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Summary

The contribution from this master’s thesis is an optimal path planner for Remotely Operated Vehi-
cles (ROVs) based on the Non-dominated Sorting Genetic Algorithm (NSGA-II). This contribution
is a result of the exploration of a research hypothesis stating that path planning is an essential
research area in terms for achieving persistent autonomy, and thus, persistent autonomy could
be achieved by implementation of a high-performance optimal path planner based on NSGA-II in
the control system. Beforehand to the establishment of the research hypothesis, a comprehensive
literature review is carried out intended to provide an overview of different optimization techniques
applied in path planning. The overall concluding remark from this literature review, is that NSGA-
II is contained within the category of evolutionary algorithms that is well suited for path planning
both in terms of computational complexity and optimization performance.

The overall motivation behind the work is to increase the level of autonomy in ROV operations.
Likely, a higher level of autonomy streamlines such operations, that is, save costs, increase efficiency
and accuracy, while maintaining safety. Less dependence on human intervention and the mother-
ship causes cost savings. An advanced control architecture, including the path planner, increase
efficiency and accuracy. Lastly, obtaining satisfactory performance of the integrated system, and
indirectly, the reduced dependence of human intervention, maintain safety.

The path planner is developed and implemented into the control system of the ROV Minerva 2,
constituting an integrated system enabling Minerva 2 to perform autonomous docking missions by
trajectory of paths consisting of waypoints interconnected by straight line segments. The ROV
Minerva 2 is an asset of the Applied Underwater Robotics Laboratory (AUR-lab) at the Norwegian
University of Science and Technology (NTNU).

Furthermore, the thesis proposes a definition of the optimal path planning problem for autonomous
docking missions. The problem definition takes into account parameters, for instance, the initial
position of the ROV, the position of the docking station, obstacle positions of static spherically
modelled obstacles and depth in the environment. The optimal path planning problem is defined as
a multi-objective optimization problem, taking into account four objective functions responsible for
assigning the generated paths four desired properties. The objective functions are to be minimized
by applying NSGA-II, and thus, obtaining optimal paths. The desirable properties are short path
length, sufficient safety margin to obstacles, absence of sharp turns in the horizontal plane, and
sufficient depth, ensuring reliable altitude measurements by the Doppler Velocity Log (DVL).

The optimal path planner is developed by applying NSGA-II to the optimal path planning problem,
generating a population of paths based on the objective functions. The optimization performance
of the path planner is thoroughly verified in simulations of the path planner solving the optimal
path planning problem as a stand-alone application. Due to the multi-objective nature of the path
planning problem, optimization yields a set of Pareto-optimal paths. That is paths that are equally
optimal and indistinguishable from each in terms of objective function values. Post-processing of
the Pareto-optimal set of paths selects one path for the ROV trajectory in autonomous docking
missions, done by a path selector algorithm. The path selector is based on additional user-defined
preferences on the objectives.
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The NSGA-II based optimal path planner is efficient in terms of computational complexity. By
the big-O notation, NSGA-II has the complexity O(MN2), where M is the number of objectives,
and N is the number of paths in a population. Furthermore, the dimension of N depends on
the number of waypoints in each path. Moreover, Minerva 2 utilizes constant jerk guidance for
reference position, which is a waypoint based guidance scheme. Such waypoint based guidance
schemes eliminate the need for further path refinement, and thus, save computational resources.
Therefore, constant jerk guidance is directly compatible with the NSGA-II based optimal path
planner.

The performance of the integrated system is verified in Hardware-In-the-Loop (HIL) simulations.
The integrated systems is obtained by implementing the NSGA-II based optimal path planner
into the advanced control system of Minerva 2. In the integrated system, autonomous docking
missions can be performed in two different modes, with different control strategies. The former
mode, called auto-depth mode, is straight forward. It merely follows the path as it is, generated by
the NSGA-II based optimal path planner. The latter mode, called auto-altitude mode, performs
an online update of the depth-coordinate of the waypoints causing the ROV to follow the seafloor
at the desired altitude by applying altitude control.

Both modes for autonomous docking missions render trajectories avoiding static obstacles, while
also fulfilling the other objectives. However, the auto-altitude mode differs from auto-depth mode,
as the former initially in the mission dives down to the desired altitude. Overall, both modes show
satisfactory performance in simulations, even though the auto-altitude mode renders a slightly more
oscillatory behaviour. This challenge considering the auto-altitude mode is assumed to be solvable
by tuning of the altitude control scheme in the control system. The benefit of the auto-altitude
mode is that, in this mode, the ROV takes on a fixed desired altitude such that reliable DVL
measurements are available. This result eliminates the risk of bottom collision and ensures reliable
state estimation. State estimation performed by the vehicle observer is known to deteriorate with
the absence of reliable DVL measurements. Thus, the auto-altitude mode is recommended due to
its benefits concerning safety when performing autonomous docking missions in complex scenarios
where the seafloor is complex or data on the sea depth is partly lacking.

iv



Sammendrag

I denne avhandlingen presenteres en optimal baneplanlegger for fjernstyrte undervannsfartøy basert
p̊a den genetiske algoritmen NSGA-II. Avhandlingen er gjort p̊a bakgrunn av en forskningshy-
potese som sier at baneplalegging er et viktig forskningsomr̊ade med tanke p̊a å oppn̊a vedvarende
autonomi i undervannsoperasjoner, og videre at det vil være fordelaktig å implementere en bane-
planlegger basert p̊a NSGA-II i kontrollsystemet til fjernstyrte undervannsfartøy. Defineringen av
denne forskningshypotesen er basert p̊a en omfattende litteraturstudie som er ment å gi en oversikt
over ulike optimeringsteknikker brukt innenfor baneplanlegging.

Den overordnede motivasjonen bak denne oppgaven er å øke graden av autonomi i operasjoner
med fjernstyrte undervannsfartøy. Dette er p̊a bakgrunn av at høyere grad av autonomi vil føre til
lavere kostnader, økt effektivitet og nøyaktighet, samt opprettholde sikkerheten i slike operasjoner.
Mindre avhengighet av menneskelig innblanding vil føre til reduserte kostnader. En avansert
kontrollarkitektur, som inkluderer en baneplanlegger, vil føre til økt effektivitet og nøyaktighet.
Og ikke minst, tilfredsstillende ytelse av det integrete systemet vil ivareta sikkerheten.

Banelppanleggeren er utvikleg og implementert i kontrollsystemet til det fjernstyrte undervanns-
fartøyet Minerva 2, slik at fartøyet er i stand til å utføre autonomome dokkingoperatsjoner ved
å følge baner som best̊ar av banepunkter satt sammen av rette linjer. Minerva 2 er et fartøy
som eies av Applied Underwater Robotics Laboratory (AUR-lab), et forskningssenter for under-
vannsrobotikk ved Norges Tekniske-Naturvitenskapelige Universitet (NTNU).

Masteroppgaven tilbyr en definisjon av det optimale baneplanleggingsproblemet for autonome
dokkingoperasjoner. Problemdefinisjonen benytter innputtsparametre som startposisjon av det
fjernstyrte fartøyet, posisjonen til dokkingstatsjonen, posisjoner til statiske hindringer som er mod-
ellert som kuler og sjødybde i operasjonsmiljøet. Det optimale baneplanleggingsproblemet er de-
finert som et optimeringsproblem basert p̊a fire kostfunksjoner. Kostfunksjonene er ansvarlige for
å tilegne banene som genereres av baneplanleggeren ønskede egenskaper, og minimeres ved bruk av
NSGA-II. De ønskede egenskapene er kort banelengde, tilstrekkelig sikkerhetsmargin til hindringer,
fravær av skare svingninger i det horisontale plan, samt tilstrekkelig dybde for å m̊ale høyden over
havbunnen ved hjelp av en Doppler Velcity Log (DVL).

Baneplanleggeren er utviklet ved å løse baneplanleggingsproblemet ved hjelp av NSGA-II, som
genererer en populasjon av optimale baner basert p̊a kostfunksjonene. Ytelsen til baneplanleggeren
som en frittst̊aende applikasjon utenfor det integrerte systemet er verdifisert gjennom simuleringer.
Siden baneplanleggingsproblemet har flere kostfunksjoner, gir optimeringen et sett med Pareto-
optimale baner. Det betyr baner som er like optimale og ikke kan skilles fra hver andre med
tanke p̊a kostfunskjonsverdier. Etter optimeringen velges en av banene fra det Pareto-optimale
settet med baner av en banevelger-algoritme. Banevelgeren er basert p̊a ytterligere brukerdefinerte
preferanser p̊a kostfunksjonsverdier.

Den NSGA-II-baserte optimale baneplanleggeren er effektiv med tanke p̊a beregningsmessig kom-
plexitet. NSGA-II har en beregningsmessig komplexitet p̊a O(MN2), der M er antall kost-
funksjoner og N er antall baner i populasjonen. Dessuten avenger dimensjonen til N av antall
banepunkter i hver bane.

v



Ytelsen til det integrerte systemet er verdifisert gjennom Hardware-In-The-Loop (HIL) simu-
leringer. Det integrerte systemet best̊ar av implementeringen av baneplanleggeren i det avanserte
kontrollsystemet til Minerva 2. I det integrerte systemet, kan autonome dokkingoperasjoner gjen-
nomføres i to forskjellige moduser med forskjellige styringsstrategier. Det første moduset kalles
auto-depth mode, og er ganske rett fram. Minerva 2 følger ganske enkelt den banen som genereres
av baneplanleggeren slik den er. I det andre moduset, som kalles auto-altitude mode, gjøres en
online oppdatering av dybdekoordinatene til den genererete banen slik at ROVen følger havbunnen
p̊a en konstant ønsket høyde over havbunnen ved hjelp av høydekontroll.

Begge modusene for autonome dokkingoperasjoner gir banefølging som ung̊ar kollisjoner med
statiske hingringer, og samtidig oppfyller de andre ønskede egenskapene til en optimal bane. Det er
imidlertil forksjell p̊a auto-depth mode og auto-altitude mode, ettersom i sistnevnte dykker Minerva
2 ned til ønsket høyde over havbunnen før forflyttningen i det horisontale plan starter. Stort sett
er ytelsene god i begge moduser, men det er tendenser til mer oscillatorisk oppførsel i auto-altitude
mode. Dette er en utfordring som antas å være løselig ved å endre p̊a parameterinstillingene
for høydekontroll i kontrollsystemet. Fordelen med auto-altitude mode er imidlertid at p̊a grunn
av den konstante høyden over havbunnen, garanteres p̊alitelige DVL-m̊alinger. Dette fører til at
risikoen for kollisjon med havbunnen elimineres og fører samtidig til p̊alitelig ytelse av observeren.
Ytelsen til observerern viser seg å forfalle dersom DVL-m̊alingene er fraværende eller d̊arlige. P̊a
bakgrunn av disse fordelene er auto-altitude mode anbefalt for autonome dokkingoperasjoner der
havbunnen er kompleks eller kunnskap om havdybden er delvis fraværende.
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Preface

This report is written based on the work of my master’s thesis marine cybernetics during the spring
of 2019 at the Norwegian University of Science and Technology. The master thesis is based on the
ROV Minerva 2 and is a continuation from the project thesis performed during the fall of 2018,
giving insight into the control system of Minerva 2.

The main topics of the master’s thesis are the design and development of an optimal path planner
for autonomous docking missions for ROVs using waypoint guidance and the implementation of
the path planner into the control system of Minerva 2, achieving an integrated system able to take
on autonomous docking missions.

It is assumed that the reader of this thesis retains basic knowledge within marine engineering and
control systems.

Trondheim, June 2019.

vii



viii



Acknowledgements

I have put great effort behind this master’s thesis and also gained a lot of knowledge along the way.
In order to achieve this, I have received great help and assistance. Firstly, I would like to thank my
supervisor, professor Martin Ludvigsen. I am thankful for his efforts, as he has provided me with
feedback on my progress, given me ideas for improvement and motivating challenges. Furthermore,
I would like to thank postdoctoral researcher Stein Nornes, for his efforts on providing me answers
on technical challenges I have had during the work.

ix





Contents

Summary v

Sammendrag vii

Preface viii

Acknowledgements x

Abbreviations xx

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Remotely Operated Vehicles (ROVs) . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Topic and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 ROV Control System Development . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.2 Strategies for Homing/Docking Applied for AUVs . . . . . . . . . . . . . . 9
1.5.3 Optimization Techniques for Path Planning . . . . . . . . . . . . . . . . . . 10

1.6 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.1 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Mathematical Modelling of ROVs 17
2.1 Notation and Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Rigid-Body Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Hydrostatic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Hydrodynamic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 ROV Control, Guidance and Navigation 23
3.1 ROV Minerva 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Acoustic Navigation Specifications . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Control System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Constant Jerk Guidance for Position Reference . . . . . . . . . . . . . . . . 28
3.6 Altitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Optimal Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 Objective Function - Path Length . . . . . . . . . . . . . . . . . . . . . . . 32

xi



3.7.2 Objective Function - Safety Margin . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.3 Objective Function - Avoid Sharp Turns in the xy-plane . . . . . . . . . . . 33
3.7.4 Objective Function - Ensuring Reliable DVL Measurements . . . . . . . . . 34
3.7.5 Constraint - Ensuring Safe Docking . . . . . . . . . . . . . . . . . . . . . . 35
3.7.6 Path Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7.7 The Path Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Optimization Theory 39
4.1 Non-Dominated Sorting Genetic Algorithm (NSGA-II) . . . . . . . . . . . . . . . . 39

4.1.1 Fast Non-Dominated Sorting Approach . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Crowding Distance Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.4 Simulated Binary Crossover (SBX) . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.5 Polynomial Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.7 NSGA-II Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Method 47
5.1 Optimal NSGA-II Based Path Planner . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 LabVIEW based ROV Motion Control System . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Software and Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Hardware-in-the-Loop (HIL) Simulations . . . . . . . . . . . . . . . . . . . 50

5.3 Frigg VI - Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Njord VI - ROV Motion Control System . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Verdandi VI - Hardware-In-The Loop (HIL) Simulation . . . . . . . . . . . . . . . 52
5.6 Integrated Autonomous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6.1 Auto-Depth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.2 Auto-Altitude Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Results 57
6.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Path Planner with Three Objectives, O1, O2 and O3 . . . . . . . . . . . . . 58
6.1.2 Path Planner with Four Objectives, O1, O2, O3 and O4 . . . . . . . . . . . 63

6.2 Integrated System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Auto-Depth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Auto-Altitude Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Extended Case: Curved Seafloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Discussion 83
7.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 Path Planner with Three Objectives, O1, O2 and O3 . . . . . . . . . . . . . 84
7.1.2 Path Planner with Four Objectives, O1, O2, O3 and O4 . . . . . . . . . . . 85
7.1.3 In General on the NSGA-II Based Optimal Path Planner . . . . . . . . . . 87

7.2 Integrated System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Path Generation in the Integrated System . . . . . . . . . . . . . . . . . . . 87
7.2.2 Comparison of Auto-Depth Mode and Auto-Altitude Mode . . . . . . . . . 88
7.2.3 Extended Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Conclusions 91
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 93

Appendices A1
A Matlab-code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1

A1 Main.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1

xii



A2 parameters.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4
A3 OFE multiple obstacles.m . . . . . . . . . . . . . . . . . . . . . . . . . . . A6
A4 initialize population.m . . . . . . . . . . . . . . . . . . . . . . . . . . . A9
A5 NDS CDA.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11
A6 BTS.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
A7 make new pop.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A18
A8 selection.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
A9 path selector.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21
A10 plot tool.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22

xiii



xiv



List of Figures

1.1 Illustration of the ROV Minerva 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Control Architecture Layers [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Generalization of an Autonomous Subsea Operation [2] . . . . . . . . . . . . . . . 8
1.4 Case study results in static current environment with obstacles, illustrations by [3] 12

2.1 The NED- and BODY-frame relative to the Earth-centered Earth-fixed (ECEF)
frame[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 SSBL Underwater Positioning[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 ROV Motion Control System Architecture [6] . . . . . . . . . . . . . . . . . . . . . 25
3.3 Correlation between jerk, acceleration, velocity and position [7] . . . . . . . . . . . 29
3.4 Linear seafloor approximation using DVL [7] . . . . . . . . . . . . . . . . . . . . . 30
3.5 Illustration of the closes distance between an obstacle and any path segment . . . 33
3.6 Illustration of the Change of Heading in the xy-plane . . . . . . . . . . . . . . . . . 34
3.7 Illustration of Objective Function Evaluating Placement of Waypoint z-coordinates 35
3.8 Illustration of Terminal Phase of the Docking Operation . . . . . . . . . . . . . . . 36

4.1 Graphical explanation of non-dominated sorting . . . . . . . . . . . . . . . . . . . . 40
4.2 Crowding distance calculation with two objective functions, f1 and f2 . . . . . . . 42
4.3 Selection in the i-th iteration of NSGA-II[8] . . . . . . . . . . . . . . . . . . . . . . 43
4.4 SBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Flowchart of the NSGA-II based path planner . . . . . . . . . . . . . . . . . . . . . 49
5.2 Frigg VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Njord VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Verdandi VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Autonomy window with optimal path planning capabilities . . . . . . . . . . . . . 53
5.6 Zoomed path planning module graphical user interface . . . . . . . . . . . . . . . . 53

6.1 Selected path depicted in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Selected path in the NE-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Selected path in the ED-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 3D plot of objective function values in the final population . . . . . . . . . . . . . . 61
6.5 2D plot of objective function values O1 versus 02 in the final population . . . . . . 61
6.6 2D plot of objective function values O1 versus 03 in the final population . . . . . . 62
6.7 2D plot of objective function values O2 versus 03 in the final population . . . . . . 62
6.8 Selected path from four-objective optimal path planner . . . . . . . . . . . . . . . 64
6.9 Selected path in the NE-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.10 Selected path in the ED-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.11 3D plot of objective function values O1, O2, O3 in the final population . . . . . . . 66
6.12 3D plot of objective function values O1, O2, O4 in the final population . . . . . . . 66
6.13 3D plot of objective function values O1, O3, O4 in the final population . . . . . . . 67
6.14 3D plot of objective function values O2, O3, O4 in the final population . . . . . . . 67
6.15 3D plot of the selectedpath for simulations in the integrated system . . . . . . . . 69
6.16 Selected path projected in the NE-plane . . . . . . . . . . . . . . . . . . . . . . . . 69

xv



6.17 Selected path projected in the ED-plane . . . . . . . . . . . . . . . . . . . . . . . . 70
6.18 3D ROV trajectory in auto-depth mode . . . . . . . . . . . . . . . . . . . . . . . . 71
6.19 2D ROV trajectory in the NE-plane in auto-depth mode . . . . . . . . . . . . . . . 72
6.20 Time evolution of NED-coordinates in auto-depth mode . . . . . . . . . . . . . . . 73
6.21 Time evolution of thruster %-rpm in auto-depth mode . . . . . . . . . . . . . . . . 74
6.22 Time evolution of ROV altitude in auto-depth mode . . . . . . . . . . . . . . . . . 74
6.23 3D ROV trajectory in auto-altitude mode . . . . . . . . . . . . . . . . . . . . . . . 75
6.24 2D ROV trajectory in the NE-plane in auto-altitude mode . . . . . . . . . . . . . . 76
6.25 Time evolution of NED-coordinates in auto-altitude mode . . . . . . . . . . . . . . 77
6.26 Time evolution of thruster %-rpm in auto-altitude mode . . . . . . . . . . . . . . . 78
6.27 Time evolution of ROV altitude in auto-altitude mode . . . . . . . . . . . . . . . . 78
6.28 3D plot of generated path for extended case . . . . . . . . . . . . . . . . . . . . . . 80
6.29 3D ROV trajectory in the extended case . . . . . . . . . . . . . . . . . . . . . . . . 81
6.30 3D ROV trajectory in the extended case . . . . . . . . . . . . . . . . . . . . . . . . 81
6.31 Time-evolution of ROV altitude in the extended case . . . . . . . . . . . . . . . . . 82
6.32 DVL measurements and estimates from extended case simulation . . . . . . . . . . 82

xvi



List of Tables

1.1 Optimal Travel Time Comparison [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Comparison of Optimization Algorithms for Path Planning [9], [3] . . . . . . . . . 13

2.1 SNAME 1950 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Available measurements based on sensors . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 User defined path planning parameters . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 NSGA-II user defined parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 NSGA-II parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 General path planning problem parameters . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Additional path planning problem parameters . . . . . . . . . . . . . . . . . . . . . 58
6.4 Path selector parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Properties of the selected path (Pselected), M = 3 . . . . . . . . . . . . . . . . . . . 60
6.6 Final population, P , numeric properties, M = 3 . . . . . . . . . . . . . . . . . . . . 63
6.7 Additional path planning problem parameters . . . . . . . . . . . . . . . . . . . . . 63
6.8 Path selector parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.9 Properties of the selected path, Pselected, M = 4 . . . . . . . . . . . . . . . . . . . . 65
6.10 Final population, P , numeric properties, M = 4 . . . . . . . . . . . . . . . . . . . . 68
6.11 General path planning problem parameters for the integrated system . . . . . . . . 68
6.12 Properties of the selected path, Pselected, auto-altitude mode . . . . . . . . . . . . . 70
6.13 Waypoints of Pselected for the integrated system . . . . . . . . . . . . . . . . . . . . 70
6.14 Additional auto-altitude path planning problem parameters . . . . . . . . . . . . . 75
6.15 Verdandi seafloorcoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.16 Path planning problem parameters for extended case . . . . . . . . . . . . . . . . . 79
6.17 Properties of the selected path, Pselected, M = 4 . . . . . . . . . . . . . . . . . . . . 80
6.18 Waypoints of Pselected for the extended case . . . . . . . . . . . . . . . . . . . . . . 80

7.1 Comparison path planners in sections 6.1.1 and 6.1.2 . . . . . . . . . . . . . . . . . 86

xvii



xviii



Abbreviations

AOI Area of Interest

APF Artificial Potential Field

APS Acoustic Positioning System

AROV Autonomous Remotely Operated Vehicle

AUR-lab Applied Underwater Robotics Laboratory

AUV Autonomous Underwater Vehicle

CNN Convolutional Neural Network

COB Center of Buoyancy

COG Center of Gravity

cRIO Compact Reconfigurable Inputs and Outputs

DOF Degree of Freedom

DP Dynamic Positioning

DVL Doppler Velocity Logger

EA Evolutionary Algorithm

EKF Extended Kalman Filter

FM Fast Marching

FPGA Field-Programmable Gate Array

GA Genetic Algorithm

GUI Graphical User Interface

HIL Hardware-in-the-Loop

ILOS Integral Line-of-Sight

IMR Inspection, Maintenance and Repair

IMU Inertial Measurement Unit

IO Input-Output

xix



LSM Level Set Methods

MOGA Multi-Objective Genetic Algorithm

NED North-East-Down

NP-hard Non-Deterministic Polynomial-Time Hard

NSGA-II Non-Dominated Sorting Genetic Algorithm

NTNU Norwegian University of Science and Technology

PAES Pareto-Achieved Evolution Strategy

PID Proportional-Integral-Derivative

PNO Passive Nonlinear Observer

PSO Particle Swarm Optimization

QPSO Quantum-behaved Particle Swarm Optimization

ROV Remotely Operated Vehicle

RRT Rapidly-exploring Random Trees

SBX Simulated Binary Crossover

SLAM Simultaneous Localization and Mapping

SNAME Society of Naval Architecture and Marine Engineering

SPEA Strength-Pareto Evolutionary Algorithm

SRG Speed-Regulated Guidance

SSBL Super Short Base Line

TCP Transmission Control Protocol

UDP User Datagram Protocol

UHI Underwater Hyperspectral Imaging

UUV Unnmanned Underwater Vehicles

VI Virtual Instrument

xx



Chapter 1

Introduction

This thesis covers enabling the remotely operated vehicle (ROV) Minerva 2 to perform autonomous
docking missions. Considering the research area of path planning key to obtain persistent autonomy
[9], the research hypothesis upon which this thesis is based concerns the path planner. Furthermore,
the research hypothesis states that the non-dominated sorting genetic algorithm, NSGA-II, will
render a high-performance optimal path planner enabling Minerva 2 to take on autonomous docking
missions. The work includes the development of an optimal path planner based on NSGA-II,
which is a multi-objective evolutionary algorithm. The path planner is applied to the optimal
path planning problem for autonomous underwater docking missions. Additionally, an integrated
system is obtained implementing the path planner in the control system of Minerva 2, enabling
the ROV to perform autonomous underwater docking missions.

1.1 Background

1.1.1 Remotely Operated Vehicles (ROVs)

In the industry, some underwater operations that utilize remotely operated vehicles (ROVs) are
intervention, maintenance, and repair (IMR) operations, seabed mapping, inspection, military, and
research-related tasks, etc. ROV operations today are highly dependent on a mother-ship with
dynamic positioning (DP) capabilities. The ROV is tethered to the mother-ship, and a skilled
human operator is required to achieve accuracy and efficiency during operation.

ROVs are a subclass of unmanned underwater vehicles (UUVs). [10] gives a review of the ROV
subclass of UUVs and distinguishes between the different types of ROVs by the task at hand for the
ROV to perform. ROVs are tethered vehicles, with a physical link. i.e. the umbilical, supporting
the vehicle from the surface with unlimited power, thus the possibility to carry out operations of
infinitely long duration, as well as online communication. The tether reduces the ROVs level of
autonomy and is of course subject to forces perturbing the vehicle. Nevertheless, ROVs have great
capabilities in underwater operations due to their access to power, robotic manipulator arms, high
payload capacity in terms of equipment and DP capabilities. According to [11] ROVs are further
divided into the following three subclasses depending on their purpose:

1. Pure Observation Class

2. Observation Class

3. Work Class

1
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ROV Minerva 2

This thesis is based on the ROV Minerva 2, illustrated in Figure 1.1. Minerva 2 is the latest asset
of the NTNU research center for underwater robotics, Applied Underwater Robotics Laboratory
(AUR-lab) [12] .

Figure 1.1: Illustration of the ROV Minerva 2

The AUR-lab has previously owned/owns ROVs such as the ROV Minerva and the ROV 30k,
thus some contributions covering ROV control systems are already available. These contributions
apply to the ROV Minerva 2, and thus, relevant contributions are addressed in section 1.5.1 in a
literature review manner.

1.1.2 Autonomy

This section aims to clarify the meaning of the expression autonomy in underwater operations.
The term autonomy says something about to what extent an intelligent system can deliberate
and manage unexpected events in complex environments with the use of integrated mathematical
models, data from sensors, instruments and optimization algorithms in real-time [1]. For such
systems, there exist several definitions of autonomy levels, describing to what extent the system is
autonomous. One of these definitions given in [13], suggests dividing autonomy into four levels:

1. Manual Operation

• The vehicle is controlled directly by a human operator.

2. Management by Concept

• The system automatically recommends actions for selected functions, prompted by the
operator for decision-making.

3. Management by Exception

• The system automatically executes mission-related functions.

• The human operator may override or alter parameters and cancel or redirect actions,
acting as a supervisor.

4. Fully Autonomous

• The system automatically executes mission-related functions.

2
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• The operator is only alerted to function progress.

Todays ROV operations are mostly in levels 1 and 2. However future ROV operations will likely
cover levels 3 and 4. From a development point of view, as suggested in [14], it is beneficial to keep
a human supervisor in the loop, i.e., autonomy level 3.

1.2 Motivation

The motivation behind this thesis is to increase the level of autonomy for ROV underwater op-
erations, focusing on underwater docking operations. It is believed that increasing the level of
autonomy in such operations will be beneficial, in terms of making ROVs less dependent of human
operators, and thus, saving cost, increase accuracy and efficiency while maintaining safety. Overall,
it can be claimed that this is a step to make underwater operations more streamlined.

When ROVs first were commercially introduced, the ability to operate at depths outside of the
range of human divers did arise. ROVs have unique capabilities when it comes to IMR-operations
compared to other classes of UUVs, due to their high payload capacity and unlimited power access.
Thus, ROVs are capable of performing some of the most complex underwater operations. In the
future, by increasing the level of autonomy of ROV operations, the dependence of a mother-ship
could be decreased. Additionally, a higher level of autonomy is likely to contribute to lower reliance
on human intervention. Thus, increasing the level of autonomy in ROV operations could lead to
significant cost reductions. With the vast amount of subsea wells on the Norwegian Continental
Shelf, the need of IMR-operations in the oil and gas industry alone in the future can be assumed
to be significant.

Furthermore, [14] examines the possibility of achieving commercially available autonomous under-
water vehicles (AUVs) with intervention capabilities. This article suggests that it is beneficial to
keep the human in the loop as a supervisor and that fully autonomous intervention vehicles are
more applicable for inspection-related operations. Some research has been done in the field of dock-
ing of AUVs, for instance in [15]. Some of this research could apply to ROVs. Thus, autonomous
underwater docking technology is not new, however, it is first now that the ability to utilize it
commercially has arisen. In that sense, applying advanced control architectures to ROVs could
render autonomous ROVs (AROV), with the capability of performing mission-related functions
autonomously [2]. Likely, such advanced control architectures will render ROV operations even
better accuracy and efficiency compared to what is achievable by skilled human operators.

By further development of ROVs in terms of autonomous capabilities, it is believable that such vehi-
cles can play a role in integrated autonomous underwater operations [1]. The vision of Oceaneering
proposes an integrated solution, where the ROV is deployed by a ship with DP capabilities, in the
standard way. Then, instead of the mother-ship doing station-keeping while the IMR-operation is
performed, the ROV is tethered to a floating buoy providing communication. Due to this online
communication, the human operator can sit elsewhere, e.g., onshore and supervise the operation
[16]. On that note, the availability of 4G communication technology in the North Sea, which at the
moment is a significant region in the oil and gas industry, is excellent as all the rigs are equipped
with 4G antennas. Communication by fiber optics is another option. Of course, this would require
equipping ROVs with batteries providing the necessary power rather than supplying the ROV with
electricity through the umbilical. Also, installing battery recharging facilities on the underwater
docking stations is likely to benefit the entire repertory of underwater vehicles.

Moreover, [17] reviews the role of the ROV in future underwater operations. This paper addresses
several concepts and discusses the benefits and challenges. Through the paper, the authors conclude
that an AUV carrying a ROV within its body is the ideal solution. The AUV will be able to dock
at underwater docking stations to charge batteries and exchange data. The AUV could move to a
cite requiring IMR-operations where the ROV could be deployed and perform the operation while
tethered to the AUV. This concept will, of course, require a higher level of autonomy than the
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former.

Summing up, the applicability of ROVs to autonomous docking missions and IMR-operations are
addressed in general for overview purposes. Thus, there seems to be a market for ROVs, making
such vehicles a building block in the future repertory of underwater vehicles. Moreover, there
are several angles of looking at the problem of increasing the level of autonomy. One of those
is improving the path planner supported by [9], which claims that the performance of the path
planner is a crucial factor for achieving persistent autonomy in AUVs. Since AUVs are underwater
vehicles operating at a high level of autonomy in general, this is probably applicable to ROVs
as well, assuming an increase in their level of autonomy. Overall, this has lead to the research
hypothesis upon which this thesis is based, in short, the development of the path planner will lead
to persistent autonomy in docking operations.

1.3 Research Topic and Objectives

Overall, this thesis is based on the research hypothesis, which states that the research area of path
planning is key for achieving persistent autonomy. Furthermore, it states that solving the optimal
path planning problem by the non-dominated sorting genetic algorithm, NSGA-II, will render a
high-performance optimal path planner for autonomous docking missions of ROVs using waypoint
guidance. The origin and further exploration of this research hypothesis are based on the following
objectives:

• Conduct a literature study within the field of underwater operations, aiming to find an
interesting angle in terms of research questions for this thesis.

• Propose a mathematical model of the ROV and present relevant theory concerning guidance,
navigation, and control.

• Propose theory within mathematical modelling of ROVs, including theory within guidance,
control and navigation.

• Define the optimal path planning problem for autonomous docking missions.

• Propose optimization theory behind the non-dominated sorting genetic algorithm, NSGA-II,
and develop an optimal path planner able to take on autonomous docking missions for the
ROV Minerva 2 based on this algorithm.

• Examine the performance of the path planner as a stand-alone application.

• Implement the NSGA-II based optimal path planner into the control system of the ROV
Minerva 2 in order to obtain an integrated system with the capabilities to take on autonomous
docking missions.

• Examine the performance of the integrated system performing autonomous docking missions
in simulations.

1.4 Scope and Limitations

This scope of this thesis is examining the optimal path planning problem applied to autonomous
docking missions of the ROV Minerva 2. A comprehensive literature survey is carried out, narrow-
ing in on optimization techniques used in path planning. The thesis covers the development of an
optimal path planning algorithm based on the non-dominated sorting genetic algorithm, NSGA-II
as well as the implementation of this path planner into the control system of ROV Minerva 2. The
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path planner is implemented as a part of the autonomy module in the control system, enabling
Minerva 2 to take on autonomous docking missions. The NSGA-II path planner is developed us-
ing Matlab and later implemented into the control system. The performance of the path planner
as a stand-alone application and the performance of the integrated system are examined. Due
to technical difficulties with Minerva 2 and the mother-ship of Minerva 2, RV Gunnerus, the re-
sults obtained during the work with this thesis is solely based on simulation results. According
to the plan outlined beforehand, experimental results should be obtained in terms of field trials.
Unfortunately, field trials have not been possible to conduct.

This thesis presents a comprehensive overview of the different aspects of the control system of
Minerva 2 relevant for autonomous docking missions, in terms of mathematical modelling and
theory within guidance, navigation, and control. These are essential components when examining
the overall performance during docking missions. However, settings concerning these components
of the control system are addressed, but changes are not proposed during the work with this thesis,
as it emphasizes the path planning module.

Preliminary to the master’s thesis, the work with the project thesis during the fall of 2018 acts as a
base. The project thesis focused on getting an overview of the Minerva 2 control system, in terms
of literature study and performing simple simulations of the ROV in the control system without
significant changes. During this literature study, the objective has been to obtain interesting
research topics. Thus, the literature review in Section 1.5.1 and the theory presented in Chapter
2 and Sections 3.1.1, 3.3, 3.4 and 3.5 is quite similar to what is presented in the project thesis.
Still, this master’s thesis presents a more extensive work both in terms of literature review and
presentation of theory compared to the project thesis.

1.5 Literature Review

1.5.1 ROV Control System Development

In cooperation with the AUR-lab several relevant publications origins from the Norwegian Uni-
versity of Science and Technology (NTNU) , with the ability to have hands-on experience with
ROVs, and thus, performing field trials in addition to simulations and theoretical work. Relevant
literature will be addressed, where the goal is to give an overview of the development of the ROV
motion control system. The doctoral thesis [7] presents the governing mathematical models for the
vessel dynamics of the ROV for an automatic motion control system and focuses on underwater
navigation and guidance. Challenges in navigation are solved by a control architecture combining
model-based state estimation with sensor-based state estimation. That is, combining an extended
Kalman filter with a sensor-based attitude-observer. The proposed sensor-based state estimation
utilizes sensors such as inertial measurement unit (IMU) and Doppler velocity log (DVL). Within
the guidance topic, automated tasks such as trajectory tracking and terrain following are exam-
ined. Constant jerk reference models are introduced for A to B moves, to reduce pilot-induced
oscillations. Terrain following is enhanced by seafloor geometry approximation based on the DVL
combined with a guidance law relating the desired depth to the corresponding reference altitude.

The motion control system from [7] is extended in the doctoral thesis [18] focusing on path gener-
ation. The implementation of reference models rendering smooth references in position, velocity,
and acceleration for target tracking and DP capabilities is proven to enhance the motion accuracy
of the control system. A trust allocation algorithm and alternatives to the controller and observer
are provided. On that note, the development of ROV DP capabilities is addressed in many pub-
lications. In [1], the development of DP and tracking system is examined, in an experimental
approach. In [19] field tests are carried out to compare different observers. Namely, the compared
observers are linear Kalman filter, extended Kalman filter, adaptive Kalman filter, and passive
nonlinear observer (PNO) , based on performance in DP operations.

5



Chapter 1. Introduction

The doctoral thesis [10] is written based on the motivation of increasing the level of autonomy in
marine robotics. Furthermore, [10] proposes safe path planning and re-planning systems using a
Voronoi diagram for obstacle avoidance and Dubins path and Fermat spirals for path smoothing. A
signal processing module is developed and implemented to increase the accuracy of ROV operations.
The utilization of seabed mapping, the importance of Human-Machine Interface, and the usage of
cameras in underwater operations are also pointed out.

Challenges in underwater operations with an increasing level of autonomy, such as improving un-
derwater navigation, are crucial to achieving accuracy and efficiency in such operations. Moreover,
[20] addresses challenges in underwater navigation, proposing a technique for increasing the ac-
curacy of acoustic navigation. Furthermore, [21] offers a broader overview of challenges, not only
concerning DP operations but also more complex autonomous underwater operations. The mo-
tivation behind this paper is the arguably increasing need for underwater IMR-operations and
the possibilities of streamlining such operations by increasing the level of autonomy. It addresses
research topics such as localization, guidance, and path planning.

Next, [22] is another publication addressing the DP capabilities for ROV based on experimental
results. This article concludes that an underwater vehicle during transit should be oriented such
that its sensors are located orthogonal to the seafloor to achieve reliable sensor measurements.
This finding is a vital take-home message when it comes to ocean mapping and monitoring.

The ROV motion control system is further developed in the doctoral thesis [6] based on ocean
mapping and monitoring, in terms of obtaining the desired quantity of data with desired quality.
The thesis proposes a control strategy with capabilities of maintaining an ROV at a constant
distance from an area of interest (AOI) , using a DVL. By pointing the cameras mounted on
the ROV as well as the DVL directed towards the AOI, field tests showed that this strategy
enhanced the ROV motion control system with the capability of obtaining high-quality datasets of
the AOI. This enhancement is promising to retrieve data from distant and dangerous environments
requiring significant human operator endurance. Significant enhancements to achieve a genuinely
autonomous system are also addressed, enabling the system to deliberate and make decisions. The
use of underwater hyperspectral imaging (UHI) in computer analysis and online classification of
objects of interest is demonstrated to perform autonomous mapping operations from surface launch
to AOI using autonomy control architecture.
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Figure 1.2: Control Architecture Layers [1]

Moreover, [1] proposes an advanced control architecture, divided into multiple layers. The control
architecture depicted in Figure 1.2 is designed in a bottom-up manner, traditionally divided into
three layers. The top layer, mission planning layer, takes the mission objectives as input and
performs mission planning. The top layer provides the next layer, guidance, and optimization,
with input enabling it to generate reference signals based on waypoint management and collision
avoidance, etc. The reference signals are given as input to the bottom layer, the control execution
layer, which computes the control signals. The control architecture is augmented by an autonomy
layer, which can give input to all levels of control in the traditional architecture. The end goal is
obtaining a system able to deliberate, learn, plan, and re-plan. This system can act autonomously,
to streamline underwater operations in terms of saving costs and reducing the dependence of human
operators and hence maintain safety.

Furthermore, [2] proposes such an autonomy layer. The goal is to obtain a semi-autonomous ROV
with the ability to perform certain subsea operations autonomously, based on a hybrid control
architecture combining a deliberative layer and a reactive layer. Subsea operations are generalized
from the launch of the ROV at the surface to the approach of a SOI on the seabed.
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Figure 1.3: Generalization of an Autonomous Subsea Operation [2]

The deliberative layer handles the overall mission planning necessary to get the ROV from the
surface to the SOI and is divided into six steps, namely launch, descent, transit, sonar tracking,
camera tracking, and inspection/intervention, as shown in Figure 1.3. In general, the reactive layer
concerns situations that occur when the vehicle is exposed to unexpected situations, in [2] focusing
on collision/obstacle avoidance using computer vision. This increased level of autonomy in the
control system enhanced the ROV with autonomous steering abilities, and promising results were
obtained both from simulations and field trials.

In underwater robotics, computer vision typically utilizes sonars and camera to give the system
understanding of the operating environment. In the master’s thesis [23], computer vision based
collision avoidance for ROV is addressed, utilizing cameras. The ROV control system is enhanced
with the capability of identifying obstacles based on the analysis of input from cameras. Field
trials are carried out with the presence of obstacles, and the ROV is able to exit path based on
the processing of camera-data successfully.

Moreover, [24] addresses the application of computer vision in underwater robotics. The publication
states how IMR-operations can benefit from the vast research within the field of computer vision.
The objectives of [24] are to propose a system that allows an ROV to adjust its pose towards
intervention objects and locate intervention targets. Solutions to these objectives are provided
using camera-based computer vision. The former objective is solved by a close-range guidance
algorithm, while the latter by a label detection algorithm. The algorithms are tested using recorded
video. The information extraction seems satisfactory, however, there seem to be some drawbacks
with visual navigation as the stand-alone navigation method. Marine snow is addressed in a
challenge in underwater utilization of camera-based computer vision.

Furthermore, [25] proposes a visual motion estimation algorithm for Minerva 2. The stereo camera
on the ROV renders 3D images, enabling visual motion estimation based on feature extraction from
photography. Interconnecting the visual motion estimation capabilities with the already existing
state estimation capabilities from a Kalman Filter, as given in [7], the goal is to improve the overall
ROV motion control system. In [25], Simultaneous Localization and Mapping (SLAM) is addressed
as an exciting research topic for further enhancement of the ROV motion control system.

Along with the introduction of the ROV Minerva 2, the motion control system needed further
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development. The new ROV can exercise quite large amounts of propulsion power. The assumption
that ROVs are considered passively stable in roll and pitch, such that these degrees of freedom
(DOFs) could be disregarded in the control design does not longer hold for Minerva 2, in contrast to
previous ROVs owned by the AUR-lab. Thus, the motion control system developed up to this point
consider only 4 DOFs, namely surge, sway, heave, and yaw. However, in [26] the motion control
system is augmented to consider all 6 DOFs, meaning that the controller is expanded to account for
roll and pitch motion. This augmentation also required a new thrust allocation algorithm, which
is provided in the thesis, solving the thrust allocation problem as an optimization problem. [26]
also pays attention to system identification and determination of the hydrodynamic coefficients of
the ROV Minerva 2 using both analytic and experimental methodology.

1.5.2 Strategies for Homing/Docking Applied for AUVs

Docking is the last sequence of an underwater operation and is a maneuver where an underwater
vehicle docks into an underwater structure. Homing is a maneuver leading to the docking operation
and can, therefore, be seen as a necessary step to consider when doing underwater docking as the
overall underwater operation. When referring to underwater docking, the operation in mind is
often the entire operation from the initial position of the vehicle until the vehicle is parked in an
underwater structure. As this thesis focuses on enabling ROVs to perform autonomous docking
and the previous work done within such docking operations for ROVs is limited, a literature study
is carried out to establish knowledge on docking of AUVs. The reason is that some of the work
within docking missions of AUVs probably can be applied to docking of ROVs.

Moreover, [15] addresses docking missions for AUV. It focuses on most aspects of a planned mission
that is the underwater docking operation. A typical layout of an underwater docking system is
given. The docking problem is defined for the appropriate application, with a known initial position
of the AUV and a known position of the docking station. Path following utilizing lookahead based
steering is chosen as the preferred guidance algorithm of getting to the docking station, and thus,
a path is generated. Some attention is also paid to control design in terms of designing a suitable
autopilot controller. Performance is verified by simulation, in two cases, one where the docking
station is stationary, and one where the docking station is moved by a step after the mission is
initiated such that the AUV has to re-plan its trajectory towards the docking station.

Furthermore, [27] is a NTNU doctoral thesis on path-planning, guidance, and navigation for dock-
ing of underactuated AUVs in the presence of current. In contrast to AUVs which are underac-
tuated, as they cannot control sway velocity, ROVs are fully actuated and thus controlled in 4-6
DOFs. Due to this, AUVs have to transit with some compensation crab angle when operating in
environments with cross-current. ROVs, on the other hand, are fully- or over-actuated. Therefore
ROVs can control their sway velocity when subject to current. Thus, AUVs can mainly transit
forward, while ROVs are more maneuverable, enabling more options in terms of guidance algo-
rithms for the ROV. Next, [27] lists the benefits of developing underwater docking capabilities,
such as charging of batteries, data exchange, development of a subsea structure residence increas-
ing underwater operation efficiency. However, challenges within communication and navigation are
listed. This can be generalized to concern ROV operations as well. A hybrid guidance law combin-
ing integral line-of-sight (ILOS) and speed-regulated guidance (SRG) laws are proposed enabling
to dock with zero crab angle in environments with cross-current. A path-planning algorithm is
enabling an underactuated AUV to plan its transit with a limited field of view using logarithmic
spirals. The thesis also proposes a convolutional neural network (CNN) based machine learning
algorithm enabling the AUV to detect the docking station.
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1.5.3 Optimization Techniques for Path Planning

There is not a vast amount of publications on optimal path planning for ROVs, however, there is
significantly more on adjacent fields such as AUVs and UAVs. The reason being that vehicles with
a higher level of autonomy, such as AUVs and UAVs, are more dependent on the performance of the
path planner than ROVs, which commonly are controlled by a pilot. However, while increasing
the level of autonomy for ROVs, the performance of the path planner becomes more crucial,
making optimal path planning an exciting research topic. This Section contains reviews of some
publications on optimal path planning.

Surveys on path planning for AUVs are carried out in [9] and [3], which states that path planning
is a crucial component to improve persistent autonomy for AUVs. These articles present a review
of research works focusing on technology areas such as path optimization for AUVs. Furthermore,
brief walk-throughs of several optimization techniques are given and assumptions, benefits, and
drawbacks are addressed.

Firstly, [9] and [3] address a category of graph search methods. This category concerns discrete
optimal path planning algorithms, such as Dijkstra, A*, Field D* and Theta*. These algorithms
require knowledge about the search space, represented by a grip-shape graph wherein the edges
are labeled with a cost of traveling from a vertex to one of its neighbors. Dijkstra’s algorithm is
able to obtain paths based on minimum cost, as it computes every possible path assuming a known
starting point and destination point. A* is proven to be a more effective algorithm within this
category, due to its heuristic searching ability providing an estimate of the cost of the best path
that passes through a particular node. Along with the cost leading up to a particular node, this
enables the algorithm to determine which node it must visit next.

According to [9] and [3], graph search methods are in general criticized for unnaturally constraining
the motion of the vehicle to limited directions due to their discrete state transitions. Modified vari-
ants of A*, such as Field D* and Theta*, are developed to overcome this drawback. Furthermore,
algorithms within this category are still not able to overcome the challenge that they are compu-
tationally expensive for high dimensional problems. As for the A* algorithm, better performance
in terms of path smoothness can be achieved with a higher resolution grid. However, this results
in the A* algorithm coming off significantly worse in terms of computational cost.

The second category of optimization techniques addressed in [9] and [3] consists of the Fast March-
ing (FM) algorithm and the Level Set Methods (LSM). The FM algorithm can be regarded as a
continuous version of Dijkstra’s algorithm and uses a first-order numerical approximation of the
Eikonal equation. To overcome drawbacks concerning lack of efficiency with the FM algorithm
there exists an expanded version, known as FM*, which is heuristically guided to maintain the
accuracy of FM and the efficiency of A*. However, FM* is limited as it uses a linear anisotropic
cost function to improve computational efficiency. The LSM generates the time-optimal path by
solving a particle tracking equation backward in time after it evolves a front from the vehicles
start point until it reaches the destination point. Thus, the LSM is a more general algorithm
than FM. Next, [9] and [3] addresses yet another improvement of the FM* algorithm, namely an
improvement using wavefront expansion to calculate the shortest time paths. Summing up this
category, the articles state that the LSM can be used for more complex problems while the FM*
using wavefront expansion requires less computational time.

Moreover, [9] and [3] address the artificial potential field (APF) for global path planning, an
algorithm used in robotics and underwater path planning. In this context, path planning is done
by introducing an artificial potential field on the obstacles in the environment, preventing vehicles
of getting close to them, and thus, generating safe paths. APF is a computationally inexpensive
method, however, prone to producing locally optimal solutions.

Furthermore, [9] and [3] address Rapidly-exploring Random Trees (RRT) as an algorithm to solve
the path planning problem. The key idea behind RRT is a tree that is incrementally growing to
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explore the search space until the tree branches reach the destination point. As a result of this,
RRT is more likely to find feasible paths that are not necessarily optimal. On the other hand,
RRT is effective on high dimensional problems. The RRT* algorithm is a modified version of the
RRT algorithm, aiming to improve the algorithm even more by reducing the required memory for
storing the tree. The idea is that the tree grows to a predefined number of nodes, then a weak
node is removed whenever a high-performance node is added.

Lastly, [9] and [3] addresses the category of evolutionary algorithms (EAs). This category consists
of algorithms such as different versions of genetic algorithms (GAs) and particle swarm optimiza-
tion (PSO). EAs are population-based search schemes utilizing information sharing among the
population members to enhance the search process following deterministic and/or probabilistic
rules. However, there are some differences between GAs and PSO. For instance, GAs incorporate
survival of the fittest, while in PSO all particles retain through the course of the run. Furthermore,
PSO does not utilize the standard evolutionary operators, such as crossover and mutation, as GAs
do. In the PSO algorithm, each particle adjusts its course through the search space based on its own
searching experience as well as the searching experience of other particles. The quantum-behaved
particle swarm optimization (QPSO) is considered an improved version of the conventional PSO.
Whereas the conventional PSO algorithm uses position and velocity update for every particle,
QPSO assumes that each particle has quantum behaviour. Summing up, EAs are considered well
suited to large-scale optimization problems, which path planning problems often are.

Furthermore, the general path planning problem with bounded velocities and multiple obstacles
is non-deterministic polynomial-time hard (NP-hard) [28], and thus, can be computationally ex-
pensive. EA based optimization techniques have been proven to be an effective way of dealing
with such NP-hard problems. Moreover, due to their population-based characteristics, EAs can be
implemented on parallel machines to achieve super-linear speed-up with the number of processors.
On the other hand, a drawback with EAs is that they may converge to sub-optimal solutions within
finite-time[9],[3].

In addition to the comprehensive survey on optimization techniques, [3] also provides case studies
on path planners utilizing different optimization techniques and a novel QPSO based path planner.
Performance evaluation of these path planners is carried out through simulations in two different
mission scenarios. The simulation environment is a current field with an area of 252 km2 with a
grid resolution of 1 km2. The current field in question is two dimensional, thus constant in the z-
direction. However, the path planning problem is still three dimensional. The first scenario has no
obstacles, while the latter has static obstacles with fixed size and known positions. The objective
of the path planning problem is to obtain the path with the least time usage, with a constant
water-reference speed in an environment with current, while maintaining collision avoidance. The
starting point and the destination point are known, and the path planners in question are based
on the optimization techniques A*, RRT and RRT*, GA, PSO, and QPSO. Next, [3] provides
comparison among the path planners. Also, they are compared by Monte-Carlo simulations on a
100-runs basis for both scenarios yielding the mean and the standard deviation of the cost value.
Figure 1.4 presents graphical results from some of the case studies in [3] given from the scenario
with obstacles. Figure 1.4a represent results obtained by an A* based path planner, Figure 1.4b
represents results obtained by a RRT* based path planner and Figure 1.4c represents results
obtained by path planners based on the EAs, namely PSO, QPSO, and GA.
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(a) A* based path planner (b) RRT* based path planner

(c) QPSO, PSO and GA based path planners

Figure 1.4: Case study results in static current environment with obstacles, illustrations by [3]

The common objective of the case studies is to obtain the time-optimal trajectory. Thus, Table 1.1
presents the optimal travel time obtained using the different optimization technique based path
planners for the case studies in[3].

Table 1.1: Optimal Travel Time Comparison [3]

Path Planner Travel Time [s] Travel Time [s]
Optimization Algorithm Without Obstacles With obstacles

A* 8 343 9 143
RRT 8 976 10 9069
RRT* 7 461 9 939
GA 7 492 8 671
PSO 7 729 8 292

QPSO 7 519 8 479

Firstly, [9] and [3] comments that all path planners generate feasible path following what is expected
in the survey as mentioned above. From the statistical results from the Monte Carlo simulations
and the data in Table 1.1, it is concluded that the GA, PSO, and QPSO based path planners
outperform the A*, RRT and RRT* based path planners in such a static current field environment
with static obstacles.
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Table 1.2: Comparison of Optimization Algorithms for Path Planning [9], [3]

Category Algorithms Comments
Graph Dijkstra Discrete state transitions
search A* Computationally expensive for high-dimensional problems

schemes Field D* Discrete state transitions limits directional changes
Theta*

FM/FM* Computationally expensive for high-dimensional problems
LSM
APF Computationally inexpensive

Susceptible to locally optimal solutions
RRT Fast and effective
RRT* Generates feasible solutions that not necessarily are optimal

Generated paths may require further refinement
EAs GA Suitable for handling NP-hard problems

PSO May converge to suboptimal solutions in finite time
QPSO

Overall, there are several concluding remarks made on path planning for AUV in [9] and [3].
Table 1.2 is intended to summarize some properties of the different path planers. Firstly, path
planning problems are often large scale optimization problems. No matter the chosen algorithm,
the computational requirement grows exponentially for solving high dimensional problems. Due to
this fact, many path planners project the three-dimensional problem into two dimensions. It is also
pointed out that such two-dimensional problems do not completely embody the three-dimensional
information of the ocean environment, especially regarding currents which are important in AUV
operations due to their maneuverability. Thus, the conclusion that EAs are beneficial for path
planning problems. The different optimization algorithms have both benefits and drawbacks, and
[9] and [3] underlines the difficulty of comparing and reviewing different optimal path planners.
Also, it is mention that most of the research in path planning for AUVs is based on simulation and
that experience based on real-life field trials is lacking. Lastly, it is suggested that path planning
still is an incomplete research field and that the lack of performance metrics poses a challenge
when it comes to comparing path planners based on different optimization techniques. It is also
stated that there is a gap between online and offline path planning and path planners with online
re-planning capabilities would benefit from an increase in available computational power. On that
note, [29] proposes an interesting three-dimensional collision avoidance algorithm for AUVs, which
poses as a component in path planners in complex environments.

The articles [9] and [3] treats the category of GAs altogether as a whole, yet, there exists a wide
range of genetic algorithms. These algorithms are, as mentioned, population-based algorithms
applying survival of the fittest and genetic operators such as crossover and mutation. Of course,
the performance also tends to vary between the different GAs, also depending on the application.
Moreover, [8] proposes a fast and elitist multi-objective genetic algorithm (MOGA), the non-
dominated sorting genetic algorithm (NSGA-II). Multiple objectives in optimization problems give
rise to a set of optimal solutions, called Pareto-optimal solutions. That is, solutions which according
to evolutionary heuristic are equally good. It is desirable for a MOGA to generate as many Pareto-
optimal solutions as possible to ensure diversity among the solutions. Furthermore, [30] suggests
that the path to be followed by a vehicle using a MOEA based path planner should be selected, from
the Pareto-optimal set, according to expert preference. Besides, [31] proposes an AUV NSGA-II
based path planner showing promising results.

Moreover, [8] shows that that NSGA-II overcomes criticism towards the previous iteration of the
algorithm, namely NSGA. The challenges that are solved in the proposed algorithm are lowering
the computational complexity, ensuring elitism, and reducing the need for user input. In this
article, case studies are carried out on difficult test problems in the literature, and NSGA-II is
shown to outperform MOGAs such as the Pareto-achieved evolution strategy (PAES) and the
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strength-Pareto Evolutionary Algorithm (SPEA). Thus, making NSGA-II a superior GA.

1.6 Structure of Thesis

This Section addresses the structure of this master’s thesis. The structure is outlined according to
the objectives given in Section 1.3:

Chapter 1 presents a literature review in Section 1.5 aiming to provide an overview of the ROV
Minerva 2 control system and at the same time obtaining exciting research questions.

Chapter 2 presents the theory behind the mathematical modelling of ROVs.

Chapter 3 aims to provide an overview of the control system for the ROV Minerva 2, giving
some modules of the control system more attention than others. More explicitly, modules that
are important when developing an optimal path planner for autonomous docking and simulating
it in an integrated system are the acoustic navigation specifications, given in Section 3.1.1, the
controller, given in Section 3.3, the observer, given in Section 3.4, the guidance module, given in
Section 3.5 and the optimal path planning problem given in Section 3.7. A summary of the optimal
path planning problem for autonomous docking missions follows in Section 3.7.7.

Chapter 4 presents the theory required to apply NSGA-II to optimization problems, focusing
on all operators necessary to solve such problems. The user-defined parameters of NSGA-II are
summed up in Section 4.1.7.

Chapter 5 presents the development of the path planner and the integration of the path planner
into the control system. Section 5.1 covers the development of the NSGA-II based optimal path
planner in accordance with Section 3.7.7 and Chapter 4. Background on the existing control system
for Minerva 2 is given in Sections 5.2-5.5, based on the theory given throughout Chapter 2 and 3.
Lastly, Section 5.6 covers the implementation of the NSGA-II based path planner into the control
system, forming the integrated system.

Chapter 6 presents the results obtained during the work with this thesis. Section 6.1 presents
results based on the NSGA-II based optimal path planner as a stand-alone application. Sections
6.2 and 6.3 presents results from autonomous docking scenarios simulated by the integrated system.

Chapter 7 presents the discussion of the results presented in Chapter 6, namely, Section 7.1
corresponds to the results presented in Section 6.1 and Section 7.2 corresponds to the results
presented in Sections 6.2 and 6.3.

Chapter 8 presents concluding remarks on the NSGA-II based optimal path planner and the
integrated system and addresses topics for further work.

1.6.1 Appendices

The attached appendices in this thesis consist of the Matlab-coded NSGA-II based optimal path
planner corresponding to the method given in Chapter 5.1. The attached Matlab-code includes
a parameters.m-file, given in Appendix A2, where the parameters of the optimal path planning
problem for autonomous docking of the ROV Minerva 2 are assigned numerical values, correspond-
ing to summaries of the optimal path planning problem given in Section 3.7.7 and NSGA-II given
in Section 4.1.7.
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1.7 Thesis Contribution

This thesis proposes an optimal path planner for autonomous docking missions. The path planner
is based on the multi-objective optimization algorithm, non-dominated genetic sorting algorithm
NSGA-II, and is efficient in terms of computational complexity.

The focus of this thesis is two topics, namely, the examination of the performance of the NSGA-II
based optimal path planner as a stand-alone application and examination of the performance of
autonomous docking missions during simulations of the integrated control system of Minerva 2
including the path planner. The overall objective of this work is to increase the level of autonomy
of ROV operations, as it is believed to streamline IMR-operations in terms of saving costs, increase
efficiency while maintaining safety. Enabling ROVs to perform autonomous docking missions is
regarded as a step towards a higher level of autonomy in underwater operations, as ROVs have
unique abilities in terms of payload capacity and power access.
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Chapter 2

Mathematical Modelling of ROVs

The mathematical modelling of the ROV is represented using Fossen’s Robotic-like Vectorial model
[4]. To fully state the mathematical model, a brief description of the applied kinematics and relevant
notations are given. The theory reproduced in this Chapter is based on [4].

2.1 Notation and Reference Frames

In order to describe the ROV motion in 6 DOF, the SNAME 1950 notation is used. An overview of
this notation, concerning motion due to forces/moments and resulting positions/orientations and
velocities are given in Table 2.1. The orientation is given in Euler Angles.

Table 2.1: SNAME 1950 Notation

DOF Forces/Moments Velocities Position/Euler Angles
1 translation in x-direction (surge) X u x
2 translation in y-direction (sway) Y v y
3 translation in z-direction (heave) Z w z
4 rotation about the x-axis (roll) K p φ
5 rotation about the y-axis (pitch) M q θ
6 rotation about the y-axis (yaw) N r ψ

Two reference frames are used to describe these motions:

• The North-East-Down (NED) coorinate system, {n} = (xn, yn, zn), where the axes respec-
tively are aligned with the north -, east - and down direction.

• The body-fixed (BODY) reference frame, {b} = (xb, yb, zb), where the axes respectively point
in the forward - , port-starboard and top-bottom direction of the vessel.

The NED-frame is a fixed reference frame located on the surface of the earth, rotating relative to
the center of the earth. The BODY-frame is a moving reference frame attached to the vehicle that
in question, as shown in Figure 2.1.
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Figure 2.1: The NED- and BODY-frame relative to the Earth-centered Earth-fixed (ECEF)
frame[4]

Furthermore, the notation given in (2.1a)-(2.1d) is used for the NED position and - orientation
and the BODY linear and angular velocities, respectively.

pn =
[
x y z

]T
(2.1a)

Θnb =
[
φ θ ψ

]T
(2.1b)

vb =
[
u v w

]T
(2.1c)

ωb =
[
p q r

]T
(2.1d)

The body-fixed forces, f b, and - moments, mb, are given in the force vector, τ given in (2.2).

τ =
[
f b mb

]T
=
[
X Y Z K N M

]T
(2.2)

By implementation of this notation, the next step is to state the necessary kinematics for modelling
of an ROV operating in 6 DOF.

2.2 Kinematics

The relation between position and orientation in the NED-frame and the linear and angular veloc-
ities in the BODY-frame is given in (2.3).

η̇ =

[
ṗn

Θ̇nb

]
=

[
Rn
b (Θnb) 03x3

03x3 TΘ(Θnb)

]
·
[
vb

ωb

]
= J(η)ν, (2.3)
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where η and ν are the generalized position and velocity coordinates given in (2.4a)-(2.4b).

η =
[
x y z φ θ ψ

]T
(2.4a)

ν =
[
u v w p q r

]T
(2.4b)

Moreover, the rotation matrix Rn
b (Θnb) ∈ R3x3 represents the relationship between linear velocities

in NED and BODY. This matrix is given in (2.5).

Rn
b (Θnb) = Rx,φ ·Ry,θ ·Rz,ψ, (2.5)

where

Rx,φ =

1 0 0
0 cos φ −sin φ
0 sin φ cos φ

 , Ry,θ =

 cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

 , Rz,ψ =

cos ψ −sin ψ 0
sin ψ cos ψ 0

0 0 1


(2.6)

The transformation matrix TΘ(Θnb) ∈ R3x3 represent the relationship between the angular veloc-
ities in BODY and the orientation rates in NED. This matrix is given in (2.7).

TΘ(Θnb) =

1 sin φ tan θ cos φ tan θ
0 cos φ −sin φ
0 sin φ/cos θ cos ψ/cos θ

 (2.7)

2.3 Kinetics

The 6 DOF nonlinear equation of motion for a ROV is expressed in (2.8).

MRBν̇ + CRB(ν)ν︸ ︷︷ ︸
rigid-body kinetics

+ MAν̇r + CA(νr)νr + D(νr)νr︸ ︷︷ ︸
hydrodynamic terms

+ g(η)︸︷︷︸
hydrostatic term

= τ + τ ext, (2.8)

The equation contains terms concerning rigid-body kinetics, hydrodynamics forces and moments,
and hydrostatic restoring forces and moments on the left-hand side. The right-hand side of the
equation contains external forces and control inputs. This Section contains a more detailed de-
scription of all the terms.

In (2.8), MRB ∈ R6x6 is the rigid body inertia matrix and CRB(ν) ∈ R6x6 is the Coriolis-
centripetal matrix. MA ∈ R6x6 is the added mass matrix, CA(νr) ∈ R6x6 is the added mass
Coriolis-centripetal matrix and D(νr) ∈ R6x6 is the damping matrix. The hydrodynamic terms
takes into account the relative velocity, νr, which is given in (2.9).

νr = ν − νc, (2.9)

where νc ∈ R6x1 is the velocity properties of the current acting on the ROV in the BODY-frame.
This vector is expressed in (2.10), on a generalized velocity coordinate form.
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νc =
[
uc vc wc 0 0 0

]T
(2.10)

Moreover, in (2.8) , g(η) ∈ R6x1 is a vector of gravitational/buoyancy forces and moments. On the
right-hand side of the equation, τ ∈ R6x1 is the vector of control inputs, in this case, propulsion
forces and moments. Furthermore, τ ext ∈ R6x1 is the vector of external forces acting on the
ROV. In underwater operations using ROVs, relevant external forces are, for example, forces and
moments due to the umbilical which the ROV is tethered to and forces and moments due to the
manipulator arm perturbing the ROV as might be the case if the manipulator arm is not modelled
exactly.

2.3.1 Rigid-Body Kinetics

Recall the rigid-body terms from (2.8), MRBν̇ + CRB(ν)ν, - in this subsection the rigid-body
forces and moments will be revisited with a higher level of detail.

Naturally, in the mathematical modelling it is assumed that the ROV can be considered a rigid
body, as it will not be deformed when forces and moments are acting on it. For underwater vehicles,
it is often assumed homogeneous mass distribution and xz-plane symmetry, that is, starboard-port
symmetry. Such an assumption simplifies the rigid-body inertia matrix, MRB since it implies that
some moments of inertia are equal to zero, as expressed in (2.11).

Ixy = Iyz = 0 (2.11)

By placing the origin of the BODY-frame, i.e. the body-fixed reference point CO, in the centre of
gravity in the y-direction, yg = 0, the vector rbg describes the distance from CO to the centre of
gravity (COG) in the BODY-frame as given in (2.12).

rbg =
[
xg 0 zg

]T
(2.12)

Furthermore, the mass of the ROV Minerva 2 is denoted m and the inertia matrix is denoted Ib.
The skew-symmetric matrix notation, S(rbg)m, and the rbg-vector are used when expressing the
rigid-body inertia matrix, such that it takes the form given in (2.13) [4].

MRB =

[
mI3x3 −mS(rbg)
mS(rbg) Ib

]
=


m 0 0 0 mzg −myg
0 m 0 mzg 0 mxg
0 0 m myg −mxg 0
0 mzg −myg Ix 0 −Ixz

mzg 0 mxg 0 Iy 0
myg −mxg 0 −Izx 0 Iz

 , (2.13)

where Iij is the different moments of inertia about the origin of the BODY-frame.

Moreover, when the BODY-frame is rotated relative to the NED-frame inertial forces and moments
due to this rotation need to be taken into account in the rigid-body kinetics. Recall the rigid-body
Coriolis-centripetal matrix from (2.8), CRB(ν) , which represents these forces and moments. Note
that the assumptions stated in (2.11) and (2.12) also applies here, thus CRB(ν) given in [4] reduces
to the matrix given in (2.14).
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CRB(ν) =


0 0 0 mzgr −m(xgq − w) −m(xgr + v)
0 0 0 −mw m(zgr + xgp) mu
0 0 0 −m(zgp− v) −m(zgq + u) mxgp

−mzgr mw m(zgp− v) 0 −Ixzp+ Izr −Iyq
m(xgq − w) −m(zgr + xgp) m(zgq + u) Ixzp− Izr 0 −Ixzr + Ixp
m(xgr + v) −mu −mxgp Iyq Ixzr − Ixp 0


(2.14)

2.3.2 Hydrostatic Terms

A rigid body submerged in water, such as the ROV Minerva 2, is influenced by a buoyancy force
and a gravitational force - recall the term g(η) from (2.8). The buoyancy force, B, is given by the
volume of the displaced water, ∇, the density of the water, ρ, and the gravitational acceleration,
g, as shown in (2.15).

B = ρg∇ (2.15)

The gravitational force, W is given as shown in (2.16).

W = mg (2.16)

In the NED-frame, the forces B and W act in the vertical plane, respectively in negative and
positive zn-direction. Recall the relationship between the center of gravity (COG) and the origin
of the BODY-frame (CO), given in (2.12). Similarly, the relation between the centre of buoyancy
(COB) and CO is given in (2.17).

rbbuo =
[
xbuo ybuo zbuo

]T
(2.17)

Naturally, in the BODY-frame, change in attitude affects the direction of the forces B and W .
The buoyancy force acts in the center of buoyancy (COB), while the gravitational force acts on
the center of gravity (COG). If the COB and the COG do not coincide with each other, moments
governs in the BODY-frame. Thus, the term g(η) has to be given in accordance with the relation
between the NED- and the BODY-frame given in Section 2.2, as shown in (2.18). Note that the
assumptions stated in (2.11) and (2.12) also applies here.

g(η) =


(W −B)sin(θ)

−(W −B)cos(θ)sin(φ)
−(W −B)cos(θ)cos(φ)

ybBcos(θ)cos(φ) + (zgW − zbB)cos(θ)sin(φ)
(zgW − zbB)sin(θ) + (xgW − xbB)cos(θ)cos(φ)

−(xgW − xbB)cos(θ) + ybBsin(θ)

 (2.18)

Underwater vehicles are often designed such that they are slightly positively buoyant, i.e. the mag-
nitude of B is slightly larger than the magnitude of W , such that the vehicle surfaces automatically
in the case of failure.
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2.3.3 Hydrodynamic Terms

Recall the hydrodynamic terms from (2.8), MAν̇r + CA(νr)νr + D(νr)νr - in this subsection the
hydrodynamic forces and moments will be revisited with a higher level of detail.

Firstly, the added mass matrix, MA, which is proportional to the relative acceleration, νr, can be
seen as the additional mass of the fluid that put into motion when the vessel is moving. Assuming
that the ROV will operate below the wave-affected zone such that it is not necessary to model
wave-induced forces and moments. This assumption simplifies the mathematical model since it
results in the ROV not having a time-varying added mass, as it will if there are significant wave-
induced forces and moments acting on it. In other words, the added mass matrix MA is constant,
stated mathematically in (2.19).

MA = A(ω) = constant (2.19)

Similarly, the added mass Coriolis and centripetal matrix, CA(νr), is proportional to the relative
velocity, νr. The forces and moments in this matrix represent forces and moments due to the
movement of the added mass of the vessel in the BODY-frame relative to the NED-frame.

Lastly, the damping matrix, D(νr) is also proportional to the relative velocity, νr. This matrix
represents forces and moments related to energy transported away from the vessel.

The matrices MA, CA(νr) and D(νr) are large matrices which are given in more detail in [4].
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Chapter 3

ROV Control, Guidance and
Navigation

3.1 ROV Minerva 2

As already mentioned, this thesis is based on the AUR-Lab property ROV Minerva 2. In this
Chapter theory behind the development of the control system for ROV Minerva 2 is given. Sections
3.2-3.6 addresses essential topics for autonomous underwater docking that are implemented in the
control system over the years in accordance with publications addressed in Section 1.5.1. Section
3.7 has a higher degree of novelty as it proposes the properties of the optimal path planning
problem for autonomous docking missions, which are parts of the contributions from this thesis.
Before defining the optimal path planning problem for autonomous docking applications, topics like
underwater navigation and an overview of the control system focusing on control, state estimation,
and guidance are addressed throughout this Chapter. Moreover, the path planner aiming to solve
the optimal path planning problem for autonomous docking applications is considered a part of
the autonomy module in the control system.

3.1.1 Acoustic Navigation Specifications

The ROV Minerva 2 is equipped with sensors to keep track of navigation. Measurements from
these sensors act as input into the observer in order to estimate the states of the ROV. This Section
aims to give an overview of essential sensors which the ROV Minerva 2 is equipped with.

The acoustic positioning system (APS) is able to track Minerva 2 due to a transponder mounted
on the ROV. The transponder exchanges signals with the APS, such that the global x, y and z
coordinates of the transponder are determined. Minerva 2 is deployed from RV Gunnerus, equipped
with a Kongsberg HiPAP, which is a Super Short Baseline (SSBL) APS[7]. SSBL systems consist
of a multi-element transducer, using range and angle measurements to determine the position of
the transponder. Figure 3.1 illustrates the principle of acoustic SSBL navigation.
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Figure 3.1: SSBL Underwater Positioning[5]

The DVL enables Minerva 2 to keep track of its linear velocities, u, v and w, based on the Doppler
shift in the echo of the acoustic signals sent from the DVL occurring when the signals are reflected
from the seafloor or the water column [7]. Additionally, the DVL enables the ROV to keep track
of the vertical distance down to the seafloor underneath locally, called the altitude. Minerva 2 is
equipped a DVL providing four acoustic beams keeping track of its altitude and linear velocities.

Minerva 2 is equipped with an inertial measurement unit (IMU). The IMU is a sensor consisting of
a 3-axis accelerometer, a 3-axis, and a 3-axis magnetometer, which respectively enables measuring
linear accelerations, angular velocities and magnetic field components such as heading.

The depth of Minerva 2 is measured by a pressure gauge sensor, enabling the calculation of depth
based on the measured pressure.

The common denominator in underwater navigation is that these sensors all are prone to noise
and local variations in the environment in which they are operating in, and thus sensor fusion
and proper state estimation are challenges. The update rates of the navigation sensors are also
crucial in terms of navigation accuracy. Thus, the transit speed is constrained during operations;
for instance, in constant altitude control, the DVL is only able to look so far ahead. If the transit
speed is too high, there will be some time delay, and the risk for collision with the seabed can
become critical. On that note, the transit speed should be chosen such that there is some safety
margin on available thrust/thruster rpm in case of local variations or unexpected events in the
environment. Also, Minerva 2 is equipped with cameras and sonars, which can play a role in visual
navigation as well as mission-related tasks. The performance of the sonars and cameras are also
factors that should be considered when determining the transit velocity. Previous simulations and
field trials have shown that a transit speed of 0.2-0.3 m/s is suitable for most ROV underwater
operations.

The resulting measurements from the ROV Minerva 2 navigation sensors are summed up in Table
3.1, and these measurements act as input to state estimation.
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Table 3.1: Available measurements based on sensors

Sensor Available Measurement
Acoustic Positioning System (APS) 3-DOF positions x, y, z

Doppler Velocity Logger (DVL) 3-DOF linear velocities u, v, w
Accelerometer 3-DOF linear accelerations v̇b

Gyroscopes 3-DOF angular velocities p , q, r
Magnetometer Heading ψ

3.2 Control System Overview

Figure 3.2 aims to provide an overview of the ROV motion control system. In the following Sections,
some of the modules in the Figure are given further attention. In general, the user is controlling
the ROV from the top-side of the architecture through a graphical user interface (GUI) which
is giving the user relevant system parameters. The control system then takes input through the
guidance module, either via joystick control, waypoint data, or truly autonomously. The behavior
of the ROV on the bottom-side is then initiated, through control signals based on estimated states
and measurements by sensors on-board of the ROV.

Figure 3.2: ROV Motion Control System Architecture [6]

The controller, observer and guidance module are considered key when components in autonomous
docking missions, and thus, they are further addressed in Sections 3.3, 3.4 and 3.5. Furthermore,
the path planner can be reviewed as a part of the content in the high-level autonomy module, and
thus, the optimal path planning problem, which is a part of this thesis contribution, is proposed
in Section 3.7.
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3.3 Controller

The controller calculates control signals in order to obtain the desired states based on measurements
and estimated states. As covered in Section 1.5.1, over the years different controllers have been
implemented and tested in the ROV motion control system. However the default implement
controller is a nonlinear proportional-integral-derivative (PID) combined with a feed-forward term
[7]. A walk-trough of the controller proposed in [7] is presented in the following paragraphs. The
control vector is given in (3.1).

τ = τPID + τFF , (3.1)

where the nonlinear PID control vector, τPID, is given according to the kinematics given in (2.3),
as expressed in(3.2).

τPID = −JT (η)

(
Kpη̃ + KdJ(η)ν + Ki

∫ t

0

η̃(t)dτ

)
, (3.2)

where the matrices Kp, Kd and Kp ∈ R6x6 respectively are the proportional, integral and derivative
gain matrices, assuming that the ROV is controlled in all 6 DOFs. Additionally, the integral term
includes a saturation term to avoid integral wind-up. The tracking error η̃ is given as the deviation
between the measured states, η and the desired states ηd, as expressed in (3.3).

η̃ = η − ηd (3.3)

The feed-forward term is given in (3.4), based on copy-dynamics of (2.8) and the desired states ηd
and νd.

τFF = Mν̇d + C(νd)νd + D(νd)νd, (3.4)

where M = MRB + MA and C(νd) = CRB(νd) + CA(νd).

3.4 Observer

An observer, or state estimator, reconstruct the states of the system and can even reconstruct
unmeasured states. Similarly as for the controller, several implementations and tests have been
carried out for different observers. However, the default implemented observer is an Extended
Kalman Filter (EKF), which has the advantageous ability to take nonlinear dynamics into account.
The discrete-time EKF is based on a copy of the discretization of the control plant model on the
form given in (3.5)[4].

ẋ = f(x) + Bu + Ew (3.5a)

y = Hx + v (3.5b)

The state vector x represents the states which are to be reconstructed as estimates, x̂ by the EKF,
while y is the measurement vector of these states. The control plant model is typically obtained
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by writing the kinematics, expressed in (2.3), and the kinetics, expressed (2.8), in the form given
in (3.5). The kinetics can, however, be simplified while still regarding all 6 DOF, a simplification
that correspondingly can be accounted for by a bias-model [32]. The kinematics, kinetics, and
the bias-model then all contribute to the dynamics f(x). The vectors w and v are white noise
vectors, respectively representing process noise and measurement noise, according to assumptions
for implementation of the EKF[4]. The matrix H describes which measurements are available for
the observer. Then, the state estimate update at time instant k is given in (3.6a), based on the
current state estimation propagation, x̄(k). During every recursion, the state estimate propagation,
x̄(k + 1), is updated beforehand of the next iteration as shown in (3.6b)[4].

x̂(k) = x̄(k) + KKF (k) [y(k)−H(k)x̄] (3.6a)

x̄(k + 1) = x̂(k) + h [f(x̂(k)) + Bu(k)] , (3.6b)

where h > 0 is the discretization sampling time and KKF (k), is the Kalman gain matrix, given as
expressed in (3.7)[4].

KKF (k) = P̄(k)HT (k)
[
H(k)P̄(k)HT (k) + R(k)

]−1
, (3.7)

Where P̄(k) is the error of the covariance propagation, which is calculated for each time instant k
based on the error covariance update, P̂(k), as shown in (3.8a)-(3.8b)[4].

P̂(k) = [I−KKF (k)H(k)] P̄(k) [I−KKF (k)H(k)]
T

(3.8a)

P̄(k + 1) = Φ(k)P̂(k)ΦT (k) + h2E(k)Q(k)ET (k) (3.8b)

The matrices Q(k) = QT (k) > 0 and R(k) = RT (k) > 0 are the process noise and measurement
noise covariance matrices, respectively. The matrix Φ(k) is the discrete-time linearized system
matrix obtained, for instance, as shown in (3.9)[4].

Φ(k) = I + h
∂f(x̂(k))

∂x̂
(3.9)

Summing up, the discrete-time EKF algorithm is a recursive process carried out for every time
instant k = 0, 1, 2, ..., N , initiated by the initial conditions x̄(0) = x̄0 and P̄(0) = P̄0, followed
by the calculations in equations (3.7), (3.6a), (3.8a), (3.6b) and (3.8b), in that order, for every
iteration[4].

3.5 Guidance

Following Figure 3.2, the guidance module generates the desired states for the system based on
trajectory waypoints generated by the optimal path planner integrated into the high-level autonomy
module, described in detail in Section 3.7.

The guidance module should provide feasible trajectories for the vehicle. To ensure that the
desired trajectory is obtained, guidance laws are defined according to the control objectives. Due
to the over-actuated nature of Minerva 2, constant jerk guidance for position reference is a suitable
guidance scheme. Constant jerk is a waypoint based guidance scheme, claimed to be beneficial
as the generated waypoint based ROV trajectory does not require any further refinement, and
thus, savings in terms of computational power which can be utilized at other stages of the control
sequence[9].
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3.5.1 Constant Jerk Guidance for Position Reference

Constant jerk guidance for position reference is an algorithm ensuring smooth transitions in position
and velocity, while generating the fastest path between two waypoints, pk and pk+1. The algorithm
takes into account physical constraints of the systems, that is, velocity, v [m/s], acceleration, a
[m/s2], and jerk j [m/s3], ensuring that the system does not exceed its capabilities in terms of
maximum velocity, acceleration and jerk, vmax, amax and jmax[33].

Assumption: Assuming known constraints vmax, amax and jmax and the total distance dtot
between pk and pk+1, the following holds for the constant jerk reference model[33]:

|v| ≤ vmax (3.10a)

|a| ≤ amax (3.10b)

|j| ≤ jmax (3.10c)

Further, the trajectory from pk to pk+1 follows up to seven phases depending of the step in position
between pk and pk+1. The seven phases are the following[33]:

• Phase 1: Start acceleration - constant jerk for maximum increase in acceleration.

• Phase 2: Constant acceleration - constant acceleration for maximum increase in velocity.

• Phase 3: End acceleration - constant jerk for maximum decrease in acceleration towards zero.

• Phase 4: Constant velocity - main transit phase at maximum velocity.

• Phase 5: Start deceleration - constant jerk for maximum increase in deceleration.

• Phase 6: Constant deceleration - constant acceleration for maximum decrease in velocity
towards zero.

• Phase 7: End deceleration - constant jerk for maximum decrease in deceleration towards
zero.

Figure 3.3[7] illustrates these seven phases, aiming to depict the correlation between jerk, accel-
eration, velocity, and position. Depending on the length of the step in position between pk and
pk+1, some of the phases may be omitted, due to the dynamics of the physical system that is the
vehicle.
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Figure 3.3: Correlation between jerk, acceleration, velocity and position [7]

Next, the algorithm provides several output parameters based on the known input parameters
vmax, amax, jmax and dtot. These output parameters are describing distances, di, velocities, vi,
and time instants, ti, describing the different phases of the transition between pk and pk+1. When
these parameters are established, the time, jerk, acceleration, velocity, and position for each phase
in the algorithm are calculated, enabling the transit. Moreover, [33] describes the algorithm in
general.

In practice, the application of this position referencing methodology for Minerva 2 implies that
between every waypoint generated by the path planner, the vehicle situates its heading towards the
next waypoint, pk+1. Depending on the step in position from the current waypoint, pk, to pk+1,
the algorithm goes through up to all of the seven phases described above. When Minerva 2 reaches
the waypoint pk+1, the ROV takes on zero forward velocity as it will, by its over-actuated nature,
stay at the fixed (N,E)-position and change its heading towards the waypoint pk+2. When the
new heading is obtained, the algorithm runs all over again. Note that when the ROV is adjusting
its altitude/depth, the pitch and roll then can be assumed constant. Thus, the ROV only adjusts
its heading in two dimensions.

3.6 Altitude Control

Altitude control is a control scheme shown to be useful in autonomous docking missions. In altitude
control, the altitude is automatically controlled to follow the terrain at a fixed altitude. In Section
5.6.2, an autonomy mode called auto-altitude mode refers to autonomous docking missions utilizing
altitude control. Moreover, details on the development of altitude control for the AUR-Lab ROVs
is given in [7]. A brief walk-through of altitude control based on [7] is given in this Section to give
relevant insight into its application in autonomous docking operations.

Initially, to perform altitude control, seafloor approximation is carried out utilizing the DVL. As
already mentioned, Minerva 2 is equipped with a DVL providing four acoustic beams. In order
to obtain a linear seafloor approximation, measurements from three of the four DVL beams are
utilized. Figure 3.4 demonstrates how the DVL can be used to provide a linear seafloor approx-
imation using measurements from three of those beams. In this Figure, the red lines represent
the DVL beams, the white plane represents the linear seafloor approximation, while the blue and
the green lines represent the estimated altitude and seafloor gradient. Thus, by application of
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such methodology, the ROV is not only able to estimate the altitude but also the seafloor gradient
for future state estimation. Additionally, visual inspection of Figure 3.4 yields that the seafloor
approximation is prone to seafloor steepness in the most forward-pointing acoustic beam if the
seafloor is too steep for this beam to obtain a reliable measurement.

Figure 3.4: Linear seafloor approximation using DVL [7]

Furthermore, for conservative reasons, the seafloor approximation is based on the lowest DVL
altitude measurement and the gradient from the least-squares method. In this context, assuming
that the seafloor can be expressed as the surface given in (3.11), which has a continuous first-order
derivative.

F (x, y, z) = f(x, y)− z = 0,
∂F

∂t
= 0 (3.11)

Moreover, assuming that the ROV is in the global NED-position pn = [xp, yp, zp]
T , the altitude of

the ROV at this time instant can be expressed as in (3.12a), and the altitude rate of change as in
(3.12b).

a = f(xp, yp)− zp = F (xp, yp, zp) (3.12a)

ȧ = ∆F (pn) · ṗ (3.12b)

Thus, by the approach illustrated in Figure 3.4, the linear seafloor approximation, ẑsf is given by
the lowest DVL altitude measurement, amin as expressed in (3.13).

ẑsf = amin + bx+ cy, (3.13)

where b and c are coefficients.

Furthermore, due to noise issues and possible discontinuities in the seafloor, the need for an alti-
tude observer arises. The altitude observer provides estimates of the approximated altitude and the
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altitude rate of change. The altitude observer is implemented in cascade with the vehicle observer
described in Section 3.4, because the altitude observer utilizes input as estimated vehicle orien-
tation, Θ̂nb and estimated vehicle linear velocities, v̂b from the vehicle observer. Moreover, the
altitude observer is implemented as a Kalman filter, taking on the same structure as the observer
described in detail in Section 3.4.

Moreover, the altitude control is implemented by defining a guidance law providing the controller
with the desired depth corresponding to the desired altitude. The guidance law is expressed
in terms of depth, not altitude, since depth measurements usually are more reliable than altitude
measurements. Depth is a state of the ROV and is continuous, while altitude can be discontinuous.
A feed-forward term concerning the altitude rate of change included in the guidance law to enhance
the performance of the system. Finally, the guidance law is applied to the controller. As mentioned,
the methodology behind this is given in detail in [7].

3.7 Optimal Path Planning

Now, theory on optimal path planning is proposed, a methodology considered a part of the high-
level autonomy module in Figure 3.2. This Section aims to define the optimal path planning
problem enabling Minerva 2 to take on autonomous docking missions. The optimal path problem is
defined to enable the high-level autonomy module to provide the guidance module with a waypoint
based path fulfilling the desired properties.

A path, P, consists of n waypoints including the initial position of the ROV, p0 = (x0, y0, z0),
and the position of the docking station , pn = (xn, yn, zn). p0 and pn are known, fixed points,
while the interior waypoints, p1, ...,pn−1 = (x1, y1, z1), ..., (xn−1, yn−1, zn−1) are to be determined
by the path planner. The number of interior waypoints, denoted K, is a design parameter. Thus,
a mathematical representation of a path is expressed in (3.14).

P = [p0,p1, ...,pn−1,pn] , (3.14)

where p1, ...,pn−1 are the unknowns to be determined by the path planner. In addition, the
environment is defined within global variable bounds in north, east and down directions, as show
in (3.15).

N = [xmin, xmax] (3.15a)

E = [ymin, ymax] (3.15b)

D = [0, zseafloor] (3.15c)

Furthermore, the environment contains static obstacles with known positions, pobstacle,i, described
mathematically in (3.16).

pobstacle,i = (xobstacle,i, yobstacle,i, zobstacle,i) (3.16)

For simplicity, obstacles are modelled as spheres with a known radius, robstacle.

To render the optimal path, the path planning problem is solved by optimization. One way to solve
an optimization problem is subject to one or more objectives, assigning the optimal solution certain
attributes. In such algorithms, the optimization problem is solved by minimizing optimization
functions. The number of objectives is denoted M . Theory on optimization is given in Chapter 4.
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When solving the path planning problem for underwater vehicles, the two clear objectives are
ensuring safety in terms of collision avoidance with obstacles and minimizing the total path length.
By minimizing the total path length, the travel time is likely minimized, assuming that the transit
velocity is constant and thus obtaining minimum energy consumption. The reason behind collision
avoidance with obstacles is obvious from a safety point of view. Additionally, two more objectives
are being considered here. The first one concerns the avoidance of sharp turns in the xy-plane,
aiming to minimize wear and tear on the actuators and producing a smoother trajectory. The
latter is ensuring reliable DVL-measurements while avoiding collision with the seafloor, which is
obtained by terrain following. These objectives are given more attention in the following Sections,
where they are given a mathematical representation denoted O1(P), O2(P), O3(P) and O4(P),
respectively. The objectives are describes corresponding to the path P in question.

3.7.1 Objective Function - Path Length

Given the mathematical representation of a path expressed in (3.14), the total length of the path
consisting of n− 1 path segments connecting the n waypoints is given as expressed in (3.17)[31].

O1(P) =
n−1∑
k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (3.17)

The first objective function, O1(P), is given (3.17). The path planner should be able to calculate
the numerical value of O1(P), and path candidates with lower values of O1(P) are preferred.

3.7.2 Objective Function - Safety Margin

The second objective function, O2(P), concerns collision avoidance with obstacles in the operational
environment. The objective function value is penalized if the path is closer than a safety margin,
m to the obstacle. The closer the path is to the obstacle, the more the objective function value
approaches zero. On the other hand, the objective function takes a negative value if the path is
more than a safety margin away from the obstacle. The further away from the obstacle the path
is, the more negative the objective function value. Given the mathematical representation of the
path given in (3.14), O2(P) is mathematically expressed in (3.18)[31].

O2(P) =

{
m− rmin, if rmin > m

ermin−m, otherwise
(3.18)

where the safety margin m is a design parameter. Moreover, rmin is the closest distance from any
path segment spanned between two adjacent waypoints pk and pk+1 and an obstacle with known
position pobstacle, as shown in Figure 3.5.
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Figure 3.5: Illustration of the closes distance between an obstacle and any path segment

As mentioned, the obstacles are assumed to have known positions and are being modelled as
spheres, with a known radius. The value of rmin is being calculated as expressed in (3.19)[34].

rmin = min

[
|(pobstacle − pk)× (pobstacle − pk+1)|

|(pk+1 − pk)|

]
(3.19)

Summing up, a more negative value of O2(P) is preferable. If the distance rmin dominates the
safety margin, m, the value of O2(P) grows exponentially, and thus, gives a higher penalty. On
the other hand, the larger the distance O2(P) compared to the safety margin m, the objective
function takes a lower penalty.

3.7.3 Objective Function - Avoid Sharp Turns in the xy-plane

Given the consecutive waypoints pk, pk+1 and pk+2 interconnected by the path segments vk and
vk+1, the path’s change in heading, dψi, in the xy-plane can be calculated as expressed in (3.20)[35].

dψi = arccos

(
vk · vk+1

|vk||vk+1|

)
(3.20)

Figure 3.6 illustrates the change of heading, dψi, in the xy-plane of a path P consisting of consec-
utive waypoints pk, ...,pk+3 interconnected by path segments vk, ...,vk+2.
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Figure 3.6: Illustration of the Change of Heading in the xy-plane

The third objective function, O3(P), makes the path planner favour paths with lower changes in
heading. Paths with the lowest possible maximum change of heading dψi between any two path
segments in the path are preferable. A mathematical representation of O3(P) is given in (3.21).

O3(P) = max [dψi] (3.21)

Summing up, the unit of this objective function is simply radians. Thus, lower values of O3(P)
indicates that the sharpest turn of a path P is less sharp.

3.7.4 Objective Function - Ensuring Reliable DVL Measurements

In real ROV operations, the availability and reliability of DVL measurements are essential. The
absence of reliable DVL measurements deteriorates the ROVs capability of performing reliable
state estimation, causing the ROV to take on worse behaviour. DVL measurements tend to become
unreliable if the distance from the ROV to the seafloor is too large.

Therefore, in real ROV operations altitude control, that is, keeping the ROV at a fixed altitude
above the seafloor, is often applied. Thus, requiring online, real-time update of the altitude, which
is provided by DVL measurements.

For offline optimal path planning, knowledge about the seafloor is not necessarily available. How-
ever, an objective function, O4(P), is implemented to examine the performance of the path planner
while constraining the placement of the z-coordinates of the waypoints. Satisfactory performance
in the offline case could motivate the possibility of an online extension.

The objective function, O4(P), takes in a desired depth corresponding to a desired altitude above
the seabed, zdesired. Thus, the preferance that the z-coordinate of interior waypoints, zn are
located within the interval [zdesired − zlimit, zdesired + zlimit] arises. zlimit acts as a margin on the
tolerated deviation between zdesired and the z-coordinate assigned the interior waypoint in question
by the path planner. If the z-coordinate is placed outside of the interval, the path is penailzed
exponentially worse, thus O4(P). Figure 3.7 illustrates the metodology behind O4(P).
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Figure 3.7: Illustration of Objective Function Evaluating Placement of Waypoint z-coordinates

A mathematical representation of O4(P) is expressed in (3.22).

O4(P) =

{
e(zdeviation−zlimit), if zdeviation > zlimit

zdeviation − zlimit, otherwise
(3.22)

where zdeviation denotes the deviation between the z-coordinate of any interior waypoint, zn, and
the reference value zterrain, as shown in (3.23).

zdeviation = max [abs(zk − zterrain)] (3.23)

Summing up, the objective function O4(P) grows exponentially if the z-coordinate of the worst
placed interior waypoint is placed outside of the interval [zdesired − zlimit, zdesired + zlimit]. However,
if the z-coordinate is contained in the interval, the objective value will take a more negative value
the closer the z-coordinate is to zdesired. A more negative value for O4(P) is preferable.

3.7.5 Constraint - Ensuring Safe Docking

To ensure safe docking, the heading of the ROV should remain constant and equal to the heading
of the docking station, ψn from the penultimate waypoint, pn−1, to the terminal waypoint, pn.
That is, the ROV should take on a constant heading on the last path segment. To be able to assign
the heading ψn to the last path segment, the z-coordinate of pn−1 and pn are set to be equal, that
is, zn−1 = zn, and thus, reducing the terminal phase of the docking problem to a two-dimensional
problem.

Assumption 1: The heading of the docking station, ψn, is known

Assumption 2: There are no obstacles present in the area around the terminal position, pn, of
the docking operation, such that the penultimate waypoint, pn−1, can be placed at a fixed position
from the terminal waypoint. Such that, the last path segment connection pn−1 and pn takes on a
fixed length.

Due to assumption two, the objective function concerning the safety margin to obstacles, O2(P),
will not be evaluated for the last path segment. The reason is that for a fixed path segment in
all candidate paths, a perpendicular distance to an obstacle may not exist. This results in this
objective function taking a high, non-correct value, causing the algorithm to fail. Additionally,
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O4(P) is not evaluated for pn−1 and pn as the depth of the docking station in the environment is
assumed independent of the previously assigned desired depth.

An illustration of the terminal phase of the docking mission is given in Figure 3.8. According to
assumption 2, no obstacles are conflicting with this area. Further, the radius of the red circle in
the Figure represents the length of the last path segment, denoted d, which is a known distance.

Figure 3.8: Illustration of Terminal Phase of the Docking Operation

Moreover, the penultimate waypoint is assigned a fixed position for all candidate paths, as expressed
in (3.24).

pn−1 = pn + R2D
z,ψ(ψn) [−d, 0]

T
, (3.24)

where P2D
z,ψ is the two-dimensional version of the rotation matrix, expressed in (3.25).

R2D
z,ψ =

[
cos(ψ) sin(ψ)
−sin(ψ) cos(ψ)

]
(3.25)

3.7.6 Path Selector

In optimization problems solved by multi-objective optimization algorithms, the applied algorithm
generates a set of Pareto-optimal solutions, that is, equally optimal solutions that are indistinguish-
able among each other. Furthermore, to choose one of the paths for the vehicle to follow, a path
selector is designed selecting a suitable path based on a different weighing of the objective functions.
Selecting the desired path, Pselected in this manner is done by applying the path selector algorithm
given in Algorithm 1 to the final population of Pareto-optimal paths, P . The path selector algo-
rithm is based on numeric values related to the different objective functions, namely, the average
path length, O1, the minimum path length, O1,min, the required safety margin O2,required and the
required depth/altitude deviation factor O4,required corresponding to O1(P), O2(P), O4(P) ∈ P ,
respectively.
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Algorithm 1 Path Selector

1: procedure Path-selector(P )
2: O1,min = min [O1] ∈ P . Calculating the shortest path length
3: O1 = mean [O1] ∈ P . Calculating the average path lenght
4: O1,ideal = (Lshortest + Lmean)/2 . Defining desirable path length for selection
5: O2,required = βO2 ·mean(O2) . Defining maximum allowed safety margin
6: O4,required = βO4 ·mean(O4) . Defining maximum allowed altitude deviation factor
7: flag = 0
8: while flag 6= 1 do
9: Pproposed = find [P(O1 ≈ O1,ideal)] ∈ P

10: if Pproposed(O2) > O2,required or Pproposed(O4) > O4,required then
11: remove(Pproposed) ∈ P . If selection criteria not satisfied, discard Pproposed

12: else
13: Pselected = Pproposed . If selection criteria i satisfied save Pselected

14: flag = 1 . Abort path selection, as a satisfactorily path, Pselected is obtained
15: end if
16: end while
17: end procedure

In Algorithm 1, βO2 and βO4 are scaling factors deciding how strict the selection process should
be.

3.7.7 The Path Planning Problem

Now, this Section aims to sum up the optimal path planning problem described throughout this
Sections in a reader-friendly manner. Initially, several parameters have to be assigned numerical
values. Note that the number of parameters that need to be defined may vary on the application.
Table 3.2 provides an overview of the maximum number of parameters that may need to be defined.

Table 3.2: User defined path planning parameters

Property Symbol Unit
Initial position (x0, y0, z0) [m]
Final position (xn, yn, zm) [m]

Obstacle 1 position (xo1, yo1, zo1) [m]
Obstacle 2 position (xo2, yo2, zo2) [m]

Obstacle radius [m]
Final heading ψn [◦]

Number of interior waypoints K [−]
Number of objectives M [−]

Sea depth zmax [m]
Desired depth zdesired [m]

Safety margin to obstacles acting in O2 m [m]
Path selector scaling factor βO2 [−]
Path selector scaling factor βO4 [−]

Next, the multi-objective path planning problem can be solved by optimization utilizing a GA,
minimizing the objective functions expressed in (3.26a)-(3.26d). Note that the number of objectives
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may vary depending on the application, for instance, (3.26d) is omitted for some applications.

O1(P) =

n−1∑
k=1

√
(xk+1 − xk)2 + (yk+1 − yk)2 + (zk+1 − zk)2 (3.26a)

O2(P) =

{
m− rmin, if rmin > m

ermin−m, otherwise
(3.26b)

O3(P) = max [dψi] (3.26c)

O4(P) =

{
eγ(zdeviation−zlimit), if zdeviation > zlimit

zdeviation − zlimit, otherwise
(3.26d)

Summing up, the objective functions aim to provide the set of obtained paths with the following
desired properties through optimization:

• O1, expressed in (3.26a), short path length.

• O2, expressed in (3.26b), sufficient safety margin to obstacles.

• O3, expressed in (3.26c), smaller magnitudes of turns in the xy-plane.

• O4, expressed in (3.26d), ensures sufficient depth in order to achieve reliable DVL-measurements.

The objective functions are minimized subject to constraints such as bounds on the defined problem
space in NED-coordinates, expressed in (3.27a)-(3.27c), fixed initial position p0 and terminal
position pn, expressed in (3.27d)-(3.27e), as well as constraint on the final heading resulting in a
fixed penultimate position, pn−1, expressed in (3.27f).

N = [xmin, xmax] (3.27a)

E = [ymin, ymax] (3.27b)

D = [0, zseafloor] (3.27c)

p0 = (x0, y0, z0) (3.27d)

pn = (xn, yn, zn) (3.27e)

pn−1 = pn + R2D
z,ψ(ψn) [−d, 0]

T
(3.27f)

Finally, as a post-processing step, a path, Pselected, is selected by the path selector proposed in
Algorithm 1 in accordance with suitably chosen scaling factors βO2 and βO4.

The optimal path planning problem defined in this Section is somewhat general, however, in this
thesis, it is applied to autonomous docking missions for Minerva 2. In this thesis, the optimal path
planning problem is solved by the genetic multi-objective evolutionary algorithm NSGA-II. The
theory behind this algorithm is given in Chapter 4.
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Chapter 4

Optimization Theory

4.1 Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The optimization algorithm used to solve path planning problems in this thesis is the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) proposed in [8]. Section 1.5.3, provides a brief
overview of optimization techniques, including genetic algorithms, acting as a background for this
Chapter. Moreover, this Chapter provides a walk-through of all the operators necessary to apply
NSGA-II to the optimal path planning problem defined in Section 3.7.7, mainly based on [8].

To entirely explain NSGA-II, some essential operations utilized throughout the optimization pro-
cess need further attention. These operations are a fast non-dominated sorting approach, crowding
distance assignment in addition to standard genetic algorithm operators such as binary tournament
selection, simulated binary crossover and polynomial mutation.

4.1.1 Fast Non-Dominated Sorting Approach

In [8], the fast non-dominated sorting approach is highlighted as a major improvement to NSGA-
II, compared to the former version NSGA. This Section gives the theory of how the sorting is
performed. Firstly, note that the purpose of non-dominated sorting is to sort the solutions in the
population into different non-dominated fronts based on the objective function values, that is, the
overall fitness of each solution. The first non-dominated front contains all solutions of the first
non-dominated level, meaning the solutions of this front are the best among the population as they
are equally good and not dominated by any other solution in the population in terms of objective
function values. The solutions of the second non-dominated front are dominated by the solution of
the first non-dominated front, but dominates the solutions of the third non-dominated front and so
on. A graphical representation based on figures in [8] is provided in Figure 4.1, where P represents
the population that is being sorted into five fronts of non-domination, Fi, i = 1, 2, ...5.
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Figure 4.1: Graphical explanation of non-dominated sorting

To initialize this sorting in a computationally efficient way, [8] introduces two entities, namely the
domination count, np, and the set Sp. The domination count, np, is an index assigned to each
solution, p, in the population P , counting the total number of solutions in the population that
dominates the solution p. On the other hand, the set, Sp, is a set of all solutions in the population,
P , that the solution in question, p, dominates. Domination refers to objective function values.
Initially, the domination count, np, is set to zero and the set Sp is an empty set, as shown in
(4.1)[8].

np = 0 (4.1a)

Sp = ∅ (4.1b)

Furthermore, for all solutions in the first non-dominated front, F1, the non-domination count, np,
remains zero throughout the sorting process. At this point, all the solutions not belonging to
the first non-dominated front, F1, are contained in the set Sp, and thus, the first front is at this
moment identified. The solutions of the first front are assigned a rank, prank = 1[8].

Moreover, subsequent fronts are identified. This is done by further examination of each solution
with np = 0. For each solution with np = 0, each solution q contained in the corresponding set
Sp has it domination count reduced by one. After doing so, if the domination count becomes
zero, nq = 0, for any solutions q contained in the set Sp in question, these solutions are put in a
separate list, Q. The members of the list Q belongs to the second non-dominated front, F2, and
are assigned a rank. The process continues with each member of the list Q in order to identify
the third non-dominated front, F3 and so on. This is done as an iterative process until all non-
dominated fronts, Fi i = 1, 2, 3, ..., in the population are identified and all solutions are assigned
a rank qrank = i+ 1[8].

Pseudo-code for the fast non-dominated sorting algorithm proposed in [8] is reproduced in Algo-
rithm 2.
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Algorithm 2 Fast non-dominated sorting algorithm

1: procedure fast-non-dominated-sorting(P )
2: for each p ∈ P do
3: Sp = ∅
4: np = 0
5: for each q ∈ P do
6: if p ≺ q then . If p dominates q
7: Sp = Sp ∪ {q} . Add q to the set Sp of solutions dominated by p
8: else if p � q then . if q dominates p
9: np = np + 1 . Inclement the domination counter for p

10: end if
11: if np = 0 then . Identifying the first front
12: prank = 1 . Assigning members of the first front rank 1
13: F1 = F1 ∪ {p}
14: end if
15: end for
16: end for
17: i = 1 . Front counter
18: while Fi 6= ∅ do . Identifying subsequent fronts
19: Q = ∅
20: for each p ∈ Fi do . Iterating over each solution p in front i
21: for each q ∈ Sp do . For each solution q in each set Sp corresponding to p
22: nq = nq − 1 . Decrementing domination counter
23: if nq = 0 then
24: qrank = i+ 1 . Assigning rank to subsequent fronts
25: Q = Q ∪ {q}
26: end if
27: end for
28: end for
29: i = i+ 1 . Incrementing front counter
30: Fi = Q . Identifying front i
31: end while
32: end procedure

4.1.2 Crowding Distance Assignment

In addition to the non-dominated sorting, which arranges the population according to fitness,
crowding distance assignment is performed in order to determine the diversity among the different
solutions in the population. In GAs, it is desirable to preserve a spread of solutions within the
search space. In terms of diversity preservation, NSGA-II also claims to be significantly improved
compared to NSGA [8] which depended on a sharing function requiring user input. Thus, causing
the necessity of a comprehensive comparison among the solutions in the population, resulting in a
quite high computational complexity. The improved NSGA-II avoids these challenges by introduc-
ing the crowded-comparison approach, not requiring any user input while reducing computational
complexity.

Moreover, the crowding distance, idistance, is computed within each non-dominated front in the
population. This is done by sorting the solutions within each front according to each objective
function value in ascending order of magnitude. Next, for each objective function, boundary
solutions, i.e. the smallest and largest function value are assigned an infinite distance value,
idistance =∞. All intermediate solutions are assigned a distance value for each objective function,
equal to the normalized corresponding objective function values of two adjacent solutions. Sum-
ming up, the crowding distance is calculated individually for each objective function. Finally, the
overall crowding distance is calculated as the sum of the individual distances corresponding to each
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objective[8].

Figure 4.2, inspired by [8], gives a graphical example of the crowding distance calculation in a case
with two objective functions, f1 and f2. The red dots represent the boundary values for of f1

and f2, and thus, these solutions are assigned an infinite distance value. Furthermore, the green
dot represents the solution under examination in this example. The two blue dots represent its
adjacent solutions. The solution represented by the green dot is assigned a distance metric equal
to the sum of the normalized side lengths of the dashed cuboid interconnecting the two blue dots.
Finally, the curly brackets represent the side lengths of the dashed cuboid. Note that, even though
this example only represents a case with two objective functions, the algorithm is still applicable
to problems with more than two objective functions.

Figure 4.2: Crowding distance calculation with two objective functions, f1 and f2

Pseudo-code for the crowding distance assignment algorithm proposed in [8] is reproduced in Algo-
rithm 3, where the crowding distances in front Fi is examined. The front Fi contains the solutions
Fi[k], k = 1, 2, 3, ..., l, each which are assigned a crowding distance metric Fi[k]distance. Further-
more, m denotes the mth objective function value, while fmax

m and fmin
m denotes the maximum and

minimum value of the mth objective funciton value for normalization.

Algorithm 3 Crowding distance assignment

1: procedure Crowding-distance-assignment(Fi)
2: l = |Fi| . Number of solutions, j = 1, 2, ..., l in front Fi
3: for each k do
4: Fi[k]distance = 0
5: for each objective m do
6: Fi = sort(Fi,m)
7: Fi[k = 1] =∞
8: Fi[k = l] =∞
9: for k = 2 to (l − 1) do

10: Fi[k] = Fi[k] + (Fi[k + 1].m−Fi[k − 1].m)/(fmax
m − fmin

m )
11: end for
12: end for
13: end for
14: end procedure
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Crowded-Comparison Operator

After performing the non-dominated sorting and the crowding distance calculation, the crowded-
comparison operator can be defined. The selection process utilizes the crowded-comparison oper-
ator throughout NSGA-II, and thus, ensuring diversity among non-dominated solutions. In short,
the crowded-comparison operator compares two solutions for their extent of proximity to other so-
lutions. It also takes rank into account, as lower (better) ranks are preferable. If two solutions have
the same rank, the solution located in a less crowded region, that is, the solution with the higher
crowding distance is preferred. Take into account the two solutions i and j, with corresponding
ranks irank, jrank and crowding distances idistance and jdistance. The criterion for the solution i
dominating the solution i, i.e. i ≺ j is given in Algorithm 4[8].

Algorithm 4 Crowded-comparison operator

1: procedure Crowded-comparison operator(i, j)
2: if (iran < jrank) or (irank = jrank and idistance > jdistance) then
3: i ≺ j
4: end if
5: end procedure

4.1.3 Selection

An illustration of the selection process is given in Figure 4.3[8], where Rt represents the concatena-
tion of the tth parent population, Pt, and the tth offspring population Qt, formind the intermediate
population Rt = Pt ∪Qt. Thus, the population Rt has size 2N , while the populations Rt and Qt
have size N . Elitism is ensured since all individuals from Pt and Qt are present Rt. The parent
population of the next iteration, Pt+1 of size N , called the mating pool, is used for reproduction
generating next offspring population Qt+1 of size N [8].

Figure 4.3: Selection in the i-th iteration of NSGA-II[8]

Furthermore, solutions from fronts with the lowest rank are preserved into the mating pool. The
process goes on as long as there is space for an entire front containing all solutions in the mat-
ing pool. When an entire front no longer can be accommodated, and if there still is space for
more solutions in the mating pool, binary tournament selection based on the crowding-comparison
operator is used to fill the remaining spots in Pt+1 such that the size of Pt+1 becomes N . Further-
more, Pt+1 is used to generate the next offspring population, Qt+1, utilizing the simulated binary
crossover(SBX) and polynomial mutation operators.
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Binary Tournament Selection

In general, tournament selection consists of choosing a number t of individuals at random from the
population and copying the best individuals from the group of t individuals into the intermediate
population. t is known as the tournament size, and such tournaments are often held between two
individuals. Tournament selection with t = 2 is called binary tournament selection[36].

As briefly mentioned, the remaining slots of the next parent population are resided by solutions
selected by binary tournament selection based on the crowded comparison operator, forming Pt+1

of size N . Thus, two solutions from the front that cannot be entirely resided in Pt+1 are contending
against each other, and the solution with the largest crowding distance is transmitted into Pt+1

4.1.4 Simulated Binary Crossover (SBX)

The SBX operator initially proposed in [37], is shown to be particularly useful as a genetic operator
in multi-objective optimization problems where GAs are applied as it outperforms several other
crossover operators. Furthermore, crossover operators ability to combine good portions of parent
genes into better offspring individuals reflects the performance of the crossover operator. In SBX
a child solution is created from a probability distribution that depends on the parent genes[37].

Moreover, the SBX operator is augmented to account for constraint handling such as dimensions
of the search space, for instance as in the optimal path planning problem defined in Section 3.7.7,
in [38]. As a result of this, for instance, no offspring solution is generated outside of the search
space that is defined in the problem parameters. This approach is considered suitable for such
applications, and thus, the mathematical representation of the SBX operator proposed [38] is
presented in this Section.

The procedure of generating an offspring population using the SBX operator is based on the genes
of two parent solutions, namely, y1 and y2, from which two child solutions, namely c1 and c2, are
generated. Figure 4.4 presents an illustration explaining crossover, where the blue and the red line
represents the genes of the parents y1 and y2 respectively, while the recombined lines to the right
in the figure represent the genes of the offspring c1 and c2.

Figure 4.4: SBX

The properties of c1 and c2 are calculated based on the properties of the parents y1 and y2 as
expressed in (4.2a) and (4.2b)[38], respectively for each child.

c1 =
1

2
· [(y1 + y2)− βq(y2 − y1)] (4.2a)

c2 =
1

2
· [(y1 + y2) + βq(y2 − y1)] (4.2b)

The parameter βq is based on the crossover probability distribution index, ηc, and a randomly
generated number, u, between 0 and 1. The properties of the offspring depend on the magnitude
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of ηc, as a high value of ηc renders a higher probability of generating ”near-parent” offspring and
vice verca[37]. The expression for βq is a probability distribution as expressed in (4.3)[38].

βq =

(uα)
1

ηc+1 if u ≤ 1
α(

1
2−uα

) 1
ηc+1

, otherwise
(4.3)

Furthermore, the parameter α is expressed in (4.4)[38].

α = 2− β−(ηc+1) (4.4)

Lastly, the parameter β, called the spread factor, is expressed in (4.5), such that the members of
the offspring population do not escape the range of the constrained domain in which the problem
is defined[38][38].

β =

{
1 + 2

y2−y1 min [(y1 − ylower), (yupper − y2)] if y1 < y2

1 + 2
y2−y1 min [(y2 − ylower), (yupper − y1)] if y1 > y2

(4.5)

In NSGA-II the SBX operator is applied for generating the next offspring population Qt+1 with a
crossover probability, pc.

4.1.5 Polynomial Mutation

By applying the polynomial mutation operator, a child, c is generated based on one parent, y, and
added to the offspring population[39]. As for the SBX operator, the theory behind polynomial
mutation in augmented in [38], such that the child’s properties do not escape the range of the
constrained domain in which the problem is defined. The mathematical description proposed in
[38] is presented in this Section. The properties of child, c, is calculated as expressed in (4.6), such
that, the mutated value is changed by a perturbation factor δq to a neighbourhood value using a
polynomial distribution with its mean at the current value and its variance as a function of the
mutation distribution index, ηm[39][38].

c = y + δq(yupper − ylower) (4.6)

Furthermore, the perturbation factor δq is defined as expressed in (4.7), where u is a randomly
generated number between 0 and 1[38].

δq =

{[
2u+ (1− 2u)(1− δ)ηm+1

] 1
ηm+1 − 1, if u ≤ 0.5

1−
[
2(1− u) + 2(u− 0.5)(1− δ)ηm+1

] 1
ηm+1 , otherwise

(4.7)

Lastly, the parameter δ is defined as expressed in (4.8)[38].

δ =
min [(y − ylower), (yupper − y)]

yupper − ylower
(4.8)

In NSGA-II the polynomial mutation operator is applied subsequently after the SBX operator with
a small mutation probability, pm, to increase the search power of the algorithm. The search power
is a GAs ability to create arbitrary offspring in the search space [37].
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4.1.6 Computational Complexity

The computational complexity of NSGA-II is also paid attention to in [8]; in fact, the algorithm
is claimed to do quite well in this context. By the big-O notation, the worst-case complexity of
NSGA-II is in general estimated to be O(MN2), where M is the number of objectives and N is
the population size. This complexity is governed by the non-dominated sorting approach proposed
in NSGA-II, which in fact, is one of the significant improvements to this iteration of the algorithm
compared to the previous iteration, NSGA. Indeed, the worst-case computational complexity of
the older NSGA is O(MN3)[8].

4.1.7 NSGA-II Parameters

Summing up, an overview of necessary NSGA-II parameters are provided in Table 4.1. These
parameters are to be assigned numerical values, in accordance with suggested values given in the
literature [8], [37], [38], [39].

Table 4.1: NSGA-II user defined parameters

Property Symbol
Population size N

Number of generations G
SBX distribution index ηc

SBX probability pc
Mutation distribution index ηm

Mutation probability pm

Overall, this Section, along with Section 3.7.7 should provide the minimum required information
on solving an optimal path planning problem by applying the NSGA-II based optimal path planner
proposed in this thesis. By applying NSGA-II and defining the parameter settings given in Table
4.1 to the optimal path planning problem defined in section 3.7.7, a NSGA-II based optimal path
planner is created. By the operators described throughout this Chapter, the optimal path planner
ensures that a population of paths with the desired properties by minimizing the objectives O1,
O2, O3 and O4 is generated. The path planner aims to obtain a set of so-called Pareto-optimal
solutions, that is, solutions that are equally optimal but cannot be distinguished from each other
due to the multi-objective nature of the optimal path planning problem.
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Method

This Chapter aims to put the operators presented throughout Chapter 4 in context by addressing
the development of the NSGA-II based path planner corresponding to the optimal path planning
problem defined in Section 3.7.7 in Chapter 3. As for the other Sections in Chapter 3 and Chapter
2, act as background when implementing the path planner into the control system of Minerva 2.

A NSGA-II based path planner is coded in Matlab, Appendix A provides the source code that is
the path planner. Moreover, for the integration of the path planner into the autonomy framework
in the control system of the ROV Minerva 2, the graphical programming language LabVIEW is used.
The implementation enables carrying out simulations of autonomous docking missions and field
trials. Since LabVIEW is compatible with Matlab-code, the implementation of the path planner into
the control system uses some of the Matlab code. Some background behind the development of the
path planner in Matlab is given in Section 5.1 and the Matlab directory is later used for verification
of the optimal path planning technique, in Section 6.1. The method behind the integration of the
path planner into LabVIEW is given in Section 5.6. The latter appears as an integrated system,
allowing simulations of the ROV Minerva 2 doing autonomous docking missions following optimal
paths generated by the NSGA-II based path planner. In addition, Sections 5.2 - 5.5 aims to give
some insight into the already existing LabVIEW based ROV motion control system.

5.1 Optimal NSGA-II Based Path Planner

Furthermore, Algorithm 5 is meant to give an overview of the method behind the NSGA-II based
path planner coded in Matlab. The Algorithm utilizes the operators described throughout Chapter
4, and it is based on pseudo code provided in[8]. By applying the optimal path planning problem
defined in Section 3.7.7 to Algorithm 5, an optimal path is proposed. By the genetic nature of
NSGA-II, the algorithm produces a population of paths. Ideally, the population is Pareto-optimal.
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Algorithm 5 Non-Dominated Sorting Genetic Algorithm, NSGA-II

1: procedure NSGA-II(input)
2: parameters = input . Initialize problem parameters
3: R0 = initial-population(parameters) . Create initial population
4: procedure Fast-non-dominated-sorting(R0) . See algorithm 2
5: end procedure
6: procedure Crowding-distance-assignment(Fi) . See algorithm 3
7: end procedure
8: P0 = binary-tournament-selection(R0) . Generate first parent population
9: Q0 = generate-offspring-population(P0) . Generate first offspring population

10: while Stop criterion is not reached do . Main loop
11: Ri = Pi ∪Qi . Concatenation of parent and offspring populations
12: procedure F=Fast-non-dominated-sorting(Ri) . See algorithm 2
13: end procedure
14: procedure Crowding-distance-assignment(Fi) . See algorithm 3
15: end procedure
16: Pi+1= selection(F) . Selecting next parent population, see section 4.1.3
17: Qi+1 = generate-offspring-population(P ) . Generating next offspring population
18: end while
19: end procedure

Moreover, Algorithm 5 aims to clarify the logic behind the Matlab-coded NSGA-II based path
planner. Next, this paragraph gives a walk-trough of Algorithm 5. Firstly, the numeric input
required to solve an optimal path planning problem using this optimal path planner consists of
the general path planning problem parameters summed up in Section 3.7.7, as well as NSGA-II
parameters provided in Section 4.1.7. Next, to initialize the NSGA-II, an initial population R0 of
size 2N is generated. The array R0 consists of random waypoints located within the constrained
space defined in the problem parameters. Also, constraints such as fixed initial and terminal
positions and the constraint on the final heading are taken into account. Additionally, when a
population is generated, the objective functions are evaluated, and thus, R0 also contains objective
function values for all its solutions. Also, more information about the initial population is obtained
by applying fast non-dominated sorting and crowding distance assignment, namely, assigning rank
and crowding distance to each solution, respectively. At this point, all information about the initial
population is obtained, and thus, binary tournament selection is applied to chose the fist parent
population, P0, of size N . Based on P0, the first offspring population Q0 of size N is generated
by applying the SBX and polynomial mutation operators in coherence with relevant parameters.
Again, whenever a new population is generated, objective function evaluations are carried out,
assigning objective function values to each solution in the population. Now, the initialization of
the optimization process is done, and the Algorithm goes into the main loop and performs a pre-
defined number G of generations to obtain the final population of optimal solutions. The main
loop is quite simple, as it initially concatenates the ith parent population Pi and the ith offspring
population Qi, forming the intermediate population Ri of size 2N . Next, more information is
obtained about the ith intermediate population, Ri, by applying fast non-dominated sorting and
crowding distance assignment. Furthermore, the selection performed in the main loop to obtain
the next parent population, Pi+1, is slightly different from in the initial phase of the Algorithm,
as described in 4.1.3. Finally, the selection chooses the next parent population, Pi+1, and then,
the next offspring population, Qi+1, is generated by the SBX and polynomial mutation operators.
Then, the main loop starts over again until the stopping criterion of G number of generations, or
G number of iterations, in the main loop are performed.

Furthermore, the flowchart in Figure 5.1 aims to provide a graphical overview of the NSGA-II
based optimal path planner. In addition to the optimization described in Algorithm 5, some
post-optimization processing is done. In the first place, the path selector algorithm provided in
Algorithm 1 is applied to the final population to obtain a path that not only is considered optimal
but also satisfies additional user-defined preferences on the objective function values. Also, in the
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post-processing phase, plots are obtained, showing the objective function values of each solution
in the final population. Trends in these plots are used to comment on the performance of the
optimization.

Create initial populationinput

Initial non-dominated sorting and
crowding distance assignment

Binary tournament selection

Generate initial offspring population

Concatenate parent and
offspring populations

Non-dominated sorting and
crowding distance assignment

Selection of parent population

Generate offspring population
Stop

condition
satisfied?

Path selector

yes

no

Figure 5.1: Flowchart of the NSGA-II based path planner

5.2 LabVIEW based ROV Motion Control System

The ROV motion control system is implemented in practice using an object-oriented approach
in the graphical programming language LabVIEW, which has been developed for the AUR-Lab
ROVs over the years. The literature review in Section 1.5.1 addresses the development of the
control system. Due to its object-oriented nature, the control system applies to multiple ROVs.
In general, LabVIEW programs are called virtual instruments (VIs) . Such VIs consist of a user
interface, or front panel, containing controls and parameters for input and output to objects in the
code. The front panel is based on code in the form of a block diagram [40]. The block diagram
can contain nodes utilizing Matlab-code and subsystems, making the code more readable. Due to
its object-oriented nature, the code is somewhat generic.

The ROV motion control system has been developed by MSc students, Ph.D. candidates, professors,
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and postdoctoral researchers since 2010. The motion control system consists of three main VIs, the
overall control system called Njord, a graphical user interface (GUI) called Frigg, and a hardware-
in-the-loop (HIL) simulator called Verdandi. Additionally, there are some optional VIs extending
the capabilities of these main VIs, such as the autonomy module which includes functions for
computer vision using both sonar and cameras. The majority of the contributions in Section 1.5.1
have been developed and tested in LabVIEW. The control system follows the control architecture
provided in Figure 3.2. This Chapter aims to give an overview of the experimental setup for real
ROV operations, that is, field trails, and HIL-simulations, as well as an overview over the key
functionalities in the three main VIs, namely Njord, Frigg, and Verdandi.

5.2.1 Software and Hardware Platforms

For the control system to run, the different VIs need to interact with each other. In real ROV
operations, that is, field trails, the HIL-simulator can be discarded. The control system is instead
implemented using LabVIEW software on a compact Reconfigurable Inputs and Outputs (cRIO)
platform, which is a real-time hardware platform by National Instruments commonly used in the
control system industry[41]. The cRIO consists of a user-programmable Field-Programmable Gate
Array (FPGA) ensuring communication between software modules and Input-output (IO) modules
enabling signal processing for sensor output. The GUI is provided by a host computer running
the LabVIEW based GUI VI, which is FPGA-compatible. Additional information from cameras and
sonars can be accessed via User Datagram Protocol (UDP) link.

5.2.2 Hardware-in-the-Loop (HIL) Simulations

The LabVIEW VI Verdandi is providing HIL-simulation capabilities, which are useful in terms of
adding new functionalities and modifications to the control system. Through such simulations,
performance testing and debugging can be done more easily before field trials are carried out.
HIL-simulations enables simulation of realistic scenarios due to the incorporation of hardware
components combined with mathematical models[32]. Verdandi enables HIL-simulations by inter-
connecting the cRIO platform-based control system using Transmission Control Protocol (TCP)
connection[42].

5.3 Frigg VI - Graphical User Interface

The ROV motion control system is operated by the user from the Frigg VI acting as the GUI,
depicted in Figure 5.2, while the control system, Njord VI, and alternatively the Verdandi VI are
running simultaneously. When the control loop is initiated a suitable position for the field ROV
operation, or HIL-simulation is defined. To the left in Figure 5.2, the user can choose among
different missions with different levels of autonomy. The different missions are initiated by some
desired input, acting as input to the guidance module, following Figure 3.2. In the middle of
Figure 5.2, the user has an overview of the different sensors utilized by the ROV for navigation.
Green lights indicate that the sensors function properly, while red lights indicate offline or faulty
sensors. Furthermore, Figure 5.2 is a screenshot taken during a tracking operation. The map in
the middle of the Figure represents the ROV by the small green box, while the red line represents
the previous trajectory of the ROV and the blue line and dots represent the further planned path
and waypoints, respectively. In the upper right corner, the user can access information about the
ROV, such as desired and estimated states like heading, altitude, depth. In the lower right corner,
the user can control other functionalities of the ROV, such as cameras and lights.
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Figure 5.2: Frigg VI

5.4 Njord VI - ROV Motion Control System

Figure 5.3: Njord VI

The control system itself is represented in the Njord VI, depicted in Figure 5.3. The Njord VI has
to be running simultaneously with Frigg, however during ROV operations or simulations it mostly
provides error messages (if any) and the overall status of the control system.
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5.5 Verdandi VI - Hardware-In-The Loop (HIL) Simulation

In the case of HIL-simulations, the Verdandi VI is running together with the Njord VI and the
Frigg VI. A screenshot of the Verdandi VI is given in Figure 5.4. As mentioned in Section 5.2.2,
HIL-simulations enables simulations of realistic scenarios without access to actual hardware. By
using Verdandi, the user can simulate different environmental forces and sensor noise acting on the
ROV. Also, Verdandi enables customizing the seafloor for HIL-simulations. The seafloor is defined
as a plane as shown in (5.1) and can be defined by the user by changing the coefficients, namely,
a0, a1, a2, b1 and b2.

z(x, y) = a0 + a1 · x+ b1 · y + a2 · x2 + b2 · y2 (5.1)

Figure 5.4: Verdandi VI

5.6 Integrated Autonomous System

The Autonomy Window, which is an extension to the Frigg VI described in Section 5.3, enables the
user to initiate highly autonomous ROV missions. The autonomy window was initially developed in
[2] is based on the control architecture reviewed in Section 1.5.1. This window acts as a framework
for further implementation of autonomous functionality into the control system. In this thesis,
the autonomy window is augmented to include optimal path planning capabilities for autonomous
docking missions.

A screenshot of the autonomy windows graphical user interface is depicted in Figure 5.5, where the
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part of the GUI enclosed by the yellow rectangle represents the optimal path planning capabilities,
while the part enclosed by the red rectangle represents the autonomy module enabling the ROV to
perform autonomous tasks. The autonomy module can perform different missions in accordance
with different modes, such as a transit state where the ROV performs an autonomous trajectory
between waypoints. Eventually, the transit state is used together with the path planning module
in simulations of the integrated system. The method behind this is quite simple. The waypoints
generated from the path planning module are saved in the autonomy window as transit waypoints
for the ROV to follow in the transit state.

Figure 5.5: Autonomy window with optimal path planning capabilities

A more close-up screenshot of the graphical user interface concerning the path planning module,
i.e. the part of the screenshot in Figure 5.5 enclosed by the yellow rectangle, is provided in Figure
5.6.

Figure 5.6: Zoomed path planning module graphical user interface
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Now, it is time to describe the functionality of the LabVIEW based path planning module. By
utilization of the MatlabScript Node, LabVIEW is able to call user-defined functions coded in
Matlab. The LabVIEW optimal path planning module runs within a separate loop in the autonomy
window. When the optimization is performed, and the path selector chooses a path, a Matlab plot
showing the selected path in three dimensions and other plots pops up, allowing examination of
the optimization performance. Thus, the user gets the opportunity to perform the path planning
several times before applying the generated path to transit waypoints, in case the selected path or
optimization performance is not found satisfactorily by visual inspection.

In the uppermost part of Figure 5.6, LabVIEW takes in a path referring to a directory containing
Matlab code similar to the one described in accordance with Algorithm 5 in Section 5.1, however,
there are some differences in terms of input/output handling. For post-processing purposes, when-
ever an optimization is complete, the selected path and the final population are saved to separate
text files in the same path as the Matlab code.

Next, the path planning module requires several numeric user-defined inputs for the optimization
process. Example values of those inputs are presented in Figure 5.6, namely, initial, terminal,
and two obstacle positions all represented in the global NED-frame. Also, the number of interior
waypoints, that is non-fixed waypoints, the final heading, and the sea depth in the environment
are user-defined inputs. Other parameters, such as the NSGA-II parameters presented in Table
4.1 and the remainder of the parameters presented in table 3.2 are assigned fixed values according
to preference and suggestions in literature. These parameters can, of course, be changed from a
developer point of view. However, they can be claimed to be assigned suitable values in the design
of the optimal path planner.

Furthermore, the path planning module graphical user interface, Figure 5.6, includes three buttons
featuring functionalities of the module, namely the ”Apply”-button, the ”Optimize”-button and
the ”Next”-button. The ”Apply”-button applies/resets the user-defined parameters described
above to the optimization problem, while the ”Optimize”-button generates an optimal path by
NSGA-II and the path selector proposed in Algorithm 1. Finally, the ”Next”-button aborts the
path planning loop such that the user can go on with the autonomous mission, which is transit.

Moreover, when the optimal path planning is done, the autonomous docking mission can start.
Here, it is possible to carry out the transit in two different modes, namely auto-altitude mode and
auto-depth mode. In the graphical user interface in Figure 5.6, it is possible to switch between
these two modes by the on/off switch named ”Auto altitude”. The path planning is identical for
these two modes, whereas the subsequent transit is different, as explained in the following Sections.

5.6.1 Auto-Depth Mode

Firstly, an explanation of the auto-depth mode. At this point, the NSGA-II based path planning
module has generated a three-dimensional optimal path in global NED-coordinates based on the
four-objective optimal path planning problem defined in Section 3.7.7. Furthermore, the auto-
depth mode is quite straightforward, as the subsequent autonomous mission consists of transit
between the generated waypoints as they are given from the path planning module. The path
can be assumed to have sufficient safety margin to obstacles due to the objective function O2,
whereas, the objective function O4 is supposed to ensure sufficiently magnitude of the distance
to the seafloor, altitude, such that DVL measurements are available while eliminating the risk of
bottom collision. The user-defined parameter sea depth is critical in this context.

5.6.2 Auto-Altitude Mode

Now, an explanation of the auto-altitude mode. Identically to the auto-depth mode, the NSGA-
II based path planning module has generated a three-dimensional optimal path in global NED-
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coordinates based on the four-objective optimal path planning problem defined in Section 3.7.7.
However, this is where the auto-altitude mode differs from the auto-depth mode. The auto-altitude
mode overwrites the D-coordinates of the generated path as it makes the ROV follow the seafloor at
a constant desired altitude. The desired altitude applied in the auto-altitude mode is a user-defined
input defined in the lowermost part of the graphical user interface, seen in Figure 5.6.

Moreover, it is assumed that sufficient safety magrin to obstacles renders a safe and collision-
free trajectory even though the D-coordinates are slightly different than those generated by the
path planning module. A collision-free trajectory is assumed because the objective function O4 is
included in the path planning problem also for the auto-altitude mode. The auto-altitude mode
utilized online altitude control, described in Section 3.6, and thus, a gentle altitude profile can
be expected. This approach aims to eliminate the risk of bottom collision while guaranteeing the
availability of DVL measurements.

55



Chapter 5. Method

56



Chapter 6

Results

This Chapter contains results from different phases of the development of an optimal path planner
based on NSGA-II. Note that the problem that is solved is the optimal path planning problem
defined in Section 3.7.7, by applying the NSGA-II based optimal path planner described in Section
5.1. Simulations of autonomous docking missions are carried out by the integrated system described
in Section 5.6. Overall the results can be divided into two different categories:

1. Results on the Matlab-coded NSGA-II based path planner as a stand-alone application,
to examine the performance and highlight interesting factors in solving such optimization
problems. Section 6.1 presents these results.

2. Results from the integrated system that is the implementation of the NSGA-II path planner
into the control system of the ROV Minerva 2 tested in HIL simulations. Section 6.2 and 6.3
presents these results.

6.1 Optimization

Post-processing functionality in the Matlab directory enables generating different results from the
offline path planning and examining the performance of the NSGA-II based optimal path planner.
In all results, the general NSGA-II parameter settings are as given in Table 6.1.

Table 6.1: NSGA-II parameters

Property Symbol Value
Population size N 100

Number of generations G 500
SBX distribution index ηc 5

SBX probability pc 0.9
Mutation distribution index ηm 20

Mutation probability pm 0.1

General parameter setting for all results obtained for path planning done using the Matlab-code
as a standalone application is given in Table 6.2.
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Table 6.2: General path planning problem parameters

Property Symbol Value Unit
Initial position (x0, y0, z0) (1.0, 1.0, 1.0) [m]
Final position (xn, yn, zm) (100, 100, 50) [m]

Obstacle 1 position (xo1, yo1, zo1) (50, 50, 40) [m]
Obstacle 2 position (xo2, yo2, zo2) (30, 30, 30) [m]

Obstacle radius 10 [m]

In addition to the parameters given in Table 6.2, some additional parameters are defined individ-
ually depending on the problem at hand.

6.1.1 Path Planner with Three Objectives, O1, O2 and O3

Initially, the optimal path problem defined in Section 3.7.7 is solved by the NSGA-II based optimal
path planner concerning three objectives. Objectives O1, O2 and 03 are considered, thus O4 is
omitted in this case. In addition to the general parameters applied to the optimal path planning
problem, given in Table 6.2, the parameters given in Table 6.3 are applied when solving the problem
utilizing a three-objective optimal path planner.

Table 6.3: Additional path planning problem parameters

Property Symbol Value Unit
Final heading ψn −90 [◦]

Number of interior waypoints K 4
Number of objectives M 3

Sea depth zmax 100 [m]
Safety margin to obstacles acting in O2 m 5 [m]

Furthermore, in the post-optimization path selection, the parameter setting for the path selector
shown in Table 6.4 is applied. Note that βO4 is undefined since, for this application, the objective
function O4 is omitted.

Table 6.4: Path selector parameters

Value
βO2 0.8

Figure 6.1 depicts a three-dimensional plot of the selected optimal path, Pselected. The path
Pselected is a member of the final population generated by the three-objective NSGA-II based
optimal path planner and is selected by the path selector proposed in Algorithm 1. Figures 6.2
and 6.3 depict the projection of Pselected in the NE-plane and the ED-plane, respectively. In the
Figures 6.1-6.3 the initial position and the terminal position are indicated by a blue and a green
dot, respectively, corresponding to the positions given in table 6.2. Furthermore, the remaining
waypoints are indicated by black dots. The path consisting of straight lines interconnecting the
waypoints are indicated by red lines. The two obstacles present in the environment are indicated
by the two spheres in the plots, located at the positions indicated in Table 6.2.
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Figure 6.1: Selected path depicted in 3D

Figure 6.2: Selected path in the NE-plane
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Figure 6.3: Selected path in the ED-plane

Objective function values of the selected path, Pselected is given in Table 6.5.

Table 6.5: Properties of the selected path (Pselected), M = 3

Objective Value Unit
Path length O1(Pselected) 162.2595 [m]

Safety margin O2(Pselected) -11.1240 [−]
Sharpest turn in the NE-plane O3(Pselected) 0.3011 [rad]

Furthermore, post-processing results representing data on the final population of solutions, P , gen-
erated by the three-objective NSGA-II based optimal path planner are given. A three-dimensional
plot of the three objective function values, O1, O2 O3, for every solution in P is provided in Figure
6.4. Similarly, two-dimensional plots comparing the objective function values O1 versus O2, O1

versus O3, and O2 versus O3, of every solution in the final population P are depicted in Figures
6.5, 6.6 and 6.7, respectively. For curiosity, the chosen solution, Pselected is represented by a red
dot in these figures.
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Figure 6.4: 3D plot of objective function values in the final population
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Figure 6.5: 2D plot of objective function values O1 versus 02 in the final population
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Figure 6.6: 2D plot of objective function values O1 versus 03 in the final population
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Figure 6.7: 2D plot of objective function values O2 versus 03 in the final population

Finally, Table 6.6 provides some numerical data on the final population of paths, P , generated by
the three-objective NSGA-II based optimal path planner.
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Table 6.6: Final population, P , numeric properties, M = 3

Value Unit
O1,min ∈ P 158.5337 [m]
O1 ∈ P 165.8948 [m]
O2 ∈ P -10.7911 [−]
O2,required -8.6329 [−]
O3 ∈ P 0.3811 [rad]

Number of paths discarded by path selector 1

6.1.2 Path Planner with Four Objectives, O1, O2, O3 and O4

Next, the optimal path problem defined in Section 3.7.7 is solved by the NSGA-II based optimal
path planner concerning four objectives. Objectives O1, O2, 03 and 04 are considered.

In addition to the general parameters applied to the path planning problem, given in Table 6.2,
the parameters given in Table 6.7 are applied when solving the problem utilizing a four-objective
path planner.

Table 6.7: Additional path planning problem parameters

Property Symbol Value Unit
Final heading ψn −90 [◦]

Number of interior waypoints K 4
Number of objectives M 4

Sea depth zmax 100 [m]
Safety margin to obstacles acting in O2 m 5 [m]

Desired depth zdesired 70 [m]
Altitude limit acting in O4 zlimit 10 [m]

Furthermore, in the four-objective optimal path planning scenario, in the post-optimization path
selection the parameter setting for the path selector is shown in Table 6.8 is applied.

Table 6.8: Path selector parameters

Value
βO2 0.8
βO4 1.0

The selected path from the four-objective NSGA-II based optimal path planner is depicted in
Figures 6.8, 6.9 and 6.10. These Figures takes on the same format as Figures 6.1, 6.1 and 6.3,
respectively.
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Figure 6.8: Selected path from four-objective optimal path planner

Figure 6.9: Selected path in the NE-plane
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Figure 6.10: Selected path in the ED-plane

Objective function values of the selected path, Pselected, in the four-objective NSGA-II based
optimal path planner scenario is given in Table 6.9.

Table 6.9: Properties of the selected path, Pselected, M = 4

Objective Value Unit
Path length O1(Pselected) 186.6444 [m]

Safety maring O2(Pselected) -5.0394 [−]
Sharpest turn in NE-plane O3(Pselected) 0.1730 [rad]

Largest depth deviation O4(Pselected) -2.3090 [−]

Moreover, several plots are provided highlighting the performance of the optimization in the four-
objective NSGA-II based optimal path planner scenario by comparison of the objective function
values of the final population of paths, P . Figures 6.11, 6.12, 6.13 and 6.14 represents three-
dimensional plots of the objective function values. More specific, Figure 6.11 compares O1, O2 and
O3, Figure 6.12 compares O1, O2 and O4, Figure 6.13 compares O1, O3 and O4 and Figure 6.14
compares O2, O3 and O4.
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Figure 6.11: 3D plot of objective function values O1, O2, O3 in the final population

Figure 6.12: 3D plot of objective function values O1, O2, O4 in the final population
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Figure 6.13: 3D plot of objective function values O1, O3, O4 in the final population

Figure 6.14: 3D plot of objective function values O2, O3, O4 in the final population

Finally, Table 6.6 provides some numerical data on the final population of paths, P , generated by
the four-objective NSGA-II based optimal path planner.
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Table 6.10: Final population, P , numeric properties, M = 4

Property Symbol Value Unit
Shortest path in the final population O1,min ∈ P 164.9809 [m]

Average objective function value O1 ∈ P 187.1052 [m]
Average objective function value O2 ∈ P -5.3019 [−]

Maximum allowed margin in path selector O2,required -4.2415 [−]
Average objective function value O3 ∈ P 0.2219 [rad]
Average objective function value O4 ∈ P -2.1799 [−]

Maximum allowed margin in path selector O4,required -2.1799 [−]
Number of paths discarded by path selector 41

6.2 Integrated System

For the integrated systems the optimal path planning parameters are defined such that they match
those applied when performing real ROV operations using the LabVIEW-coded control system de-
scribed in Sections 5.2 - 5.6. Thus, the positions applied when solving the optimal path planning
problem correspond to positions in the actual ROV field trial testing area. Furthermore, the op-
timization problem applied for this application is defined in Section 3.7.7. All four objectives,
namely O1, O2, O3 and O4 are applied and the NSGA-II parameters are as defined in Table 6.1.

For comparability reasons, the same path is applied for simulations both in auto-altitude mode
and auto-depth mode. Parameters corresponding to the optimal path planning problem defined in
Section 3.7.7 for the NSGA-II based optimal path planner applied in the integrated system is given
in Table 6.11. The ROV starts from the initial position, which is the origin in the test environment
and aims to dock at the final position. The docking station is placed at a depth of 36 meters, that
is, 4 meters above the seafloor. The environment is assumed to have an approximately flat seafloor
at a depth of 40 meters. Furthermore, the applied path selector parameters are as defined in Table
6.8.

Table 6.11: General path planning problem parameters for the integrated system

Property Symbol Value Unit
Initial position (x0, y0, z0) (7036891, 570126, 0) [m]
Final position (xn, yn, zm) (7036990, 570226, 36) [m]

Obstacle 1 position (xo1, yo1, zo1) (7036940, 570176, 30) [m]
Obstacle 2 position (xo2, yo2, zo2) (7036920, 570156, 30) [m]

Obstacle radius 10 [m]
Final heading ψn -90 [◦]

Number of interior waypoints K 4
Number of objectives M 4

Safety margin to obstacles acting in O2 m 5 [m]
Sea depth zmax 40 [m]

Desired depth zdesired 30 [m]
Altitude limit acting in O4 zlimit 5 [m]

The selected path from the NSGA-II based optimal path planner in the integrated system is
depicted in Figures 6.15, 6.16 and 6.17. These Figures takes on the same format as Figures 6.1,
6.1 and 6.3, respectively.
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Figure 6.15: 3D plot of the selectedpath for simulations in the integrated system

Figure 6.16: Selected path projected in the NE-plane
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Figure 6.17: Selected path projected in the ED-plane

Objective function values of the selected path, Pselected, in the integrated system is given in Table
6.12.

Table 6.12: Properties of the selected path, Pselected, auto-altitude mode

Objective Value Unit
Path length O1(Pselected) 168.2879 [m]

Safety margin O2(Pselected) -5.2720 [−]
Sharpest turn in NE-plane O3(Pselected) 0.6704 [rad]

Largest depth deviation O4(Pselected) -2.9496 [−]

Additionally, the waypoints of Pselected in NED-coordinates for the integrated system is given in
Table 6.13.

Table 6.13: Waypoints of Pselected for the integrated system

Waypoint index North East Down
0 7036891 570127 1
1 7036905 570173 27
2 7036929 570189 28
3 7036945 570190 28
4 7036970 570197 30
5 7036990 570206 36
6 7036990 570226 36

Subsequently, Pselected is applied to simulations of autonomous docking missions in auto-depth
mode and auto-altitude mode.
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6.2.1 Auto-Depth Mode

Furthermore, simulations of the integrated system in auto-depth mode described in Section 5.6.1
are carried out. Figure 6.18 depicts the trajectory of the ROV Minerva 2 in the three-dimensional
environment with the obstacles represented by red spheres. Estimated, measure and desired posi-
tions are represented by the blue, dashed black and green lines, respectively.

Figure 6.18: 3D ROV trajectory in auto-depth mode

Similarly, Figure 6.19 illustrates the trajectory of Minerva 2 in the NE-plane. The ROV is illus-
trated by blue rectangles at time instants throughout the simulations, enabling visual inspection
of the vehicles heading.

71



Chapter 6. Results

Figure 6.19: 2D ROV trajectory in the NE-plane in auto-depth mode

Moreover, Figure 6.20 gives the time-evolution of the NED-coordinates during the simulation in
auto-depth mode. Measured, estimated, and desired coordinates are given by blue, red, and green
lines, respectively.
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Figure 6.20: Time evolution of NED-coordinates in auto-depth mode

Also, Figure 6.21 represents the thruster rpm percentage according to a constraint of a maximum
rpm of 1450 rpm defined in the control system.
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Figure 6.21: Time evolution of thruster %-rpm in auto-depth mode

Lastly, Figure 6.22 represents the time-evolution of the ROV altitude profile throughout the sim-
ulation.
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Figure 6.22: Time evolution of ROV altitude in auto-depth mode
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6.2.2 Auto-Altitude Mode

Moreover, simulation of the integrated system in auto-altitude mode described in Section 5.6.2 is
performed. Simulations in auto-altitude mode require additional input, namely desired altitude,
which is defined as given in Table 6.14.

Table 6.14: Additional auto-altitude path planning problem parameters

Property Symbol Value Unit
Desired altitude 4 [m]

Figures 6.23 and 6.24 depicts the ROV Minerva 2 trajectory, analogous to to the plots given in
Section 6.2.1.

Figure 6.23: 3D ROV trajectory in auto-altitude mode
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Figure 6.24: 2D ROV trajectory in the NE-plane in auto-altitude mode

Similarly as in section 6.2.2, plots of time evolution of the NED-coordinates, time evolution of
thruster rpm percentage and time evolution of ROV altitude are given in Figures 6.25, 6.26 and
6.27, respectively.
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Figure 6.25: Time evolution of NED-coordinates in auto-altitude mode
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Figure 6.26: Time evolution of thruster %-rpm in auto-altitude mode
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Figure 6.27: Time evolution of ROV altitude in auto-altitude mode

6.3 Extended Case: Curved Seafloor

An extended case is defined for simulation and examination of the integrated system in auto-
altitude mode. The simulation takes place in an environment with a curved seafloor defined in
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Verdandi as described in Section 5.5. The coefficient defining this seafloor corresponding to the
coefficients in (5.1) given in Table 6.15, describing a curved seafloor.

Coefficient Value
a0 40
a1 0.001
b1 0.001
a2 0.004
b2 0.004

Table 6.15: Verdandi seafloorcoefficients

Furthermore, the optimal path planning problem parameters for this scenario is given in Table
6.16. These parameters are applied to the optimal path planning problem defined in Section 3.7.7,
including all four objectives, namely, O1, O2, O3 and O4. The NSGA-II parameters are as defined
in Table 6.1 and the path selector parameters are as defined in Table 6.8. Note that knowledge
about the sea depth is lacking. However, a desired depth of 60 meters is applied to avoid obstacles.
Also, the final position representing the position of the docking station is situated four meters
above the seafloor.

Table 6.16: Path planning problem parameters for extended case

Property Symbol Value Unit
Initial position (x0, y0, z0) (7036891, 570126, 0) [m]
Final position (xn, yn, zm) (7036990, 570226, 115) [m]

Obstacle 1 position (xo1, yo1, zo1) (7036940, 570176, 45) [m]
Obstacle 2 position (xo2, yo2, zo2) (7036920, 570156, 35) [m]

Obstacle radius 10 [m]
Final heading ψn -90 [◦]

Number of interior waypoints K 4
Number of objectives M 4

Safety margin to obstacles acting in O2 m 5 [m]
Sea depth zmax [m]

Desired depth zdesired 60 [m]
Altitude limit acting in O4 zlimit 5 [m]

Desired altitude 4 [m]

Figure 6.28 provides a three-dimensional graphical representation of the extended case of the
optimal path planning problem. The Figure displays the selected path as before, the curved seafloor
represented by the plane, and the two obstacles represented by red spheres. Note that the selected
path intersects the curved seafloor, and thus, the simulation is performed using auto-altitude mode
at the desired altitude indicated in Table 6.16.
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Figure 6.28: 3D plot of generated path for extended case

The objective function values of the selected path, Pselected, for the extended case is given in Table
6.17.

Table 6.17: Properties of the selected path, Pselected, M = 4

Objective Value Unit
Path length O1(Pselected) 291.867 [m]

Safety maring O2(Pselected) -7.1160 [−]
Sharpest turn in NE-plane O3(Pselected) 0.6377 [rad]

Largest depth deviation O4(Pselected) -1.5439 [−]

Additionally, the waypoints of b the selected path, Pselected in NED-coordinates for the extended
case is given in Table 6.18.

Table 6.18: Waypoints of Pselected for the extended case

Waypoint index North East Down
0 7036891 570127 1
1 7036920 570143 58
2 7036953 570158 56
3 7036963 570172 58
4 7036967 570188 57
5 7036990 570206 115
6 7036990 570226 115

Next, simulation results from the extended case simulated in the integrated system using auto-
altitude mode is given. Figures 6.29 and 6.30 depicts the ROV Minerva 2 trajectory in NED-
coordinates, analogous to plots given in section 6.2.1, also including the curved seafloor.
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Figure 6.29: 3D ROV trajectory in the extended case

Figure 6.30: 3D ROV trajectory in the extended case

Similar as in previous sections, Figure 6.31 represents the time-evolution of the ROV altitude.
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Figure 6.31: Time-evolution of ROV altitude in the extended case

Additionally, Figure 6.32 represents the time-evolution of the measurements, and corresponding
estimates of the four acoustic beams from the DVL mounted on the ROV Minerva 2.
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Figure 6.32: DVL measurements and estimates from extended case simulation
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Chapter 7

Discussion

This Chapter consists of a discussion on the results provided in Chapter 6. Similarly, this Chapter
is also divided into two overall categories corresponding to the different categories of results in
Chapter 6:

1. Discussion on the results obtained from the Matlab-coded NSGA-II based path planner given
in Section 6.1. This discussion is given in Section 7.1.

2. Discussion corresponding to the results obtained from LabVIEW simulations of the integrated
system given in Section 6.2. This discussion is given in Section 7.2.

7.1 Optimization

Initially, the choice of NSGA-II parameters given in table 6.1 should be commented on. This set
of parameters is applied to solving optimal path planning problems subject to both three and four
objectives, of which graphical results are provided in Sections 6.1.1 and 6.1.2, respectively.

The choice of NSGA-II parameters presented in Table 6.1 governs from two factors, namely, rec-
ommendations from the literature [8], [37], [3], as well as trial and error. For instance, testing
yields that reducing the SBX distribution index, ηc, from 20 to 5 rendered a population with a
larger spread in the solution space, and thus an overall more satisfactory choice of selected path by
the path selector provided in Algorithm 1. Smaller ηc provides NSGA-II with broader searching
abilities, while larger ηc implies higher precision, as addressed in Section 4.1.4. The fact that ηc is
constant in NSGA-II seems to make the algorithm for this application favour a smaller value for ηc
since the path selector provides additional preferences when it comes to selecting a suitable path.
As for the polynomial distribution index, ηm = 20 seems to be a sufficient choice as this parameter
determines the magnitude of the perturbation of the child solution relative to the parent solution,
as addressed in Section 4.1.5. Moreover, the SBX probability, pc, and the mutation probability, pm
are chosen according to literature, whereas, the population size, N , and the number of generations,
G, are set reasonably large.

Note that there are not made any effort of finding the best possible values for N and G. In
this context, the best possible values are high enough to generate satisfactory performance while
minimizing computational requirements. Obtaining ideal parameter settings for N and G should be
done if the optimal path planner is to be applied to scenarios where computational requirements
are crucial, such as real-life applications or online enhancements. This thesis emphasizes the
exploration of the functionalities of the path planner; however, work on ideal parameter settings
could be a topic in case of further development of the NSGA-II based optimal path planner.
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Nevertheless, establishing an ideal choice for G could be done by running the optimal path planner
for different numbers of generations G and examine the performance of the results obtained with
the different settings. For instance, the mean objective function values could be calculated for
path planners with different G to determine at what G the objective function values converge to
values that can be reviewed as optimal. The convergence is in coherence with decent optimization
performance, as stated in Chapter 4. To eliminate uncertainties, the optimization on each G can
be run multiple times, thus, the review-able objective function values would be the mean among
the runs at the G-value in question.

Also, determining a sufficient value of N would affect the search power of the path planner, that
is, the path planners ability to explore the entire search space. As stated in Chapter 4, diversity
among the paths contained in the final population is a desired property in the optimization.

As stated in Section 4.1.6, the computational complexity is proportional to N2. Also, G will affect
the running time of the main loop in Algorithm 5. These facts indicates the possibility of increasing
the efficiency of the NSGA-II based optimal path planner by ideal parameter settings.

Moreover, when examining the performance of the NSGA-II based optimal path planner in the
results provided in Section 6.1 some general parameters are applied to all simulations, given in
Table 6.2. This is motivated by achieving comparability between the different simulated scenarios.

Furthermore, another parameter that should be reviewed in terms of computational complexity
is the number of interior waypoints, K. The parameter K is defined individually for the results
obtained throughout Chapter 6. Increasing K results in the search space having a higher dimension,
and thus, more computational power is required and vice verca. Note that the magnitude of K
directly affects the dimension of N . Of course, the suitable choice of K depends on the mission at
hand.

7.1.1 Path Planner with Three Objectives, O1, O2 and O3

Now, contemplation of the results in Section 6.1.1 obtained from the three-objective path planner,
namely taking into account the objectives O1, O2 and O3. In the subsequent post-processing of the
NSGA-II solution to the optimal path planning problem defined in Section 3.7.7, a suitable path is
chosen by the path selector. Visual inspection of the selected path, Pselected, given in Figures 6.1,
6.2 and 6.3 shows that a relatively short path, with sufficient safety margin and absence of sharp
turns in the NE-plane is obtained. These are desired properties in coherence with the applied
objective functions, in the three-objective case O1, O2 and O3, defined throughout Section 3.7.

Furthermore, examination of the performance of the optimization by visual inspection of Figures
6.4, 6.5, 6.6 and 6.7 concerning data on the final population of paths P , suggests that there are
clear trends in all these Figures. The objective function values of the final population seem to
somewhat converge to something that looks like a Pareto-optimal front for a constrained optimiza-
tion problem. Convergence to a Pareto-optimal front is desirable, as addressed in Section 4.1.7.
Additionally, the objective function values have a decent spread within the search space defined
in the optimal path planning problem. The latter indicates diversity among the final population,
which addressed as another desired property of optimization in Chapter 4. Thus, the performance
of the NSGA-II based optimal path planner can be claimed to be good for this application.

Also, by reviewing the numeric data provided on Pselected and the final population P , given in
Tables 6.5 and 6.6, respectively, several comments can be made. By the path selector in Algorithm
1, the length of the selected path, O1(Pselected), is defined as the approximate mean of the shortest
path length, O1,min ∈ P , and the average path length, O1 ∈ P , in the final population P . The
numerical values show that O1(Pselected) is contained in the interval

[
O1,min, O1

]
, indicating that

the path selector could find a path satisfying this requirement while also satisfying the requirement
on O2. The path selector cannot simply obtain Pselected as the path with the property closes to
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the requirement on O1, because the requirement on O2 is also taken into account. This causes
a deviation between the lenght of the selected path O1(Pselected) and the ideal lenght defined
according to preferance by the path selector.

Furthermore, as Table 6.4 indicates, the scaling factor βO2 takes a value such that the maximum
allowed safety margin to obstacles, O2,required, for the path chosen by the path selector is 80% of
the mean safety factor in the final population, O2 ∈ P . Note that the values of O2 are negative!
Contemplation of the numerical values of these parameters shows that Pselected takes on, by far, a
better safety margin to obstacles than required by the path selector. And thus, the indication that
the optimal path planner could be able to generate a path satisfying stricter requirements on O2.

Finally, the last objective, that is, avoidance of sharp turns in the NE-plane O3, is not taken into
consideration by the path selector. Thus, O3 can be said to be the lesser important objective,
intentionally, because this objective does not affect safety and energy consumption in the same
extent as the two former objectives, namely O1 and O2. On the other hand, the presence of O3

in the optimal path planner is still beneficial as this objective, in fact, helps the path planner get
rid of paths with sharp turns throughout the optimization. Presence of sharp turns in the selected
path can cause unnecessary wear and tears on the actuators of the ROV and indirectly cause a
longer path length. However, for curiosity, it can be seen that O3(Pselected) takes a lower value
than the mean in the final population, O3 ∈ P .

Moreover, only one path is discarded by the path selector before a proposed path that suffices the
criteria is obtained as Pselected. Summing up, taking the above comments into account, it can be
said that the three-objective optimal path planning problem for autonomous docking missions is
easily solved with decent performance by the NSGA-II based path planner and the subsequent
path selector.

7.1.2 Path Planner with Four Objectives, O1, O2, O3 and O4

Next, the results from the four objective NSGA-II based path planner are examined. In this
scenario, the optimal path planning problem for autonomous docking missions defined in Section
3.7.7 includes all four objectives, namely, O1, O2, O3 and O4. Post-processing results are provided
in Section 6.1.2, where Figures 6.8, 6.9 and 6.10 depict a graphical representation of the selected
path. As in the three-objective case, visual inspection yields that a relatively short path with
sufficient safety margin and absence of sharp turns in the NE-plane is obtained. Additionally, it
can be observed that in this case the interior waypoints contained in the selected path are located at
a greater depth, underneath the obstacles in the environment. The deeper location of the interior
waypoint is caused by including O4 to the optimal path planning problem and can be described as
beneficial as the likelihood of achieving reliable DVL measurements is far better at higher depth.
Of course, presupposing that the sea depth in the environment is known is necessary. Overall, the
selected path has the desired properties in coherence with the applied objective functions, in the
four-objective case O1, O2, O3 and O4, defined throughout Section 3.7.

Moreover, graphical post-processing results on the final population of paths P in the four-objective
case are provided in Figures 6.11, 6.12, 6.13 and 6.14. For simplicity, two-dimensional plots are
not included since the increment in the number of objectives introduces a significant increase
in the number of plots, and thus, the visual inspection becomes somewhat more complicated.
However, by contemplation of the provided Figures trends can still be observed in all four plots,
even though, these trends may not be quite as distinct as in the three-objective scenario. There
is still convergence to something that looks like a Pareto-front, still with a decent spread in the
search space. These findings are in coherence with desired properties indicating good optimization
performance, addressed in Chapter 4.

Furthermore, the numerical data in tables 6.9 and 6.10 contains interesting information about the
four-objective path planner performance, concerning Pselected and the final population of paths,
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respectively. Indications show that the path length of the selected path, O1(Pselected) is contained
in the interval

[
O1,min, O1

]
∈ P , similary as discussed for the three-objective case in Section

7.1.1.

Also, the requirements on O2 and O4 according to the path selector in Algorithm 1 are satisfied,
namely, O2(Pselected) < O2,required and O4(Pselected) < O4,required. The former indicates sufficient
safety margin to obstacles while the latter indicates sufficiently small deviation between the desired
depth and the depth of the interior waypoints, in coherence with the objective funcitons defined
throughout Section 3.7.

For curiosity, it can be mentioned that even though it is not a requirement defined in the path
selector, O2(Pselected) is slightly smaller than O3 ∈ P . The benefits of O3 are discussed in Section
7.1.1.

Moreover, some comparisons could be drawn to the three-objective case to distinguish between
these two scenarios. The number of paths discarded by the path selector is 41 in the four-objective
scenario, versus only one in the three-objective scenario. In the four-objective case, O4 is taken
into account in the path selector such that yet another requirement concerning Pselected has to be
satisfied. With the path selector parameters βO2 = 0.8 for both scenarios and βO4 = 1, for the
four-objective scenario, it can be said that the requirement on O4 is the stricter one. Including O4

can be justified from a safety point of view, as it, by a decent likelihood, ensures reliability and
availability of DVL measurements. Thus, autonomous docking missions can be carried out with
proper state estimation. In the absence of proper state estimation, the operation would probably
be too unsafe to perform. Nevertheless, the introduction of the additional objective, O4, impacts
the properties of both the final population of paths P from the optimization as well as the selected
path, Pselected. Numerical data on the two solutions of the two optimal path planning problems,
with three and four objectives, respectively, is given in Table 7.1 to illustrate differences between
these two scenarios.

Table 7.1: Comparison path planners in sections 6.1.1 and 6.1.2

Property Value, M=3 Value, M=4 Comments
O1(Pselected) [m] 162.2595 186.6444
O2(Pselected) [−] -11.1240 -5.0394
O3(Pselected) [rad] 0.3011 0.1730
O4(Pselected) [−] -2.3090
O1,min ∈ P [m] 158.5337 164.9809 Mean path length increases
O1 ∈ P [m] 165.8948 187.1052 with introduction of O4.
O2 ∈ P [−] -10.7911 -5.3019 Mean safety margin decreases
O2,required [−] -8.6329 -4.2415 with introduction of O4.
O3 ∈ P [rad] 0.3811 0.2219
O4 ∈ P [−] -2.1799
O4,required [−] -2.1799

As Table 7.1 indicates, the mean path length increases with the introduction of the objective O4.
Naturally, this can be explained by comparison of Figure 6.1 and Figure 6.8, as the optimization
makes the path approach the bottom to fulfill O4 when it is included. Furthermore, it can be seen
that O1(Pselected) is shifted more towards O1 ∈ P than O1,min ∈ P in the four-objective scenario
versus the three-objective scenario, because the path selector is not able to find paths with length
closer to the ideal length fulfilling the other requirements. The relation between the ideal length
defined in the path selector and the actual length of Pselected discussed in Section 7.1.1, is still
valid in this comparison.

Moreover, the mean safety margin does indeed also deteriorate, which can be explained by the
fact that the optimization problem becomes harder as O4 is taken into account. However, critical
values of O2 are in the magnitude around −1 or higher, and NSGA-II is able to discard solutions
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with such O2-values throughout the optimization process. As a matter of fact, this concludes that
βO2 = 0.8 dictates a sufficient requirement in the path selector. On the other hand, even though
the safety margins are slightly worse in the four-objective case, as briefly mentioned already, the
introduction of O4 poses as an increase in safety for practical purposes. In real ROV operations, one
can be more certain that a worse safety margin on O2 is sufficient if O4 is introduced since by this
application the likelihood of achieving a well-behaved autonomous vehicle during an autonomous
docking mission through reliable state estimation is higher because of reliable DVL measurements,
as mentioned.

Finally, a general comment on the path selector, which does not search through the entire final
population but instead assigns the first and best candidate to Pselected. Once a candidate path that
satisfies the selection criteria is found, the path selection is aborted and the candidate in question
becomes Pselected. The motivation behind this is to save computational time. However, there can
exist paths within the final population that are better than Pselected.

7.1.3 In General on the NSGA-II Based Optimal Path Planner

At this point, the discussion explores the research question on which this thesis is built, considering
how a NSGA-II based optimal path planner could enable persistent autonomy in autonomous
docking missions. The optimization performance is thoroughly addressed in the above Sections.
However, as indicated in the literature review in Section 1.5.3, other EAs could achieve persistent
autonomy as well. More specifically, as given in the literature review, [3] proposes a QPSO based
optimal path planner for AUVs. If the QPSO based optimal path planner is redefined to take on
the optimal path planning problem for ROVs, it could be a satisfactory contender, if not an even
better path planner, to the NSGA-II based optimal path planner developed in this thesis.

7.2 Integrated System

Next, the performance of the integrated system described in Section 5.6 is examined in terms of
the results provided in Section 6.2. Note that the results presented in Sections 6.2.1 and 6.2.2
origins from a simplified simulation environment with a flat seafloor.

7.2.1 Path Generation in the Integrated System

First, some comments on the path planner integrated into the control system are made. As
mentioned, the scenario and the generated path upon which the autonomous docking mission in
both the auto-depth mode and the auto-altitude mode is based on are the same. An overview of
the path planning problem for autonomous docking and the corresponding selected path can be
obtained by contemplating Figures 6.15-6.17 and Table 6.11. In addition to the plots, numerical
values of the waypoints are given in Table 6.13. Note that the sea depth relative to the obstacle
positions renders an environment such that the ROV Minerva 2 cannot transit underneath the
obstacles as before. Visual inspection of the plots yields that a relatively short and collision-free
path, Pselected is generated as a member of the final population in the path planner and chosen
by the path selector. The path has properties like an absence of sharp turns in the NE-plane and
small deviations from the desired depth, zdesired in D-coordinates by inspection of Table 6.13. The
sea depth in the simulated environment is 40 meters, and the desired depth is 30 meters, such
that it is desirable that Minerva 2 transits 10 meters above the seafloor as taken into account by
O4. By inspection of the D-coordinates of the interior waypoints in Table 6.13, is can be seen
that all D-coordinates are contained in the interval [zdesired− zlimit, zdesired + zlimit]. Throughout
the optimization, paths that do not fulfill this will be penalized worse due to O4. The problem
parameters for scenarios simulated in the integrated system are different than before, such that the
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path length O1(Pselected) is not comparable to previous path lengths, whereas, the other objective
function values of Pselected are comparable and, in fact, very similar to those obtained in the four
objective path planner as a stand-alone application in Section 6.1.2.

Furthermore, the same path is applied in both auto-depth mode and auto-altitude mode. This
is done due to comparability reasons, in addition to a previously stated assumption supporting
the application of all four objectives, namely, O1, O2, O3 and O4. This assumption, see Section
5.6.2, states that the objective function O4 should be included also when generating paths for the
auto-altitude mode, due to an assumed small deviation in obtained D-coordinates in the generated
path and D-coordinate followed by the ROV in auto-altitude mode. Thus, rendering a safe and
collision-free trajectory.

7.2.2 Comparison of Auto-Depth Mode and Auto-Altitude Mode

Moreover, the overall performance of Minerva 2 during docking operation in both auto-depth mode
and auto-altitude mode is examined in order to distinguish between the general ROV behaviour
obtained by these two modes.

Comparison of the three-dimensional Minerva 2 trajectory depicted in Figures 6.18 and 6.23 rep-
resents the auto-depth mode and the auto-altitude mode behavior, respectively, yields that the
vehicle is able to perform collision-free trajectory in both modes. Visual inspection yields that es-
timated, measured and desired positions coincide quite well in both cases. However, one difference
between the two modes is that in auto-altitude mode Minerva 2 dives down to the desired altitude
before starting to move in the NE-plan, whereas, in auto-depth mode, Minerva 2 simply follows
the path as it is. This is expected behaviour in coherence with the modes defined in Section 5.6,
indicating that the travel time in auto-altitude mode is longer than in auto-depth mode assuming
that Minerva 2 is deployed from the surface.

Furthermore, Figures 6.19 and 6.24 reveals information about Minerva 2’s orientation in the NE-
plane, i.e. heading, in the auto-depth mode and the auto-altitude mode, respectively. Figure 6.24 is
somewhat distorted around the initial position, which corresponds to the initial diving down to the
desired altitude in the auto-altitude mode trajectory. Visual inspection yields similar performance
in both modes, however, the heading appears as slightly more oscillatory in auto-altitude mode.
This behaviour is likely caused by the integrated use of the altitude controller and might be solved
by tuning of controller gains, which is out of scope in this thesis.

Contemplation of the time evolution of the NED-coordinates throughout simulations in auto-
depth mode and auto-altitude mode, given in Figures 6.20 and 6.25, respectively, gives a more
detailed review of the relationship between measured, estimated and desired positions. Comparison
supports the previous statement that the behaviour is slightly more oscillatory in auto-altitude
mode compared to in auto-depth mode. However, the measured, estimated and desired positions
still seems to coincide quite well. This observation indicates satisfactory performance of the control
system described throughout Chapter 3. The measurements, represented by the blue lines in the
Figures indicate that the measurements are slightly off, as expected in underwater navigation.
Nevertheless, the observer seems to be able to produce sufficient state estimates. The discontinues
in the North and East coordinate time evolution occurring in transitions between waypoints is
expected due to the nature of constant jerk guidance, which finds the fastest path between two
waypoints before redirecting the heading of the vehicle toward the next waypoint. By the nature
of the constant jerk guidance, the heading should always be directed towards the next waypoint.
This may cause a somewhat unsmooth trajectory, however, constant jerk guidance is suitable for
over-actuated ROVs in environments requiring high precision. Constant jerk guidance benefits
from its applicability to waypoint based paths consisting of straight-line path segments, as no path
refinement, for instance, to splines is necessary, and thus, saving computational resources. On the
other hand, speed reference guidance schemes could be implemented such that the ROV does not
attain zero forward velocity during longer transits.
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Moreover, Figures 6.21 and 6.26 depicts the time evolution of thruster rpm percentage of maximum
rpm constrained by the control system at 1450 rpm during simulations in auto-depth mode and
auto-altitude mode, respectively. The plots display similar results in both modes. However, the
maximum amplitude has a slightly higher magnitude of about 30 % in auto-altitude mode versus
just outside of 25 % in auto-depth mode. This difference can be considered insignificant due to
the small deviation in rpm percentage in the two scenarios, and as there are loads of available rpm
for unexpected events. Nevertheless, the difference can simply represent the already mentioned
slightly more oscillatory behavior in auto-altitude mode and might be solved by tuning controller
gains for altitude control.

Visual inspection of Minerva 2’s altitude profile during simulations in auto-depth mode and auto-
altitude mode, given in Figure 6.22 and 6.27, respectively, yields expected differences. The altitude
profile obtained in auto-depth mode reveals that Minerva 2 transits at an altitude corresponding
to the waypoint D-coordinates of Pselected given in Table 6.13, whereas, after the initial diving,
Minerva 2 takes on the desired altitude in the auto-altitude scenario. In the latter scenario,
however, there seems to be some overshoot in the transition between diving and transit.

Finally, it should be noted that the two scenarios simulated and examined so far are two simplified
scenarios designed to distinguish between auto-depth mode and auto-altitude mode. More sophis-
ticated scenarios will typically be defined such that the assumption stating that the seafloor is
flat does not hold. In addition, detailed knowledge about the sea depth is not necessarily known,
however, the depth at the position from which Minerva 2 is deployed, that is, the initial position,
can easily be measured by the mother-ship. The position of the docking station is known since
the docking station at some point in time is installed there. Thus, the path planner could use an
approximate input for sea depth and generate a path for the application of auto-altitude mode
without the risk of bottom collision. Alternatively, the desired depth could be defined in coherence
with known static obstacles in the environment.

7.2.3 Extended Case

Next, the performance of the extended case simulation results presented in Section 6.3 is examined.
Note that this is a different scenario than simulated before, with parameters given in Table 6.16
acting as inputs in the optimal path planning problem defined in Section 3.7.7. Contemplation
of Figure 6.28 and Table 6.18 illustrating the generated path, Pselected rules out the possibility
of performing autonomous docking utilizing auto-depth mode, due to the fact that Pselected in-
tersects the seafloor. The intersections are caused by the fact that the seafloor is curved, and
such seafloors cannot directly be defined in the path planner as it is. Simply, the intersections
mean that autonomous docking cannot be performed in auto-depth mode while avoiding bottom
collision. Thus, the simulation is carried out in auto-altitude mode with at the desired altitude of
four meters as indicated by Table 6.16. Furthermore, Table 6.17 displays the objective function
values of Pselected for the extended case. It is indicated that Pselected has a sufficient safety margin
to obstacles, O2(Pselected). Also, O4-parameters are defined according to obstacle positions, solely
to provide an obstacle collision-free path in auto-altitude mode in coherence with the previously
stated assumption that the operation depth difference between auto-depth mode and auto-altitude
mode is not too large. Moreover, by visual inspection, Pselected has properties like absence of sharp
turns and is relatively short.

Both the plots representing the trajectory of Minerva 2 throughout the simulation, namely Figure
6.29 and 6.30, and Figure 6.31 representing the time evolution of the ROV altitude, indicates that
the autonomous docking is successfully carried out at a constant desired altitude in accordance
with Table 6.16. However, the behaviour seems to be slightly oscillatory with some overshoot
tendencies in waypoint transitions. This is mentioned before as a problem that can be solved by
tuning the control system. As this thesis emphasizes path planning, this issue is out of scope and
it is assumed that the performance can be enhanced by tuning of the altitude control scheme.

89



Chapter 7. Discussion

Additionally, the time evolution of measured and estimated DVL altitudes is given in Figure 6.32.
Also, as indicated by Figure 6.28 and Table 6.15, the seafloor in this scenario gets steeper the
further away from the initial position Minerva 2 transits. Thus, visual inspection of Figure 6.32
yields that acquiring reliable DVL altitudes becomes more difficult as the seafloor becomes steeper,
as expected based on Section 3.6. However, the estimated, measured and desired positions plotted
in Figures 6.29 and6.30 still coincides well, indicating satisfactory state estimation, and does not
seem to suffer significantly from this slight deterioration of DVL altitude availability. On the other
hand, performing autonomous docking in an environment that is as steep as in this case can be
considered a somewhat extreme case. Thus, this scenario demonstrates that the capabilities of the
integrated system performing autonomous docking missions in auto altitude mode are satisfactory.

Summing up, it seems like the auto-depth mode outperforms auto-altitude in terms of less os-
cillatory behaviour and less overshoot, however, it is assumed that this difference in behaviour
can be neutralized by tuning of controller gains. Moreover, assuming that the performance can
be improved by tuning of controller gains, the auto-altitude is believed to be superior over the
auto-depth mode for more sophisticated scenarios where the seafloor cannot be assumed to be flat
and/or detailed knowledge about the sea depth is lacking. The benefits of online altitude control
support this preference, as safety increases in this mode when the trajectory gets difficult. The
increased likelihood of reliable DVL measurements in auto-altitude mode is essential for satisfac-
tory state estimation and elimination of the risk of bottom collision, and thus, safe autonomous
docking. The use of online altitude control renders the auto-altitude mode a semi-online path
planning scheme, which can be further extended in future studies for making the NSGA-II path
planner fully online with integrated obstacle avoidance and online re-planning.
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Chapter 8

Conclusions

This Chapter presents some concluding remarks based on the discussions given throughout Chapter
7, corresponding to the reseach topic and objectives stated in Section 1.3.

8.1 Conclusions

This master’s thesis explores the research hypothesis stating that the ROV control system will
benefit from a high-performance path planner based on the non-dominated sorting genetic algo-
rithm (NSGA-II). The contribution of this master thesis is a NSGA-II based optimal path planner
allowing the ROV Minerva 2 to take on autonomous docking missions, through the implementation
of the path planner into the ROV control system, forming an integrated system. The integrated
system enables Minerva 2 to perform an optimal trajectory for autonomous docking by following
a path consisting of waypoints.

The thesis emphasizes path planning, an essential component in the high-level autonomy module
in the ROV control system, which is essential for achieving persistent autonomy. The work is
motivated by the desire of increasing the level of autonomy in ROV operations. Increasing the
level of autonomy is believed to streamline ROV operations by saving cost, increasing accuracy
and efficiency, while maintaining safety. A higher level of autonomy will make ROVs less depen-
dent on human intervention, and thus, saving costs. The advanced control structure, including
an optimal path planner, will increase accuracy and efficiency. Lastly, maintaining safety is ob-
tained by satisfactory performance of the integrated control system, and indirectly, by less human
intervention.

The optimal path planning problem for autonomous docking missions proposed in this thesis is
defined as a multi-objective optimization problem, assigning optimal paths four desirable prop-
erties. The four objectives corresponding to these properties are the path length, safety margin
to obstacles, the absence of sharp turns in planar motion, and sufficient depth, ensuring reliable
altitude measurements by the Doppler velocity log.

The optimal path planner is developed by applying NSGA-II to the optimal path planning problem.
The performance of the NSGA-II based optimal path planner is examined through simulations
concerning the path planner as a stand-alone application. Through optimization, the path planner
generates a population of Pareto-optimal paths, that is, paths that all are optimal and equally
good in terms of objective function evaluation. One of these paths is chosen for ROV autonomous
docking trajectory by the path selector. The path selector is based on additional user-defined
preferences on the path-objectives.
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The integrated system consists of the path planner implemented in the control system of Minerva
2. Hardware-in-the-loop (HIL) simulations are carried out to examine the performance of the
integrated system in different autonomous docking scenarios. The performance of the integrated
system is reviewed in context with the control architecture of the entire control system. The
integrated system is developed to enable autonomous docking trajectories in two different modes.
The first mode, called auto-depth mode, tracks the path as it is generated by the path planner. The
latter mode, auto-altitude mode, updates the depth-coordinates of the generated path online by
following the seafloor at the desired altitude by altitude control. Both modes generate trajectories
avoiding static obstacles, that also take on desired properties as defined by the objectives. The
auto-altitude mode causes the ROV to dive down to the desired altitude initially in the docking
mission, but also guarantees reliable DVL measurements, and thus, eliminates the risk of bottom
collision. Hence, the auto-altitude mode is considered the preferred choice for autonomous docking
missions. The performance in terms of the control system is satisfactory in both modes. However,
there are slightly more oscillatory behavour in the auto-altitude mode. This challenge is likely
solvable by tuning of the control system. Coinciding desired and estimated states from simulations
indicate that the performance of the observer is sufficient when DVL measurements are reliable.

Moreover, the NSGA-II path planner is efficient in terms of computational complexity. The control
system uses constant jerk guidance for position reference, which is a waypoint based guidance
scheme. Such waypoint based guidance schemes eliminate the need for further path refinement,
and thus, save computational resources.

Lastly, it can be concluded that the NSGA-II based optimal path planner is a high-performance
path planner for autonomous docking missions of Minerva 2.

8.2 Further work

During the work with this master thesis, several research topics for further work have come to
mind. Initially, due to technical difficulties with the ROV Minerva 2 and its mother-ship, RV
Gunnerus, field trials have unfortunately not been possible to carry out. Testing the NSGA-II
based optimal path planner in real-life operations would have been interesting, as field experience
on the performance of path planners is an incomplete research area.

Another topic for a future study could be developing a quantum-behaved particle swarm optimiza-
tion (QPSO) based optimal path planner for autonomous ROV docking missions and compare the
performance with the NSGA-II based optimal path planner.

Furthermore, augmentation of the NSGA-II based optimal path planner to include more online and
re-planning functionalities is an interesting research topic. A reactive component able to detect
and avoid obstacles will probably enhance the integrated system. Once the detected obstacle is
avoided, the NSGA-II based optimal path planner could re-plan its path from its current position
to the destination due to the sufficient computational complexity of the path planner.
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Appendices

A Matlab-code

In the following appendices, the Matlab-code that is the proposed NSGA-II optimal path planner
is presented. The Matlab directory is developed in coherence with the Algorithm 5 provided in
Section 5.1. Additionally, Appendix A2 provides an example parameter setting for an optimal
path planning problem concerning autonomous docking, corresponding to the problem defined in
Section 3.7.7.

A1 Main.m

1 %% Main NSGA -II optimal path planner

2 % *************************************************************************

3 % This is the main program for the NSGA -II based optimal path planner

4 % designed to take on autonomous docking missions for the ROV Minerva 2.

5 % Followingly , a description of the subfiles and functions and a user -guide

6 % for definintion of the path planning problem:

7 %

8 % 1. parameters.m: Contains the optimal path planning parameters and the

9 % NSGA -II parameters. This file should be modified if other

10 % path planning scenarios are to be examined.

11 %

12 % 2. initialize_population.m: This function creates an initial population

13 % of size 2N at random based on the input from

14 % parameters.m. This function calls the function

15 % OFE_multiple_obstacles () for objective functon

16 % evaluation of all the members , i.e. paths , in

17 % the population. The function returns a matrix

18 % where each row corrsponds to one path.

19 %

20 % 3. NDS_CDA.m: This function handles the non -dominated sorting and

21 % crowding distance assigment of the population in question. The

22 % function appends rank and crowding distance to the matrix

23 % containing information about the population

24 %

25 % 4. BTS.m: This function carries out binary tournament selection based on

26 % an input population and returns the winners of the tournament.

27 %

28 % 5. make_new_pop.m: This function returns an offspring population based

29 % on a parent population utilizing the genetic operators

30 % simulated binary crossover and polynomial mutation. The

31 % function calls the function OFE_multiple_obstacles ()

A1



Appendices

32 % for objective functon evaluation of all the members ,

33 % i.e. paths , in the population.

34 %

35 % 6. selection.m: This function carries out selection of paths for

36 % reproduction , i.e. determines the parent population ,

37 % based on rank and crowding distance. If paths cannot be

38 % distinguished from one another , the function

39 % calls BTS() to complete the selection such that the size of

40 % the parent population becomes N.

41 %

42 % 7. path_selector.m: This is a post -processing file selecting one path

43 % among the obtained Pareto -optimal paths that cannot be

44 % distinguished from one another. This file should be

45 % modified in accordance with the preferred properties of

46 % the selected path.

47 %

48 % 8. plot_tool.m. This file plots the results of the optimization , namely ,

49 % the objective functions values of the final population

50 % compared among one another and the selected path in the

51 % defined environment.

52 %

53 % For more background on the theory and method behind the development of

54 % this path planner , see:

55 % Hansen , Tobias Lars , "A NSGA -II Based Optimal Path Planner for Autonomous

56 % Docking of ROV Using Waypoint Guidance", 2019.

57 % *************************************************************************

58 % Programmed by: Tobias Lars Hansen , 2019.

59 % *************************************************************************

60 %%

61 clear all; close all; clc;

62

63 %% Initializing parameters

64 parameters;

65

66 %% Generating random population R_0

67 % R_0: size 2*N

68 % Evaluating objective functions for initial population , i.e. calls OFE()

69 R_0 = initialize_population(N, V, K, M, start_pos , final_pos ,...

70 min_range , max_range ,...

71 min_dist , obs_vec , z_terrain , pen_pos );

72

73 %% Non -dominated sorting and crowding distance assignment of R_0

74 R_0 = NDS_CDA(R_0 , V, K, M);

75

76 %% Binary Tournament Selection - generating initial parent population P_0

77 % P_0: size N

78 P = BTS(R_0 , N, V, K, M);

79

80 %% Generating initial offspring population Q_0

81 % Q_0: size N

82 % Objective function evaluation is carried out for offspring population ,

83 % i.e. calls OFE()

84 Q = make_new_pop(P, V, K, M,...

85 p_c , eta_c , p_m , eta_m ,...

86 min_range , max_range ,...

87 min_dist , obs_vec , start_pos , final_pos ,...
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88 z_terrain , pen_pos );

89

90 %% Main loop

91 for i = 1:G

92 %% Intermediate Solution R

93 % R_1: size 2*N

94 % R_1 is obtained by concatenation of P_0 and Q_0

95 R(1:N,:) = P;

96 R(N+1:2*N,:) = Q;

97

98 %% Non -dominated sorting and crowding distance assignment of R

99 R = NDS_CDA(R, V, K, M);

100

101 %% Selecting next parent generation , P

102 P = selection(R, N, V, K, M);

103

104 %% Generating next offspring population Q

105 Q = make_new_pop(P, V, K, M,...

106 p_c , eta_c , p_m , eta_m ,...

107 min_range , max_range ,...

108 min_dist , obs_vec , start_pos , final_pos ,...

109 z_terrain , pen_pos );

110

111 end

112

113 %% Post processing

114 % Selecting path according to preferences

115 path_selector;

116 nbPath = a_index;

117 % plotting results

118 plot_tool;
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A2 parameters.m

1 %% Description:

2 % *************************************************************************

3 % This file contains the parameters settings for NSGA -II and the parameters

4 % defining the optimal path planning problem for autonomous docking

5 % missions.

6 %

7 % This file should be modified if desireable to solve the path planning

8 % problem for different scenarios.

9 %

10 % For explanation of the parameters , please read comments throughout the

11 % code and/or see:

12 % Hansen , Tobias Lars , "A NSGA -II Based Optimal Path Planner for Autonomous

13 % Docking of ROV Using Waypoint Guidance", 2019.

14 % *************************************************************************

15 % Programmed by: Tobias Lars Hansen , 2019.

16 % *************************************************************************

17 %% Parameters

18 deg2rad = pi /180;

19 %% NSGA -II parameters:

20 N = 100; % Population size

21 G = 500; % Stopping criterion , number of generations

22 V = 3;

23 M = 4; % Number of objective functions

24

25 %% Parameters for Genetic Operations

26 % Simulated Binary Crossover (SBX) parameters

27 p_c = 0.9; % Crossover probability

28 eta_c = 5; % Distribution index , 20 suggested by literature

29 % Polynomial Mutation

30 p_m = 0.1; % Mutation problability

31 eta_m = 20; % Distribution index

32

33 %% Environment parameters

34 % Initial position

35 x0 = 1;

36 y0 = 1;

37 z0 = 1;

38 start_pos = [x0, y0, z0];

39

40 % Destination

41 x_final = 100;

42 y_final = 100;

43 z_final = 190;

44 final_pos = [x_final , y_final , z_final ];

45

46 % Final heading

47 heading_final = -90* deg2rad; % 0 deg is towards north

48

49 % Length of last path segment

50 length_last_segment = 20;

51

52 % Penultimate position

53 x_pen = final_pos (1) + cos(heading_final )*(- length_last_segment );

54 y_pen = final_pos (2) - sin(heading_final )*(- length_last_segment );
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55 z_pen = z_final;

56 pen_pos = [x_pen , y_pen , z_pen];

57

58 % Variable bounds

59 xxmin = [x0, x_final , x_pen ];

60 xxmax = [x0, x_final , x_pen ];

61 yymin = [y0, y_final , y_pen ];

62 yymax = [y0, y_final , y_pen ];

63

64 x_min = min(xxmin) - 1;

65 x_max = max(xxmax) + 1;

66

67 y_min = min(yymin) - 1;

68 y_max = max(yymax) + 1;

69

70 z_min = 30;

71 z_max = 70;

72

73 % Range vectors

74 max_range = [x_max , y_max , z_max ];

75 min_range = [x_min , y_min , z_min ];

76

77 % f(4)

78 z_terrain = z_max - 10;

79

80 K = 4; % Number of interior waypoints

81

82 % Obstacle position(s)

83 x_obs = 50;

84 y_obs = 50;

85 z_obs = 60;

86 % obs_vec = [x_obs , y_obs , z_obs ];

87

88 x_obs_2 = 30;

89 y_obs_2 = 30;

90 z_obs_2 = 40;

91 obs_vec = [x_obs , y_obs , z_obs , x_obs_2 , y_obs_2 , z_obs_2 ];

92

93 % Assuming spherical obstacle , with the following radius

94 radius_obs = 10;

95

96 % Minimum accepted distance from obstacle in meters

97 min_dist = radius_obs + 5;
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A3 OFE multiple obstacles.m

1 function f = OFE_multiple_obstacles( vec ,...

2 K, V, min_dist , obs_vec , z_terrain)

3 %% Description

4 % *************************************************************************

5 % This function evaluates the calculates the objective functions for each

6 % path. The function takes one path , f, as input at the time.

7 %

8 % The first objective function , f(1), calculates the path length.

9 %

10 % The sectond objective function , f(2), calculates the lowest safety margin

11 % to obstacles applies penalty accordingly.

12 %

13 % The thrid objective function , f(3), calculates the sharpest turn in the

14 % xy-plane.

15 %

16 % The fourth objective function , f(4), calculates the largest deviation

17 % between the z-coordinate and desired depth in the path and applies

18 % penalty accordingly.

19 %

20 % *************************************************************************

21 % Programmed by: Tobias Lars Hansen , 2019.

22 % *************************************************************************

23 %% Objective function f(1): Length of path - low f(1) is good

24 % Count indicies:

25 xc = 1;

26 yc = 2;

27 zc = 3;

28

29 df_1 = zeros(1,K+2);

30 for i = 1:K+2

31 % Length of path segment between two adjacent waypoints

32 df_1(i) = sqrt( ( vec(xc+V) - vec(xc) )^2 + ...

33 ( vec(yc+V) - vec(yc))^2 + ...

34 ( vec(zc+V) - vec(zc))^2 );

35 % Updating counting idicies

36 xc = xc + V;

37 yc = yc + V;

38 zc = zc + V;

39 end

40 clear xc yc zc;

41 f(1) = sum(df_1);

42

43

44 %% - Objective function f(2): Margin of safety

45 % more negative f(2) is better

46 % Calculating the shortest distance between every line segment and the

47 % obstacle.

48

49 %Number of obstalces

50 nb_obs = length(obs_vec )/3;

51 obs_mat = zeros(nb_obs , 3);

52

53 % Count indicies:

54 xc = 1;
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55 yc = 2;

56 zc = 3;

57

58 for i = 1: nb_obs

59 obs_mat(i,:) = [obs_vec(xc), obs_vec(yc), obs_vec(zc)];

60 % Updating counting idicies

61 xc = xc + V;

62 yc = yc + V;

63 zc = zc + V;

64 end

65

66 dist = zeros(nb_obs ,K+1);

67

68 % for each obstacle

69 for j = 1: nb_obs

70 % Count indicies:

71 xc = 1;

72 yc = 2;

73 zc = 3;

74

75 for i = 1:K+1

76 % Adjacent waypoints on vetor form

77 wp1 = [vec(xc), vec(yc), vec(zc)];

78 wp2 = [vec(xc+V), vec(yc+V), vec(zc+V)];

79

80 % Reference: Algorithm used for calculating distance from point to line:

81 % http :// mathworld.wolfram.com/Point -LineDistance3 -Dimensional.html

82 num = norm(cross(obs_mat(j) - wp1 , obs_mat(j) - wp2));

83 den = df_1(i);

84 dist(j,i) = num / den;

85

86 % Updating counting idicies

87 xc = xc + V;

88 yc = yc + V;

89 zc = zc + V;

90 end

91

92 end

93 clear xc yc zc;

94

95 dist_vec = [ dist(1,:), dist (2 ,:)];

96

97 % Calculating the objective function value.

98 d_min = min(dist_vec );

99

100 if (d_min < min_dist)

101 % If the path is situated less than a safety distance away from the

102 % obstale , f_2 will approach zero or even be positive

103 f(2) = exp(d_min -min_dist );

104 else

105 % If the path is situated more than a safety distance away from the

106 % obstacle , the f_2 will take a negative value.

107 f(2) = min_dist - d_min;

108 end

109

110 %% Objective function f(3) - penaltizing sharp turns in paths

A7



Appendices

111

112 xc = 1;

113 yc = 2;

114

115 theta = zeros(1,K);

116

117 for i = 1:K

118 wp1 = [vec(xc), vec(yc)];

119 wp2 = [vec(xc + V), vec(yc + V)];

120 wp3 = [vec(xc + 2*V), vec(yc + 2*V)];

121

122 dp_1 = wp2 - wp1;

123 dp_2 = wp3 - wp2;

124

125 theta(i) = acos( (dot(dp_1 , dp_2 ))/( norm(dp_1)*norm(dp_2)) );

126

127 xc = xc + V;

128 yc = yc + V;

129 end

130

131

132 f_3_theta = max(abs(theta ));

133

134 f(3) = f_3_theta;

135

136 %% Objective function f(4) - ensuring available DVL measurements

137 zc = V + V;

138 z_wp = zeros(1,K);

139

140 for i = 1:K

141 z_wp(i) = abs(vec(zc) - z_terrain) ;

142 zc = zc + V;

143 end

144

145 f_terr = zeros(1,K);

146 z_limit = 5;

147 for i = 1: length(z_wp)

148 z_dev = z_wp(i);

149 if z_dev > z_limit

150 f_terr(i) = exp(( z_limit - z_dev ));

151 else % z_dev < z_limit

152 f_terr(i) = z_dev - z_limit;

153 end

154 end

155 f_terr_pen = max(f_terr );

156

157 f(4) = f_terr_pen;

158 end %fcn
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A4 initialize population.m

1 function f = initialize_population(N, v_dim , k_interior , M,...

2 start_pos , final_pos ,...

3 min_range , max_range ,...

4 min_dist , obs_vec , z_terrain , pen_pos)

5 %% Description

6 % *************************************************************************

7 % This function generates an initial population , f, of paths at random

8 % based on the input from the file parameters.m

9 %

10 % This function calls the function OFE_multiple_obstacles for evaluation of

11 % the objective function values of the generated paths.

12 %

13 % For explanation of inputs , see parameters.m / Main.m

14 % *************************************************************************

15 % Programmed by: Tobias Lars Hansen , 2019.

16 % *************************************************************************

17 %%

18 nbFixedPoints = 3;

19 V = v_dim *( k_interior + nbFixedPoints );

20

21 pop_data = zeros (2*N, V + M + 2);

22 for i = 1:2*N

23 %% Generate random population of size N, i.e. generate N random paths

24 % between start and destination

25

26 % Assigning starting point

27 for j = 1: v_dim

28 pop_data(i,j) = start_pos(j);

29 end

30 % Assigning internal points

31 count = v_dim + 1;

32 for j = 1: k_interior

33 for k = 1: v_dim

34 pop_data(i,count) = min_range(k) +...

35 (max_range(k)-min_range(k))* rand (1);

36 count = count + 1;

37 end

38 end

39 clear count;

40 % Assigning penultimate point

41 for j = 1: v_dim

42 pop_data(i, V - 2*v_dim + j) = pen_pos(j);

43 end

44

45 % Assigning destination point

46 for j = 1: v_dim

47 %pop_data(i,V+V*K+j) = final_pos(j);

48 pop_data(i,V - v_dim + j) = final_pos(j);

49 end

50 %% Calculating the objective function value for each individual , i.e.

51 % evaulate the performance of each path

52 pop_data(i,V+1:V+M) = ...

53 OFE_multiple_obstacles(pop_data(i,:), k_interior , v_dim , ...

54 min_dist , obs_vec ,z_terrain );
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55 end

56 f = pop_data;

57 end %fcn
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A5 NDS CDA.m

1 function f = NDS_CDA(x, v_dim , k_interior , M)

2 %% Description

3 % *************************************************************************

4 % This function takes in a population , x, as input and 1) sorts it in terms

5 % of non -domination , 2) calculates the crowding distance for each path in

6 % the population.

7 %

8 % For explanation of inputs , see parameters.m / Main.m

9 %

10 % * This code is based on pseudo -code from the article:

11 % https :// ieeexplore.ieee.org/document /996017

12 % *************************************************************************

13 % Programmed by: Tobias Lars Hansen , 2019.

14 % *************************************************************************

15 %%

16 % Simlifying notation for user readability

17 [N, ~] = size(x);

18 nbFixedPoints = 3;

19 V = v_dim *( k_interior + nbFixedPoints );

20

21 % Extracting objective function values

22 f_1 = x(:,V+1);

23 f_2 = x(:,V+2);

24 f_3 = x(:,V+3);

25 f_4 = x(:,V+4);

26

27 %% Explanations:

28 % *************************************************************************

29 % * Domination count , n_p: The number of solutions that dominate the

30 % solution p. Here expressed by notation: sol(p).n

31 % * S_p: A set of solutions that the solutions p dominates. Here expressed

32 % by notation: sol(p).S

33 % *************************************************************************

34 %% Fast non -dominated sorting

35 % Pre -allocation

36 sol (:).n = 0;

37 sol (:).sp = [];

38 rank = zeros(N,1);

39 f_i = 1;

40 F(f_i).f = [];

41 for p = 1:N

42 % Domination count , initialized n_p = 0:

43 sol(p).n = 0;

44 % Set Sp, initially an empty set:

45 sol(p).S = [ ];

46

47 for q = 1:N

48

49 % if p dominates q

50 if f_1(p) < f_1(q) && f_2(p) < f_2(q) && f_3(p) < f_3(q) && ...

51 f_4(p) < f_4(q) ...

52 || f_1(p) == f_1(q) && f_2(p) < f_2(q) &&...

53 f_3(p) < f_3(q) && f_4(p) < f_4(q)...

54 || f_1(p) < f_1(q) && f_2(p) == f_2(q) &&...
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55 f_3(p) < f_3(q) && f_4(p) < f_4(q)...

56 || f_1(p) < f_1(q) && f_2(p) < f_2(q) &&...

57 f_3(p) == f_3(q) && f_4(p) < f_4(q)...

58 || f_1(p) < f_1(q) && f_2(p) < f_2(q) &&...

59 f_3(p) < f_3(q) && f_4(p) == f_4(q)

60

61 % Add q to the set of solutions dominated by p

62 sol(p).S = [sol(p).S, q];

63

64 % if q dominates p

65 elseif f_1(p) > f_1(q) && f_2(p) > f_2(q) &&...

66 f_3(p) > f_3(q) && f_4(p) > f_4(q)...

67 || f_1(p) == f_1(q) && f_2(p) > f_2(q) &&...

68 f_3(p) > f_3(q) && f_4(p) > f_4(q)...

69 || f_1(p) > f_1(q) && f_2(p) == f_2(q) &&...

70 f_3(p) > f_3(q) && f_4(p) > f_4(q)...

71 || f_1(p) > f_1(q) && f_2(p) > f_2(q) &&...

72 f_3(p) == f_3(q) && f_4(p) > f_4(q)...

73 || f_1(p) > f_1(q) && f_2(p) > f_2(q) &&...

74 f_3(p) > f_3(q) && f_4(p) == f_4(q)

75

76 % Increment the domination counter of p

77 sol(p).n = sol(p).n + 1;

78

79 end % if domination

80

81 end % for q

82

83 % Identifying the first non -dominated front

84 if sol(p).n == 0

85 rank(p,1) = 1;

86 F(f_i).f = [F(f_i).f, p];

87 end

88

89

90 end %for p

91

92 x(:, V + M + 1) = rank;

93

94 % Identifying subsequent non -dominated fronts

95 while ~isempty(F(f_i).f)

96

97 % Empty set list used to store members of the next front

98 Q = [ ];

99

100 % For each solution p with n_p = 0, visiting each member if its set S_p

101 % and reducing its domination count by one

102 for p = 1: length(F(f_i).f)

103

104 for q = 1: length( sol( F(f_i).f(p) ).S )

105

106 % Reducing domination count by one

107 sol( sol( F(f_i).f(p) ).S(q) ).n = ...

108 sol( sol( F(f_i).f(p) ).S(q) ).n -1;

109

110 % if n_p = 0 for any members , these members are put in the
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111 % list Q as they belong to the next non -dominated front

112 if sol( sol( F(f_i).f(p) ).S(q) ).n == 0

113

114 x( sol(F(f_i).f(p)).S(q), V + M + 1) = f_i + 1;

115 Q = [Q sol(F(f_i).f(p)).S(q)];

116

117 end % end if n_p = 0

118 end

119 end

120 % Incrementing front counter

121 f_i = f_i + 1;

122 F(f_i).f = Q;

123 end

124 % Sorting the population based on acending rank

125 x_r_s = sortrows(x,V + M + 1);

126

127 %% Crowding distance assignment

128 % Calculating the crowding distance for each solution in each non -dominated

129 % set , i.e in each front

130

131 % Making a temporary population data vector

132 x_temp = x_r_s;

133

134 row_i = 1;

135 for i = 1: ( length(F) - 1 )

136

137 % Initializing distance , i_dist = 0

138 i_dist = 0;

139

140 % Retrieving the length of each front

141 length_f = length(F(i).f);

142

143 % If the length of the front is higher than 2 intermediate solutions

144 % exists

145 if length_f > 2

146

147 % Sorting the population based on objective function values

148 [~, f_1_i] = sortrows(x_temp(row_i:( row_i+length_f - 1) , V + 1));

149 [~, f_2_i] = sortrows(x_temp(row_i:( row_i+length_f - 1) , V + 2));

150 [~, f_3_i] = sortrows(x_temp(row_i:( row_i+length_f - 1) , V + 3));

151 [~, f_4_i] = sortrows(x_temp(row_i:( row_i+length_f - 1) , V + 4));

152

153 % Assigning boundary solutions infinite distance

154 x_temp( f_1_i (1) + row_i - 1 , V + M + 2 ) = inf;

155 x_temp( f_1_i(end) + row_i - 1 , V + M + 2 ) = inf;

156

157 x_temp( f_2_i (1) + row_i - 1 , V + M + 3 ) = inf;

158 x_temp( f_2_i(end) + row_i - 1 , V + M + 3 ) = inf;

159

160 x_temp( f_3_i (1) + row_i - 1 , V + M + 4 ) = inf;

161 x_temp( f_3_i(end) + row_i - 1 , V + M + 4 ) = inf;

162

163 x_temp( f_4_i (1) + row_i - 1 , V + M + 5 ) = inf;

164 x_temp( f_4_i(end) + row_i - 1 , V + M + 5 ) = inf;

165

166 % Retrieving objective function extreme values for normalization
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167 f_1_min = x_temp(f_1_i (1) + row_i - 1 , V + 1);

168 f_1_max = x_temp(f_1_i(end) + row_i - 1 , V + 1);

169

170 f_2_min = x_temp(f_2_i (1) + row_i - 1 , V + 2);

171 f_2_max = x_temp(f_2_i(end) + row_i - 1 , V + 2);

172

173 f_3_min = x_temp(f_3_i (1) + row_i - 1 , V + 3);

174 f_3_max = x_temp(f_3_i(end) + row_i - 1 , V + 3);

175

176 f_4_min = x_temp(f_4_i (1) + row_i - 1 , V + 4);

177 f_4_max = x_temp(f_4_i(end) + row_i - 1 , V + 4);

178

179 % Assigning intermediate solutions a distance

180 for j = 2: length_f - 1

181

182 % If more boundary solutions exists

183 if (f_1_min - f_1_max == 0) || (f_2_min - f_2_max == 0)...

184 || (f_3_min - f_3_max == 0)

185 x_temp (f_1_i(j)+row_i -1, V+M+2) = inf;

186 x_temp (f_2_i(j)+row_i -1, V+M+3) = inf;

187 x_temp (f_3_i(j)+row_i -1, V+M+4) = inf;

188 % Intermediate solutions - normalized

189 else

190 x_temp (f_1_i(j)+row_i -1, V+M+2) =...

191 (x_temp(f_1_i(j+1) + row_i - 1, V+1)...

192 - x_temp(f_1_i(j-1) + row_i - 1, V+1))...

193 /( f_1_max - f_1_min );

194

195 x_temp (f_2_i(j)+row_i -1, V+M+3) =...

196 (x_temp(f_2_i(j+1) + row_i - 1, V+2)...

197 - x_temp(f_2_i(j-1) + row_i - 1, V+2) )...

198 /( f_2_max - f_2_min );

199

200 x_temp (f_3_i(j)+row_i -1, V+M+4) =...

201 (x_temp(f_3_i(j+1) + row_i - 1, V+3)...

202 - x_temp(f_3_i(j-1) + row_i - 1, V+3) )...

203 /( f_3_max - f_3_min );

204

205 x_temp (f_4_i(j)+row_i -1, V+M+5) =...

206 (x_temp(f_4_i(j+1) + row_i - 1, V+4)...

207 - x_temp(f_4_i(j-1) + row_i - 1, V+4) )...

208 /( f_4_max - f_4_min );

209 end

210 end

211

212 % Else only boundary solutions exists

213 else

214 % Assigning boundary solutions infinite distance

215 x_temp(row_i :(row_i+length_f -1), V+M+2:V+M+5) = inf;

216 end

217 row_i = row_i + length_f;

218 end

219 % Calculating the overall crowding distance , i.e. the sum of the individual

220 % crowding distances.

221 crowding_dist = zeros(N,1);

222 for i = 1:N
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223 crowding_dist(i) = x_temp(i,V+M+2) + x_temp(i,V+M+3) +...

224 x_temp(i,V+M+4) + x_temp(i,V+M+5);

225 end

226 x_r_s(:, V + M + 2) = crowding_dist;

227

228 f = x_r_s;

229

230 end
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A6 BTS.m

1 function f = BTS (x, P, v_dim , k_interior , M)

2 %% Description

3 % *************************************************************************

4 % This function returns the winners of binary tournament selection based on

5 % an input population.

6 %

7 % * P = size of the mating pool

8 % * x = input -matrix containing population data

9 % For additional explanation of inputs , see parameters.m / Main.m

10 % *************************************************************************

11 % Programmed by: Tobias Lars Hansen , 2019.

12 % *************************************************************************

13 %%

14 % Simplifing notation

15 nbFixedPoints = 3;

16 V = v_dim *( k_interior + nbFixedPoints );

17

18 % Retrieving the rank and crowding distance from the population data:

19 rank_index = V+M+1;

20 cdist_index = V+M+2;

21

22 %% Binary tournament selection

23 % Two random solutions are compared in order to figure out which one is

24 % best fit to be a parent.

25 % The comparison is based on: 1) lower rank is preferred , 2) if the ranks

26 % are equal , the solution with the higher crowding distance is preferred

27

28 % Generating random unique indicies for which individuals to compare

29 rand_nb = randperm (2*P)’;

30 compare_i (:,1) = rand_nb (1:P);

31 compare_i (:,2) = rand_nb(P+1:end);

32

33 % Pre allocation

34 mating_pool = zeros(P,V+M+2);

35

36 for p = 1:P

37

38 % Contender 1

39 contender_1 = compare_i(p,1);

40 rank_1 = x(contender_1 , rank_index );

41

42 % Contender 2

43 contender_2 = compare_i(p,2);

44 rank_2 = x(contender_2 , rank_index );

45

46 % If contenders have different rank

47 if rank_1 ~= rank_2

48

49 if rank_1 < rank_2

50 winner = contender_1;

51 else %if rank_1 > rank_2

52 winner = contender_2;

53 end

54
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55 mating_pool(p,:) = x(winner ,:);

56

57 % if contenders have the same rank

58 else

59 % Retrieving the crowding distance for the contenders

60 cdist_1 = x(contender_1 , cdist_index );

61 cdist_2 = x(contender_2 , cdist_index );

62

63 if cdist_1 > cdist_2

64 winner = contender_1;

65 else % cdist_1 < cdist_2

66 winner = contender_2;

67 end

68 mating_pool(p,:) = x(winner ,:);

69 end

70 end

71 f = mating_pool;

72 end
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A7 make new pop.m

1 function f = make_new_pop(x, v_dim , k_interior , M,...

2 p_c , eta_c , p_m , eta_m ,...

3 min_range , max_range ,...

4 min_dist , obs_vec , start_pos , final_pos ,...

5 z_terrain , pen_pos)

6 %% Description

7 % *************************************************************************

8 % This function returns generated offsping population , f, generated by

9 % applying the genetic operators simulated binary crossover and polynomial

10 % mutation. The input is the parent population.

11 %

12 % This function calls the function OFE_multiple_obstacles for evaluation of

13 % the objective function values of the generated paths.

14 %

15 % For additional explanation of inputs , see parameters.m / Main.m

16 % *************************************************************************

17 % Programmed by: Tobias Lars Hansen , 2019.

18 % *************************************************************************

19 %%

20 [N, ~] = size(x);

21 nbFixedPoints = 3;

22 V = v_dim *( k_interior + nbFixedPoints );

23 p_i = randperm(N);

24 nb = k_interior*nbFixedPoints;

25 vmax = repmat(max_range , 1, nb);

26 vmin = repmat(min_range , 1, nb);

27 child_pop = zeros(N,V+M+2);

28 for p = 1:N

29 u = zeros(1, V);

30 % SBX

31 if rand (1) < p_c && p < N-1

32 parent_1 = x(p_i(p), 1:V);

33 parent_2 = x(p_i(p+1), 1:V);

34

35 beta = zeros(1, V);

36 alpha = zeros(1, V);

37 beta_q = zeros(1,V);

38

39 % Variable by variable

40 for i = 1:V

41 if parent_1(i) < parent_2(i)

42 beta(i) = 1 + (2/( parent_2(i)-parent_1(i)))...

43 *min(( parent_1(i)-vmin(i)),(vmax(i)-parent_2(i)));

44 else % parent_1 > parent_2

45 beta(i) = 1 + (2/( parent_1(i)-parent_2(i)))...

46 *min(( parent_2(i)-vmin(i)),(vmax(i)-parent_1(i)));

47 end

48

49 alpha(i) = 2 - beta(i)^( eta_c + 1);

50 u(i) = rand (1);

51

52 if u(i) <= 1/ alpha(i)

53 beta_q(i) = ( u(i)* alpha(i) )^( 1/( eta_c + 1) );

54 else
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55 beta_q(i) = (1/(2- u(i)* alpha(i)))^( 1/( eta_c + 1) );

56 end

57 end

58

59 child_1 =0.5*(( parent_1 + parent_2)-beta_q .*( parent_2 - parent_1 ));

60 child_2 =0.5*(( parent_1 + parent_2 )+ beta_q .*( parent_2 - parent_1 ));

61

62 child_pop(p, 1:V) = child_1;

63 child_pop(p+1, 1:V) = child_2;

64

65 % If SBX occurs , p needs to be changed

66 p = p + 1;

67

68 % Polynomial mutation

69 else

70

71 parent_mut = x(p_i(p), 1:V);

72 delta = zeros(1, V);

73 delta_q = zeros(1, V);

74 child_mut = zeros(1,V);

75

76 for i = 1:V

77 u(i) = rand (1);

78 delta(i) = min( (parent_mut(i) - vmin(i)) ,....

79 (vmax(i) - parent_mut(i)) )...

80 /(vmax(i) - vmin(i));

81 if u(i) < 0.5

82 delta_q(i) = (2*u(i)+(1 -2*u(i))*(1- delta(i))...

83 ^(eta_m + 1))^(1/( eta_m + 1)) - 1;

84 else

85 delta_q(i) = 1 - (2*(1-u(i)) + ...

86 2*(u(i) - 0.5)*(1 - delta(i))...

87 ^(eta_m + 1))^(1/( eta_m + 1));

88 end

89 child_mut(i) = parent_mut(i) + delta_q(i)*( vmax(i) - vmin(i));

90 end

91 child_pop(p, 1:V) = child_mut;

92

93 % Manipulating the fixed point , i.e. start and destinaton

94 child_pop(p, 1:3) = start_pos;

95 child_pop(p, V-5:V-3) = pen_pos;

96 child_pop(p, V-2:V) = final_pos;

97 end

98 end %for genetic operations

99 %% Evaluating objective functions for offspring population

100 for p = 1:N

101 child_pop(p, V+1: V + M) = OFE_multiple_obstacles(child_pop(p,:) ,...

102 k_interior , v_dim ,...

103 min_dist , obs_vec , z_terrain );

104 end

105 f = child_pop;

106 end %fcn
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A8 selection.m

1 function f = selection (intermediate_pop , N, V, K, M)

2 %% Description

3 % *************************************************************************

4 % This function performs selection of the next parent population based on

5 % rank and crowding distance.

6 %

7 % This function calls the function BTS if paths cannot be distinguished

8 % from each other in terms of rank and crowding distance.

9 %

10 % Input: Intermediate population - size 2*N

11 % Output: Parent population for next iteration - size N

12 % *************************************************************************

13 % Programmed by: Tobias Lars Hansen , 2019.

14 % *************************************************************************

15 %%

16 rank_f = intermediate_pop (100,V*(K+2)+M+1);

17

18 for i = 1:2*N

19 rank_i = intermediate_pop(i,V*(K+2)+M+1);

20 if rank_i == rank_f

21 final_front(i,:) = intermediate_pop(i,:);

22 end

23 end

24

25 nb_prev_sol = 0;

26 for i = 1: length(final_front)

27 row = sum(final_front(i ,:));

28 if row == 0

29 nb_prev_sol = nb_prev_sol + 1;

30 end

31 end

32

33 pop_next (1: nb_prev_sol ,:) = intermediate_pop (1: nb_prev_sol ,:);

34 pool_size = N-length(pop_next );

35

36 if pool_size > 0

37 contenders = intermediate_pop(nb_prev_sol +1: nb_prev_sol +2* pool_size ,:);

38 winners = BTS(contenders , pool_size , V, K, M);

39 winners = sortrows(winners , V*(K+2)+M+1);

40 pop_next(nb_prev_sol +1: nb_prev_sol+pool_size ,:) = winners;

41 end

42

43 f = pop_next;

44 end %fcn
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A9 path selector.m

1 %% Path Selector

2 %% Description

3 % *************************************************************************

4 % This file does post -optimization path selection by selecting a path that

5 % fulfils requirements in terms of desired path properties on objective

6 % function values.

7 %

8 % This file searches for path candidates in the final population.

9 % *************************************************************************

10 % Programmed by: Tobias Lars Hansen , 2019.

11 % *************************************************************************

12 %%

13 clear PP;

14 PP = P;

15 %% Scaling factors

16 beta_o2 = 0.8;

17 beta_o4 = 1;

18

19 %% Computations

20 avg_obj_1 = sum(PP(:,V*(K+3)+1))/N;

21 avg_obj_2 = sum(PP(:,V*(K+3)+2))/N;

22 avg_obj_3 = sum(PP(:,V*(K+3)+3))/N;

23 avg_obj_4 = sum(PP(:,V*(K+3)+4))/N;

24

25 min_safety_margin = beta_o2 * avg_obj_2;

26 min_terrain_factor = beta_o4 * avg_obj_4;

27

28 a_shortest_path = min(PP(:,V*(K+3)+1));

29 a_longest_path = max(PP(:,V*(K+3)+1));

30

31 ideal_length = (avg_obj_1 + a_shortest_path )/2;

32

33 flag = 0;

34 counter_discarded = 0;

35 while flag ~= 1

36 [~, a_index] = min(abs (ideal_length - PP(:,V*(K+3)+1)));

37 safety_factor = PP(a_index ,V*(K+3)+2);

38 terrain_factor = PP(a_index ,V*(K+3)+4);

39

40 if safety_factor > min_safety_margin ||...

41 terrain_factor > min_terrain_factor

42

43 PP(a_index , V*(K+3) + 1) = a_longest_path;

44 counter_discarded = counter_discarded + 1;

45

46 else

47 flag = 1;

48 end

49 end
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A10 plot tool.m

1 close all;

2 %% Description

3 % *************************************************************************

4 % Post -optimization visualisation of performance.

5 % *************************************************************************

6 % Programmed by: Tobias Lars Hansen , 2019.

7 % *************************************************************************

8 %% Plotting objective function values

9 nbPath = a_index;

10

11 x_points = P(:, V*(K+3) + 1);

12 y_points = P(:, V*(K+3) + 2);

13 z_points = P(:, V*(K+3) + 3);

14 zz_points = P(:, V*(K+3) + 4);

15

16 x_ccc = P(nbPath , V*(K+3) + 1);

17 y_ccc = P(nbPath , V*(K+3) + 2);

18 z_ccc = P(nbPath , V*(K+3) + 3);

19 zz_ccc = P(nbPath , V*(K+3) + 4);

20

21 %% 3D plots: Objective function values

22 %% O_1 , O_2 , O_3

23 figure ()

24 scatter3(x_points ,y_points , z_points ); hold on;

25 xlabel(’Objective function 1’);

26 ylabel(’Objective function 2’);

27 zlabel(’Objective function 3’);

28 schosen = scatter3(x_ccc ,y_ccc ,z_ccc , ’r’, ’filled ’);

29 LL = legend(schosen ,{’Chosen solution ’});

30

31 %% O_1 , O_2 , O_4

32 figure ()

33 scatter3(x_points ,y_points , zz_points ); hold on;

34 schosen = scatter3(x_ccc ,y_ccc ,zz_ccc , ’r’, ’filled ’);

35 LL = legend(schosen ,{’Chosen solution ’});

36 xlabel(’Objective function 1’);

37 ylabel(’Objective function 2’);

38 zlabel(’Objective function 4’);

39

40 %% O_1 , O_3 , O_4

41 figure ()

42 scatter3(x_points ,z_points , zz_points ); hold on;

43 schosen = scatter3(x_ccc ,z_ccc ,zz_ccc , ’r’, ’filled ’);

44 LL = legend(schosen ,{’Chosen solution ’});

45 xlabel(’Objective function 1’);

46 ylabel(’Objective function 3’);

47 zlabel(’Objective function 4’);

48

49 %% O_2 , O_3 , O_4

50 figure ()

51 scatter3(y_points ,z_points , zz_points ); hold on;

52 schosen = scatter3(y_ccc ,z_ccc ,zz_ccc , ’r’, ’filled ’);

53 LL = legend(schosen ,{’Chosen solution ’});

54 xlabel(’Objective function 2’);
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55 ylabel(’Objective function 3’);

56 zlabel(’Objective function 4’);

57

58 %% 2D plots: Objective function values

59 %% O_1 , O_2

60 figure ()

61 scatter(x_points ,y_points ); hold on;

62 sc = scatter(x_ccc ,y_ccc , ’r’, ’filled ’);

63 LLL = legend(sc ,{’Chosen solution ’});

64 xlabel(’Objective function 1’);

65 ylabel(’Objective function 2’);

66 grid on;

67

68 %% O_1 , O_3

69 figure ()

70 scatter(x_points ,z_points ); hold on;

71 sc = scatter(x_ccc ,z_ccc , ’r’, ’filled ’);

72 LLL = legend(sc ,{’Chosen solution ’});

73 xlabel(’Objective function 1’);

74 ylabel(’Objective function 3’);

75 grid on;

76

77 %% O_1 , O_4

78 figure ()

79 scatter(x_points ,zz_points ); hold on;

80 sc = scatter(x_ccc ,zz_ccc , ’r’, ’filled ’);

81 LLL = legend(sc ,{’Chosen solution ’});

82 xlabel(’Objective function 1’);

83 ylabel(’Objective function 4’);

84 grid on;

85

86 %% O_2 , O_3

87 figure ()

88 scatter(y_points ,z_points ); hold on;

89 sc = scatter(y_ccc ,z_ccc , ’r’, ’filled ’);

90 LLL = legend(sc ,{’Chosen solution ’});

91 xlabel(’Objective function 2’);

92 ylabel(’Objective function 3’);

93 grid on;

94 %% O_2 , O_4

95 figure ()

96 scatter(y_points ,zz_points ); hold on;

97 sc = scatter(y_ccc ,zz_ccc , ’r’, ’filled ’);

98 LLL = legend(sc ,{’Chosen solution ’});

99 xlabel(’Objective function 2’);

100 ylabel(’Objective function 4’);

101 grid on;

102

103 %% O_3 , O_4

104 figure ()

105 scatter(z_points ,zz_points ); hold on;

106 sc = scatter(z_ccc ,zz_ccc , ’r’, ’filled ’);

107 LLL = legend(sc ,{’Chosen solution ’});

108 xlabel(’Objective function 3’);

109 ylabel(’Objective function 4’);

110 grid on;
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111

112 %% Plotting the selected path

113 % selected by path selector

114 figure ()

115 nbWps = K + 3;

116 xc = 1;

117 yc = 2;

118 zc = 3;

119 Path = P(nbPath , :);

120

121 % Waypoints

122 s0 = scatter3(Path(xc), Path(yc), Path(zc), ’b’, ’filled ’); hold on;

123 xc = 1 + V;

124 yc = 2 + V;

125 zc = 3 + V;

126 for wp = 2: nbWps -1

127 s = scatter3(Path(xc), Path(yc), Path(zc), ’k’, ’filled ’);

128 hold on;

129 s.LineWidth = 0.6;

130 xc = xc + V;

131 yc = yc + V;

132 zc = zc + V;

133 end

134 st = scatter3(Path(xc), Path(yc), Path(zc), ’g’, ’filled ’); hold on;

135

136 % Line segments

137 xc = 1;

138 yc = 2;

139 zc = 3;

140 for n = 1: nbWps

141 X(n) = Path(xc);

142 Y(n) = Path(yc);

143 Z(n) = Path(zc);

144 xc = xc + V;

145 yc = yc + V;

146 zc = zc + V;

147 end

148 p = plot3(X,Y,Z, ’r’); hold on;

149 p.LineWidth = 2;

150 set( gca , ’Zdir’, ’reverse ’);

151 set( gca , ’Ydir’, ’reverse ’);

152 grid on;

153

154 % Obstacles

155 [XX, YY, ZZ] = sphere;

156 surf(radius_obs*XX+obs_vec (1) ,...

157 radius_obs*YY+obs_vec (2) ,...

158 radius_obs*ZZ+obs_vec (3) );

159

160 surf(radius_obs*XX+obs_vec (4) ,...

161 radius_obs*YY+obs_vec (5) ,...

162 radius_obs*ZZ+obs_vec (6) );

163

164 % Seabed

165 % xd=linspace (0 ,150);

166 % yd=linspace (0 ,150);
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167 % [xxx ,yyy]= meshgrid(xd,yd);

168 % zzz = 0.007* xxx.^2 + 0.007* yyy.^2 + 0.05* xxx + 0.05* yyy + 40;

169 % CC = del2(zzz);

170 % sbed = mesh(xxx ,yyy ,zzz);

171

172 % View

173 % 3D settings: None

174

175 % NE settings

176 %view ([0 0 1]);

177 %camroll ( -90);

178 %view (2);

179

180 % ED settings

181 %view([-1 0 0]);

182

183 % Layout

184 xlim([0, 100]);

185 ylim([0, 100]);

186 zlim ([0 ,200]);

187

188 L = legend ([s0 st], {’Initial position ’, ’Terminal position ’});

189 xlabel(’North [m]’);

190 ylabel(’East [m]’);

191 zlabel(’Down [m]’);
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