
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’

s
th

es
is

Embla Larsdotter Holten

Isogeometric contact analysis:
Implementation of a penalty-based
algorithm

Master’s thesis in Marine Technology
Supervisor: Josef Kiendl

June 2019

Preface

Being able to analyse the behaviour of objects in contact has always been a sub-

ject of interest to structural engineers. Contact problems often involve large

deformations and non-linearities and their complexity can be a challenge to

classical FEM. Recently an alternative to FEM has been developed called isoge-

ometric analysis, IGA. IGA has features that are advantageous in many fields of

engineering and not least within structural contact problems.

The marine Department of NTNU is currently developing an IGA research code

for which this thesis aims to add a contact implementation to. The scope of

the thesis was provided by Assoc Prof Josef Kiendl, who has accordingly been

my supervisor throughout the thesis work. This thesis gives an introduction to

contact mechanics in general and provides the equations for the implemented

contact solution procedure. A brief review of IGA and its basis functions are

also provided. Most importantly, the implementation of a contact algorithm is

described and its results are discussed.

It is assumed that the reader have some background knowledge within struc-

tural engineering and especially the Finite Element Method solution procedure.

Trondheim June 11, 2019

Embla Holten

i

Acknowledgement

I would like to thank my supervisor Assoc. Prof. Josef Kiendl for giving me the

opportunity of investigating such an interesting and promising field of struc-

tural engineering and for the opportunity of staying at another university for

further inspiration. His guidance and sharing of knowledge has been much

helpful throughout the semester and kept me motivated. I would also like to

acknowledge Prof. Dr. Laura De Lorenzis and Dr.-Ing. Marreddy Ambati for the

guidance and inspiration they provided at TU Braunschweig.

A thank you is also directed to PhD candidate Davide Proserpio for the never

ending patience with decoding and explaining his implementations. Your help

has been greatly valued.

Lastly I am grateful for all the encouragement and optimism from the people

around me that have made the final year at NTNU one of the best. Thank you to

my office-mates, to my dear friends, my family and to my dear Sondre. Thank

you for supporting me every day. And lets not forget Stephanie and Achim who

welcomed me into their lives in Braunschweig with open arms.

ii

Abstract

Structural analysis of contacting bodies is complex. They typically involve large

deformations and as the contact interface is unknown in advance, they are un-

avoidably nonlinear. Finite element method has been used to solve contact

problems almost since its beginning in the 1960’s. Due to its discretisation scheme,

it exhibits a low inter-element continuity of typically C 0 or C 1 and an approxi-

mated geometric model. This can especially be a challenge in contact analysis

as contact problems are sensitive to the surface description. The solution pro-

cedures are consequently subject to a lack of robustness and accuracy. Isogeo-

metric analysis is a recently developed alternative to FEM. It has the potential

to improve some of the major challenges of the previous solution schemes with

FEM. A variety of methods have thus been formulated for solving contact prob-

lems with IGA since its origin around 2006 by Hughes and coworkers, (Hughes

et al., 2005).

The Marine Department of NTNU are developing an IGA research code for struc-

tural analysis in MATLAB. It mainly uses non-rational B-splines as basis func-

tions, which are the typical basis functions of IGA, to describe the geometry

and the solution field. It is essentially formulated with Kirchhoff-Love shell el-

ements. This thesis aims to contribute to the research code by adding a first

implementation of contact analysis. A contact algorithm is proposed, using the

penalty method in combination with Gauss-point-to-segment, GPTS, contact

discretization. The algorithm is coded to handle contact between multiple bod-

ies, contact by external force and contact by moving rigid bodies. A two step

point search algorithm is proposed that has the potential to increase robustness

and speed of the analysis compared to a one step search.

iii

Sammendrag

Strukturanalyse av gjensander som kommer i kontakt med hverandre er kom-

plisert. Kontaktproblemer er ofte relatert til store deformasjoner og ettersom

kontaktoverflaten ikke er kjent på forhånd, er de uunngåelig ikke-lineære. FEM

har blitt brukt til å løse kontaktproblemer nesten helt siden det ble oppfunnet

på 60-tallet. Finite element-diskretiseringen av overflater fører til lav kontinuitet

mellom elementer, typisk C 0 og C 1, og en tilnærmet geometribeskrivelse. Dette

kan være ekstra utfordrende når det kommer til å løse kontaktproblemer et-

tersom de er sensitive for hvordan kontaktoverflaten til objektene er beskrevet.

Løsningsmetodene innen kontaktanalyse med FEM er derfor preget av unøyak-

tighetere og å være lite robuste. Isogeometrisk analyse, IGA, er et nylig utviklet

alternativ til FEM. IGA har vist evne til å minske de typiske problemente som

oppstår ved bruk av FEM på kontaktproblemer. Det har blitt viet en stor forskn-

ingsinnsats innen temaet og mange metoder for å løse kontaktproblemer med

IGA har blitt formulert siden opprinnelsen rundt 2006 av Hughes og kolleger,

(Hughes et al., 2005).

Institutt for Marin Teknikk, NTNU, holder for øyeblikket på med å utvikle en IGA

forskningskode i MATLAB. Den benytter hovedsakelig non-rational B-splines,

NURBS, som basisfunksjoner for å beskrive geometri og deformasjonsfelt. I

hovedsak er den utviklet med bruk av Kirchhoff-Love skall-elementer. Denne

masteroppgaven har som mål å bidra til forskningskoden ved å implementere

en kontaktalgoritme til den eksisterende IGA-formuleringen. Penalty-metoden

blir brukt for å legge til grensebetingelsene fra kontakt og Gauss-point-to-segment,

GPTS, diskretiseringsteknikk. Algoritmen blir utviklet slik at den kan håndtere

kontakt mellom flere objekter samtidig, kontaktanalyse med ytre krefter og kon-

taktanalyse ved å flytte på stive legemer. En to-stegs kontaktsøkealgoritme er

implementert som viser potensiale for å øke både robustheten til implementerin-

gen og hastigheten.

iv

Contents

Preface i

Acknowledgement ii

Abstract iii

Sammendrag iv

List of Figures viii

List of Tables x

Abbreviations and symbols xi

1 Introduction 1

2 Modelling geometry with NURBS 5

2.1 B-splines . 5

2.2 NURBS . 7

3 IGA 9

3.1 NURBS based IGA . 10

3.2 The NURBS based Kirchoff-Love shell element 12

4 Computational contact mechanics 14

4.1 The normal, frictionless contact problem 15

4.2 The penalty method to formulate the contact weak form 17

4.3 Contact space discretization with FEM and IGA 20

4.4 GPTS discretisation equations . 23

v

5 Implementation of a contact algorithm in MATLAB 26

5.1 Code overview . 28

5.2 Solution algorithm . 29

5.3 Calculating the contact contribution 32

5.4 Complete solution algorithm . 34

5.5 Solution algorithm with two step point search 36

5.6 Chapter summary . 40

6 Numerical examples and discussion 43

6.1 Rigid plate falls down on elastic arch 44

6.1.1 Mesh refinement . 45

6.1.2 Penalty parameter influence 47

6.1.3 Geometric stiffness Kg eo 49

6.2 Two elastic arches, edge load . 49

6.2.1 Mesh refinement . 50

6.2.2 Master-slave dependence 52

6.3 Dependence on point search procedure 52

6.4 Cylinder squeeze . 55

6.5 Analysis specifications . 56

6.6 Deformation of the cylinder . 59

7 Conclusions and further work 65

Bibliography 68

Appendices 71

A Parameter description 72

B Solver functions 75

B.1 Solver function: Move rigid body 75

B.2 Solver function: External load . 83

B.3 Solver function: 2 Step Point Search and external load 90

B.4 Solver function: Cylinder example with 2 step point search 99

C Contact contribution functions 110

vi

C.1 Contact contribution function: Simplified GPTS and penalty with-

out geometric stiffness . 110

C.2 Contact contribution function: GPTS and penalty with geometric

stiffness . 115

C.3 Contact contribution function: GPTS, penalty and 2 step point

search . 123

C.4 Contact contribution function: Cylinder Sqeeze 131

vii

List of Figures

1.1 The Hertz contact problem, (Frankie et al., 2010) 2

3.1 NURBS based IGA elements,(Kiendl, 2011) 11

4.1 Description of contacting bodies, (Matzen, 2015) 15

4.2 NTS discretization, (De Lorenzis et al., 2017) 22

6.1 Flat rigid and arch: Boundary conditions on initial configuration 44

6.2 2 elements . 46

6.3 4 elements . 46

6.4 8 elements . 46

6.5 8 elements . 46

6.6 8 elements . 47

6.7 8 elements . 47

6.8 Geometry and BCs . 49

6.9 Side view of geometry . 49

6.10 Load step 10 . 51

6.11 Load step 20 . 51

6.12 Cylinder example, mesh . 55

6.13 Cylinder example, patches . 55

6.14 Cylinder and rigid plates deformation (Matzen, 2015) 59

6.15 Load step 3 . 60

6.16 Load step 3 . 60

6.17 Load step 9 . 60

6.18 Load step 9 . 60

6.19 Load step 24 . 61

6.20 Load step 24 . 61

6.21 Load step 30 . 61

viii

6.22 Load step 30 . 61

6.23 Cylinder example, deformation of points along z=25 62

6.24 Cylinder example, deformation of Patch 1, (u,v)=(1,1) 63

6.25 Cylinder example, iterations per load step 64

ix

List of Tables

6.1 Contact input parameters . 45

6.2 Results, flat rigid and arch . 48

6.3 Relation between displacement and mesh size 51

6.4 Penalty parameter dependence . 52

6.5 Dependence on master-slave status 53

6.6 Point search influence . 54

6.7 Input parameters, cylinder squeeze numerical example 58

x

Abbreviations and symbols

FEM - Finite element method

FEA - Finite element analysis

IGA - Isogeometric analysis

CAD - Computer aided design

CAE - Computer aided engineering

NURBS - Non-rational B-splines

NTS - Node-to-segment

GPTS - Gauss-point-to-segment

–NURBS and IGA–

ξ,η - Parametric coordinates

Ξ - Knot vector in parametric direction ξ

H - Knot vector in parametric direction η

p, q - Polynomial degree in parametric direction ξ,η

N - B-spline basis function

C (ξ) - B-spline or NURBS curves

P - Control point coordinates

wi - NURBS basis functions weights

R - NURBS basis function

–Penalty and GPTS formulations–

Superscript m, s - Term related to s=slave, m=master

Ω - Body

xi

x - Point in current configuration

X - Point in reference configuration

u - Displacement of point

γC - Contact interface in the current configuration

x̄m - Normal projection point (denoted simply xm , from Section 4.2)

n̄ - Surface normal directed towards the slave body, at normal projection point

(denoted simply n from Section 4.2). Also denoted contact normal.

ΓC - Contact interface in reference configuration

gN - Normal gap function

tN - Normal traction due to contact

t - The Piola traction vector

W - Potential energy of a system

εN - Penalty parameter

W P
c - Contact penalty contribution to the weak form

∆δW P
c - Linearisation of the contact contribution to the weak form

NN - Slave and master NURBS basis functions in the normal direction.

kg eo - Geometric stiffness due to contact

m−1 - Inverse metric tensor calculated at master surface

k - Curvature tensor calculated at master surface

T - Slave and master NURBS basis functions multiplied with covariant vectors

of the master surface τ

Kg p - Contact stiffness contribution at a Gauss point, GPTS formulation

Rg p - Contact force residual contribution at a Gauss point, GPTS formulation

Fr - Total force residual due to contact

KC - Total stiffness contribution due to contact

xii

zg p - Gauss-Legendre weight for a specific Gauss point.

–Implementation–

Lr e f - The absolute distance between centre point a slave and master element.

Lmi n - The smallest out of all Lr e f related to a specific slave element.

Lacc - The absolute acceptable distance between a slave element and master

surface for them to be considered for contact.

xiii

Chapter 1
Introduction

Contact mechanics is a natural part of engineering problems and even affects

our daily lives in numerous ways. Contact occur between joints in our bodies,

between the car tire and the road and between the ground and bridge foun-

dations. The science of contact mechanics accordingly play a significant role in

deciding the design of various structures and has since beginning of history. The

knowledge of friction and lubricants made the Egyptians able to transport huge

blocks of stones to build the pyramids just with human force, (Carnes, 2005).

The origin of the modern contact mechanics can be traced back to the 1800’s.

Poisson studied the the ability of a body to restore itself to its original shape after

undergoing deformation, its elasticity. Hertz applied this knowledge to contact-

ing bodies and was able to develop an analytic solution to the problem. The

Hertz problem consists of two spheres contacting in the normal direction, see

Figure (1.1). The spheres are exposed to an external force F . The analytic solu-

tion is expressed by the elastic modulus, E , the Poisson ratio v and the radii of

the surfaces, r1 and r2. The result is the width of the final contact interface b

and the contact pressure p, expressed in (Zavarise and De Lorenzis, 2009b) as in

Eq. (1.1) and (1.2).

b =
√

4F

πl

(1−ν2
1)/E1 + (1−ν2

2)/E2

(1/r1)+ (1/r2)
(1.1)

1

Chapter 1. Introduction

Figure 1.1: The Hertz contact problem, (Frankie et al., 2010)

p(y) = E

2r (1− v2)

√
4F

(1−ν2)r

πlE
− y2 (1.2)

With advancement of computational technology came the breakthrough of nu-

merical methods used in structural analysis. From its beginning in the 1950’s

and 60’s, (Frankie et al., 2010), CAE - Computer-Aided Engineering with the fi-

nite element method has been the most widespread method to solve compli-

cated structural problems. Contact problems were incorporated into FEM soon

after its invention, for which one of the earlier works can be seen in (Parsons

and Wilson, 1970). Finite element methods solves the structure in a weak sense,

using typically simple linear or quadratic polynomials to interpolate the sur-

face over a parametric domain, the elements. The simplified surface represen-

tation can be a challenge for contact problems. Imagine the edge of a body slid-

ing across another surface. Due to the FEM representation, the edge will slide

through element domains and for each new element experience a small abrupt

change in force and direction.

Another tool playing a significant role in a structural design processes is CAD,

Computer-Aided Design. It represents surfaces using smooth functions which

2

Chapter 1. Introduction

are able to accurately represent geometry. The standard smooth functions used

in CAD tools today are non-rational B-splines, NURBS. They result in a greatly

flexible modelling scheme for which anything from straight lines to spheres and

kinks can be accurately described. The geometrical model of a structure is thus

first made in a CAD-program in order to have an accurate geometric represen-

tation. The model then have to be meshed into finite elements before it can be

applied a structural analysis using FEM. In FEM, the geometry as well as solu-

tion field is represented by simple interpolation polynomials. Furthermore it is

necessary to go back to the original model for every new mesh generation due

to the FE discretisation. Meshing is for complex geometries a time consuming

procedure and often requires to be manually adjusted, (Breitenberger, 2016).

In order to reduce the effort needed for the meshing process, a new procedure

was proposed in the 2000’s by Wriggers and coworkers, (De Lorenzis, Hughes

and Wriggers, 2014) in (Hughes et al., 2005) called isogeometric analysis, IGA. It

aimed to create a bridge between CAD and CAE by using the discretisation and

solution procedure in FEM and the smooth basis functions from CAD. In addi-

tion to reduce the time consuming procedure of meshing a model, it showed

potential to further improve the analysis by increased accuracy and robustness

on a per-degree of freedom basis, see(Grossmann et al., 2012), as described in

(De Lorenzis, Hughes and Wriggers, 2014).

Contact problems are complex. They are unavoidably nonlinear in nature as

the contact interface is not known in advance and are often subjected to large

deformation and sliding. IGA has the potential to increase accuracy, produce

more physically acting contact pressures and improve convergence of contact

problems, which is shown in (Fischer and Wriggers, 2005). Due to its promise

to improve some of the challenges related to contact analysis, it has been a sig-

nificant scientific effort in the field the last decade for which a variety of meth-

ods have been developed. Most of them are directly translated from original

FEM techniques and accordingly inherit the original limitations. Even though

the robustness and accuracy are improved, there are still issues related to the

transferring of accurate contact pressures between bodies, convergence rates

and efficiency and there is no single method that is recognised as the superior

contact solution scheme.

3

Chapter 1. Introduction

Objective and scope

A structural IGA research code at the department of Marine Technology, NTNU

is under development. It is mainly formulated with Kirchhoff-Love shell ele-

ments and NURBS basis functions. There exist per now no commercial IGA

code including Kirchhoff-Love shell elements with implemented contact analy-

sis. The objective of this thesis is to add a first contact implementation into the

IGA research code. A simplified contact implementation is provided as starting

point for the work. The implementation is to be based on established contact

formulations using penalty method to impose contact constraints and a cho-

sen contact discretisation. The implementation should include the calculation

of a geometric stiffness matrix for large deformation contact between flexible

bodies, contact between rigid and flexible bodies and a point search algorithm.

The proposed algorithm is coded to handle multiple bodies in contact and con-

tact is imposed by external force and by moving rigid bodies. The code is tested

for numerical examples of different geometry and complexity. Numerical stud-

ies are conducted in order to investigate effects of different modelling choices

such as the penalty parameter and choice of master and slave body.

Structure of thesis

This thesis first presents the fundamental concept of NURBS as a basis for sur-

face modelling, (Ch. 2) and IGA as a method (Ch. 3) for which the NURBS

based Kirchhoff-Love shell element is briefly reviewed. Further the computa-

tional contact formulations used in the contact implementation are presented

and discussed (Ch. 4). The complete contact algorithm proposed is described in

(Ch. 5). In Ch. 6 three numerical examples that are implemented are presented

and discussed. The results are concluded in (Ch. 7)

4

Chapter 2
Modelling geometry with NURBS

Mathematical expressions that are able to model free-form shapes were first de-

veloped by Bèzier in the 1960’s, (Rogers, 2001). Later came the B-spline func-

tions and Non Uniform Rational B-splines, NURBS. NURBS have the advan-

tageous ability to accurately model a variety of curves and surfaces extending

from straight lines to curves and spheres and also describe free-form shapes.

They are thus the standard functions used in CAD tools today.

It is first later, in the 2000’s, that they are transferred to the finite element en-

vironment, resulting in IGA. The IGA research code of the Marine Department

is based on NURBS functions and this chapter further aims to give the reader a

basic understanding of NURBS and how they are used to model geometry. As

NURBS are derived from complicated mathematical formulations, only the end

product is described in this chapter.

2.1 B-splines

In order to introduce the reader to non Uniform Rational B-splines, it is natural

to start with the simpler B-splines.

In FEM, interpolation polynomials are used to approximate a set of points called

nodes. The interpolation polynomials represents the given points accurately,

5

Chapter 2. Modelling geometry with NURBS

while oscillations might occur between them, as described in (Kiendl, 2011). As

a result, the geometry in FEM is only represented exactly at the nodes, while it

is approximated between them. B-splines are other functions used to approxi-

mate a set of given points, called control points. They stand in contrast to the

polynomials used in FEM. They are not interpolation functions and only ap-

proximates the control points. Furthermore, they do not result in oscillations

between the points and form a smooth curve from the first control point to the

last one defined. Only the first and last control points are described accurately

as it is beneficial from a design perspective to be able to define the exact starting

and ending point of a curve. B-spline curves are defined by a linear combination

of control points and basis functions called B-splines, over a parametric space.

Knot vector

B-spline curves are defined over a parametric space which is divided into in-

tervals. The intervals are defined by the knot vector and B-splines are defined

piecewise on these intervals. The knot vector consist of a set of parametric co-

ordinates ξi between 0 and 1, Ξ= [ξ1,ξ2, ...,ξn+p+1]. p is the polynomial degree

of the basis function and n is the number of basis functions. The knot entries

are either increasing in order or repeated. A knot span is the parametric space

between two distinct knots in the knot vector. B-splines are C∞ continuous in-

side a knot span and C p−k continuous on knots repeated k times. In this way it

is possible to model a curved surface with a kink, by repeating one of the knot

entries k = p times. If the first and the last knot in the knot vector is repeated

p + 1 times, it is called an open knot vector, (Kiendl, 2011). The first and last

control points of the open knot vector are interpolated. Consequently the start

and end point of the curve can easily be chosen, as the B-spline curve exactly

represents the points instead of approximating them.

The B-splines mathematical expression

The B-spline basis functions, N are formulated in (Kiendl, 2011). They are com-

puted by the Cox-de Boor recursion formula and are defined by the knot vector

and polynomial degree p. It starts for p = 0,

Bi ,0(ξ) =
{

1 ξi ≤ ξ≤ ξi+1

0 other wi se.
(2.1)

6

Chapter 2. Modelling geometry with NURBS

For p ≥ 1 the basis functions are,

Bi ,p (ξ) = ξ−xii

ξi+p −ξi
Bi ,p−1(ξ)+ ξi+p+1 −xi

ξi+p+1 −ξi+1
Bi+1,p−1(ξ) (2.2)

B-spline curves, C (ξ) are as mentioned defined as a linear combination of con-

trol points, P , and basis functions,

C (ξ) =
n∑

i=1
Ni ,p (ξ)Pi . (2.3)

2.2 NURBS

NURBS are piece-wise rational polynomials while B-splines are piece-wise poly-

nomials. Each control point has in addition to its coordinates a weight, wi . The

weight act as a "pulling force" between the related control point and NURBS

curve. The larger the weight, the more the curve is pulled towards the control

point. This result in an increased local and global control of the geometric rep-

resentation. The NURBS functions are formulated in (Kiendl, 2011). The basis

functions are a combination of B-spline basis functions, N and weights,

Ri ,p (ξ) = Ni ,p (ξ)wi∑n
i=1 Ni ,p (ξ)wi

(2.4)

and NURBS curves are formulated in the same manner as the B-spline curves,

C (ξ) =
n∑

i=1
Ri ,p (ξ)(P)i . (2.5)

A NURBS surface definition includes basis functions in two parametric direc-

tions, ξ,η and a grid of control points of size m ×n. There are two related knot

vectors and polynomial degrees p, q . One for each parametric direction.

S(ξ,η) =
n∑

i=1

m∑
j=1

Rp,q
i , j (ξ,η)Pi , j (2.6)

7

Chapter 2. Modelling geometry with NURBS

with basis functions

Rp,q
i , j (ξ,η) = Ni ,p (ξ)M j ,q (η)wi , j∑n

i=1

∑m
j=1 Ni ,p (ξ)M j ,q (η)wi , j

(2.7)

8

Chapter 3
IGA

During a structural design process, two models of the geometry are commonly

made. One in a Computer Aided Design, CAD, tool in order to accurately model

the geometry, and then in a finite element tool where the meshing and analysis

is executed. The two tools uses different mathematical expressions to describe

the geometries and a CAD model can thus not be directly transferred to a fi-

nite element program. FEM typically uses simple Lagrange polynomials as basis

functions and CAD uses a set of smooth functions, NURBS. The finite element

geometric representation is only an approximation of the CAD geometry.

The geometric modelling in FEA is related to multiple challenges. Geometric

information is lost in the meshing process since the geometry is approximated

by interpolating using simple polynomials and nodes. In order to increase the

accuracy of the geometric model, the mesh density is increased. However the

refinement can not be done without increasing the number of degrees of free-

dom and such the unknown variables that needs to be solved for. Moreover, the

whole process of meshing a structure needs to be redone if the mesh needs to be

changed. Intuitively this is a time consuming business. Isogeometric analysis,

IGA, was proposed in (Hughes et al., 2005) to serve as a bridge between FEA and

CAD. It sought to reduce the time extensive procedure of modelling and mesh-

ing in a design process by using the geometric representation of the structural

model from CAD throughout the process of design and analysis. With the exact

surface representation of NURBS it is possible to reduce the mesh size and fur-

9

Chapter 3. IGA

ther the computational effort. IGA thus has the potential to greatly improve the

design process and has been a topic of great interest among researcher since its

beginning.

IGA is recognised to feature several advantages compared to FEM. It has shown

to improve both accuracy and robustness of algorithms, (De Lorenzis, Hughes

and Wriggers, 2014). The smooth basis functions result in more precise rep-

resentation of geometry and higher inter-element continuity. The representa-

tion is flexible and the continuity can be adapted at specific locations to create

kinks in surfaces. The accurate geometrical description is an obvious advantage

when analysing contacting bodies. The accuracy of the solution is directly de-

pendant on the accuracy of the surface representation. Since two approximated

surfaces are involved, the error becomes more significant. Contact problems of-

ten include large deformation and sliding. The low inter-element continuity of

FEA can be a challenge to the convergence of the analysis when elements slide

past each other and experience abrupt changes in values and force directions.

A higher inter-element continuity is thus advantageous. IGA also exhibits an in-

creased per-degree of freedom accuracy and robustness,shown in (Grossmann

et al., 2012). Consequently it is possible to use a coarser mesh to capture the

same level of accuracy as FEM when using IGA. The complexity of contact prob-

lems often result in a large computational effort needed for the analysis, and it

is thus desirable to reduce the number of degrees of freedom in the system.

In this chapter NURBS based IGA and the NURBS based Kirchoff-Love shell ele-

ment is briefly described. It is presented to get a basic understanding of the IGA

research code of the Marine Department of NTNU, which the contact algorithm

proposed in this thesis is implemented into.

3.1 NURBS based IGA

NURBS have become the most prevalent functions for CAD due to their ability

to accurately model complicated surfaces. They are therefore a natural choice

of functions for an IGA code. In NURBS based IGA, the NURBS basis functions

are used both to describe the geometry and the unknown solution field, just

as the same mathematical formulation is used in FEM to describe the solution

10

Chapter 3. IGA

field and the geometry. The isogeoemtric consept can thus be considered an

enhancement to the isoparametric concept of FEM, (Kiendl, 2011). IGA is setup

in the same way as FEM. It contains the same analysis steps and relateable con-

cepts. In this section the NURBS based elements and meshing procedure is de-

scribed.

Elements

The structural system is in IGA such as in FEM discretized by subdivision into

elements. The stiffness matrix is both for FEM and IGA evaluated at a local

element-level and assembled into a global system. The elements are though

not as intuitively separated as in FEM as the position of the control points and

basis functions are not directly related to the position of the element. The con-

trol points are situated outside of the geometric surface and the basis functions

can span over multiple elements.

In (Kiendl, 2011), Isogeometric NURBS based elements are defined by knot-

spans. A knot-span is a non-zero difference between two subsequent entries in

the knot vector. A structure can be defined by multiple knot vectors. Each sub-

domain that a knot vector is defined on is called a NURBS patch. The full do-

main can thus consist of multiple patches that again are divided into elements.

The element boundaries are illustrated in Figure 3.1.

A set of control points are defined for a patch. Each control point is related to

a unique knot. The degrees of freedom and boundary conditions are as in FEM

defined at the control points. Each control point has in three dimensions three

unique degrees of freedom related to it, in respectively x-, y- and z-direction.

Figure 3.1: NURBS based IGA elements,(Kiendl, 2011)

11

Chapter 3. IGA

Mesh

There are two ways to execute a mesh refinement of the geometry in NURBS

based IGA. The first is called knot-insertion and the second is called order el-

evation. Both procedures add control points to the geometric representation.

Knot insertion is executed by dividing the knot-spans into smaller intervals by

inserting new knots. For each new knot inserted, a control point is added. In

order elevation, the polynomial degree is increased. Knot insertion and order

elevation can be executed in both parametric directions separately for surfaces.

Knot insertion and order elevation affects the continuity at a knot. Say for exam-

ple that the polynomial degree of a patch is originally p = 2 and the continuity

at a knot is C p−k = C 2−1 = C 1. Then order elevation is executed so that p = 3.

The continuity at the same knot is now C 3−1 = C 2. The original continuity can

be restored by adding a repeated knot, C p−k−1 =C 3−1−1 =C 1.

The main difference between FEM and NURBS based IGA mesh refinement is

as stated in (Kiendl, 2011), that the geometry is represented exactly for all mesh

refinements. In FEM, the geometric representation is dependent on the mesh

refinement, and it is thus necessary to go back to the original geometric model

when changing the mesh density. A drawback of the refinement with NURBS is

described in (De Lorenzis, Scott, Wriggers, Taylor and Zavarize, 2014). Since the

knots are globally defined, a local mesh refinement can not be done straightfor-

wardly. Contact problems have often a very local need for mesh refinement as

the contacting surfaces can be only a small part of the NURBS patch.

3.2 The NURBS based Kirchoff-Love shell element

The shell formulation implemented in the IGA research code of the Marine De-

partment is only briefly reviewed in order to have a basis to interpret the result

of the numerical examples. The element is described in detail in (Kiendl, 2011).

Kirchoff-Love shell formulation express curvature as the second derivative of

geometric terms of the surface. In order to express the curvature correctly it is

thus necessary to have a C 1 inter-element continuity. This degree of continuity

is in general not possible for the most commonly used Lagrange polynomials in

12

Chapter 3. IGA

FEM. Thus the Kirchhoff-Love shell is not the natural choice of shell elements

for FEA. NURBS basis functions on the other hand offer C 1 and higher inter-

element continuity. It is thus more straightforward to implement the Kirchoff-

Love shell element in IGA than FEM. In (Kiendl, 2011) the kinematics of the

Kirchoff-Love thin shell element are used together with NURBS basis functions

to create a NURBS based Kirchoff-Love shell element. This is the formulation

that is adopted in the IGA research code of the Marine Department of NTNU

and thus are the elements used for the numerical contact examples in this the-

sis.

Assumptions

Kirchhoff-Love shells are only applicable to thin structures. This is due to the

assumptions that its formulation is based on. Cross sections normal to the mid-

dle surface are assumed to remain normal after deformation and all cross sec-

tions stay straight throughout the deformation. The last assumption is equiva-

lent to having a linear strain distribution through the shell thickness. The first

assumption corresponds to neglecting transverse shear strains. In thick shells,

transverse shear strains can not be neglected. In order for a shell to be consid-

ered thin, the ration R/t > 20, (Kiendl, 2011), needs to be fulfilled, where R is the

radius of curvature and t is the shell thickness. This is the case for most of shells

in practical applications. Reisser-Mindlin shells, a formulation made for thick

shells, are though more used in FEM. That is due to the less strict inter-element

continuity criteria.

13

Chapter 4
Computational contact mechanics

Contact problems often involve multiple bodies, large deformations and mul-

tiple non-linearities. A computational solution scheme accordingly have to be

especially robust and efficient to handle the complexity of the problems. The

finite element method is the most widespread computational solution proce-

dure. The approximated geometry and low inter-element continuity of FEM

can be a challenge to the convergence of the solution. More recently contact

problems have been solved by isogeometric analysis. It is shown that it has the

potential to increase both accuracy and robustness of contact problems, see e.g

(Hughes, 2011) where the NURBS based contact algorithm greatly improves the

iterative convergence of the FEM equivalent. The great potential has resulted in

various methods that have been developed for solving contact problems using

IGA. Many of the methods are achieved by adapting procedures already existing

for FEM. In this chapter, the methods used in the proposed contact algorithm

in IGA are described. As the IGA methods inherit many of the features of the

FEA equivalent it is relevant to also describe the finite element equivalent of the

methods.

The contact solution procedures can be divided into two main parts. One being

calculating the addition from contact to the weak form of the system equilib-

rium equation and the other being the contact interface discretization. In con-

tact mechanics, the structural and contact contribution to the weak form are

typically found and added to the equation separately, as is described in (Wrig-

14

Chapter 4. Computational contact mechanics

gers, 2006). This chapter first presents how the contact contribution to the weak

form is found and then how the contact interface and weak form is discretized.

4.1 The normal, frictionless contact problem

Assume two elastic bodies are subjected to large deformations and contact. One

of the bodies is denoted as slave, Ωs and the other as master, Ωm . The contact

problem is formulated in the perspective of the slave surface coming into con-

tact with the master surface and not the opposite. This is the classical formu-

lation of contact problems, even though it introduces a dependence on which

body is given master status and which is given the slave status. The results are

not equal when interchanging the status of the bodies and carefulness needs to

be taken when making the choice.

Figure 4.1: Description of contacting bodies, (Matzen, 2015)

The kinematic expressions are formulated in terms of the reference configura-

tion of the bodies and their displacements. The reference configuration refer

to the body at the last known position, or in terms of the Newton-Raphson it-

erative procedure it is the configuration of the body in the previous load step.

The current configuration refer to the position and deformations of the body at

the current load step in the Newton-Raphson procedure. Commonly and as is

15

Chapter 4. Computational contact mechanics

done in (De Lorenzis, Scott, Wriggers, Taylor and Zavarize, 2014), a point in the

current configuration of the body is expressed through the reference configu-

ration point and the displacements up until the current position, x i = X i +ui ,

where X is the coordinate of a point in the initial configuration, u is the dis-

placement of the point and the superscript i refers to either the slave or master

body, i = (s,m).

The contact problem is evaluated by locating contacting points on the master

and slave surfaces, i.e. pairs of points in the contact interface. The contact in-

terface in the current configuration is denoted γC . An assumption of perfect

contact is made, which means for every point on the slave surface there is a

unique contacting point on the master surface. Further, γc = γs
C = γm

C , m refer

to the master and s to the slave surface. γC is however unknown and is deter-

mined through introducing a distance function d = |x s − xm | which describes

the distance between a fixed point on the slave contact surface γs
C and an arbi-

trary point xm on the master surface contact region γm
C . The unique point on

the master surface which is in contact with the fixed slave point x s is the point

of minimum distance between x s and γm
C . It is often denoted x̄m and is com-

puted by finding the closest-point projection of x s onto γm
C . The closest-point

projection is equivalent to minimising the distance function, d .

The slave point x s , its closest-projection point x̄m and the normal n̄ at x̄m are

used to express the normal direction gap between the surfaces. Subsequently

the bar of x̄m and n̄ is removed for simplicity of notation as the closest-projection

point is hereafter the only point relevant on the master surface. The contact in-

tegrals are evaluated on the slave contact region of the reference configuration.

The reference contact region is denoted ΓC and hence ΓC := Γs
C , Γ

m
C . When

evaluating contact as a frictionless problem, contact is assumed to be relevant

only in the normal direction. For this purpose, the normal directed gap between

the two bodies is defined as

gN = (x s −xm) ·n (4.1)

for which n = nm is the surface normal at xm , pointing towards the slave sur-

face, see Figure (4.1).FE Due to how the gap function is defined, it is negative if

the slave is penetrating the master surface and positive if contact is not occur-

16

Chapter 4. Computational contact mechanics

ring between the points, i.e. when there is a positive distance between them.

The normal traction due to contact, tN is oppositely directed for the master and

slave surfaces. The Piola traction vector is denoted t = t m = t s and its normal

component is defined,

t = tN n, tN = t ·n. (4.2)

The contact normal traction and the gap function defines conditions for imper-

meability on ΓC , called The Kuhn-Tucker conditions.

gN ≥ 0, tN ≤ 0, gN tN = 0 (4.3)

4.2 The penalty method to formulate the contact weak form

The Kuhn-Tucker condition for impermeability, Eq. (4.3), is a boundary con-

straint that have to be fulfilled by the weak form. Contact between two bodies

can accordingly be viewed as a constrained minimisation of the potential en-

ergy of the system, W . The penalty method is one of the most common meth-

ods to formulate the contact constraints and thus the contact contribution to

the weak form. The contact constraints formulated using the penalty method

are,

tN = εN gN , gN =
(x s −xm) ·nm if (x s −xm) ·nm < 0

0 otherwise.
(4.4)

The penalty contact constraint in Eq. (4.4) defines contact as active, i.e. occur-

ring, for points on the surface that has a normal gap function less than zero.

That means after penetration of the slave body into the master surface has oc-

cured. The penetration gN is then penalised by a constant penalty parameter

εN > 0. Areas for which gN = 0 are not a part of the active contact region. The

penalty formulation is called an active set strategy as it only calculates the con-

tact contribution for parts of the surface that contact occurs.

The frictionless contact contribution to the weak form when applying the penalty

method, W P
C , is formulated in (Fischer, 2005) and (De Lorenzis, Scott, Wriggers,

17

Chapter 4. Computational contact mechanics

Taylor and Zavarize, 2014) as

W P
c =

∫
Γc

tNδgN d A = εN

∫
Γc

gNδgN d A (4.5)

where the integration is executed on the active contact region, using an active-

set strategy as stated earlier. The linearisation of the weak form yields

∆δW P
c = εN

∫
Γc

∆gNδgN d A+εN

∫
Γc

gN∆(δgN)d A (4.6)

for which δ represents a variation and ∆ the linearisation. The following equa-

tions formulate the variation and linearisation of the contact variables in vector

and matrix form. The discretization is retrieved from (De Lorenzis, Scott, Wrig-

gers, Taylor and Zavarize, 2014) though adapted to NURBS instead of T-splines

which is use in the article. The quantities needed for the weak form equation

can be written in matrix form. The following formulation is obtained,

δgN = δuT NN , ∆gN = N T
Nδu (4.7)

where δu is the variation of the displacement vector, ∆u are the linearized dis-

placements and NN are the NURBS functions described in a previous section

multiplied by the contact normal. These terms are expressed in vector form as

δu =

δus
1

.

.

.

δus
nm

δum
1

.

.

.

δum
nm

, ∆u =

∆us
1

.

.

.

∆us
nm

∆um
1

.

.

.

∆um
nm

, NN =

R s
1(ξs)n

.

.

.

R s
ns (ξs)n

Rm
1 (ξm)n

.

.

.

Rm
ns (ξm)n

(4.8)

In the contact solution algorithm implemented in this thesis the linearisation

of the displacements are not taken into account. It is assumed that it does not

largely influence the convergence rate.

18

Chapter 4. Computational contact mechanics

The NURBS basis functions for both the slave and the master side of the contact

pair in the normal direction are gathered in a vector, NN . The same goes for the

linearized and variations of the displacements. The terms related to the slave

degrees of freedom are gathered in the upper part of the vector and the lower for

the master degrees of freedom. R1,...,ni (ξi) are the basis function values from the

basis functions having support on respectively a slave point x s and its normal

projection point xm . ξi are the parametric coordinates of the slave or master

surface, i = (s,m).

The second part of the weak form expressed in 4.5 includes the linearisation of

the variation of the gap gN ,

∆(δgN) = δuT kg eo∆u (4.9)

The geometric stiffness matrix, kg eo contributes to a faster convergence of the

code and takes into account the linearisation of the variation of the normal gap.

kg eo = gN N̄ m−1N̄ T +D N̂ T + N̂ DT −DkDT (4.10)

m−1 is the inverse of the metric tensor mαβ and k is the curvature tensor kαβ.

α= 1,2 and β= 1,2 represents the directions of the surface. The following defi-

nitions to formulate the geometric stiffness matrix are introduced

Tα =

R s
1(ξs)τα

...

R s
ns (ξs)τα

Rm
1 (ξm)τα

...

Rm
ns (ξm)τα

, Nα =

0
...

0

Rm
1,α(ξm)nα

...

Rm
ns ,α(ξm)nα

(4.11)

N̂ = [N1 N2], T̂ = [T1 T2] (4.12)

D = [T̂ − gN N̂]A−1, N̄ = N̂ −Dk (4.13)

where the subscript 1,2 refers to surface directionα= 1,2 in Eq. (4.11) and A−1 is

the inverse of Aαβ = mαβ−gN kαβ. Moreover, the covariant vectors of the master

surface are τα = xm
,α . m−1 is the inverse metric tensor, k = kαβ is the curvature

19

Chapter 4. Computational contact mechanics

tensor in local directions α,β= 1,2 on the master surface.

All the metric components and the curvature tensor depends on the master sur-

face and are thus calculated for the master element resulting from the point

projection.

General comments to the method

The penalty term εN can be considered a spring stiffness. It is multiplied by the

penetrated distance to achieve the force needed to push the slave body back

into a position of perfect contact, gN = 0. It is shown among others in (Luen-

berger and Ye, 2016) that εN →∞ and εT →∞ corresponds to the exact solution.

This is though impossible to achieve as very high penalty parameters ε results

in ill-conditioned stiffness-matrices. Large penalty parameters are thus subject

to a loss in robustness and numerical errors, (De Lorenzis, Hughes and Wrig-

gers, 2014). Typical penalty parameters used in the literature are ε = 1e3−1e5,

see e.g. (De Lorenzis, Scott, Wriggers, Taylor and Zavarize, 2014). The penalty

method is advantageous in its simplicity and as stated in (Fischer, 2005), it is

purely geometrically based. Therefore no additional degrees of freedom have to

be activated or deactivated. Lagrange multiplier method is another of the most

common methods to impose contact constraints on a structural problem. It is

able to fulfil the condition of impermeability exactly. The disadvantage of this

method is that additional unknowns are introduced into the stiffness matrix,

which is avoided for the penalty method.

4.3 Contact space discretization with FEM and IGA

This section aims to describe how the contact contribution to the weak form is

adapted to a discretized setting. The basic criteria for a contact space discreti-

sation is that it must be able to handle contact between non-matching meshes.

As contact typically is related to large deformations and sliding, the discretised

setting must not be dependent on a matching mesh between the bodies. There

exists several methods varying in complexity, accuracy and robustness. In this

chapter the methods directly related to the methods implemented into the pro-

posed contact algorithm are briefly reviewed and the equations needed to setup

the discretisation scheme used in the algorithm are provided.

20

Chapter 4. Computational contact mechanics

Node-to-segment contact discretization

On of the earliest discretisation schemes for contact problems with non-matching

mesh, is the Node-To-Surface, NTS, algorithm. This method is still widely used

in commercial finite element codes due to its simplisity and flexibility. The NTS

contact discretisation enforce contact constraints between a node on the slave

surface and a segment of the master body, see Figure (4.2). The NTS approach

needs to be combined with an active-set-strategy, which here implies that only

the slave nodes related to a gap gN ≤ 0 are included in the contact calculations.

The NTS approach is computationally inexpensive and flexible. Its major draw-

back stems from the way the contact pressure is transferred from the slave to

the master body. The ability of a contact algorithm to transfer stresses is of-

ten tested through a patch test, which is a simple indicator of its quality. It is

shown in (Zavarise and De Lorenzis, 2009a) that the approach transfers stresses

as concentrated forces at the slave nodes. This again results in the balance of

momentum not being achieved on an element level. Another challenge with

the method is its bias between which body is given master and slave status. It

have to be kept in mind how interchanging the status of the bodies can interfere

with the results.

Knot-to-surface and Gauss-point-to-segment discretization

In IGA, the node-equivalent control points are not positioned at the actual sur-

face of the body. In (Hughes, 2011) it is shown that the control points lay signif-

icantly outside of the contact surface during the contact stages. Control points

can thus not be directly used as a reference for contact on the slave surface. The

gap would not be the actual distance between the surfaces. In order to employ

a similar strategy as the NTS contact discretization in IGA, other points needs to

be used. In (Hughes, 2011), Gauss-Legendre quadrature points are used to en-

force the contact constraints. The algorithm is denoted knot-to-surface, KTS.

Compared to the standard C 0 continuous Lagrange finite elements, the pro-

cedure proves to provide a more physically acting positive contact pressure,

whereas the Lagrange finite elements are prone to produce negative pressures.

When two elastic bodies are subjected to large deformations and sliding, the

KTS approach shows a greatly improved iterative convergence. The KTS algo-

rithm is overall said to provide satisfactory results. It is however suggested to

21

Chapter 4. Computational contact mechanics

Figure 4.2: NTS discretization, (De Lorenzis et al., 2017)

rather use the more sophisticated Mortar methods than directly applying the

constraints at the Gauss-Legendre points. Mortar methods introduce a refer-

ence surface and enforce the contact constraints in a weak sense. Mortar meth-

ods are more robust than the NTS approach also for common FEM, the methods

are described in detail in (Wriggers et al., 2006). Due to its complexity it typically

increases the computational cost.

Later the KTS method has been denoted Gauss-point-to-segment, GPTS, as is

done in (De Lorenzis, Hughes and Wriggers, 2014). The GPTS discretization

scheme is also in (De Lorenzis, Hughes and Wriggers, 2014) described as hav-

ing the ability to capture the contact surface even for a low number of elements.

It is not dependent on the mesh of the structure in the direct sense which the

classical NTS approach is.

A drawback of the method is, as stated in Matzen et al. (2013), the non-matching

number of virtual knots, here Gauss points, and degrees of freedom at the con-

tact interface makes the system over-constrained which might lead to conver-

gence problems. In (Matzen et al., 2013), Greville and Botella points are used as

22

Chapter 4. Computational contact mechanics

collocation points. The number of Greville and Botella points are always equal

to the number of control points of a surface and the challenge of having an over-

constrained system can be avoided. Moreover, the Gauss points are not able

to capture contact at edges as they are situated on the inside of the elements.

Using other collocation points or more sophisticated methods might be bene-

ficial for future development of the IGA contact algorithm proposed, but as a

first contact implementation to the Marine Department IGA research code, the

GPTS discretization is a natural choice. It has an advantage in its simplicity of

implementation and it is considered to be sufficiently accurate and robust for a

variety of contact problems.

4.4 GPTS discretisation equations

The contact contribution to the weak form is calculated for GPTS contact ele-

ments. All basis functions that have weights in the Gauss point from the slave

element and in the normal projection point from the master element are in-

cluded in the contact element. The related stiffness matrix and residual force

vector thus includes all degrees of freedom related to the slave element and the

master element for which the points x s and xm are a part of. For each active

Gauss point on the slave surface, a contact element is established and its contri-

bution to the weak form and force residual vector is calculated. The structure of

the contact element stiffness matrix Kg p and residual force vector Rg p is shown

in Eq. 4.14. The subscript s,m refers to the degrees of freedom related to the

slave and master elements involved and g p indicates that the term belongs to

the contact element of a specific Gauss point.

Kg p =
[

kss ksm

kms kmm

]
, Rg p =

[
Rs

Rm

]
(4.14)

The equations related to the GPTS discretization using the penalty method are

taken from (De Lorenzis, Scott, Wriggers, Taylor and Zavarize, 2014). The total

stiffness matrix and force residual, Fr due to contact is formulated as

23

Chapter 4. Computational contact mechanics

Fr = εN

∫
Γc

gN N d A (4.15)

with εN being the penalty parameter to be applied in the normal direction. Dis-

cretised with the GPTS method, that yields

Fr = εN
∑

acti veg p
gN g p Ng p zg p J1g p J2g p . (4.16)

The summation is executed over all active Gauss points. zg p are the Gauss-

Legendre weights associated with the Gauss point, J1g p and J2g p are the Jaco-

bian functions mapping from isoparametric space to physical space and map-

ping to the reference domain that the Gauss quadrature points and weights are

defined for. gN g p is the normal gap function at a specific Gauss point.

The contact contribution to the stiffness matrix is calculated in two parts re-

lated to the two parts of the linearised virtual work, Eq. (4.6). The main contact

stiffness contribution comes from the first part and the geometric stiffness con-

tribution from the second part related to the linearisation of the variation of the

normal gap function, Eq. (4.9).

Kc = Kc,mai n +Kc,g eo (4.17)

Kc,mai n = εN

∫
Γc

d AN N T d A (4.18)

Kc,g eo = εN

∫
Γc

gN Kg eo N T d A (4.19)

The contribution to the stiffness matrix discretised with the GPTS method yields,

Kc,mai n = εN
∑

g p,acti ve
Ng p N T

g p zg p J1g p J2g p (4.20)

Kc,g eo = εN
∑

g p,acti ve
gN g p kg eo,g p zg p J1g p J2g p (4.21)

for which Ng p contains all NURBS basis functions R, related to the contact ele-

24

Chapter 4. Computational contact mechanics

ment for the specific active Gauss point.

25

Chapter 5
Implementation of a contact

algorithm in MATLAB

The general goal of a structural analysis computational tool is to sufficiently

provide accurate results and do so with a minimal use of resources. Applying

IGA instead of FEM has shown to both improve efficiency and accuracy. The

need for elements in the mesh is reduced and the geometry is described more

accurately. As of this moment there are no commercial software that offers con-

tact analysis with IGA using Kirchhoff-Love shell elements. In order to con-

tribute to the research currently being done in this field, a contact algorithm

is proposed and implemented into the IGA research code of The Marine De-

partment of NTNU. This chapter presents the proposed contact algorithm. The

contact code can be seen in the Appendix of this thesis.

Choosing MATLAB

MATLAB is used for the computational implementation of the contact prob-

lems in this thesis. As a high-level programming environment it has the advan-

tage of being an orderly and easy to understand tool for structural analysis. In

IGA as well as FEM, the handling and solving of matrices is fundamental. The

numerical handling of matrices is straightforwardly done in MATLAB, which is

an abbreviation of MATrix LABoratories. Matrices can easily be passed on be-

26

Chapter 5. Implementation of a contact algorithm in MATLAB

tween functions and solved directly due to the built-in functions. Moreover, the

built-in visualisation scheme comes in handy when plotting displacements and

structure geometry. The drawback of using the MATLAB environment is notice-

able when the structural problem becomes large with a vast number of degrees

of freedom. It is slow compared to low-level programming languages and mea-

sures to ensure efficiency should be kept in mind during the implementation.

The IGA research code uses mexfile subroutines coded in Fortran in order to

decrease the computational time.

Choosing methods for contact analysis

The procedure for setting up a contact algorithm in a structural analysis using

IGA, as well as FEM, can be roughly considered to consist of two main steps.

The first is the enforcement of contact constraints. The second is expressing

the contact contribution to the weak form in a discretised setting. There exist

several methods that describe how either step can be implemented. The fo-

cus of the script proposed in this analysis is to develop a simple to implement

contact procedure as a first contact addition to the IGA research code with a

sufficient degree of accuracy from an engineering perspective. The computa-

tional resources needed for an analysis should be limited and the implemen-

tation should be as general as possible so that it is easily adjusted to analyse a

number of geometrical examples.

In the proposed contact implementation the penalty method is used for im-

posing contact constraints and then Gauss-point-to-segment method is used to

add the contact contribution to the discretized weak form. These methods are

described in the previous chapters. The main disadvantage of using the penalty

method as a contact constraint formulation is the nonphysical penetration al-

lowance. On the other hand, its simplicity for which it does not involve includ-

ing more unknowns to the equations, makes it a natural choice as a part of a

first contact implementation. The GPTS formulation is a relatively intuitive dis-

cretization scheme that detects contact between Gauss quadrature points on

the slave surface and the normal projection point on the master surface. The

GPTS approach with the penalty method was implemented in (De Lorenzis,

Scott, Wriggers, Taylor and Zavarize, 2014) with T-splines instead of NURBS for

which satisfactory results were achieved. For very large penalty parameters, the

27

Chapter 5. Implementation of a contact algorithm in MATLAB

GPTS approach showed an oscillatory behaviour in (De Lorenzis et al., 2011).

This should not be a problem in the proposed implementation since a high de-

gree of accuracy is not the main objective of the implementation and very high

values of penalty is not considered. Keeping the penalty parameter low enough

also ensures that the matrices are not ill-conditioned.

5.1 Code overview

The contact code is setup such that one main function defines the bodies in-

volved in the analysis and all the prescribed parameters that influence the exe-

cution of the analysis. All parameters and specifications needed for the contact

problem implementation are defined in the main function, keeping in mind the

user should not have to edit other functions than the main function itself to ad-

just the analysis to a specific contact problem.

The execution and solution of the analysis is controlled by a solver function that

is called from the main function. The solver function applies Newton-Raphson

iterations to achieve the solution. Moreover, there are different solver functions

implemented to handle some variations in the analysis which are described

later in this chapter. The alternative implementations are chosen by specify-

ing in the main function which solver function that is to execute the analysis.

During the solution process the solver function call a function that detects con-

tacting surfaces and calculate the contact contributions to the weak form. This

function is denoted as a contact contribution function. The contact contribution

functions are adapted to the specific solver function.

An overview of how the contact code is divided into three main parts can be

seen in the table below. The fundamental setup of the main function and solver

function are taken from the IGA research code. They are added and adjusted

for contact analysis in this thesis for which the features are described in this

chapter. The contact contribution calculations are fully created as a part of this

thesis.

28

Chapter 5. Implementation of a contact algorithm in MATLAB

MAIN
FUNCTION

SOLVER
FUNCTION

CONTACT
CONTRIBUTION
FUNCTION

Main task: Defining bod-
ies involved
in the anal-
ysis and all
prescribed
parameters

Controlling
the Newton
-Raphson iter-
ational proce-
dure that solves
the system.

Detect normal con-
tact between bodies
and calculate the
contact contribution
to the global stiffness
matrix and residual
force vector.

Interaction
with other
contact
functions:

Calls a solver
function →

Calls a contact
contribution
function →

← Returns results to
solver function

5.2 Solution algorithm

To adapt the Newton-Raphson solution procedure for contact problems of vary-

ing geometry, some features are included in addition to the standard penalty

and GPTS formulation. The solution procedure proposed is described in this

section by going through the contact specific features implemented. A step-

wise summary of the complete solution algorithm is seen in Figure (5.4).

Contact normal sign check

In contact analysis the normal vector of the master surface plays a fundamental

role in detecting if contact occur, see Eq. (4.4). If the value of the normal gap

function is less than zero, contact is invoked by the penalty method. Accord-

ingly the normal projection point on the master surface have to have a normal

pointing towards the slave body. Kirchoff-Love shell elements are used for the

implementation. The direction of the normal for this element is either in the

outward or inward direction. To ensure the correct direction of the normal, a

check is added in the beginning of the solver function.

For the normal check it is assumed that the bodies are not initially in contact,

that is before any external load is applied. The normal gap gN is then calculated

for two arbitrary points on the master and slave body. If the gap function is neg-

ative, the master surface normal, has initially, nshel l , the opposite sign than the

29

Chapter 5. Implementation of a contact algorithm in MATLAB

contact normal to be used for contact detection, n. A constant parameter stor-

ing the contact normal sign is created, nsi g n . It possess the value −1 if the initial

master normal points in the wrong direction and 1 if it is initially correct. The

shell normal does not change direction in the analysis and it is thus only neces-

sary to calculate the sign parameter once. The master normal sign parameter is

passed on into the contact contribution function where the contact detection is

implemented. The algorithm is step-wise summarised in text-box 1.

Box 1: Contact normal check

pm = arbitrary master point

ps = arbitrary slave point

nshel l = the shell normal at pm

In solver function:

• Calculate normal gap: gN = (ps −pm) ·nshel l

• Check sign: If gN < 0 → nsi g n =−1, if gN > 0 → nsi g n = 1

In contact contribution function:

• n = nshel l ·nsi g n

• To detect contact, calculate gap: gN = (ps −pm) ·n

Multi-patch contact

The solution algorithm is implemented so that it can handle contact between

more than two NURBS patches. This is the case when more than two bod-

ies is involved in the contact problem and when a body is defined by multiple

NURBS-patches. Multiple NURBS-patches are for example often used to de-

scribed circular shapes. The multi-patch implementation is based on two main

objectives.

1. Have the possibility to define multiple bodies as master or slave.

2. Have the possibility to leave contact irrelevant bodies out of the contact

calculations.

The last objective is implemented to restrain the computational cost.

In order to define which patches are masters and which are slaves as well as

which patches might come into contact, master-slave pairs are defined in the

main function. They are then passed on into the solver function. The IGA re-

30

Chapter 5. Implementation of a contact algorithm in MATLAB

search code of NTNU assigns a unique number to all the NURBS-patch geome-

tries that are created in the analysis. These patch numbers can further be used

to assign slave and master status to a certain patch. This is done through creat-

ing an individual vector for each pair of patches that might come into contact,

for which the first entry is the patch number to be considered as slave and the

last is the patch number to be considered as master in the pair: [sl avenr ,master nr].

One patch can be in contact with multiple other patches by simply including it

in several master-slave pairs. The way the master-slave pairs are defined makes

it very simple to interchange which body is defined as master and which is slave

in order to check the dependence on the choice.

The solver function only calculates the contact contributions for the defined

master-slave pairs. This is executed by looping through each pair and passing

on the current master and slave patch numbers as arguments into the contact

contribution function. Hence, the master-slave pairs are used to fulfil also the

second criteria, by limiting which bodies are considered for contact.

The normal vector check has to be adjusted for multi-patch contact. The normal

vector check is for the multi-patch implementation executed for each master-

slave pair individually and stored so that the correct sign can be passed on to the

contact contribution function that uses the sign in the gap function calculation.

The solution algorithm including multi-patch contact i summarised in text-box

3.

Contact by updating displacement vector

A possibility to induce contact by moving rigid bodies onto elastic bodies is im-

plemented. The load steps in the Newton-Raphson iterations for this imple-

mentation does not include load increments, but updates the coordinates of

a patch an incremental length for each step instead. For this purpose, two pa-

rameters are added to the main function. The first parameter contains the patch

number for the patch that is to be moved an incremental length for each load

step, d_r i g i d .par t_nr . The second parameter decides the total distance the

body is to be moved and in which Cartesian direction, d_r i g i d .d_step_di r =
[d x,d y ,d z]. Multiple patches can be moved by specifying more patch numbers

with individual total displacement vectors.

31

Chapter 5. Implementation of a contact algorithm in MATLAB

In the load step, all patches that are to be moved are looped through. The con-

trol point coordinates are added a displacement increment in the x, y, and z-

direction. The displacement increment is found by dividing the total displace-

ment in a direction by the total number of load steps to be used in the Newton-

Raphson procedure. The calculation of contact contributions does not need to

be adjusted.

5.3 Calculating the contact contribution

For every iteration in the Newton-Raphson procedure, the contribution to the

global stiffness matrix and residual force vector from contact is calculated. The

structural and contact contributions are calculated separately and added di-

rectly to the global matrix and vector. Separately calculating the structural and

contact contributions in the analysis is standard procedure and is described in

for example (Wriggers, 2006). An advantage of the separate calculation and ad-

dition for the structural and contact contribution tot he weak form is that the

discretisations are independent of each other and the contact contribution can

thus be discretised without considering the method used for the structural stiff-

ness matrix.

In the proposed contact implementation, contact in the normal direction is

considered. The GPTS discretisation is used together with the penalty method.

The implementation of the contact contributions calculation implementation

is summarised in the text-box below.

Finding the normal projection point

The algorithm that finds the normal projection point related to a point on the

slave surface was already a part of the IGA research code of NTNU and is not

created for the proposed contact implementation. It is briefly described here as

its features influence the point search procedure propose in the next section.

A point on the master surface, xm is considered a normal projection point to a

certain slave point when the dot product of the normal n at the master point

and a tangent vector at the same point am
α is zero, as described in (Wriggers,

2006). α represent either parametric direction. The normal projection point

32

Chapter 5. Implementation of a contact algorithm in MATLAB

Box 2: Contact contributions calculation implementation

LOOP over elements on slave body

LOOP over Gauss points on the slave element

• Find normal projection point from the Gauss point onto the mas-

ter surface

• Check the normal gap function: If gN < 0 → continue. If gN ≥ 0 →
go to the next Gauss point.

• Calculate the stiffness matrix for the GPTS contact element

• Calculate the residual force for the GPTS contact element

• Add to global stiffness matrix and residual force vector

END GAUSS POINTS LOOP

END SLAVE ELEMENTS LOOP

search algorithm accepts a normal projection point as long as the error is less

then a tolerance, see Eq. (5.1). The tolerance of perpendicularity is for this im-

plementation set to 1e −4.

n ·am
α ≤ tol (5.1)

A starting point for the normal projection point algorithm is defined in the main

function. This is a constant starting point which implies the starting point for

the point projection algorithm is the same for all Gauss points on the slave sur-

face. The algorithm is initialised by first checking Eq. (5.1) for the starting point

on the master surface. If it is fulfilled, the function exits and returns the point

coordinates. If the calculated value is not below the tolerance, the algorithm

moves a small step on the surface and checks another point. It continues the

procedure, moving in the direction that shows a reduction in the calculated dot

product value, until the equation is fulfilled.

The drawback of using Eq. (5.1) for finding the normal projection point, is that

the uniqueness of the normal projection point is not guaranteed. The mas-

ter surface might have multiple points that results in a zero vector product. A

sphere will for example always have two possible points, one on either side of

the body.

33

Chapter 5. Implementation of a contact algorithm in MATLAB

Another challenge arise for complicated geometries. As the point projection al-

gorithm moves in the direction along the master surface that exhibit a reducing

dot product, it is not able to move onto the other side of arched geometries if the

starting point is on the wrong side of the master surface. As the starting point

for the normal projection point algorithm is constant for all Gauss points on the

surface, this is likely to occur for several geometric examples. It is thus greatly

dependent on the choice of starting point on the master surface. In the next

section, a point search procedure consisting of two more steps is proposed hat

might improve the issues stemming from having poorly chosen starting points

for the normal point projection algorithm.

5.4 Complete solution algorithm

In text-box 3 below a summary of the complete solution algorithm implemented

is displayed. The residual force vector is denoted R, the total number of load

steps in the analysis is N , the global stiffness matrix is denoted K . The contribu-

tions from contact or structural formulations denoted with a C for contact and

S for structural. The displacement vector in the current load step is denoted d k

and the displacement for the next load step is denoted d k+1 and∆ is the symbol

for an increment. When the norm of the residual gets below a specified toler-

ance, the iterations in the solver function are stopped. The solution procedure

can then go on to the next load increment and the procedure is repeated.

34

Chapter 5. Implementation of a contact algorithm in MATLAB

Box 3 Multi-patch contact using GPTS and penalty formulation.

Check contact normal sign

LOOP over load increments

If contact is induced by external load:

• Calculate current load increment

OR

If contact is induced by moving a rigid body:

LOOP rigid patches to move

• Displace control points one displacement increment

END PATCHES TO MOVE LOOP

LOOP over iterations, k = 1,...,convergence

• Calculate structural stiffness matrix and contribution to residual

force vector K S and RS .

• Add structural contributions to global residual force vector and

stiffness matrix: K = K +K S , R = R +RS .

LOOP master-slave pairs

• Check contact condition for all Gauss points: gN < 0 → active con-

tact → calculate contribution to stiffness matrix and residual force

vector K C and RC .

• Add contact contributions to global residual force vector and stiff-

ness matrix: K = K +K C , R = R +RC .

END MASTER-SLAVE PAIRS LOOP

• Solve: K (d k)∆d k =−R(d k).

• Check for convergence: |R| ≤ tol → stop.

• Update solution: ∆d k+1 = d k +∆d k .

END ITERATIONS LOOP

END LOAD INCREMENTS LOOP

It is possible to also update the penalty parameter within the iterations loop. It

is suggested in (De Lorenzis et al., 2017) to increase the penalty parameter for

each iteration in a specific manner, which gradually drives the solution vector

35

Chapter 5. Implementation of a contact algorithm in MATLAB

closer to the converged result. This is not implemented in the current algorithm

and remains as a suggestion for further work. Updating the penalty parameters

during the iterations can help decrease the penetration error.

5.5 Solution algorithm with two step point search

The normal projection point algorithm in the IGA research code is dependent

on the starting point chosen at the master surface for the normal projection

point search. As the starting point for the normal projection point search is

constant throughout the load steps, it is likely to become less suitable after some

deformation. The normal point projection algorithm was first developed for the

purpose of coupling patches of the same structure that share a common edge

and not for contact analysis.

In the first proposed contact algorithm, a normal projection point onto the mas-

ter is found for every Gauss point on the slave surface. Commonly there are not

all slave elements that are relevant for contact in every load step. Finding the

normal projection point for all points on the slave surface is thus unnecessary

and inefficient. A two step point search procedure is proposed in this section to

improve the performance of the contact point search between slave and master

surface. The two step search procedure proposed improves the starting point

for the normal projection point algorithm by creating individual starting points

for each slave element. The procedure also sorts out slave elements not relevant

for contact in order to improve computational cost.

The procedure is denoted a two step search procedure as it adds a step before

the normal projection point related to a Gauss point is calculated. This added

step, step 1, can be divided into two parts: a and b. Step 1a assigns individual

starting points for the normal projection algorithm and step 1b sorts out slave

elements that are not contact relevant.

Step 1 a: Assigning individual starting points

In two step point search solver functions, each slave element is assigned an in-

dividual starting point on the master surface for the normal projection point

search. The starting point is updated for each load step in the Newton-Raphson

36

Chapter 5. Implementation of a contact algorithm in MATLAB

load step loop so that it is up to date with the latest displaced configuration of

the body. In this manner, the algorithm is less likely to encounter the problem of

not finding the normal projection point due to geometry and also the problem

of finding the wrong point. Improving the starting point also has the potential

in improving the computational speed. The normal projection algorithm needs

less iterations to find the normal projection point if the starting point is close to

the actual normal projection.

The objective of the two step point search procedure is to both improve robust-

ness and computational effort. It is thus important to find an acceptable com-

promise between the closeness of the starting point and the speed of the algo-

rithm. An option would be to assign individual starting points for every quadra-

ture point for each slave element. This would though be time consuming and is

considered excessive. As a compromise, the centre point of each slave element

is calculated and used as the reference position of the element. In this man-

ner, only the elements are looped through and not the individual Gauss points.

The centre point of an element is calculated through using the relation between

polynomial degree in a parametric direction and entries in the knot vector,

ucentr e = U (p +1)+U (p +2)

2
, vcentr e = V (q +1)+V (q +2)

2
(5.2)

for which ucentr e , vcentr e are the parametric surface coordinates in both direc-

tion with the related polynomial degree p, q and knot vector U ,V .

The points on the master surface to compare to the slave element are chosen to

be the centre points of all master elements. These points serve both as the start-

ing point for the normal projection search and as a reference position for the

master element to be used for a distance calculation. The absolute distance be-

tween the slave element centre and master element centre is used to find which

element on the master is the closest to a specific slave element. Accordingly all

master elements are looped through for a specific slave element and the centre

point position of the current master element in the loop is calculated. The ab-

solute distance between the centre point of the slave and master elements are

calculated and hereafter denoted the reference distance between the slave and

master element, Lr e f . The current reference distance, Lr e f is compared to the

the so far calculated minimum distance, Lmi n . If the distance between the slave

37

Chapter 5. Implementation of a contact algorithm in MATLAB

element and the current master element is smaller than Lmi n , it is assigned to

Lmi n : Lmi n = Lr e f . The centre point of the respective master element is stored

as well, ucentr e,m and vcentr e,m . When all master elements are looped through,

the remaining smallest reference distance between the slave element and the

master surface is the actual smallest distance and the related master element

centre parametric coordinates is the starting point for the normal projection

search.

The minimum distance Lmi n is stored for each slave element in a matrix. ucentr e,m

and vcentr e,m are stored in the same row in the matrix: MLmi n (i els) = [ucentr e,m ,

vcentr e,m , i elm , Lmi n]. Here i elm is the element number for the closest master

element to the slave element with element number i els . The result is a matrix

containing all reference closest distances between the slave elements and the

master surface together with the related parametric coordinate of the closest

master element centre point and the element number of this master element.

All Gauss points within the same slave element have the same assigned starting

point for the normal projection point search. An overview of the procedure is

found in text-box 4. It is implemented into a solver function for two step point

search. For multi-patch contact the procedure is executed for all contact pairs.

Step 1 b: Sorting out slave elements not relevant for contact

The second part of the two step point search procedure proposed, address the

objective of lowering the computational cost. The first part also contributes by

reducing iterations in the normal projection algorithm. The second step sorts

out slave elements that are so far away from the master surface that they are not

considered relevant for contact. Only elements considered relevant are passed

on into the contact contribution calculation loop that checks for contact by cal-

culating the normal gap function. Moreover, avoiding some slave elements from

entering the contact contribution calculations further reduce the risk of having

poor starting points that results in the normal projection point algorithm being

unable to find the correct normal projection point.

The sorting procedure is initialised in the main function. A parameter is de-

fined, containing the absolute acceptable distance between a slave element and

master surface, Lacc for the element to be considered for contact. This distance

needs to be adjusted manually for each geometrical problem. As a part of the

38

Chapter 5. Implementation of a contact algorithm in MATLAB

solution procedure, a matrix that is to contain all slave elements considered for

contact is created, Macc . It has the same number of rows as the total number of

elements in the slave patch. The rows contains the same entries as the MLmi n

except that some rows have zero entries. The zero entry rows represent the

slave elements considered irrelevant. They are sorted out in the same loop as

when assigning individual starting points. After all master elements have been

looped through for a slave element, the reference minimum distance Lmi n is fi-

nal. If Lmi n is less than the acceptable distance Lacc , the row related to the slave

element in the matrix MLmi n is added to the new matrix for contact relevant ele-

ments, Mr el . Since values are only added to the rows of slave elements that fulfil

the acceptable distance for contact consideration, all other rows have zero in all

entries.

When contact contributions are calculated, all slave elements are looped through.

A check is added at the beginning of the loop to see if the element is to be con-

sidered for contact or not. If the entries of the Mr el related to the slave element

number are zero, the loop is exited and the contact contributions calculation

are stopped for this element. The procedure is summarised in text-box 5.

39

Chapter 5. Implementation of a contact algorithm in MATLAB

5.6 Chapter summary

The contact algorithm proposed for this thesis is described in this section. It

consists mainly of three parts: A main function setting up the NURBS patches

and initialising the analysis, a solver function that controls the Newton-Raphson

iterations that solves the system and a contact contribution function that cre-

ates the contact element using the Gauss point to segment approach together

with the penalty method.

The functions are inspired by existing codes in the IGA research code of the De-

partment of marine Technology, NTNU. Contact analysis was not a part of the

original research code and a first contact algorithm is proposed in this thesis. A

summary of the features added as a part of the proposed contact algorithm are

listed below.

• Contact contribution calculation using the GPTS approach and penalty

method.

• Multi-patch contact definition

• Moving rigid body in Newton-Raphson procedure instead of applying ex-

ternal load.

• Contact normal sign procedure

• Two step point search procedure

In addition, the geometric modelling of the numerical examples are setup for

this thesis. The user input defining the contact analysis which are prescribed

in the main function, are listed in Appendix A. They are stored as a part of a

MATLAB struct variable anls.contact.PARAMETER.

40

Chapter 5. Implementation of a contact algorithm in MATLAB

Box 4: Assigning individual starting points for the normal projection

point algorithm.

Preallocate: Closest distance matrix Mdi st

LOOP load steps in Solver

LOOP master-slave pairs

LOOP slave elements

• Calculate coordinates of centre point of current element: xcenter ,s

Initialize minimum reference distance to a large number: Lmi n = 1000

LOOP master elements

• Calculate coordinates of centre point of current element: xcenter ,m

• Calculate absolute distance: |Lr e f ,i | = |xcenter ,s −xcenter ,m |
• Compare current distance to minimum distance: If |Lr e f | <

Lmi n → set Lmi n = |Lr e f | and add parametric coordinates of

xcenter ,m to MLmi n at the row related to the slave element number

in the loop.

END loop master elements

• Compare minimum distance to acceptable contact distance: If

Lmi n < Lacc → add the row in MLmi n related to the slave element

number in the loop to Macc .

END loop slave elements

END loop master-slave pairs

LOOP iterations

• Calculate structural contribution

LOOP master-slave pairs

• Calculate contact contribution: Only calculate contributions for

relevant slave elements.

END loop master-slave pairs

• Solve system

END iterations

END load steps

41

Chapter 5. Implementation of a contact algorithm in MATLAB

Box 5: Contact contribution calculation with two step search

LOOP slave elements

• Check if the row in Macc related to the slave element number in the

loop has zero entries. If entries are not zero → continue. if not →
break and continue to the next slave element.

LOOP Gauss points on element

• Find normal projection point from the Gauss point to the mas-

ter surface: Use the parametric coordinates of the master element

centre points in Macc for the respective slave element.

• Check the normal gap function: If gN < 0 → continue. If gN ≥ 0 →
go to the next Gauss point.

• Calculate contact contribution for the GPTS contact element.

END loop Gauss points

END loop slave elements

42

Chapter 6
Numerical examples and

discussion

In the following chapter some numerical contact examples are implemented

and discussed. The first example consist of one rigid body that is moved so

that it comes into contact with an elastic body. The second example consist of

two elastic bodies subjected to external load and lastly a more complex exam-

ple taken from a PhD thesis, (Matzen, 2015), is implemented. The last example

provides a test as to how well all the features of the implemented contact code

works together. It includes both multi-patch contact, the 2 step point search

algorithm and moving of rigid bodies to induce contact.

43

Chapter 6. Numerical examples and discussion

6.1 Rigid plate falls down on elastic arch

10

8

6

x

40

21

1

y

z

0.5

2

0 0

Figure 6.1: Flat rigid and arch: Boundary conditions on initial configuration

Problem description:

The first example implemented consists of an elastic arch being pressed down

until it is flattened completely by a rigid plate. The GPTS and penalty solution

procedure is used with the rigid given the master status. A Newton-Raphson

iterational scheme is used to solve the problem. The calculation of contact con-

tribution is done without including the Kg eo contribution to the stiffness matrix.

A mesh refinement and dependence on the choice of penalty parameter is exe-

cuted.

The arch is simply supported on the right and left edges. All degrees of freedom

of the flat structure are blocked. The boundary conditions are illustrated in Fig-

ure (6.1). Since the system is only solved for the unblocked degrees of freedom,

the flat structure never actually enters the solution calculations. The plate is

displaced an increment in the z-direction for each load step. 5 load steps are

used to displace the flat structure a total distance of 2m downwards. The arch

has its highest point at z = 2m in the initial configuration and the flat rigid body

44

Chapter 6. Numerical examples and discussion

is situated at z = 2.1m. The rigid body is slightly above the arch so that contact

is not occurring before the displacements are initiated. The initial configura-

tion, before the solution procedure is executed, is illustrated in Figure (6.1). A

polynomial degree of 2 is used in both parametric direction u and v .

Material parameters:

The same material parameters are applied to both the rigid flat plate and the

arch. The parameters are irrelevant for the rigid surface as all degrees of freedom

are blocked.

Shell thickness t = 0.05m, E = 1e7N /m2 and ν= 0.0.

Analysis specifications:

The solution functions used for this analysis are listed below, and can be seen in

Appendix B.1 and C.1.

• sol ve_Cont act_Di spl acementContr ol led_Bl ocked_Do f s.m

• st i f f _mat_Cont act_GPT S.m

The contact user input is displayed in the table below. The arch is denoted

par t1 and the flat rigid body as par t2 in the analysis files. The full overview

of the contact parameters are listed in Appendix A.

Table 6.1: Contact input parameters

Parameter name Value
d_rigid(1).d_step_dir [0 0 -2]
d_rigid(1).part_nr 2
ms_pairs(1) {[1 2]}

6.1.1 Mesh refinement

The rigid body mesh consist of only one element. As all degrees of freedom are

blocked, the amount of elements in the mesh does not influence the analysis. A

penalty parameter of 1e3 is used for the analysis.

The arch is meshed into first 2 elements, then 4 elements and then 8. Figures

are plotted for the displacement after 3 load steps and after the last load step,

45

Chapter 6. Numerical examples and discussion

load step 5, has executed.

10

8

6

Deformed structure load step 3

x

4
0

2

0.5

1

1

z

y

0.5
0 0

Figure 6.2: 2 elements

10

8

6

Deformed structure load step 3

x

4
0

2

0.5

1

z

y

0.5
0 0

Figure 6.3: 4 elements

10

8

6

Deformed structure load step 3

x

4
0

2

0.5

1

z

y

0.5
0 0

Figure 6.4: 8 elements

10

8

Deformed structure load step 5

6

x

4

2
1

y

0.5
0 0

Figure 6.5: 8 elements

When using a mesh of 8 elements for the slave body, the arch is able to follow

the displacement of the rigid body. In Figures (6.7) and (6.6) the number of it-

erations needed per load step is plotted and the load-displacement curve that

tracks the displacement of parametric coordinate [0.5,0.5] of the arch, which is

equivalent to its maximal point. That the relationship is linear confirms that

the arch follows the displacement of the flat rigid surface, since the rigid body

displacement is linear. In the first load step the displacement imposed on the

arch from the flat rigid body is slightly less than the other load steps as the start-

ing position of the flat rigid is 0.1mm above the arch. The code is accordingly

able to give sufficiently accurate results for even a coarse mesh, which can be

46

Chapter 6. Numerical examples and discussion

1 1.5 2 2.5 3 3.5 4 4.5 5

Load Step

7

7.5

8

8.5

9

9.5

10

Ite
ra

tio
ns

Number of iterations per load step

Figure 6.6: 8 elements

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Displacement in z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 fr
ac

tio
n

Displacement in z-direction, point u,v = [0.5,0.5]

Figure 6.7: 8 elements

expected from a simple numerical problem like the one implemented.

6.1.2 Penalty parameter influence

The influence of changing the penalty parameter is investigated. The penalty

parameter typically needs to be chosen carefully. A parameter that is too high

results in badly scaled matrices while a too low parameter yields inaccurate

results as large penetrations are allowed. A simple example such as this one

should though be able to run smoothly for some change in the parameter. The

penalty parameter is increased with steps of 1e3 until the analysis is not able to

converge properly anymore. This is achieved for a penalty parameter of 1e8.

The displacement at load step 3, which is approximately half into the analysis

is used as reference to compare the performance of the algorithm for different

penalties. The rigid surface is for this step situated at z = 0.9m which is equiva-

lent to a displacement of the arch maximal point of 0.9−2 =−1.1. This represent

the exact solution which the displacement at load step 3 is compared to. The

slave body mesh consists of 8 elements.

For this simple example the results in Table (6.2) indicate that the higher the

penalty parameter, the more accurate the results. Intuitively the lowest penalty

parameters are related to more penetration of the plate which is less physical.

The difference between using a penalty parameter of 1e3 and 1e7 is though not

significant. For a penalty parameter of 1e4 the difference from the results is less

47

Chapter 6. Numerical examples and discussion

Table 6.2: Results, flat rigid and arch

Penalty
Displacement,
load step 3

Number of iterations,
load step 3

[%] difference
from accurate

1e2 -1.026 7 6.7
1e3 -1.086 10 1.3
1e4 -1.097 11 0.3
1e7 -1.099 15 0.0

than 1%. The higher penalty parameters have a higher demand for iterations in

order to achieve a solution. The highest penalty parameter tested has a demand

of maximum 34 iterations for the last load step, which is a significant difference

from the iterations needed for 1e3 seen in Figure (6.6). It is thus not recom-

mended to increase the penalty parameter to such numbers when the analysis

is to be executed for more complex problems as the solution might not be able

to converge.

The objective of the algorithm is to rather have a robust algorithm that can han-

dle variations in the geometries to analyse and variations in the input parame-

ters than an algorithm optimised for accuracy. The GPTS and penalty methods

are in general not the most accurate and some minor errors are to be expected.

A penalty parameter of 1e3 or 1e4 are considered to provide sufficiently accu-

rate results for this analysis, for which the displacement is respectively 1.3% and

0.3% away from the accurate solution, see Table (6.2).

The implemented problem of one rigid patch and an elastic arch indicates that

the algorithm is sufficiently robust. It is able to properly run for a very little re-

fined mesh and also for very high penalty parameters. In (De Lorenzis, Scott,

Wriggers, Taylor and Zavarize, 2014), the GPTS and penalty algorithm using T-

splines was tested for penalty parameters of 1e2 to 1e5 for which using 1e3 had

the most accurate results compared to analytic results. A too high penalty pa-

rameter lead to an oscillatory behaviour of the solution. It is thus not beneficial

to use the highest penalty parameter even if it is closer to accurate contact.

48

Chapter 6. Numerical examples and discussion

6.1.3 Geometric stiffness Kg eo

The analysis is run using the same solver function, but changing the contact

contribution calculation function to one including the Kg eo term in the stiff-

ness calculation displayed in Appendix C.2. This is mainly done to verify the

accuracy of the implementation as it is significantly more complicated to im-

plement. This algorithm results in the same iterative pattern as without the ge-

ometric stiffness contribution due to contact. The results are exactly the same

as stated in the Table (6.2). The geometric stiffness includes the linearisation of

the variation of the normal gap. It contributes to the convergence rate, but for

the simple problem like this it does not show in the results.

6.2 Two elastic arches, edge load

10

8

x

6

40

2

1

1

y

0.5

2

0

z

0

3

4

Figure 6.8: Geometry and BCs

0 2

0

4 6

1

x
8 10

z 2

3

4

Figure 6.9: Side view of geometry

An example consisting of two arches, one concave and one convex is imple-

mented. The arches are placed just above each other and slightly shifted to the

side, see Figure (6.9). The upper arch is applied an edge load on the rightmost

edge, which is applied step-wise using Newton-Raphson iterational procedure.

During the load steps the upper arch presses down the lower arch. The GPTS

and penalty solution procedure is used. Three tests are executed after a mesh

refinement is executed. The tests checks the influence of changing the follow-

ing:

49

Chapter 6. Numerical examples and discussion

1. Penalty parameter

2. Point search procedure

3. Master/slave status

The arches are simply supported on the right and left edges. The boundary con-

ditions are illustrated in Figure (6.8). 20 load steps are used to impose an edge

load of −10N /m. Only a small load is applied to stop the displacement before

it changes direction which can be a challenge for the Newton-Raphson solution

procedure. The lower arch has its highest point at z = 2m. A polynomial degree

of 2 is used in both parametric direction u and v .

Material parameters:

The same material parameters are applied to both arches: Shell thickness t =
0.05m, E = 1e7N /m2 and ν= 0.0.

Analysis specifications:

The solution functions used for this analysis are listed below, and can be seen in

Appendix B.2, B.3, C.2 and C.3.

• sol ve_Cont act_New ton.m

• sol ve_Cont act_New ton_2StepSear ch.m

• st i f f _mat_Cont act_GPT S_Pen.m

• st i f f _mat_Cont act_GPT S_Pen_2StepSear ch.m

6.2.1 Mesh refinement

The downward displacement of the lower arch, parametric point u, v = [0.5,0.5]

is used as a reference for the mesh refinement. This point correspond to the

maximum point of the arch in the initial configuration. The displacement is

measured after the last step of the procedure. The results show that there is only

2.4% difference when doubling the mesh size from 32 elements for each body

to 64 elements, see Table (6.3). Doubling the mesh also increases the computa-

tional effort as stiffness relations needs to be established for more elements. It

is thus beneficial to not use a lot more elements than what is sufficient for the

50

Chapter 6. Numerical examples and discussion

analysis. Using a mesh of 32 elements for each body is here assumed to be suf-

ficient for the tests executed using this geometry. The final deformed shape is

plotted in Figure (6.11).

Table 6.3: Relation between displacement and mesh size

Number of elements in mesh Displacement in z [%] Difference
8 -0.20
16 -0.97 >100
32 -1.23 26.8
64 -1.26 2.4

8
7

6
5

x

4

Deformed structure load step 10

30
2

1

1

y

10.5

2

0 0

z

3

4

Figure 6.10: Load step 10

8

6

x

4

Deformed structure load step 20

0
2

1

1

y

0.5

2

0 0

z

3

4

Figure 6.11: Load step 20

Dependence on penalty parameter:

The dependence of the penalty parameter is tested for the final load step, load

step 20. Penalty parameters from 1e2 until the solution can no longer converge

are used. The solution is not able to converge for a penalty parameter of 1e5.

Increasing the penalty parameter from 1e3 to 1e4, the change in the final dis-

placement in z-direction of point u, v = [0.5,0.5] is 1.6%. Some change in the

results are expected since a large increase in the penalty parameter results in

less penetration of the slave into the master body. A penalty parameter of 1e3

or 1e4 should be sufficient for the analysis, which was also concluded in the

previous example.

51

Chapter 6. Numerical examples and discussion

Table 6.4: Penalty parameter dependence

Penalty
parame-
ter

Displacement
load step 20

Number of iterations
load step 20

[%] Difference in
displacement

1e2 -1.18 9
1e3 -1.23 9 4.2
1e4 -1.25 9 1.6

6.2.2 Master-slave dependence

Which body is given the master status and which is given the slave status might

have an influence on the result. The normal point projection is executed from

the slave Gauss point to the master surface. The points that constitute the GPTS

contact element will thus not be exactly the same when interchanging the mas-

ter and slave bodies. Accordingly the contact contribution from the contact el-

ement depends on the master-slave definition. An intuitive example of the in-

fluence is the normal gap function. The calculated normal gap is not the same

when the Gauss point and normal projection is not the same and the results will

thus differ. The difference should not be significant for equal, simple geome-

tries. The analysis is for this test run using two different penalty parameters,

1e3 and 1e4.

The results are showed in Table (6.5). They indicate that the dependence on

which body is chosen as slave and master is smaller for a penalty parameter of

1e3, though it is not significant for either. This might indicate that 1e3 is a better

choice for the implementation and it is used for the rest of the numerical exam-

ples. As the dependence is not significant for either, the algorithm is assumed

to be robust enough for change in master-slave status of bodies.

6.3 Dependence on point search procedure

A comparison of the 2 step point search procedure and the procedure only using

the already included normal projection point search without adjustments. Up

until this point, the numerical examples have been implemented using only the

52

Chapter 6. Numerical examples and discussion

Table 6.5: Dependence on master-slave status

Penalty
parame-
ter

Master-slave
pair

Displacement load
step 20

[%] Difference in
displacement

1e3 [1 2]: Lower
arch is slave

-1.2375

[2 1]: Lower
arch is master

-1.2363 <0.1

1e4 [1 2]: Lower
arch is slave

-1.2545

[2 1]: Lower
arch is master

-1.2485 0.5

normal projection search. The computational time needed to execute the same

analysis is measured. The time measured is for running the complete analysis,

from the solver function is called from the main function until it is completed.

The main difference between the two algorithms are summarised here in order

to get an understanding of the behaviour.

• The one step search algorithm finds normal projection points for every

single Gauss point on the slave surface.

• The two step point search algorithm sorts out the potential contacting

elements of the slave and master surface, and only executes the contact

stiffness contribution calculation for these elements.

• The one step points search uses the same point as a starting point for each

normal projection point search.

• The two step point search has a different starting point for the normal

projection point search for each slave element.

The upper arch is given the master status. A penalty parameter of 1e3 is applied.

The number of load steps are 20. The results are shown in Table (6.6). The two

step point search is executed for different acceptable contact distances Lacc .

Only points on the slave surface with a reference distance to the master surface

less than Lacc enters the contact contribution calculation.

53

Chapter 6. Numerical examples and discussion

Table 6.6: Point search influence

Point search procedure [s] Computational time
[%] Difference between
one step and two step

One step 75
Two step: Lacc =1 55 27
Two step: Lacc =0.5 52 31
Two step: Lacc =0.25 50 33

Each specific problem is run at least three times. If the variation in computa-

tional time from one analysis to the other is less than 1e −1 it is assumed a suf-

ficient reference time for comparison. As the computational time depends on

the individual computer capacity and other programs running at the same time,

the results only serve as a basis for comparison. The results indicate that the

two step point search procedure improves the computational time by approx-

imately 30%, as seen in Table (6.6). The increased computational speed is due

to the improved starting points, which results in the normal point projections

being found faster, and that the contact contribution is calculated for fewer el-

ements, only those relevant for contact. Decreasing the acceptable distance for

contact contribution calculation, Lacc from less than 1 does not influence the

computational time. The distance needs to be chosen with carefulness. If it is

too small, some elements relevant for contact will be left out of the analysis. The

Lacc parameter needs to be specifically chosen for each geometrically problem

as it is defined in the same coordinate system as the geometries.

The two step point search procedure is also tested for updating the contact part-

ner matrix for each iteration instead of for each load step. This procedure takes

more time than updating the contacting partners for each load step. It suggests

the computing of contacting partners is a time consuming procedure in itself

and it is not beneficial to execute it before every contact contribution computa-

tion.

54

Chapter 6. Numerical examples and discussion

6.4 Cylinder squeeze

0
5

x

4 0

y

10

0 -5-4

20

z

30

40

50

Figure 6.12: Cylinder example, mesh

0
54

x

2 0

y

0
-5-2

-4

10

20

z

30

40

50

1

6
5

3

4 2

Figure 6.13: Cylinder example, patches

A more complex problem is implemented in order to further test the proposed

contact algorithm. The example is taken from (Matzen, 2015) and consists of a

cylinder that is squeezed by two rigid plates from both sides. The cylinder is sub-

jected to large deformations for which only approximately 10% of the radius is

left at the position of the plates on the cylinder. The objective of the example is

to test the contact algorithm proposed, including all the implemented features.

The problem is analysed by multi-patch contact in two ways. Both by having

three bodies involved in the contact and by modelling the cylinder as multi-

ple patches, see Figure (6.13). Moreover, the two step point search algorithm

is utilised together with moving two rigid bodies. The example thus serves as a

test of how all the features in the code work together. The deformation plots can

be roughly compared to the example in (Matzen, 2015), though not accurately

as there are no specific results presented in the Phd of Matzen. The deformed

shape is plotted and the characteristic shell deformation pattern is looked at.

Material parameters:

The Kirchhoff-Love shell thickness is t = 0.1mm, Young’s modulusE = 12000N /mm2,

55

Chapter 6. Numerical examples and discussion

and ν= 0.0

Geometry modelling:

The diameter of the cylinder is D = 8mm and the length of the cylinder is L =
50mm in the vertical direction. The plate has a width of w = 10mm in the ver-

tical direction. It is given a length of 19mm. See Figure (6.12). The polynomial

degree in both parametric u and v is p, q = 2.

The cylinder is modelled by using 4 NURBS patches divided in the longitudinal

direction. The patches are connected in the horizontal direction, corresponding

to parametric direction v , using penalty symmetry coupling with a penalty pa-

rameter of α= 1e3. Symmetry coupling is imposed on all cylinder patch edges.

This coupling is described in (Herrema et al., 2019). The symmetry coupling

functionality is included beforehand in the IGA research code of the marine De-

partment, NTNU. The plates are modelled as one NURBS patch each. In total

the analysis consists of six patches that interact. The edges of each patch are

visible in the Figure (6.13).

6.5 Analysis specifications

The two rigid plates are moved closer to the cylinder centre for each load step in

the Newton-Raphson iterational procedure, pressing it together on the middle.

A total displacement of |y | = 3.61mm is imposed on both plates, which is the

same displacement as applied in (Matzen, 2015). The displacement is added

through 30 load steps. The cylinder is given slave status. All degrees of freedom

related to the plates are blocked. The functions used for the analysis solution

are listed below and are found in Appendix B.4 and C.4.

• sol ve_Cont act_C yli nder _Squeeze.m

• st i f f _mat_Cont act_C yli nder _Squeeze.m

The solver function and the contact contribution functions are slightly adjusted

for the specific problem. The contact contribution calculation of the gap func-

tion is adjusted in two ways. Firstly, the shell thickness is accounted for as is

done on (Matzen, 2015). Half of the shell thickness is subtracted in order to

56

Chapter 6. Numerical examples and discussion

avoid the plates penetrating into the cylinder wall, see Eq. (6.1). t s is the slave

shell thickness and t m is the master shell thickness. As the master surfaces are

rigid, t m is set to zero.

g shel l
N = gN − t s

2
− t m

2
(6.1)

Additional contact check:

When calculating the normal gap gN for a Gauss point and its normal projec-

tion, an additional check is added. This is due to the possibility of contact reg-

istration between cylinder elements outside of the rigid plate region. During

testing of the analysis it is discovered normal point projections were found for

cylinder elements far away from the plate. This is due to the equation used to

check if a point is the normal projection point or not. It only takes into account

the tangents at the normal projection point on the surface, and the normal itself.

The dot product of Eq. (5.1) can be zero also for points outside of the contact re-

gion. As the plate presses into the cylinder, the gap gN is negative for the unreal

contacting points and contact contributions are calculated for them.

In order to come around the unreal contacting points being registered, a maxi-

mum tolerated distance in all directions are added. Only if the distance between

points x s and x s in each direction is less than a tolerance, and if the gap gN is

less than zero, the contact contribution is calculated. The procedure can be

seen in text-box 6 in this section. The tolerance in the normal direction is irrel-

evant as the gap for this direction is correctly calculated. The tolerances set for

this example can be seen in Table (6.7) for which tolz , toly , tolx are the maxi-

mum distances in respectively z, y , x direction for the contact contributions to

be calculated.

Point search procedure:

For most slave elements outside of the contact region, the normal point pro-

jection is not found. This is the correct way for the algorithm to react to these

points as they are not within the contact region. The normal projection point

search algorithm reaches its maximum number of iterations for these slave ele-

ments which results in it returning an arbitrary point at the master surface as the

normal projection point. It is a procedure that works well since it is impossible

57

Chapter 6. Numerical examples and discussion

Box 6. Additional contact checks

Check for contact:

• Calculate gN = (x s −xm) ·n − t s

2

• If gN < 0 and

• if |(zs − zm)| < tolz and

• if |(y s − ym)| < tolz and

• if |(xs −xm)| < tolz

• → calculate contact contribution for the Gauss point.

for the arbitrarily located normal projection to result in gN < 0 and thus these

points do not enter the contact contribution calculation. On the other hand it is

not ideal to allow the point projection algorithm to go through many iterations

unnecessary. It is time consuming and increases the computational effort, es-

pecially when most of the slave elements are not within a contact region. The

two step point search procedure can limit the number of slave elements con-

sidered for the analysis which again reduces the number of unnecessary point

projection iterations. It does though not completely leave out irrelevant slave

elements since the acceptable contact distance, Lacc needs to allow some ex-

tra elements to enter the analysis in order to be sure all relevant elements are

included in the load step. A check specifically related to the normal projection

point search can be implemented in the future to further reduce time consump-

tion.

Table 6.7: Input parameters, cylinder squeeze numerical example

Contact input parameter Value
alf 1e3
tolz 0.1
toly 100
tolx 0.1
Lacc 5
ms_pair(1) {[3 5]}
ms_pair(2) {[4 5]}
ms_pair(3) {[1 6]}
ms_pair(4) {[2 6]}

58

Chapter 6. Numerical examples and discussion

Master-slave pair definition:

Multiple master-slave pairs are defined to couple the patches that are relevant

for contact. The patch numbering is illustrated in Figure (6.13). The master-

slave pairs seen in Table (6.7) defines which patch numbers are to enter the

contact contribution calculation and which of them is the slave and the master

in the formulation. The first entry in the master-slave pair vector is the patch

number of the patch to be given slave status and the second entry the patch o

be given master status.

6.6 Deformation of the cylinder

Figure 6.14: Cylinder and rigid plates deformation (Matzen, 2015)

The deformed shape for load step 3, 9, 24 and 30 are plotted in Figures (6.15)

to (6.22). The deformation shape achieved in (Matzen, 2015) is illustrated in

Figure (6.14). The deformed shape resulting from the proposed algorithm is

comparable to what is seen in Figure (6.14). During the first load steps there

is an ovalisation in the direction perpendicular to the plate deformation, here

direction x. This can be seen i Figures (6.15) to (6.18). In later load steps the

the ovalisation changes direction. In Figure (6.19) to (6.22 there is an obvious

ovalisation in the direction of contact, along the y-axis. For Patch 1 and 2, the

ovalisation is in negative y-direction. For Patch 3 and 4 the ovalisation is in pos-

itive y-direction. The stiffness is originally low and increases after some defor-

mation has occured. This can be explained by ring-stress that is activated which

results in an increased stiffness in the structure, as is also described in (Matzen,

59

Chapter 6. Numerical examples and discussion

2015). This is a typical shell-deformation pattern and the figures thus confirm a

physically-acting contact algorithm.

0
5

x

4 0

y

10

0 -5-4

20

Deformed structure load step 3
z

30

40

50

Figure 6.15: Load step 3

5

x

0
0

-54

y

2
0

-2
-4

10

20

Deformed structure load step 3

z

30

40

50

Figure 6.16: Load step 3

0
5

x

4 0

y

10

0 -5-4

20

Deformed structure load step 9

z

30

40

50

Figure 6.17: Load step 9

5

x

0
0

4
2

y

-50
-2

-4

10

20

Deformed structure load step 9

z

30

40

50

Figure 6.18: Load step 9

60

Chapter 6. Numerical examples and discussion

0
5

5

x

4

y

10

00

15

-5-4

20

25

Deformed structure load step 24

z

30

35

40

45

Figure 6.19: Load step 24

5

x

0
0

-54

y

2 0 -2 -4

10

20

Deformed structure load step 24

z

30

40

Figure 6.20: Load step 24

0

5

54

x

10

y

00

15

-5-4

20

25

Deformed structure load step 30

z

30

35

40

45

Figure 6.21: Load step 30

5

x

0
0

-54

y

2 0 -2 -4

10

20

Deformed structure load step 30

z

30

40

Figure 6.22: Load step 30

The deformation in the y-direction is plotted for points situated on Patch 1 in

Figure (6.23). The points are uniformly distributed on the plane z = 25. The first

point is situated at the centre of the plate corresponding to (u, v) = (0.5,1), and

the rest are distributed going in the clockwise direction along the circle periph-

eral until (u, v) = (0.5,0.4).

61

Chapter 6. Numerical examples and discussion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Deformation in y

0

5

10

15

20

25

30

Lo
ad

 s
te

p

Deformation of points, Patch 1

(u,v)=(0.5,1)
(u,v)=(0.5,0.8)
(u,v)=(0.5,0.6)
(u,v)=(0.5,0.4)
Rigid plate

Figure 6.23: Cylinder example, deformation of points along z=25

The total displacement of the plate is 3.61mm. The deformation of points plot,

Figure (6.23), show that the cylinder positioned at the middle of the plate de-

forms more than the plate after load step 18. This indicates that the cylinder

wall at this position changes from convex to concave. This shape is expected

from a cylindrical shape which is also described in (Matzen, 2015). A nonphys-

ical behaviour is though illustrated in the plot. Some points deform even more

than the cylinder radius which indicates self-contact has occured. As the imple-

mentation i not defined to search for contact between two cylinder patches, the

self contact is not detected.

In Figure (6.24) a point situated at (u, v) = (1,1) is plotted. That corresponds

to (x, y , z) = (0,−4,50) in Cartesian coordinates. This figure further illustrates

the ovalisation in the different directions. It can be seen that the deformation

changes direction from a displacement in positive y-direction to negative after

load step 7.

An issue is discovered while running the analysis. The algorithm is not able to

converge to a solution for one of the final load steps, load step 25. The algorithm

continues to the next load step and the solution is again able to converge for the

62

Chapter 6. Numerical examples and discussion

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

Displacement in y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ad

 fr
ac

tio
n

Deformation Patch 1, point u,v= (1, 1)

Figure 6.24: Cylinder example, deformation of Patch 1, (u,v)=(1,1)

rest of the load steps. This behaviour is seen in Figure (6.25). For cylindrical

shells the deformation pattern is complicated and the Newton-Raphson proce-

dure might not be able to converge if the geometry snaps through. At load step

25 the change to concave has occured. An arc-length solver should be imple-

mented in order to handle highly geometrically nonlinear problems.

63

Chapter 6. Numerical examples and discussion

5 10 15 20 25 30

Load Step

10

15

20

25

30

35

40

45

Ite
ra

tio
ns

Number of iterations per load step

Figure 6.25: Cylinder example, iterations per load step

Concluding remarks for the cylinder example:

The cylinder example is quite complex. It includes both multi-patch penalty

coupling and multi-patch contact. The multi-patch symmetry coupling intro-

duces two more penalties as the patch boundaries are coupled both in the rota-

tional and transnational degree of freedom, see (Herrema et al., 2019). There are

consequently in total 3 different penalty parameters involved in the analysis. As

errors and convergence issues are related to penalty parameters, the demand

for a robust algorithm is accordingly increased. That the proposed contact al-

gorithm is able to solve the system thus is an indication of its robustness.

The displacement pattern looks physically feasible. The drawback is the indi-

cated penetration of the cylinder wall into itself which is not taken into consid-

eration in the implemented algorithm.

64

Chapter 7
Conclusions and further work

A frictionless contact algorithm based on a combination between Gauss-point-

to-segment, GPTS contact discretization and the penalty method to impose the

contact constraints has been proposed. The code includes a two step point

search procedure and possibilities to impose contact between multiple bodies

or NURBS patches. Contact can be introduced by adding external forces or dis-

placement of rigid bodies.

The GPTS formulation is simple to implement and has together with the penalty

method previously showed a sufficient accuracy and robustness for engineering

problems, in (De Lorenzis, Scott, Wriggers, Taylor and Zavarize, 2014), though

it was related to convergence issues for high penalty parameters. It has in this

thesis been showed that the proposed algorithm using these methods is able

to execute analysis on simple as well as complex problems. A study of conver-

gence, dependence on the penalty parameter and dependence of master-slave

choice was conducted. For the simplest problem including one rigid and one

elastic body, the algorithm was able to provide satisfactory accurate results and

robustness for even a coarse mesh of the slave body. It was able to converge

for even a large penalty parameter of 1e7. Moreover, the results were deemed

sufficiently accurate for a penalty parameter of 1e3. For contact between two

elastic bodies including sliding, the convergence was more dependent on the

penalty parameter. The solution was unable to converge for high penalty pa-

rameters. It was on the other hand shown that a penalty parameter of 1e3 or

65

Chapter 7. Conclusions and further work

1e4 provided sufficiently accurate results. The example showed little to no de-

pendence on which body is given slave status and which is given master status

for both penalty parameters 1e3 and 1e4.

A study of the influence of the proposed two step point search algorithm was

also conducted. It improved the analysis speed by approximately 30% for an

example of two elastic bodies. Contact problems are complicated and often re-

lated to a high demand for computational resources. It is thus relevant to find

methods to improve the efficiency such as the proposed search algorithm.

A complex problem consisting of two rigid plates pressing together a cylinder

was implemented. For the implementation both multi-patch contact, moving

rigid bodies and the two step point search procedure are included. The com-

plexity of the problem increases the demand for robustness of the algorithm.

Furthermore there are three separate penalty parameters involved in the anal-

ysis. Two from symmetry coupling of the patches that the cylinder geometry is

modelled by and one due to the contact formulation. There is consequently a

very high demand of robustness for the algorithm. The code was able to con-

verge and provide physically viable results compared to the same numerical

problem in (Matzen, 2015). Conclusively the algorithm can be regarded a suf-

ficient first implementation of contact, though the accuracy of the code should

be further investigated.

Further work

The proposed contact algorithm has not been applied to a contact problem for

which the accurate results are known in advance. In order to prove its suffi-

ciency it is necessary to compare it more accurately to earlier work. The first

recommendation for further work is thus to test the algorithm for some bench-

mark examples.

Some improvements might impact the convergence and robustness of the code.

Using Gauss points can lead to an over-constrained nature of the problem which

can be avoided by using Greville or Botella points as contact collocation points

instead. In the future it is feasible to investigate the performance of the code

with these points instead of the Gauss points. Moreover, a linearisation of the

displacement is not executed in this implementation. It might interfere with the

convergence rate and can be later be included. An arc-length solver should be

66

Chapter 7. Conclusions and further work

applied in order to improve the convergence of problems related to complicated

deformations.

In order to make the code more realistic, contact in the tangential direction

should be added. Frictional forces are for this implementation completely dis-

regarded. The accuracy can be improved by introducing more sophisticated

contact discretisation schemes, such as Mortar methods in combination with

Lagrange multiplier method for imposing the contact constraints. These meth-

ods are on the other hand more demanding in regards to computational effort

and implementation.

67

Bibliography

Breitenberger, M. (2016), CAD-integrated design and analysis of shell structures,

PhD thesis, Technische Universität München.

Carnes, K. (2005), ‘The ten greatest events in tribology history’, Tribology and

Lubrication Technology 61(6), 36.47.

De Lorenzis, L Dimitri, R., Scott, M. A., Wriggers, P., Taylor, R. and Zavarize,

G. (2014), ‘Isogeometric large deformation frictionless contact using t-spline’,

Computer Methods in Applied Mechanics and Engineering 269, 394–414. Web.

De Lorenzis, L., Hughes, T. J. R. and Wriggers, P. (2014), ‘Isogeometric contact: a

review’, GAMM-Mitteilungen 37(1), 85–123.

De Lorenzis, L., Temizer, L., Wriggers, P. and Zavarise, G. (2011), ‘A large

deformation frictional contact formulation using nurbs-based isogeomet-

ric analysis’, International Journal for Numerical Methods in Engineering

87(13), 1278–1300.

De Lorenzis, L., Wriggers, P. and Weissenfels, C. (2017), ‘Computational contact

mechanics with the finite element method’, Encoclypedia of Computational

Mechanics Second Edition 2: Solids and Structures.

Fischer, K. A. (2005), Mortar type methods applied to nonlinear contact me-

chanics, PhD thesis, Universität Hannover.

Fischer, K. and Wriggers, A. (2005), ‘Frictionless 2d contact formulations for fi-

68

Chapter 7. BIBLIOGRAPHY

nite deformations based on the mortar method’, International Journal for Nu-

merical Methods in Engineering 36(3), 226–244.

Frankie, D., Düster, A., Nübel, V. and Rank, E. (2010), ‘A comparison of the h-,

p-, hp-, and rp-version of the fem for the solution of the 2d hertzian contact

problem’, Computational Mechanics 45(5), 513–522.

Grossmann, D., Jüttler, B., Schlusnus, H., Barner, J. and Vuong, A. (2012), ‘Iso-

geometric simulation of turbine blades for aircraft engines’, Computer Aided

Geometric Design 29(7), 519–531.

Herrema, A. J., Johnson, E. L., Proserpio, D., Wu, M. C., Kiendl, J. and Hsu, M.-C.

(2019), ‘Penalty coupling of non-matching isogeometric kirchhoff–love shell

patches with application to composite wind turbine blades’, Computer Meth-

ods in Applied Mechanics and Engineering 346, 810–840.

Hughes, T., Cottrell, J. and Bazilevs, Y. (2005), ‘Isogeometric analysis: Cad, finite

elements, nurbs, exact geometry and mesh refinement’, Computer methods

in applied mechanics and engineering 194, 4135–4195.

Hughes, T.J.R, T. I. W. P. (2011), ‘Contact treatment in isogeometric analy-

sis with nurbs’, Computer Methods in Applied Mechanics and Engineering

200(9), 1100–1112.

Kiendl, J. M. (2011), Isogeometric Analysis and Shape Optimal Design of Shell

Structures, PhD thesis, Technische Universität München.

Luenberger, D. and Ye, Y. (2016), Linear and Nonlinear Programming, Vol. 228, 4

edn, Springer, Cham.

Matzen, Cichosz and Bischoff (2013), ‘A point to segment contact formulation

for isogeometric, nurbs based finite elements’, Computer Methods in Applied

Mechanics and Engineering 255, 27–39.

Matzen, M. E. (2015), Isogeometrische Modellierung und Diskretisierung von

Kontaktproblemen; Isogeometric modeling and discretization of contact

problems, PhD thesis, Universität Stuttgart.

Parsons, B. and Wilson, E. A. (1970), ‘Finite element analysis of elastic contact

problems using differential displacements’, International journal for numer-

ical methods in engineering 2, 387–395.

69

Chapter 7. BIBLIOGRAPHY

Rogers, D. (2001), An Introduction to NURBS: With Historical Perspective, Else-

vier Science.

Wriggers, P. (2006), Computational contact mechanics, Vol. 498, 2nd edn,

Springer Verlag, Berlin Heidelberg, Germany.

Wriggers, P., Nackenhorst, U. and Symposium, C. M. I. (2006), Analysis and Sim-

ulation of Contact Problems, Springer, Berlin, Heidelberg.

Zavarise, G. and De Lorenzis, L. (2009a), ‘A modified node-to-segment algo-

rithm passing the contact patch test’, International Journal for Numerical

Methods in Engineering 79(4), 379–416.

Zavarise, G. and De Lorenzis, L. (2009b), ‘The node-to-segment algorithm for 2d

frictionless contact: Classical formulation and special cases’, Computer Meth-

ods in Applied Mechanics and Engineering 198(41), 3428–3451.

70

Appendices

71

Appendix A
Parameter description

This appendix section describes the parameters defined for contact analysis de-

fined in accordingly the main functions, solver functions and contact contribu-

tion functions. The Main functions are not added in the appendix as the setup is

taken from other codes already a part of the IGA research code. The parameters

defined in main are passed on to the solver functions.

****Parameters defined in the main function****

All of these parameters are stored in the struct: anls.contact.XX.

alf: Penalty parameter for the contact Penalty method.

t ol _z/y/x : Acceptable distance in xyz-dir for contact consideration.

pot ent i al _cont ac t _d : Maximum distance between master and slave points

for them to be considered as potential contact partners for the 2StepSearch. De-

noted as Lacc in the text.

sear ch_par {1}: For the one step point search: Start point for normal projec-

tion algorithm.

sear ch_par {2}: Step size for the normal projection algorithm.

sear ch_par {3}: Tolerance on perpendicularity for the normal projection point

search.

72

Chapter A. Parameter description

sear ch_par {4}: Tolerance on distance between points for the normal projec-

tion point search.

ms_pai r s(1...n): [slave patch nr, master patch nr] = bodies to be considered

for contact between each other. N = number of master-slave pairs.

d _r i g i d (1).d _st ep_d i r : Rigid body to move, total distance in each direction

[x y z] to move all control points.

d _r i g i d (1).par t _nr : The number of the patch to be moved.

****Parameters defined in the solver functions****

u_ac t i ve: Displacements of active degrees of freedom.

pot ent i al _cont ac t _d : See MAIN functions

u_cm, v_cm: Parametric coordinate of centre point of a master element.

u_c s, v_c s: Parametric coordinate of centre point of a slave element.

d _cent er _el em: Normal distance between a point u_cm, v_cm and u_cs, v_cs.

d _cent er _el em_mi n: The smallest out of all d _cent er _el em for a slave ele-

ment.

M_mi n_d i st _sm: Matrix storing for each row = all slave elements and 4 cols =

info about the closest master element: [u_cm, v_cm, i el _m,nor mal_d_center _el em],

for which i el _m is the element number of the closest master element.

M_cont ac t _par t ner s: Same structure as M_mi n_d i st _sm, except: all en-

tries = 0 for a row(slave elem) that is not considered for contact, which is the

case if (d_center _el em_mi n > potenti al_cont act_d).

****Parameters defined in the contact contribution functions****

par t 1, par t 2: Slave patch, master patch.

el : Current slave element in the slave element loop.

el 2: Master element containing the normal projection point.

x y z_C P : Coordinates of CPs of an element: .._1 for slave, .._2 on master.

73

Chapter A. Parameter description

B F 1, B F 2: Shape functions and deriv at a point in element el, el2

R1, R2: Shape functions at a point in element el, el2.

ke_c : Main contact element stiffness contribution to global matrix.

k_g eo: Geometric stiffness contact contribution to the element stiffness matrix.

ke_g p : Total contact stiffness for the element including k_g eo.

f i e_c : Element internal forces contribution (residual force contribution) to global

internal force and residual force vector due to contact.

74

Appendix B
Solver functions

B.1 Solver function: Move rigid body

1 %-------------------CYLINDER SQUEEZE SOLVER--------------

2 % ****DESCRIPTION****
3 % Solves nonlinear problem by Newton-Raphson iterations with

moving rigid

4 % bodies for every load step. Single point search procedure.

5

6 % Created by Embla L. Holten , 2019.

7 % General setup from Davide Proserpios codes

8

9

10 %****STIFF MAT FUNCTION CALLED****
11 % stiff_mat_Contact_GPTS_Pen.m Inclides 1 Step Search

and kgeo

12 %OR stiff_mat_Contact_GPTS_Pen_Simple.m Excludes kgeo

13

14 %---

15 function [solution, anls] = ...

16 solve_Contact_Newton_DisplacementControlled_Blocked_Dofs(anls,

resolution)

17

18 % --

19 % SOLVER INPUT AND INITIALISATION

75

Chapter B. Solver functions

20

21 %***DEFINE PARAMETERS FOR NONLINEAR SOLVING***
22 n_step = anls.par_solv.nstep; % number of load steps

23 n_iter = anls.par_solv.niter; % max number of iterations for a

load step

24 tol = anls.par_solv.tol; % tolerance on residual for exit

iterations

25 ndof = anls.ndof;

26

27 %***DEFINE PARAMETERS FOR PLOTTING***
28 patch_plot = anls.par_plot.patch; % patch to plot

29 plot_coord = anls.par_plot.coord; % point to plot the

displacement

30 plot_dir = anls.par_plot.dir; % direction of displacement

to plot

31 plot_sign = anls.par_plot.sign; % sign of the displacement

32

33 iters = zeros(n_step,1);

34

35 %***INITIALIZE DISPL***
36 u_active = zeros(ndof,1);

37 u_active_step = zeros(ndof,n_step+1); % initialize vector

collecting displ

38

39 %***INITIALIZE PLOTTING OF LOAD-DISPL***
40 lambda_plot = zeros(n_step+1,1);

41 u_plot = zeros(n_step+1,1);

42

43 figure()

44 xlabel('displacement')

45 ylabel('load fraction')

46 title(['point par. coord. (', ...

47 num2str(plot_coord), '), displacement dir=', num2str(plot_dir)

])

48 grid on

49 h = animatedline('Marker','o');

50 addpoints(h,u_plot,lambda_plot);

51 drawnow

52

53

54 % --

55 % DEFINE AND INITIALISE CONTACT PARAMETERS

56

76

Chapter B. Solver functions

57 % Preallocate vector of contact normal signs:

58 n_sign_ms_pairs = zeros(length(anls.contact.ms_pairs),1);

59

60 % Loop master-slave pairs:

61 for i = 1:length(anls.contact.ms_pairs)

62 % Calculate contact normal sign at the master surface:

63 us = 0.5; vs = 0.5; %Choose an arbitrary point us and vs on

slave

64 [XYZ_s] = get_point_coord([us, vs],... %Get

cartesian coor

65 anls.parts(anls.contact.ms_pairs{i}(1)).patch); %of point

(us,vs)

66

67 % Get normal projection point onto master surface from [XYZ_s]

68 search_par = anls.contact.search_par; %Retrieve analysis data

69 search_start = search_par{1}; %Start of normal proj point

search

70

71 [um,vm,~] = ...

72 point_project_surf(anls.parts(anls.contact.ms_pairs{i}(2))

.patch,...

73 search_start,XYZ_s,search_par); % Normal projection

algorithm

74

75 iel = get_point_element([um, vm], ...

76 anls.parts(anls.contact.ms_pairs{i}(2))); %Fin element

number of

77 %um,vm

78

79 % Retrieve the element of the normal proj point um,vm:

80 elm = anls.parts(anls.contact.ms_pairs{i}(2)).els(iel);

81 ncp_em = anls.parts(anls.contact.ms_pairs{i}(2)).els.ncp_e;

82

83 %Calculate current xyz coordinate of control points:

84 xyz_CPm = reshape(elm.CP(:,:,1:3),[ncp_em,3]);

85

86 %Compute base functions to get drduv:

87 [BFm] = compute_BF_elementbased([um,vm],elm,1);

88 dRduvm = BFm(2:3,:)';

89

90 %Get base functions:

91 [~,g3,lg3] = get_base_func(dRduvm,xyz_CPm);

92

77

Chapter B. Solver functions

93 %Calculate normal vector n (normalized):

94 n_shell = [0; 0; 0];

95 n_shell(1) = g3(1)/lg3;

96 n_shell(2) = g3(2)/lg3;

97 n_shell(3) = g3(3)/lg3; %normalization of g3 by components

98

99

100 % Calculate normal gap and check sign:

101 [XYZ_m] = get_point_coord([um,vm],...

102 anls.parts(anls.contact.ms_pairs{i}(2)).patch);

103 gap = (XYZ_s-XYZ_m)*n_shell;

104 if gap < 0

105 n_sign = -1;

106 end

107

108 if gap > 0

109 n_sign = 1;

110 end

111 n_sign_ms_pairs(i) = n_sign;

112 end % Loop through master-slave pairs

113

114

115 % --

116 % LOAD STEPS / NEWTON-LOOP

117

118 for il = 1:n_step % starting step(il step counter)

119

120 lambda_step = il/n_step;

121 lambda_plot(il+1) = lambda_step; %for plotting

122

123 disp('**************')

124 disp([' Step: ', num2str(il)]);

125

126 %-------------- Move rigid bodies:

127 % Add displacement to CPs of all rigid patches to move:

128 for i = 1:length(anls.contact.d_rigid) % Loop rigid patches

129 %Retrieve control points of rigid patch:

130 CP_p = anls.parts(anls.contact.d_rigid(i).part_nr).

patch_def.CP;

131 for iv = 1:length(CP_p(1,:,1)) %Loop CPs in parametric v-

direction

132 for iu = 1:length(CP_p(:,1,1)) %Loop CPs in param. u-

dir.

78

Chapter B. Solver functions

133 % Add prescribed displacement:

134 CP_p(iu,iv,3) = CP_p(iu,iv,3) + ...

135 anls.contact.d_rigid(i).d_step_dir(3)/n_step;

%z-dir

136 CP_p(iu,iv,2) = CP_p(iu,iv,2) + ...

137 anls.contact.d_rigid(i).d_step_dir(2)/n_step;

%y-dir

138 CP_p(iu,iv,1) = CP_p(iu,iv,1) + ...

139 anls.contact.d_rigid(i).d_step_dir(1)/n_step;

%x-dir

140 end

141 end

142 anls.parts(anls.contact.d_rigid(i).part_nr).patch_def.CP

= CP_p;

143 anls.parts(anls.contact.d_rigid(i).part_nr).patch.CP =

CP_p;

144

145 % dd displacement to CPs of all rigid elements to move:

146 for iel = 1:...

147 length(anls.parts(anls.contact.d_rigid(i).part_nr

).els)

148 CP_elem = ...

149 anls.parts(anls.contact.d_rigid(i).part_nr).els(

iel).CP;

150 for iv = 1:length(CP_elem(1,:,1))

151 for iu = 1:length(CP_elem(:,1,1))

152 CP_elem(iu,iv,3) = CP_elem(iu,iv,3) + ...

153 anls.contact.d_rigid(i).d_step_dir(3)/

n_step;

154 CP_elem(iu,iv,2) = CP_elem(iu,iv,2) + ...

155 anls.contact.d_rigid(i).d_step_dir(2)/

n_step;

156 CP_elem(iu,iv,1) = CP_elem(iu,iv,1) + ...

157 anls.contact.d_rigid(i).d_step_dir(1)/

n_step;

158 end

159 end

160 anls.parts(anls.contact.d_rigid(i).part_nr).els(iel)

.CP = ...

161 CP_elem;

162 end

163 end % Loop all rigid parts

164

79

Chapter B. Solver functions

165 %-------------- Iterations loop :

166 for it = 1:n_iter % (it is counter of iterations for the step)

167 if (it == (n_iter-1)) %check if convergence occurred or

max iterss

168 disp('WARNING: Reached max iterations for the load

step.')

169 break; %exit iteration loop -> next load step

170 end

171

172 add_stiff_var.u_active_prev = u_active; % update

displacement vec

173

174 if anls.NL_geo == 0 % check that nonlinear analysis is

specified,

175 % error if linear

176 disp('***ERROR calculating stiffness matrices:

Analysis is ')

177 disp('specified as linear in anls.NL, have to be

nonlin!***')

178 end

179

180 [stiffness] = stiff_mat(anls,add_stiff_var);

181 [stiffness] = stiff_mat_coupling(anls,stiffness,

add_stiff_var);

182

183 % Calculate contact contributions:

184 for i = 1:length(anls.contact.ms_pairs) %Loop master-slave

pairs

185 %Pass on current master-slave pair and contact normal

sign

186 add_stiff_var_contact.n_sign = n_sign_ms_pairs(i);

187 add_stiff_var_contact.ms_pairs = anls.contact.ms_pairs

{i};

188

189 % Calculate contact stiffness contribution:

190 %[stiffness, anls] = stiff_mat_Contact_GPTS_Pen...

191 % (anls,stiffness,add_stiff_var,

add_stiff_var_contact);

192

193 [stiffness, anls] = stiff_mat_Contact_GPTS_Pen_Simple

...

194 (anls,stiffness,add_stiff_var,

add_stiff_var_contact);

80

Chapter B. Solver functions

195 end

196

197 % Retrieve stiffness and force residual:

198 K = stiffness.K;

199 Fi_active = stiffness.Fi_active;

200 Fr = Fi_active; %No external load, residual = internal

forces

201

202 % Calculate residual for convergence:

203 residual = sqrt(Fr'*Fr); %calculate residual for conv.

check

204

205 disp([' iteration: ', num2str(it), ', res: ', num2str(

residual)]);

206

207 % Check convergence:

208 if (residual < tol)

209 break;

210 end

211 disp(['Residual: ', num2str(residual)])

212

213 % Solve system linearly and update displacements:

214 du_it_active = -K\Fr;

215

216 u_active = u_active+du_it_active; % update displ of active

dof

217 % Compute displaced CPS of the patches:

218 [anls] = compute_deformed_CP(anls,u_active);

219 end % Loop iterations

220

221 iters(il) = it; %store number of iterations for the load step

222 solution.iters = iters;

223

224 u_active_step(:,il+1) = u_active; % vector collecting displ at

each step

225

226 % Update global displacement vector u:

227 u = cell(length(anls.parts),1); % initialize

228 for ip = 1:length(anls.parts) %loop over patches

229

230 ncp_p = anls.parts(ip).patch.ncp; % number of CP for the

patch

231 ndof_cp = anls.parts(ip).ndof_cp;

81

Chapter B. Solver functions

232

233 u{ip} = zeros(ncp_p*ndof_cp,1); % initialize

234 for icp = 1:ncp_p %loop over CP of the patch

235 for dir = 1:ndof_cp % loop over dof for each cp

236 %If the dof is free, update:

237 if (anls.parts(ip).connectivity.ID(dir,icp)~=0)

% if the dof is free

238 u{ip}(ndof_cp*(icp-1)+dir) = u_active(anls.

parts(ip).connectivity.ID(dir,icp)); %u(a

control point) = u_active

239 end

240 end

241

242 end %loop over CP of the patch

243 end % loop over patches

244

245

246 [displ] = get_point_displ(plot_coord,anls.parts(patch_plot),u{

patch_plot});

247 u_plot(il+1) = plot_sign*displ(plot_dir);

248

249 %live plotting of load-displ

250 addpoints(h,u_plot(il+1),lambda_plot(il+1));

251 drawnow

252

253 % Plot current configuration:

254 if rem(il,1)==0 %Plot every 5 load step

255 solution.d = u;

256 solution.d_active = u_active;

257

258 plot_factor = 1; %magnification factor

259 figure

260 plot_structure_deformed(anls,solution,plot_factor,

resolution,'mesh') %'mesh','num_elem','basis','

num_basis','thickness'

261 xlabel('x')

262 ylabel('y')

263 zlabel('z')

264 title(['Deformed structure load step ', num2str(il), ''])

265 end

266

267 end % Loop load steps: Newton-Raphson solution loop

268

82

Chapter B. Solver functions

269 lambda_plot(il+2:end) =[];

270 u_plot(il+2:end) =[];

271

272 % --

273 % SOLUTION, OUTPUT

274

275 solution.d = u;

276 solution.d_active = u_active;

277

278 u_active_step(:,il+2:end) = [];

279 solution.d_active_step = u_active_step; % vector collecting displ

at each step

280

281

282 solution.Fi_active = Fi_active;

283

284 % output nonlinear load-displ curve

285 solution.u_plot = u_plot;

286 solution.lambda_plot = lambda_plot;

287

288 end %function

B.2 Solver function: External load

1 %-------------------SIMPLE CONTACT SOLVER-------------

2 % ****DESCRIPTION****
3 % Solves nonlinear problem by Newton-Raphson iterations. Single

point step

4 % procedure.

5

6 % Created by Embla L. Holten , 2019.

7 % General setup from Davide Proserpios codes

8

9

10 %****CONTACT STIFF MAT FUNCTION CALLED****
11 % stiff_mat_Contact_GPTS_Pen.m Includes geometric stiffness

kgeo

12 %OR stiff_mat_Contact_GPTS_Pen_Simple.m Excludes geometric

stiffness kgeo

13

14 %--

83

Chapter B. Solver functions

15

16 function [solution, anls] = solve_Contact_Newton(anls, resolution)

17

18 % --

19 % SOLVER INPUT AND INITIALISATION

20

21 %***DEFINE PARAMETERS FOR NONLINEAR SOLVING***
22 n_step = anls.par_solv.nstep; % number of load steps

23 n_iter = anls.par_solv.niter; % max number of iterations for a

load step

24 tol = anls.par_solv.tol; % tolerance on residual for exit

iterations

25 ndof = anls.ndof;

26 it = 0; %Initialize iterations for storing

27

28 %***DEFINE PARAMETERS FOR PLOTTING***
29 patch_plot = anls.par_plot.patch; % patch to plot

30 plot_coord = anls.par_plot.coord; % point to plot the

displacement

31 plot_dir = anls.par_plot.dir; % direction of displacement

to plot

32 plot_sign = anls.par_plot.sign; % sign of the displacement

33 iters = zeros(n_step,1);

34

35 F = anls.F; %Extract force vector

36

37 %***INITIALIZE DISPL***
38 u_active = zeros(ndof,1);

39 u_active_step = zeros(ndof,n_step+1); % initialize vector

collecting displ at each step

40

41 %***INITIALIZE LIVE PLOTTING OF LOAD-DISPL***
42 lambda_plot = zeros(n_step+1,1);

43 u_plot = zeros(n_step+1,1);

44

45 figure()

46 xlabel('displacement')

47 ylabel('load fraction')

48 title(['point par. coord. (', num2str(plot_coord), '),

displacement dir=', num2str(plot_dir)])

49 grid on

50 h = animatedline('Marker','o');

51 addpoints(h,u_plot,lambda_plot);

84

Chapter B. Solver functions

52 drawnow

53

54 % --

55 % DEFINE AND INITIALISE CONTACT PARAMETERS

56 % Preallocate vector of contact normal signs:

57 n_sign_ms_pairs = zeros(length(anls.contact.ms_pairs),1);

58

59 % Loop master-slave pairs:

60 for i = 1:length(anls.contact.ms_pairs)

61 % Calculate contact normal sign at the master surface:

62 us = 0.5; vs = 0.5; %Choose an arbitrary point us and vs on

slave

63 [XYZ_s] = get_point_coord([us, vs],... %Get

cartesian coor

64 anls.parts(anls.contact.ms_pairs{i}(1)).patch); %of point

(us,vs)

65

66 % Get normal projection point onto master surface from [XYZ_s]

67 search_par = anls.contact.search_par; %Retrieve analysis data

68 search_start = search_par{1}; %Start of normal proj point

search

69

70 [um,vm,~] = ...

71 point_project_surf(anls.parts(anls.contact.ms_pairs{i}(2))

.patch,...

72 search_start,XYZ_s,search_par); % Normal projection

algorithm

73

74 iel = get_point_element([um, vm], ...

75 anls.parts(anls.contact.ms_pairs{i}(2))); %Fin element

number of

76 %um,vm

77

78 % Retrieve the element of the normal proj point um,vm:

79 elm = anls.parts(anls.contact.ms_pairs{i}(2)).els(iel);

80 ncp_em = anls.parts(anls.contact.ms_pairs{i}(2)).els.ncp_e;

81

82 %Calculate current xyz coordinate of control points:

83 xyz_CPm = reshape(elm.CP(:,:,1:3),[ncp_em,3]);

84

85 %Compute base functions to get drduv:

86 [BFm] = compute_BF_elementbased([um,vm],elm,1);

87 dRduvm = BFm(2:3,:)';

85

Chapter B. Solver functions

88

89 %Get base functions:

90 [~,g3,lg3] = get_base_func(dRduvm,xyz_CPm);

91

92 %Calculate normal vector n (normalized):

93 n_shell = [0; 0; 0];

94 n_shell(1) = g3(1)/lg3;

95 n_shell(2) = g3(2)/lg3;

96 n_shell(3) = g3(3)/lg3; %normalization of g3 by components

97

98

99 % Calculate normal gap and check sign:

100 [XYZ_m] = get_point_coord([um,vm],...

101 anls.parts(anls.contact.ms_pairs{i}(2)).patch);

102 gap = (XYZ_s-XYZ_m)*n_shell;

103 if gap < 0

104 n_sign = -1;

105 end

106

107 if gap > 0

108 n_sign = 1;

109 end

110 n_sign_ms_pairs(i) = n_sign;

111 end % Loop through master-slave pairs

112

113

114 % --

115 % LOAD STEPS / NEWTON-LOOP

116

117 for il = 1:n_step % % starting step(is step counter)

118

119 lambda_step = il/n_step;

120 Fe_active = lambda_step*F; %Define external load level

121 %at the present step

122 lambda_plot(il+1) = lambda_step; %for plotting

123

124 disp('**************')

125 disp([' Step: ', num2str(il)]);

126

127 %-------------- Iterations loop :

128 for it = 1:n_iter % (it is counter of iterations for the step)

129

130 %***CALC STIFFNESS AND INTERNAL FORCE***

86

Chapter B. Solver functions

131 add_stiff_var.u_active_prev = u_active; % update

displacement vec

132

133 if anls.NL_geo == 0 % check that nonlinear analysis is

specified,

134 % error if nlinear

135 disp('***ERROR calculating stiffness matrices:

Analysis is ')

136 disp('specified as linear in anls.NL, have to be

nonlin!***')

137 end

138

139 [stiffness] = stiff_mat(anls,add_stiff_var);

140 [stiffness] = stiff_mat_coupling(anls,stiffness,

add_stiff_var); %add coupling

141

142

143 % Calculate contact contributions:

144 for i = 1:length(anls.contact.ms_pairs) %Loop master-slave

pairs

145 %Pass on current master-slave pair and contact normal

sign

146 add_stiff_var_contact.n_sign = n_sign_ms_pairs(i);

147 add_stiff_var_contact.ms_pairs = anls.contact.ms_pairs

{i};

148

149 % Calculate contact stiffness and force contribution:

150 [stiffness, anls] = stiff_mat_Contact_GPTS_Pen...

151 (anls,stiffness,add_stiff_var,

add_stiff_var_contact);

152

153 % without k_geo implemented:

154 %[stiffness, anls] = stiff_mat_Contact_GPTS_Pen_Simple

...

155 %(anls,stiffness,add_stiff_var,add_stiff_var_contact);

156 end

157

158 % Retrieve stiffness and force residual:

159 K = stiffness.K;

160 Fi_active = stiffness.Fi_active;

161

162 Fr = Fi_active-Fe_active; % Reasidual force vectoer

163

87

Chapter B. Solver functions

164 % Calculate residual for convergence:

165 % relative criterion wrt to external forces magnitude:

166 residual = sqrt(Fr'*Fr)/sqrt(Fe_active'*Fe_active);

167 % norm of the energy increment:

168 %residual = abs(Fr'*u_active)/abs(Fe_active'*u_active);

169

170 disp([' iteration: ', num2str(it), ', res: ', num2str(

residual)]);

171

172 % Check convergence:

173 if (residual < tol) %check if convergence occurred

174 break; %exit iteration loop

175 end

176 disp(['Residual: ', num2str(residual)])

177

178 % Solve system and update displacements:

179 du_it_active = -K\Fr; %CHANGED SIGNsolving the iteration

linearly,

180 %get increment of the displacment

for the

181 %iteration step

182

183 u_active = u_active+du_it_active; % update displ of active

dof

184 % Update deformed CPs of the patches

185 [anls] = compute_deformed_CP(anls,u_active);

186 end % Loop iterations

187

188 iters(il) = it; %store number of iterations for the load step

189 solution.iters = iters;

190

191 u_active_step(:,il+1) = u_active; % vector collecting displ at

each step

192

193

194 % Update global displacement vector u:

195 u = cell(length(anls.parts),1); % initialize

196 for ip = 1:length(anls.parts) %loop over patches

197

198 ncp_p = anls.parts(ip).patch.ncp; % number of CP for the

patch

199 ndof_cp = anls.parts(ip).ndof_cp;

200

88

Chapter B. Solver functions

201 u{ip} = zeros(ncp_p*ndof_cp,1); % initialize

202 for icp = 1:ncp_p %loop over CP of the patch

203 for dir = 1:ndof_cp % loop over dof for each cp

204

205 if (anls.parts(ip).connectivity.ID(dir,icp)~=0)

% if the dof is free

206 u{ip}(ndof_cp*(icp-1)+dir) = u_active(anls.

parts(ip).connectivity.ID(dir,icp)); %u(a

control point) = u_active

207 end

208 end

209

210 end %loop over CP of the patch

211 end % loop over patches

212

213

214 [displ] = get_point_displ(plot_coord,anls.parts(patch_plot),u{

patch_plot});

215 u_plot(il+1) = plot_sign*displ(plot_dir);

216

217 %live plotting of load-displ

218 addpoints(h,u_plot(il+1),lambda_plot(il+1));

219 drawnow

220

221 %***PLOT CURRENT CONFIGURATION***
222 if rem(il,1)==0 %Plot every x load step

223 solution.d = u;

224 solution.d_active = u_active;

225 plot_factor = 1; %magnification factor

226 figure

227 plot_structure_deformed(anls,solution,plot_factor,

resolution,'mesh')

228 %'mesh','num_elem','basis','num_basis','thickness'

229 xlabel('x')

230 ylabel('y')

231 zlabel('z')

232 title(['Deformed structure load step ', num2str(il), ''])

233 end

234

235

236 end % Loop load steps: Newton-Raphson solution loop

237

238 lambda_plot(il+2:end) =[];

89

Chapter B. Solver functions

239 u_plot(il+2:end) =[];

240

241 % --

242 % SOLUTION, OUTPUT

243 solution.d = u;

244 solution.d_active = u_active;

245

246 u_active_step(:,il+2:end) = [];

247 solution.d_active_step = u_active_step; % vector collecting displ

at each step

248

249 solution.Fi_active = Fi_active;

250

251 % output nonlinear load-displ curve

252 solution.u_plot = u_plot;

253 solution.lambda_plot = lambda_plot;

254

255 end %function

B.3 Solver function: 2 Step Point Search and external load

1 %-------------------2 STEP SEARCH SOLVER-----------------

2 % ****DESCRIPTION****
3 % Solves nonlinear problem by Newton-Raphson iterations.

4

5 % 2 step search:

6 % Creates matrix storing for each slave element a closest master

element.

7 % The matrix is passed on to the stiff_mat function.

8

9 % Created by Embla L. Holten , 2019.

10 % General setup from Davide Proserpios codes

11

12

13 %****CONTACT STIFF MAT FUNCTION CALLED****
14 % stiff_mat_Contact_GPTS_Pen_2StepSearch.m Inclides 2 Step

Search and

15 % geometric

stiffness kgeo

16

17 %---

90

Chapter B. Solver functions

18 function [solution, anls] = solve_Contact_Newton_2StepSearch...

19 (anls, resolution)

20

21 % --

22 % SOLVER INPUT AND INITIALISATION

23

24 %***DEFINE PARAMETERS FOR NONLINEAR SOLVING***
25 n_step = anls.par_solv.nstep; % number of load steps

26 n_iter = anls.par_solv.niter; % max number of iterations for a

load step

27 tol = anls.par_solv.tol; % tolerance on residual for exit

iterations

28 ndof = anls.ndof;

29 it = 0; %Initialize iterations for storing

30

31 %***DEFINE PARAMETERS FOR PLOTTING***
32 patch_plot = anls.par_plot.patch; % patch to plot

33 plot_coord = anls.par_plot.coord; % point to plot the

displacement

34 plot_dir = anls.par_plot.dir; % direction of displacement

to plot

35 plot_sign = anls.par_plot.sign; % sign of the displacement

36 iters = zeros(n_step,1);

37

38 F = anls.F; %Extract force vector

39

40 %***INITIALIZE DISPL***
41 u_active = zeros(ndof,1);

42 u_active_step = zeros(ndof,n_step+1); %initialize vector

collecting displ

43 %at each step

44

45 %***INITIALIZE LIVE PLOTTING OF LOAD-DISPL***
46 lambda_plot = zeros(n_step+1,1);

47 u_plot = zeros(n_step+1,1);

48

49 figure()

50 xlabel('displacement')

51 ylabel('load fraction')

52 title(['point par. coord. (', num2str(plot_coord), '),

displacement dir=', num2str(plot_dir)])

53 grid on

54 h = animatedline('Marker','o');

91

Chapter B. Solver functions

55 addpoints(h,u_plot,lambda_plot);

56 drawnow

57

58 % --

59 % DEFINE AND INITIALISE CONTACT PARAMETERS

60

61 % Preallocate vector of contact normal signs:

62 n_sign_ms_pairs = zeros(length(anls.contact.ms_pairs),1);

63 % Preallocate struct of master and slave closest element pairs:

64 contact_pairs = struct;

65

66 % Loop master-slave pairs:

67 for i = 1:length(anls.contact.ms_pairs)

68 % Preallocate master-slave distances matrix for the 2 step

point

69 % search

70 contact_pairs(i).M_min_dist_sm ...

71 = zeros(length(anls.parts(anls.contact.ms_pairs{i}(1)).els

), 4);

72 % rows = slave elements 1,2,3,...number of slave elem

73 % cols = info about closest master element to the slave

74 % element el_s:

75 % [u_cm, v_cm, iel_m, normal_d_center_elem]

76 contact_pairs(i).M_contact_partners ...

77 = zeros(length(anls.parts(anls.contact.ms_pairs{i}(1)).els

), 4);

78 % same structure as M_min_dist_sm except:

79 % cols = 0 if not potential contact

80

81 % Calculate contact normal sign at the master surface:

82 us = 0.5; vs = 0.5; %Choose an arbitrary point us and vs on

slave

83 [XYZ_s] = get_point_coord([us, vs],... %Get

cartesian coor

84 anls.parts(anls.contact.ms_pairs{i}(1)).patch); %of point

(us,vs)

85

86 % Get normal projection point onto master surface from [XYZ_s]

87 search_par = anls.contact.search_par; %Retrieve analysis data

88 search_start = search_par{1}; %Start of normal proj point

search

89

90 [um,vm,~] = ...

92

Chapter B. Solver functions

91 point_project_surf(anls.parts(anls.contact.ms_pairs{i}(2))

.patch,...

92 search_start,XYZ_s,search_par); % Normal projection

algorithm

93

94 iel = get_point_element([um, vm], ...

95 anls.parts(anls.contact.ms_pairs{i}(2))); %Fin element

number of

96 %um,vm

97

98 % Retrieve the element of the normal proj point um,vm:

99 elm = anls.parts(anls.contact.ms_pairs{i}(2)).els(iel);

100 ncp_em = anls.parts(anls.contact.ms_pairs{i}(2)).els.ncp_e;

101

102 %Calculate current xyz coordinate of control points:

103 xyz_CPm = reshape(elm.CP(:,:,1:3),[ncp_em,3]);

104

105 %Compute base functions to get drduv:

106 [BFm] = compute_BF_elementbased([um,vm],elm,1);

107 dRduvm = BFm(2:3,:)';

108

109 %Get base functions:

110 [~,g3,lg3] = get_base_func(dRduvm,xyz_CPm);

111

112 %Calculate normal vector n (normalized):

113 n_shell = [0; 0; 0];

114 n_shell(1) = g3(1)/lg3;

115 n_shell(2) = g3(2)/lg3;

116 n_shell(3) = g3(3)/lg3; %normalization of g3 by components

117

118

119 % Calculate normal gap and check sign:

120 [XYZ_m] = get_point_coord([um,vm],...

121 anls.parts(anls.contact.ms_pairs{i}(2)).patch);

122 gap = (XYZ_s-XYZ_m)*n_shell;

123 if gap < 0

124 n_sign = -1;

125 end

126

127 if gap > 0

128 n_sign = 1;

129 end

130 n_sign_ms_pairs(i) = n_sign;

93

Chapter B. Solver functions

131 end % Loop through master-slave pairs

132

133

134 % --

135 % LOAD STEPS / NEWTON-LOOP

136

137 for il = 1:n_step % starting step(il step counter)

138

139 lambda_step = il/n_step;

140 Fe_active = lambda_step*F; %Define external load level

141 %at the present step

142 lambda_plot(il+1) = lambda_step; %for plotting

143

144 disp('**************')

145 disp([' Step: ', num2str(il)]);

146

147 %-------------- Find potential contact partners (2 step point

search):

148 for i = 1:length(anls.contact.ms_pairs)

149 m_els = anls.parts(anls.contact.ms_pairs{i}(2)).els;

150 s_els = anls.parts(anls.contact.ms_pairs{i}(1)).els;

151

152 % Loop slave elements:

153 for iel_s = 1:length(s_els)

154

155 % Initialize matrices for 2 step point search:

156 contact_pairs(i).M_contact_partners(iel_s,:) = 0;

157 contact_pairs(i).M_min_dist_sm(iel_s,:) = 0;

158

159 % Calculate center point of slave element, (u_cs,

v_cs):

160 el_s = s_els(iel_s);

161 p_s = el_s.p;

162 U_s = el_s.U{1};

163 V_s = el_s.U{2};

164 u_cs = (U_s(p_s(1)+1)+U_s(p_s(1)+2))/2;

165 v_cs = (V_s(p_s(2)+1)+V_s(p_s(2)+2))/2;

166

167 %Find cartesian coordinate of (u_cs,v_cs):

168 [XYZ_cs] = get_point_coord([u_cs,v_cs],...

169 anls.parts(anls.contact.ms_pairs{i}(1)).

patch_def);

170

94

Chapter B. Solver functions

171 % Loop through master elements:

172 d_center_elem_min = 1000; % Initialize minimum

dist

173 for iel_m = 1:length(m_els)

174 % Calculate center point of master element:

175 el_m = m_els(iel_m);

176 p_m = el_m.p;

177 U_m = el_m.U{1};

178 V_m = el_m.U{2};

179 u_cm = (U_m(p_m(1)+1)+U_m(p_m(1)+2))/2;

180 v_cm = (V_m(p_m(2)+1)+V_m(p_m(2)+2))/2;

181 %Find cartesian coordinate of (u_cm,v_cm):

182 [XYZ_cm] = get_point_coord([u_cm,v_cm],...

183 anls.parts(anls.contact.ms_pairs{i}(2)).

patch_def);

184

185 % Calculate absolute distance between master

and slave:

186 d_center_elem = (XYZ_cs - XYZ_cm);

187 abs_d_center_elem...

188 = sqrt(d_center_elem(1)^2 + ...

189 d_center_elem(2)^2 + d_center_elem(3)^2);

190 d_center_elem = abs_d_center_elem;

191 % Check if absolute distance is less than

minimum:

192 if d_center_elem < d_center_elem_min

193 contact_pairs(i).M_min_dist_sm(iel_s,:)...

194 =[u_cm,v_cm,iel_m,d_center_elem];

195 % Update current minimum:

196 d_center_elem_min = d_center_elem;

197 end

198 end %Loop master elements

199

200 % Check if current distance is less than

acceptable for

201 % including in contact calculations:

202 if d_center_elem_min < ...

203 anls.contact.potential_contact_d

204 contact_pairs(i).M_contact_partners(iel_s,:)

...

205 = contact_pairs(i).M_min_dist_sm(iel_s,:);

206 end

207 end % Loop slave elements

95

Chapter B. Solver functions

208 end %Loop master-slave pairs

209

210 %-------------- Iterations loop :

211 for it = 1:n_iter % (it is counter of iterations for the step)

212 if (it == (n_iter-1)) %check if convergence occurred or

max iters

213 disp('WARNING: Reached max iterations for the load

step.')

214 break;

215 end

216 add_stiff_var.u_active_prev = u_active; % update

displacement vec

217

218 if anls.NL_geo == 0 % check that nonlinear analysis is

specified,

219 % error if nlinear

220 disp('***ERROR calculating stiffness matrices:

Analysis is ')

221 disp('specified as linear in anls.NL, have to be

nonlin!***')

222 end

223

224 [stiffness] = stiff_mat(anls,add_stiff_var);

225 [stiffness] = stiff_mat_coupling(anls,stiffness,

add_stiff_var); %add coupling

226

227 % Calculate contact contributions:

228 for i = 1:length(anls.contact.ms_pairs) %Loop master-slave

pairs

229 %Pass on current master-slave pair, contact partner

matrix

230 %for 2 step point search and contact normal sign

231 add_stiff_var_contact.M_contact_partners = ...

232 contact_pairs(i).M_contact_partners;

233 add_stiff_var_contact.n_sign = n_sign_ms_pairs(i);

234 add_stiff_var_contact.ms_pairs = anls.contact.ms_pairs

{i};

235

236 % Calculate contact stiffness and force contribution:

237 [stiffness, anls] =

stiff_mat_Contact_GPTS_Pen_2StepSearch...

238 (anls,stiffness,add_stiff_var,

add_stiff_var_contact);

96

Chapter B. Solver functions

239 end

240

241 % Retrieve stiffness and force residual:

242 K = stiffness.K;

243 Fi_active = stiffness.Fi_active;

244

245 Fr = Fi_active-Fe_active; % Reasidual force vectoer

246

247 % Calculate residual for convergence:

248 % relative criterion wrt to external forces magnitude:

249 residual = sqrt(Fr'*Fr)/sqrt(Fe_active'*Fe_active);

250 % norm of the energy increment:

251 %residual = abs(Fr'*u_active)/abs(Fe_active'*u_active);

252

253 disp([' iteration: ', num2str(it), ', res: ', num2str(

residual)]);

254

255 % Check convergence:

256 if (residual < tol) %check if convergence occurred

257 break; %exit iteration loop

258 end

259 disp(['Residual: ', num2str(residual)])

260

261 % Solve system and update displacements:

262 du_it_active = -K\Fr; %CHANGED SIGNsolving the iteration

linearly,

263 %get increment of the displacment

for the

264 %iteration step

265

266 u_active = u_active+du_it_active; % update displ of active

dof

267 % Update deformed CPs of the patches

268 [anls] = compute_deformed_CP(anls,u_active);

269 end % Loop iterations

270

271 iters(il) = it; %store number of iterations for the load step

272 solution.iters = iters;

273

274 u_active_step(:,il+1) = u_active; % vector collecting displ at

steps

275

276

97

Chapter B. Solver functions

277 % Update global displacement vector u:

278 u = cell(length(anls.parts),1); % initialize

279 for ip = 1:length(anls.parts) %loop over patches

280

281 ncp_p = anls.parts(ip).patch.ncp; % number of CP for the

patch

282 ndof_cp = anls.parts(ip).ndof_cp;

283

284 u{ip} = zeros(ncp_p*ndof_cp,1); % initialize

285 for icp = 1:ncp_p %loop over CP of the patch

286 for dir = 1:ndof_cp % loop over dof for each cp

287 %If the dof is free, update:

288 if (anls.parts(ip).connectivity.ID(dir,icp)~=0)

289 u{ip}(ndof_cp*(icp-1)+dir) = u_active...

290 (anls.parts(ip).connectivity.ID(dir,icp)

);

291 end

292 end

293

294 end %loop over CP of the patch

295 end % loop over patches

296

297

298

299

300

301 [displ] = get_point_displ(plot_coord,anls.parts(patch_plot),u{

patch_plot});

302 u_plot(il+1) = plot_sign*displ(plot_dir);

303

304 %live plotting of load-displ

305 addpoints(h,u_plot(il+1),lambda_plot(il+1));

306 drawnow

307

308 % Plot current configuration:

309 if rem(il,3)==0 %Plot every x load step

310 solution.d = u;

311 solution.d_active = u_active;

312

313 plot_factor = 1; %magnification factor

314 figure

315 plot_structure_deformed(anls,solution,plot_factor,

resolution,'mesh') %'mesh','num_elem','basis','

98

Chapter B. Solver functions

num_basis','thickness'

316 xlabel('x')

317 ylabel('y')

318 zlabel('z')

319 title(['Deformed structure load step ', num2str(il), ''])

320 end

321

322

323 end % Loop load steps: Newton-Raphson solution loop

324

325 lambda_plot(il+2:end) =[];

326 u_plot(il+2:end) =[];

327

328 % --

329 % SOLUTION, OUTPUT

330

331 solution.d = u;

332 solution.d_active = u_active;

333

334 u_active_step(:,il+2:end) = [];

335 solution.d_active_step = u_active_step; % vector collecting displ

at each step

336

337 solution.Fi_active = Fi_active;

338

339 % output nonlinear load-displ curve

340 solution.u_plot = u_plot;

341 solution.lambda_plot = lambda_plot;

342

343 end %function

B.4 Solver function: Cylinder example with 2 step point

search

1 %-------------------CYLINDER SQUEEZE SOLVER----------

2 % ****DESCRIPTION****
3 % Solves nonlinear problem by Newton-Raphson iterations wuth

moving rigid

4 % bodies for every load step. The code is adapted to the cylinder

example.

99

Chapter B. Solver functions

5

6 % Created by Embla L. Holten , 2019.

7 % General setup from Davide Proserpios codes

8

9

10 %****STIFF MAT FUNCTION CALLED****
11 % stiff_mat_Contact_Cylinder_Squeeze.m Inclides 2 Step

Search and

12 % geometric

stiffness kgeo

13

14 %--

15

16

17 function [solution, anls] = solve_Contact_Cylinder_Squeeze...

18 (anls, resolution)

19

20 % --

21 % SOLVER INPUT AND INITIALISATION

22

23 %***DEFINE PARAMETERS FOR NONLINEAR SOLVING***
24 n_step = anls.par_solv.nstep; % number of load steps

25 n_iter = anls.par_solv.niter; % max number of iterations for a

load step

26 tol = anls.par_solv.tol; % tolerance on residual for exit

iterations

27 ndof = anls.ndof;

28

29 %***DEFINE PARAMETERS FOR PLOTTING***
30 patch_plot = anls.par_plot.patch; % patch to plot

31 plot_coord = anls.par_plot.coord; % point to plot the

displacement

32 plot_dir = anls.par_plot.dir; % direction of displacement

to plot

33 plot_sign = anls.par_plot.sign; % sign of the displacement

34

35 iters = zeros(n_step,1);

36

37 %***INITIALIZE DISPL***
38 u_active = zeros(ndof,1);

39 u_active_step = zeros(ndof,n_step+1); %initialize vector

collecting displ

40 %at each step

100

Chapter B. Solver functions

41

42 %***INITIALIZE LIVE PLOTTING OF LOAD-DISPL***
43 lambda_plot = zeros(n_step+1,1);

44 u_plot = zeros(n_step+1,1);

45 figure()

46 xlabel('displacement')

47 ylabel('load fraction')

48 title(['point par. coord. (', ...

49 num2str(plot_coord(1,:)), '), displacement dir=', num2str(

plot_dir)])

50 grid on

51 h = animatedline('Marker','o');

52 addpoints(h,u_plot,lambda_plot);

53 drawnow

54

55

56 % --

57 % DEFINE AND INITIALISE CONTACT PARAMETERS

58

59 % Preallocate vector of contact normal signs:

60 n_sign_ms_pairs = zeros(length(anls.contact.ms_pairs),1);

61 % Preallocate struct of master and slave closest element pairs:

62 contact_pairs = struct;

63

64 % Loop master-slave pairs:

65 for i = 1:length(anls.contact.ms_pairs)

66 % Preallocate master-slave distances matrix for the 2 step

point

67 % search

68 contact_pairs(i).M_min_dist_sm ...

69 = zeros(length(anls.parts(anls.contact.ms_pairs{i}(1)).els

), 4);

70 % rows = slave elements 1,2,3,...number of slave elem

71 % cols = info about closest master element to the slave

72 % element el_s:

73 % [u_cm, v_cm, iel_m, normal_d_center_elem]

74 contact_pairs(i).M_contact_partners ...

75 = zeros(length(anls.parts(anls.contact.ms_pairs{i}(1)).els

), 4);

76 % same structure as M_min_dist_sm except:

77 % cols = 0 if not potential contact

78

79 % Calculate contact normal sign at the master surface:

101

Chapter B. Solver functions

80 us = 0.5; vs = 0.5; %Choose an arbitrary point us and vs on

slave

81 [XYZ_s] = get_point_coord([us, vs],... %Get

cartesian coor

82 anls.parts(anls.contact.ms_pairs{i}(1)).patch); %of point

(us,vs)

83

84 % Get normal projection point onto master surface from [XYZ_s]

85 search_par = anls.contact.search_par; %Retrieve analysis data

86 search_start = search_par{1}; %Start of normal proj point

search

87

88 [um,vm,~] = ...

89 point_project_surf(anls.parts(anls.contact.ms_pairs{i}(2))

.patch,...

90 search_start,XYZ_s,search_par); % Normal projection

algorithm

91

92 iel = get_point_element([um, vm], ...

93 anls.parts(anls.contact.ms_pairs{i}(2))); %Fin element

number of

94 %um,vm

95

96 % Retrieve the element of the normal proj point um,vm:

97 elm = anls.parts(anls.contact.ms_pairs{i}(2)).els(iel);

98 ncp_em = anls.parts(anls.contact.ms_pairs{i}(2)).els.ncp_e;

99

100 %Calculate current xyz coordinate of control points:

101 xyz_CPm = reshape(elm.CP(:,:,1:3),[ncp_em,3]);

102

103 %Compute base functions to get drduv:

104 [BFm] = compute_BF_elementbased([um,vm],elm,1);

105 dRduvm = BFm(2:3,:)';

106

107 %Get base functions:

108 [~,g3,lg3] = get_base_func(dRduvm,xyz_CPm);

109

110 %Calculate normal vector n (normalized):

111 n_shell = [0; 0; 0];

112 n_shell(1) = g3(1)/lg3;

113 n_shell(2) = g3(2)/lg3;

114 n_shell(3) = g3(3)/lg3; %normalization of g3 by components

115

102

Chapter B. Solver functions

116

117 % Calculate normal gap and check sign:

118 [XYZ_m] = get_point_coord([um,vm],...

119 anls.parts(anls.contact.ms_pairs{i}(2)).patch);

120 gap = (XYZ_s-XYZ_m)*n_shell;

121 if gap < 0

122 n_sign = -1;

123 end

124

125 if gap > 0

126 n_sign = 1;

127 end

128 n_sign_ms_pairs(i) = n_sign;

129 end % Loop through master-slave pairs

130

131 % --

132 % LOAD STEPS / NEWTON-LOOP

133

134 for il = 1:n_step % starting step(il step counter)

135

136 lambda_step = il/n_step;

137 lambda_plot(il+1) = lambda_step; %for plotting

138

139 disp('**************')

140 disp([' Step: ', num2str(il)]);

141 %-------------- Move rigid bodies:

142 % Add displacement to CPs of all rigid patches to move:

143 for i = 1:length(anls.contact.d_rigid) % Loop rigid patches

144 %Retrieve control points of rigid patch:

145 CP_p = anls.parts(anls.contact.d_rigid(i).part_nr).

patch_def.CP;

146 for iv = 1:length(CP_p(1,:,1)) %Loop CPs in parametric v-

direction

147 for iu = 1:length(CP_p(:,1,1)) %Loop CPs in param. u-

dir.

148 % Add prescribed displacement:

149 CP_p(iu,iv,3) = CP_p(iu,iv,3) + ...

150 anls.contact.d_rigid(i).d_step_dir(3)/n_step;

%z-dir

151 CP_p(iu,iv,2) = CP_p(iu,iv,2) + ...

152 anls.contact.d_rigid(i).d_step_dir(2)/n_step;

%y-dir

153 CP_p(iu,iv,1) = CP_p(iu,iv,1) + ...

103

Chapter B. Solver functions

154 anls.contact.d_rigid(i).d_step_dir(1)/n_step;

%x-dir

155 end

156 end

157 anls.parts(anls.contact.d_rigid(i).part_nr).patch_def.CP

= CP_p;

158 anls.parts(anls.contact.d_rigid(i).part_nr).patch.CP =

CP_p;

159

160 % dd displacement to CPs of all rigid elements to move:

161 for iel = 1:...

162 length(anls.parts(anls.contact.d_rigid(i).part_nr

).els)

163 CP_elem = ...

164 anls.parts(anls.contact.d_rigid(i).part_nr).els(

iel).CP;

165 for iv = 1:length(CP_elem(1,:,1))

166 for iu = 1:length(CP_elem(:,1,1))

167 CP_elem(iu,iv,3) = CP_elem(iu,iv,3) + ...

168 anls.contact.d_rigid(i).d_step_dir(3)/

n_step;

169 CP_elem(iu,iv,2) = CP_elem(iu,iv,2) + ...

170 anls.contact.d_rigid(i).d_step_dir(2)/

n_step;

171 CP_elem(iu,iv,1) = CP_elem(iu,iv,1) + ...

172 anls.contact.d_rigid(i).d_step_dir(1)/

n_step;

173 end

174 end

175 anls.parts(anls.contact.d_rigid(i).part_nr).els(iel)

.CP = ...

176 CP_elem;

177 end

178 end % Loop all rigid parts

179

180 %-------------- Find potential contact partners (2 step point

search):

181 for i = 1:length(anls.contact.ms_pairs)

182 m_els = anls.parts(anls.contact.ms_pairs{i}(2)).els;

183 s_els = anls.parts(anls.contact.ms_pairs{i}(1)).els;

184

185 % Loop slave elements:

186 for iel_s = 1:length(s_els)

104

Chapter B. Solver functions

187

188 % Initialize matrices for 2 step point search:

189 contact_pairs(i).M_contact_partners(iel_s,:) = 0;

190 contact_pairs(i).M_min_dist_sm(iel_s,:) = 0;

191

192 % Calculate center point of slave element, (u_cs,

v_cs):

193 el_s = s_els(iel_s);

194 p_s = el_s.p;

195 U_s = el_s.U{1};

196 V_s = el_s.U{2};

197 u_cs = (U_s(p_s(1)+1)+U_s(p_s(1)+2))/2;

198 v_cs = (V_s(p_s(2)+1)+V_s(p_s(2)+2))/2;

199

200 %Find cartesian coordinate of (u_cs,v_cs):

201 [XYZ_cs] = get_point_coord([u_cs,v_cs],...

202 anls.parts(anls.contact.ms_pairs{i}(1)).

patch_def);

203

204 % Loop through master elements:

205 d_center_elem_min = 1000; % Initialize minimum

dist

206 for iel_m = 1:length(m_els)

207 % Calculate center point of master element:

208 el_m = m_els(iel_m);

209 p_m = el_m.p;

210 U_m = el_m.U{1};

211 V_m = el_m.U{2};

212 u_cm = (U_m(p_m(1)+1)+U_m(p_m(1)+2))/2;

213 v_cm = (V_m(p_m(2)+1)+V_m(p_m(2)+2))/2;

214 %Find cartesian coordinate of (u_cm,v_cm):

215 [XYZ_cm] = get_point_coord([u_cm,v_cm],...

216 anls.parts(anls.contact.ms_pairs{i}(2)).

patch_def);

217

218 % Calculate absolute distance between master

and slave:

219 d_center_elem = (XYZ_cs - XYZ_cm);

220 abs_d_center_elem...

221 = sqrt(d_center_elem(1)^2 + ...

222 d_center_elem(2)^2 + d_center_elem(3)^2);

223 d_center_elem = abs_d_center_elem;

224 % Check if absolute distance is less than

105

Chapter B. Solver functions

minimum:

225 if d_center_elem < d_center_elem_min

226 contact_pairs(i).M_min_dist_sm(iel_s,:)...

227 =[u_cm,v_cm,iel_m,d_center_elem];

228 % Update current minimum:

229 d_center_elem_min = d_center_elem;

230 end

231 end %Loop master elements

232

233 % Check if current distance is less than

acceptable for

234 % including in contact calculations:

235 if d_center_elem_min < ...

236 anls.contact.potential_contact_d

237 contact_pairs(i).M_contact_partners(iel_s,:)

...

238 = contact_pairs(i).M_min_dist_sm(iel_s,:);

239 end

240 end % Loop slave elements

241 end %Loop master-slave pairs

242

243 %-------------- Iterations loop :

244 for it = 1:n_iter % (it is counter of iterations for the step)

245 if (it == (n_iter-1)) %check if convergence occurred or

max iters

246 disp('WARNING: Reached max iterations for the load

step.')

247 break; %exit iteration loop -> next load step

248 end

249

250 add_stiff_var.u_active_prev = u_active; % update

displacement vec

251

252 if anls.NL_geo == 0 % check that nonlinear analysis is

specified,

253 % error if linear

254 disp('***ERROR calculating stiffness matrices:

Analysis is ')

255 disp('specified as linear in anls.NL, have to be

nonlin!***')

256 end

257

258 [stiffness] = stiff_mat(anls,add_stiff_var);

106

Chapter B. Solver functions

259 [stiffness] = stiff_mat_coupling(anls,stiffness,

add_stiff_var);

260

261 % Calculate contact contributions:

262 for i = 1:length(anls.contact.ms_pairs) %Loop master-slave

pairs

263 %Pass on current master-slave pair, contact partner

matrix

264 %for 2 step point search and contact normal sign

265 add_stiff_var_contact.M_contact_partners = ...

266 contact_pairs(i).M_contact_partners;

267 add_stiff_var_contact.n_sign = n_sign_ms_pairs(i);

268 add_stiff_var_contact.ms_pairs = anls.contact.ms_pairs

{i};

269

270 % Calculate contact stiffness and force contribution:

271 [stiffness, anls] = ...

272 stiff_mat_Contact_Cylinder_Squeeze...

273 (anls,stiffness,add_stiff_var,

add_stiff_var_contact);

274 end

275

276 % Retrieve stiffness and force residual:

277 K = stiffness.K;

278 Fi_active = stiffness.Fi_active;

279

280 Fr = Fi_active; %No external load, residual = internal

forces

281

282 % Calculate residual for convergence:

283 residual = sqrt(Fr'*Fr);

284

285 disp([' iteration: ', num2str(it), ', res: ',...

286 num2str(residual)]);

287

288 % Check convergence:

289 if (residual < tol)

290 break;

291 end

292 disp(['Residual: ', num2str(residual)])

293

294 % Solve system and update displacements:

295 du_it_active = -K\Fr;

107

Chapter B. Solver functions

296

297 u_active = u_active+du_it_active; % update displ of active

dof

298 % Compute displaced CPS of the patches:

299 [anls] = compute_deformed_CP(anls,u_active);

300 end % Loop iterations

301

302 iters(il) = it; %store number of iterations for the load step

303 solution.iters = iters;

304

305 u_active_step(:,il+1) = u_active; % collect displ at each step

306

307

308 % Update global displacement vector u:

309 u = cell(length(anls.parts),1); % initialize

310 for ip = 1:length(anls.parts) %loop over patches

311

312 ncp_p = anls.parts(ip).patch.ncp; % number of CP for the

patch

313 ndof_cp = anls.parts(ip).ndof_cp;

314

315 u{ip} = zeros(ncp_p*ndof_cp,1); % initialize

316 for icp = 1:ncp_p %loop over CP of the patch

317 for dir = 1:ndof_cp % loop over dof for each cp

318 %If the dof is free, update:

319 if (anls.parts(ip).connectivity.ID(dir,icp)~=0)

320 u{ip}(ndof_cp*(icp-1)+dir) = ...

321 u_active...

322 (anls.parts(ip).connectivity.ID(dir,icp)

);

323 end

324 end

325

326 end %Loop over CP of the patch

327 end % Loop over patches

328

329 % Store displacement for plotting:

330 [displ] = get_point_displ(plot_coord(1,:),anls.parts(

patch_plot),...

331 u{patch_plot});

332 u_plot(il+1) = plot_sign*displ(plot_dir);

333

334 % Live plotting of load-displ

108

Chapter B. Solver functions

335 addpoints(h,u_plot(il+1),lambda_plot(il+1));

336 drawnow

337

338

339 % Plot current configuration:

340 if rem(il,3)==0 %Plot every x load step

341 solution.d = u;

342 solution.d_active = u_active;

343

344 plot_factor = 1; %magnification factor

345 figure

346 plot_structure_deformed...

347 (anls,solution,plot_factor,resolution,'mesh')

348 %'mesh','num_elem','basis','num_basis','thickness'

349 xlabel('x')

350 ylabel('y')

351 zlabel('z')

352 title(['Deformed structure load step ', num2str(il), ''])

353 end

354

355 end % Loop load steps: Newton-Raphson solution loop

356

357 lambda_plot(il+2:end) =[];

358 u_plot(il+2:end) =[];

359

360

361 % --

362 % SOLUTION, OUTPUT

363

364 solution.d = u;

365 solution.d_active = u_active;

366

367 u_active_step(:,il+2:end) = [];

368 solution.d_active_step = u_active_step; % vector collecting displ

at each step

369

370 solution.Fi_active = Fi_active;

371

372 % output nonlinear load-displ curve

373 solution.u_plot = u_plot;

374 solution.lambda_plot = lambda_plot;

375

376 end % Function

109

Appendix C
Contact contribution functions

The equation numbers in the functions refer to (De Lorenzis, Scott, Wriggers,

Taylor and Zavarize, 2014).

C.1 Contact contribution function: Simplified GPTS and

penalty without geometric stiffness

1 %------CONTACT CONTRIBUTIONS CALC. FUNCTION-------------

2 % ****DESCRIPTION****
3 % Calculates the contact contribution to the stiffness matrix and

force

4 % residual. Gauss-point-to-segment discretization with the penalty

method.

5 % Excluding geometric contact stiffness. Single point search step.

6

7 % Created by Embla L. Holten , 2019.

8

9

10

11 %---

12

13 function [stiffness, anls] = stiff_mat_Contact_GPTS_Simple...

14 (anls,stiffness,add_stiff_var,add_stiff_var_contact)

110

Chapter C. Contact contribution functions

15

16 % ---

17 % EXTRACT ANALYSIS INPUT

18 alf = anls.contact.alf; %Penalty parameter

19 search_par = anls.contact.search_par; %Normal point projection

parameters

20 search_start = search_par{1}; %Starting point for normal

projection point

21 %search.

22 K = stiffness.K; %Stiffness matrix from before

23 Fi_active = stiffness.Fi_active; %Internal forces fom before

24 u_active_prev = add_stiff_var.u_active_prev; %Displacements prev

load step

25

26 % Extract info slave part:

27 part1 = anls.parts(add_stiff_var_contact.ms_pairs(1)); %Slave part

28 nel1 = length(part1.els); %Number of elemnts in the patch

29

30 % Extract infor master part:

31 part2 = anls.parts(add_stiff_var_contact.ms_pairs(2)); %Master

part

32 nel2 = length(part2.els);

33 spline_type2 = part2.spltyp;

34

35 % Calculate deformed control points master elements:

36 for iel=1:nel2

37 el2 = part2.els(iel);

38 [~, el2, ~] = compute_deformed_CP_elem(el2, part2.connectivity

,...

39 part2.ndof_cp, u_active_prev); %Assign to current element

el2

40 part2.els(iel) = el2; %Assign to part

41

42 end

43

44 % --

45 % DETECT CONTACT

46

47 %-------------- Loop slave elements:

48 for iel=1:nel1

49 % Retrieve information from slave element:

50 el = part1.els(iel); % Current slave element in slave element

loop

111

Chapter C. Contact contribution functions

51 integ = el.integ; %Integration rule for the element

52 p = el.p; %Polynomial degrees

53 J2 = el.J2; %Jacobian

54 U = el.U{1}; %Knot vector

55 V = el.U{2}; %Knot vector

56

57 % Retrieve the displaced control point coordinates and add to

element:

58 [xyz_CP_d, el, ~] = compute_deformed_CP_elem(el, part1.

connectivity,...

59 part1.ndof_cp, u_active_prev); %Assign to current master

elem el2

60 part1.els(iel) = el; %Assign to part

61

62 % Find gauss point positions in an element in u and v

direction

63 [GP,GW] = gauss_point_weights(p,integ);

64

65 %-------------- Loop over Gauss Points in slave element el:

66 for igp = 1:length(GW)

67 %Find NURBS coordinate of gpoints:

68 ugp = (U(p(1)+2)+U(p(1)+1) + GP(igp,1)*...

69 (U(p(1)+2)-U(p(1)+1)))/2;

70 vgp = (V(p(2)+2)+V(p(2)+1) + GP(igp,2)*...

71 (V(p(2)+2)-V(p(2)+1)))/2;

72 gw = GW(igp);

73

74 %Find xyz coordinate of gp:

75 [XYZ_s] = get_point_coord([ugp,vgp],part1.patch_def);

76

77 % Calculate normal projection point on master from [XYZ_s

]:

78 [u2,v2,~] = point_project_surf(part2.patch_def,

search_start,...

79 XYZ_s,search_par);

80 if (spline_type2==0) %NURBS

81 % Fin master element number related to projected point

:

82 iel2 = get_point_element([u2,v2],part2);

83 else

84 disp('Not NURBS! Not yet implemented in code')

85 end

86 el2 = part2.els(iel2); %Assign to master part

112

Chapter C. Contact contribution functions

87

88 % Calculate base functions at projection point:

89 [BF2] = compute_BF_patchbased([u2,v2],part2.patch_def,2);

90 dRduv2 = BF2(2:3,:)';

91

92 % Deformed CP of el2:

93 xyz_CP_d2 = reshape(el2.CP(:,:,1:3),[el2.ncp_e,3]);

94

95 % Basis vector 1, 2 and 3=jacobian for master elemente:

96 [g_2 ,g3_2,lg3_2] = get_base_func(dRduv2,xyz_CP_d2);

97

98 % Normal vector n (normalized) at projection point:

99 n = [0; 0; 0];

100 n(1) = g3_2(1)/lg3_2;

101 n(2) = g3_2(2)/lg3_2;

102 n(3) = g3_2(3)/lg3_2; %normalization of g3 by components

103

104

105 % Calculate normal gap function:

106 [XYZ_m] = get_point_coord([u2,v2],part2.patch_def);

107 n = n*add_stiff_var_contact.n_sign; %Correct sign of

normal

108 gn = (XYZ_s - XYZ_m)*n; %Calculate normal gap

109

110 % Check for contact between Gauss point and projection

point:

111 if gn<0

112 % --

113 % IF CONTACT: CALCULATE CONTACT CONTRIBUTIONS

114 % Calculate base functions slave element:

115 [BF1] = compute_BF_patchbased([ugp,vgp],part1.

patch_def,1);

116 R1 = BF1(1,:)'; % Base functions (not

derivatives)

117 N1 = reshape(n*R1',3*length(R1),1);

118 % Derivatives of bf w.r.t. u and v in

119 % the considered GP (two columns [dN/du, dN/dv]):

120 dRduv = BF1(2:3,:)';

121

122 % Calculate Jacobian, slave element:

123 [~,~,J1] = get_base_func(dRduv,xyz_CP_d);

124

125 % Calculate base functions slave element:

113

Chapter C. Contact contribution functions

126 R2 = BF2(1,:)';

127 N2 = reshape(n*R2',length(n)*length(R2),1);

128

129 % Coupled contact element base functions:

130 N = zeros(length(N1)+length(N2),1); %Vertical vector

131 N(1 : length(N1)) = N1;

132 N((length(N1)+1) : (length(N1)+length(N2))) = -N2; %

From Laura article T-splines

133

134 %-------------- Final calculation of contact element contributions

:

135 % Stiffness ke_c:

136 kea_c = alf*(N*N');

137 ke_c = kea_c*gw*J2*J1;

138

139 % Force contribution:

140 fiea_c = alf*N*gn;

141 fie_c = fiea_c*gw*J2*J1;

142 %-------------- Assembly:

143 % Assemble into global K:

144 K = Kassembly_contact_fourLoops(el,el2,K,ke_c);

145

146 %Assemble into global F:

147 for i = 1:el.ndof_e

148 if (el.LM(i)~=0)
149 globi = el.LM(i);

150 Fi_active(globi) = Fi_active(globi) + fie_c(i);

151 end

152 end

153

154 for i = 1:el2.ndof_e

155 if (el2.LM(i)~=0)
156 globi = el2.LM(i);

157 Fi_active(globi) = Fi_active(globi) + fie_c(i+el.

ndof_e);

158 end

159 end

160 end % Contact condition: if gn < 0

161 end % Loop Gauss points

162 end % Loop slave elements

163

164 % --

165 % OUTPUT / RESULTS

114

Chapter C. Contact contribution functions

166 stiffness.K = K;

167 stiffness.Fi_active = Fi_active;

168

169 end %function

C.2 Contact contribution function: GPTS and penalty with

geometric stiffness

1 %-------------CONTACT CONTRIBUTIONS CALC. FUNCTION-----

2 % ****DESCRIPTION****
3 % Calculates the contact contribution to the stiffness matrix and

force

4 % residual. Gauss-point-to-segment discretization with the penalty

method.

5 % includes geometric contact stiffness. Single point search step.

6

7 % Created by Embla L. Holten , 2019.

8

9

10

11

12 %---

13

14

15 function [stiffness, anls] = stiff_mat_Contact_GPTS_Pen...

16 (anls,stiffness,add_stiff_var,add_stiff_var_contact)

17

18 % --

19 % EXTRACT ANALYSIS INPUT

20 alf = anls.contact.alf; %Penalty parameter

21 search_par = anls.contact.search_par; %Normal point projection

parameters

22 search_start = search_par{1}; %Starting point for normal

projection point

23 %search.

24 K = stiffness.K; %Stiffness matrix from before

25 Fi_active = stiffness.Fi_active; %Internal forces fom before

26 u_active_prev = add_stiff_var.u_active_prev; %Displacements prev

load step

27

115

Chapter C. Contact contribution functions

28 % Extract info slave part:

29 part1 = anls.parts(add_stiff_var_contact.ms_pairs(1)); %Slave part

30 nel1 = length(part1.els); %Number of elemnts in the patch

31

32 % Extract infor master part:

33 part2 = anls.parts(add_stiff_var_contact.ms_pairs(2)); %Master

part

34 nel2 = length(part2.els);

35 spline_type2 = part2.spltyp;

36

37 % Calculate deformed control points master elements:

38 for iel=1:nel2

39 el2 = part2.els(iel);

40 [~, el2, ~] = compute_deformed_CP_elem(el2, part2.connectivity

,...

41 part2.ndof_cp, u_active_prev); %Assign to current element

el2

42 part2.els(iel) = el2; %Assign to part

43

44 end

45

46 % --

47 % DETECT CONTACT

48

49 %-------------- Loop slave elements:

50 for iel=1:nel1

51 % Retrieve information from slave element:

52 el = part1.els(iel); % Current slave element in slave element

loop

53 integ = el.integ; %Integration rule for the element

54 p = el.p; %Polynomial degrees

55 J2 = el.J2; %Jacobian

56 U = el.U{1}; %Knot vector

57 V = el.U{2}; %Knot vector

58

59 % Retrieve the displaced control point coordinates and add to

element:

60 [xyz_CP_d, el, ~] = compute_deformed_CP_elem(el, part1.

connectivity,...

61 part1.ndof_cp, u_active_prev); %Assign to current master

elem el2

62 part1.els(iel) = el; %Assign to part

63

116

Chapter C. Contact contribution functions

64 % Find gauss point positions in an element in u and v

direction

65 [GP,GW] = gauss_point_weights(p,integ);

66

67 %-------------- Loop over Gauss Points in slave element el:

68 for igp = 1:length(GW)

69 %Find NURBS coordinate of gpoints:

70 ugp = (U(p(1)+2)+U(p(1)+1) + GP(igp,1)*...

71 (U(p(1)+2)-U(p(1)+1)))/2;

72 vgp = (V(p(2)+2)+V(p(2)+1) + GP(igp,2)*...

73 (V(p(2)+2)-V(p(2)+1)))/2;

74 gw = GW(igp);

75

76 %Find xyz coordinate of gp:

77 [XYZ_s] = get_point_coord([ugp,vgp],part1.patch_def);

78

79 % Calculate normal projection point on master from [XYZ_s

]:

80 [u2,v2,~] = point_project_surf(part2.patch_def,

search_start,...

81 XYZ_s,search_par);

82 if (spline_type2==0) %NURBS

83 % Fin master element number related to projected point

:

84 iel2 = get_point_element([u2,v2],part2);

85 else

86 disp('Not NURBS! Not yet implemented in code')

87 end

88 el2 = part2.els(iel2); %Assign to master part

89

90 % Calculate base functions at projection point:

91 [BF2] = compute_BF_patchbased([u2,v2],part2.patch_def,2);

92 dRduv2 = BF2(2:3,:)';

93

94 % Deformed CP of el2:

95 xyz_CP_d2 = reshape(el2.CP(:,:,1:3),[el2.ncp_e,3]);

96

97 % Basis vector 1, 2 and 3=jacobian for master elemente:

98 [g_2 ,g3_2,lg3_2] = get_base_func(dRduv2,xyz_CP_d2);

99

100 % Normal vector n (normalized) at projection point:

101 n = [0; 0; 0];

102 n(1) = g3_2(1)/lg3_2;

117

Chapter C. Contact contribution functions

103 n(2) = g3_2(2)/lg3_2;

104 n(3) = g3_2(3)/lg3_2; %normalization of g3 by components

105

106

107 % Calculate normal gap function:

108 [XYZ_m] = get_point_coord([u2,v2],part2.patch_def);

109 n = n*add_stiff_var_contact.n_sign; %Correct sign of

normal

110 gn = (XYZ_s - XYZ_m)*n; %Calculate normal gap

111

112 % Check for contact between Gauss point and projection

point:

113 if gn<0

114 % --

115 % IF CONTACT: CALCULATE CONTACT CONTRIBUTIONS

116 % Calculate base functions slave element:

117 [BF1] = compute_BF_patchbased([ugp,vgp],part1.

patch_def,1);

118 R1 = BF1(1,:)'; % Base functions (not

derivatives)

119 N1 = reshape(n*R1',3*length(R1),1);

120 % Derivatives of bf w.r.t. u and v in

121 % the considered GP (two columns [dN/du, dN/dv]):

122 dRduv = BF1(2:3,:)';

123

124 % Calculate Jacobian, slave element:

125 [~,~,J1] = get_base_func(dRduv,xyz_CP_d);

126

127 % Calculate base functions slave element:

128 R2 = BF2(1,:)';

129 N2 = reshape(n*R2',length(n)*length(R2),1);

130 ddRduv2(:,1) = BF2(4,:);

131 ddRduv2(:,2) = BF2(6,:);

132 ddRduv2(:,3) = BF2(5,:);

133

134 % Coupled contact element base functions:

135 N = zeros(length(N1)+length(N2),1); %Vertical vector

136 N(1 : length(N1)) = N1;

137 N((length(N1)+1) : (length(N1)+length(N2))) = -N2;

138

139

140 %-------------- Geometric contact stiffness, ke_geo, calculation:

141

118

Chapter C. Contact contribution functions

142 %**Calculate metrics on master element**
143

144 % Covariant base vectors g:

145 tau_cov = g_2; %Cov vectors = g = [g1

g2],

146 %param dir 1 and 2 on

surface

147 tau_cov_dir1 = tau_cov(:,1);

148 tau_cov_dir2 = tau_cov(:,2);

149

150 % Hessian of the surface (based on 2nd derivatives):

151 h(:,1)=(ddRduv2(:,1)'*xyz_CP_d2)'; % column vector, as

all

152 h(:,2)=(ddRduv2(:,2)'*xyz_CP_d2)';

153 h(:,3)=(ddRduv2(:,3)'*xyz_CP_d2)';

154

155 % Covariant metric tensor gab as a vector

156 %(gab33=1, the others in 3rd line/column are null):

157 gab = [0;0;0];

158 gab(1) = g_2(1,1)*g_2(1,1) + g_2(2,1)*g_2(2,1) + ...

159 g_2(3,1)*g_2(3,1);

160 gab(2) = g_2(1,2)*g_2(1,2) + g_2(2,2)*g_2(2,2) + ...

161 g_2(3,2)*g_2(3,2);

162 gab(3) = g_2(1,1)*g_2(1,2) + g_2(2,1)*g_2(2,2) + ...

163 g_2(3,1)*g_2(3,2);

164

165 m_cov = [gab(1), gab(3);

166 gab(3), gab(2)];

167

168 % Curvature coefficients (second fund. form) as vector

169 %(bv33=1, the others in 3rd line/column are null)

170 bv=[0;0;0];

171 bv(1) = h(1,1)*n(1) + h(2,1)*n(2) + h(3,1)*n(3);

172 bv(2) = h(1,2)*n(1) + h(2,2)*n(2) + h(3,2)*n(3);

173 bv(3) = h(1,3)*n(1) + h(2,3)*n(2) + h(3,3)*n(3);

174

175 curvature_cov = [bv(1), bv(3);

176 bv(3), bv(2)]; %the components are:

177 %[bv11, bv12; bv12,

bv22];

178

179 % Contravariant metric tensor:

180 invdetgab = 1/(gab(1)*gab(2)-gab(3)*gab(3));

119

Chapter C. Contact contribution functions

181

182 gab_con11 = invdetgab*gab(2);

183 gab_con12 = -invdetgab*gab(3);

184 gab_con22 = invdetgab*gab(1);

185

186 m_con = [gab_con11, gab_con12;

187 gab_con12, gab_con22];

188

189

190 %**k_geo TERMS**
191 %From article (De Lorenzis et.al, 2014), see top.

192

193 % --Inverse of Eq. (18)--

194 A_cov = m_cov-gn*curvature_cov;

195 % Inverse of determinant of covarian curvature bv:

196 invdetA = 1/(A_cov(1,1)*A_cov(2,2)-A_cov(1,2)*A_cov

(2,1));

197 A_con11 = invdetA*A_cov(2,2);

198 A_con12 = -invdetA*A_cov(1,2);

199 A_con21 = -invdetA*A_cov(2,1);

200 A_con22 = invdetA*A_cov(1,1);

201

202 A_con = [A_con11, A_con12;

203 A_con21, A_con22];

204

205 % --Eq. (25), "N_alpha" and "T_alpha"--

206 dRduv2_dir1 = dRduv2(:,1);

207 dRduv2_dir2 = dRduv2(:,2);

208

209 % Multiply all terms in dRduv2_dir1 with n and gather

in vector

210 % N_local_dir_m

211 N_local_dir1 = zeros(length(N1)+length(N2),1);

212 N_local_dir1_m = reshape(n*dRduv2_dir1',length(n)*...

213 length(dRduv2_dir1),1); % Master components

214 % Add to global vector and change sign

215 N_local_dir1((length(N1)+1):(length(N2)+length(N1)))

...

216 = - N_local_dir1_m;

217

218 % Same procedure direction 2:

219 N_local_dir2 = zeros(length(N1)+length(N2),1);

220 N_local_dir2_m = reshape(n*dRduv2_dir2',length(n)*...

120

Chapter C. Contact contribution functions

221 length(dRduv2_dir2),1); % Master components

222 N_local_dir2((length(N1)+1):(length(N2)+length(N1)))

...

223 = - N_local_dir2_m;

224

225 % Multiply all terms in R2 and R1 with tau_cov_dir1,

226 % gather in separate vectors for R2 and R1 (master and

slave)

227 T_local_dir1 = zeros(length(N1)+length(N2),1);

228 T_local_dir1_m = reshape(tau_cov_dir1*R2',...

229 length(tau_cov_dir1)*length(R2),1); % Master

components

230 T_local_dir1_s = reshape(tau_cov_dir1*R1',...

231 length(tau_cov_dir1)*length(R1),1); % Slave

components

232 % Add to global vector and change sign master part:

233 %Top part of vector = slave components

234 T_local_dir1(1:length(N1)) = T_local_dir1_s;

235 %Last part of vector = master components

236 T_local_dir1((length(N1)+1):(length(N1)+length(N2)))

...

237 = - T_local_dir1_m;

238

239

240 % Same procedure direction 2:

241 T_local_dir2 = zeros(length(N1)+length(N2),1);

242 T_local_dir2_m = reshape(tau_cov_dir2*R2',...

243 length(tau_cov_dir2)*length(R2),1); % Master

components

244 T_local_dir2_s = reshape(tau_cov_dir2*R1',...

245 length(tau_cov_dir2)*length(R1),1); % Slave

components

246 T_local_dir2(1:length(N1)) = T_local_dir2_s;

247 T_local_dir2((length(N1)+1):(length(N1)+length(N2)))

...

248 = - T_local_dir2_m; %Master components

249

250 % ---Eq. (26): Gather both directions into vectors---

251 N_hat = [N_local_dir1, N_local_dir2];

252 T_hat = [T_local_dir1, T_local_dir2];

253

254 % ---Eq. (27)---

255 D = (T_hat - gn*N_hat)*A_con;

121

Chapter C. Contact contribution functions

256 N_bar = N_hat - D*curvature_cov;

257

258

259 % ---Eq. (24)---

260 kea_geo = gn*N_bar*m_con*N_bar' + D*N_hat' + N_hat*D'

- ...

261 D*curvature_cov*D';

262

263 % ---Eq. (34): Calculate ke_geo---

264 ke_geo = alf*gn*kea_geo*gw*J2*J1;

265

266 %-------------- Final calculation of contact element contributions

:

267 % Stiffness ke_c:

268 kea_c = alf*(N*N');

269 ke_c = kea_c*gw*J2*J1;

270

271 % Total stiffness:

272 ke_gp = ke_c + ke_geo;

273

274 % Force contribution:

275 fiea_c = alf*N*gn;

276 fie_c = fiea_c*gw*J2*J1;

277

278 %-------------- Assembly:

279 % Assemble into global K:

280 K = Kassembly_contact_fourLoops(el,el2,K,ke_gp);

281

282 %Assemble into global F:

283 for i = 1:el.ndof_e

284 if (el.LM(i)~=0)
285 globi = el.LM(i);

286 Fi_active(globi) = Fi_active(globi) + fie_c(i);

287 end

288 end

289

290 for i = 1:el2.ndof_e

291 if (el2.LM(i)~=0)
292 globi = el2.LM(i);

293 Fi_active(globi) = Fi_active(globi) + fie_c(i+el.

ndof_e);

294 end

295 end

122

Chapter C. Contact contribution functions

296 end % Contact condition: if gn < 0

297 end % Loop Gauss points

298 end % Loop slave elements

299

300 % --

301 % OUTPUT / RESULTS

302 stiffness.K = K;

303 stiffness.Fi_active = Fi_active;

304

305 end %function

C.3 Contact contribution function: GPTS, penalty and 2

step point search

1 %-------------CONTACT CONTRIBUTIONS CALC. FUNCTION----

2 % ****DESCRIPTION****
3 % Calculates the contact contribution to the stiffness matrix and

force

4 % residual. Gauss-point-to-segment discretization with the penalty

method.

5 % includes geometric contact stiffness.

6

7 % Created by Embla L. Holten , 2019.

8

9 % 2 Step point Search:

10 % First step:

11 % Only elements that have nonzero entries in M_contact_partners

matrix

12 % are included in the contact contribution calculations.

13 % Second step:

14 % Normal projection point search function is called, using the

statring

15 % point from M_contact_partners.

16

17

18

19

20 %---

21

22 function [stiffness, anls] =

123

Chapter C. Contact contribution functions

stiff_mat_Contact_GPTS_Pen_2StepSearch...

23 (anls,stiffness,add_stiff_var,add_stiff_var_contact)

24

25

26 % --

27 % EXTRACT ANALYSIS INPUT

28 alf = anls.contact.alf; %Penalty parameter

29 search_par = anls.contact.search_par; %Normal point projection

parameters

30 K = stiffness.K; %Stiffness matrix from before

31 Fi_active = stiffness.Fi_active; %Internal forces fom before

32 u_active_prev = add_stiff_var.u_active_prev; %Displacements prev

load step

33

34 % Extract info slave part:

35 part1 = anls.parts(add_stiff_var_contact.ms_pairs(1)); %Slave part

36 nel1 = length(part1.els); %Number of elemnts in the patch

37

38 % Extract infor master part:

39 part2 = anls.parts(add_stiff_var_contact.ms_pairs(2)); %Master

part

40 nel2 = length(part2.els);

41 spline_type2 = part2.spltyp;

42

43 % Calculate deformed control points master elements:

44 for iel=1:nel2

45 el2 = part2.els(iel);

46 [~, el2, ~] = compute_deformed_CP_elem(el2, part2.connectivity

,...

47 part2.ndof_cp, u_active_prev); %Assign to current element

el2

48 part2.els(iel) = el2; %Assign to part

49

50 end

51

52 % --

53 % DETECT CONTACT

54

55 %-------------- Loop slave elements:

56 for iel=1:nel1

57 % 2 step point search check: If element has a contact partner

58 if add_stiff_var_contact.M_contact_partners(iel,3) == 0

59 continue % Continue to next slave element if no contact

124

Chapter C. Contact contribution functions

partner

60 end

61 % Retrieve starting point for normal projection point search:

62 search_start = [add_stiff_var_contact.M_contact_partners(iel

,1),...

63 add_stiff_var_contact.M_contact_partners(iel,2)];

64

65 % Retrieve information from slave element:

66 el = part1.els(iel); % Current slave element in slave element

loop

67 integ = el.integ; %Integration rule for the element

68 p = el.p; %Polynomial degrees

69 J2 = el.J2; %Jacobian

70 U = el.U{1}; %Knot vector

71 V = el.U{2}; %Knot vector

72

73 % Retrieve the displaced control point coordinates and add to

element:

74 [xyz_CP_d, el, ~] = compute_deformed_CP_elem(el, part1.

connectivity,...

75 part1.ndof_cp, u_active_prev); %Assign to current master

elem el2

76 part1.els(iel) = el; %Assign to part

77

78 % Find gauss point positions in an element in u and v

direction

79 [GP,GW] = gauss_point_weights(p,integ);

80

81 %-------------- Loop over Gauss Points in slave element el:

82 for igp = 1:length(GW)

83 %Find NURBS coordinate of gpoints:

84 ugp = (U(p(1)+2)+U(p(1)+1) + GP(igp,1)*...

85 (U(p(1)+2)-U(p(1)+1)))/2;

86 vgp = (V(p(2)+2)+V(p(2)+1) + GP(igp,2)*...

87 (V(p(2)+2)-V(p(2)+1)))/2;

88 gw = GW(igp);

89

90 %Find xyz coordinate of gp:

91 [XYZ_s] = get_point_coord([ugp,vgp],part1.patch_def);

92

93 % Calculate normal projection point on master from [XYZ_s

]:

94 [u2,v2,~] = point_project_surf(part2.patch_def,

125

Chapter C. Contact contribution functions

search_start,...

95 XYZ_s,search_par);

96 if (spline_type2==0) %NURBS

97 % Fin master element number related to projected point

:

98 iel2 = get_point_element([u2,v2],part2);

99 else

100 disp('Not NURBS! Not yet implemented in code')

101 end

102 el2 = part2.els(iel2); %Assign to master part

103

104 % Calculate base functions at projection point:

105 [BF2] = compute_BF_patchbased([u2,v2],part2.patch_def,2);

106 dRduv2 = BF2(2:3,:)';

107

108 % Deformed CP of el2:

109 xyz_CP_d2 = reshape(el2.CP(:,:,1:3),[el2.ncp_e,3]);

110

111 % Basis vector 1, 2 and 3=jacobian for master elemente:

112 [g_2 ,g3_2,lg3_2] = get_base_func(dRduv2,xyz_CP_d2);

113

114 % Normal vector n (normalized) at projection point:

115 n = [0; 0; 0];

116 n(1) = g3_2(1)/lg3_2;

117 n(2) = g3_2(2)/lg3_2;

118 n(3) = g3_2(3)/lg3_2; %normalization of g3 by components

119

120

121 % Calculate normal gap function:

122 [XYZ_m] = get_point_coord([u2,v2],part2.patch_def);

123 n = n*add_stiff_var_contact.n_sign; %Correct sign of

normal

124 gn = (XYZ_s - XYZ_m)*n; %Calculate normal gap

125

126 % Check for contact between Gauss point and projection

point:

127 if gn<0

128 % --

129 % IF CONTACT: CALCULATE CONTACT CONTRIBUTIONS

130

131 % Calculate base functions slave element:

132 [BF1] = compute_BF_patchbased([ugp,vgp],part1.

patch_def,1);

126

Chapter C. Contact contribution functions

133 R1 = BF1(1,:)'; % Base functions (not

derivatives)

134 N1 = reshape(n*R1',3*length(R1),1);

135 % Derivatives of bf w.r.t. u and v in

136 % the considered GP (two columns [dN/du, dN/dv]):

137 dRduv = BF1(2:3,:)';

138

139 % Calculate Jacobian, slave element:

140 [~,~,J1] = get_base_func(dRduv,xyz_CP_d);

141

142 % Calculate base functions slave element:

143 R2 = BF2(1,:)';

144 N2 = reshape(n*R2',length(n)*length(R2),1);

145 ddRduv2(:,1) = BF2(4,:);

146 ddRduv2(:,2) = BF2(6,:);

147 ddRduv2(:,3) = BF2(5,:);

148

149 % Coupled contact element base functions:

150 N = zeros(length(N1)+length(N2),1); %Vertical vector

151 N(1 : length(N1)) = N1;

152 N((length(N1)+1) : (length(N1)+length(N2))) = -N2;

153

154

155 %-------------- Geometric contact stiffness, ke_geo, calculation:

156

157 %**Calculate metrics on master element**
158

159 % Covariant base vectors g:

160 tau_cov = g_2; %Cov vectors = g = [g1

g2],

161 %param dir 1 and 2 on

surface

162 tau_cov_dir1 = tau_cov(:,1);

163 tau_cov_dir2 = tau_cov(:,2);

164

165 % Hessian of the surface (based on 2nd derivatives):

166 h(:,1)=(ddRduv2(:,1)'*xyz_CP_d2)'; % column vector, as

all

167 h(:,2)=(ddRduv2(:,2)'*xyz_CP_d2)';

168 h(:,3)=(ddRduv2(:,3)'*xyz_CP_d2)';

169

170 % Covariant metric tensor gab as a vector

171 %(gab33=1, the others in 3rd line/column are null):

127

Chapter C. Contact contribution functions

172 gab = [0;0;0];

173 gab(1) = g_2(1,1)*g_2(1,1) + g_2(2,1)*g_2(2,1) + ...

174 g_2(3,1)*g_2(3,1);

175 gab(2) = g_2(1,2)*g_2(1,2) + g_2(2,2)*g_2(2,2) + ...

176 g_2(3,2)*g_2(3,2);

177 gab(3) = g_2(1,1)*g_2(1,2) + g_2(2,1)*g_2(2,2) + ...

178 g_2(3,1)*g_2(3,2);

179

180 m_cov = [gab(1), gab(3);

181 gab(3), gab(2)];

182

183 % Curvature coefficients (second fund. form) as vector

184 %(bv33=1, the others in 3rd line/column are null)

185 bv=[0;0;0];

186 bv(1) = h(1,1)*n(1) + h(2,1)*n(2) + h(3,1)*n(3);

187 bv(2) = h(1,2)*n(1) + h(2,2)*n(2) + h(3,2)*n(3);

188 bv(3) = h(1,3)*n(1) + h(2,3)*n(2) + h(3,3)*n(3);

189

190 curvature_cov = [bv(1), bv(3);

191 bv(3), bv(2)]; %the components are:

192 %[bv11, bv12; bv12,

bv22];

193

194 % Contravariant metric tensor:

195 invdetgab = 1/(gab(1)*gab(2)-gab(3)*gab(3));

196

197 gab_con11 = invdetgab*gab(2);

198 gab_con12 = -invdetgab*gab(3);

199 gab_con22 = invdetgab*gab(1);

200

201 m_con = [gab_con11, gab_con12;

202 gab_con12, gab_con22];

203

204

205 %**k_geo TERMS**
206 %From article (De Lorenzis et.al, 2014), see top.

207

208 % --Inverse of Eq. (18)--

209 A_cov = m_cov-gn*curvature_cov;

210 % Inverse of determinant of covarian curvature bv:

211 invdetA = 1/(A_cov(1,1)*A_cov(2,2)-A_cov(1,2)*A_cov

(2,1));

212 A_con11 = invdetA*A_cov(2,2);

128

Chapter C. Contact contribution functions

213 A_con12 = -invdetA*A_cov(1,2);

214 A_con21 = -invdetA*A_cov(2,1);

215 A_con22 = invdetA*A_cov(1,1);

216

217 A_con = [A_con11, A_con12;

218 A_con21, A_con22];

219

220 % --Eq. (25), "N_alpha" and "T_alpha"--

221 dRduv2_dir1 = dRduv2(:,1);

222 dRduv2_dir2 = dRduv2(:,2);

223

224 % Multiply all terms in dRduv2_dir1 with n and gather

in vector

225 % N_local_dir_m

226 N_local_dir1 = zeros(length(N1)+length(N2),1);

227 N_local_dir1_m = reshape(n*dRduv2_dir1',length(n)*...

228 length(dRduv2_dir1),1); % Master components

229 % Add to global vector and change sign

230 N_local_dir1((length(N1)+1):(length(N2)+length(N1)))

...

231 = - N_local_dir1_m;

232

233 % Same procedure direction 2:

234 N_local_dir2 = zeros(length(N1)+length(N2),1);

235 N_local_dir2_m = reshape(n*dRduv2_dir2',length(n)*...

236 length(dRduv2_dir2),1); % Master components

237 N_local_dir2((length(N1)+1):(length(N2)+length(N1)))

...

238 = - N_local_dir2_m;

239

240 % Multiply all terms in R2 and R1 with tau_cov_dir1,

241 % gather in separate vectors for R2 and R1 (master and

slave)

242 T_local_dir1 = zeros(length(N1)+length(N2),1);

243 T_local_dir1_m = reshape(tau_cov_dir1*R2',...

244 length(tau_cov_dir1)*length(R2),1); % Master

components

245 T_local_dir1_s = reshape(tau_cov_dir1*R1',...

246 length(tau_cov_dir1)*length(R1),1); % Slave

components

247 % Add to global vector and change sign master part:

248 %Top part of vector = slave components

249 T_local_dir1(1:length(N1)) = T_local_dir1_s;

129

Chapter C. Contact contribution functions

250 %Last part of vector = master components

251 T_local_dir1((length(N1)+1):(length(N1)+length(N2)))

...

252 = - T_local_dir1_m;

253

254

255 % Same procedure direction 2:

256 T_local_dir2 = zeros(length(N1)+length(N2),1);

257 T_local_dir2_m = reshape(tau_cov_dir2*R2',...

258 length(tau_cov_dir2)*length(R2),1); % Master

components

259 T_local_dir2_s = reshape(tau_cov_dir2*R1',...

260 length(tau_cov_dir2)*length(R1),1); % Slave

components

261 T_local_dir2(1:length(N1)) = T_local_dir2_s;

262 T_local_dir2((length(N1)+1):(length(N1)+length(N2)))

...

263 = - T_local_dir2_m; %Master components

264

265 % ---Eq. (26): Gather both directions into vectors---

266 N_hat = [N_local_dir1, N_local_dir2];

267 T_hat = [T_local_dir1, T_local_dir2];

268

269 % ---Eq. (27)---

270 D = (T_hat - gn*N_hat)*A_con;

271 N_bar = N_hat - D*curvature_cov;

272

273

274 % ---Eq. (24)---

275 kea_geo = gn*N_bar*m_con*N_bar' + D*N_hat' + N_hat*D'

- ...

276 D*curvature_cov*D';

277

278 % ---Eq. (34): Calculate ke_geo---

279 ke_geo = alf*gn*kea_geo*gw*J2*J1;

280

281 %-------------- Final calculation of contact element contributions

:

282 % Stiffness ke_c:

283 kea_c = alf*(N*N');

284 ke_c = kea_c*gw*J2*J1;

285

286 % Total stiffness:

130

Chapter C. Contact contribution functions

287 ke_gp = ke_c + ke_geo;

288

289 % Force contribution:

290 fiea_c = alf*N*gn;

291 fie_c = fiea_c*gw*J2*J1;

292

293 %-------------- Assembly:

294 % Assemble into global K:

295 K = Kassembly_contact_fourLoops(el,el2,K,ke_gp);

296

297 %Assemble into global F:

298 for i = 1:el.ndof_e

299 if (el.LM(i)~=0)
300 globi = el.LM(i);

301 Fi_active(globi) = Fi_active(globi) + fie_c(i);

302 end

303 end

304

305 for i = 1:el2.ndof_e

306 if (el2.LM(i)~=0)
307 globi = el2.LM(i);

308 Fi_active(globi) = Fi_active(globi) + fie_c(i+el.

ndof_e);

309 end

310 end

311 end % Contact condition: if gn < 0

312 end % Loop Gauss points

313 end % Loop slave elements

314

315 % --

316 % OUTPUT / RESULTS

317 stiffness.K = K;

318 stiffness.Fi_active = Fi_active;

319

320 end %function

C.4 Contact contribution function: Cylinder Sqeeze

1 %-------------------CYLINDER SQUEEZE STIFF MAT-----------

2 % ****DESCRIPTION****
3 % Calculates the contact contribution to the stiffness matrix and

131

Chapter C. Contact contribution functions

force

4 % residual. Gauss-point-to-segment discretization with the penalty

method.

5 % This function is specialized for the cylinder example.

6

7 % Created by Embla L. Holten , 2019.

8

9

10

11 %---

12

13 function [stiffness, anls] = stiff_mat_Contact_Cylinder_Squeeze...

14 (anls,stiffness,add_stiff_var,add_stiff_var_contact)

15

16

17

18

19 % --

20 % EXTRACT ANALYSIS INPUT

21 alf = anls.contact.alf; %Penalty parameter

22 search_par = anls.contact.search_par; %Normal point projection

parameters

23 K = stiffness.K; %Stiffness matrix from before

24 Fi_active = stiffness.Fi_active; %Internal forces fom before

25 u_active_prev = add_stiff_var.u_active_prev; %Displacements prev

load step

26

27 % Extract info slave part:

28 part1 = anls.parts(add_stiff_var_contact.ms_pairs(1)); %Slave part

29 nel1 = length(part1.els); %Number of elemnts in the patch

30

31 % Extract infor master part:

32 part2 = anls.parts(add_stiff_var_contact.ms_pairs(2)); %Master

part

33 nel2 = length(part2.els);

34 spline_type2 = part2.spltyp;

35

36 % Calculate deformed control points master elements:

37 for iel=1:nel2

38 el2 = part2.els(iel);

39 [~, el2, ~] = compute_deformed_CP_elem(el2, part2.connectivity

,...

40 part2.ndof_cp, u_active_prev); %Assign to current element

132

Chapter C. Contact contribution functions

el2

41 part2.els(iel) = el2; %Assign to part

42

43 end

44

45 % --

46 % DETECT CONTACT

47

48 %-------------- Loop slave elements:

49 for iel=1:nel1

50 % 2 step point search check: If element has a contact partner

51 if add_stiff_var_contact.M_contact_partners(iel,3) == 0

52 continue % Continue to next slave element if no contact

partner

53 end

54 % Retrieve starting point for normal projection point search:

55 search_start = [add_stiff_var_contact.M_contact_partners(iel

,1),...

56 add_stiff_var_contact.M_contact_partners(iel,2)];

57

58 % Retrieve information from slave element:

59 el = part1.els(iel); % Current slave element in slave element

loop

60 integ = el.integ; %Integration rule for the element

61 p = el.p; %Polynomial degrees

62 J2 = el.J2; %Jacobian

63 U = el.U{1}; %Knot vector

64 V = el.U{2}; %Knot vector

65

66 % Retrieve the displaced control point coordinates and add to

element:

67 [xyz_CP_d, el, ~] = compute_deformed_CP_elem(el, part1.

connectivity,...

68 part1.ndof_cp, u_active_prev); %Assign to current master

elem el2

69 part1.els(iel) = el; %Assign to part

70

71 % Find gauss point positions in an element in u and v

direction

72 [GP,GW] = gauss_point_weights(p,integ);

73

74 %-------------- Loop over Gauss Points in slave element el:

75 for igp = 1:length(GW)

133

Chapter C. Contact contribution functions

76 %Find NURBS coordinate of gpoints:

77 ugp = (U(p(1)+2)+U(p(1)+1) + GP(igp,1)*...

78 (U(p(1)+2)-U(p(1)+1)))/2;

79 vgp = (V(p(2)+2)+V(p(2)+1) + GP(igp,2)*...

80 (V(p(2)+2)-V(p(2)+1)))/2;

81 gw = GW(igp);

82

83 %Find xyz coordinate of gp:

84 [XYZ_s] = get_point_coord([ugp,vgp],part1.patch_def);

85

86 % Calculate normal projection point on master from [XYZ_s

]:

87 [u2,v2,~] = point_project_surf(part2.patch_def,

search_start,...

88 XYZ_s,search_par);

89 if (spline_type2==0) %NURBS

90 % Fin master element number related to projected point

:

91 iel2 = get_point_element([u2,v2],part2);

92 else

93 disp('Not NURBS! Not yet implemented in code')

94 end

95 el2 = part2.els(iel2); %Assign to master part

96

97

98 % Calculate base functions at projection point:

99 [BF2] = compute_BF_patchbased([u2,v2],part2.patch_def,2);

100 dRduv2 = BF2(2:3,:)';

101

102 % Deformed CP of el2:

103 xyz_CP_d2 = reshape(el2.CP(:,:,1:3),[el2.ncp_e,3]);

104

105 % Basis vector 1, 2 and 3=jacobian for master elemente:

106 [g_2 ,g3_2,lg3_2] = get_base_func(dRduv2,xyz_CP_d2);

107

108 % Normal vector n (normalized) at projection point:

109 n = [0; 0; 0];

110 n(1) = g3_2(1)/lg3_2;

111 n(2) = g3_2(2)/lg3_2;

112 n(3) = g3_2(3)/lg3_2; %normalization of g3 by components

113

114

115 % Calculate normal gap function:

134

Chapter C. Contact contribution functions

116 [XYZ_m] = get_point_coord([u2,v2],part2.patch_def);

117 n = n*add_stiff_var_contact.n_sign; %Correct sign of

normal

118 gn = (XYZ_s - XYZ_m)*n; %Calculate normal gap

119 gn = gn-part1.thick/2; %Subtract half shell thickness

120

121 % Check for contact between Gauss point and projection

point:

122 if (gn<0 && abs(XYZ_s(3) - XYZ_m(3))<anls.contact.tol_z

&& ...

123 abs(XYZ_s(2) - XYZ_m(2))<anls.contact.tol_y && ...

124 abs(XYZ_s(1) - XYZ_m(1))<anls.contact.tol_x)

125

126 % --

127 % CALCULATE CONTACT CONTRIBUTIONS

128

129 % Calculate base functions slave element:

130 [BF1] = compute_BF_patchbased([ugp,vgp],part1.

patch_def,1);

131 R1 = BF1(1,:)'; % Base functions (not

derivatives)

132 N1 = reshape(n*R1',3*length(R1),1);

133 % Derivatives of bf w.r.t. u and v in

134 % the considered GP (two columns [dN/du, dN/dv]):

135 dRduv = BF1(2:3,:)';

136

137 % Calculate Jacobian, slave element:

138 [~,~,J1] = get_base_func(dRduv,xyz_CP_d);

139

140 % Calculate base functions slave element:

141 R2 = BF2(1,:)';

142 N2 = reshape(n*R2',length(n)*length(R2),1);

143 ddRduv2(:,1) = BF2(4,:);

144 ddRduv2(:,2) = BF2(6,:);

145 ddRduv2(:,3) = BF2(5,:);

146

147 % Coupled contact element base functions:

148 N = zeros(length(N1)+length(N2),1); %Vertical vector

149 N(1 : length(N1)) = N1;

150 N((length(N1)+1) : (length(N1)+length(N2))) = -N2;

151

152

153 %-------------- Geometric contact stiffness, ke_geo, calculation:

135

Chapter C. Contact contribution functions

154

155 %**Calculate metrics on master element**
156

157 % Covariant base vectors g:

158 tau_cov = g_2; %Cov vectors = g = [g1

g2],

159 %param dir 1 and 2 on

surface

160 tau_cov_dir1 = tau_cov(:,1);

161 tau_cov_dir2 = tau_cov(:,2);

162

163 % Hessian of the surface (based on 2nd derivatives):

164 h(:,1)=(ddRduv2(:,1)'*xyz_CP_d2)'; % column vector, as

all

165 h(:,2)=(ddRduv2(:,2)'*xyz_CP_d2)';

166 h(:,3)=(ddRduv2(:,3)'*xyz_CP_d2)';

167

168 % Covariant metric tensor gab as a vector

169 %(gab33=1, the others in 3rd line/column are null):

170 gab = [0;0;0];

171 gab(1) = g_2(1,1)*g_2(1,1) + g_2(2,1)*g_2(2,1) + ...

172 g_2(3,1)*g_2(3,1);

173 gab(2) = g_2(1,2)*g_2(1,2) + g_2(2,2)*g_2(2,2) + ...

174 g_2(3,2)*g_2(3,2);

175 gab(3) = g_2(1,1)*g_2(1,2) + g_2(2,1)*g_2(2,2) + ...

176 g_2(3,1)*g_2(3,2);

177

178 m_cov = [gab(1), gab(3);

179 gab(3), gab(2)];

180

181 % Curvature coefficients (second fund. form) as vector

182 %(bv33=1, the others in 3rd line/column are null)

183 bv=[0;0;0];

184 bv(1) = h(1,1)*n(1) + h(2,1)*n(2) + h(3,1)*n(3);

185 bv(2) = h(1,2)*n(1) + h(2,2)*n(2) + h(3,2)*n(3);

186 bv(3) = h(1,3)*n(1) + h(2,3)*n(2) + h(3,3)*n(3);

187

188 curvature_cov = [bv(1), bv(3);

189 bv(3), bv(2)]; %the components are:

190 %[bv11, bv12; bv12,

bv22];

191

192 % Contravariant metric tensor:

136

Chapter C. Contact contribution functions

193 invdetgab = 1/(gab(1)*gab(2)-gab(3)*gab(3));

194

195 gab_con11 = invdetgab*gab(2);

196 gab_con12 = -invdetgab*gab(3);

197 gab_con22 = invdetgab*gab(1);

198

199 m_con = [gab_con11, gab_con12;

200 gab_con12, gab_con22];

201

202

203 %**k_geo TERMS**
204 %From article (De Lorenzis et.al, 2014), see top.

205

206 % --Inverse of Eq. (18)--

207 A_cov = m_cov-gn*curvature_cov;

208 % Inverse of determinant of covarian curvature bv:

209 invdetA = 1/(A_cov(1,1)*A_cov(2,2)-A_cov(1,2)*A_cov

(2,1));

210 A_con11 = invdetA*A_cov(2,2);

211 A_con12 = -invdetA*A_cov(1,2);

212 A_con21 = -invdetA*A_cov(2,1);

213 A_con22 = invdetA*A_cov(1,1);

214

215 A_con = [A_con11, A_con12;

216 A_con21, A_con22];

217

218 % --Eq. (25), "N_alpha" and "T_alpha"--

219 dRduv2_dir1 = dRduv2(:,1);

220 dRduv2_dir2 = dRduv2(:,2);

221

222 % Multiply all terms in dRduv2_dir1 with n and gather

in vector

223 % N_local_dir_m

224 N_local_dir1 = zeros(length(N1)+length(N2),1);

225 N_local_dir1_m = reshape(n*dRduv2_dir1',length(n)*...

226 length(dRduv2_dir1),1); % Master components

227 % Add to global vector and change sign

228 N_local_dir1((length(N1)+1):(length(N2)+length(N1)))

...

229 = - N_local_dir1_m;

230

231 % Same procedure direction 2:

232 N_local_dir2 = zeros(length(N1)+length(N2),1);

137

Chapter C. Contact contribution functions

233 N_local_dir2_m = reshape(n*dRduv2_dir2',length(n)*...

234 length(dRduv2_dir2),1); % Master components

235 N_local_dir2((length(N1)+1):(length(N2)+length(N1)))

...

236 = - N_local_dir2_m;

237

238 % Multiply all terms in R2 and R1 with tau_cov_dir1,

239 % gather in separate vectors for R2 and R1 (master and

slave)

240 T_local_dir1 = zeros(length(N1)+length(N2),1);

241 T_local_dir1_m = reshape(tau_cov_dir1*R2',...

242 length(tau_cov_dir1)*length(R2),1); % Master

components

243 T_local_dir1_s = reshape(tau_cov_dir1*R1',...

244 length(tau_cov_dir1)*length(R1),1); % Slave

components

245 % Add to global vector and change sign master part:

246 %Top part of vector = slave components

247 T_local_dir1(1:length(N1)) = T_local_dir1_s;

248 %Last part of vector = master components

249 T_local_dir1((length(N1)+1):(length(N1)+length(N2)))

...

250 = - T_local_dir1_m;

251

252

253 % Same procedure direction 2:

254 T_local_dir2 = zeros(length(N1)+length(N2),1);

255 T_local_dir2_m = reshape(tau_cov_dir2*R2',...

256 length(tau_cov_dir2)*length(R2),1); % Master

components

257 T_local_dir2_s = reshape(tau_cov_dir2*R1',...

258 length(tau_cov_dir2)*length(R1),1); % Slave

components

259 T_local_dir2(1:length(N1)) = T_local_dir2_s;

260 T_local_dir2((length(N1)+1):(length(N1)+length(N2)))

...

261 = - T_local_dir2_m; %Master components

262

263 % ---Eq. (26): Gather both directions into vectors---

264 N_hat = [N_local_dir1, N_local_dir2];

265 T_hat = [T_local_dir1, T_local_dir2];

266

267 % ---Eq. (27)---

138

Chapter C. Contact contribution functions

268 D = (T_hat - gn*N_hat)*A_con;

269 N_bar = N_hat - D*curvature_cov;

270

271

272 % ---Eq. (24)---

273 kea_geo = gn*N_bar*m_con*N_bar' + D*N_hat' + N_hat*D'

- ...

274 D*curvature_cov*D';

275

276 % ---Eq. (34): Calculate ke_geo---

277 ke_geo = alf*gn*kea_geo*gw*J2*J1;

278

279 %-------------- Final calculation of contact element contributions

:

280 % Stiffness ke_c:

281 kea_c = alf*(N*N');

282 ke_c = kea_c*gw*J2*J1;

283

284 % Total stiffness:

285 ke_gp = ke_c + ke_geo;

286

287 % Force contribution:

288 fiea_c = alf*N*gn;

289 fie_c = fiea_c*gw*J2*J1;

290

291 %-------------- Assembly:

292 % Assemble into global K:

293 K = Kassembly_contact_fourLoops(el,el2,K,ke_gp);

294

295 %Assemble into global F:

296 for i = 1:el.ndof_e

297 if (el.LM(i)~=0)
298 globi = el.LM(i);

299 Fi_active(globi) = Fi_active(globi) + fie_c(i);

300 end

301 end

302

303 for i = 1:el2.ndof_e

304 if (el2.LM(i)~=0)
305 globi = el2.LM(i);

306 Fi_active(globi) = Fi_active(globi) + fie_c(i+el.

ndof_e);

307 end

139

Chapter 7. Contact contribution functions

308 end

309 end % Contact condition: if gn < 0

310 end % Loop Gauss points

311 end % Loop slave elements

312

313 % --

314 % OUTPUT / RESULTS

315 stiffness.K = K;

316 stiffness.Fi_active = Fi_active;

317

318 end %function

140

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’

s
th

es
is

Embla Larsdotter Holten

Isogeometric contact analysis:
Implementation of a penalty-based
algorithm

Master’s thesis in Marine Technology
Supervisor: Josef Kiendl

June 2019

	Preface
	Acknowledgement
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Abbreviations and symbols
	Introduction
	Modelling geometry with NURBS
	B-splines
	NURBS

	IGA
	NURBS based IGA
	The NURBS based Kirchoff-Love shell element

	Computational contact mechanics
	The normal, frictionless contact problem
	The penalty method to formulate the contact weak form
	Contact space discretization with FEM and IGA
	GPTS discretisation equations

	Implementation of a contact algorithm in MATLAB
	Code overview
	Solution algorithm
	Calculating the contact contribution
	Complete solution algorithm
	Solution algorithm with two step point search
	Chapter summary

	Numerical examples and discussion
	Rigid plate falls down on elastic arch
	Mesh refinement
	Penalty parameter influence
	Geometric stiffness Kgeo

	Two elastic arches, edge load
	Mesh refinement
	Master-slave dependence

	Dependence on point search procedure
	Cylinder squeeze
	Analysis specifications
	Deformation of the cylinder

	Conclusions and further work
	Bibliography
	Appendices
	Parameter description
	Solver functions
	Solver function: Move rigid body
	Solver function: External load
	Solver function: 2 Step Point Search and external load
	Solver function: Cylinder example with 2 step point search

	Contact contribution functions
	Contact contribution function: Simplified GPTS and penalty without geometric stiffness
	Contact contribution function: GPTS and penalty with geometric stiffness
	Contact contribution function: GPTS, penalty and 2 step point search
	Contact contribution function: Cylinder Sqeeze

