address these
issues from a completely new point of view, instead of trying to fix the cur-
rent Internet [3, 14, 8, 2, 5, 11, 12, 29, 7|, while some others are proposed as
partial changes or overlay solutions based on the current Internet architec-
ture [19, 4, 16, 21, 25|. Many of these new Future Internet projects are still
ongoing under the European Union Seventh Framework Programme (FP7)
initiative [20, 26, 18, 10].

The objective of this Thesis is to study and to possibly reveal the potential
security flaws/problems that Future Internet architectures (and protocols de-
signed in order to implement those) might have, focusing more concretely in
those connected with DoS/DDoS. The analysis of these new architectures and
protocols will be done based on RFCs, project deliverables and/or technical
papers.

The rest of the document is structured as follows. In Chapter 2 the most
relevant Future Internet architectures and protocols are presented and ex-
plained. In Chapter 3 the methods used in order to select the architectures
and to conduct the security analysis of these are defined. Chapter 4 con-
ducts the security analysis and outlines some possible solutions to some the
problems found. Chapter 5 discusses the outcome of the security analysis
and finally, Chapter 6 summarizes the findings of this Thesis and describes
the possible future work related with it.



Chapter 2

Future Internet Protocols and
Architectures

"Current Internet standards bodies and core Internet protocols are
ossifying to such an extent that security and performance require-
ments for next-generation applications will require a totally new
base platform. If current Internet base protocols survive, it will be
as a substrata paved over by new-generation smarter ways of con-
necting.”, lan Peter, Ian Peter and Associates and the Internet
Mark 2 Project

This first chapter introduces the Future Internet protocols and architectures
that will be analyzed in Chapter 4.

For each of the architectures whose security properties will be analyzed, a
technical description on how they work, their desired properties, their objec-
tives and their approach to the problem is presented in order to provide a
better understanding for the reader when performing the security analysis.
The technical description is based either in RFCs, technical papers and/or
project deliverables.

While the description aims at providing a general picture of the architecture,
a deeper level of detail and understanding can be achieved by consulting the
references at the end of this document, and the reader is encouraged to do
SO.
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2.1 Publish-Subscribe Internet Routing Paradigm

Publish-Subscribe Internet Routing Paradigm, in short PSIRP [26], aims to
redesign the current Internet host-centric approach and to move to a new
information-centric approach. In order to achieve this goal, PSIRP moves
away from the current sender-driven Internet model towards a more receiver-
driven model, on which publish-subscribe paradigm plays a central role.

The basis of PSIRP is that everything is considered information, and all the
information is uniquely identified with a label to be used by the rendezvous
system to match between publishers and subscribers. This label or identifier
is called the rendezvous identifier (RId).

Individual pieces of information can be grouped together in a logical way
using scope identifiers (SId), being those a subclass of RIds. This allows
to build information networks in order to apply access control rules (i.e.
a collection of pictures that should only be accessed by family members
can be grouped under the scope "family"). Furthermore, by using the so
called algorithmic RIds, which are RIds generated by a well know function
or algorithm, information within information networks can be grouped into
smaller groups called information collections, which are several information
units that all together belong or represent another single information item
(i.e. all the pictures belonging to a same picture album). Also in a similar
way, information networks can also be grouped using algorithmic Slds.

In the next subsections, basic notions of publish-subscribe model, PSIRP
architecture components, and design considerations will be explained.

2.1.1 Publish-Subscribe Paradigm

Publish-Subscribe paradigm is based in the asynchronous sending of messages
where the sender is not intended to send data to an specific receiver. In
publish-subscribe systems, receivers express their interest in certain data
and they only receive the data they expressed an interest into, without the
burden of having to know who is the specific sender. This decoupling between
senders and receivers allows for higher scalability and topology dynamism.

The vast majority of publish-subscribe architectures rely on some interme-
diate elements (i.e. rendezvous systems or brokers), which are in charge of
matching interests and publications in a decentralized and distributed man-
ner.
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Publish-subscribe systems can be further classified into two classes: topic-
based and content based. In topic-based systems the messages are published
to topics, which act as a sort of logical channels with a common topic and
subscribers join the channels to receive the messages they are interested in.
Subscribers in this case receive all the messages published to the channel and
all the subscribers receive the same messages.

In the other hand, content-based systems only deliver messages to the sub-
scriber if the content or attributes of the message match some interest def-
initions imposed by the subscriber. This second class of publish-subscribe
system allows for the subscribers to define their interest through some pa-
rameters, making sure they only receive what they want, while in topic-based
approach they might be messages of little or no relevant interest for some of
the subscribers.

2.1.2 Architecture Components

PSIRP architecture is based on a non-layered approach called "the compo-
nent wheel". In this approach, the outermost part of the wheel is occupied
by the APIs, while the center is the so called blackboard. The middle area
between the APIs and the blackboard hosts the core components of the archi-
tecture, such as the rendezvous, the forwarding, the topology management
and formation and the like, also leaving open possibilities for the addition of
new components. This architectural approach is depicted in Figure 2.1.

Core
Components

Figure 2.1: PSIRP’s component wheel architecture.
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Following, each of the core components of PSIRP’s architecture is described
in more detail.

As stated previously, several types of identifiers are used within PSIRP’s ar-
chitecture. While some of them have already been described in Sec. 2.1, there
are still other identifier types that should be introduced, namely application
identifiers (Ald), forwarding identifiers (FId) and algorithmic identi-
fiers (Algld). Alds are human readable identifiers used by applications and
can appear in several different flavors. They are mapped to Rlds through
different mechanisms such as search engines, directory services and the like.
Flds are used to establish a delivery path between publishers and subscribers
and will be explained in more detail when introducing the forwarding com-
ponent of PSIRP. Alglds are identifiers that have been generated by a well
known algorithm and they implement information collections. They are used
to create relations between identifiers and allow for many different functions
such as subscription management and aggregation, caching, coding, flow con-
trol and many others. Describing this functions in detail is out of the scope
of this section and more information on those can be found in [26].

The second component of PSIRP’s architecture are the helper functions,which
are classified into three different categories:

e network management functions, which are used to collect network in-
formation about resources, performance and others,

e remote service functions, which are used for segmentation, forward er-
ror correction (FEC), re-coding of content and caching, and

e host service functions, which are tools intended for the hosts to ease
their task of dealing with the network use.

The third architectural component is the rendezvous component, whose
main task is to match subscriber interests with publisher data matching those
interests. Rendezvous nodes (RN) are grouped into rendezvous networks, and
rendezvous nodes can contain several rendezvous points.

Rendezvous networks interconnection can be done both by means of central
control entities or in a distributed fashion using virtual overlays. In the last
case, there should be one root rendezvous node in each network which is in
charge of communication with its peer root RNs in the other networks. For
the rendezvous system to operate correctly a bootstrapping mechanism is
needed. This mechanism works in such a way that every end-node in the
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system knows at least one rendezvous node, all the RNs inside the same net-
work know the rest of RNs within that network so they are able to establish
a network topology, and root RNs from different networks find their peers
and are able to form the virtual overlay as shown in Fig. 2.2.

OVERLAY

End Node

End Node

Figure 2.2: Rendezvous networks overlay.

When a publisher wants to publish to a certain SId and RId, first it sends the
publication to the rendezvous node he is aware of. When the the publication
reaches this first RN, depending if the node is in charge of the given scope
or not, can either create a new rendezvous point for the given scope, or in
the second case forward it further into the rendezvous network. When the
publication reaches the RN that can register the given scope, it becomes
the authoritative rendezvous point for the scope. Then, the new scope is
advertised through the rendezvous network so all the nodes are aware of it

and enables them to forward subscriptions to that scope to the appropriate
RP.

Subscription works in quite a similar fashion, being the first step for the
subscriber to contact the RN that is know to it. The subscription includes
a Sld and a RId the host wants to subscribe to. Similarly to the publish
situation, the RN checks whether it is a RP for the given scope or not.

7
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If not, the subscription is forwarded through the rendezvous network until
eventually the matching RP is found (if the subscription reaches the root
RN and there is still no match, it is forwarded via the overlay to the other
rendezvous networks). When the RP is found, the rendezvous takes place
and a forwarding path is established from the publisher to the subscriber.

The next architectural component in PSIRP is the topology management
and formation, which can be further divided into intra and inter-domain
cases. In order to achieve intra-domain topology management and formation,
each network needs to have at least one topology manager (TM), which
implements the topology management function. Then, each forwarding node
maps its local connectivity creating a neighbor list and publishes it to the
TM, which can then construct the full topology of the network based on this
information.

For inter-domain topology management and formation, each TM from each
autonomous system (AS) publishes the relevant peering information and
routes to the inter-domain topology formation function (ITF) via an
special SId provided for this function. Then, paths between publishers and
subscribers can be created combining both intra and inter-domain informa-
tion.

Regarding the next PSIRP component, namely forwarding, we can also
subdivide it into intra and inter-domain forwarding. Intra-domain forward-
ing is based in the previously mentioned forwarding identifiers (FIds) and
in link identifiers. Each link is associated with two link identifiers, one for
each direction of the link. Link identifiers are m bits long, where k of those
bits are set to 1, k is much smaller than m and m is large enough to avoid
collisions with a high probability. Data paths are then encoded in the header
of the packets using in-packet Bloom Filters (called in PSIRP architec-
ture zFilters), created by ORing all the link identifiers the packet should
traverse. Forwarding decision is made at each forwarding node by ANDing
all its outgoing link identifiers, one by one, with the zFilter contained in
the packet’s header. The packet is forwarded through the link(s) whose link
identifiers match the result of the previous operation. Multicasting is eas-
ily implemented by adding to the zFilter more than one link identifier from
the same forwarding node. When the multicast tree is too dense, virtual
links can be created. Virtual links are a collection of single links grouped
all under the same link identifier which create some state in the nodes in
exchange of reducing the false-positive percentage. Intra-domain forwarding
also implements fast recovery and loop prevention.
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Inter-domain forwarding is not fully defined yet in the document. Instead, a
series of assumptions, design goals and technical considerations are provided.

The last component of PSIRP’s architecture to be described is the network
attachment. In order to attach to a certain network, a node willing to do
so can subscribe to well known SIds used for this purpose or also can adver-
tise its intention by means of publications. After the attachment procedure
is started, a two-way control channel between the node and the attachment
point (AP) can be established. The channel can be further used to nego-
tiate subscription or service terms and accounting, authentication and/or
authorization.

2.1.3 Design Considerations: mobility and security

Mobility in PSIRP for publishers and subscribers is achieved in a rather
straightforward manner. It is enough for subscribers to re-subscribe or for
publishers to re-publish at their new locations and let the rendezvous system
handle the rest of the details. Topology must also be updated in order to
maintain the multicast trees and data paths. Publications can not be lost as
they are buffered during the hand-offs. Router and network mobility can be
achieved in a similar fashion.

Security is a main concern for PSIRP and has been taken into account since
the first design phases of the architecture, being naturally integrated into
it. In order to provide a better protection at the forwarding level, it uses
a special kind of zFilters that are calculated dinamically using a function
called zFormation. This concept is further explained in Sec. 4.1.1 during the
security analysis phase.

Other security mechanisms included into PSIRP’s architecture are autho-
rization mechanisms at the network attachment and the rendezvous system
level, preventing possible spam through notarization and a technique known
as Packet Level Authentication [17|, which authenticates every packet
sent by cryptographic means such as in-packet certificates and signatures. A
much more detailed and elaborated overview of PSIRP’s security mechanisms
can be found on the deliverable 2.4 [27].
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2.2 Scribe

Scribe [7] is a wide scale event notification infrastructure based on the publish-
subscribe paradigm described in Sec 2.1.1. It is built over Pastry routing
protocol, which will be explained later in this section.

Scribe uses Pastry to create topic groups and to build multicast trees to
deliver the events to all the group subscribers. In Scribe, all nodes can
create new topics and/or subscribe to already existing topics, and they can
be the root of a multicast tree and/or a node pertaining to a multicast
tree at the same time. Once inside the group, given that the node has
enough permissions, it can publish events that Scribe forwards to the other
members of the group in a best effort manner and without any delivery
order guarantee. The groups have no limit on the amount of publishers
and subscribers pertaining to it and nodes have no limitations regarding the
amount of groups they can pertain to.

Each group in Scribe is identified uniquely by a topicld and the node with
the most similar identifier to the one of the topicld implements the functions
of the group’s root node, being the root for the multicast tree for the given
topic. The multicast tree grows as the amount of subscribed nodes to the
topic grows and each of the intermediate nodes of the multicast tree maintains
a table of the children nodes pertaining to the topic the tree is in charge of.
The table is periodically refreshed by the children nodes and after a certain
amount of inactivity children nodes are deleted from the table assuming they
are no longer part of the group.

In the case of an intermediate node losing connectivity, and in order not
to leave out of the multicast tree any leaf nodes, intermediate nodes should
send control messages to its children nodes. If a children node realizes that
there are no control messages arriving from its parent node, assumes that it
has lost connectivity and rejoins the multicast tree again in order to regain
connectivity. In the same fashion, if a node wishing to leave the group is in
charge of any children node, it has to remain as a part of the multicast tree
to keep forwarding the events, even though not being member of the group
anymore.

As said before, Scribe is built over Pastry [23|. Pastry is a routing proto-
col which interconnects an overlay of nodes that are uniquely identified by
a nodelD. The identifier space is circular and identifiers are 128 bits long.
Identifiers represent a position inside the circular space and are assigned in
a random way, allowing for physically distant nodes to have close nodelDs.
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Each node keeps track of the neighboring nodes, leaf nodes and a routing
table. The leaf nodes are the set comprised by the closest nodes in both di-
rections of the circular space and they maintain a coherent network structure
and shorten the search time. The neighboring nodes are the n closest nodes
according to some given network metrics and are used to maintain the route
table.

The routing table contains a row for each assigned address block, and blocks
are generated splitting the local nodelD into groups of b bits and grouping
the nodes according to a prefix matching basis between the local nodelD and
other nodes. Messages can be directed to any nodelD, whether it exists or
not, and they are forwarded through the circular network until reaching the
node with the matching nodelD or the one with the longest match. When
sending a message, the node first checks if it has a direct route to the receiver,
and if not it sends the message to the node with the longest prefix matching
in his routing table. In this way it is assured that the message gets each hop
closer to the destination.

2.3 Accountable Internet Protocol

As stated by Andersen et al. [3|, almost all of the security problems related
to the current Internet model, are caused by a lack of accountability in the
current IP layer, that is, the impossibility of tracking who does what. The
authors propose the Accountable Internet Protocol (AIP) not as a fix to the
current IP layer but as a completely new approach to replace it.

AIP addresses are presented in the form AD:FEIP, being AD the identifier
of the administrative domain the host is attached to and EIP the end-point
identifier, that is, the host itself. As names (addresses), are self-certifying,
both ADs and EIPs are the public keys of the domain and the host respec-
tively. In order to keep addresses to a fixed length, what is used is a hash
taken from those public keys, making addresses 160 bits long as shown in
Figure 2.3

By the use of public keys as identifiers, accountability can be achieved in a
cryptographic safe way. Due to a host being able to be attached to an AD
that is organized hierarchically or having multiple addresses at the same AD,
generally speaking addresses are in the form AD;, : AD, : ... : AD,, : EIDyy,,
where ADj, is the identifier for a single level in the administrative domain
hierarchy and E'1Dyyy, is the identifier for a single interface of the host, using
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Version Kace
8) Hash (140) (8)

| 160 bits ]

Figure 2.3: AIP address structure.

the last 8 bits of the address to identify it.

Forwarding is done in a simple manner, and usually involves routers only
having to inspect the destination AD field of the packet. Mobility is handled
in an efficient way as the EID part of the address remains unchanged when
a host roams from one administrative domain to another, and only the AD
part of the address needs to be updated.

AIP aims at solving different security related issues that remain unsolved in
nowadays IP layer, being one of those detecting and preventing source address
spoofing. In IP, mechanisms such as ingress filtering are used already in order
to prevent address spoofing, but as they rely in the operators configuring and
maintaining proper and correct filters they are not usually so effective and,
in addition, they introduce other problems like triangular routing in the case
that a host needs to send packets with a different address or interface than
the one that it uses to receive them. In the other hand, given the self-certified
cryptographic nature of AIP addresses, spoofing can be avoided in a rather
simple and convenient way. AIP focuses into preventing spoofing by entities,
that is, a router in the middle of a data path can still pretend to spoof packets
from host A to host B, but those packets will not be properly signed thus
allowing the receiver to determine whether the data packets come from the
right source or not.

Source address validation is done in two points; EID validation at the first-
hop routers and AD validation at the edge AD routers:

e EID validation uses a verification packet V, given that the source is not
already included into the first-hop router cache. The source needs to
prove his identity by returning the verification packet signed with his
own private key. If the verification packet is deemed valid at the first-
hop router, the source is included in its cache and all the subsequent
packets coming from the source are directly forwarded.

e AD validation involves 3 cases; if the AD trusts that the neighboring



CHAPTER 2. FUTURE INTERNET PROTOCOLS AND ARCHITECTURES 13

AD has performed the required checks already, it forwards the pack-
ets without further actions required. If not, it uses uRPF in order to
determine if the packet is valid, and if uRPF fails, then it sends a verifi-
cation packet directly to the source like specified in the EID validation
section.

In order to keep the cache within an acceptable size, the routers will insert
wildcards in the form AD:*if a certain threshold in the amount of verification
packets containing the same AD part has been reached.

While these previously mentioned measures against spoofing also help to
mitigate certain DoS attacks on which spoofing is involved, they certainly do
not prevent all forms of DoS attacks. That is why a shut-off protocol has
been included in AIP, in order to further protect hosts against those attacks.
Shut-off protocol relies on the well-intentioned users - and regular users are
considered always well-intentioned - installing smart-NIC cards into their
machines, which will keep track internally of the most recent sent packets
and which will be able to accept SOP packets. SOP packets include a hash
of the packet that originated it and a TTL, all signed by the host sending
the SOP packet in order to provide authentication. If the hash contained
in the SOP packet matches one of those stored by the smart-NIC and the
SOP packet is verified as authentic, the smart-NIC card will install a filter to
suppress the traffic to the host that sent the SOP with an expiry time equal
to the T'TL contained in the SOP packet.

AIP can be also used to secure BGP as the route announcements can be
signed by the originator, avoiding the propagation of unwanted routes which
can result into a DoS attack by isolating an AD.

Other issues that AIP deals with and solves apparently in a correct way are
those related to key management and crypto-algorithm compromise by intro-
ducing simple mechanisms in order to revoke keys and to switch or upgrade
crypto-algorithm when needed by using the version field shown in Figure 2.3.
AIP also takes into account scalability issues. Regarding those, a deep study
on scalability of AIP has been done, taking into account predicted hardware
improvement /growth rates and also estimating the amount of hardware re-
sources and times needed by an Internet sized network using AIP.
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2.4 Networking Named Content

Networking Named Content (NNC) [14] focuses in naming data and informa-
tion rather than hosts in order to solve the availability, security and location
dependence issues related to the current Internet model. NNC introduces
the concept of content-centric networks, from now on CCN, on which
the addresses used to establish communication refer to content rather than
to location. NNC aims to replace the current IP layer with a new CCN layer
improving strategy and security while maintaining all the characteristics that
made and make IP attractive.

In NNC, communication is receiver driven instead of sender driven; receivers
only get the data on which they have expressed an interest into. There are two
basic packet type, Interest (I) packets and Data (D) packets. Data packets
consume interest packets in order to preserve the flow balance, in a similar
way as IP preserves the flow balance with ACK packets. The matching of
interests and data is done on a prefix-match basis and it can be context
dependent as well.

CCN nodes are composed by three main elements as depicted in Figure 2.4:
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Figure 2.4: CCN node elements, [14]

e Forwarding Information Base (FIB) which is responsible for getting the



CHAPTER 2. FUTURE INTERNET PROTOCOLS AND ARCHITECTURES 15

data that matches the arriving interests,
e Content Store (CS) which acts as a cache for data and

e Pending Interest Table (PIT) which stores the interests that haven’t
been satisfied yet.

Interest and data packet processing is handled by these three main elements
mentioned before. Interest packets that arrive to a node are first compared
to check whether there is a match in the ContentStore. If there is any data
cached that matches the interest, the data packet is forwarded to the face
where the interest packet came and the interest packet is discarded (to pre-
serve the flow balance as explained before). If there was no match, the packet
is compared against PIT entries and in the case a match is found, the face of
the packet is added to the PIT entry and the interest is discarded. Finally, if
there is a match in the FIB, the data is requested and the interest is added to
PIT in order to forward the data as soon as it arrives to the node. If there is
no match in any of the elements, the interest is discarded as the node doesn’t
know how to retrieve the data matching the interest.

Data packet processing is done in a similar match-case fashion as interest
packet processing; if an arriving data packet matches the ContentStore, it is
discarded as the data is already cached. If it matches an entry in the FIB,
it means that the data is unsolicited as there is no match in the PIT, and if
it matches an entry on the PIT, the data packet is forwarded the the list of
faces stored in that entry.

Similarly to IP, CCN operates over unreliable packet delivering services, that
is, interest and/or data packets can get lost or damaged. Retransmission is
used to cope with this, but nevertheless it is the receiver who is responsible for
asking again about interests that have not been satisfied. Duplicate packets
are discarded as explained previously and nonces are used to prevent interests
from looping. Flow control is performed at each hop and every data consumes
an interest at each hop.

The naming structure used in CCN is hierarchical and it is structured in
trees. Every piece of data has a version and a segmentation number so
asking for correlative pieces of data or for new versions can be handled with
ease. Mobility is possible as CCN handles data and not end nodes, so data
exchange is always possible as long as it is physically feasible. The actions,
triggers and attributes used to mark and forward data conform the strategy
layer. All data available locally is obtained directly thus no routing is needed
unless if the data is not found locally.
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CCN provides several mechanisms in order to provide security. Built around
the concept of content-based security, CCN authenticates every single
data packet with a digital signature, and encrypts private content. In this
way, private data can only be read by intended recipients and every recipient
can authenticate the data it receives. CCN also provides mechanisms to
manage trust regarding keys, network security and policy enforcement.

2.5 Layered Naming Architecture

Layered Naming Architecture (LNA) |[4| proposes a new architectural style
that involves three levels of name resolution in order to comply with what
they call their "four basic design principles”. Such three levels of name
resolution are, as stated by the authors, (1) from user-level descriptors to
service identifiers, (2) from service identifiers to endpoint identifiers and
(3) from endpoint identifiers to IP addresses. A flat namespace structure
is also proposed for the service and endpoint identifiers. The benefits that
LNA introduces are, among others, that services and data become the main
objects rather than hosts, that mobility and multi-homing can be handled
in an easy way and that middleboxes (such as firewalls and NATS) can be
gracefully accommodated and no longer violate IP semantics.

The first LNA basic principle states that "Names should bind protocols only to
the relevant aspects of the underlying structure; binding protocols to irrelevant
details unnecessarily limits flexibility and functionality.” Current Internet
violates this principle as it binds services to end hosts and the location of
those end hosts. In order to solve this issue, two new naming layers are
required, one that will name services using service identifiers (SIDs from now
on) and will bind user-level descriptors to those SIDs and another that will
identify hosts in a unique way, regardless of their topology and location, using
endpoint identifiers (EIDs from now on). Furthermore, this new two naming
layers need two additional layers of name resolution in order to function
properly: one that will resolve EIDs from SIDs and one that will resolve IPs
from EIDs. In this way, it is only IP itself who deals with TP addresses thus
making mobility and multi-homing possible in an efficient way. This new
layering structure is depicted in Fig. 2.5.

The second basic principle states that "Names, if they are to be persistent,
should not impose arbitrary restrictions on the elements to which they refer.”.
In order to achieve this, LNA proposes using a flat namespace for SIDs and
EIDs.
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Figure 2.5: LNA naming layers, Balakrishnan et al. [4].

The third basic principle on which LNA is based says that "A network entity
should be able to direct resolutions of its name not only to its own location,
but also to the location or names of chosen delegates.” When a machine
request a connection to a service, the request destination entity can choose
to redirect the requesting host to a delegate of its choice providing the same
service/data. Trust relations are not affected by this, as the destination
entity trusts the delegate, so the requesting host should also trust on it. The
delegate concept allows to easily integrate middle-boxes in the architecture
while also providing some extra DoS protection.

The last LNA principle states that "Destinations, as specified by sources and
also by the resolution of SIDs and EIDs, should be generalizable to sequences
of destinations.” By being able to specify a list of SIDs or EIDs as destination
instead of a single SID/EID, senders and receivers can choose which path or
series of endpoints their data will traverse, giving much more control over it.

As SIDs and EIDs are presented as a flat namespace, LNA replaces DNS
with distributed hash tables in order to be able to cope with this new nam-
ing model. Also it provides authentication as flat identifiers can hold some
cryptographic meaning such as the hash of a public key and accompanying
meta-data can provide also some means of verification by including some
extra authentication information such as cryptographic statements from cer-
tifying entities.
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2.6 Internet Indirection Infrastructure

Internet Indirection Infrastructure (i3) [25] proposes a general Internet in-
direction overlay that will provide mobility, multicast, anycast and service
composition all-in-one in opposition to the current overlay or application
based solutions which are completely disjointed and cover just one of the
requirements previously mentioned.

As stated by Stoica et al. [25]|, "the purpose of i3 is to provide indirection;
that is, it decouples the act of sending from the act of receiving”. In order to
accomplish this objective, i3 nodes act as a rendezvous point where identifiers
(id s from now on) of content and triggers are matched. In this way none
the sender(s) or the receiver(s) need to be aware of the number nor location
of each other(s). In its simplest way of operation, senders use packets in the
form (id, data) and receivers insert triggers in the form (id, addr). Should
an id matching occur between a packet and a trigger, data packets with id
ID should be forwarded to the host(s) that inserted a trigger with id ID to
the address "addr” specified in the trigger.

Matching is done in a longest-prefix match fashion where id s have m bits
and there is a threshold of k bits that should be exact in order for the id s to
match. Threshold £ is selected such as k < m, but large enough to provide
collision free id s. In the case of i3, this is m= 256 and k = 128.

In order to provide an efficient mechanism for longest-prefix matching, each
node on i3 is responsible for a given set of unique id s. Furthermore, it should
be a requirement that all the id s that have the same k significant bits should
be managed by the same i3 overlay node. I3 routes packets with id ID to the
node responsible for it, where the trigger matching and the forwarding are
done. It is important to remark, tough, that data packets are never stored
in the i3 overlay infrastructure, they are only routed to their destination and
only a best-effort service such as the one present in IP is used.

As can be seen in Figure 2.6 (a), mobility is easily achieved as the receiver
only needs to update the address field in his trigger with a new address in
order to keep receiving the matching data, id remains unchanged. In the case
of sender’s mobility, there is no additional operation needed.

In the case of multicast, as depicted in Figure 2.6 (b), receivers that want to
get the same data just need to insert their triggers with the same id so the
data packets will be forwarded to all of them. For anycast, the first & bits of
the id have to be identical in order to define an anycast group, and then the
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Figure 2.6: 13 mobility, multicast and anycast, as depicted by Stoica et al. [25]

unique receiver is chosen using a longest-prefix matching of the rest of the
bits in id, as shown in Figure 2.6 (c).

Finally, in order to allow for source routing or service composition, id s can
be stacked in data packets in the form of (idstack, data) or in triggers in the
form of (id, idstack) where idstack can contain several ids and/or addresses.
In this way, senders can specify a set of nodes the packet should traverse
much like in source routing, and receivers can specify which nodes a data
packets need to traverse in order to achieve service composition.

In order to improve the security characteristics of i3, two types of triggers are
defined: public and private. Public triggers can be used to contact well
known services while private ones can be used to establish private commu-
nication between two hosts and can be exchanged between those hosts using
public triggers. Robustness is achieved in an easy manner as receivers refresh
triggers periodically, thus damaged or lost triggers are restored as soon as
the update takes place. In the case that the refreshing interval is too high,
i.e. applications with highly demanding time constraints, either a backup
trigger can be inserted by the end-host in another i3 node, to switch to it in
the case that the original trigger suffers any problem, or the i3 infrastructure
itself can be configured in such a way that will replicate triggers and store
them in the nearest i3 node to the one containing the original one.

In order to avoid hot-spots to become bottlenecks on i3 because too much
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routing being done on them, when the rate of packets matching a trigger is
bigger than a given threshold, a copy of the trigger is inserted into as many
nearby nodes as needed until the load is well-balanced.

Security is a big concern in i3, and security problems have been addressed
thoroughly. Security problems that might arise are those related with:

e attacks related to the use of triggers pointing to end-hosts, such as
eavesdropping, impersonation or reflection (which can be used in order
to launch a DoS attack) and

e attacks related to forming arbitrary topologies using cyclic triggers
causing loops or dead-ends, and thus, exhausting resources (in order
to carry out a DoS attack).

In order to avoid all of these previously listed problems, i3 provides with 3
techniques to mitigate them:

e constrained triggers on which id construction is tied to one-way func-
tions in order to solve eavesdropping, impersonation and loops,

e push-back mechanisms in order to avoid dead-ends, allowing to remove
subsequently triggers that point to a dead-end and,

e trigger challenges, where a trigger can only be inserted into the i3 over-
lay after a challenge-response has been solved. This avoids reflection
and also dead-ends.

Last but not least, i3 provides a good level of anonymity as sniffing the traffic
generated by a sender/receiver will not reveal the identity of its counterpart.

2.7 Data-Oriented Network Architecture

The Data-Oriented Network Architecture (DONA in short) [16], focuses yet
again into redesigning the Internet’s naming and name resolution infrastruc-
ture.

As stated by many others such as in Jacobson et al. [14| or Nikander et al. [19],
nowadays users care much more about data and information regardless of its
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location, contrary to the initial Internet communication model, which focuses
in host-to-host communication.

DONA aims into addressing some user-relevant issues such as:

e persistence, or the property of data and services to have names that
remain valid until needed, even if the data or service changes its physical
location, i.e. it is moved to another server,

e availability, by means of reliability and low-latency and,

e authenticity, so the users can be sure that the data source is the one
intended and not a malicious user spoofing it.

In order to achieve these goals, DONA proposes replacing the current nam-
ing infrastructure with flat and self-certifying names and the current name
resolution mechanisms with an anycast primitive that can be used for sev-
eral resource discovery kinds. In DONA, persistence and authentication are
achieved through the use of a flat, self-certifying namespace as previously
mentioned, while availability is achieved through the use of an efficient name
resolution mechanism, i.e. the anycast primitive previously mentioned.

As stated by Koponen et al. [16], "to provide availability the name resolution
process should (a) guide requests to nearby copies of the data , and (b) avoid
failed or overloaded servers”.

DONA uses a route-by-name approach as name resolution mechanism in
order to accomplish these two previous requirements, as routing protocols are
designed both to use shortest paths and to route around failed or overloaded
points.

As in many other approaches for new namespaces, DONA uses public-key
pairs as a mean of identifying data, services, hosts or any other named entity.
Each named entity is associated with a principal and every principal has a
public key associated with it. Names then come in the form P:L, where
P is the hash of the public key of the principal and L is a label to ensure
uniqueness. Data is sent in for of triples (data, key, sig) in order to provide
authentication; a user receiving this previously mentioned triplet can check
that it came from the appropriate principal by taking a hash over the public
key and verifying that it matches with P and also checking that the public
key attached in the triplet is the one that generated the signature, as only
the principal has the appropriate private key to produce the signature.
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As flat names can not be learned in an easy way by users DONA proposes the
use of a human-readable namespace that would map into those unreadable
flat names and some external mechanisms in order to solve that mapping,
i.e. search engines.

Regarding the name resolution mechanism, DONA introduces the concept
of "resolution handlers" (RHs from now on), which by means of FIND
and REGISTER messages will manage the name resolution process. FIND
messages are in the form FIND(P : L) and REGISTER messages are REG-
ISTER(P : L). If a host is serving all the data associated with a certain prin-
cipal, a REGISTER(P : *) can be used instead. Longest-prefix matching is
used in order to match the entries in the RHs against the FIND messages.
An especial type of UNREGISTER message is also available in order to
allow servers to specify that they are not longer serving certain data.

Security in DONA is mostly implemented by relying on external mecha-
nisms or providers. For bandwidth exhaustion attacks (a type of DoS at-
tack), DONA relies in IP-level mechanisms which would drop the streams
that are overwhelming it, and for resource overload attacks (also classi-
fied as DoS attacks), DONA relies into providers restricting the amount of
FIND/REGISTER messages that a host can send per minute. Other solu-
tions like puzzle solving are also proposed but not really explained in-depth
by the authors.

In order to avoid malicious RHs isolating clients, DONA offers the possibility
to clients of being able to access copies matching their interests other than
the closest one. In that way DONA ensures that clients will be able to avoid
misbehaving RHs and will always be able to access the data the requested.

Regarding key security, DONA proposes to introduce key revocation mech-
anisms, but rather than implementing them into the architecture, it relies
again on external sources to provide such mechanisms.

Last but not least, DONA offers solutions also for content-caching, mobility,
multihoming and multicast.

2.8 Postcards from the Edge

As stated by Yates et al., Postcards from the Edge [21] is "a cache-and-
forward architecture that exploits the decreasing cost and increasing capacity
of storage devices to provide unified and efficient transport services to end
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hosts that may be wired or wireless; static, mobile, and/or intermittently
disconnected; and either resource rich or poor”.

Postcards from the Edge focuses on optimizing large file transfer as a separate
service, while acknowledging the need for the traditional best-effort delivery
service for other kind of services such as VoIP, video and audio streaming and
the like. In a cache-and-forward architecture storage is performed at every
node, regardless of it being a core router in the backbone, an edge access
point or even a mobile host.

In its simplest scenario, in order to deliver a file to a mobile node, the steps
taken are the following. Every mobile node has tied to itself a set of post-
office nodes (PO from now on) and there is a name resolution service, much
like DNS, which resolves the POs for a given host. Once the POs for the
mobile host are retrieved, the sender forwards the file to those PO(s) and
they keep the file stored until the mobile host is available for delivery. When
the mobile host is available, the file is delivered from the PO(s) to the host.

Postcards from the edge introduces several new protocols for the transport
layer while leaving untouched the IP layer to be used for control purposes.

The architecture proposes a network composed both by traditional nodes,
like today’s routers and the like, and cache-and-forward nodes (CNF nodes).
It also proposes a naming convention for files in the form UFID.F()DN where
UFID is a unique identifier for the file (MD5 hashes are proposed for this
purpose) and FDQN is the fully qualified domain name of the home location
of the file. In order for this naming infrastructure to work properly, the
concept of File Name Resolution System (FNRS) server is introduced.

Each host has an authoritative name resolution server which is in charge of
maintaining and updating the set of POs tied to a particular host. A Name
Resolution Protocol (NRP) is used to maintain and update this list, so each
time that a mobile host informs of a new post office node, the list of POs
related to that certain host will be updated in the NRS server.

The Routing Protocol (RP) used in Postcards from the Edge is yet not well
defined, but an overview of the most basic features is depicted. The first
step involved would be to retrieve the list of POs related with the target
CNF node by means of the name resolution service. For a CNF node that is
not mobile (i.e. is wired), its PO would be itself and routing would be done
in a similar fashion than in the current Internet. In the other hand, if the
CNF node is a mobile host, then a list of PO(s) where the file can be sent
would be retrieved. The implementation of the routing mechanism for this
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last scenario remains as a research topic.

The link protocol (LP) has two main components, namely the Link Session
Protocol (LSP), which is used to establish the link, and the Link Transport
Protocol. There is also an additional Link Management Protocol for diagnos-
tic purposes, like monitoring errors or sending ACKs.

The architecture also implements a Caching Service Protocol (CSP), which is
in charge of retrieving files and returning them to the appropriate node(s) (i.e.
the node(s) which made the request for that particular file), and a Transport
Protocol (TP), which is responsible for fragmentation and reassembly of files.
The main composition of all the previously mentioned protocols can be seen
in Fig. 2.7.

TP: Transport Protocol

RP: Routing Protocol
Reliable LMP: Link Management Protocol
Files (- GB) .

LP: Link Protocol

NRP: Name Resolution Protocol
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Large FNRP: File-Name Resolution Protocol
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Figure 2.7: Postcards from the Edge data and control plane protocols, Yates
et al. [21].

Postcards from the Edge functions on a hop-by-hop basis, which means that
transmission to the next hop can not start until the transmission to the
previous hop has been completed. This working methodology, which could
seem a burden on the performance of the architecture, actually improves the
overall performance in mobility scenarios by greatly reducing interferences.



Chapter 3

Methodology

"It is common sense to take a method and try it. If it fails,
admit it frankly and try another. But above all, try something."”,
Franklin D. Roosevelt.

This chapter describes the methodology employed in this Master Thesis work
both when approaching the background theory part and the security analysis
part. Following, the criteria on how the selection of architectures has been
done and how the security analysis has been performed is described.

Architecture Selection

After selecting a broad range of papers, RFCs and project deliverables and
documentation dealing with Future Internet Architectures, it was obvious
that the amount of material was too extensive to be all suitable for the
Thesis. Therefore, all the material was inspected and classified into valid and
non-valid. Criteria for this classification tried to assure that the architectures
selected represent a broad set of different approaches to the research problem
of the Thesis, meaning that some are fully new architectures and others
are just redesigning some parts of the current Internet (i.e. naming) while
maintaining some of the former design. In this way a good balance is obtained
and pros and cons for both types of approaches can be seen.
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Security Analysis

The analysis is presented on a "per architecture" basis. Presenting it orga-
nized by architectural elements was unpractical, due to not all the papers
describing each architectural element for every architecture analyzed.

Security analysis has been done on each architecture over critical architec-
tural elements such as forwarding, topology management, central elements
(i.e. rendezvous) and key elements relevant to particular architectures (i.e.
shut-off protocol in AIP). For each of these elements, the security mecha-
nisms developed by the authors were studied and based on that, possible
vulnerabilities have been outlined, if any.

Vulnerabilities have been only described or demonstrated in a theoretical
way, as trying them on a live environment has been in most of the cases not
possible, due to the implementation not being public or not existing at all. In
the cases that a prototype implementation has been available, the difficulty
of setting up the environment or the lack of a testbed infrastructure has been
too big and falls out of the scope of this Thesis.
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Chapter 4

Security Analysis

"The mantra of any good security engineer is: ’Security is a not a
product, but a process.” It’s more than designing strong cryptog-
raphy into a system; it’s designing the entire system such that all
security measures, including cryptography, work together.”, Bruce
Schneier.

In this Chapter, the security analysis of the architectures presented on Chap-
ter 2 is performed. The analysis is presented on a "per architecture" basis,
as presenting it organized by architectural elements was unpractical due to
not all the papers describing each architectural element for every architec-
ture analyzed. Focus is placed over DoS/DDoS protection, as it is the kind
of attack that prevails the most and the one that most architectures intend
to eradicate. Also, special emphasis is given to the analysis of the forward-
ing implementation of each architecture, as it is the most likely venue for
DoS/DDoS attacks to happen, if vulnerabilities are found on it. Following,
the security analysis is presented.

4.1 PSIRP Security Analysis

PSIRP provides an extensive set of security mechanisms such as rendezvous
level authentication, data integrity and confidentiality, secure inter-connection
of rendezvous networks, packet level authentication, network attachment se-
curity and spam prevention through notarization. As the documentation for
PSIRP is very extensive and many of the security properties and possible
attacks and countermeasures for the previously mentioned mechanisms are
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explained with a high level of detail in [27], the focus of the analysis for this
architecture has been put on the forwarding plane, as it is the most sensi-
tive one regarding DoS/DDoS attacks. Following, the security analysis of
PSIRP’s forwarding is presented.

4.1.1 Forwarding

PSIRP [26] uses in-packet bloom-filters to implement its underlaying for-
warding fabric. In-packet bloom-filters have been proposed as one of the
possible solutions to implement DoS and DDoS resistant forwarding and
they can be used to establish a forwarding path between the publishers and
subscribers in a source routing fashion, by adding to the filter the link 1Ds
of the forwarding nodes the data packet should traverse. In principle, the
bloom filter is calculated on demand and it is only known to the publisher,
once a successful publication-interest match has occurred into the rendezvous
system.

Due to their probabilistic nature, one of the only possible methods to forge a
bloom filter that will establish a forwarding path between two hosts is using
brute force until a valid filter is obtained. While trying to guess valid bloom
filters by means of brute forcing is well possible, the computational effort to
achieve it is huge and increases drastically as the number of hops the attacker
is separated from the target increases.

In-packet bloom-filters are called in PSIRP zFilters. In order to make the
approach even more resistant to DoS and DDoS, PSIRP introduces the con-
cept of zFormation, which dynamically calculates the zFilters and link IDs
by applying a function over some in-packet information such as the flow iden-
tifier, the in and out interfaces and a shared secret K, which changes over
time. This makes the brute force approach even more complicated, as ev-
ery time the shared secret changes, the zFilter needs to be recalculated and
zFilters are tied to the flowID they were calculated for and to the specific
pair of inbound and outbound interfaces. However, it is demonstrated that
brute-forcing a 1-hop zFilter is a relatively easy achievable task that can be
carried out in a reasonable amount of time, even when using zFormation [22].

ZFilters and Forwarding

ZFilters have several parameters, namely m, which is its length in bits (typi-
cally ranges from 128 to 256), k, which denotes the amount of bits set to one
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in the filter (typically 5) and the maximum fill factor (p), which limits the
amount of bits that can be set to one in a given zFilter.

The basic notion behind zFilter forwarding is constructing it in such a way
that it will contain all the link IDs that the data packet from the publisher to
the subscriber should traverse. In order to achieve this, all the link IDs of the
forwarding nodes that are involved in the delivery path are ORed together
in one single bloom filter defining a unique (sometimes subject to certain
amount of false positives) forwarding identifier. When the data packet is
sent, every forwarding node does an AND operation of the zFilter and each
of its out link IDs, and if the result matches the link ID, then the packet is
forwarded through it. This is depicted in Fig. 4.1

Publication
_,..-"'"IzFiher: aor1artl || Topic ID | DATA |

Subscriber
IF 5-1
[Match and forward
- Match and forward
([Interface| Link 1D \ —
= IF P-1 001100001 1IF 2-1T Node 2
Wik did g Interface| Link ID
R IF 2-1 | 10010000
T 11 NIF 2-2 000100110
IF 1-2
|1F 3-1
Interface | Link ID
IF |-1 0ol00100| Node 3
IF1-2 | 00101000 Interface | Link ID B
IF1-3 | 100011000 IF 3-1 010101000
IF 3-2 001010010

Figure 4.1: Basic forwarding with zFilters, Jokela et al. [15].

In order to improve DoS resistance, zFilters and link IDs can be calculated
dynamically by using a function called zFormation. The basic forwarding
idea depicted in last paragraph remains the same, but in this case the zFilter
and every link ID is calculated on the fly by applying the zFormation function
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over the flow ID, the in and out interfaces and a shared secret K between
the topology manager and the forwarding nodes. The shared secret changes
over the time so the link IDs change and brute-force guessing valid zFilters
is made more difficult, as the zFilter has to be recalculated by brute-force
every time the shared secret K changes, and the delivery path gets tied to
the flow 1D, deeming it unusable for any other flows.

Nevertheless, it is demonstrated that for a fill factor of p = 0.5, the num-
ber of attempts needed to guess a valid 1-hop zFilter with probability 1/2
is somewhere near 10? and for a 2-hop zFilter 10%, which makes guessing
this path length zFilters, even if they are computed using zFormation, an
achievable task in an acceptable amount of time [22]. Sec. 4.1.1 makes use
of this fact in order to perform a DDoS attack.

DDoS using 1-hop brute-forcing and legitimate zFilters

This attack scenario involves the attacker owning a bot-net which has one
of its controlled hosts 1 or 2 hops away (1 hop would be the ideal situation)
from the victim machine, or in case of not having any, it relies on luring
some machine (which is a less probable option but still achievable) which is
1 or 2 hops away into subscribing to some (legal) publication issued from
the bot-net. From now on we will call that previously mentioned machine
intermediary. A generic representation of this scenario can be seen in Fig. 4.2.

Intermediary

Figure 4.2: Attack scenario.

By combining a valid zFilter from the bot-net machines to the intermediary
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with a 1 or 2 brute-forced zFilter from the intermediary to the victim, we
reduce the attack computational cost to that of guessing (brute-forcing) a
valid zFilter to a machine that is 1 or 2 hops away. Of course, for this attack
to work, we need to make some assumptions such as that the semantics of
the system provide a reply packet, in order for the intermediary machine to
know whether it has found the appropriate filter or not. Following, a step
by step explanation of the attack is provided and a forwarding and data flow
diagram representing it can be seen in Fig. 4.3:

e The intermediary gets a valid zFilter (F;_y) to the victim machine by
brute-force. This has been demonstrated to be a not-so-much compu-
tational effort consuming task.

e The other machines in the bot-net issue regular publications to which
the intermediary subscribes. In this way, all the machines of the bot-
net have a valid zFilter (Fp_;) that establishes a forwarding path to
the intermediary.

e The machines of the bot-net subscribe to a publication issued by the
intermediary containing the brute-forced zFilter obtained in the first
step.

e By ORing the valid zFilters with the brute-forced one, every machine
in the bot-net obtains a zFilter (Fp_y) that establishes a forwarding
path to the victim machine.

e All the machines in the bot-net send data packets through those paths
to the victim machine in order to flood it and to cause a DDoS.

In the case that the attacker doesn’t control an intermediary machine, the
attack is still possible if the attacker can obtain valid zFilters to a machine
that is located 1 or 2 hops away from the victim, by luring it into subscribing
to some publication.

Regarding the use of zFormation, in which both the in and the out interfaces
are used to construct the valid zFilter, the approach previously mentioned
would not be effective, as the in-out interface pair from the intermediary to
the victim would be probably different that those in-out pairs from the bot-
net machines to the victim. Nevertheless, the attack still can be modified in
order to adapt to these new constraints. The modification of the attack is
following explained:
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Figure 4.3: Attack flow.

e The machines in the bot-net issue regular publications to which the

intermediary subscribes. In this way, all the machines of the bot-net
have a valid zFilter (Fz_;) that establishes a forwarding path to the
intermediary.

Using the previously zFilter and brute-forcing from each of the bot-net
machines the last segment left, namely a zFilter that will include IF1-
1 and IF1-3 as depicted in Fig. 4.2, which is equivalent to a one-hop
brute-forcing attack, every machine would get a valid zFilter to the
victim.

All the machines in the bot-net send data packets through those paths
to the victim machine in order to flood it and to cause a DDoS.

While still possible, now every machine in the bot-net has to brute-force a
1-hop filter, which would make the attack slightly more difficult.
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Path overloading by zFilter combination

This attack scenario involves the attacker also owning a bot-net and it as-
sumes the attacker has one controlled machine on each end of the path that
has to be overloaded. By combining zFilters in certain ways, it is possible to
make all the traffic traverse a selected set of forwarding node(s), thus trying
to overload those node(s) with an excess of traffic.

The attack is carried out as follows:

e The first step involves obtaining a zFilter that will establish a forward-
ing path between two of the bot-net machines, each of them situated
at one end of the path that the attacker wants to overload. In order
to get such a zFilter, it suffices issuing a publication from one of the
machines and having the other to subscribe to it.

o After performing this first step, the attacker needs to get valid zFilters
from every machine to the machine that issued the publication in the
first step. By issuing publications from those machines and having the
last one to subscribe to those publications, every machine in the bot-
net gets a zFilter that establishes a forwarding path from them to the
"middle” machine.

e By ORing each of those zFilters with the one obtained in the first
step, every machine in the bot-net gets a zFilter whose forwarding
path crosses a common set of node(s), a.k.a. the nodes included in the
zFilter obtained in the first step.

e All the machines start sending data packets through their forwarding
paths, thus overloading the desired segment of the network by filling
its capacity.

Note that no illegal step has been taken in getting the zFilters, as they have
been obtained by legal publish-subscribe operations.

4.1.2 Possible Solutions

The attacks previously introduced in the last two sections would most proba-
ble work in the case of zFilters generated without the zFormation technique.
Whether they would work also in the case of using zFormation as described
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in [22| is something left for further study. A probable guess would be that it
would work for the first attack scenario, but not for the second.

Given that flow IDs can be selected at will by the intermediary machine, it
would suffice to brute-force the 1-hop zFilter using the same flow ID that the
one used when getting the legitimate zFilters from the other machine(s) of
the bot-net. In the second attack scenario, as all zFilters obtained are valid
zFilters through publish-subscribe operations, it would be difficult to merge
them having different flow IDs, and it is unknown to the author whether flow
IDs can be easily spoofed or not and if the filters would be still valid in that
case.

Regarding the possible solutions to mitigate these attacks, the most reason-
able proposal would be that the topology formation manager would always
deliver zFilters with the maximum fill factor permitted. In this way, it would
not be possible to add extra edges to the path, thus making impossible to
combine zFilters. While it seems a good solution, it involves choosing a big-
ger k and perhaps reducing the maximum fill factor in order to enable short
paths to be represented as zFilters using the whole capacity of the fill factor.
In order to ensure that the zFilters are not to be combined, two different
approaches can be taken, which are briefly outlined following;:

e to have maximum fill factor parameter in the packet header, which is
modified to be as close to the actual fill factor as possible.

e to have a parameter that varies the k accordingly to the needs of the
filter.

Both of this approaches have their pros and their cons, probably causing
some impact on the scalability of the architecture, and further study of these
solutions is left open as a future work.

4.2 Scribe Security Analysis

As mentioned in Sec. 2.2, Scribe is built over Pastry. Pastry uses distributed
hash tables in order to store routing entries, and DHTs suffer from several
security weaknesses specific to them, that could be exploited by a malicious
user to carry out different types of attacks. The three most remarkable
weaknesses are the Sybil attack, the Eclipse attack and routing and storage
attacks, which are briefly described following and depicted in Fig. 4.4:
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e sybil attack refers to a malicious user creating several pseudonymous
entities in order to gain a big influence of the system thus thwarting
its redundancy,

e cclipse attack refers to a malicious user creating references in well-
intentioned nodes pointing to malicious nodes in order to corrupt the
routing tables and,

e routing and storage attacks refers to malicious nodes trying to corrupt
data or not routing data in a proper way.

Routing table

Reference to
malicious node

Any routing decision
or storage manipulaton
possible ;

Key of entity Q;

4

Eclipsed node
pointing to
malicious peers

Sybil attacker with
~ multiple 1Ds

Figure 4.4: DHT vulnerabilities, Urdaneta et al. [28].

The main mechanisms that should be used in order to avoid this kind of
attacks are secure assignment of node identifiers, maintaining the routing
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table in a secure way, and implementing a secure message forwarding. A
thorough analysis on this kind of measures and mechanisms is presented by
Druschel et al. [6].

Possible solutions regarding the secure use of DHTs and the attacks they are
vulnerable to can be found at |28, 24, 9.

4.3 AIP Security Analysis

AIP enforces security through accountability. The fact of keeping track on
who does what can prevent many types of attacks present on the current
Internet’s model, such as DoS, spoofing and the like. AIP uses self-certifying
addresses making spoofing a lot harder and authentication of content much
easier. AIP also prevents DoS attacks using a special protocol called shut-off
protocol.While these previously mentioned measures offer a better protection
level against those threats, some possible vulnerabilities have been encoun-
tered during the analysis, which are presented following.

4.3.1 Spoofing issues

As explained in Sec. 2.3, in order to verify ADs and EIDs, routers along
the data path use some verification measures such as verification packets,
uRPF or trust relations. When a packet is deemed to be valid, an entry
for the AD:EID combination is added to the router’s accept cache. In order
to maintain the size of the cache within some reasonable limits, when many
entries containing the same AD part are found in the same accept cache,
all the entries are deleted and an entry in the form AD:* is then added to
represent those which were deleted.

Given that an attacker controls enough hosts in the same administrative
domain in order to upgrade the entry of the accept cache to one of the form
AD:* or that the attacker happens to be attached to a router which has
installed such an entry in its accept cache, then he can spoof EIDs at will,
as the router will accept every packet coming from that AD.
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4.3.2 Forwarding

AIP forwarding is based on a next-hop lookup approach, where the inter-
mediate routers just inspect the next-hop destination AD (administrative
domain) field in order to forward the packet. AIP packet headers allow to
stack destination ADs by using the "dest AD stack” field in the packet header,
which has a size of N*160 bits, being N the number of ADs in the stack and
160 bits the regular length for an AD or EID.

While this approach makes routing and forwarding decisions simple and
straightforward, it can also allow an attacker to consume large amounts of
bandwidth by making the packet to loop for some time between two ADs.

Assumptions:

it is not specified whether N has an upper limit in order not to allow "infinite"
ADs in the dest AD stack. Nevertheless, we can assume that at least the
field can contain a reasonable amount of ADs, which would suffice for our
purpose.The attacker owns a bot-net, and needs to install some state in the
system, namely valid entries of AD:EID in the accept cache of the routers
he needs to traverse. For this, it would suffice to send a valid regular packet
though the route in order for the routers to add a cache entry.

Attack:

Once the attacker has got the needed entries in the accept caches of the
routers, he needs to craft special packets which will contain in the dest AD
stack some sort of (finite) loop. In order to do this, the attacker can insert
in the field a stack of ADs in the following form:

ADq: ADy : AD5: AD,, : AD,,: AD,, : ... : AD,, : ... : ADgjes

Given that the source address of the bot-net machines used in the attack is
in the accept cache, which should be as a first valid regular packet has been
sent from them to the route being used, if several machines use this approach
and they loop through the same pair of ADs, they can cause a huge amount
of traffic to loop constantly through the ADs edge routers, wasting resources
and consuming bandwidth.

A possible solution for this attack could be that the border routers keep a
small cache with the hashes of the last n packets that have traversed them.
In the case of detecting the same hash for a small certain amount of times,
they would just have to drop the packet in order to get rid of the traffic
excess.
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4.3.3 Forcing Shut-Off by Replay techniques

ATP uses what they call "Shut-off protocol" in order to prevent DoS at-
tacks. The idea of this protocol is based on every computer being equipped
with a "smart-NIC" card, that will control the network behavior of the host
by being able to stop certain traffic flows or to limit them. This smart-NIC
card keeps track of the most recently sent packets, and it accepts SOP pack-
ets. The key point here is that SOP packets cannot be forged, as they are
signed by the sender and they include a hash of the data packet that origi-
nated the SOP packet, which assures that malicious hosts cannot forge SOP
packets to force a DoS towards a victim by making a machine to stop to
communicate with the victim.

Nevertheless, it is still possible, under certain conditions, to abuse the use of
SOP packets. If an attacker is able to sniff such a packet between the victim
and some other host, the attacker just has to replay the packet from time
to time in order to further block the communication between the victim and
the other host. The replayed SOP packet will still appear to be valid as it
has the victim’s signature and it contains the hash of a recently sent packet.

Another possibility to abuse the shut-off protocol by using replay techniques
could work as follows. Given that the attacker is able to sniff regular traffic,
there is nothing that prevents him from replaying the sniffed traffic, as proper
entries in the accept caches have been installed by the original packet and he
is not tampering the contents of the packet or spoofing any address, so the
replayed packet would look exactly as the original one.

If the attacker starts to replay such sniffed traffic all the time, the hosts
that the victim is communicating with will start to receive many duplicated
packets, but all of them will seem to be originated by the victim machine.
Whether this will make those hosts to send SOP packets to the victim or
not, it is not clear on the paper, but a good guess would be that after some
time receiving many duplicated traffic, it would be considered as some kind
of flooding attack and SOP packets would be sent to the victim.

4.4 NNC Security Analysis

Networking Named Content presents a rather interesting approach into pre-
venting DoS/DDoS attacks and also spoofing of content. NNC names data
instead of hosts, and all data units are signed for authentication, and en-
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crypted if privacy is needed also. This fact, assures hosts the authenticity of
the data they retrieve, being the original or a mere copy of it cached in some
intermediate CCN node.

NNC implements forwarding in a very intelligent way, mostly described in
Sec. 2.4. Interest packets are the only packets that are actually routed, and
while being routed, they leave a trail behind, namely in the form of entries
on the PITs of each CCN node they traverse. When the data matching an
interest is retrieved, it has only to follow the trail left by the interest packet
which requested it, in order to reach the receiver. Thus, data moves in a
hop-by-hop fashion, and it consumes the interest that originated the request
in every CCN node it traverses back to the receiver. In this way, DoS/DDoS
attacks by means of data flooding are not possible to carry out, unless only
locally through the local link. Any other attempt of data flooding will just
not work, as there will be no matching interest in the CCN node, and data
will be automatically discarded as explained by NNC forwarding model.

Following, some considerations and possible venues for attacks in NNC are
described.

4.4.1 Content Spoofing and Trust Management

While it is true that having a signature over every data packet is an effi-
cient way of preventing spoofing of content, this can cause a false sense of
confidence in users which can result perhaps in a bigger problem than benefit.

Regular users usually don’t pay much attention nor put much effort into ac-
tually verifying whether content, and the signature or certificate that proofs
that the data is the correct one, match one to another. This behavior can
be already seen in the current Internet and the use of certificates to au-
thenticate websites and the like. Phising websites without valid certificates,
or websites with a certificate that has already expired are still accessed by
the vast majority of regular users, which are not "security-minded”. In the
scenario presented by NNC, all the data is supposed to be authenticated,
fact that can give users a false feeling of safety and to make them think
that in this kind of architecture every piece of data they will get is properly
authenticated and therefore, safe.

While this is not a problem of the architecture itself, it is important to remark
that an architecture cannot rely in users verifying every piece of data they
get or reading through a certificate in order to determine if it is valid or not.
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This verification should be done by the end-user applications automatically
in order to work properly, and shouldn’t rely on the user to determine when
to block or not incoming data packets.

Another problem regarding content spoofing, specific to this architecture,
is that in the case that an attacker can effectively spoof some content, that
spoofed content will remain in the caches of every CCN node it traverses, and
every time a client will request the data, the spoofed copy can be stored in
more and more caches, making the spoofed data copies to grow exponentially,
and eventually to maybe take over the original valid data.

4.4.2 Forwarding

The fact that forwarding is implemented in a way that every data packet
should consume an interest in order to be able to progress towards the re-
ceiver, makes NNC DoS/DDoS resistant to data flooding. Nevertheless, it
is also true that data flooding can still be performed through the local link,
affecting only the closest CCN node. While this fact can seem a priori some-
thing unimportant, if an attacker owns an insider machine to some target
company or organization, it could still cause several damage by flooding
through the local link other hosts or the CCN node, preventing the rest of
machines to communicate or to get their requested data.

The fact that local links can still be flooded with data is not something
that should be ignored, as one single CCN node can serve several users, and
flooding it is still a form of denial-of-service attack.

In the other hand, a distributed flooding can still be performed using interest
packets. Given that the packets don’t share the same name components,
so they are not combined into one interest, a massive sending of interest
packets could overwhelm CCN nodes by filling their PITs or consuming all
the bandwidth, resulting also in a denial-of-service attack. Several measures
are proposed by the authors of the paper [14] in order to mitigate interest
flooding attacks. Whether that measures are fully effective or not, is subject
to discussion.

40



CHAPTER 4. SECURITY ANALYSIS

4.5 LNA Security Analysis

The Layered Network Architecture focuses at redesigning the name resolution
levels in the Internet. In order to do so, they introduce three levels of name
resolution and their corresponding resolution layers. While this approach
helps for sure solving some of the problems that the current Internet’s ar-
chitecture suffers from, like mobility or multi-homing, it also introduces new
venues for new attacks.

Nowadays, Internet only has one name resolution layer, namely DNS, and yet,
plenty of vulnerabilities have been discovered on it, like DNS cache poisoning,
information disclosure by zone transfers, DNS rebinding attacks and many
others. Introducing new name resolution layers, if not implemented perfectly
and in a really 100 percent safe way, could introduce many other new venues
for attacks, which could make the situation worse than it is right now.

LNA proposes distributed hash tables (DHTs from now on) as a way to
implement a name resolution infrastructure that can resolve flat names such
as SIDs and EIDs as depicted in LNA’s architecture in Sec. 2.5. They also
propose maintaining current IP as the forwarding infrastructure on which
their architecture will be founded. Following some of the biggest security
concerns of these decisions are exposed.

4.5.1 Name Resolution Layers

As previously mentioned, LNA uses three resolution layers, from user-level to
SIDs, from SIDs to EIDs and from EIDs to IPs. The first layer is implemented
as a search or lookup service while the other two are implemented using
DHTs. As previously mentioned in Sec. 4.2, DHTs suffer from several security
weaknesses specific to them.

Another concern about the resolution layers involves the concept of delegates
introduced in the paper. If an attacker could subvert a DHT record in order
to alter the delegates related to a service or host, adding one of his own
controlled machines, it could allow him to sniff all the traffic being the man
in the middle without the victim ever noticing, as it is the task of delegates
to redirect the traffic to the original service provider.

While the implementation of the DH'Ts and their algorithms are not explained
in the paper, it is important to remark the possible attacks and to try to
implement the resolution layers in such a way that will be resistant to those
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in order to improve the security of the system. It is not the aim of this Thesis
to go deeper into DHT security issues, and for further information the reader
is encouraged to consult 28, 24, 9|.

4.5.2 Forwarding

LNA includes SIDs and EIDs into the packet headers in order to perform
some of the routing, like when service composition is needed, by stacking
several SIDs in the same header, but ultimately, the routing is done at IP
level.

IP introduces several vulnerabilities previously mentioned, such as spoofing
being easily undetected or DoS/DDoS attacks being quite possible. By using
IP, LNA introduces all these vulnerabilities into their architecture too, as
even if services and end-points are represented as SIDs and EIDs, it is still
possible to reach whatever host by means of its [P address, making possible
the delivery of unwanted traffic or huge amounts of non-solicited data.

The fact that SIDs or EIDs can be stacked at will by the senders in order
to allow them to dictate the path of packets doesn’t make it any better as
not only malicious users can send data to selected victims, but they can also
choose the path the data will follow.

4.6 I3 Security Analysis

The Internet Indirection Infrastructure is an overlay architecture over regular
IP, which apart from solving problems of mobility, multicast and anycast,
aims at solving some security issues affecting Internet, such as DoS attacks.
In order to do so, the overlay provides several mechanisms that improve the
current Internet’s situation, such as hiding IP addresses, giving end-hosts
control against attacks and mechanisms to avoid new vulnerabilities that
might arise. Following, we will analyze each of the three mechanisms.

Hiding IP addresses

In order to avoid DoS attacks at the IP level, 13 proposes nodes and end-
hosts not disclosing their IP addresses by communicating exclusively over
IDs. In order for this measure to work, it is assumed that all the nodes using
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the overlay will only communicate through it, so theoretically, end-hosts
communicating exclusively over I3 would be safe. While this approach can
be seen as effective, relying on "security through obscurity” has been proven
several times not a good way to offer protection. It is really difficult that
nodes will only communicate through the overlay, as there can be services
that are not part of it and that the end-hosts need to use. Also, while 13 is
coexisting with the regular Internet, mechanisms such as DNS should still be
working, so it shouldn’t be difficult to discover the IP of the desired victim.

With this protection model, DoS attacks to random end-hosts and spam
sending are still possible, as the attacker doesn’t need any specific IP. Also,
attacking directly I3 nodes storing triggers can render all the end-hosts stor-
ing their triggers on that node unreachable.

Giving more control to end-hosts

In order for end-hosts to be able to stop attacks by themselves, 13 proposes
that end-hosts under attack should be able to remove their private or public
triggers. In the case of private triggers, removing it would stop the attack
completely without any side effect, as private triggers are used to communi-
cate 1-to-1, and the rest of legitimate users will still be able to communicate
through their own private triggers.

In the case of removing a public trigger in order to stop a flooding attack, the
hosts already communicating through private triggers would not be affected,
but the server would become unreachable for new clients until a new public
trigger is inserted.

Protecting against new vulnerabilities

In order to protect against new vulnerabilities, I3 introduces the concepts
of constrained triggers, pushback mechanisms and trigger challenges, as ex-
plained in Sec. 2.6. A detailed explanation on these three mechanisms is
available at Adkins et al. [1].
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4.7 DONA Security Analysis

Data Oriented Network Architecture makes use of an anycast primitive and
a route-by-name approach in order to redesign the naming and name reso-
lution from a clean-slate state. As explained in Sec. 2.7, it uses FIND and
REGISTER messages in order to point out were content can be found. This
messages are handled by some core entities called RHs, which provide much
the same functionality as rendezvous nodes in PSIRP. In fact, the find and
register messages are forwarded from the lowest RHs to the root or Tier-1
RHs in a very similar fashion that PSIRP forms rendezvous networks and
forwards subscriptions and publications.

While all these previously operations and messaging is done through the
RHs and not over IP, once the nearest available copy of data has been found,
the rest of packet exchanges is done over IP. As mentioned in previously
analysis, as long as forwarding over IP is still enabled, DoS attacks are still
well possible, as data can still be sent to unintended recipients using IP
directly.

To cope with certain attacks like bandwidth DoS attacks, DONA relies in
IP-level mechanisms that can throttle down unwanted packet streams. This
is equivalent to the current level of protection against DoS attacks which
exists in the existing Internet architecture, and still doesn’t solve the issue
of DDoS attacks, where the unwanted packet streams are not only one but
many, and come from many different machines.

For resource exhaustion attacks against RHs, DONA relies on contractual
limits on the amount of FIND or REGISTER messages that a customer can
send per minute, imposed by the providers.

Finally, in order to avoid malicious RHs, DONA allows clients to request the
data not from the closest copy but from the n’th closest copy. While this
helps avoiding misbehaving RHs, it could be used by an attacker owning a
bot-net in order to request a lot of copies from the same RH, resulting in a
resource exhaustion attack against that RH.

4.8 Postcards from the Edge Security Analysis

Similar to some of the other architectures analyzed, Postcards from the Edge
still maintains IP in order to carry some of its tasks, such as control mes-
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saging. This brings the same problems as stated in the previous analyses, as
it is still possible to send unwanted traffic via IP, meaning that DoS attacks
are then still possible.

As the paper doesn’t addresses the security issues that might arise from the
architecture nor describes any explicit security mechanisms, the vulnerabili-
ties that are to be explained following cannot be fully proven.

Regarding the cache-and-forward nodes, it is unclear which amount of storage
capacity they have, but it is obvious that it should be limited. If we assume
this, it could be well possible to send very huge files with the TOS byte set
to popular, in order to steal caching space or in order to completely fill the
storage capacity of some node. Also, the files that are waiting in a queue of
a forward-and-cache node are sent with a different priority according to their
TOS byte. This fact could be abused by misbehaving users in order to get
their files sent with a higher priority than others.

Post Office addresses are stored as an extra record in regular DNS. As long
as it is possible to perform a DNS cache poisoning attack in the current
Internet, it is also possible modify the PO addresses of a mobile node in oder
to isolate it or to retrieve data that was intended for it.

Also, by performing a denial of service attack using IP against the POs of
a mobile node, which can be retrieved from DNS, we can perform a DoS
attack against that mobile node meanwhile it is offline, as any file that was
intended for it will never reach its destination. This opens new venues for
DoS attacks, as now it is not even needed that the victim is online, but it
suffices performing a DoS attack against its PO nodes in order to effectively
DoS the victim as well.
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4.9 Architectural Similarities

The following table spots the basic similarities between the different archi-
tectures introduces in Chapter 2. It is intended only to get a better overview
on the shared characteristics between the different architectures. It is left for
future research the question on whether it can be proven useful to extrapolate
certain attacks between architectures and to improve it further more.

Architectur¢ Pub/Sub IP use Extra resolu- | DHTs
tion layers
PSIRP yes no yes yes
Scribe yes no no yes
AID no no yes no
NNC yes no no no
LNA no yes yes yes
i3 yes yes yes yes
DONA no yes yes no
Postcards | no yes yes no
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Discussion

"A scientist’s aim in a discussion with his colleagues is not to
persuade, but to clarify. ", Leo Szilard.

This Chapter presents a short discussion about the outcomes and shortcom-
ings of the security analysis of the Future Internet architectures performed
in Chapter 4.

The aim of this Thesis work was to assess the security of several proposals for
Future Internet architectures. More concretely, the security analysis should
focus mainly in DoS/DDoS protection mechanisms and possible vulnerabili-
ties on them, as it is the most prevailing kind of attack on Internet and most
of the architecture proposals try to address that issues. To this extent, we
could say that the objective of the Thesis has been accomplished, as vul-
nerabilities that allow attackers to carry out this kind of attacks previously
mentioned have been found in most of the architectures.

Regarding the feasibility of those attacks to pose a real threat against the
given architectures or not, and their verifiability, the subject can be discussed
further. In one hand, most of the described vulnerabilities seem to be con-
sequent with what it is written on either the scientific papers, the RFCs or
the project deliverables that have been employed to conduct the analysis and
to gain a good understanding on how the architectures work and which are
the mechanisms implemented in order to protect them against this kind of
attacks. In the other hand, the lack of practical verification in a live test
environment and the different implementations that some architectures pro-
vide for the same architectural element(s), added to the, sometimes, lack
of some details and/or information on how that mechanisms work exactly,
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could render some of the discovered vulnerabilities partially unusable. Nev-
ertheless, even in those cases, the aforementioned vulnerabilities represent a
good starting point and definitely should be taken into account.

Another issue that can be subject of discussion is whether the analysis is
complete enough or not. While it is true that the security analysis could
have been much more deep, and could have included also a wider variety
of attacks, time constraints and the need to focus more in a particular at-
tack, as focusing in many different kind of attacks would have resulted into
the security analysis being less detailed and probably too general to render
significantly useful results, have shaped it this way. It remains as an open
possibility for the future to investigate other kind of attacks and to revisit
the ones already explained in order to add more details or to double check
them in order to assure as much as possible their feasibility, for example by
conducting tests on prototype implementations.

The difference on the extension of the security analysis from architecture to
architecture is due to the amount of technical detail found for each of them,
the quantity and quality of their security mechanisms and their relevance to
the Thesis. It doesn’t mean that some architectures have been analyzed in
a worst way or with less dedication than others, they have been all analyzed
at the same level and employing the same methods.

Regarding the possible solutions presented for some of the vulnerabilities
found, they have not been studied in depth and they don’t present enough
detail level in most of the cases. It was not the aim of this Thesis to give
detailed solutions but to point out possible vulnerabilities in the architec-
tures, so those solutions should be considered only possible approaches that
are subject to further study and that may set up a good starting point.

A general result that can be derived from the security analysis is that the
forwarding plane is one of the most critical components of an architecture.
Forwarding is in charge to deliver data to a recipient in last instance. If
there are vulnerabilities at the forwarding level that can allow an attacker
to send non-solicited data to a victim, whatever other security mechanisms
implemented at other levels may be rendered useless. This is specially obvious
in the case of architectures that make use of IP level forwarding as a part of
their implementation. As long as an attacker is able to send unsolicited data,
to a victim using IP directly, DoS attacks are still possible, despite any other
security mechanisms implemented at other levels, as can be seen for example
in Sec. 4.5 or 4.6.
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CHAPTER 5. DISCUSSION

Last but not least, is important to understand that security is not something
that may be added to an architecture after the complete development process
is done. This is not only a dangerous idea, but also a great increase on the
development effort, as patching an already implemented architecture requires
much more work than integrating security into it from the very beginning.
Some people may argue that integrating security all the way through the
development process is costly as well, and it does require some extra time
and effort, but it is proven to be much more effective at the end.
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Chapter 6

Conclusion and Future Work

"I think and think for months and years. Ninety-nine times, the
conclusion is false. The hundredth time I am right.”, Albert Ein-
stein.

This Chapter presents the conclusion of this Master Thesis and proposes
some directions for future work.

6.1 Conclusion

In this Thesis, we have presented several Future Internet architectures. Some
of them present a complete clean-slate design for the Internet while others
focus on redesigning only certain parts of it. We have started by giving
an overview about their technical description, their desired properties, their
objectives and their approach to the problem. Then we have analyzed from
a security point of view their main architectural elements such as forwarding,
topology and the like. Finally, we have discussed the results obtained in the
security analysis part and presented some possible solutions for the security
issues that have arisen.

The analysis has revealed some potential security flaws in many of the archi-
tectures, most of them located on the forwarding plane. It has been proven
that when designing and implementing a new architecture, security has to
be integrated since the very first moment and that it is always better to aim
for a clean-slate architecture that for a redesign of the existent one. While
many of these Future Internet architectures have shown to improve the cur-
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rent, security status of the Internet model, total security is very difficult to
achieve, and new designs can always introduce new venues for attacks.

However, most of these architectures are still in a design phase and changes
are being introduced every now and then, leaving still room for security
improvement.It is our hope that the results obtained in the analysis will help
them in that improvement.

6.2 Future Work

Although the security analysis of this Thesis has been performed in all the
architectural elements described for each architecture, it has been focused
mostly on DoS/DDoS vulnerabilities. It could be useful as a future work to
analyze those elements focusing in other kind of vulnerabilities.

Also, all the results obtained have been purely theoretical, based on what the
papers, RFCs and project deliverables state. It could be subject for future
work to reproduce those vulnerabilities found in a live environment, in order
to verify if they work as intended and to investigate further how they work
and other possible venues for attacks.

Some of the solutions presented in Sec. 4 can be subject of further study
and can be an interesting starting point to improve some of the security
mechanisms of the architectures analyzed.

Last but not least, despite being a quite ambitious task, all the information
gathered in this Thesis could be used to try to design a new architecture that
will reunite all the worthy features present on them, while taking into account
all the vulnerabilities found, in order to develop an even safer architecture.
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