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Abstract

Kristiansen and Faltinsen (2017) confirmed that the inviscid FNV-theory, compared to ex-

periments, over-estimated the third harmonic wave load amplitudes on a bottom mounted

vertical cylinder for longer and steeper waves. The local KC number along the vertical

axis of the cylinder, indicated that the flow separates under the wave conditions where

discrepancies in the third harmonic loads are present. Hence, the consequence of involv-

ing viscous effects in the analyses was investigated in the present work. A combined

CFD-FNV load model was derived by replacing the force term proportional to ∂u
∂t in the

FNV-theory, with an integrated CFD-force. However, compared with the inviscid fifth

order FNV-theory, the load estimations from the CFD-FNV load model did not comply

better with the experimental results. In fact, using the combined load-model, the third

harmonic amplitudes were over-estimated slightly more for the steeper waves. Further-

more, several approaches of modelling the boundary layer, and the corresponding effects

on the results, were investigated. Although the use of different viscous models affected

the vorticity field around the cylinder, the load harmonic amplitudes remained by almost

the same magnitudes. Thus, the involvement of 2-D viscous effects in the analysis during

the present work, was not able to explain the observed discrepancies in the third harmonic

loads.

An experiment was performed, in order to get deeper insight into 3-D effects that po-

tentially could explain the discrepancies between the so-far tested load models and ex-

periments. Several authors have observed and commented on a local rear run-up during

experiments of regular waves on a slender bottom mounted vertical cylinder. The run-up

is believed to be caused by a high pressure zone due to vortex shedding at the rear of the

cylinder. The upwelling of the free surface was also observed during the experiment in the

present work. Higher harmonic load contributions from the run-up may explain the dis-

crepancies in the third harmonic loads. A 3-D CFD analysis would be necessary in order

to account for this effect.
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Chapter 1
Introduction

1.1 Motivation

As the world’s demand for energy increases and the climate changes suddenly are all

around us, new solutions and technology are necessary to handle the challenges. Offshore

wind energy is a field of significant potential, and has experienced a fast technological

development the recent years due to international cooperation between research facilities,

universities and companies to make a competitive alternative to fossil fuels. The European

marked invests a lot in offshore wind farms (Remy and Mbistrova (2018)), referring to the

data from Wind Europe in the figure below, in which the annual installed capacity (MW)

follows an exponential development from the beginning in the early 90’s to 2017.

Figure 1.1: Cumulative and annual offshore wind installations (Remy and Mbistrova (2018))

Several challenges still needed to be solved in order to reach a more cost efficient design
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Chapter 1. Introduction

of Offshore Wind Turbines (OWT) monopiles. One of the most important ones related

to OWTs is associated with the excitation of the natural period, typically laying around

4 seconds. That means 3ω and 4ω components of incoming waves with periods of 12-15

seconds are of main interest with respect to resonance response to higher order wave loads.

Estimating these loads also with respect to viscous theory could lead to a more efficient and

precise analysis of the forces. Considering an offshore wind park consisting of hundreds

of wind turbines, this type of improvement in the design process can potentially reduce the

necessary material usage and the costs of development of new OWT fields. This would

make bottom-mounted OWTs even more competitive in the European and Global energy

market of today and in future.

1.2 Background and Scope

Ringing is defined as transient elastic oscillations in extreme waves, caused by higher

harmonic loads exciting resonant response of global structural modes. The investigations

so far show that theories based on potential theory, such as the theory by Faltinsen et al.

(1995), from now on referred to as the FNV-theory, over-estimate the third harmonic wave

forces compared to experiments (Kristiansen and Faltinsen (2017)). The FNV-theory ne-

glects important aspects of the flow such as flow separation. Kristiansen and Faltinsen

(2017) addresses the need for deeper investigation of ringing loads on a bottom-mounted

surface-piercing slender cylinder by application of Navier-Stoke solvers (computational

fluid dynamics; CFD). The present work deals with 2D-CFD simulations. The application

of 2D-CFD is based on the assumption that the cross-flow principle is valid, i.e. the gra-

dient of the flow velocity in the vertical direction is negligible compared to the horizontal

gradients. The numerical analysis seeks to provide deeper insight in the eventual effect

of turbulence in the boundary layer, a topic which today has many uncertainties. Knowl-

edge about the physics related to the transition from laminar to turbulent flows is limited,

despite several years with research on the topic. The problem gets even more complex

when oscillating flows are studied, e.g. oscillating uniform flow around a cylinder where

the flow separates from the body. The flow will here encounter a reversed flow due to

the wake of the former flow half-cycle, provoking intense disturbances to the flow. The

critical Reynolds numbers, i.e. the Reynolds number of the laminar-turbulence transition,

is consequently expected to be considerably lower than for cylinders in uniform steady

flow (Bearman et al. (1985), Sarpkaya (1986)). Hence, different approaches to model

the boundary layer, with or without turbulence, and its potential impact on the numeri-

2



1.3 Report structure

cal results were studied. An appropriate model, consisting of a viscous term integrating

sectional 2D-CFD forces together, in conjunction with terms from the FNV-theory not

accounted for by the CFD-force, was obtained for a wave-cylinder interaction. The capa-

bility of the combined CFD-FNV model to estimate the wave-forces on bottom-mounted

OWTs was to be evaluated. Especially the accuracy on prediction of the third harmonic

loads, which are shown to be over-estimated by pure FNV-theory, was focused on.

1.3 Report structure

The report consists of a few main parts. Firstly, the theory considered most relevant for

the present work is introduced, some topics more comprehensively than others. Next, the

model experiment that were carried out in the small wave tank at the centre of marine

technology, NTNU Trondheim, is described and commented on.

Thereafter, the numerical model that was created in order to simulate the cross section of

the monopile model in oscillating flow, is presented. The modelling approach in terms of

grid, turbulence, and numerical scheme are explained. In addition are convergence tests

that verified the result’s independence of the simulation parameters discussed. The nu-

merical model was also compared to related experimental results, in order to validate the

model. At last, the derivation of the combined CFD-FNV model is presented.

Subsequently, the results and a comprehensive discussion around them are provided. The

main focus was on the comparison between estimations of the third harmonic load by the

combined CFD-FNV model with the experimental results by Kristiansen and Faltinsen

(2017). Finally, a conclusion summarizing the main findings and proposals for further

work are given.
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Chapter 2
Theory

2.1 Basic equations and assumptions in fluid mechanics

2.1.1 Potential theory

The assumptions required for a potential flow are:

• Inviscid fluid

• Incompressible fluid

• Irrotational flow

Although the incompressible assumption is rather descriptive considering the properties

of water, the assumptions of an irrotational flow and inviscid fluid depend on the situation.

Free and external flows around bodies can be considered frictionless and irrotational since

the inviscid effects are reserved a very thin layer around the body, called the boundary

layer. However, when potential theory applies, a potential scalar function, φ, describing

the velocity field of the fluid as the gradient of itself, must exist. This can accordingly be

proven through a simple derivation. For any scalar φ, applies,

∇×∇φ = 0 (2.1)

The assumption of irrotational flow supplies,

∇× ~u = 0 (2.2)

5



Chapter 2. Theory

Comparing equation (2.28) with (2.2), it follows that,

~u = ∇φ (2.3)

The potential function describes the velocity field of the flow in the following terms

u =
∂φ

∂x
, v =

∂φ

∂x
, w =

∂φ

∂x
(2.4)

where u, v and w are the magnitudes of the velocity vector ~u in x, y and z direction,

respectively.

2.1.2 Conservation of mass

The integral form of mass conservation can be written

∂

∂t

∫
Ω

ρdΩ +

∫
S

ρ~u · ~udS = 0 (2.5)

where Ω is the volume of the domain, while S is the surface. Using the divergence theorem

on the second term, a reformulation of the equation into differential coordinate-free form

is possible,

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.6)

The assumption of an incompressible fluid yields,

∇ · (~u) = 0 (2.7)

Or written with index notation and in Cartesian Coordinates,

∂(ρui)

∂xi
= 0 (2.8)

By combining (2.3) and (2.7), a second order partial differential equation, better known as

the Laplace equation, can be defined

∇2φ = 0 (2.9)

6



2.1 Basic equations and assumptions in fluid mechanics

2.1.3 Conservation of momentum

The integral form of the momentum conservation equation can be written as in (2.10),

∂

∂t

∫
Ω

ρφdΩ +

∫
S

ρ~u~u · ~ndS = Σ~f (2.10)

where Σf is the sum of external forces acting on the fluid in the CV, either in terms of

surface forces or in terms of body forces. Only Newtonian fluids are considered, meaning

that the stress tensor is linearly proportional to the strain rate tensor. In addition, an in-

compressible and isothermal fluid is assumed. It may be shown that a derivation based on

these assumptions as well as application of the Gauß-theorem yields the incompressible

Navier-Stokes equation,

ρ
D~u

Dt
= −~∇p+ ρ~g + µ∇2~u (2.11)

where the gravity ~g, is the only body force acting on the fluid. Equation (2.11) consists of

four unknowns in terms of three velocity components in addition to the pressure. It can be

rewritten in terms of index notation and Cartesian coordinates

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= +ρgi −

∂p

∂xi
+
∂τij
∂xj

(2.12)

where τij represents the viscous stress tensor components.

τij = µ
( ∂ui
∂xj

+
∂uj
∂xi

)
(2.13)

Euler equation

A distinct approximation to (2.11) applies when the Reynolds number is high and accord-

ingly 1
Re ≈ 0. The viscous term from the Navier-Stokes equation is hence negligible

outside the boundary layer and the remaining terms compose the Euler Equation,

ρ
D~u

Dt
= −~∇+ ρ~g (2.14)

Due to the high velocity gradients normal to the wall because of the frictional force from

the no-slip condition, the viscous term is not negligible in the boundary layer. Derived

boundary layer approximations, as Prandtl (1904), may be used instead. However, in the

region of flow separation, the only equation valid to describe the fluid is the Navier-Stokes

equation.
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Chapter 2. Theory

2.1.4 Boundary layer theory

Boundary layer theory is one of the main topic within fluid mechanics, and hence also

very important in marine hydrodynamics. In the following, the main focus will be on flow

around circular cylinders as this is most representative for the present work.

Flow separation

The tendency of the flow to stick to or separate from the wall depends mainly on the

pressure gradient. A favourable pressure gradient( ∂p
∂x < 0) and increasing flow velocity

are associated with thin boundary layers and wall-attached flows. However, as the pressure

gradient increases and the velocity decelerates, the boundary layer grows thicker and the

flow becomes more likely to separate. If the adverse pressure is strong enough, the shear

stress, which is proportional to ∂u
∂y |y=0, becomes zero, defining the separation point on

the cylinder. Downstream the separation point, a reversed flow rises due to the vorticity

associated with the separation of the fluid from the wall. For a cylinder in ambient steady

laminar flow, the separation point is located around 80 − 85◦(from the stagnation point),

while in turbulent flows, it takes place around 110◦ (Chang (1961)).

Classification of flow regimes of uniform flow around fixed cylinder

Laminar flows are characterised by smooth streamlines and high order of motion, while

turbulent flows are characterised by velocity fluctuations and high disorder of motion. The

flow regime depends highly on the ratio between inertia and viscous forces, defined by the

Reynolds number:

Re =
U∞D

ν
(2.15)

where U∞ is the uniform free stream velocity, D is the characteristic length of the body,

and ν is the kinematic viscosity. At high Reynolds number, the inertia forces dominates

the viscous forces. Consequently, the viscous forces will not prevent the fluids random

and rapid fluctuations.

Rough estimations of flow regimes, considering an uniform flow past a smooth cylinder,

may be based on the global Reynolds number:

• Re . 2 · 105

• 2 · 105 . Re . 5 · 105

8



2.1 Basic equations and assumptions in fluid mechanics

• 5 · 105 . Re . ·106

• Re & 3 · 106

where the flow regimes from top to bottom are called: subcritical flow regime, critical

flow regime, superciritcal flow regime and transcritical flow regime. The Reynolds num-

ber characterising the flow regimes are of course approximate values. However, these

Reynolds numbers are referring to the global flow regime. In regions where the flow might

be affected by the body surface, the local flow regime will develop differently. Generally,

in the subcritical regime, the boundary layer is always laminar before the separation point,

while for the super- and transcritical flow regimes, it will be turbulent before separation.

In the critical regime, there will be a delayed separation due to reattachemnt of the flow

more downstream of the cylinder. This is clearly visible as a sudden drop in the value of

the drag coefficient in the critical range of Reynolds number, illustrated in the plot of the

drag coefficient as a function of the Reynolds number for cylinders with different surface

roughness k(see Figure 2.1). The critical range and hence the ”drop” depends here on the

surface roughness of the cylinder.

Figure 2.1: Drag coefficient of rough circular cylinders in steady incident flow for different surface
roughness values k

D
(Achenbach (1971)).
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2.2 The boundary value problem

The typical problem in marine hydrodynamics is defined by a set of conditions needed

to be fulfilled on the considered domain of the fluid. Usually in marine hydrodynamics

this domain also involves a marine structure, whose excitation loads and corresponding

response are in main focus to analyse. The other boundaries except of the body present,

are usually defined as the free surface, the seabed, and the inlet and outlet of the domain.

Mathematical conditions in correspondence with the physics of the situation must be in-

troduced in order to obtain a unique solution for the problem. The validity and accuracy

of the solution are dependent on the selection of boundary conditions, chosen based on the

intuitive understanding of the problem.

Figure 2.2: The domain defining the problem for the potential φ. Two conditions are needed at the
free surface, while both ζ and φ are unknown.

2.2.1 Boundary conditions

The domain illustrated in Figure 2.2 is considered in the following. By considering po-

tential theory and the conservation of mass, the Laplace equation (2.9) is the governing

equation applying over the whole domain of the fluid. The boundary conditions applying

on the free surface are the kinematic and dynamics free surface condition. The kinematic

free surface condition is the criterion for the fluid particles on the free surface to remain on

the free surface, while the dynamic free surface conditions originates from the Bernoulli

equation and maintenance of uniform pressure on the free surface. These conditions are

formally written
∂ζ

∂t
=
∂φ

∂z
−∆φ ·∆ζ , z = ζ(x, y, t) (2.16)

10



2.2 The boundary value problem

∂φ

∂t
= ∆φ ·∆φ+ gζ , z = ζ(x, y, t) (2.17)

where (2.16) refers to the kinematic free surface conditions, and (2.17) to the dynamic

ones. The bottom boundary condition on the seabed is formulated as,

~u · ~n = 0 on SSB (2.18)

where ~n is the normal vector of the seabed. This condition applies as the flow neither is al-

lowed to flow across, nor have any horizontal velocity at the fixed bottom(usually referred

to as the no-slip condition in fluid mechanics). Similarly the impermeability conditions on

the surface of the body can be written

~u · ~n = 0 on SB (2.19)

where SB is the surface of the submerged body, and ~n is the normal vector on the body. At

the inlet and outlet of the domain, the boundary conditions are dependent on the problem

description. In a classical problem involving a wave-generating wavemaker, boundary

conditions representing the kinematics of the waves must also be stated at the lateral sides

of the domain.

2.2.2 Stokes perturbation approach

By assuming that the solution will depend on a small parameter ε, being of the same

order as the non-dimensional wave steepness kζ, the velocity potential φ and free surface

elevation ζ can be expressed as power expansions where the terms are arranged according

to the order of ε. The linear solution is independent of ε, while the second order term will

be proportional to ε, and so on.

φ = εφ̃1 + ε2φ̃2 + ε3φ̃3 + .... (2.20)

ζ = εζ̃1 + ε2ζ̃2 + ε3ζ̃3 + .... (2.21)

Using the Stokes perturbation approach, the non-linear boundary value problem can be

rewritten into an infinite number of linear equations, in ascending order of ε.
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2.2.3 Linearization

Both of the free surface conditions are non-linear. However, by application of the pertur-

bation approach, only keeping terms up to the first order, and Taylor expansion of both

conditions around the mean free surface at z = 0, linearized versions of the conditions are

obtained. The linearized expressions become as follows,

∂ζ

∂t
=
∂φ

∂z
, z = 0 (2.22)

gζ +
∂φ

∂t
= 0 , z = 0 (2.23)

Taking the time derivative of (2.23) and inserting for ∂ζ∂t into (2.22), a combined linearized

free surface condition is derived,

∂2φ

∂t2
+ g

∂φ

∂z
= 0 (2.24)

The linearization of the physical problem narrows down the scope to only consider the

forces in range of the excitation frequency, exciting motion of the structure proportional

to the incoming excitation forces. The solutions for the velocity potential and pressure are

accordingly carried out to first order of the non dimensional wave slope kζa. Although

a linearization is a great simplification of the problem, it can in cases with large volume-

structures, such as semi-submersibles and ships, describe the wave induced motion and

loads sufficiently. Other kinds of structures, such as a bottom-mounted slender vertical

cylinder, requires the involvement of non-linear theory for accurate analyses, due to an-

other wave-structure interaction.
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2.2 The boundary value problem

2.2.4 Wave theory

Solving the linear boundary value problem yields the first order dispersion relation and

a solution for small-amplitude waves. Thus, linear wave theory, or Airy waves, are in-

sufficient to describe waves with larger amplitudes. Hence, deriving wave theories also

applying for waves of higher steepness, have been of interest. Examples of such theories

are higher order Stoke waves or cnoidal wave theory. Here, Stokes fifth order waves are

focused.

2.2.5 Stokes fifth order waves

In order to also include higher order terms, the power expansion of the potential φ and

the wave elevation ζ must be completed to a higher order. Stokes presented a solution for

waves of finite height by use of trigonometric series. However, deriving the coefficients

for higher order waves with this method is rather time consuming and monotonous. There-

fore, Skjelbreia and Hendrickson (1960) aimed to provide tabular values of the coefficients

of Stoke fifth order wave theory as a function of the parameter h/λ, which derivation in

the following is quickly reviewed. To be consistent, the definition of the coordinate system

and axis differs here from the original paper, but are defined according to Figure 2.2. In

addition, because an oscillatory wave of wavelength λ is considered, the constant denoted

λ in Skjelbreia and Hendrickson (1960) is here referred to as Π.

The waves are being assumed to be non-viscous long crested water waves of constant

depth. The horizontal velocities may therefore easily be obtained according to potential

theory when the velocity potential φ is known. The kinematic and dynamic free surface

conditions need to be fulfilled at the free surface, while the bottom boundary condition ap-

plies at the seabed. The wave profile and potential function can be expressed as functions

of a phase angle θ,

θ =
2π

λ
(x− cωt) = k(x− c̄ωt) (2.25)

where cω is the wave celerity. Using the relation between the velocities and the potential(

((2.4)), combined with the free surface conditions((2.16), (2.17)) and (2.25), the kinematic

and dynamic free surface conditions may be rewritten into

∂w

∂x
=
−w
cω − u

(2.26)

13
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(cω − u)2 + w2 = c2ω − 2g(K + ζ) (2.27)

where K is a constant. The potential φ needs to satisfy the Laplace equation, the free

surface boundary conditions, as well as the bottom boundary condition. The solution for

the wave profile ζ will appear in the iterative solution process of (2.26) and (2.27). The

expressions for both φ and ζ are assumed to form trigonometric series. The unknown

constants are determined using an iterative procedure by substitution into equation (2.26)

and (2.27). The series will here be expressed in the same compact manner as by Fimland

(2018).

φ =
cω
k

5∑
n=1

Dn cosh(nk(h+ z) sin(nθ) (2.28)

ζ =
1

k

5∑
n=1

En cosh(nθ) (2.29)

where the wave celerity is expressed accordingly,

cω =

√
C2

0 (1 + Π2C1 + Π4C2)

k
(2.30)

The expressions represented by the introduced coefficients Dn and En can be found in

table 2.1,

n Dn En
1 ΠA11 + Π3A13 + Π5A15 Π
2 Π2A22 + Π4A24 Π2B22 + Π2B24

3 Π3A33 + Π5A35 Π3B33 + Π5B35

4 Π4A44 Π4B44

5 Π5A55 Π5B55

Table 2.1: Definition of the coefficients Dn and En

In addition, the forms of the constant K and wave celerity cω are assumed as follows

kK = Π2C3 + Π4C4 (2.31)

14



2.2 The boundary value problem

kC2
ω = C2

0 (1 + Π2C1 + Π4C2) (2.32)

The expressions for φ, ζ, K and k, are substituted into the rewritten free surface condi-

tions((2.26) and (2.27)). The terms are thereafter grouped by powers of λ and sub-grouped

by powers of cos(θ). Because the equation must apply for every φ, terms of the same

power of λ and cos(θ) are set equal to each other, yielding an equation set of twenty equa-

tions with twenty unknown coefficients; Aij , Bij and Ci. The coefficients are provided

in tabular form by Skjelbreia and Hendrickson (1960) as functions of h/λ. However, as

Fenton (1985) identified, the sign in front of 2592 in the expression for C2 should be a

minus.

By using the relation between the surface elevation and the wave height H , H = ζ|θ=0 −
ζ|θ=π , (2.29) may be reformulated into

πH

h
=
λ

h
(Π + Π3B33 + Π5(B35 +B55)) (2.33)

Additionally, using the expression forC0 as derived by Skjelbreia and Hendrickson (1960)

together with equation 2.27, the following relation is derived

h

λ0
=
h

λ
tanh kh(1 + Π2C1 + Π4C2) (2.34)

where λ0 = gT 2

2π . Because the wave heights and wave length are assumed known char-

acteristics of the wave, and the coefficients only depend on the wave depth to wavelength

ratio(h/λ), iterative solving of the nonlinear equations (2.33) and (2.34) provides the val-

ues of the wave length λ, and the coefficient Π. The wave number can then easily be

found, and accordingly the fifth order expressions for φ and ζ are obtained. Furthermore,

the velocities u and w are calculated by differentiation of the velocity potential, yielding

u = cω

5∑
n=1

nDncosh(nk(h+ z))cos(n(θ)) (2.35)

w = cω

5∑
n=1

nDnsinh(nk(h+ z))sin(n(θ)) (2.36)

The acceleration in x-direction may be obtained by differentiating u with respect to time.

The velocity gradients are on the other hand found by differentiation of u and w with

respect to x and z, respectively,
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∂u

∂t
= cωω

5∑
n=1

n2Dncosh(nk(h+ z))sin(n(θ)) (2.37)

∂u

∂x
= −cωk

5∑
n=1

n2Dncosh(nk(h+ z))sin(n(θ)) (2.38)

∂w

∂z
= cωk

5∑
n=1

n2Dncosh(nk(h+ z))sin(n(θ)) (2.39)
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The Ursell number

The impact of the Ursell number on the validity of Stokes wave theory has been discussed

by several authors e.g. Fenton (1990) and Dean and Dalrymple (1991). The Stokes wave

theory has limitations for higher waves in shallow water, especially when only expanded

to second order, due to a disproportionately large second order term. Higher order Stokes

wave theory should therefore only be used within certain limits of the Ursell number, a

number defined according to Ursell (1953),

Ur =
Hλ2

h3
(2.40)

Hedges (1995) proposed an upper limit for appropriate use of Stokes wave theory, at

Ur = 40, where cnoidal wave theory is suggested for higher Ursell numbers (Fenton

(1990)). This boundary between the application of Stokes and cnoidal wave theory was

found satisfactory, as the wave theories provided results within 5% error compared to the

more accurate Fourier values (Hedges (1995)). The approximated regions of valid appli-

cation of different wave theories can be found in Figure 2.3.

Figure 2.3: Approximate regions for application of analytical wave theories (Hedges (1995)).
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2.3 Wave forces on vertical circular cylinders

Potential theory based load-models may in many cases be reliable, but the appropriate-

ness of its application is highly dependent on the problem and wave-structure interaction.

Several theories have been derived in order to enable accurate analysis of wave forces on

vertical slender cylinder by potential theory, usually including important non-linear forcing

terms by introduction of higher order wave kinematics and velocity potentials. Malenica

and Molin (1995) are among those who have been focusing on the evaluation of the third

harmonic loads on a circular cylinder. However, their and other conventional diffraction

theories are based on the assumption that the wave amplitude ζa is small compared to the

characteristic length of the structure. Faltinsen et al. (1995) allowed incoming waves of

higher steepness, with amplitudes of the same order as the radius of the cylinder. With

application of potential theory, it is assumed that the inertia loads dominate and the vis-

cous effects are negligible. In the case of a slender circular cylinder, the validity of this

assumption is dependent on the considered incoming waves. Longer and steeper waves

may lead to local KC-numbers along the vertical cylinder axis indicating viscous effects.

The most important load models for the present work are thus presented in a short manner,

from the potential theory based FNV-theory to the equation presented by Morison (1950)

which also includes a drag-term.

2.3.1 Potential flow

The horizontal forces in surge on a 2D cylinder in an uniform flow can according to po-

tential theory be calculated as

Fx = FI = ρ
πD2

4
CM

∂u

∂t
(2.41)

where CM is the inertia coefficient for a circular cylinder. In potential theory, CM =

1 + CA = 2. Here, CA is the added mass coefficient for a circular cylinder. The potential

value of the added mass for a circular cylinder in surge may very easily be derived by

considering a two-dimensional circular cylinder, moving in x-direction with speed u(t) in

an infinite fluid where no inflow is considered. The axis system and load conventions are

defined according to Figure 2.4. The added mass and damping forces are connected to the

dynamic pressure due to motion of the body; they are so-called radiation forces.

F (2D)
x = −a(2D)

11 u̇− b(2D)
11 u (2.42)

18



2.3 Wave forces on vertical circular cylinders

where a11 is the added mass in surge, b11 is the damping in surge and F (2D)
x is the two

dimensional radiation force in surge.

The dynamic pressure can be defined and evaluated at the body surface, where r equals

the outer radius a.

p = −ρ∂φ
∂t

(2.43)

p|r=a = −ρ∂φ
∂t
|r=a (2.44)

An infinite segment of the body surface per unit length, may be expressed as,

dS = a dθ (2.45)

The two-dimensional radiation forces in surge due to the body motion may be found by

multiplying the dynamic pressure with the normal vector in surge, n1, and integrate over

dS.

F (2D)
x =

∫ θ=2π

θ=0

ρ
∂φ

∂t
|r=a a n1dθ (2.46)

where normal vector ~n is defined pointing into the water, giving a surge component n1,

n1 = cos θ (2.47)

The solution of the velocity potential around a cylinder is given in (2.48), and its time

derivative in equation (2.49). These are needed in order to insert for the dynamic pressure

into (2.46), yielding (2.50),

φ = u
a2

r
cos θ (2.48)

∂φ

∂t
|r=a = −u̇a cos θ (2.49)

F (2D)
x =

∫ 2π

0

−ρu̇a2 cos2 θ dθ = −ρa2π u̇ (2.50)

Compared with the radiation force in surge (2.42), consisting of one added mass term in

phase with acceleration u̇, and a damping term in phase with velocity, u, it is clear that the
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derived expression from (2.50) must be the added mass term. Accordingly this means that

a
(2D)
11 = ρa2π = ρ

πD2

4
(2.51)

Figure 2.4: Illustration of the defined Cartesian coordinates, the cross section with radius a and
angle θ, the load convention and the water depth h.

2.3.2 Morison equation

Commonly, the horizontal force on a strip of a vertical cylinder fixed in the seabed is

described trough a division of the total in-line force in two components, where the first

term FI originates from inertia forces, while the second term FD is a result of the drag

forces on the structure.

dF = FI + FD (2.52)

The inertia term is proportional to the acceleration of the fluid, while the drag term is non-

linear. This leads to the most common version of Morison equation (2.53), describing the

in-line forces onto a vertical strip of a fixed cylinder as follows,

dF = ρ
πD2

4
CM u̇ dz +

ρ

2
CDD | u | u dz (2.53)

where CM is the inertia coefficient, and CD is the drag coefficient. In case of potential

theory, (2.53) can be rewritten including the added mass from equation (2.51),

dF = (ρ
πD2

4
+ a11) u̇ dz +

ρ

2
CDD | u | u dz (2.54)

The Morison equation neglects transverse forces, and is only valid when the long wave
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approximation applies, that means when mass or viscous forces are dominating. The long

wave approximation requires:

λ

D
> 5 (2.55)

where λ is the wavelength and D is the diameter of the cylinder.

Figure 2.5 illustrates the field of application of Morison equation for regular waves on finite

water depth. Generally, the Morison equation is not applicable above the wave breaking

limit, or when diffraction forces dominate.

Figure 2.5: Classification of dominating wave forces depending on H, λ and D(Faltinsen (1990)).

Calculation of CM and CD

An oscillating flow is described by u = um cos(ωt), where um is the velocity amplitude

of the oscillating flow, and ω is the oscillation frequency of the periodic flow. Keule-

gan and Carpenter (1958) introduced a periodic parameter referred to as the Keulegan-

Carpenter(KC)-number,

KC =
um T

D
(2.56)

where T is the oscillation period, and D is the characteristic length of the structure. The

Fourier averages of the inertia and drag coefficient can be determined as demonstrated by

Keulegan and Carpenter (1958). The force on the cylinder per unit length in general can

be written as a function of several parameters,
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F

ρu2
mD

= f(θ,KC,Re) (2.57)

where θ = 2πt/T . A Fourier analysis is carried out in order to obtain the values of the

values for the coefficients CM and CD. As the coefficients vary with the phase θ of the

wave cycle, these can be calculated as weighted averages, yielding

CM =
2

π3
KC

∫ 2π

0

F sin θ

ρu2
mD

dθ (2.58)

CD = −3

4

∫ 2π

0

F cos θ

ρu2
mD

dθ (2.59)

Applying a least square approach to minimize the error between the measured and calcu-

lated forces leads to

CDLS = − 8

3π

∫ 2π

0

F |cos θ| cos θ

ρu2
mD

dθ (2.60)

CMLS = CM (2.61)

In this Fourier analysis, the force is assumed periodic and symmetric, i.e. F (θ) = −F (θ+

π). This assumptions is not perfectly accurate, considering that a harmonic oscillating flow

around a symmetrically situated cylinder may cause asymmetrical flow and single vortex

formations, leading to an asymmetric time series of the force. However, the error is as-

sumed to be small.

Regarding oscillating flows, the importance of the inertia forces compared to drag forces

depends highly on KC-number. The ratio between the amplitudes of the inertia and drag

terms yields:

FImax

FDmax

=
π2

2 CMD
2u0

1
2CDDu0T

=
π2

KC

CM
CD

(2.62)

Considering small KC-numbers, CM ≈ 2 and CD ≈ 1. Accordingly the in-line force on

the structure is highly inertia dominated, and the drag contribution may hence be neglected.

22



2.3 Wave forces on vertical circular cylinders

2.3.3 The generalized FNV-theory

Faltinsen et al. (1995) derived the FNV theory for infinite water depths and regular inci-

dent third order Stokes waves. Regular incident waves of amplitude ζa and wave number

k is considered incoming to a circular cylinder of radius a. The theory is based upon po-

tential theory and neglects flow separation. Additionally, it is assumed no far field wave

generation from the cylinder. In opposite to the conventional perturbation approach, the

FNV-theory assumes both the linear wave slope kζ and non dimensional cylinder radius

ka to be of the same order ε. It also includes the higher order effects in the region close to

the cylinder associated with the free surface boundary condition. Kristiansen and Faltinsen

(2017) generalised the theory to also account for arbitrary incident wave kinematics and

finite water depth.

The FNV-theory divides the total potential φ into three components; the incident wave

potential φI , the linear diffraction potential φs and the third order diffraction potential ψ.

The latter one satisfies the tree dimensional Laplace equation and approximates free sur-

face conditions to third order. φs accounts for the impermeability condition on the surface

of the cylinder, but not for the disturbances of the free surface. Faltinsen et al. (1995)

divides the problem into a linear and a nonlinear analysis. The domain is divided into two

sub-domains, where the inner one applies in an order r/a = O(1) from the cylinder, while

the outermost region to an order of kr = O(1). The nonlinear loads are due to nonlinear

effects from the linear solution, but also from the nonlinear potentials forced from the in-

homogenous boundary conditions on the free surface. The boundary condition cannot be

expanded about the mean free surface level as in a regular perturbation approach, but needs

to be imposed on a horizontal plane moving up and down with the incident wave elevation

at the cylinder. However, the restriction of the inhomogenoues boundary condition to the

inner domain, simplifies the solution of the nonlinear problem.

A solution for the linear diffraction potential, φD = φI + φs must be found. Because the

horizontal derivatives have a much higher magnitude than the vertical derivatives, φD only

needs to satisfy the two-dimensional Laplace equation in the horizontal plane. Faltinsen

(1999) demonstrated how the scattering potential φs may be found by slender body theory

and matched asymptotic expansion. Starting by Taylor expanding φD to first order in the

wave propagation direction x, around the cylinder axis at x = 0, y = 0, yields
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φD = φI + φIx(x+φ11)

∣∣∣∣
x=0,y=0

+φIxx
(1

2
x2 +φ21

)∣∣∣∣
x=0,y=0

+f(z, t)+O(ε4) (2.63)

φD = φI + u (x+φ11)

∣∣∣∣
x=0,y=0

+ux
(1

2
x2 +φ21

)∣∣∣∣
x=0,y=0

+f(z, t)+O(ε4) (2.64)

where φ11 = O(ε), φ21 = O(ε2) and, f(z, t) = O(ε3). Faltinsen (1999) showed that

the hydrodynamic interaction potential f(z, t) does not contribute to any horizontal force

of order lower than O(ε6). The scattering potentials φ11 and φ21 are found by using the

impermeability boundary condition of the surface on the cylinder,

∂(x+ φ11)

∂r

∣∣∣∣
r=a

=
∂( 1

2x
2 + φ12)

∂r

∣∣∣∣
r=a

= 0 (2.65)

However, the solution for the linear diffraction potential φs does not satisfy the inhomoge-

nous free surface boundary conditions, and the third order scattering potential ψ is thus

needed in the nonlinear analysis. The vertical derivative of ψ is of the same magnitude as

for the horizontal ones, and the potential must accordingly satisfy the 3-D Laplace equa-

tion, in addition to the inhomogeous free surface boundary condition. The latter one is

expressed as

ψtt + gψz = −2∆φ ·∆φt −
1

2
∆φ ·∆(∆φ)2 on z = ζ (2.66)

Because ψ varies strongly in the vertical direction, the formulation of the free surface

condition should be based on an expansion around the linear incident free surface elevation

and not around the mean surface level z = 0. ψtt can be neglected while it is much smaller

than the second term on the left hand side of the equation. Consequently the free surface

condition becomes

g
∂ψ

∂z
= −2uut

(
2
∂φ11

∂x
+(∆φ11)2

)
− 1

3
u3

(
2
∂2φ11

∂x2
+2

∂

∂x
(∆φ11)2 +∆φ11·∆(∆φ2

11

)
(2.67)

being imposed on the linear free surface elevation, z = ζI . The force due to the linear

diffraction potential φD, can be found by integrating the pressure along the cylinder wall,
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F ′(z, t) = −
∫ 2π

0

p cos θ dθ (2.68)

where the normal vector is defined according to equation (2.47). The pressure is evaluated

using the Bernoulli equation,

1

ρ
p = −∂φD

∂t
− 1

2

(
∂φD
∂r

)2

− 1

2a2

(
∂φD
∂θ

)2

− 1

2

(
∂φD
∂z

)2

(2.69)

Subsequently, F ′(z, t) can be obtained as

F ′(z, t) = ρπ2a2
(∂u
∂t

+u
∂u

∂x
+w

∂u

∂z

)
+a11

(∂u
∂t

+w
∂u

∂z
) for −h ≤ z ≤ ζI (2.70)

Faltinsen et al. (1995) derived the horizontal force Fψ as a result of the nonlinear scattering

potential ψ. The solution is identical in finite water depth.

Fψ = ρπa2 4

g
u2 ∂u

∂t
(2.71)

The distributed hydrodynamic force F ′ is integrated up to the incident free surface. The

FNV theory by Faltinsen et al. (1995), considered three intervals separately; −∞ ≤ z ≤
0, 0 ≤ z ≤ ζI1 and ζI1 ≤ z ≤ ζ. ζ is defined as ζI1 + ζI2, and is the local wave

elevation correct to third order. It includes both the effect of the incident waves and the

local diffraction of the free surface due to φD. Kristiansen and Faltinsen (2017) applied

the same concept in the generalization of the method to finite water depth. The only

difference was the substitution of the infinite water depth to a limit defined by the seabed

where z = −h. This resulted in the following expressions for the total horizontal force Fx
on the cylinder,

Fx =

∫ ζI

−h
F ′(z, t)dz + Fψ (2.72)

Fx =

∫ 0

−h
F ′(z, t)dz +

∫ ζ1

0

F ′(z, t)dz +

∫ ζ

ζ1

F ′(z, t)dz + Fψ (2.73)
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2.3.4 Studies of forces on cylinders in oscillating flows

Separation of flow around bluff bodies is associated with intricate physics in fluid me-

chanics, and different studies have been performed in order to get deeper insight into

the problem. Both harmonic flows and wave forces on cylinders have been investigated

through different experimental approaches. The experimental and numerical work found

most relevant for the present work are in the following briefly presented and discussed.

Certain experiments will later be used in order to validate the numerical model.

Harmonic flows around two-dimensional cylinders

Several authors have worked with great effort to achieve further insight of the transverse

and in-line forces on a cylinder in an oscillating flow. Sarpkaya investigated the inertia

and drag coefficient’s dependency on Re and KC, and performed studies of the boundary

layers and the separation points in oscillating flow. The experiments were carried out in

terms of several research tests in an U-shaped oscillating flow tunnel. The determination

of the mass and force coefficients on the cylinder was found by application of Fourier

analysis. Sarpkaya (1976a) and Sarpkaya (1976b) investigated closely the in-line and

transverse forces on the cylinder for several different values of the Reynolds and Keulegan-

Carpenter number and varying surface roughness. A dependency of the drag and inertia

coefficients on an introduced frequency parameter β(β = Re
KC ) was discovered. Figure 2.6

show the obtained results of CM and CD for varyingKC, and the dependency onRe or β.

As seen, the minimum value of the drag coefficient decreases as β increases. Increasing β

for a given KC yields higher Re, and consequently other properties of the flow(carefully

discussed in Sarpkaya (1986)).

26



2.3 Wave forces on vertical circular cylinders

Figure 2.6: Experimental results obtained by Sarpkaya (1976b) for the drag and the mass coefficient
as function of the KC-number for different Reynolds numbers and β. Note that the dependence of
the coefficients on the parameter β diminishes for higher values of β, implying that the coefficients
become more independent of Re.
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Sarpkaya (1986) studied the force coefficients CM and CD for different values of β in

relation with estimates of the critical and separating KC-numbers(KCcr and KCs). The

values of KCcr and KCs were approximated visually. As an outcome, the development

of CD was categorized into four groups based on KC:

• KC < KCcr, the flow is attached, laminar and stable, and the theory presented by

Wang (1968) applies.

• The boundary layer turns unstable and turbulent. KC lays between KCcr and

KCmin. KCmin denotes the value of KC corresponding to the minimum value

of CD.

• Effects of flow separation and vortex shedding leads to an increasing drag coeffi-

cient. KC is inside the interval KCmin < KC < KC∗. KC∗ represents the limit

of the KC-number which after CD eventual flattens out or even decreasing.

CM is initially assigned with a value close to potential theory(CM ' 2), However, it even-

tually decreases as it is influenced by the occasion of flow separation.

Garrison et al. (1977) also performed several experiments, using the kinematic equivalency

between an harmonic oscillating flow around a fixed cylinder, and an harmonic oscillating

cylinder in a still fluid. The only difference is that in the latter case, the far field pressure

p∞ leads to the fluid acceleration ∂u
∂t and so an unit contribution to the added mass coeffi-

cient. The advantages and disadvantages of the respective experimental setups have been

carefully discussed in several papers, e.g. in Garrison (1980) and Sarpkaya and Isaacson

(1981). Figure 4.9 shows the experimental results by Garrison et al. (1977) of the drag

and inertia coefficients for a fixed displacement ratio 2a/d = 5, with varying Reynolds

number. The displacement ratio 2a/d = KC/π is here used rather than KC.
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2.3 Wave forces on vertical circular cylinders

Figure 2.7: Experimental results of CA and CD for smooth and rough cylinders as obtained by
Garrison et al. (1977). KC = 5π, Reynolds number varied along the horizontal axis.

Garrison (1980) explained the development of CD in relation with the drag coefficients

associated with steady uniform flow past a cylinder. The drop of CD occurs for lower

Reynolds number because of the earlier transition from laminar to turbulent boundary

layer. As the KC-number increases, post-critical values of CD will increase similarly as

for steady flow. However, considering the wake-flow interaction, the incoming flow on the

cylinder encounters the wake due to the preceding flow-cycle. This leads to an increased

relative velocity and consequently a higher drag contribution on the cylinder compared

with the asymptotic drag value in steady flow. As theKC further increases, the wake-flow

interaction decreases, and the drag coefficient is reduced towards the steady state value

of CD for steady flows. The development of CM is on the other side being influenced

oppositely of this wake-effect. It decreases when the effect is significant, while increases

again for higher KC.

Wave forces on vertical cylinders

Bearman et al. (1985) carried out tests, measuring the in-line and transverse forces on a

small element of a vertical cylinder in waves, for KC < 20, and Reynolds numbers up

5 · 105. This yielded values of β between 2 × 104 and 5.49 × 104. The results of the

force coefficients were to a large extent in compliance with the results obtained from tests

of cylinders in planar oscillating flow as by Sarpkaya (1976a), Sarpkaya (1976b) and Gar-

rison et al. (1977). However, they did not find any clear dependence of the coefficients
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on the value of β. Garrison (1980) proposed that the most probable reason for the de-

crease of CD for increasing Re was due to the wake effect rather than being dependent on

Re. The significant difference in complexity between wave-induced fluid motion and pure

harmonic flows, makes the practical transferability between the problems interesting. Gar-

rison (1990) found reasonable agreement between the drag coefficient from his experiment

and corresponding results from large-scale wave-tank tests (Hudspeth and Nath (1985)).

Kristiansen and Faltinsen (2017) investigated the ringing phenomenon through system-

atic experiments in the medium sized wave tank at NTNU Trondheim. The compliance

between load estimations from inviscid FNV-theory, and experimental measurements, was

studied and discussed. The horizontal in-line force was bandpass filtered into the three

first load harmonics, which, as functions of the wave steepness and period, were com-

pared to associated estimations by the FNV-theory. The FNV-theory is based on potential

theory and hence excludes viscous effects such as flow separation and vortex shedding.

The results showed good agreement for conditions of small wave steepness. However,

discrepancies were found for higher wave steepness. Kristiansen and Faltinsen (2017)

showed that the local KC-number along the cylinder axis indicated appearance of vortex

shedding when discrepancies between the FNV-theory and the experiments were present.

It was confirmed that an addition of a drag term, representing viscous forces according to

Morison equation, and adjusting CM and CD after the local KC-number at the cylinder,

did not explain the discrepancies. This indicated that an observed free surface effect during

the testing of the steepest waves could contribute to the discrepancies. A local run-up was

localized at the rear of the cylinder and was believed to be a major contributor to higher

harmonic load components on the cylinder. This was supported by a 2-D CFD simulation,

where a solution in a representative horizontal plane around the cylinder was coupled with

the vertical component of the Navier-Stokes equation, estimating the free surface elevation

around the cylinder.

Paulsen (2014) performed numerical studies in order to model the forces from steep reg-

ular waves onto the cylinder. The computational strategy was to treat the inner domain

near wall boundaries as the seabed and the cylinder according to potential theory, i.e im-

posing slip conditions on the boundaries. The approach was justified by the assumption

of insignificant vortex shedding effects due to small values of the KC-number and accord-

ingly inertia dominated force regime. The assumption of potential flow at the boundary

surfaces was sparing a lot of computational effort, allowing the omission of the computa-
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tionally very requiring modelling of the boundary layer. However, it violates the findings

from Kristiansen and Faltinsen (2017), where flow separation was believed to be of the

high importance for the discrepancies in the third harmonics load, and forming of the lo-

cal upwelling of the free surface. Nevertheless, the results showed good agreement with

experiments by Grue and Huseby (2002).
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2.4 Numerical modelling of turbulent flows and bound-
ary layers

Several approaches exist for numerical modelling of turbulent flows and boundary lay-

ers. The most computational efficient in case of turbulent flows, is the Reynolds-Averaged

Navier-Stokes(RANS) approach. RANS averages the Navier-Stokes equations over time.

However, applying this method also addresses the need for introduction of turbulence mod-

els. Large Eddy Simulation(LES) is another approach, which is more computational de-

manding. It aims to solve the largest scales of motions, but only approximates the smaller

ones. Direct numerical simulation is a third alternative, solving the Navier-Stokes equa-

tions for all scales of motions. However, in case of turbulent flows, this method requires

excessively high computational effort. Thus, it is often reserved for solving of laminar

flows. In the following, a deeper introduction of the RANS-approach is provided.

2.4.1 Reynolds-Averaged Navier-Stokes equations

Considering a steady state flow, each variable can be written as the sum of the time av-

eraged mean value and the fluctuations around it. For an unsteady flow, time averaging

is invalid and ensemble averaging must be used instead. Applying this concept to the

Navier-Stokes equations yields the Reynolds-averaged Navier-Stokes equations. Dividing

an arbitrary variable φ into a time averaged, φ̄, and a fluctuating component, φ′, gives

φ(xi, t) = φ̄(xi, t) + φ′(xi, t) (2.74)

Equation 2.74 is known as Reynolds decomposition. Because the mean value of the fluc-

tuating part, due to its property of being a Reynolds operator, must be zero, it follows

that averaging linear terms in any of the conservation equations gives the identical term

for the averaged variable. The quadratic nonlinear terms from the Navier-Stokes equation

will on the other hand produce two terms, the product of the two averages in addition to a

covariance term,

uiφ = (ūi + u′i)(φ̄+ φ′) = ūiφ̄+ u′iφ
′ (2.75)

The covariance between two variables is only equal to zero when the two variables are

uncorrelated, which rarely is the case for turbulent flows. Consequently, for incompress-

ible flows without body forces, the averaged continuity and momentum equation can be
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written in tensor notation and for Cartesian coordinates as,

∂ρūi
∂xi

= 0 (2.76)

∂(ρūi)

∂t
+

∂

∂xj
(ρūiūj + ρu′iu

′
j) = − ∂p̄

∂xi
+
∂τ̄ij
∂xj

(2.77)

where the term ρu′iu
′
j is called the Reynolds stresses. In addition, terms called turbulent

scalar fluxes will be present in the conservation equation for the mean of a scalar quantity

φ. Moving the Reynolds stresses over to the right hand side of (2.77), dividing all terms

by the density ρ, and writing the mean stress tensor components τ̄ij according to (2.13),

yields

∂(ūi)

∂t
+

∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+

∂

∂xj
[ν
( ∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j ] (2.78)

The introduction of the the Reynolds stresses and turbulent scalar fluxes into the conser-

vation equations means that the equations are not closed anymore. In other words there

are more unknowns then applicable equations available. Closure of the equations requires

approximations, and introducing a turbulence model is a common way to approach the

problem.

2.4.2 Turbulence models

The Boussinesq assumption states that the Reynolds stresses can be interpreted as eddy-

viscosity, νt. The eddy viscosity is not a material constant, but dependent on the location

in the flow. Introducing νt, the Equation (2.78) can be written,

∂(ūi)

∂t
+

∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+

∂

∂xj
[(ν + νt)

( ∂ūi
∂xj

+
∂ūj
∂xi

)
] (2.79)

In order to predict the eddy viscosity νt, several different models can be used. Two of the

most common ones are the k-ε model and the k-ω model. The models have different ad-

vantages and disadvantages, but generally speaking, k-εmodels the free stream best, while

the k-ω is better in terms of predicting flows close to walls. Both of these two models can

be combined into another model called k-ω Shear-Stress Transport (SST) as described by

Menter (1994), which aims to overcome the problem associated with the k-ω model re-

lated to its sensitiveness for inlet free stream turbulence properties, and emphasizes the

importance of the shear stress transport for severe adverse pressure gradient flows. How-
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ever, more recently, reformulations of the k − ω SST model have been introduced by

several authors (Spalart et al. (1997), Shur et al. (2008), Spalart et al. (2006), Fröhlich

and von Terzi (2008)), aiming to combine the computationally very demanding large eddy

simulation(LES) with the RANS approach in order to make a hybrid RANS/LES model

for simulations of turbulent flows. Detached eddy simulations(DES) is an example of this

approach, switching between the RANS and LES model depending on the local grid spac-

ing and turbulent length scale. The idea is to resolve the turbulent boundary layer by the

RANS approach, avoiding the heavy computational costs associated with LES-modelling

in this location. The modelling of the secondary eddies drifting away from the boundary

layer is on the other hand done with LES. However, Grid Induced Separation(GIS) may

occur when DES modelling is used carelessly, as announced by Spalart et al. (2003). This

effect is an artificial separation, not originating from the fluid physics but rather an unde-

sirable switch from RANS to LES inside the boundary layer of wall bounded flows. A

solution was to shield the RANS modelled boundary layer from the DES formulation, as

introduced by Spalart et al. (2006). This reformulation was named Delayed Detached Eddy

Simulation(DDES). Later, an Improved Delayed Detached Eddy Simulation(IDDES) was

formulated by Shur et al. (2008) . IDDES allows to switch between the DDES mode into

a Wall Modelled LES(WMLES), meaning that only the innermost part of the boundary is

solved by RANS, while LES is used for the remaining part. Proposals in order to improve

the DDES and IDDES models were presented and tested by Gritskevich et al. (2012).

2.4.3 The Courant number

The role of the Courant number and its importance for the instability of the problem, as

described by Courant et al. (1928), can be demonstrated by considering a simple upwind

differentiating scheme(UDS),

φn+1
i = φni +

[
− u

φni − φni−1

∆x
+

Γ

ρ

φni+1 + φni−1 − 2φni
(∆x)2

∆t

]
(2.80)

where Γ is the diffusivity for the quantity φ and φni represents the value of the quantity φ

in cell index i at time step n. Introducing two new variables d and the Courant number c,

into (2.80), it can be written according to (2.81)

φn+1
i =

(
1− 2d− c

)
φn + dφni+1 + (d+ c)φni−1 (2.81)
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where d and c is defined as

d =
Γ∆t

ρ(∆x)2
and c =

u∆t

∆x
(2.82)

Ensuring that all coefficients on the right hand side yield positive values, introduces the

following criterion to the time step ∆t ,

∆t <
∆x

u
or c < 1 (2.83)

A physical interpretation of the criterion, is the requirement for the fluid particles not to

be moving longer than one grid scale ∆x during the time ∆t.

2.4.4 Near-wall treatment

At high Reynolds number, the viscous sublayer becomes so thin that it appears problematic

to resolve it properly. To save computational effort, a wall function may be used to model

the viscous sublayer. The wall functions models the near wall region, and connects it with

the fully developed turbulence region. The set of boundary conditions for the turbulence

and momentum transport equations are defined by ”law of the wall” which applies in the

logarithmic region of the boundary layer(see Figure 2.8 and equation (2.85)). The value

of the non-dimensional wall distance y+ is defined according to

y+ =
uτy

ν
(2.84)

where uτ is the friction velocity, and y is the distance to the wall. When wall functions are

being used, the y+ value of the first cell should fall into the logarithmic region, correspond-

ing to a y+ value above 30. Figure 2.8 illustrates this concept. u+ and the logarithmic law

are defined by the following relations:

u+ =
u

uτ
, u+ =

1

k
ln(y+) + C (2.85)

Where u is the mean velocity parallel to the wall and C and k are constants.
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Figure 2.8: The relation between u+ and y+, in the different sub-layers of the boundary layer
(ANSYS (2009)).

2.4.5 Software and hardware

ANSYS Fluent

ANSYS FLUENT, hereby referred to as Fluent, was the preferred software in this project.

Fluent is a commercial computational fluid dynamic software package. Computational

fluid dynamics provides analysis which also considers viscous effects in the fluid, in con-

tradiction to potential flow theory. The process of a CFD simulation usually consists of

several phases. First of all, a mathematical model reflecting the idealised problem must be

made. Examples of these choices can be whether the scenario is steady state or transient,

and if the flow is laminar or turbulent. In relation to these assumptions, a suitable solver

and turbulence model have to be chosen.

A CFD analysis solves the Navier-Stokes equations numerically, and associated discriti-

zation methods of the mathematical equations must be determined. In addition a discriti-

zation of the computational domain must be performed, according to the finite volume

method which the CFD-software is based upon. Furthermore, the equations are being

solved iteratively, until a finite number of time-steps, or, in case of a steady state problem,

until a converged solution is reached. Afterwards, the solution needs to be validated, often

through comparison with experimental results.
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High performance computing

Because of the high requirements to computational resources associated with CFD, the

simulations are often performed on a so called cluster. The cluster consists of several

nodes working together, where each node represents computational power. In this work

the Idun-cluster at NTNU was employed, allowing rapid performance of simulations and

testing. Because of the high amount of simulations performed in total during the work, the

HPC computing became a powerful tool in order to complete all the necessary simulations.

37



Chapter 2. Theory

38



Chapter 3
Experiment

A 1:48 scaled model experiment was performed in order to investigate the Ringing loads

in practice, reusing major parts of the set-up from Bachynski et al. (2017), carried out

for Statoil related to the development of the Dudgeon wind farm. The experiment was

conducted in the small towing tank at NTNU in Trondheim. A similar experiment was

also accomplished by Kristiansen and Faltinsen (2017). The main focus in the experiment

related to the present work was neither the loads nor the response measurement, but visual

documentation of the interaction between vortex shedding from the cylinder and the free

surface. The vortex shedding induced changes in the pressure field behind the cylinder is

believed to be the cause of an induced vertical flow at the rear of the cylinder, forming

a local upwelling of the free surface. In addition, because of the limited extra amount

of effort, the wave loads from a window of the regular wave series in main focus were

measured and compared to what obtained by Kristiansen and Faltinsen (2017), and to the

numerical analysis in the present work.

The scale problematic with respect to the Reynolds number are well known within model

experiments. Decreasing the characteristic length and velocity also decreases the Reynolds

number, which means that the flow regimes not will be identical in the full and model scale

cases. The boundary layer will consequently become turbulent for a lot smaller value of

KC in full scale than model scale, potentially delaying the flow separation in full scale. As

the drag contribution for a bluff body mainly depends on the pressure distribution around,

and not the skin friction on the cylinder, this could have impact on the horizontal force on

the cylinder.
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3.1 Experimental setup

The set-up consisted of a monopile that was mounted onto the tank bottom, in order to

achieve negligible response vibrations of the model. The wet natural period was 0.041s,

corresponding to a wet natural frequency of 24.39Hz . The wave loads were measured

in terms of the horizontal in-line force and the mud-line moment by force transducers. A

wavemaker in the rear of the tank generated regular wave series of varying steepness and

period, incoming from right to left (Figure 3.1). Regular waves were generated in series

of 60 wave periods, with 180 seconds pause between each series. Six wave gaugers were

used, placed according to Figure 3.1. The model dimensions and wave periods were scaled

by Froude scaling, meaning that the diameter of the monopile in full scale,D = 6.9m, was

equal to 0.144m in model scale. The water depth in the model experiment was 56.3cm,

corresponding to h = 27m in full scale. The beach was placed 57cm above the tank

bottom. The water temperature was measured between 15−17◦C during the experiments.

The force measurements series showed consistently independence of date and time of the

measurements, and the force transducers were thus considered to be quite robust against

small changes in water temperature.

40



3.1 Experimental setup

Figure 3.1: Bird eye and side view of the experimental setup that was used in the model experiment.
The focus was on flow visualization, thus an underwater camera was recording upwards along the
rear of the cylinder.
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A small underwater camera was placed on the tank bottom at the rear side of the cylinder,

recording upwards in order to try capturing the sought flow effects. Potassium perman-

ganate was the chemical substance used in purpose to visualize the flow. The substance

was sprayed from a thin pipette sunk into the water close to the localizations where the

vortex shedding was assumed to take place. In addition, above-water recordings were

taken, in order to visualize the local run-up of the free surface.

3.2 Test program

Three regular wave series of model scale periods: 1.44s, 1.73s and 1.02s were tested with

varying wave steepness, H1/λ: 1/40, 1/30, 1/28, 1/26, 1/24, 1/22, 1/20. Here, the

linear wave height H1 is used in the definition of the wave steepness. The wave peri-

ods correspond to 10s, 12s and 14s in full scale, i.e. wave series where third and fourth

harmonics cause resonant response of the monopile. In table 3.1, characterizing dimen-

sionless parameters related to each wave series of steepness 1/20 and 1/30 are presented.

Both the related Reynolds number and KC-numbers are calculated using the first order

velocity amplitude um1, and hence denoted KC1 and Re1. um1 is found using first order

dispersion relation(ω2 = g k tanh(kh)), and evaluated at z = 0. The Ursell numbers are

calculated using the linear wave height H1.

H1/λ = 1/20 H1/λ = 1/30

T (s) ka Ur KC1 Re1/104 Ur KC1 Re1/104

1.443 0.163 6.03 3.55 5.10 4.02 2.36 3.40
1.732 0.127 12.63 5.12 6.12 8.42 3.41 4.08
2.021 0.105 22.44 6.96 7.14 14.96 4.64 4.76

Table 3.1: Information of wave kinematics and flow conditions for the three tested wave periods
given in model scale, for steepness H1/λ = 1/20 and H1/λ = 1/30.The values of the Ursell
number indicates that applying Stokes fifth order wave theory is valid for all wave conditions.
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3.3 Comments on the experiment

Some comments should be made to the experiment, around its importance in the present

work and the plausibility of the experimental results. As remarked previously, the intention

of the experiment was to focus on the developing flow patterns at the rear of the cylinder,

and the interaction between vortex shedding and the free surface. Not nearly enough time

was spent with systematic wave series testing to obtain throughout reliable results of the

force measurements. Thus, the experimental results from Kristiansen and Faltinsen (2017)

will be emphasized in Section 5.1. However, a small analysis was also dedicated to the

experiment from the present work, in order to establish the validity of the related results.

Figure 3.2 shows the first, second and third harmonic amplitudes of ζ, calculated accord-

ing to Stokes fifth order wave theory as presented by Skjelbreia and Hendrickson (1960),

together with the corresponding values from the waves generated by the wave maker in the

experiment. The amplitudes of the harmonics from the experiment were obtained through

band-pass filtering of the measured time series of the free surface elevation at wave gauge

2. The measurements show in general better compliance with the theory for lower wave

steepness and periods. Two of the most prominent disagreements between experiments

and theory are found for H1/λ = 1/20 at T = 1.732s and T = 2.021s for the ampli-

tudes of the third harmonic. Another remarkable large discrepancy is observed in the plot

of ζa2, at H1/λ = 1/20 and T = 2.021s. The mismatches between amplitudes of the

experimental wave harmonics and Stokes fifth order wave theory imply for certain waves

limited plausibility of the measured force series. However, Figure 3.2 demonstrates that

for several other wave series, there are higher agreement between theory and experiments.

Figure 3.2: Amplitudes of the three first harmonics; ζa1, ζa2 and ζa3, according to Stokes fifth order
waves(dashed lines), compared to corresponding amplitudes of extracted wave harmonics from the
experiment(markers). , H1/λ = 1/40; , H1/λ = 1/30; , H1/λ = 1/20. Wave periods are
given in model scale.
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3.4 Visual observations

The main objective from the experiments was to visualize the formation of the flow-

patterns at the rear of the cylinder. Earlier experiments (e.g. Kristiansen and Faltinsen

(2017)) have confirmed the formation of a local run-up behind the cylinder, which also

was observed here. In this experiment, obtaining visual documentation of the vortex shed-

ding and the subsequent pressure-initiated flow run-up at the cylinder rear was attempted

by colouring the flow. An underwater camera was placed at the tank bottom rear of the

cylinder, recording upwards along the model. The effort was, however, rather in vain, as

the potassium permanganate dissolved very quickly in the water. The substance was only

colouring the water, and not revealing the effects that were looked for. Syrup was tried

being mixed into the potassium permanganate in order to make the substance more vis-

cous, but this approach was neither successful. The legality of changing the viscosity of

the fluid is also questionable, while it probably would affect the flow patterns. The sub-

stance was being sprayed out at the awaited location of flow separation on the cylinder. A

very thin pipette was used for this purpose, sunken down into the water at approximately

20cm below the free surface. The wrong choice of equipment or inappropriate location of

releasing the substance may be other explanations why the experiment was unsuccessful.

The presence of the pipette close to the boundary layer is very likely to disturb the flow

in one of its most critical locations, and should be avoided. A better approach could have

been to spray the substance through an extremely small hole in the cylinder, made at a

location where visualization of the flow was desirable. The feasibility of this approach is,

however, unknown. Nevertheless, the above-water recordings were showing the discussed

local run-up of the free surface at the rear of the cylinder. An illustration can be found in

Figure 3.3.

Figure 3.3: The formation of the local rear run-up, visualized in terms of a snapshot from video
recorded during experiments. Wave conditions model scale; T = 2.02s andH1/λ = 1/20. Incident
waves incoming from right towards left.
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In order to carry out a two dimensional CFD analysis in Fluent, a numerical model was

obtained. The computational model of the cylinder cross section was designated with

the same dimensions as the monopile model in the experiment, i.e 1:48 of full scale. A

total computational domain was split into several subdomains, permitting employment

of a block structured grid. This simplified the investigation of the necessary amount of

elements both in radial and tangential directions to the cylinder. Mesh convergence studies

were performed in this purpose, varying the number of elements closer to the cylinder

surface, as well as the number of elements along the cylinder surface Nc. The influence of

the variation on the force coefficients CM and CD was investigated. A stability study and

an assurance of domain-size independence were also carried out. Simulations of harmonic

oscillating flows of KC-numbers in range 1-16 around the cylinder were performed in

each study. The flow was periodic with T = 1.732s, corresponding to the second to

largest wave period from the model experiment. Results of the inertia and drag coefficient

were afterwards interpreted and compared between the different parameter refinements.

Reducing the computational costs while at the same time achieve the necessary numerical

accuracy was the main focus.
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4.1 Set up and validation of the two dimensional model

4.1.1 Grid structure

The geometrical domain and its subdivided domains, are illustrated together with the

block-structured grid in Figure 4.1. A block structured grid has several advantages com-

pared to an unstructured grid. First and foremost, the connectivity between neighbour-

ing elements leads to a more expedient and simplified solving procedure. The user also

achieves improved control of how many elements that are used when the grid is generated.

However, it may be challenging to generate the grid without also provoking undesirable

regions of high cell concentration. Other problems related to block structured grids are

often associated with advanced geometries, where the unstructured grid usually becomes

a better choice. However, because of the rather simple geometry in the present case, a

block structured grid was considered to be the most beneficial choice.

Figure 4.1: Left: The division of the computational domain into several subdomains with descrip-
tion of the geometrical lengths where D represents the diameter of the cylinder, and 10 ≤ a ≤ 30.
Right: Visualization of the mesh with specified boundary conditions.

4.1.2 Boundary conditions

The boundaries and associated boundary conditions were defined according to Figure 4.1.

Because the simulations were performed in 2-D, symmetry conditions were imposed on

both the front and back of the domain. Because an infinite fluid was considered, the same

condition was applied on both the top and bottom boundaries. The cylinder was treated as

a fixed wall, with the associated no-slip condition on the cylinder surface.

At the inlet boundary, the incoming velocity was defined using a table file, which set the
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velocity values at the inlet for each time-step. The values of the velocity amplitude umi
corresponded to KC-number i. The incoming velocity at each time step were calculated

according to an harmonic oscillating flow; ui = umisin(ωt). The pressure values at the

outlet were calculated from the Navier-Stokes equation in x-direction. Assuming uniform

flow, the remaining terms become

∂u

∂t
= −ρ∂p

∂x
(4.1)

Assuming that p|x=−L/2 = −p|x=L/2, the integration of (4.1) along the length of compu-

tational domain yields

∫ L/2

−L/2

∂p

∂x
dx = −ρ

∫ L/2

−L/2

∂u

∂t
dx (4.2)

p|x=L/2 = −1

2
ρL

∂u

∂t
(4.3)

This means that the pressure is π/2 out of phase with the velocity, but in phase with

the horizontal force on the cylinder. The linear pressure distribution along the domain is

illustrated in Figure 4.2 .

Figure 4.2: Left: Contour representation of linear pressure distribution. Right: Line plot represen-
tation of linear pressure distribution, plotted along the in-line direction in the middle of the domain.
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4.1.3 Turbulence model

The modelling of the boundary layer in oscillating flow was found intricate for several

reasons. As already discussed, the transition from laminar to turbulent flow happens a

lot earlier than for steady state flows, bringing uncertainty around the value of the crit-

ical Reynolds number. However, investigations made by Sarpkaya (1986), where oscil-

lating flows around a cylinder at low Re were studied, suggested that for β = 11240 (β

≈ 11930 in present case), the critical numbers of transition corresponded to Recr = 6400,

or KCcr = 0.57. If so, the transition from laminar to turbulent flow in the boundary layer

happens before the most vital KC-numbers concerning the wave conditions in the present

study. All the waves would thus be generating flows around the cylinder in the critical

or post-critical flow regime, which justifies the application of a turbulence model. How-

ever, as the values of the critical Reynolds number are rather uncertain, and the differences

between applying a laminar or turbulent model to the boundary layer were of interest to

investigate, both approaches were tried out and compared afterwards.

Pang et al. (2016) performed comparisons of the different two-equation RANS models

ability to capture the right angle of separation and estimate the drag coefficient on a 2-D

cylinder in uniform steady high Re flow. The k−ω SST model provided the best results,

most in agreement with experimental values. It was also showed that including a curvature

correction in the model, which is possible in Fluent, improved the results more. Hence, the

k − ω SST model, with curvature correction, was considered to be the most efficient tur-

bulence model for the present work. It should be remarked, that the grade of success using

a turbulence model is highly dependent on the mesh resolution, number of time-steps, and

flow-properties. Higher KC are associated with higher velocities, and according to the

Courant number, the numerical model becomes more vulnerable to instability. In addition,

the requirements to the mesh are also depending on KC. The value of y+ should prefer-

able be kept below 1, and at least well inside the viscous sublayer (y+ < 5). This requires

smaller width of the cylinder-adjacent cells for higher KC. Thus, the computational costs

associated with accurately modelling of the flow increase quite significantly with higher

KC. A trade off between computational costs and accuracy, ensuring the necessary relia-

bility of the model for the most important KC-numbers, was necessary.

The k − ω SST was, as mentioned, applied as the turbulence model. However, in order

48



4.1 Set up and validation of the two dimensional model

to check whether the choice of turbulent or laminar model affected the results or not,

applications of the IDDES model and the laminar model were also tried out.

4.1.4 Numerical scheme

The PISO algorithm was chosen as the preferred solver algorithm as it is highly recom-

mended for transient cases. One feature of the PISO algorithm is its ability to provoke

instability, even for higher values of time step. Both the neighbour and skewness cor-

rections were set equal to one. The spatial discretization gradient used was the standard

choice by Fluent; Least Squares Cell-Based Gradient Evaluation. The pressure interpola-

tion scheme was set to Second Order, while the interpolation schemes for the momentum,

turbulent kinetic energy and specific dissipation rate were Second Order Upwind. The

Second Order Implicit formulation was used as the transient formulation.
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4.2 Convergence studies

Convergence studies were carried out, in order to verify the independence of the compu-

tational model with respect to grid refinement as well as time-step and domain size. The

convergence tests were performed by simulating cases for KC in range 1 − 16, although

the maximumKC-numbers relevant for simulating waves around the cylindrical pile were

assumed to be no higher than 10. As can bee seen from the studies, the model only shows

consistency for KC ≤ 9. For larger values of KC, high amount of apparently random

scatter is observed, implying that the model have clear limitations in these flow regimes.

The reliability of the model for varying KC-numbers will henceforth through the section

be discussed.

4.2.1 Grid studies

The influence on the results of the number of elements in the radial direction to the cylinder

was investigated closer (see Figure 4.3). Nr is in the following denoting the number

of elements from a point at the cylinder surface radially out to the square of sides 10D

enclosing the cylinder. The element size gradually decreases as one moves closer to the

cylinder surface, where the thickness of the innermost cell is 100 times smaller than the

outermost, at the square enclosing the cylinder. In the plot of the drag coefficient, the

coarsest refinement of the boundary layer seems to be leading to higher values of the drag

coefficient compared with the higher grades of refinements. The results deviates largely

from the other refinement grades at KC = 9, both for the inertia and drag coefficient. In

contrast, Nr = 150, Nr = 200 and Nr = 250 show very similar results for KC ≤ 9.

However, the number of elements inside the boundary layer are recommended to be at least

10. In case the boundary layer is laminar, the thickness of it can be calculated according

to

δ99 = 4.6 ·
√

2ν

ω
(4.4)

where δ99 is the laminar boundary layer thickness, defined by the distance from the cylin-

der to where the local velocity is 99% of the free stream velocity. As Nr = 200 was

yielding 11 cells inside the boundary layer, it was decided to be sufficiently in order to

resolve the boundary layer properly. However, another aspect is, as explained by ANSYS

(2009), that the wall-adjacent cells should be placed outside the buffer layer when a turbu-

lence model is applied. That means 5 < y+ < 30 should be avoided. Ideally, y+ ≈ 1− 2.
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The simulations showed that y+ exceeded five for KC ≈ 4. Thus, a more refined mesh

should be made to ensure sufficiently small y+ for higher KC when a turbulence model

is applied.

Figure 4.3: The drag coefficient, CD , and the inertia coefficient, CM , as functions of the KC-
number for varying number of elements along the cylinder surface. Simulations performed with
4000 time-steps per flow period, Nθ = 240 and a = 30D.

Figure 4.4, shows the dependence study of the number of elements along the cylinder sur-

face, denoted Nc, of the mass and drag coefficient. The drag coefficient shows consistent

results, independent of the refinement grade, up to KC = 9. Thereafter, more scattering

are observed. Also the plot of the inertia coefficient illustrate very small dependency of

Nc forKC ≤ 9. However, the coarsest mesh seems to lead to a delayed drop of the inertia

coefficient. Thus, with respect to computational costs, NC = 240 was chosen to be used
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further.

Figure 4.4: The drag coefficient, CD , and the inertia coefficient , CM , as functions of the KC-
number for varying number of elements along the cylinder surface. Simulations performed with
4000 time-steps per flow period, and a domain size of a = 30D. Nr = 200

4.2.2 Time step study

The time step sensitivity study is presented in terms of Figure 4.5, where the coefficients

are plotted as functions of KC for varying number of time-steps, Nt. The results show

consistency up to KC = 9. However, to keep the Courant number below 1 for KC = 9,

5000 time-steps per oscillation was necessary. Thus, Nt = 5000 was chosen to be used in

future simulations.
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Figure 4.5: The drag coefficient, CD , and the inertia coefficient , CM , as functions of the KC-
number for varying number of time steps per flow-period. Simulations performed with Nθ = 240,
Nr = 200 and a = 30D.

4.2.3 Domain size study

The effect of the domain size on the results was also tested through several repeated simu-

lations where the domain size was varied, see Figure 4.6. ForKC ≤ 9, applying a domain

size of a = 20D was largely consistent with using a = 35D. Thus, a = 20D was set as

the domain size in the future simulations. The domain size together with the chosen values

of Nc and Nr provided a total number of quadrilateral elements equal to 56500.
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Figure 4.6: CD and CM as functions of the KC-number for different domain sizes defined by the
variable a. Simulations performed with Nθ = 240, Nr = 200 and 4000 time-steps per flow period.
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4.3 Validation of the numerical model

Several approaches to model the boundary layer were applied when validating the numer-

ical model. In addition to the k − ω SST model, the IDDES formulation for turbulence

modelling was tested. Although the findings from Sarpkaya (1986) indicated that the

boundary layer transitions from laminar to turbulent for very low Reynolds number for

oscillating flows, we do not know whether or when the boundary layer transitions in the

present case. Thus, also treating the boundary layer without any turbulence model was

tried out. This corresponds to choosing the laminar model in Fluent, which solves the

Navier-Stokes equations directly, similar to DNS. The numerical results were validated

against experimental results of CM and CD as functions of KC and Re. Sarpkaya (1987)

and Garrison et al. (1977) have, as reviewed earlier, carried out experiments of 2-D cylin-

ders in sinusoidal oscillating flows. In addition, comparisons to experimental values from

Bearman et al. (1985) are also included. It should be noted that the latter experiment is

performed with a vertical cylinder in waves, and thus not fully comparable to results of

sinusoidal flow. However, the agreement between the experimental and numerical results

was examined and commented.

Although the grid obtained in the convergence studies showed independence of refine-

ment for CM and CD, it was not found fine enough to model the vortex shedding from

the cylinder sufficiently. In addition, when applying a turbulence model, the y+ values

was found to be outside the viscous sublayer for KC & 4. Thus, a refinement of the

mesh was performed, making it more suitable for higher KC and velocities. The width of

the wall-adjacent cells in the boundary layer was decreased in order to obtain acceptable

values of y+. This also provoked an increased number of cells inside the boundary layer.

Additionally, Nc was increased to 320 elements to better capture the separation point on

the cylinder. This yielded a total number of 90500 elements in the grid. The coarser and

refined mesh will henceforth be referred to as Mesh 1 and Mesh 2, respectively. Mesh

1 was applied for the K − ω SST model up to KC = 5, thereafter Mesh 2 was used.

Because there was too short amount of time to carry out new convergence studies, Mesh 2

was used when applying the laminar model or IDDES turbulence model. Figure 4.7 shows

the vorticity fields using the two respective meshes with the k − ω turbulence model for

KC = 6.
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Figure 4.7: The vorticity field around the cylinder using the two respective meshes are illustrated,
forKC = 6. The k−ω SST turbulence model is applied. The symmetry of the vortices using Mesh
1 indicates that it is too coarse for the CFD-software to calculate the vortices accurately.
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4.3.1 CM and CD as functions of KC

The models were compared to experiments by Sarpkaya (1987) and Bearman et al. (1985).

Here, the title ”as functions of KC” is a bit misleading, as the Reynolds number indeed

will adjust with changing KC. Thus, one should remember the frequency parameter β,

characterizing the KC-curve. The experimental values by Sarpkaya (1987) was obtained

at β = 11525, while for the experiments by Bearman et al. (1985), β is between 2 × 104

and 5.49× 104. The viscosity of the numerical simulations was adjusted such that β com-

plied with the experiments by Sarpkaya (1987). The results provided with K − ω SST,

IDDES, and the laminar model are plotted with the experimental values in Figure 4.8.

Note that Mesh 1 is used for KC ≤ 5 for the k − ω SST model, while Mesh 2 is applied

for higher KC and for the other models.

The incapability of all models to estimate the drag coefficient for KC < 4 are remark-

able. Skin friction drag is expected to give rise to the drag coefficient for very low KC.

However, for some reason, the models seem to neglect this contribution to the drag coef-

ficient. Instead, the drag coefficient starts to increase as expected after the occurrence of

flow separation, implying that the drag is fully due to pressure drag. However, the skin

friction drag is in general of minor importance compared to the pressure drag for a cylin-

der. For KC . 6, the force is highly inertia dominated, and thus mainly dependent on the

value of CM . The value of the inertia coefficient is, as anticipated, in accordance with po-

tential theory for lowKC, subsequently decreasing as the flow separates from the cylinder.

Modelling the boundary layer with a turbulence model yields higher values of CD, ac-

cording to Figure 4.8. Comparing with the experiments, the three models seem to provide

reliable estimations of the in-line force up to KC = 9. For higher KC, the development

of the coefficients are unexpected. Nevertheless, the range of KC where the models are

well-working should be sufficient to compute reliable loads from the planar flows gener-

ated by the waves considered most important in the present work. When the boundary

layer transitions from laminar to turbulent is unclear, but earlier studies suggest that the

critical regime of Reynolds number is significantly lower than for a cylinder in steady flow.

Thus, the k− ω SST turbulence model was applied, as it is less computational demanding

than IDDES. However, the critical flow regime is extremely difficult to model accurate,

using CFD. Precise representation of the flow separation and the subsequent reattachment

of the flow normally requires more advanced and computational demanding numerical

models than what is obtained in the present case.
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Figure 4.8: Development of CD and CM coefficients as functions of KC, compared to experi-
ments by Sarpkaya (1987) and Bearman et al. (1985). β = 11525 in the numerical simulations
and in the experiments performed by Sarpkaya (1987) .β between 2 × 104 and 5.49 × 104 in
the experiments by Bearman et al. (1985). Note that the latter experiment considered waves, and
not mono-harmonic flow. , Sarpkaya (1987)(mono-harmonic oscillating flow); , Bearman et al.
(1985)(waves); , k − ω SST model; , Laminar model; , IDDES model.
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4.3.2 Reynolds number dependency of CA and CD

The numerical model was tested with variations of Re, at fixed KC, and compared with

the experimental values by Garrison et al. (1977). The k − ω SST turbulence model was

used. In Figure 4.9 are the numerical results of the added mass coefficient, CA, and the

drag coefficient, CD, plotted for KC corresponding to π, 2π and 3π. For KC = π, the

added mass coefficient is in strong agreement with the experimental results. The drag coef-

ficient is, despite somewhat smaller values, neither far off the experiments. However, CD
seems less dependent on the Reynolds number than what demonstrated in the experiments.

The experimental values of the drag coefficient has a steeper drop betweenRe = 0.5×105

and Re = 1 × 105 than what is the case in the numerical simulations. Considering the

inertia dominance of the in-line force for KC < 2π, the strong agreement between the

numerical and experimental values of the inertia coefficient justifies the application of the

numerical model in this regime.

For KC = 3π, larger deviations occur between the experiments and the numerical results.

This is especially visible for Re in range of 1 × 105 and 1.5 × 105. Both the force co-

efficients differ here significantly from the experimental measurements by Garrison et al.

(1977). The flow regimes correspond to KC between 9 and 10 in Figure 4.8. Here, in

contrast, neither of the force coefficients are far off the experiments by Sarpkaya (1987).

However, the force coefficients are observed to have unexpected development for higher

KC. Thus, the values of the force coefficients for KC ' 9 are considered to contain

a high degree of uncertainty. Nevertheless, the validation of the model has justified fair

agreement of the numerical model with experiments for KC / 9. This is considered to

be within the range of the most important KC numbers in the present study.

More time was spent trying to obtain a numerical model appropriate for higher KC. Es-

pecially the number of time-steps was considered necessary to increase, while the Courant

number was implying instability. However, this introduced a problem in terms of increased

computational costs. The simulation time of eight oscillations using one node of the Idun-

cluster, was originally 5 − 6 hours for KC = 9. The simulation time exceeded 20 hours

when the number of time-steps per oscillation was increased to 8000. Application of the

IDDES turbulence model increased the costs even more. The institute of Marine Technol-

ogy has no share in IDUN cluster, and the use of it was therefore limited for the present

work. Thus, the obtained numerical model, considered sufficiently reliable for KC / 9,

was carried on with further.
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Figure 4.9: Results of CA and CD from the numerical model, using the k − ω SST turbulence
model, compared to the experimental values obtained by Garrison et al. (1977). Mesh 1 applied for
KC = π, Mesh 2 for the others.
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4.4 CFD-FNV model

To include viscous effects in the FNV load-estimation, a viscous term integrating sectional

2-D CFD forces on the cylinder were replacing the force term proportional to ∂u
∂t in the

FNV-theory. In order to obtain the correct CFD-force at the respective cut of the cylinder, u

and p at the vertical position of each cylinder cut were needed to be calculated in time from

Stokes fifth order wave theory. The discretizaton of the cylinder, and how the boundary

conditions were calculated accordingly, are hence dedicated a briefly review. The water

depth considered corresponded to the conditions from the model experiment, i.e. h/a =

7.83.

4.4.1 Discretization of the cylinder

Figure 4.10: Left: The horizontal force, F̄i, at strip i, is calculated by interpolation between CFD
force-outputs at upper and lower cuts of the strip, FCFDi and FCFDi+1 . Boundary conditions u and
p evaluated according to Stokes fifth order wave theory at the horizontal cuts. Right: The strips are
contracting and expanding according to ζ(t). Note that in the following, cuts will refer to the lines
dividing the cylinder, while strips are referring to the divided elements with thicknesses ∆zi. N is
denoting the number of strips. The water depth h = 0.5625cm is considered.

In order to integrate the horizontal force from the CFD simulations along the submerged

part of the monopile, the cylinder was divided into several strips(see Figure 4.10). As

seen, the strips thickness is gradually decreasing as one move upwards up to the fifth order

incident free surface, justified by the more rapidly changing flow kinematics in z-direction
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here. An exponential approach was used in order to calculate the initial thickness of strip

i, ∆z∗i , according to (4.5)

∆z∗i = α ·
(
e−β

i+1
N+1 − e−β

i
N+1

)
(4.5)

where N is the total number of strips, β is the stretching coefficient, typically set to a value

around 0.8, while α is the factor such that the sum of all of the strip equals the submerged

part of the cylinder, i.e.

α =
h− ζmin∑N

i=1

(
e−β

i+1
N+1 − e−β

i
N+1

) (4.6)

the minimum length of the submerged cylinder is set to h - ζmin. An approach of stretch-

ing the strip according to the fifth order incident free surface were chosen, known as a

Lagrangian approach. The approach leads to continuously incident flow at each cylinder

cut during the simulation. Another possibility would have been the Eulerian approach,

which considers fixed strips and thus discontinuous forces on the cuts that are located

above the minimum free surface elevation. However, applying the Lagrangian method,

(4.5) and (4.6) were used to calculate the initial strip thickness. The thickness of the strips

were afterwards stretched dependent on the incident free surface ζ(t)

∆zi(t) = ∆z∗i
ζ(t)

h− ζmin
(4.7)

where ∆zi(t) is the stretched strip thickness of strip i. When using stretched (moving)

mesh, this must be accounted for in the equations of motions of the fluid, i.e. the Navier

Stokes motions. In a fully three-dimensional simulation, a modification of the material

derivative term (advection term) in the Navier-Stokes equations is necessary. Since the

mesh only is stretched vertically, a modification would be necessary only in the vertical

direction. However, since we are not performing three-dimensional computations, but

rather assume strip-theory and solve the problem by a series of two-dimensional cuts along

the cylinder, the only consequence of the stretched mesh is that ∆z is a function of time,

and ∆z is used in the integration of the horizontal force on the cylinder. If a slender-

body theory was attempted, on the other hand, the material derivative would have been

necessary to modify, as discussed.
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4.4.2 Implementation of Stokes fifth order waves

In order to simulate wave-generated flow around 2-D sections of the cylinder, planar flows

according to Stokes fifth order theory were needed to be implemented. A script calcu-

lating the wave profile ζ, potential φ, velocity u as well as derivatives of u according to

Skjelbreia and Hendrickson (1960), was provided by supervisor Trygve Kristiansen. The

script was modified, in order to account for the Lagrangian discretization scheme. The

vertical coordinates of the cuts were evaluated at each time-step, in order to evaluate the

correct boundary conditions as input to the CFD-simulations, and the time varying strip

thickness, ∆z. The numerical approach of calculating the quantities was done similar to

Kristiansen and Faltinsen (2017), differentiating between the two intervals −h ≤ z ≤ 0

and 0 ≤ z ≤| ζI |. Here, ζI is the fifth order incident wave profile. In the latter interval,

the quantities are evaluated by Taylor expansion up to fifth order according to

f(z) = (f1 + f2 + f3 + f4 + f5) + z
∂(f1 + f2 + f3 + f4)

∂z

+
z2

2

∂2(f1 + f2 + f3)

∂z2
+
z3

6

∂3(f1 + f2)

∂z3
+
z4

24

∂4

∂z4
f1

(4.8)

where fi and its derivatives are evaluated at z = 0.

The number of cuts along the cylinder equals N+1, corresponding to the number of simula-

tions required for each wave condition. 19 strips were in the discretization of the cylinder.

The horizontal normal force at the midpoint of strip i, F̄i, was calculated by interpolation

between the force outputs from the simulations at the cuts (FCFDi and FCFDi+1 in Figure

4.10). Thereafter, F̄i was multiplied with the strip thickness at the corresponding time-

step, in order to obtain a 3-D force. The time series of the forces corresponding to each

strip of the cylinder could be summed together, yielding a time series of the total horizontal

force from Fluent, FCFD.
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Figure 4.11: Left: The horizontal velocity u calculated according to fifth order stokes theory for
ka = 0.127. Right: ka = 0.105. In both plots, H/λ = 1/20, N = 19 and time intervals of T/80 is
used.

The three model scale periods corresponding to full scale periods of T = 10s, T = 12s

and T = 14s, were considered when estimating the wave loads on the cylinder with

the combined CFD-FNV model. Each wave period was simulated with wave steepness

of 1/40, 1/30, 1/25 and 1/20. The different wave conditions are certainly generating

different flow regimes on the cylinder, also depending on the location on the vertical axis

of the cylinder. This will be further discussed as the local flow regimes along the vertical

axis of the cylinder are investigated closer.

Flow regimes of the cylinder cuts

The flow regime experienced by a horizontal strip of the cylinder is highly dependent on

the location on the vertical axis. According to Figure 4.11, the flow velocities are increas-

ing significantly closer to the free surface. For ka = 0.105 in Figure 4.11, as pointed out

by Kristiansen and Faltinsen (2017), the velocity at the sea-bottom due to a wave crest is

of higher magnitude than the velocity at the free surface due to a passing wave through.

This highlights the increased significance of viscous effects, such as flow separation, in the

wave propagation direction. The fact that the strips are moving vertically synchronously

with the fifth order free surface also means that the flow regimes experienced by the strip

will change in time. The maximum value of KC for each section during one wave-period,

calculated according to Stokes fifth order theory, are presented for all of the numerically

considered wave conditions in Figure 4.12. Because the velocity amplitude according to

fifth order Stokes theory is used when calculating KC, the notation KC5 is here applied.

As seen, the maximum values of KC5 during longer and steeper waves, indicate that sig-

nificant flow separation is present. However, for the most severe wave conditions, flow
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separation can also be expected at the lower sections of the cylinder. Based on the ob-

servations from Figure 4.12, the numerical simulations were performed with two different

meshes when the k − ω SST turbulence model was applied. For KC ' 4.5, where Mesh

1 was found inappropriate due to y+ values outside the viscous sublayer, the refined Mesh

2 is applied instead. Thus, we achieve sufficiently low values of y+ for the cuts located

at the upper parts of the cylinder, where the velocities are higher and a turbulent boundary

layer is expected. In addition, using a coarser mesh for the lower parts of the cylinder

saves computational costs.

Figure 4.12: The maximum value of KC5 during one wave period for each section of the cylin-
der(horizontal axis ), plotted against corresponding vertical position of the sections(vertical axis).
In total 20 cuts are applied, including the top and bottom, along the cylinder-axis according to the
stretched mesh discretization of the cylinder. Note the significant increase in KC5 for higher wave
periods and steepness. , H1/λ = 1/40; , H1/λ = 1/30; , H1/λ = 1/25; , H1/λ = 1/20.

4.4.3 The load terms

The motivation behind introducing 2-D CFD to solve this problem, was to obtain a force-

estimation model also accounting for viscous effects, which stands in contradiction to

classical FNV-theory. Thus, the terms in the fifth order FNV-model also accounted for by

the numerically computed in-line force on the cylinder was replaced. The terms of (2.70)

are rewritten and named to clearly illustrate the definition and substitution of terms.

F1 = (ρπa2 + a11)
∂u

∂t
(4.9)

F2 = ρπa2u
∂u

∂x
(4.10)

F3 = (ρπa2 + a11)w
∂u

∂z
(4.11)

F1 is substituted with the 2-D CFD-force, meaning that the 3-D horizontal in-line force on
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the cylinder as computed by the CFD-FNV model can be expressed accordingly

Fx = FCFD +

∫ ζI

−h
(F2 + F3) + Fψ (4.12)

The second force term is evaluated by numerical integration, using the velocities and gra-

dients according to Stokes fifth order theory, which for 0 ≤ z ≤|ζI | is Taylor expanded to

fifth order according to (4.8).
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Results

The results obtained from the numerical analysis was compared to the experiments from

the present work, as well as to the earlier experiments performed by Kristiansen and Faltin-

sen (2017). Especially the third harmonic load amplitudes were investigated and com-

mented on closely, while the former work by Kristiansen and Faltinsen (2017) showed

over-estimation of these compared with experiments, when applying fifth order FNV-

theory generalized to finite water depth. The importance of reliable estimations of the

third harmonics, considering the resonance frequency of OWT monopiles, is once more

remarked. Hence, the ability of the combined load model, consisting of 2-D CFD and

theory, to estimate first and higher harmonic in-line loads from waves onto the vertical

cylinder is dedicated a comprehensive discussion.

5.1 Comparison between CFD-FNV, inviscid FNV and ex-
periments

The three first harmonics of the load estimated by the CFD-FNV model for ka = 0.127

and H1/λ = 1/20 are shown in Figure 5.1. Additionally, the corresponding time series

measurements of the load harmonics from the experiment are presented. Kristiansen and

Faltinsen (2017) confirmed discrepancies in the third harmonic loads between the fifth

order FNV-theory and experiments under identical wave condition. As shown, the dis-

crepancies in the third harmonic loads are indubitable clear in Figure 5.1. The combined

CFD-FNV model is, similar to the FNV-theory, over-estimating the amplitudes of the third
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harmonic load. In addition, a phase shift can be observed between the third harmonics. In

contrast, the first and second harmonic load estimations from the CFD-FNV model com-

ply better with the experimental measurements. This was also found to be the case by

Kristiansen and Faltinsen (2017), when applying pure fifth order FNV-theory to estimate

the harmonic loads from longer and steeper waves. Thus, a first glance implies similar ten-

dencies in the results of the present work. However, it is necessary to consider more wave

conditions before making any conclusions to the general trends of the load-estimations

using the combined CFD-FNV model.

Figure 5.1: The three first load harmonics as calculated by the CFD-FNV model, and the mea-
sured time-series from the experiment, respectively. Note that the first order harmonics comply the
most, while there are visible discrepancies between the third harmonics, both in terms of phase and
magnitude.
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5.1 Comparison between CFD-FNV, inviscid FNV and experiments

The CFD-FNV model’s load predictions for varying wave period and steepness are plotted

together with inviscid fifth order FNV-theory, the experimental results from Kristiansen

and Faltinsen (2017), and the experimental measurements from the present work in Figure

5.2. Firstly, some remarks are made to the results from the latter experiment, as the force

measurements from these tests not was validated through any form of uncertainty or qual-

ity check. The first and third harmonic amplitudes are nevertheless, for the most, in fair

agreement with what obtained by Kristiansen and Faltinsen (2017). This is in contrast to

the second harmonic loads for ka = 0.163 and ka = 0.105, where clear deviations appear

between the experimental results. The deviations in the second harmonics loads are proba-

bly because parasitic waves not were accounted for in the present experiment. Kristiansen

and Faltinsen (2017) added a 2ω signal to the wavemaker, in order to diminish the effects

of the parasitic waves. In addition, parasitic waves have been shown to influence the third

and first harmonic loads. Another possible explanation for general deviations in the results

between the experiments can be beach reflection effects.

The motivation behind introducing the force-term computed by Fluent into the FNV-theory

was to account for viscous effects, such as flow separation. Similar to the FNV-theory,

the combined CFD-FNV load model are estimating the third harmonic loads in thread

with the experiments up to a wave steepness of approximately 1/40. Thereafter, the third

harmonics are over-estimated by both load-models. The combined CFD-FNV model is to

an even greater extent over-predicting the third harmonic loads compared with the inviscid

FNV-theory, although the difference is small. Regarding the lower load harmonics, the

results from both load-models are in fair agreement with the experiments by Kristiansen

and Faltinsen (2017). The results in Figure 5.2 reveal that substituting the F1 forcing

term from the inviscid FNV-theory, with the viscous-effects accounting forcing term as

computed by Fluent, did not bring better compliance between the load-estimation model

and experimental results.
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Figure 5.2: Non-dimensional amplitudes of the three first load harmonics versus non dimensional
wave-number ka. , Experiments Kristiansen and Faltinsen (2017); , Experiments present work;

, FNV; , CFD-FNV.
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5.1 Comparison between CFD-FNV, inviscid FNV and experiments

The differences in load-estimation by the CFD-FNV load-model and the inviscid FNV-

theory, comes due to the substitution of the first forcing term in the inviscid FNV-theory,

F1, with the viscous Fluent-force. Thus, it makes sense to compare the two forcing terms

with each other. In Figure 5.3, the three first harmonics of FCFD are plotted versus the

corresponding harmonic of F1. One of the wave conditions where discrepancies between

the forcing terms appeared is considered; ka = 0.127 and H1/λ = 1/20. The dashed

lines represent the force term F1, proportional to ∂u
∂t , while the solid lines correspond to

the harmonic loads as computed by Fluent. Figure 5.3 shows that the amplitudes of the

first harmonic are almost of the same magnitude in both the viscid and inviscid forcing

term. However, a phase shift between the first harmonic loads, due to the viscous forces

included in the CFD force-term, can be observed. The second harmonics are in contrast

identical, being in the exact same phase and of the same magnitude for both F1 and FCFD.

The third harmonic amplitudes are, as seen in Figure 5.3, not decreased by substituting the

F1 force term from the inviscid FNV-theory with the viscous force from Fluent. Instead

they increase somewhat in magnitude. There is no significant phase shift between the two

third harmonics.

The combined CFD-FNV model, also including planar viscous effects, did not explain the

discrepancies between the theory and experimental results of the third harmonic ampli-

tudes. The validation of the numerical model showed on the other hand, for KC-numbers

in range of what considered most vital for the present study, fair agreement between the

force coefficients on the cylinder computed by Fluent in sinusoidal flow, and correspond-

ing experimental values obtained by Garrison et al. (1977) and Sarpkaya (1987). The

results indicate, thus, that the two dimensional viscous effects not are the cause behind the

discrepancies in the third harmonics between inviscid fifth order FNV-theory and experi-

ments. However, the modelling of the boundary layer in case of critical flow regimes is, as

already mentioned, extremely difficult. The application of other viscous model were also

tested, in order to see whether this could affect the results.
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Figure 5.3: Comparison between the three first load harmonics of the inviscid force-term F1, and the
force compute by the CFD-software. , F1; , FCFD . Wave condition: ka = 0.127
and H1/λ = 1/20.
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5.2 Effect of viscous model

5.2 Effect of viscous model

Both the laminar model and the IDDES turbulence model was applied to see if this would

affect the results. There was limited time to perform new analysis, and thus two se-

lected wave conditions where discrepancies in the third harmonic load had been confirmed

were considered. The wave conditions corresponded to the non-dimensional wave number

ka = 0.127, with steepness 1/20 and 1/25.

In Figure 5.4, are the results of the amplitudes for the three first load harmonics, using the

k − ω SST turbulence model, plotted for wave steepness 1/40 and 1/25. All three wave

periods, with the non-dimensional wave numbers 0.163, 0.127 and 0.105 are included. In

addition, results from using the laminar and IDDES model, with wave steepness 1/25 and

ka = 0.127, are showed. The results from the latter wave condition demonstrate, for all

three load harmonics, that the choice of viscous model does not influence the magnitude

of the amplitude to any considerable extent. Using the IDDES model, provides results of

somewhat smaller amplitudes for all three harmonics, compared to the k − ω SST and the

laminar model. This may be due to numerical dissipation. The mesh was not optimized

for the application of the IDDES model, and LES is in general very sensitive to the grid

scales. However, the results for the other wave conditions using the k − ω SST model,

confirms the trend observed in Figure 5.2. The CFD-FNV model is, similar to the invis-

cid FNV-theory, complying with experiments for steepness 1/40. For steepness 1/25, on

the other hand, discrepancies in the third harmonic amplitudes are present for all of the

considered wave periods.
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Figure 5.4: Non-dimensional amplitudes of the three first load harmonics versus non dimensional
wave-number ka. , Experiments Kristiansen and Faltinsen (2017); , CFD-FNV(k − ω SST); ,
CFD-FNV(IDDES); , CFD-FNV(laminar); , FNV.
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5.2 Effect of viscous model

5.2.1 Vorticity field

Subsequent to the numerical simulations, the vorticity field around the cylinder was visu-

alized. In Figure 5.5 are the vortices at the upper cut of the cylinder plotted at three time

instants: t = 0, t = T/4, and t = T/2, for the k − ω SST model (top), the IDDES model

(middle) and the laminar model (bottom). The consequences of a full RANS approach are

clearly visible in the first case, observing that a lot of the vorticity is dampened out due

to the time-averaged flow field. The IDDES is, in contrast to k − ω SST, also using LES

to model the eddies outside the boundary layer. This leads to a more descriptive vorticity

field, as seen in Figure 5.5. The laminar model is not applying the RANS approach at all,

visible in terms of less damped vorticity fields around the cylinder.

t=0 t=T/4 t=T/2
Figure 5.5: Visualization of the vorticity field around the cylinder at three time instants using the
k−ω SST model(top), the IDDES model(middle), and the laminar model(bottom). The cut at the top
of the submerged cylinder is considered. The respective time instants are taken within the seventh
oscillation of in total eight oscillations.
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5.2.2 Pressure distribution on the cylinder

It was also of interest to investigate how the pressure distribution on the cylinder was

influenced by the choice of viscous model. Thus, the pressure along the curve length of

the cylinder was plotted for all three models, at five selected time-instants, in Figure 5.6.

The plots corresponds to cut 10 of the cylinder, with wave conditions of ka = 0.127 and

H1/λ = 1/20. The vorticity fields and pressure profiles for several more cylinder cuts

and wave conditions can be found in Appendix A and B. Similar investigations performed

by Kristiansen and Faltinsen (2017), showed a local pressure peak arising with time at the

rear of the cylinder, subsequently spreading out. The peak build-up was associated with

the formation of the local rear run-up. The same trends are observable in the presented

pressure distribution in Figure 5.6. The k − ω SST model provides in general smoother

pressure curves, and more visible formations of the peak, as it damps out many many of

the disturbances due to the turbulence modelling.

k − ωSST IDDES Laminar

Figure 5.6: Pressure distribution on cylinder at five different time-instans, applying the k − ωSST,
IDDES, and laminar model. The top cut of the cylinder is considered, under wave conditions ka =
0.127 and wave steepness H1/λ = 1/20. The respective time instants are taken within the seventh
oscillation of in total eight oscillations.
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5.2.3 Comparison of load harmonics

The integrated horizontal force was bandpass-filtered into the three first load harmon-

ics, and compared between using the k − ω SST, IDDES, and the laminar model (see

Figure 5.7). Considered wave condition was again ka = 0.127 and wave steepness

H1/λ = 1/20. As seen, the different approaches in modelling the boundary layer and

vortex shedding, with the corresponding pressure distribution on the cylinder, does not

make any considerable impact on the total horizontal force. All of the harmonics are, to a

very large extent, complying both in terms of phase and amplitudes. There is only small

differences to observe, e.g. the amplitudes of the load harmonics computed by the ID-

DES model are somewhat smaller than the corresponding amplitudes of the k − ω SST

and laminar model. This may be, as earlier discussed, due to numerical dissipation when

using the IDDES model, because of the non-optimal grid. However, the results indicate

that neither treatment of the boundary layer as turbulent or laminar with the present 2-D

numerical model, influence the total horizontal load on the cylinder under the considered

wave conditions.
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Figure 5.7: Comparison between the three first load harmonics of the force as evaluated by the
combined CFD-FNV model, using: , k − ω SST. , IDDES; , Laminar.
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Conclusion and further work

Strip theory based CFD-analyses have been performed for several wave conditions on a

bottom mounted circular cylinder in order to evaluate the horizontal in-line force, also

accounting for viscous effects. The terms from the inviscid FNV-theory, not included in

the CFD-force, were added, composing a combined CFD-FNV load model. The 2-D nu-

merical model obtained in Fluent was validated against experiments by Garrison et al.

(1977), Bearman et al. (1985) and Sarpkaya (1987). The numerical results of CM and CD
for varying KC and Re showed, for a sufficient range of KC, good agreement with the

experiments. The limitations of the numerical model for higher KC were discussed in

terms of the Courant number. The k − ω SST turbulence model was applied for the main

analysis, which results were compared to experimental measurements obtained by Kris-

tiansen and Faltinsen (2017) and from the present work. Special focus was on the ability

of the combined load model to estimate the third harmonic loads of incoming, longer and

steeper waves on the monopile, while these had been confirmed by Kristiansen and Faltin-

sen (2017) to be over-estimated by inviscid fifth order FNV theory generalized to finite

water depth. The results showed that the third harmonic loads as estimated by the com-

bined load model did not comply better with the experimental measurements. In fact, the

third harmonic amplitudes were somewhat more over-estimated than when applying in-

vscid FNV-theory. Hence, the introduction of a viscous force term could not explain the

discrepancies. However, the combined load showed good agreement with both the exper-

imental values and the inviscid FNV-theory, up to a wave steepness of approximately 1/40.

Several approaches were tried out when modelling the boundary layer, in order to check if
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this affected the results. A hybrid RANS/LES turbulence model was, as well as a laminar

model, applied. The load harmonics were nearly not affected by the boundary layer treat-

ment, although the vorticity field around the cylinder evidently depended on which of the

three viscous models that were used. This could indicate that the neglection of 2-D flow

separation not is the main cause for the discrepancies in the third harmonics between the

FNV-theory and the experiments. However, to model the flow behaviour of an oscillating

flow around a cylinder is considered as highly advanced. The critical Reynolds number is

unknown, and the flow reattachment associated with critical flow regimes are considered

as very complex to model numerically. Thus, such limitations in the numerical model

could have affected the results.

Modelling or visualizing 3-D effects caused by flow separation, such as a local upwelling

of the free surface at the rear of the cylinder, should be of main interest for further re-

search. This phenomenon has been confirmed during several experiments(Kristiansen and

Faltinsen (2017), Grue and Huseby (2002) and present work), and is believed to arise due

to a high pressure zone at the rear of the cylinder because of vortex shedding. The high

pressure zone was confirmed, plotting the pressure distribution on the cylinder during the

numerical analysis. The rise of the free surface also affect the flow back, forming a two-

way interaction. The attempt to colour a possible flow run-up rear of the cylinder during

the experiment was not successful. Other approaches, such as PIV, could be a possibility in

order to visualize the upwelling. However, PIV is associated with problems related to free

surface because of reflections. Other effects, like 3-D wake and vertical varying incident

flow, have neither been accounted for. Application of slender body theory, instead of strip

theory, will include the latter effect.
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Appendix A: Visualization of vorticity

k − ωSST

ka = 0.127 H1/λ = 1/20

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/20, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. k − ωSST model used.



ka = 0.127 H1/λ = 1/25

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/25, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. k − ωSST model used.
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ka = 0.127 H1/λ = 1/30

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/30, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. k − ωSST model used.
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ka = 0.127 H1/λ = 1/40

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/40, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. k − ωSST model used.
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ka = 0.105 H1/λ = 1/20

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.105, H1/λ = 1/20, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. k − ωSST model used.
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IDDES

ka = 0.127 H1/λ = 1/20

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/20, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. IDDES model used.



ka = 0.127 H1/λ = 1/25

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/25, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscillation(eight in total). Cut
numbering from bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. IDDES model used.
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Laminar

ka = 0.127 H1/λ = 1/20

t=0 t=T/4 t=T/2
The vorticity field around the cylinder for ka = 0.127, H1/λ = 1/20, at three time-instants: t = 0,
t = T/4 and t = T/2. The plots are obtained during the seventh oscilliation. Cut numbering from
bottom to top: 1, 5, 10, 15, 20, of in total 20 cuts. Laminar model used.



Appendix B:Pressure distribution on cylinder

k − ω SST

ka = 0.127

Cut 1 Cut 10 Cut 20

Cut 1 Cut 10 Cut 20
Pressure distribution on cylinder at five time-instants shown for cut 1, 10 and 20 of in total 20 cuts.
θ is defined as zero at the stagnation point of the cylinder. The seventh of in total eight oscillations
is used.k − ωSST model used.
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Cut 1 Cut 10 Cut 20

ka = 0.105

Cut 1 Cut 10 Cut 20
Pressure distribution on cylinder at five time-instants shown for cut 1, 10 and 20 of in total 20 cuts.
θ is defined as zero at the stagnation point of the cylinder.The seventh of in total eight oscillations is
used.k − ωSST model used.
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IDDES

ka = 0.127

Cut 1 Cut 10 Cut 20

Cut 1 Cut 10 Cut 20
Pressure distribution on cylinder at five time-instants shown for cut 1, 10 and 20 of in total 20 cuts.
θ is defined as zero at the stagnation point of the cylinder. IDDES model used.

98



Laminar

ka = 0.127

Cut 1 Cut 10 Cut 20
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