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Abstract
Underwater vehicles have a wide range of subsea applications where they play an
increasingly important role. Such applications include inspection, monitoring, and
maintenance of offshore and subsea installations, ocean exploration, search, and
rescue. Their growing complexity and level of autonomy make them suitable for
tasks conducted in deep water where human divers would perform poorly.

The research of this thesis is motivated by the desire to highlight the importance of
safe and credible signal processing as underwater vehicles experience a significant
change towards human independence and full autonomy. Safety and reliability are
crucial factors if the use of autonomous vehicles is to be adapted and trusted by the
public. Different operations, vehicles, and varying environmental conditions have
different effects on the sensor measurements that a vessel’s control system relies on
for its performance. This thesis presents a method that incorporates these external
operational conditions to determine the thresholds for fault detection.

A review of the function and structure of existing fault detection methods was con-
ducted, and the algorithms were implemented in a joint test interface. By creating
a separate signal generation module, different failure modes could be added to the
test signals. With these synthetic signals, each implemented algorithm was tested,
and their performance was evaluated. Common for all the tested algorithms is the
lack of capability to include external conditions when determining the detection
limits. Instead, they have to be tuned manually.

The proposed method uses the statistics of the measurements together with a
quantified gain called the vessel operational safety conditions (VOSC) to determine
the dynamic thresholds. The VOSC is determined by three attributes, namely
the vessel use mode, the environmental conditions, and the vessel conditions. By
quantifying these conditions, the thresholds can be dynamically changed as the
operational conditions change. Thus, more customized and accurate thresholds
can be obtained than by manual tuning.

An implementation approach based on the concept of hybrid control systems is
discussed. Hybrid systems frameworks are well suited because the large variety in
the dynamical behavior for various operational conditions can be captured using
different sub-models merged into one hybrid system.

From the results, it can be concluded that the suggested method is a realistic
proposal but requires further development and improvement before it can be im-
plemented into a real system. A three-dimensional model, each with three separate
categories, to determine the thresholds is too simple. An accurate division of these
attributes is crucial for reliable performance. For further work, it is suggested that
this three-dimensional model is expanded. It is also proposed to investigate the
possibility of automatically quantifying the external conditions. Finally, it is recom-
mended to identify all new risks, failure scenarios, and consequences of introducing
the proposed algorithm.
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Sammendrag
Undervannsfartøy har et bredt spekter av bruksområder under vann hvor de spiller
en stadig viktigere rolle. Slike bruksområder inkluderer inspeksjoner, overvåkning
og vedlikehold av offshore- og subsea-installasjoner, samt havforsking, søk og red-
ning. Deres økende kompleksitet og selvstendighet gjør dem egnet for oppgaver
som utføres i dypt vann der dykkere ville klart seg dårlig.

Forskningen i denne masteroppgaven er motivert av et ønske om å fremheve vik-
tigheten av sikker og pålitelig signalbehandling nå som undervannsfartøyer opplever
en stor forandring mot menneskelig uavhengighet og full autonomi. Sikkerhet og
pålitelighet er avgjørende dersom bruken av autonome fartøy skal bli akseptert av
offentligheten. Ulike operasjoner, fartøy og varierende miljøforhold har ulik effekt
på sensormålingene som et fartøys kontrollsystem er avhengig av for god ytelse.
Denne oppgaven presenterer en metode som inkorporerer disse eksterne forholdene
for å bestemme grensene for feildetektering.

Det ble utført en studie av funksjonen og strukturen til eksisterende feildetek-
sjonsmetoder, og algoritmene ble implementert i et felles testgrensesnitt. Ved å
opprette en separat signalgenereringsmodul, kunne ulike feilmoduser inkluderes i
testsignalene. Ved å bruke disse syntetiske signalene ble hver av de implementerte
algoritmene testet, og ytelsen ble evaluert. Felles for alle testede algoritmene er
mangelen på evnen til å inkludere eksterne forhold for å bestemme deteksjons-
grensene. I stedet må de justeres manuelt.

Den foreslåtte metoden bruker statistikken til målingene sammen med en kvan-
tifisert verdi kalt fartøyets operasjonssikkerhetsforhold (VOSC) for å bestemme dy-
namiske grenser. VOSC bestemmes ut fra tre bidrag, nemlig fartøyets bruksmodus,
miljøforholdene og fartøyets forhold. Ved å kvantifisere disse forholdene kan grensene
endres dynamisk når operasjonsforholdene endres. Dermed kan man oppnå mer
tilpassede og nøyaktige grenser enn ved manuell justering.

En implementeringsmetode basert på begrepet hybride kontrollsystemer er diskutert.
Hybridsystemer er godt egnet fordi den store variasjonen i dynamisk oppførsel for
ulike operasjonsforhold kan tas hensyn til ved hjelp av forskjellige delmodeller slått
sammen i et hybrid system.

Ut fra resultatene kan det konkluderes med at den foreslåtte metoden er et realis-
tisk forslag, men krever videre utvikling og forbedring før den kan implementeres
i et reelt system. En tredimensjonal modell, hver med tre separate kategorier, for
å bestemme grensene er for enkel. En nøyaktig inndeling av disse bidragene er
avgjørende for pålitelig ytelse. For videre arbeid foreslås det at denne tredimen-
sjonale modellen utvides. Det foreslås også å undersøke muligheten til automatisk
kvantifisering av de eksterne forholdene. Til slutt anbefales det å identifisere alle
nye risikoer, feilscenarier og konsekvenser ved å introdusere den foreslåtte algorit-
men.
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Chapter 1

Introduction

The following section presents the background and motivation behind the research
of this thesis. It will briefly discuss the motivation for improving signal process-
ing in marine control systems and what the gains of this solution may be. The
main research question and objectives of this thesis will be defined and explained.
Further, the main contributions will be summarized before describing the thesis
outline.

1.1 Background and Motivation

The ocean covers 71% of the Earth’s surface, in which more than 80% is still unex-
plored and unmapped [1]. It is a source of vital resources such as food, energy, and
medicine, and it accounts for two-thirds of the oxygen we breathe. The underwater
world is dark, deep, and demanding, making it a difficult working environment for
humans. During the 1960s, 70s, and 80s, 17 divers lost their lives, and several hun-
dred people got permanent injuries in subsea operations in the Norwegian sector
of the North Sea. In the 1990s, remotely operated vehicles (ROVs) began to take
over some of the divers’ tasks [2]. The use of ROVs improves safety and removes
the need for exposing divers to high-risk operations. The future will have an in-
creased demand for subsea inspection, maintenance, and repair operations carried
out using underwater vehicles, as subsea installations reach into deeper waters and
arctic areas.

As of today, underwater vehicles are highly dependent on the presence of expen-
sive surface vessels during operation. The vehicles are programmed, launched, and
recovered, the batteries are recharged, and new missions can be uploaded. This
process is done repeatedly until a mission is finished or a survey area is covered. Rel-
evant missions can last from hours, up to days or even weeks, and the needed surface
vessels are both expensive and weather and human dependent. The ability to leave
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the underwater vehicles in situ would remove these dependencies, and they could
be activated when needed, resulting in shorter response time in urgent situations.
It would also contribute to increasing both the spatial range and the maximum
possible duration of a mission without needing human intervention.

During the last years, several important steps have been taken with regards to
resident underwater vehicles. Through a collaboration between NTNU AMOS and
Equinor, a first of its kind charging station was installed in the Trondheim Fjord,
May 2019, at 365 meters depth [3]. Here, technology companies from all over the
world can test out their underwater robots and equipment. The station will serve
as a subsea garage where underwater robots can live, charge, and pick up new
tools. The first to test the station was Eelume with its flexible eel concept [4].
These snake robots are intended to work in the depths of the Åsgard field, after
spending a few test weeks in the Trondheim Fjord.

Several companies have visited the concept of resident vehicles. The French com-
pany Cybernetix had back in 2001 developed and tested the concept called the
Swimmer, where an AUV shuttle carried the ROV to a pre-installed subsea dock-
ing station at the seabed [5]. Later, Cybernetix developed the new concept ALIVE,
where the shuttle was removed, and an AUV managed to autonomously dock to
its pre-installed docking panel and perform some pre-programmed tasks [6]. Both
concepts are displayed in Figure 1.1.

(a) Swimmer. Taken from [5] (b) ALIVE. Taken from [7]

Figure 1.1: Cybernetix’ docking concepts. The left figure shows the AUV shuttle in-
tended to transport an ROV to its docking station. The left figure shows the fully au-
tonomous ALIVE.

Other companies have also come up with different solutions, such as Hydroid with
their REMUS 100 [8], Oceaneering with their E-ROV [9] and Saab Seaeye with
their Sabertooth [10]. All concepts focus on the same goal, which is to remove
surface dependencies and thus making the vehicles more autonomous.
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Unmanned and autonomous vehicles are relatively new concepts that challenge
the way both ships, cars and airplanes are designed and used. New technology
introduces new risks and challenges, and the need for well-defined rules and reg-
ulations for autonomous vehicles will keep growing. Safety and reliability will be
crucial if the use of unmanned and autonomous vehicles is to be adapted, both by
governments and large firms, but also trusted and accepted by the public.

This thesis focuses on the importance of reliable signal processing to ensure safe
operations. Although the main focus lies on subsea operations, the principles are
just as important for operations above the surface. Two fatal accidents caused by
faulty sensor signals are the Lion Air Flight 610 crash and the Ethiopian Airlines
Flight 302 crash. Both airplanes were of the brand-new type Boeing 737 MAX 8
and were only two and three months old.

The first crash happened on October 29, 2018, only 13 minutes after take-off from
Jakarta, Indonesia. All 189 onboard died [11]. The second crash happened on
March 10, 2019, six minutes after the Ethiopian Airlines Flight 302 took off from
Addis Ababa, Ethiopia, killing all 157 onboard [12]. Even though the final reports
are not expected to be released until August and September 2019, both the Federal
Aviation Administration (FAA) and Boeing have explained the accidents as a con-
sequence of the aircraft’s new Manoeuvring Characteristics Augmentation System
(MCAS) [13].

When Boeing set out to design this new aircraft model, engineers had to find a
way to fit their new engine, which is larger and more fuel efficient than previously
used engines, under the wing. The engine was moved slightly forward and higher
up, causing an upward pitching moment. The MCAS was designed to address this
problem by using an adjustable horizontal tail as an automatic stabilizer.

Figure 1.2 and 1.3 show how the new MCAS operates automatically to prevent
a stall. The angle of attack sensor, shown in Figure 1.2, aligns itself with the
incoming air flow. The measured angle between the wing and the airflow is fed
into the flight computer. If the angle gets too high, indicating an approaching stall,
the MCAS automatically activates. When activated, the MCAS adjusts the angle
of the horizontal tail to move the aircraft nose downward. The crashes happened
when the angle of attack sensor fed false information into the flight computer,
and the aircraft crew failed to override the action due to lack of training at the
time [14].
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(a) Level flight (b) Nose-up flight

Figure 1.2: Angle of attack sensor. Taken from [15]

Figure 1.3: Horizontal tail. Taken from [15]

Another relevant example was lectured in the course Marine Control Systems I, to
highlight the importance of integrating external conditions in signal processing. A
drill ship was operating in a strict dynamic positioning (DP) control mode in harsh
weather conditions. When a high amplitude set of waves hit the hull of the ship,
it was thrown out of position. Due to the abrupt and large change in value, the
control system reacted by discarding the position measurement as impossible. The
operation ended with an emergency disconnect of the drilling string. This incident
caused damage to equipment and costly delay of the operation.

These examples show that when operating with automatic or autonomous sys-
tems, a faulty signal may have fatal consequences. The cost of such an accident
can be enormous. To obtain the safest and best possible performance of a control
system, it must work with reliable signals. To ensure this, a dedicated signal pro-
cessing module should be included to monitor sensor measurements continuously,
and should be able to alarm the system or system operator if significant faults or
abrupt changes in the signals are detected.

A challenge of processing signals in marine control systems is to include all available
information about external conditions in the decision of whether a signal is valid or
not. When a marine vessel is subjected to strong environmental forces, an abrupt
change in mean may be a weaker indication of fault than if it were operating under
calm conditions. How strict the signals are processed should be dependent on
external factors to obtain the most accurate possible signal processing. This thesis
presents a method that incorporates external operational conditions to determine
the thresholds for fault detection.
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1.2 Research Question and Objectives

The main research question addressed in this thesis is formulated as:

When studying signal processing for autonomous subsea operations, how can the
limiting thresholds be dynamically set based on available information about the en-
vironmental, operational and vessel conditions?

The main objectives to achieve this include:

• Gain a complete overview of the necessary theoretical background within
the fields of underwater vehicles, marine control systems, statistics, signal
processing, and fault detection.

• Thoroughly investigate different failure modes and how they can be mathe-
matically modeled.

• Research the function and structure of existing methods of fault detection.
Built a joint test interface to study the performance of the researched meth-
ods.

• Create a module that implements the failure mode models, such that polluted
test signals can be generated.

• Propose a method for dynamically determining the thresholds.

• Conduct a case study, involving a simulation based on a real scenario, to test
the proposed method.

The results of the final case study are discussed concerning the research question
to conclude if the proposed method is a realistic proposal and what the main
challenges are. Lastly, a proposal for further work is presented.

1.3 Main Contributions

This thesis main contributions consist of four parts, followed by a general discussion
of the outcomes and limitations of the proposed method. Further follows some
concluding remarks and suggestions for further work.

The main contributions can be summarized as:

• Theoretical background covering the basic theory of marine systems, statis-
tics, signal processing, and fault detection needed to gain an understanding
of the methods used later in the thesis. This includes conducting a study of
the different possible failure modes, how they behave, and how they can be
modeled.

• Development of a testing methodology and interface for fault detection. This
includes a thorough study of the structure and function of existing fault
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detection algorithms. It also requires an approach to create polluted test
signals, such that the algorithms can be tested and validated.

• A proposed method for dynamically determining the thresholds used in fault
detection based on available information about the vessel operational condi-
tions

• Case study with simulations of a real-life scenario to illustrate and test the
proposed solution. The simulation signals are created using a generated signal
to reveal weaknesses and/or strengths.

1.4 Thesis Outline

This thesis is divided into six chapters, including:

Chapter 2 - Background Material
This chapter consists of twelve sections. The first three sections cover the basics
of underwater vehicles, autonomy, and guidance, navigation, and control of ma-
rine vessels. The fourth chapter describes commonly used underwater sensors, as
these differ from those used above the surface. The last sections present relevant
background theory about statistics, signal processing, and fault detection. Failure
mode and effect analysis, hardware-in-the-loop simulation and functional barriers
are presented and described in the context of marine vessels. It is also included a
description of different failure modes and how they can be modeled.

Chapter 3 - Tools for Development of Fault Detection Methods
The basis for being able to propose a new method is a solid understanding of
how existing methods are built up and how they function. It also requires a test
platform to test different algorithms. This chapter presents a thorough study of
some existing methods, trying to cover each of the presented failure modes. It also
describes how these methods are implemented into a joint test interface, where
different algorithms can be tested on appropriate test signals. To create these
signals, a separate signal generation module is created, using the mathematical
model of each failure mode to simulate faults.

Chapter 4 - Dynamic Thresholds
This chapter presents a proposed method for dynamically determining the thresh-
olds for fault detection. The method focuses on how different external factors
affect the safety requirements of the operation and how these effects can be quan-
tified. The objective of the method is to be able to determine thresholds not only
based on trial and error, but rather based on the available information about each
operation.

Chapter 5 - Case Study: Simulation with Dynamic Thresholds
The case study tests the proposed fault detection method by simulating a real-life
scenario. The scenario is explained in detail to be able to quantify all relevant
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values of the operation. A synthetic signal is generated to simulate the chosen
scenario, both in a fault-free and a faulty situation.

Chapter 6 - Discussion
This chapter presents a general discussion of the implemented methods in light of
the research question. The performance of the proposed method is evaluated based
on the results obtained in the case study. This chapter also discusses the potential
limitations and challenges of the proposed method and investigates how it could
be integrated into a real control system.

Chapter 7 - Conclusions and Further Work
The final chapter covers the concluding remarks of the thesis, together with a
recommendation of challenges that should be addressed in further work.
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Chapter 2

Background Material

Marine systems are designed to perform complex missions that require a high level
of safety and reliability. The performance of these tasks relies on an accurate
control system, which again depends on accurate and reliable signals. A single
fault can have fatal consequences, such as collision, damage to subsea structures,
or loss of vehicle. The following chapter covers the essential background theory
of underwater vehicles, autonomy, guidance, navigation, and control systems, and
the most commonly used underwater sensors. Further, it presents the relevant
statistical concepts, including stochastic processes, random variables, the normal
distribution, white noise, and hypothesis testing, which are prerequisites to under-
stand the fundamentals of signal processing. It also introduces fault detection and
diagnosis, where FMEA and HIL testing play an important role. In this context,
it defines different failure modes and investigates how they can be modeled.

2.1 Underwater Vehicles

Underwater vehicles have undergone a phase of rapid increase in capability in
recent years. They allow easy access to deeper oceans and can conduct inspections,
maintenance, and repairs of subsea structures, in addition to ocean mapping of
areas that are too demanding for human divers. Underwater vehicles can be divided
into two main subcategories, namely Manned Underwater Vehicles (MUVs) and
Unmanned Underwater Vehicles (UUVs) depending on if the vehicle is designed to
have a human occupant or not. The term UUV is a generic expression that includes
both Remotely Operated Vehicles (ROVs) and Autonomously Underwater Vehicles
(AUVs). ROVs can further be divided into different categories, mainly based on
weight, size, and intended operations. The main division of underwater vehicles is
illustrated in Figure 2.1.
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Figure 2.1: Classification of underwater vehicles. Based on Figure 7 in [16].

An ROV denotes an underwater vehicle with a physical link, a tether or umbilical,
to a remote human operator located on a surface vessel or in a submarine. This
link gives unlimited power, data transfer, and high bandwidth communication, but
it also limits the spatial coverage and maneuvering capacity due to drag forces on
the cable. It does, however, have high capabilities for doing light intervention and
sampling.

AUVs can operate entirely independent of direct human input, thus relying on an
onboard power system and intelligence. AUVs are mostly used in ocean mapping
due to its good hydrodynamic and maneuvering capabilities. AUVs with manip-
ulator capabilities are under development, and several attempts have been made,
such as the ALIVE and Swimmer concepts by Cybernetix, which are mentioned in
Section 1.1.

The development of AUVs with manipulator capabilities and ROVs independent
of a physical connection has led to a third category, namely hybrids. Typical
ROVs may be slow due to its size and shape, while AUVs are fast with its torpedo
shape. However, ROVs usually have better stability and intervention capabilities
than AUVs. By combining the best features from both, the result is a vehicle with
greater capabilities than each one has individually. Eelume’s snake robot, presented
in Section 1.1 is a good example of a hybrid. Its flexible shape can act both as a
torpedo-shaped AUV and as an intervention arm. It can operate both with and
without an attached cable and can change tools depending on the mission.
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2.2 Autonomy

As this thesis considers methods of signal processing in the context of autonomous
subsea vehicles, it is relevant to define what autonomy is. Autonomy is a broad
subject and can be defined in several different ways. One of these definitions
states that an autonomous system is a self-governing and independent system [17].
Considering an AUV, this means that it can operate without human intervention
for extended periods of time. When assigned a mission, it can plan, re-plan, and
make its own decisions based on sensor input and observations of the environment.
It is common to distinguish between the terms automatic and autonomous. While
automatic systems can perform well-defined tasks automatically without human
intervention, autonomous systems are designed to perform complex tasks that may
contain significant uncertainties in an unstructured environment [18].

Autonomy is commonly divided into different levels of autonomy (LOA), charac-
terized by the level of human-robot interaction (HRI), mission complexity, and
environmental complexity. According to [19], the four levels of autonomy can be
defined as:

1. Automatic operation (remote control): Even though the system op-
erates automatically, the human operator directs and controls all high-level
mission-related functions. These functions are often pre-programmed. Also
referred to as human-in-the-loop.

2. Management by consent (tele-operation): The system automatically
recommends actions for selected mission-related functions and prompts the
operator at key points for specific information and decisions. At this level,
the system may have limited communication bandwidth, including time de-
lays. The system can perform many of the functions independently of human
control when assigned to do so. Also called human-delegated.

3. Management by exception (semi-autonomous): The system automati-
cally executes mission-related functions in situations where the response time
is too short for operator intervention. The operator is alerted of the progress
and may override or change parameters and cancel or redirect actions. Ex-
ceptions may be brought to the operator’s attention for decisions. Also called
human-supervisory control.

4. Highly autonomous: The system automatically executes mission-related
functions in an unstructured environment with the ability to both plan and
re-plan the mission. The system is intelligent and independent. Also referred
to as human-out-of-the-loop.

For autonomous systems, an important control and safety function is related to
situation awareness. The integrity of situation awareness is dependent on a set of
reliable signals.
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2.3 Guidance, Navigation and Motion Control

The accuracy and safety of a vehicle’s mission rely on a reliable control system,
which is responsible for automatic control of position, attitude, velocity, and accel-
eration. A control system is usually constructed as three separate blocks denoted as
the guidance, navigation and motion Control (GNC) systems. These three blocks
interact with each other through data and signal communication and can either be
fully independent of each other or coupled to different degrees [20].

The guidance system provides the desired positions and trajectories that the vessel
should maintain or follow according to the requirements of the operator or the mis-
sion. The navigation system is responsible for providing reliable feedback signals
with information about the vessel motion such as position, attitude, and veloc-
ity. This information is further passed as feedback to the guidance and control
systems. The motion control system generates adequate control commands to the
vessel’s actuators in order to maintain the desired position or follow the generated
path.

A DP system is a simple example of a GNC system, as illustrated in Figure 2.2.
The path planner block makes up the guidance system and creates a feasible path
for the vehicle to follow. The sensors and the observer form the navigation system,
keeping track of the vehicle’s position, heading, velocity, and attitude. Finally, the
controller tries to minimize the difference between the actual motion of the vessel,
given by the navigation system, and the desired motion of the vessel as given by
the guidance system.

Figure 2.2: DP GNC system. Based on Figure 9.3 in [20].
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A more detailed description is presented below as they are explained in [20].

2.3.1 Guidance

Guidance is the process of determining the path of a vessel towards a given setpoint,
which can be either constant or moving. The system continuously computes the
reference position, velocity, and acceleration of the vessel to be used by the motion
control system. In its simplest form, guidance systems are used to generate a
reference trajectory for time-varying target tracking or a planned path for time-
invariant path following. In control literature, the different scenarios are classified
as:

• Setpoint regulation: The most basic guidance system is where the input
is constant or provided by a human operator. The corresponding controller
will in this case be a regulator.

• Trajectory tracking: The objective is to make the vehicle’s position and
velocity follow a desired time-varying reference value. This desired output
can be generated using reference models made of low-pass filters.

• Path following: The goal is to follow a predefined time-invariant path. No
restrictions are placed concerning the temporal propagation along the path.

The guidance system can use external inputs, such as wind, current and wave mea-
surements, earth topological data, obstacle, and collision avoidance data, and the
state vector measurements to create a feasible trajectory for motion control. Feasi-
ble means to create a trajectory that is consistent with the vessel dynamics.

2.3.2 Navigation

Navigation is the technique of directing the vessel by determining its position,
attitude, and course, as well as velocity and acceleration in some cases. This is
usually done by using a combination of a global navigation satellite system (GNSS)
or underwater acoustics and motion sensors such as accelerometers and gyros. A
further explanation of different commonly used sensor systems can be found in
Section 2.4.

Control systems for ships and underwater vehicles are commonly implemented
with a state estimator to process the sensor and navigation data. Raw measure-
ments usually have to be monitored and handled by its own signal processing unit
for validation and quality checking. These measurements are further used as in-
put to the navigation system. This system contains a state estimator, such as a
Kalman filter, which can filter noise, predicate, estimate, and reconstruct unmea-
sured states.
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2.3.3 Motion Control

Motion control is the action of determining the control forces and moments nec-
essary in order to satisfy a given control objective, such as path following. The
output from the navigation system is used for feedback control, while the signals
available from the guidance system and external sensors are used in feedforward
control. Commonly used control systems are based on techniques such as conven-
tional Proportional-Integral-Derivative (PID) control, Linear Quadratic Regulators
(LQR) or nonlinear control.

2.4 Underwater Sensors

Accurate positioning of the vehicle is essential in all phases of both surface and
underwater navigation. Accurate position measurements are crucial for both op-
erational and safety reasons. Underwater navigation introduces several problems
compared to navigation above the surface. The main problem is the rapid atten-
uation of higher frequency signals. Underwater signals are only able to travel a
short distance, and thus excludes the use of GNSS, which is commonly used for
navigation above the surface.

It is common to divide underwater sensors into two main groups, namely payload
sensors and navigation sensors. The payload sensors are the measurement units
that collect the data either by remote sensing or by direct measurements [18]. As
these measurements are often exposed to noise and disturbances, signal quality
control is important. The navigation sensors measure the state of the vehicle,
which is further used by an internal control system to position the vehicle correctly.
Considering Simultaneous Localization and Mapping (SLAM) [21], payload sensors
will also be integrated into navigation. Even if these will not be addressed in detail
in this thesis, signal processing methods used in navigation are also applicable here.
The most commonly used payload and navigation sensors will be presented with a
brief description below.

2.4.1 Payload Sensors

Acoustic Doppler Current Profiler
Acoustic Doppler Current Profilers (ADCPs) are hydroacoustic current meters that
provide velocity profiles of the water columns in front of the instrument. The ADCP
transmits an acoustic signal and measures backscatter intensity and Doppler shift
of the reflected signal. The signals are usually transmitted from four piezoelectric
transducers that are angled in different directions. Based on these measurements,
the instrument can provide a three-dimensional current profile of the measured
water column [18]. An ADCP can also work as an acoustic Doppler Velocity Log
or as a bottom-track by measuring its relative velocity to the seabed instead of the
water.
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Conductivity Temperature Depth Sensors
A Conductivity Temperature Depth (CTD) sensor is an oceanographic instrument
that measures the conductivity, temperature, and pressure of seawater. These
measurements are used to calculate the water’s salinity, speed of sound, depth, and
density. The conductivity is a measure of how well a solution can conduct electricity
and is directly related to the solution’s salinity. Combining the temperature and
salinity measurements can determine the density of the water. Density and salinity
are important properties in oceanography, while the speed of sound is crucial for
sonar applications such as seabed mapping or acoustic navigation [18].

Vision Systems
Optical imaging of the seabed can provide high-resolution data about the color,
shape, and texture of the seabed. This is still the most reliable method for identi-
fying objects underwater [18]. However, there are many challenges when it comes to
obtaining quantitative data from optical imaging. Light absorption and backscatter
limit the range for cameras.

Active Sonars
Active sonars are used to measure reflected acoustic signals documenting objects
on the seabed or in the water column [18]. By using receiver and transmission
beams with known directions, each impulse can establish (x,y,z)-points, and thus
create a three-dimensional model of the seabed.

2.4.2 Navigation Sensors

Hydroacoustic Position Reference Systems
Hydroacoustic Position Reference (HPR) systems determine position using the time
of flight of transmitted sound waves. HPR systems use one or several markers
located on a fixed position on the seabed (or on a surface vessel) plus one or
several transducers mounted on the vessel to be positioned. Underwater acoustic
navigation and position systems may use various types of markers. These markers
can be used as either transmitters or receivers, or as both. The markers can be
divided into five main classes as defined in [22]. These classes are as follows:

• Transducer: A transmitter (or receiver) often mounted on the hull which
sends out an interrogation signal with a given frequency and receives a reply
on a second frequency.

• Transponder: The receiver (or transmitter) is installed on the seabed or on
an underwater vehicle which receives an interrogation signal on one given
frequency and sends out a response signal on a second frequency.

• Beacon/Pinger: A beacon/pinger is a transmitter attached to the seabed
or to a submersible which continuously sends out a pulse on a particular
frequency.

• Hydrophone: A hydrophone is a directional/omnidirectional receiver that
is mounted on the hull and can receive a reply from a transponder or a
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beacon/pinger.

• Responder: A responder is a transmitter mounted on the seabed or on a
submersible, which can receive a control signal to transmit an interrogation
signal for a transducer or a hydrophone.

Hydroacoustics
The theory of sound is similar to that of light as both consist of waves propagating
through a medium. The sound waves are subject to scattering, reflection, and
absorption. As water is an imperfect acoustic medium, energy may be removed from
the signal and converted into heat by physical absorption [16]. The propagation
of a sound wave is associated with acoustic energy. The propagation velocity is
dependent on both salinity, density, and temperature of the medium.

Short Baseline (SBL)
The name short refers to the distance between the transducers, which are located
on the hull of the vessel. The baselines range from 5 to 20 meters. A minimum of
three transducers are required, but four is commonly used for redundancy in the
system. The transducers on the hull of the vessel receives acoustic signals from a
transponder/beacon mounted on the underwater vehicle. The travel time of these
signals are used to calculate the heading and distance relative to each transducer.
This gives a three-dimensional position of the underwater vehicle.

Ultra-Short Baseline (USBL)
In a USBL system, the three separate hydrophones on the vessel’s hull are re-
placed by one single hydrophone with three sensors. This simplifies the instal-
lation, as the calibration only must be done for one transducer instead of three.
The position estimate of the underwater vehicle is based on the range and on
the vertical and horizontal angle measurements from the transducer. The ship-
or seabed-mounted transducer sends out an acoustic signal that is picked up by
the transponder mounted on the underwater vehicle. By using the response time,
range and bearing can be calculated. The bearing angle is found by using the phase
difference of the acoustic signal.

Long Baseline (LBL)
The term long baseline comes the spacing between the baseline transponders, which
can be several kilometers long. This type of acoustic system generally gives more
accurate measurements than both SBL and USBL. The transponders mounted
on the seabed each replies on different frequencies, enabling their signals to be
distinguished from each other. The minimum number of transponders needed for
unambiguous navigation in three dimensions is three, but four are usually used for
redundancy.

The vehicle’s position is determined by acoustically measuring the distance from
the interrogator on the vehicle to the transponders on the seabed. This is done
by recording the time of the interrogation together with the time of reply. The
total signal run time is then used to calculate the range. This process is done
simultaneously for all the transponders, giving an estimated position of the vessel
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relative to the array of transponders.

(a) USBL (b) SBL (c) LBL

Figure 2.3: Hydroacoustic position reference systems. Taken from [23]

Figure 2.3a shows a USBL system for positioning of a surface vessel. The USBL
system only requires one transducer mounted on the vessel and one transponder
mounted on the seabed. Figure 2.3b shows an SBL system used to position a
surface vessel relative to a transponder mounted on the seabed. The SBL system
consists of four transducers mounted on the hull and one transponder mounted on
the seabed. Figure 2.3c shows a case where an LBL system is used to position two
ROVs relative to a rig. The LBL system has four transponders mounted on the
seabed, one transducer on each of the ROVs and one on the rig.

Gyrocompass
A gyrocompass is a non-magnetic compass using a fast-spinning disc and the
Earth’s rotation to find the geographical direction. The system will converge to
a steady state of minimum potential energy, where its axis is aligned with the
Earth’s north-south axis. Gyrocompasses are widely used for ship navigation, re-
placing the magnetic compasses. They have the advantage that they find the true
north as determined by Earth’s rotation, which is more useful in the context of
navigation than the magnetic north. Also, they are not affected by magnetic dis-
turbances, such as the vessel’s steel hull. The drawback of gyrocompasses is that
it requires time to converge. This makes it more suitable for a ships than planes,
which have faster dynamics and therefore require other techniques to handle the
rapid changes [24].

Inertial Measurement Unit
An Inertial Measurement Unit (IMU) uses accelerometers, gyrocompasses and in
some cases magnetometers to keep track of linear acceleration and angular velocity.
IMUs are commonly used in Inertial Navigation Systems (INS), which utilizes these
measurements to calculate the position and heading of an object relative to a given
starting point, heading and velocity [25].

Vertical Reference Unit
A Vertical Reference Unit (VRU) measures heave, roll, and pitch motions of the

17



Chapter 2. Background Material

vessel. In some cases, it also measures the angular velocities. The main function of
a VRU is to adjust the position measurements provided by the position reference
system for roll and pitch motions [26].

Doppler Velocity Log
A Doppler Velocity Log (DVL) is an acoustic sensor that estimates the velocity
relative to the seabed. It contains piezoelectric oscillators to transmit and receive
sound signals. The DVL measures Doppler shift, i.e., the frequency shift of the
echo in the incoming signal reflected off the seabed or water columns. Velocities of
three dimensions are obtained by having several transducers pointing in different
directions.

2.5 Random Signals and Noise

The concept of random variables is suitable to deal with unpredictable fluctuations
in measurements. It enables the ability to come up with a probabilistic charac-
terization of a random quantity, such as noise. This resulting theory is called the
theory of random or stochastic processes. As noise is present in most real systems,
modeling of noise plays an important part in signal processing and fault detection.
Noise is usually modeled as a random variable with certain properties. This section
will therefore describe what a random variable is and describe its most important
properties.

2.5.1 Stochastic Processes

A stochastic process is a mathematical object that is widely used to model quan-
tities for which there is no way to predict an exact value at a future instant of
time [27]. It is defined as a family of random variables, and can be denoted
as:

{X(t)}t ε T , (2.1)

where t refers to the time. This means that at every time t in the set T, a random
number X(t) can be observed.

2.5.2 Random Variables

As mentioned, most real systems are subjected to noise [28]. Noise is an input
variable which is not measurable, and which has an unknown behavior. These
noise variables usually represent a wide range of different effects that are acting
on the studied physical plant, its measurements, and its control system. Noise
variables are represented as random functions of time that can be characterized by
their average properties and probability density functions.
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Probability Density Function
A random variable can be defined as a real function that maps each element of its
sample space S into points of the real axis. A random variable is usually represented
by a capital letter (X, Y, Z ), where a lowercase letter (x, y, z ) denotes a specific
real value of the random variable. Considering a continuous random variable X,
its distribution function FX(x) may be written as:

FX(x) = P (X ≤ x) =

∫ X

−∞
fX(u)du, (2.2)

where fX(x) is called the probability density function (PDF). This function de-
scribes the relative likelihood for a random variable to take on a given value. The
integral of the PDF between two limits gives the probability of the random variable
to take on a value between those limits:

p(θ1 < X < θ2) =

∫ θ2

θ1

fX(θ)dθ. (2.3)

By definition, a PDF must satisfy:

fX(x) ≥ 0 for all x, (2.4)

and ∫ ∞
−∞

fX(θ)dθ = 1. (2.5)

Mean
The mean or the expectation, E(X), of the random variable X is defined as:

E(X) = µ =

∫ ∞
−∞

xfX(x)dx. (2.6)

Variance and Standard Deviation
The variance σ2

X is a measure of the dispersion of a random variable about its
expected value and is expressed by:

σ2
X = E[(X − E(X))2)] = E(X2 − (E(X))2, (2.7)

where σX is called the standard deviation.

2.5.3 The Normal Distribution

The normal (Gaussian) distribution plays an important role in the analysis of
random signals. It is often used to represent random variables whose distributions
are unknown, as this distribution is a fairly accurate characterization of many
random physical processes. The central limit theorem [28], states that the behavior
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of variables representing the combined effect of a large number of phenomena tends
to converge towards the normal distribution.

The normal distribution is often called the bell curve due to its shape, as shown in
Figure 2.4. The distribution is symmetric about the mean value, and values closer
to the mean are more likely to occur than values further away.

Figure 2.4: The normal distribution. Based on Figure 4.12 in [29].

The PDF of a normally distributed variable can be expressed as:

fX =
1√
2πσ

exp

[
− 1

2σ2
(x− µ)2

]
, (2.8)

where µ is the mean, σ is the standard deviation and σ2 is the variance. The
distribution only depends on the mean and variance, and the random variable x
can be described using the following notation:

x ∼ N (µ, σ2). (2.9)

2.5.4 Additive White Gaussian Noise

Additive white Gaussian noise is a basic noise model that is widely used to mimic
the effect of many random processes that occur in nature. White noise is defined
as a stationary random process with equal intensity at different frequencies, giving
it a constant spectral density function. The term white refers to white light, which
has uniform power across the whole frequency band. The term additive specifies
that the noise is added to the original signal, such that the noisy signal can be
modeled as:

ynoisy = y0 + w. (2.10)

The term Gaussian refers to the Gaussian probability distribution of the noise
samples.
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2.6 Hypothesis Testing

2.6 Hypothesis Testing

Before moving on to failure modes and signal processing, it is convenient to in-
troduce the theory of hypothesis testing. Hypothesis testing is one of the central
subjects of mathematical statistics and represents the basic logic and reasoning
behind fault detection [28]. The main objective is to make a decision based on the
statistical properties of the time series from which the observations originate.

The decision problem is usually presented as a choice between two or more hy-
potheses. If it involves only two hypotheses, the decision problem is called binary.
Otherwise, it is called multiple. One of the hypotheses is referred to as the null
hypothesis and is denoted as H0. The other hypotheses are referred to as the al-
ternative hypotheses, denoted as Hj , j = 1, ..., k. In fault detection, the decision
problem can be stated as the choice between two hypotheses, namely a fault-free
mode or a failure mode. Similarly, it can also be formulated as a multiple deci-
sion problem, where each hypothesis represents each possible failure mode. In this
case, the fault-free mode can be set as the null hypothesis, while each of the failure
modes is the alternative hypotheses.

A typical example to illustrate a binary decision problem is the decision whether
the mean of a time-series is zero or another value. That is:

H0 : µ = 0 (2.11)

H1 : µ 6= 0. (2.12)

2.7 Failure Modes

This section presents different failure modes and their behavior. The objective is
to find a mathematical model that describes each of them, to be able to simulate
their behavior. Given the information about stochastic processes in Section 2.5,
additive white Gaussian noise can be used to model sensor noise. Thus, the sensor
measurements can be modeled as the sum of two parts: a signal part yreal and an
additive noise part v :

ynominal = yreal + v, v ∼ N (0, σ2), (2.13)

which can be expressed as:

ynominal ∼ N (yreal, σ
2
0). (2.14)

Eq. (2.14) represents a nominal fault-free measurement, with a mean that is equal
to the mean of the original signal and variance that includes the additive noise.
If a signal fault occurs, the distribution equation must be modified to account for
the failure. The most common failures that might occur, which will be explained
further in this section, are:
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• Outliers

• Signal freeze

• High variance

• Sensor bias

• Sensor drift

Outliers

Outliers, commonly called wild points, are measurements that deviate significantly
from the expected value, resulting in a low signal to noise ratio. Such a low ratio
indicates that the measurement has low credibility and gives no useful information.
As can be interpreted from the name, outliers generally occur only for a single or
few measurements before the noise level returns to nominal values. A graphical
illustration showing the appearance of an outlier is given in Figure 2.5.

Figure 2.5: Signal sequence with an outlier

An outlier can be modelled as:

youtlier = yreal + voutlier, (2.15)

where voutlier is assumed to be a set of independent random variables, which can
be modelled as variables under a normal distribution, expressed as:

youtlier ∼ N (yreal, σ
2
outlier), σ2

outlier � σ2
0 . (2.16)

A measurement is usually considered an outlier if it is located outside an accepted
interval that can be defined as:

yk ∈ [ȳk − ασ0, ȳk + ασ0], (2.17)

where α often is set to be in the interval 3-9 [26]. σ0 denotes the expected standard
deviation in the nominal case, and ȳk is the signal mean at a given time.
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Signal Freeze

A frozen signal is when a measurement is exactly equal to its previous value for
a significant number of consecutive measurements. Thus, when a signal freezes,
its variance is zero if compared to its previous measurement. A frozen signal can
accordingly be modeled as:

yfrozen ∼ N (y0, 0), (2.18)

where y0 denotes the signal value of the frozen signal. An illustration of this
phenomenon is shown in Figure 2.6.

Figure 2.6: Signal sequence with a frozen signal

High Variance

The phenomenon of high variance is similar to outliers, but where outliers only
occur for a single or few measurements, a high variance can occur over a longer
period before returning to nominal values. High noise can be modeled as a signal
with the nominal mean, but with increased variance, as expressed in (2.19).

yhighvar ∼ N (yreal, σ
2
highvar), σ2

highvar � σ2
0 . (2.19)

Sensor Bias

A sensor bias appears as a sudden change in the signal mean, whereas the noise
level remains the same. The biased measurement can be modeled as:

ybias ∼ N (yreal + b, σ2
0), (2.20)

where b denotes the deviation from the nominal mean.
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Sensor Drift

Sensor drift is described by a change in the signal mean, while the variance is kept
constant. As opposed to the constant bias mentioned above, a sensor drift varies
with time. A sensor drift model can be defined as:

ydrift ∼ N (yreal + d(t), σ2
0), (2.21)

where d(t) denotes the time-varying deviation from the nominal mean.

Note that both sensor drift and sensor bias are difficult to detect and handle without
redundancy in the measurements. If a system has two sensors measuring the same
state, an increasing deviation between the two measurements is an indication of
drifting. In the case where the system has three or more sensors for the same value,
it can also determine which measurement to discard. Figure 2.7 shows an example
of two sensors measuring the same value. The deviation starts increasing, and the
system must choose to trust either sensor 1, sensor 2, or the average.

Figure 2.7: Drifting of sensor signals

Summary

By modeling the different failure modes as above, fault detection is reduced to the
problem of determining which distribution a signal likely belongs to. This means
that the failure modes can be detected by studying either a change in the mean
value or a change in the variance, given the nominal values yreal and σ2

0 . Table 2.1
below summarizes the stochastic models of different sensor failure modes.
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Table 2.1: Stochastic modelling of sensor failure modes

Failure mode Stochastic model Note

Nominal ynominal ∼ N (yreal, σ
2
0) ynominal = yreal + v

Outlier youtlier ∼ N (yreal, σ
2
0) σ2

outlier � σ2
0

Signal freeze yfrozen ∼ N (y0, 0) σ2
frozen = 0

High variance yhighvar ∼ N (yreal, σ
2
highvar) σ2

highvar � σ2
0

Sensor bias ybias ∼ N (yreal + b, σ2
0) b = constant

Sensor drift ydrift ∼ N (yreal + d(t), σ2
0) d(t) = varying

Failure modes that only concern a change in variance can be detected without any
estimation of yreal, making it possible to detect these failures using a simple signal
processing module. Such failure modes include frozen signals, high variance, and
outliers. A frozen signal can be detected by comparing the new measurement to
the previous measurement. High variance and outliers can be detected by requiring
the variance or measurements to lie within a defined range of validity, as defined
in (2.17). Signal bias can be identified as a significant and abrupt change in signal
mean. The detection of signal drift requires either an estimated value of yreal or
redundancy in the measured state.

2.8 Failure Mode and Effect Analysis

Failure Mode and Effect Analysis (FMEA) is a qualitative reliability technique for
analyzing and systematically identifying each failure mode and the effects they
may have on the system [26]. To successfully develop an FMEA, it must include all
the significant failure modes for each contributing element or part of the system.
An FMEA can be performed both at system, subsystem or part level. The failure
modes studied in this thesis are sensor faults, which do not affect the properties of
the plant but creates substantial errors in sensor readings. Figure 2.8 shows the
main steps of an FMEA, with an explanation of the terminology in Table 2.2.

25



Chapter 2. Background Material

Figure 2.8: Steps of an FMEA

Table 2.2: FMEA terminology [27]

Definitions

Process characteristics The purpose and function of the
defined system

Failure mode Every possible failure mode for each
contributing element in the system

Effect (Severity) Which effects are most severe in case
of each failure mode?

Cause (Occurrence) What are the causes of each failure
mode and what are the likelihoods of
occurrence?

Control (Detection) Comprises the method by which a
failure is detected and isolated, and
the time it takes. Often referred to as
the effectiveness of the fault detection
method

Risk priority number (RPN) A measure for assessing risk and
identifying critical failure modes
associated with the system

Action Recommended actions and procedures
in case of failures
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FMEA is a well-defined method for analyzing the redundancy design intent of ma-
rine control systems and defining the worst-case failure. Considering a DP system,
the objective of an FMEA is to develop a fault-tolerant system that can not only
handle adverse circumstances but also allow faults to be corrected as they occur,
without jeopardizing the operation at hand. Following are some examples of po-
tential consequences of failures in the control system of a marine vessel [27]:

• Fault in heading measurements: In heading control mode, this will cause
the vessel to keep a wrong course. This will result in drift-off from the desired
path that is increasing with time. In track control mode, there will be a
permanent error between the desired and actual track.

• Fault in turn rate measurements: In heading control mode, this will
result in a transient heading error, but will then be counteracted by the
controller. Similar behavior will be seen in track mode.

• Fault in measurements of the deviation from desired track: This will
not cause an effect in heading control but will create an offset equal to the
size of the fault in tracking mode.

• Fault in the track controller: Causes the heading demand output from
this controller to remain at the value it had when the fault occurred. This
will cause the heading controller to steer the vessel away from the actual
desired track, resulting in drive-off from the desired position or heading.

• Loss of position and/or heading: The vessel is no longer capable of main-
taining its desired position, which in dynamic positioning mode is considered
the most serious safety breach.

2.9 Hardware-in-the-loop Testing

While the FMEA focuses on physical layout and hardware, Hardware-in-the-loop
(HIL) testing focuses on the software part of the control systems. HIL and FMEA
are complementary activities, which both are needed for new-builds [30]. A HIL
simulation set-up involves a real-time dynamic simulator that simulates all signals
to and receives all command signals from the studied control system. For a DP
system, this means that the HIL simulator will simulate the vessel dynamics, en-
vironmental forces, and thruster forces commanded by the control system. Using
HIL testing in the offshore and maritime industry has a huge potential for increas-
ing safety and reducing costs. It opens for both earlier, deeper and broader testing
of the systems, which leads to faster commissioning time with less risk [26].

Some functionalities are not tested using regular HIL simulator technology. These
functions may, however, be tested using full-scale testing with the control system
operational. For these tests, a different type of HIL simulator known as an FMEA
simulator is applied. The FMEA simulator provides the possibility to manipulate
control signals flowing between the control system and the process plant. Both the

27



Chapter 2. Background Material

plant and the control system operate as normal, but the FMEA simulator makes it
possible to manipulate signals and simulate the effect of failures [31]. The concept of
an FMEA simulator inspires the testing methodology in this thesis. When testing
implemented algorithms, the input signals are polluted with faults to study the
effects.

2.10 Signal Processing

Accurate control performance is highly dependent on the measurements received
from the sensor system. Unreliable sensor measurements will have a negative in-
fluence on the control system’s capability for safe and accurate performance. The
measurements received from the sensors introduce a list of challenges such as noise,
time delays, and failures. Another challenge is the presence of multiple signals,
where synchronization, sensor drifting, and credibility must be considered. Each
signal used in the control system should therefore be checked and processed for
faults and bad quality in its own signal processing unit, as illustrated in Figure 2.9.

Figure 2.9: Signal processing module

The purpose of the signal processing module is to continuously monitor measure-
ments of all external sensor signals, positioning reference signals, and thrust feed-
back signals. The module should perform a quality check of the signals. The
quality check consists of checking both the integrity and continuity of the signal
and fix format errors. It is also responsible for monitoring the signal for each of
the faults described in Section 2.7. For simplicity, the signal processing tests can
be divided into two main categories, namely individual signal testing and multiple
signal testing [26]. This thesis will focus on individual signal testing.

2.10.1 Individual Signal Testing

Individual signal testing consists of several different tests done on each incoming
signal. Different failure modes can be detected using different approaches, which
are further explained below.

Signal Range Testing
Some signals have a defined range of validity. A gyrocompass measures the vessel’s
heading, whose output values should be within the interval 0-360◦. If the signal
processing unit receives a measurement outside this interval, it should immediately
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classify the signal as faulty and discard it. This method is a simple way of rejecting
invalid measurements. Signal range testing is accomplished by defining a maximum
and minimum allowable value for the relevant measurements. The measurement
should be discarded if it is located outside the allowable range. This interval can
be expressed as:

x [k] ∈ [xmin, xmax ]. (2.22)

Variance Testing
The variance of a signal can mainly disclose two faults, namely temporal high
variance or a frozen signal. A sudden peak in signal variance may indicate a
sensor failure, inaccurate measurements, or an unknown disturbance acting on the
relevant sensor. Zero variance may indicate a faulty sensor, transmission error, or
loss of signal. Thus, both an upper and a lower boundary should be considered in
a variance test.

Consider the sequence {x [k]}, at t = k consisting of n− 1 historical signal values
in addition to itself. The sequence can be expressed as:

{x[ i ] : i = k − (n− 1), ..., k − 1, k}. (2.23)

The average value x̄k can be calculated by dividing the total sum of the sequence,
by the number of entries n, as shown below.

x̄k =
1

n

k∑
i=k−(n−1)

x [i]. (2.24)

The corresponding variance of the signal sequence can be found by:

σ2
k =

1

n− 1

 k∑
i=k−(n−1)

x [i]2 − nx̄2
k

 . (2.25)

The expression for signal variance can be rewritten on recursive form as:

σ2
k+1 =

n

n− 1
(y [k + 1]− (x̄ [k + 1])2), (2.26)

where y[k] is defined as:

y [k] =
1

n

k∑
i=k+1−(n−1)

x [i]2, (2.27)

and
y [k + 1] = y [k] +

1

n
((x [k + 1]2 − (x[k − (n− 1)])2). (2.28)

Other statistical methods may also be used for variance testing, such as the in-
terquartile range method, which will be discussed later in the thesis.
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Outlier Testing
An outlier, as described in Section 2.7, is a signal value that is located outside a
band of defined width around the estimated signal means. In other words, it is
a signal that deviates significantly from previous measurements. If an outlier is
detected, the signal value should be rejected for one sample. The outlier is then
replaced with a calculated value, such as the previous signal value or the mean
value. Outlier testing is conducted by defining an interval around the mean where
the values are acceptable. This interval can be expressed as:

x [k] ∈ [ x̄k − aσ, x̄k + aσ], (2.29)

where a usually lies in the interval a ∈ [3, 9]. This method is similar to the
signal range test but uses the statistics of the signal to expand or constrict the
thresholds.

2.10.2 Multiple Signal Testing

For many operations, redundancy is both important and imposed by the authori-
ties. This means that a system is required to have two or more sensors measuring
the same state. The signal processing unit must therefore be able to handle multi-
ple signals for each state. In this context, it must be able to determine which signal
that should be trusted the most and detect if a sensor fails or suddenly shows a
large deviation compared to the other measurements.

Weighting
For configurations with two or more sensors available, the signal processing module
can perform a weighting of the individual signals in order to calculate the optimal
average signal. The weighting factors for each signal can either be set manually or
be calculated automatically based on the variance of the signals.

Considering a system with n independent signals. The estimated weighted signal
can be calculated as:

xω =

n∑
i=1

sixi,

n∑
i=1

= 1, (2.30)

where each value si is calculated based on the either manually or automatically set
weighting factors as:

si =
wi∑n
i=1 wk

. (2.31)

Assuming a system with three available sensor measurements for the state x,
namely x1, x2 and x3. Using the manual method, the weighting factors w1, w2 and
w3 are set by the operator, and the final weighted signal xw becomes:

xw =
w1x1 + w2x2 + w3x3

w1 + w2 + w3
. (2.32)

Using automatic weighting, the weights are calculated based on the principle of
minimum variance. Considering a similar situation as above, but with only two
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sensor measurements for the state, the weights can be calculated as:

s1 =
σ2

2

σ2
1 + σ2

2

, s2 =
σ2

1

σ2
1 + σ2

2

. (2.33)

A general automatic weighting function for n signals can be written as:

si =

∏
j 6=i σ

2
j∑k=i

n

∏
j 6=k σ

2
j

. (2.34)

In the automatic case, a signal with a high variance relative to the other signals
will accordingly have a low weighting factor. A frozen signal with zero variance
will be discarded from the weighting.

Handling Loss of Signals
The signal processing unit should be able to handle both the enabling and disabling
of sensors. Abrupt disabling or enabling of a sensor can result in an oscillating
response. Thus, the signal average should be filtered for a specific period after the
loss or gain of a sensor signal. Let yw be the newly weighted signal after a failure
situation. The filtered and weighted signal yfw can be found using the low-pass
equation given as:

ẏfw = − 1

Tf
yfw +

1

Tf
yw. (2.35)

The filter should be activated subject to an event that indicates the loss of a sensor
signal. The time Tf depends on the signal difference and a maximum allowable
rate of change. When enabling a sensor, it will remain smooth with no filtering of
the signal. Figure 2.10 shows an example where two sensor signals are weighted to
an optimal average until one of the sensors is disabled. The filter is then activated,
ensuring a smooth transition.

Figure 2.10: Disabling and enabling of sensor signals
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Handling Drift of Signals
Signal drifting is the phenomenon where one of several signals measuring the same
state suddenly starts to deviate from the other, as described in Section 2.7. A
control system may use the average of several signals measuring the same state as
the true value. The increasing difference indicates that one of the sensor signals
is drifting, providing a faulty measurement to the system. However, it gives no
information about which signal the system should discard.

One method to detect drifting is called voting. If two or more sensors or positioning
reference systems are available, the voting method can detect drifting between the
different sources. In the case where three or more sensors are available, it can also
determine which of the sensors that are drifting by rejecting the one sensor with
the highest deviation relative to the other two.

2.11 Approaches to Fault Detection and Diagno-
sis

Technological systems are highly vulnerable to faults. Faults can occur in the sys-
tem’s actuators, sensor readings, and control systems. One single fault in a highly
automated system with complex interactions between different components may
cause the failure of the whole system. As a result, fault detection and diagno-
sis systems are becoming increasingly important. Fault detection and diagnosis
systems implement the following tasks [27]:

1. Fault detection: The identification that something is wrong in the monitored
system.

2. Fault isolation: The determination of the exact location or component of
which the fault has occurred.

3. Fault identification: The determination of the magnitude of the fault.

Together, the isolation and identification tasks are referred to as the fault diagnosis
task. While fault detection and fault isolation are equally important and a must in
all practical systems, the fault identification task is often omitted. Therefore, most
systems only contain the fault detection and isolation tasks and are commonly
referred to as FDI (fault detection and isolation) systems. The tasks of fault
detection and diagnosis systems are illustrated in Figure 2.11.

Figure 2.11: Tasks of fault detection and diagnosis. Based on Figure 1.1 in [28].
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The detection performance of the system is characterized by several quantifiable
values, including:

• Fault sensitivity: The technique’s ability to detect faults of reasonable small
size

• Reaction speed: The technique’s ability to detect faults with a reasonable
short time delay after their occurrence

• Robustness: The technique’s ability to operate in the presence of distur-
bances, noise and modeling errors without triggering a large number of false
alarms

The approaches of fault detection and diagnosis may be classified into two main
groups [28]. The model-free methods are those who do not utilize a mathematical
model of the studied plant, whereas the model-based methods use a mathematical
model. Both main groups are briefly explained below.

2.11.1 Model-free Methods

Model-free fault detection and diagnosis methods do not utilize mathematical mod-
els of the monitored plant. There exist several different approaches within this
group.

Physical redundancy
This approach uses multiple sensors to measure the same physical value. Any
significant discrepancies between the different measurements indicate a sensor fault.
Fault isolation is only possible with three sensors measuring the same value since
two divergent sensor measurements do not contain any information about which
sensor that contains an error. This approach requires extra hardware, including
both extra costs and weight.

Special sensors
Special sensors may be installed purely for detection and diagnosis. These sensors
may include limit sensors, performing limit checking, or other sensors that may
measure some physical values indicating faults, such as sound and vibration.

Limit checking
This approach compares plant measurements to pre-set limits. If the measurements
exceed the threshold, a fault is indicated. Many systems include two levels of limits.
The first level serves as a pre-warning, while the second level triggers an emergency
alarm. This approach has two significant drawbacks. First, since the plant variables
may vary widely as a result of normal input variations, the test thresholds must
be set quite conservatively. Second, the effect of a single component fault can
propagate to several plant variables, setting off a large number of alarms, which
makes isolation difficult.

Spectrum analysis
Spectrum analysis of the plant measurements may be used for fault detection and
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diagnosis. Plant variables usually exhibit a typical frequency spectrum under nor-
mal conditions. Any deviations from this spectrum can indicate a fault. Some faults
may even be possible to isolate using the characteristics of the spectrum.

Logic reasoning
These methods are aimed at evaluating the symptoms obtained by detection tech-
niques. The simplest methods consist of logical rules, i.e., IF, AND, and THEN
statements, to conclude. Each conclusion can further serve as a symptom in the
next if-statement until a final conclusion is reached.

2.11.2 Model-based Methods

In contrast to the model-free methods, model-based fault detection and diagno-
sis methods require access to a mathematical model of the studied plant. The
monitored plants are dynamical systems described by a continuous-time operation.
Most model-based fault detection and diagnosis approaches utilize the concept of
analytical redundancy. In contrast to physical redundancy where multiple sensor
measurements are compared to each other, this method is based on comparing
sensor measurements to analytically computed values to determine the difference.
Mathematically, this can be written as:

r(t) = y(t)− ŷ(t), (2.36)

where r(t) is called a residual. In the case of no faults, the residual should be close
to zero or vanish entirely. A non-vanishing residual would indicate the existence
of a fault in the system. Figure 2.12 shows a scheme where the model is used
to determine an analytically estimated value ŷ for every input u. The system is
exposed to disturbances and faults denoted as d and f, respectively. The residuals
are calculated at each sample time as the difference between the actual measured
value, y, and the analytically computed value, ŷ.

Figure 2.12: Diagnosis of continuous systems. Based on Figure 1.10 in [27].
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Following this method, the residuals are indications of the presence or absence of
faults in the system. The diagnosis algorithms for continuous-variable systems can
generally be divided into two steps, represented in Figure 2.13.

1. Residual generation: Sensor measurements and analytical values are com-
pared to determine the residuals to be evaluated in the next step.

2. Residual evaluation: The calculated residuals are evaluated in order to ar-
rive at detection and isolation decisions. The presence of noise, disturbances,
and modeling errors causes the residuals to never be identically equal to
zero, even with no faults. Therefore, the evaluation should test the residuals
against different thresholds to unveil faults.

Figure 2.13: Stages of model-based fault detection and diagnosis. Based on Figure 1.2
in [28]

Residual generation is commonly done by applying either a Kalman filter, diag-
nostic observers, parity relations or parameter estimation, which can be read more
about in [28].

2.11.3 On-line and Off-line Methods

The on-line fault detection problem is to detect the occurrence of a fault as soon
as possible while avoiding a large number of false alarms. On-line algorithms run
concurrently with the process they are monitoring, processing each data point
as it becomes available, with the real-time constraint that processing should be
completed before the next data point arrives.

Off-line algorithms consider the entire data set at once, and there is no real-time
constraint on the run time. The advantage of this approach is that the complete
set of observations is available when the analysis is performed. This advantage
makes the off-line approach very convenient for method development, as it puts no
constraints on time or what data sets that can be used. The drawback is that it
cannot be used to prevent faults during operations.

2.12 Functional Barriers

Most systems have protection equipment or other features to protect people and as-
sets against harm in case failures or dangerous deviations occur in the system. The
equipment or features that are installed for this purpose are called safety barriers
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or barriers [32]. Barriers can be described as both physical and nonphysical multi-
layered structures with the purpose of preventing unwanted events or accidents [33].
This is highly relevant in control systems to prevent faults such as loss of position,
where signal processing and fault detection can be relevant barriers.

2.12.1 Barrier Properties

The reliability of a barrier should be evaluated based on several criteria, as pre-
sented in [34]. The criteria can briefly be summarized as:

• Specificity: The barrier should be able to detect and prevent the consequences
of a specified dangerous event.

• Adequacy: The adequacy of a barrier can be based on its capacity and ability
to prevent accidents within the design basis and meet the requirements of
relevant standards and norms.

• Independence: A barrier should be independent of all other barriers related
to the specified hazardous event. This means that the performance should
not be affected by the failure of another barrier or the conditions causing
another barrier to fail.

• Dependability: The barrier should reduce the identified risk by a known and
specified amount. That is, the barrier must be dependable in the sense that
it can be counted on to do what it is supposed to do.

• Robustness: The barrier should be able to handle extreme events and should
not be disabled if another barrier is enabled.

• Auditability: The barrier should be designed to allow regular periodic vali-
dation of the function.

2.12.2 Barrier Classification

Barriers can be classified in several different ways, two of which are introduced
briefly in the following as done in [32].

Proactive and Reactive Barriers
It can be distinguished between proactive and reactive barriers:

• Proactive barrier: A barrier that is installed to prevent or reduce the prob-
ability of unwanted events or accidents. Often called a frequency-reducing
barrier. Examples of proactive barriers are anti-lock braking systems (ABS)
and electronic stability control (ESP) systems.

• Reactive barrier: A barrier that is installed to prevent or reduce the conse-
quences in case of an unwanted event or accident. Often called a consequence-
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reducing barrier. Examples of reactive barriers are seat belts, airbag systems,
and alarming systems.

Active and Passive Barriers
Barriers may also be divided into active or passive:

• Active barrier: A barrier that is dependent on actions from an operator,
control system, and/or energy systems to perform its function. Examples of
active barriers are fire alarm systems and signal processing systems.

• Passive barrier: A barrier that is integrated into the design of the work-
place and does not require any human actions, energy sources, or information
sources to perform its function. Examples of passive barriers are firewalls and
mid-road barriers.

This theory can be linked to marine control systems by considering an example
of functional barriers to loss of position. Figure 2.14 shows an example of the
multi-layered structure that makes up the functional barriers to loss of position.
These are barriers that are dedicated to preventing the undesired event of which
the vehicle loses its position. This is done by employing redundancy and signal
processing in several steps.

Figure 2.14: Functional barriers to loss of position. Based on [35].
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Chapter 3

Tools for Development of Fault
Detection Methods

This chapter studies existing tools and methods for fault detection and implements
them in a joint interface using the program LabVIEW. The theories discussed are
mainly based on [36], [37] and [27], with some modifications. The implementation
of the algorithms has a focus on usability and a simple interface. For this reason,
a picture of the front panel for each tested algorithm is attached in Appendix C
along with its respective implementation description. All the chosen methods are
model-free and use the statistics or behavior of the data series to detect faults. To
be able to test the algorithms, a signal generation module is created and described.
Finally, each of the implemented algorithms is tested and validated using generated
test signals.

3.1 LabVIEW

The signal processing module developed in this thesis is created in the program Lab-
oratory Virtual Instrument Engineering Workbench (LabVIEW) [38]. LabVIEW
is a development environment developed by National Instruments. The program
uses a graphical programming approach that helps visualize the code during devel-
opment.

The program has two prominent advantages for this task. The first advantage
is that MTS’ ROV simulator is developed using the same program, making it
easy to integrate the module into the control system for further work. The second
advantage is the possibility to create a user-friendly interface, called the front panel.
This comes of high importance, as the point of the module is to be able to notify
the system operator the moment a fault occurs. The front panel gives the user full
overview and control of the executing program.
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Figure 3.1 shows the main page of the final fault detection program. This panel
is an example of how an interface might look. The interface can show any values
relevant to the user and can contain plots showing the input signal and signal
properties. The interfaces let the user choose and adjust variables that are relevant
to the method and study the results consecutively.

Figure 3.1: Example of a front panel

3.2 Limit Checking - Fixed Bounds

Limit checking is a simple algorithm based on setting an upper and lower bound for
each measurement. If the measured value is within these limits, the measurement
is considered valid. If the value is outside this interval, it should be rejected, and
an alarm should be triggered. This method requires prior knowledge about the
signals in order to determine the limits. In practice, this method is useful for
measurements where the range is clearly defined, such as for compasses or vehicle
velocity.
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3.3 Interquartile Range - Adaptive Bounds

The method of limit checking using fixed bounds requires some prior information
about the signals to be studied. To be able to determine the upper and lower limits,
it must be possible to establish an acceptable interval where the measurements
should be found at each instant of time. It also requires precisely selected limits
to avoid false alarms or undetected signal faults. In practice, this is not always
possible.

In cases where no such limits can be predefined, adaptive bounds must be applied.
Adaptive bounds can be set by utilizing the method of interquartile range (IQR).
This method uses the distribution of the given data set to calculate the interquartile
range, which is further used to set an upper and lower threshold and detect outliers.
This method is based on the assumption that the measurements are randomly
distributed samples, which can be represented by a normal distribution.

Figure 3.2 shows an illustration of how the complete distribution is divided into
quartiles and how the limits are set. Table 3.1 contains names and definitions
explaining the symbols in the figure.

Figure 3.2: Interquartile range. Based on Figure 6.13 in [29].
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Table 3.1: Interquartile range - Definitions

Symbol Name Definition

Q1 First quartile Splits off the lowest 25% from the highest 75%

Q2 Median Splits the data set in half

Q3 Third quartile Splits off the highest 25% from the lowest 75%

There are mainly three different methods for computing the quartile values. These
methods are presented in Table 3.2, both for an even and odd number of data
points.

Table 3.2: Methods for calculating the quartile values

Method 1:

◦ Use the median to divide the data set into two equal halves:
• If an odd number of data points: do not include the median in either half
• If an even number of data points: split the data set in two equal halves

◦ The value for the first quartile is the median of the lower half of the data
◦ The value for the third quartile is the median of the upper half of the data

Method 2:

◦ Use the median to divide the data set into two equal halves:
• If an odd number of data points: include the median in both halves
• If an even number of data points: split the data set in two equal halves

◦ The value for the first quartile is the median of the lower half of the data
◦ The value for the third quartile is the median of the upper half of the data

Method 3:

◦ If there are an even number of data points, Method 3 is equal to Method 1 & 2
• If there are (4n+1) data points:

– Q1 = Xn · 0.25+Xn+1 · 0.75
– Q3 = Xn · 0.25+Xn+1 · 0.75

• If there are (4n+3) data points:
– Q1 = Xn+1 · 0.75+Xn+2 · 0.25
– Q3 = X3n+2 · 0.25+X3n+3 · 0.75

where Xn is read as the nth data point in the data set.
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When the quartiles are calculated, they can be used to determine the upper and
lower bounds as follows:

IQR = Q3−Q1 (3.1)
Lower bound = Q1− 1.5 · IQR
Upper bound = Q3 + 1.5 · IQR

3.3.1 Moving Window

The IQR algorithm uses the statistics of the data set to determine the quartiles,
which are further used to determine the upper and lower bounds. The strength of
this method is that the bounds can adapt to the signal without any prior knowledge
about the system. However, an obvious weakness with this method is that the limits
are not adaptive with regards to time changes in the signal. By using the whole
data set to calculate the statistics of a drifting signal, some outliers may not be
detected. It also means that a faulty signal early in the data set will ruin the
credibility of the entire test if this value is included in the calculations. This can
easily be fixed by implementing a moving window or a loss function.

One strategy for making the algorithm time adaptive is by introducing a moving
window. This means that only a fixed number of samples are used to calculate the
quartiles that determine the boundaries. By implementing this, a detected outlier
will only influence n number of samples, where n is the window size.

Considering a data set S with N samples and a window size n, the moving window
method is described in Figure 3.3. For each iteration, the first sample in the current
set Si is deleted, and a new sample is added.

Figure 3.3: Moving window with window size n

This method is implemented with the IQR algorithm with adjustable window size
and will be used for further testing.
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3.3.2 Loss Function

A second way of making the algorithm time adaptive is presented in [36]. In
general, this approach is based on forgetting old measurements by introducing a
loss function. This function can be chosen as any desired function that fulfills the
purpose of fading out old measurements. An example of a loss function is the
exponential function:

L = e−λt, (3.2)

where t is the time and λ is a forgetting factor that determines the decay rate of
the loss function with time. Figure 3.4 shows four similar loss functions, each with
different forgetting factors.

Figure 3.4: Loss functions with different forgetting factors

3.4 Variance Check

The variance of a signal can contain important information about the measure-
ments. There are especially two interesting cases, namely a zero variance and a
sudden peak in variance. These two cases can indicate a frozen signal, maybe from
a faulty sensor, or a disturbance causing increased noise to the system. Changes in
the variance are simple to detect if the algorithm is able to calculate the variance
of the signal continuously.

The variance of the signal can be calculated by using the formula:

σ2 =
(
∑n
i=1 xi − x̄)2

n− 1
. (3.3)

where n is the sample length, xi is the current signal value, and x̄ is the current
mean. The sample length determines how many samples of the data set that will
be considered in the calculations. By using a variable sample size for the mean and
variance, the algorithm is made more time adaptive. This follows the same logic as
a moving window: The signal mean and variance is calculated based on n number

44



3.4 Variance Check

of samples. By choosing a sample size that is equal to the total number of samples,
each value is included in the calculation of the variance. The resulting variance is
constant for all values of the data set. By decreasing the sample size, the variance
becomes more accurate for each studied value but exhibits more fluctuations. The
sample size should be balanced such that a sudden change in variance will be
detected relatively fast but should include enough data to avoid false alarms.

3.4.1 Frozen Signals

As described in Section 2.7, a frozen signal is defined as a fault where the variance
is equal to zero. A frozen signal can indicate a lost connection or the loss of a
sensor and may lead to the termination of the current operation.

The variance check intended to detect frozen signals is implemented with two de-
tection methods. One method is to check whether the variance of any point is
equal to zero. The second method checks if a signal value is exactly equal to its
previous value for a significant number of consecutive measurements. The second
method is included to account for those cases where the sample size is set such that
even though the variance at a point is zero, it is not detected. This case is shown
in Figure 3.5, where the variance using two different sample sizes are compared.
When the sample size is set to 50, the algorithm never detects that the variance
is zero at several points during the test. To account for this, the algorithm also
continuously checks if the current sample is exactly equal to the previous sample,
and if this occurs for a significant number of data points in a row.

Sample size = 10

Sample size = 50

Figure 3.5: Variance using sample sizes of 10 and 50
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3.4.2 High Variance

High variance is defined as a sudden increase in the variance of the signal, where
σ2
highvar � σ2

0 . This may indicate a temporary disturbance acting on the sensor,
creating additional noise. To detect high variance, the method of interquartile
range can be applied. This method is described in Section 3.3, where it is used to
determine the upper and lower allowable limit for a measurement. By setting the
variance as input to the algorithm, an upper bound can be set for the variance as
well, while the lower bound can be set to zero.

3.5 Cumulative Sum

The cumulative sum (CUSUM) algorithm is a sequential analysis technique first
developed by E. S. Page [39] but is here derived as in [27] and implemented as in [36].
The algorithm is used to detect known changes by hypothesis testing between a
fault-free condition H0 and a condition with faults H1. The CUSUM test compares
two probability density functions (PDFs) and their means to determine which of
the PDFs the random variable is most likely to belong to.

Consider a sequence of independent random variables z(i), where i denotes the
time instant, and with a PDF, pθ(z), that depends upon only one scalar parameter
θ. Before an unknown time change, θ = θ0. After the time change, it is equal to
θ = θ1 6= θ0. The goal is to detect and estimate the change of this parameter. It
is assumed no prior knowledge of the distribution of the time change. θ0 is known
by hypothesis, while θ1 can be either known or unknown. The first case yields
the CUSUM algorithm, while the second the generalized likelihood ratio (GLR)
algorithm.

A fundamental concept for both algorithms is the log-likelihood ratio, which given
the random variable z is defined as:

s(z) = ln
pθ1(z)

pθ0(z)
. (3.4)

The name comes from the fact that the likelihood function of an observation z is
by definition equal to the PDF, pθ(z). The key statistical property of this ratio is
that:

Eθ0(s) =

∫ ∞
−∞

s(z)pθ0(z)dz < 0, (3.5)

and
Eθ1(s) =

∫ ∞
−∞

s(z)pθ1(z)dz > 0, (3.6)

where Eθ0 and Eθ1 denote the expectations of the random variables under the
two distributions pθ0(z) and pθ1(z), respectively. This means that a change in
the parameter θ is reflected as a change in the sign of the mean value of the log-
likelihood ratio.
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Considering the cumulative sum:

S(k) =

k∑
i=1

s(z(i)) =

k∑
i=1

ln
pθ1(z(i))

pθ0(z(i))
, (3.7)

where k denotes the present time instant. S(k) is expected to exhibit a negative
drift before change, and a positive drift after change.

This theory can easily be understood by considering the following example. As-
sume that pθ(z) is a Gaussian distribution, where the parameter θ represents the
mean. Figure 3.6a shows two distributions of the random variable z. The leftmost
distribution, pµ0(z) has a mean of µ0 = 0 and a variance of σ2 = 1. The distribution
to the right, pµ1(z), has a mean of µ1 = 2 and the same variance as pµ0(z). Consider
the realization z1. As z1 is most probably obtained when the random variable z
has pµ0(z) as its PDF, pµ1

(z1)

pµ0
(z1) < 1. This illustrates that the log-likelihood ratio

is on the average negative when z has pµ0(z) as its PDF and positive when it has
pµ1(z) as its PDF.

Figure 3.6b shows a realization of a sequence of independent random variables with
distribution pµ0(z) before the time k = 500 and distribution pµ1(z) after. Given this,
the cumulative sum S(k) is expected to exhibit a negative drift before change, and
positive drift after change. This behavior is shown in Figure 3.7.

(a) Two Gaussian probability density func-
tions with equal variance σ2 = 1 and means
of µ0 = 0 and µ1 = 2. Taken from Figure
6.7 in [27].

(b) Sequence of independent random
variables with distributions as shown in
Figure 3.6a. The time on the x -axis is
expressed in number of samples. Taken
from Figure 6.8 in [27].

Figure 3.6: Gaussian distributed sequence of random variables
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Figure 3.7: Change of S(k) for the sequence shown in Figure 3.6b. Time is expressed in
the number of samples. Taken from Figure 6.9 in [27].

To study the change, the relevant information lies in the difference between the
value of the log-likelihood ratio and its current minimum value. The corresponding
decision rule at each time instant is:

g(k) = S(k)−m(k) ≥ h, (3.8)

where h is e user defined positive threshold and:

m(k) = min
1≤j≤k

S(j). (3.9)

The detection rule is a comparison between the cumulative sum S(k) and the
adaptive thresholdm(k) + h. The valuem(k), called the drift term, makes sure the
threshold is modified on-line and keeps full memory of the information contained
in past observations.

The Least Squares Cumulative Sum Filter
To detect sudden biases in the signal mean, a least squares cumulative sum (LS
CUSUM) filter can be applied. The basic assumption for this method is that the
measurements consist of the deterministic component θt and an additive white
noise εt, such that the measurement can be written as:

yt = θt + εt, (3.10)

where yt denotes the measurement. The parameter θt is estimated from yt and is
used to calculate the residual εt. This residual is further used to calculate a distance
measure, st. The distance measure is averaged to get gt, which is further used as
input to the stopping rule. The different steps with their inputs and outputs are
illustrated in Figure 3.8.
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Figure 3.8: Fault detection using a LS CUSUM filter. Based on Figure 3.1 in [36].

The distance measure can be calculated using different approaches:

• Use the residuals directly:

st = εt = yt − θ̂t−1, (3.11)

where θ̂t−1 is the estimate of the signal based on measurements up to time
t− 1. This approach is suitable for the change in the mean problem.

• Use the square of the residuals:

st = ε2
t . (3.12)

This approach is useful for detection of both variance and parameter changes.

A stopping rule is used for giving an alarm when θt has exceeded a given threshold,
and a fault is detected. To make the alarm decisions, an additional test statistic gt
is introduced. The test statistic gt sums up its input st and should give an alarm
if it exceeds the predefined threshold h. Using white noise input, gt tends to drift
similar to a random walk, which may result in false alarms or detection delay. Two
additional mechanisms can be added to the algorithm to prevent this. The drift
term ν is subtracted at each time instant to prevent positive drifting. To prevent
negative drifting, gt is set to zero each time it becomes less than zero.

The equations below summarize the two-sided LS CUSUM filter, which assumes
θt can be both positive and negative. Here, an adaptive filter is combined with
the CUSUM test as the change detector. The signal is assumed to be piecewise
constant. When an alarm is triggered, the algorithm is restarted by setting g(1)

t =
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g
(2)
t = 0.

θ̂t =
1

t− t0

t∑
k=t0+1

yk

εt = yt − θ̂t−1

s
(1)
t = εt

s
(2)
t = −εt
g

(1)
t = max(g

(1)
t−1 + s

(1)
t − ν, 0)

g
(2)
t = max(g

(2)
t−1 + s

(2)
t − ν, 0)

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.13f)

Tuning of the LS CUSUM Filter Algorithm
The CUSUM filter requires that the variables h and ν are set before running the al-
gorithm. The tuning of the filter can be done by following some simple steps:

1. Start with a high value for the threshold h and choose ν as half of the expected
change.

2. ν can be adjusted such that gt is equal to zero more than 50% of the time.

3. Adjust h such that the number of false alarms or delay for detection is satis-
factory.

4. For faster detection, ν can be decreased, while h can be increased to reduce
the number of false alarms.

3.6 Testing and Validation

The studied methods for fault detection must be tested and validated. This means
that after implementation, which is described in Appendix C, they should be tested
to see that they fulfill their intended purpose and give the correct solutions. Each
algorithm is tested by running them on a valid test signal. If a fault is detected,
a simulated alarm is triggered. The methodology for conducting these tests are
inspired by FMEA simulation. The algorithms are tested on signals that have
been modified to contain different failure modes. This is done by dedicating a
separate module to create polluted signals.
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3.6.1 Signal Generation

The first step of validating the fault detection algorithms is to create a suitable test
signal. In this project, this is done by constructing a separate signal generation
module. The implementation of this model in LabVIEW is described in Appendix
B. This module is responsible for creating the test signals for the algorithms and
should be able to run both in real-time and saved to file. By creating the test
signals, the number of test cases is not limited by the signal source. A simulated
signal can contain all kinds of both likely and unlikely failure modes.

The test methodology is shown in Figure 3.9, inspired by the concept of FMEA
simulation [31]. A clean signal is used as a basis but is manipulated to contain faults
before entering the signal processing module. The objective of this manipulation
is to simulate the effects different failures have on the system.

Figure 3.9: Stages of simulation

The signal generation module is created by using a uniform white noise with an
adjustable noise amplitude and offset as a basis. This is chosen to represent a
random signal subjected to noise. Section 2.7 defined and studied the mathematical
modeling of different failure modes. These models are implemented in the signal
generator, such that each failure can be added to the clean signal. While the
program generates the signal, it simultaneously writes all data to an output file.
This file contains both the raw random signal and the polluted signal together with
its frequency and calculated mean and variance. An example of an output file is
included in Appendix B.3.

3.6.2 Limit Checking

The limit checking algorithm is implemented such that the upper and lower bounds
must be set manually based on prior knowledge of the data set. The algorithm goes
through each of the data points and compare them to the predefined upper and
lower bound. If the current value is outside the allowed interval, it is set as the
maximum or minimum allowable value, and an alarm is triggered.

Figure 3.10 shows the result of the test. The limits were set by adjusting them
until a satisfying number of alarms were triggered. The alarm is simulated by a
Boolean variable, where one means that the alarm is triggered. The results show
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that the algorithm behaves as expected and is able to detect and correct values
outside the predefined range of validity.

Raw signal

Bounds

Processed signal

Bounds

Figure 3.10: Testing - Limit checking

3.6.3 Interquartile Range

The method of limit checking requires both prior knowledge about the measure-
ments and measurements that can be defined and limited by an upper and lower
bound. The method of IQR uses the statistics of the studied data to determine the
limits, making it a more convenient alternative for more practical measurements
where no prior information is available.

The algorithm is implemented with an adjustable window size. This is done in order
to make it more time adaptive, meaning that one fault only affects the statistic of
n number of samples, where n denotes the window size. In addition, this means
that it can handle a changing measurement without either having to trigger false
alarms or not being able to detect faults.

This example is shown in Figure 3.11 and 3.12, where the red dotted lines represent
the upper and lower bound. Figure 3.11 shows how the algorithm worked before a
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moving window was implemented. This result is similar to the result the method
of limit checking would have given, except the limits are set automatically. Since
the algorithm uses the statistics of the entire data set, it chooses limits that fit
both start and end value. Due to this, no faults occurring early in the data set are
detected.

Figure 3.11: Testing - IQR with no moving window

Figure 3.12 shows the result after the moving window is implemented, and the
window size is set to 20. The limits are able to adapt to the statistics of the current
data more precisely, and the algorithm manages to find both added outliers.
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Figure 3.12: Testing - IQR with window size 20

3.6.4 Variance Check - Frozen Signals

The variance check intended to detect frozen signals is implemented with two de-
tection methods. The first method checks if the variance of any point is equal to
zero, and the second checks if a signal value is exactly equal to its previous value
for a significant number of consecutive measurements. By implementing the sec-
ond method, the algorithm should be able to detect frozen signals independent on
the variance sample size. To test the performance, the algorithm was tested with
a sample size equal to the size of the data set, giving a constant variance for all
values. This is shown in Figure 3.13. Even though the algorithm never discovers
the occurrences of zero variance, the frozen signals are detected, and the alarm is
triggered.
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Figure 3.13: Testing - Frozen signal check with all data points

Figure 3.14 illustrates how a lower sample size affects the variance. With a sample
size of 10, the variance fluctuates with time, and the zero variance is detectable
using both methods.
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Figure 3.14: Testing - Frozen signal check with sample size 10

3.6.5 Variance Check - High Variance

To detect the occurrence of high variance, the method of interquartile range is
applied using the variance as input. The sample size for the variance is adjustable
such that it can handle data sets with different frequencies of sampling. The sample
size tuned to get a satisfactory balance between detection delay and fluctuations.
The variable that determines the tolerance of the thresholds is set as the default
value of 1.5 in this analysis.

The window size of the IQR algorithm is set to equal the size of the data set.
This is possible since the variance is supposed to remain approximately constant,
as opposed to a changing signal as tested in Section 3.6.3. The sample size is set
to 50. The test signal could, for instance, represent the surge movement of an
ROV, where the signal is subjected to disturbances creating a temporary increased
variance. The result presented in Figure 3.15 shows that the algorithm is able to
detect the periods of high variance and toggle the alarm.
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Variance

Bounds

Figure 3.15: Testing - High variance check with all data points

3.6.6 CUSUM

The LS CUSUM filter is implemented to detect abrupt changes in the signal. It
requires a predefined threshold h and a drift term ν. When conducting the test,
these values were tuned based on the tuning method proposed in Section 3.5. ν
was set to half of the expected change, which equals half of the noise amplitude,
and h was decreased until a satisfying number of alarms were triggered.

The upper plot of Figure 3.16 shows the signal value together with its estimate.
Halfway through the data set the signal value shows a sudden change in the mean
value, which is due to a bias added to the signal. The middle plot shows the
variables g(1)

t and g(2)
t together with the predefined thresholds. g(1)

t and g(2)
t sum

up the errors between the actual signal value and the estimated value. When the
bias occurs, g(1)

t exceeds the upper threshold and triggers the alarm. When the
alarm is triggered, the algorithm is reset such that the biased mean is accepted as
the true mean until the next abrupt change is detected.
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Figure 3.16: Testing - CUSUM with h = 20 and ν = 4.3
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Chapter 4

Dynamic Thresholds

A common feature of fault detection algorithms is the need for predefined threshold
values. These thresholds determine how much slack the signal is given before
an alarm is triggered. The LS CUSUM filter, presented in Section 3.5, needs a
threshold value h for the stopping rule, and the method of interquartile range,
presented in Section 3.3, contains a variable (with default value 1.5) that can be
adjusted according to the requirements of the system. The currently used method
for determining these thresholds is to tune the values to obtain a balance between
the number of false alarms and the time delay of detection. This method requires
trial and error and may be difficult in real-time systems where no prior information
about the measurements is available.

Chapter 3 presented two methods of making the bounds adaptive with respect to
time, including the use of a moving window and a loss function. This ensures
that one faulty signal does not affect the statistics of the entire dataset, but only
for a specified number of samples given by the window size or by the forgetting
factor. The objective of introducing dynamic thresholds is to not only make the
fault detection time adaptive but also operation adaptive.

The term dynamic thresholds means that the limits are adjusted dynamically based
on several factors. This includes factors such as environmental conditions, vessel
conditions, and vessel use mode, where all factors are studied with a focus on how
they affect the safety requirements of the current operation. This chapter starts
by defining and discussing the relevant conditions affecting the optimal threshold.
Further, a simplified method for including these when determining the threshold
values is proposed.
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4.1 Vessel Operational Conditions

Following the method in [40], the Vessel Operational Conditions (VOC) can be
defined as a triplet of attributes, namely:

VOC := 〈VUM, Env, VC 〉 , (4.1)

where VUM refers to the Vessel Use Mode, which describes the current task of the
vessel, Env refers to the state of the environment and VC refers to the current
conditions of the vessel. Figure 4.1 shows some examples of vessels operating in
different VOC.

Figure 4.1: Examples of vessels with different Vessel Operational Conditions (VOC).
Taken from Figure 4 in [41].

The vessel operational conditions are used to classify different parametric models,
which are further used for control analysis and design. In this thesis, this property
will be modified such that it classifies different safety classes instead of control
modes. This new property is called the Vessel Operational Safety Conditions to
highlight how the focus is shifted towards safety and risk.

4.2 Vessel Operational Safety Conditions

Marine vessels perform complex tasks and operations under varying environmental
conditions. Due to the variety of both operational and environmental conditions
under which these tasks must be performed, various degrees of accuracy may be
required in order to avoid accidents and ensure safety. This introduces the neces-
sity of being able to quantify the security requirement of an operation based on
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current external factors. This quantification can be done by presenting the Vessel
Operational Safety Conditions (VOSC), based on the VOC. The VOSC is a com-
bination of the same three attributes as the VOC, which will be further explained
in the following subsections.

4.2.1 Environmental Conditions

Marine systems are designed to carry out complex operations in harsh and changing
environmental conditions. These conditions have a great impact on the precision
needed to complete the given task safely. Strong gusts or a high sea may cause
larger variations in measurements than in conditions with no wind and calm sea.
This means that an abrupt change in heading may indicate a fault under some
conditions, while it can be expected under tougher conditions. The environmental
conditions, Env, incorporates the environmental conditions in the VOSC. This
includes both wind, waves and current, and can roughly be classified into calm,
moderate and rough environmental conditions.

4.2.2 Vessel Use Mode

Vessels perform a large variety of tasks, referred to as missions or operations. Each
of these missions may require the vessel to operate in a different Vessel Use Mode
(VUM). Some examples of VUMs, as presented in [41], are:

• Transit

• ROV support

• Surveying

• Drilling

• Pipe lying

Each of these VUMs may require different types of GNC systems, which can be
referred to as a GNC service. These are the services that are required by the VUM
to conduct a given mission or operation. Each of these services requires a different
level of accuracy. Examples of these services are:

• Station keeping

• Course keeping

• Manoeuvring (trajectory tracking)

• Waypoint tracking

• Stopping

• Docking (homing)
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4.2.3 Vessel Conditions

The attribute vessel conditions (VC) refers to the current conditions of the ves-
sel. This includes the vessel speed, loading, and resources. Resources refer to
factors such that human interaction, available power, and range. Relevant fac-
tors in the context of signal credibility include sensor type, signal strength, and
redundancy.

4.3 Threshold Setting

The goal of this chapter is to develop a strategy for dynamically determining the
threshold values needed for fault detection. The thresholds are crucial in order
to balance the number of false alarms while ensuring safe operations. Figure 4.2
illustrates the set-up of the proposed strategy. The dynamic threshold setting block
takes the current VOSC as input, together with relevant information about the
signal. Based on this, it sends the calculated thresholds h to the signal processing
unit, which is responsible for detecting faults in the signal.

Figure 4.2: Dynamic threshold setting

A simplified model of the thresholds can be written as:

Upper = hupper = µ+ a ·σ (4.2)
Lower = hlower = µ− a ·σ, (4.3)

where a is to be determined based on the current VOSC. To be able to do this,
all the attributes of the VOSC must be quantified for the studied operation, with
respect to how they affect the requirements of the alarming system. Table 4.1
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shows an example of how this can be done, where the gains for each attribute are
in the range of one to three.

Let the value one correspond to a scenario requiring a strict threshold, i.e., high
accuracy or conditions where a small deviation may indicate a fault, and three
correspond to a scenario where maximum tolerance is allowed. Under VC, the
different gains are modeled by considering the conditions of an AUV, ROV, and
ship. This is based on the assumption that an AUV requires stricter gains as a
critical fault may lead to loss of vehicle. A ship under transit in rough weather
conditions may allow a larger tolerance in its thresholds, as abrupt deviations may
be due to large wave forces and should not be discarded.

It can be questioned whether it would be better to set the thresholds as maximum
strict regardless of the external conditions, and thus guarantee safe operations. The
answer to this is that some circumstances may lead to abrupt changes that would
not be physically possible under different conditions, such as with calm weather. To
discard a signal as a fault when it is valid can be just as damaging as an undetected
fault.

Table 4.1: Classification of VOSC attributes

Gain 1 2 3

VUM Docking Manoeuvring Transit

Env Calm Moderate Rough

VC AUV conditions ROV conditions Ship conditions

When the gains for each attribute are defined, the V OSCgain can be calculated
as the magnitude of the three-dimensional vector, as shown in Figure 4.3. This is
easily done by using the formula:

M =
√
x2 + y2 + z2 =

√
V UM2 + Env2 + V C2 = V OSCgain. (4.4)
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Figure 4.3: Magnitude of VOSC gain = |〈VUM, Env, VC 〉|

The calculated V OSCgain can be combined with the statistics of the signal by
utilizing the properties of the normal distribution. As shown in Figure 4.4, only
0.3% of a normally distributed data set can be found more than three standard
deviations from the signal mean. This means that a strict threshold can be set to
equal 4 ·σ. As a starting point, the maximum allowable threshold can be set to
9 ·σ [26]. The V OSCgain is responsible for determining which value in this interval
that should be used in a given scenario.

Figure 4.4: Probabilities associated with a normal distribution. Based on Figure 4.12
in [29].

The final part of the method is based on coupling each V OSCgain to an a-value,
which further determines the upper and lower bounds using the signal statistics. A
finite number of possible V OSCgains can be determined, depending on the number
of possible states for each of the attributes 〈VUM, Env, VC 〉. These are sorted and
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normalized by dividing by the smallest value. Each of these values can be paired
to an a-value by interpolation. This is shown in Figure 4.5.

Figure 4.5: Interpolation of the threshold parameter a based on current V OSCgain

A simplified pseudocode for dynamically setting the upper and lower thresholds is
as follows:

Input: µ, σ, amin, amax, 〈VUM, Env, VC 〉
Output: hlower, hupper

for each possible VUM:
for each possible VC:

for each possible Env:
Calculate V OSCgain for all combinations;
Save current gain as V OSCcurr;

Normalize every VOSC by dividing each VOSC with min(VOSC );

Calculate change in a as: ∆a = amax − amin;
Calculate change in VOSC as: ∆V OSC = V OSCmax − V OSCmin;

Interpolate to find a: a = amin + ∆a
∆V OSC · (V OSCcurr − V OSCmin);

Upper bound: hupper = µ + a ·σ;
Lower bound: hlower = µ - a ·σ;

A description of the implementation of the algorithm in LabVIEW is attached in
Appendix C.7.
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Chapter 5

Case Study: Simulation with
Dynamic Thresholds

This chapter will present a practical example to illustrate the concept of dynamical
thresholds in fault detection. The developed algorithm is generic and can be applied
for many types of systems and operations but will here be tested in the context
of subsea operations. The operation will be simulated using a generated signal.
The use of synthetic test signals makes it possible to include faults without being
dependent on faults occurring in a real simulation.

This chapter starts by describing the physical aspects and challenges of the studied
scenario before it discusses and quantifies the attributes that together determine the
final V OSCgain of the system. Further, this gain is used to dynamically determine
the thresholds used in fault detection. The method will be tested on a signal with
both a constant and varying mean.

5.1 Case Description

The case study aims to present the method of dynamic thresholds from a more
practical point of view. In order to do so, a practical scenario must be considered,
which includes information about all the factors affecting the vehicle as it completes
its mission. Such factors cover the vehicle, the environmental conditions, and the
operational conditions.

The scenario to be studied is an ROV that has finished its intervention mission
and starts the return back to its seabed mounted docking station. The return can
be divided into three separate phases of operation, where the vessel use mode, the
vessel conditions, and the environmental conditions vary depending on the current
phase.
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5.1.1 Phases of Operation

Consider an ROV that has finished its mission, such as inspection of a seabed
mounted construction or cable. The ROV must autonomously return to its docking
station to recharge, upload collected data, and download new missions. During
this approach the main sensor system changes, as well as the vehicle speed and the
necessary level of accuracy in measurements. The environmental and operational
conditions may vary with the position of the ROV. By defining separate intervals
where these factors are approximately constant, the approach can be divided into
three separate phases. The thresholds are set based on many assumptions made
about the surroundings of the ROV through these phases.

Phase 1 - Transit
The first phase is called the transit phase. The goal of this phase is to navigate from
the ended mission to a location in proximity of the docking station. It is assumed
that a track of USBL transponders connects the location of the ended mission and
the location of the docking station, as graphically illustrated in Figure 5.1. This
distance can be several kilometers long, where the ROV can keep a constant and
relatively high speed without needing very accurate measurements. The ROV can
be subjected to strong underwater currents through this phase but does not need
a strict threshold as some temporary deviations in this phase are allowable.

Figure 5.1: Phase 1 - Transit: Following a seabed mounted USBL track

Phase 2 - Manoeuvring
Moving into the low-speed maneuvering phase, it is assumed that the docking
station is placed in the middle of an LBL network consisting of four transponders
placed in a square. The assumed set-up is shown in Figure 5.2, where the grey
box illustrates the dock. This system can provide a higher accuracy towards the
station, and therefore requires stricter thresholds. The goal of the maneuvering
phase is to position the ROV relative to the docking station and lower the speed to
prepare for the homing phase. Assuming the docking station is located in a more
secluded environment, deviations due to environmental conditions are expected to
be small.
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Figure 5.2: Phase 2 - Manoeuvring: Receiving signals from an LBL network in proximity
of the docking station

Phase 3 - Homing
The final phase starts when the visual instruments of the ROV can detect the
docking station. The goal of the homing phase is to connect the ROV to the docking
station successively. Through this phase, low speed and reliable measurements are
crucial. This phase has the highest requirement for accuracy

Figure 5.3: Phase 3 - Homing: Using the ROV’s visual instruments to connect to the
docking station

All the main properties of each phase can be divided into the three categories
relevant in the context of threshold setting, namely the vessel use mode, environ-
mental conditions, and vessel conditions. These properties are summarized in Table
5.1
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Table 5.1: Main properties of the three phases of operation

Phase 1: Transit 2: Manoeuvring 3: Homing
Vessel Use
Mode (VUM)

Course keeping
over a large
distance, from
ended mission to
docking station

Lowering of speed
and manoeuvring
to prepare for the
homing phase

Slowly and
accurately
connect to the
docking station

Environmental
Conditions
(Env)

May be exposed
to strong currents

Assuming less
current forces

Assuming calm
conditions in
proximity of dock

Vessel
Conditions
(VC)

Uses a USBL
track with
relatively high
speed

Uses a LBL
system with
increased
accuracy and
lowered speed

Uses camera
vision to slowly
and accurately
position itself

5.1.2 VOSC

Considering the main properties of the three phases described in Table 5.1, the
attributes to determine each V OSCgain can be quantified. The vessel use mode is
different for each phase, as the objective of the phase changes. The vessel conditions
vary with the different sensors and speeds used. The environmental conditions
are challenging to determine, as they may vary from hour to hour and do not
necessarily depend on the phase of operation. As a simplification, they are set as
constant within each phase, with decreasing strength as the ROV approaches the
docking station. This is done under the assumption that the docking station is
located in a more sheltered location than the site of the ended mission.

It is important to note that the gains are determined by focusing on how each
factor affects the need for strict thresholds. When being exposed to rough environ-
mental conditions, a more tolerant threshold may be necessary, as more significant
deviations are expected. A strict threshold under these conditions may result in a
number of false alarms and valid signals getting discarded as faults.

Each gain is quantified with a number between one and three for this simulation.
The numbers should be interpreted such that one means that the corresponding
factor causes the need for a strict limit, while three means that a higher tolerance is
allowable. Following this logic, all gains are set and presented in Table 5.2.
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Table 5.2: Determination of VOSC attributes

Phase 1: Transit 2: Manoeuvring 3: Homing

Vessel Use
Mode (VUM)

3 (Tolerant) 2 (Moderate) 1 (Strict)

Environmental
Conditions
(Env)

3 (Tolerant) 2 (Moderate) 1 (Strict)

Vessel
Conditions
(VC)

3 (Tolerant) 2 (Moderate) 1 (Strict)

The final V OSCgain is determined as the magnitude of the three-dimensional vector
when all the attributes are determined. Figure 5.4 shows a spatial representation
of each gain.

(a) Phase 1: Transit (b) Phase 2: Manoeuvring (c) Phase 3: Homing

Figure 5.4: V OSCgain for the three phases of operation

5.1.3 Simulation Signal

The test signal simulates the approach toward the docking station. During the
approach, the ROV uses three different sensor systems, namely USBL, LBL, and
camera vision. A change of the main sensor system can be used as an indication to
when a new phase begins, and the thresholds should be recalculated using a new
V OSCgain. To simulate this change, the frequency of the input signal is changed
as the ROV moves through the phases. By continuously identifying the incoming
frequency, the system should be able to distinguish between each of the three
phases. An abrupt change in frequency indicates a new phase, which means that
the system should retrieve the new corresponding V OSCgain, its corresponding
a-value, and recalculate the limits based on the current mean and variance.
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Figure 5.5 shows an example of a test signal. The upper plot shows the raw signal
as a function of time, and the two dotted lines represent the time instants where
the frequency changes and the vehicle moves into a new phase. The lower plot
shows how the frequency varies with time, starting at 10 Hz in phase 1, changing
to 35 Hz in phase 2 and reaching 100 Hz in phase 3.

Figure 5.5: Example of a test signal

An estimate for appropriate frequencies is based on information from [42]. This
presentation about hydroacoustics includes a table with information about the
typical position accuracy that can be expected at different frequencies. Table 5.3
shows these frequencies, their typical accuracies, and to which phase this bandwidth
is assigned.

Table 5.3: Frequency bandwidth for the three phases of operation

Frequency Band Bandwidth Position Accuracy Phase

Low Frequency 7.5-15 kHz 0.5-2.5 m 1

Medium Frequency 19-36 kHz 0.25-1 m 2

Extra High Frequency 50-110 kHz <0.05 m 3
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The algorithm is tested on two different simulation cases, each with both a clean
and a polluted signal. The frequency is changed equally in both cases based on
the values from Table 5.3. With regards to computational time, all frequencies
are scaled down by a factor of one thousand compared to the table values. The
objective is only to emphasize the algorithm’s ability to dynamically change the
thresholds, which is evident enough in short and simplified simulations. The signal
has a frequency of 10 Hz in phase 1, 35 Hz in phase 2, and 100 Hz in phase 3. The
two test cases can be briefly described as:

1. Case 1 - Yaw movement: A generated signal simulating the yaw move-
ment, i.e., the heading, of an ROV as it approaches the docking station. The
heading is assumed to be constant throughout the approach. When the ROV
enters a new phase, a new frequency is detected from the sensor system, and
the limits should be recalculated.

2. Case 2 - Surge movement: A generated signal simulating the surge move-
ment, i.e., movement in the x-direction, of an ROV as it approaches the dock-
ing station. The movement is simulated as a constant increase in position
with time. The change of frequency indicates that the ROV receives signals
from a new sensor, and the system should react by updating the V OSCgain
based on the new conditions.

For both cases, two versions of the signal are tested, namely:

(a) Clean signal: A generated signal with no added faults, except noise. The
objective of this test is to assure that the algorithm works and that in a
fault-free situation, no false alarms are triggered.

(b) Polluted signal: A signal polluted with outliers in every phase by using the
signal generation module. The outliers added have a constant deviation from
the mean value in every phase. The objective is to test that equal deviations
have varying severity depending on the phase in which it occurs.

5.2 Results

The first four columns of Table 5.4 show the variables that are predefined by the
user. The last two columns show the calculated values that determine the dynamic
thresholds.

Table 5.4: Resulting threshold values

Phase VUM Env VC VOSC a

1 3 3 3 5.1961 9

2 2 2 2 3.4641 6.5

3 1 1 1 1.7320 4
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5.2.1 Case 1 - Yaw Movement

The first test case simulates the yaw movement of the ROV. The heading is assumed
to be constant throughout the approach. The algorithm is tested on both a clean
and polluted signal.

1a - Clean signal
The first test is conducted using a clean signal without any faults present. The
results are shown in Figure 5.6. The upper plot shows that the algorithm behaves
as desired. In the first phase of operation, the interval of allowed signal values is
wide. As the frequency increases, the limits get narrower. The limits are most con-
servative in the final phase of operation, where small deviations from the nominal
behavior would have triggered an alarm.

Figure 5.6: 1a: Yaw movement - Clean signal

The probability density function shows how the thresholds are set in relation to
the signal values. Figure 5.7 displays the calculated thresholds relative to the dis-
tribution for each phase. The thresholds of the final phase show that any deviation
outside this distribution would trigger an alarm, while the first two phases would
accept significant deviations before discarding the value as a fault.
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Figure 5.7: 1a: Signal probability density distribution - Clean signal

1b - Polluted signal
The second test is performed on a polluted signal to see how the algorithm handles
deviations of equal magnitude occurring in different phases. The signal has a
constant mean throughout the simulation.

The results are presented in Figure 5.8 and 5.9. The first figure shows the signal
with its mean and the calculated limits. The outliers occur in each phase, with
approximately equal deviations from the mean. The bottom plot shows that the
faults only trigger alarms in the second and third phase of operation, where the
V OSCgain indicates the need for stricter limits. The second figure shows the PDF
of the polluted signal. The tail of the distribution is longer in this case than in
Figure 5.7, due to the outliers. In the last two phases, the limits are set such that a
small percentage of the distribution is located outside the allowed interval.
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Figure 5.8: 1b: Yaw movement - Polluted signal

Figure 5.9: 1b: Signal probability density distribution - Polluted signal
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5.2.2 Case 2 - Surge Movement

The second test scenario simulates the surge movement of the ROV. This case is in-
cluded to test how the algorithm reacts when the signal is not normally distributed
and cannot be represented as in Figure 5.7 and 5.9. The constantly changing mean
makes the sample size used to calculate the mean and variance more crucial. The
following simulations use a sample size of 100.

1a - Clean signal
The surge movement of the ROV is simulated by a steady drifting signal with
constant variance and no added faults. This is based on a simplifying assumption
that the ROV keeps constant speed. In reality, the speed should slow down as the
distance between the ROV and the docking stations decreases. Figure 5.10 shows
the results of the simulation. The thresholds clearly show where a new frequency is
detected, and the algorithm reacts by constricting the thresholds. No false alarms
are triggered.

Figure 5.10: 2a: Surge movement - Clean signal

1b - Polluted signal
The polluted version of the simulation signal contains equal outliers in each phase.
The resulting plots, shown in Figure 5.11, display the behavior of the thresholds.
As the frequency increases, a new V OSCgain is calculated, and the thresholds are
changed accordingly. Thus, the algorithm classifies the outliers as faulty signals
only in the two most critical phases of the operation.
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Figure 5.11: 2b: Surge movement - Polluted signal
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5.3 Summary

Several methods have been implemented and tested throughout this thesis. Table
5.5 summarizes the advantages and limitations of each method.

Table 5.5: Summary of investigated fault detection methods

Method Advantages Limitations
Limit checking Accurate limits for

measurements with a
clearly defined range of
validity.

Requires prior knowledge
about the measurements
and the existence of a
defined range of validity.

Interquartile
range

Requires no prior
information about the
system and is able to adapt
to time changes in the
signal.

Does not include external
factors. Still requires
tuning of one variable.

Variance check:
Frozen signals

Accurately detects if a
signal is frozen using two
different detection
approaches.

Is not able to provide an
estimated value while the
signal is frozen.

Variance check:
High variance

As the variance is assumed
to be approximately
constant, the entire data
set can be used to detect
faults, giving an accurate
description of the variance.

Does not include any
function to handle a
sudden peak in variance.

CUSUM Effective to detect abrupt
changes in the signal mean.

Requires a lot of tuning to
get accurate results, both
of the threshold value and
the drift term.

Dynamic
thresholds

Allows dynamic thresholds
that includes external
factors and that is
customized for the current
operation. Requires less
tuning.

Can be difficult to set
minimum and maximum
threshold value. Needs an
improved division of
attributes.
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Chapter 6

Discussion

This chapter provides a discussion of the proposed solution to the research question,
together with a comparison of the existing methods that have been investigated in
this thesis. The covered topics include the main outcome, the limitations of the
suggested method, and finally, a discussion of potential risks arising from imple-
menting the algorithm in a real control system.

6.1 Main Outcome

The main outcome of this thesis is a proposed solution to integrate external fac-
tors, including operational, vehicle, and environmental conditions, to determine
the thresholds used in fault detection. The algorithm was implemented and tested
in a case study to investigate the performance of the method. The results are sat-
isfactory and show that the method has potential if further developed. Note that
the implemented algorithm is based on several simplifications concerning real-life
operations and conditions, but is only meant to serve as a framework for further
work.

This thesis has tested several existing methods for fault detection. The perfor-
mance of each is summarized in Table 5.5. They all show their strengths and
weaknesses but have the common drawback of not including any external condi-
tions. The method of limit checking with fixed bounds has a great performance
with measurements that have a predefined interval of validity. However, the area
of use is very narrow, as most measurements do not have this property.

Considering the method of interquartile range, this algorithm is able to adapt to
an unknown and varying signal. It is based solely on the statistics of the data
set and can be modified such that it contains one variable. This variable can be
set to determine how tolerant or strict the thresholds should be. This means that
this method is also compatible with the method of dynamic thresholds. Instead of
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using a dynamically set number of standard deviations from the mean, a defined
number of interquartile ranges from the quartiles can be applied.

The implemented methods for detecting faults in the variance fulfilled their pur-
pose. These are the algorithms that require the smallest amount of tuning. By
implementing two methods to detect a frozen signal, the performance is not de-
pendent on the used sample size. To detect high variance, the interquartile range
method was modified with the variance as input. The results were satisfactory for
both methods.

The final implemented method was the LS CUSUM filter. This method requires
more tuning as it contains two variables, which could be very time-consuming in
a real system. This algorithm could also be compatible with dynamic thresholds.
The challenge with combining these two methods is to determine an upper and
lower boundary for the limits. The variable h, which determines when and how
often an alarm is triggered, is not based on the measurement’s statistics, making
it challenging to set universal limits that work for different measurements.

6.2 Limitations and Challenges

The proposed method requires several improvements before it could be imple-
mented in a real system. The most prominent challenge is to develop a better
approach for quantifying the attributes that determine the VOSC. In the case
study, the V OSCgain is determined by three different attributes, each with three
levels of severity each. The level of severity is set based on how strict the given
attribute indicates that the limits should be. Considering two cases of the same
vehicle, conducting the same operation, using the same sensor systems and speed,
rough environmental conditions would induce more tolerant thresholds than calm
conditions. Moreover, different operations also require different degrees of accuracy
in the measurements. A sudden deviation under transit may not be as critical as
the same deviation under a strict DP operation.

The ideal way to quantify all external conditions would have been automatically.
For instance, information about wind, waves, and currents should automatically
determine the gain for this condition. The same may apply for attributes such as
signal strength, vessel speed, and current mission.

One possible solution could be to implement the algorithm as part of a hybrid
system. Hybrid system frameworks are especially suited for describing marine
vessel dynamics because the variations in dynamical behavior for various vessel
operational conditions can be captured using different sub-models merged into
one hybrid system. In the same manner, the dynamical behavior for various vessel
operational safety conditions can be accounted for using different sub-models in the
signal processing module. Figure 6.1 illustrates this concept. The figure is based
on a hybrid control system presented in [26], but in addition to a bank of observers,
controllers, and allocations, a bank of signal processing units is included.
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Figure 6.1: Illustration of a hybrid control system for a marine vessel in different vessel
operational safety conditions. In addition to the "traditional" set-up, this also includes
a bank of signal processing units corresponding to different conditions. Based on Figure
9.2 in [26]

6.3 Induced Risks

When implementing new functions in a system, it induces new risks and conse-
quences. Identifying and assessing these risks is crucial such that the algorithm
does not cause more damage than it prevents. Dynamic thresholds introduce the
risks for the wrong threshold setting, which may have severe consequences. In a
situation where the algorithm sets too strict thresholds, it may result in several
false alarms. A high number of subsequent false alarms could result in an opera-
tion being interrupted, causing costly delays. On the other hand, if the algorithm
sets too tolerant limits, faults can go on undetected, causing errors further in the
control system, such as significant fluctuations in commanded thrust.
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Chapter 7

Conclusions and Further
Work

The research question of this thesis has been:

When studying signal processing for autonomous subsea operations, how can the
limiting thresholds be dynamically set based on available information about the en-
vironmental, operational and vessel conditions?

The following section concludes the thesis and gives suggestions for further work.

7.1 Concluding Remarks

The research of this thesis is motivated by the desire to highlight the importance
of safe and credible signal processing, as both underwater and surface vessels expe-
rience a great change towards human independence and full autonomy. Different
operations, vehicles, and varying environmental conditions may affect the sensor
measurements that a vessel’s control system relies on for its performance.

All the tested algorithms have flaws and strengths. In light of the research question
of this thesis, they all miss the common feature of including external factors in the
threshold calculations. The method of limit checking using fixed bounds is stable
and reliable for measurements with a clearly defined interval of validity. The two
tests dealing with low and high variance are both easy to implement and well-
functioning. These have some variables that have to be set manually, but these are
mostly about how long to accept a high or low variance before an alarm should be
triggered.

The method of interquartile range is the method most similar to the proposed
method, as it is solely based on the statistics of the measurements. It showed
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satisfactory performance and has the advantage of being adaptive with regards to
time changes in the signal. This algorithm contains a variable that can be adjusted
based on the tolerance needed for operation. This implies that this method could
also have been implemented using dynamic thresholds.

The least squares cumulative sum filter was implemented purely to detect sudden
biases. Its performance was good, but the tuning was time-consuming even though
the algorithm comes with some simple steps to tune it. This algorithm could
have the potential of being combined with dynamic thresholds to make it adaptive
with regards to external conditions. However, combining them would introduce
the challenge of determining the minimum and maximum threshold values without
prior knowledge about the signal’s properties.

Considering the proposed method of dynamic thresholds, it can be concluded that
it is a realistic proposal but requires a lot of further development before it can be
implemented in a real system. Introducing a new function into signal processing
also introduces new risks and possible consequences. A three-dimensional model,
each with three separate categories, to determine the V OSCgain is too simple for
reality. An accurate and describing division of these attributes is crucial for the
performance of the method.

This thesis has focused on the necessity of fault detection and how external condi-
tions can be included to detect faults. The main outcome is a proposal for such a
method, which in an orderly manner can adjust the limiting thresholds based on
several external factors. Thus, it can finally be concluded that the research question
has been answered, and this thesis lays the groundwork for such a solution.

7.2 Further Work

During the development process of this thesis, several topics for further investi-
gation have emerged. The list below describes the main recommendations and
suggestions for further work.

1. Exploration and comparison of the performance of the dynamic threshold
algorithm when implemented together with the interquartile range, versus
the results obtained in the case study.

2. Expansion of the three-dimensional model for determining the V OSCgain
that determines the final thresholds. The number of necessary attributes
should be investigated. Each attribute should also have a finer division.

3. Improvement of the algorithm to automatically quantify the environmental
conditions based on wind, wave, and current information. Ideally, the system
should be able to identify environmental loads acting on the vessel. It could
be implemented by using sub-models in a hybrid control system.
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4. Implementation of the algorithm in a HIL simulator to investigate the func-
tionality together with the vessel’s response.

5. Identification of all new risks, failure scenarios, and consequences of intro-
ducing the proposed algorithm.
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Appendix A

Electronic Attachments

The files in this appendix are included in electronically submitted versions.

A.1 SignalGenerator.vi

This file contains the LabVIEW program for generating random signals with the
option of adding different failure modes.

A.2 SignalProcessing.vi

This file is the LabVIEW program containing all the fault detection algorithms
that have been implemented and tested in this thesis. This program also includes
a list of subVIs (subfunctions):

• header_limitcheck.vi

• header_iqr.vi

• header_frozen.vi

• header_highvar.vi

• header_cusum.vi

• header_dynthres.vi

• iqr.vi

• iqr_variance.vi

The upper six subVIs create headers in the output files for each method. The
bottom two calculate the interquartile range values.
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Appendix B

Signal Generator

This appendix describes the implementation of the signal generation module. This
includes a brief description of the interface and how the different failure modes are
integrated into the program. Lastly, it shows an example of the output file the
program writes.
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Chapter B. Signal Generator

B.1 Front Panel

The signal generation module, displayed in Figure B.1, is designed to create valid
test signals. The test signals are created by using a uniform white noise with an
adjustable noise amplitude and offset as a basis. This basis represents a random
signal subjected to noise. Section 2.7 defined and studied the mathematical mod-
eling of different failure modes. These models have been implemented in the signal
generator, such that each failure mode can be added to the clean signal. The
right-hand side of the interface shows the original signal versus the polluted signal.
The left side shows all the optional failures that can be added to the signal. It also
shows the signal characteristics and lets the user change the signal variables.

Figure B.1: Front panel - Signal generation module
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B.2 Failure Modes

Table B.1 shows the approach for modelling each of the studied failure modes in
LabVIEW.

Table B.1: Approach for modelling each failure mode in LabVIEW

Failure mode Modelling approach

Outliers: An outlier is simulated by
adding a deviation to one sample of
the signal. The magnitude of the
deviation is set by the user.

Signal freeze: A signal freeze is
simulated in two different
approaches, chosen by the user:
1. Forcing the signal to equal zero

from the moment the switch is
toggled.

2. Forcing the signal to remain at
its current value from the
moment the switch is toggled.

High variance: High variance is
simulated by increasing the noise
amplitude as long as the switch is
turned on. When the switch is
toggled off, the amplitude returns to
normal. The new noise amplitude
can be determined by the user.

Bias: A signal bias is simulated by
adding a constant value to each of
the signal samples. The magnitude
of the bias is determined by the
user.

Drift: Signal drift is simulated by
creating a ramp function that can be
added to the signal. The slope of the
ramp is determined by the user.
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B.3 Output File

While the program generates the signal, it simultaneously writes all data to an
output file. This file contains both the raw random signal and the polluted signal
together with its frequency, mean, and variance. The table below shows a sample
of a written output file.

Table B.2: Example of an output file

Time Raw Processed Mean Variance Frequency
0.000000 9.133980 9.133980 9.133980 0.000000 10000
0.100000 2.108496 2.008496 5.621238 12.339357 10000
0.200000 -6.135356 -6.335356 1.702374 38.941238 10000
0.300000 8.066158 7.766158 3.293320 36.799258 10000
0.400000 8.791422 8.391422 4.392940 34.276067 10000
0.500000 5.821492 5.321492 4.631032 28.846828 10000
0.600000 1.034577 0.434577 4.117253 26.309667 10000
0.700000 -1.313642 -2.013642 3.438391 26.246932 10000
0.800000 -3.731428 -4.531428 2.641744 28.407773 10000
0.900000 19.485724 18.585724 4.326142 51.101765 10000
1.000000 3.522085 2.522085 4.253046 46.509580 10000
1.100000 12.572870 11.472870 4.946365 47.921380 10000
1.200000 6.828531 5.628531 5.091147 44.486662 10000
1.300000 -2.331158 -3.631158 4.560982 44.963012 10000
1.400000 -4.294617 -5.694617 3.970609 46.845047 10000
1.500000 21.483140 19.983140 5.065142 61.887275 10000
1.600000 -1.774957 -3.374957 4.662783 60.837129 10000
1.700000 7.487888 5.787888 4.819734 57.876056 10000
1.800000 -0.679811 -2.479811 4.530284 56.338008 10000
1.900000 6.680767 4.780767 4.637808 53.740775 10000
2.000000 8.467339 6.467339 4.820167 51.846784 10000
2.100000 3.991620 1.891620 4.782505 49.519897 10000
2.200000 0.449975 -1.750025 4.594135 48.147497 10000
2.300000 11.845061 9.545061 4.896256 48.240738 10000
2.400000 6.758925 4.358925 4.970763 46.444338 10000
2.500000 -8.605827 -11.105827 4.448587 51.474726 10000
2.600000 4.900170 2.300170 4.465312 49.575528 10000
2.700000 2.780958 0.080958 4.405156 47.902678 10000
2.800000 1.255265 -1.544735 4.296540 46.581195 10000
2.900000 5.278976 2.378976 4.329287 45.059589 10000
3.000000 3.721375 0.721375 4.309677 43.617591 10000

...
...

...
...

...
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Appendix C

Implementation of Fault
Detection Methods

This appendix contains a brief description of how each studied method was im-
plemented. With each description, a picture of the corresponding front panel is
attached.
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C.1 Main

Figure C.1 shows the main page of the final fault detection program. This page
shows an overview of the content of the program, including all the implemented
algorithms. On this page, the user must determine the file path for the input file
and establish the rows and columns where the relevant signal data is located. The
plot to the right shows the data accessed from the input file. By selecting one of
the tabs at the top of the panel, the various methods can be tested on the chosen
input file.

Figure C.1: Front panel - Main
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C.2 Limit Checking

The front panel for the limit checking algorithm is shown in Figure C.2. The upper
plot shows the input signal, while the middle plot shows the output after using limit
checking. The algorithm was implemented such that the upper and lower bounds
have to be set manually and should be adjusted to fit the data set. The algorithm
goes through each of the data samples and compare them to the predefined upper
and lower bound. If the current value is outside the allowed interval, an alarm is
triggered, and the value is set as the maximum or minimum allowable value. The
bottom plot shows the alarm as a function of time. When a fault is detected, the
value is equal to 1, while it remains 0 as long as the signal is fault-free. After
running a test, the LED next to the title shows whether or not the data set passed
the test. If it is green, it means that every single value in the data set was within
the allowed interval.

Figure C.2: Front panel - Limit checking
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C.3 Interquartile Range

Figure C.3 shows the resulting front panel from implementing the method of in-
terquartile range. The three plots on the right show the original signal, the pro-
cessed signal, and the alarm function, respectively. The window size is adjustable
and determines how many samples that are included when calculating the limits
for each signal value. The total number of samples is displayed to make it easier
for the user to choose a window size. All important values, such as the quartiles
and the final limits, are displayed in the panel. One modification has been done
compared to the original algorithm. The tolerance of the upper and lower bounds
can be adjusted by changing the variable A, which in the original algorithm is set
as a constant equal to 1.5.

Figure C.3: Front panel - Interquartile range
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C.4 Variance Check: Frozen Signals

The implemented front panel to detect frozen signals is shown in Figure C.4. The
interface has three adjustable values: The sample size for calculating the variance,
the minimum acceptable variance before it is considered frozen, and the maximum
allowable number of equal consecutive measurements. The three plots show the
input signal, the variance, and the alarm function, respectively.

Figure C.4: Front panel - Frozen signals
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C.5 Variance Check: High Variance

The resulting front panel to detect high variance is shown in Figure C.5. The
algorithm has three adjustable variables, namely the IQR window size, the variance
sample size, and the variable determining the tolerance of the limits. The option
to modify the window size and sample size was added to be able to test how the
result is affected by the amount of data available for the calculations.

Figure C.5: Front panel - High variance
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C.6 Cumulative Sum

Figure C.6 shows the front panel of the implemented CUSUM algorithm. The two
variables h and ν, corresponding to the threshold value and the drift term, can be
set by the user. Some simple steps to tune these variables are included in the panel.
The upper plot shows the input signal, the middle plot shows the signal estimate
θt, and the bottom plot shows the alarm function.

Figure C.6: Front panel - CUSUM
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C.7 Dynamic Thresholds

The resulting front panel of the implemented algorithm, displayed in Figure C.7,
shows all relevant values together with plots of the input signal, frequency change,
and the alarm function. The algorithm is implemented for a case with three sep-
arate phases but can easily be modified to include more. The interface requires
the user to determine all necessary variables, represented as a matrix in the front
panel. For each phase, values for VUM, Env and VC has to be determined, based
on the relevant operations. Each phase must also be assigned a frequency band.
A minimum and maximum a-value must be set to determine the final thresholds.
This value determines the tolerance of the final limits. A more detailed explanation
of these variables is given in Chapter 4. After running the algorithm, the interface
will show the calculated V OSCgain for each phase together with its corresponding
a-value.

Figure C.7: Front panel - Dynamic thresholds
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