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Problem
The process of doing underwater control design is com-
plicated and in some cases infeasible. This is due to
unobservability and highly nonlinear effects in the un-
derwater environment, which makes the autonomous
control nonlinear since flow and hydraulic resistance
easily influence AUVs motions [1].
These disadvantages have triggered the interest of us-
ing artificial intelligence, more precisely machine learn-
ing, in design of underwater control systems. This the-
sis investigates the possibilities of using deep reinforce-
ment learning to accomplish 6 DOF station keeping
capabilities of AUVs.

Basic Concepts
The branch of machine learning used in this thesis is
denoted deep reinforcement learning (DRL). In rein-
forcement learning (RL) the overall goal is to train an
agent, or algorithm, to perform correct actions in an
environment. This is done by giving the agent a reward
based on how good it was to take a particular action
in a specific state. The overall goal is to maximise the
total cumulative reward over all states, such that the
optimal policy, or strategy, to follow is found [2]. The
RL architecture is presented in the figure below.

DRL are a family of methods within RL that use the
principles of artificial neural networks (ANNs), which
are based on on the idea of how biological nervous sys-
tems, such as the human brain, operates [3]. In the
DRL family three state-of-the-art methods are signifi-
cant: Deep Deterministic Policy Gradients (DDPGs),
Trust Region Policy Optimisation (TRPO) and Prox-
imal Policy Optimisation (PPO).

Models
The algorithm is trained and validated using a dynamic
model of the BlueROV2, in combination with the simu-
lation environments Gazebo and Robot Operating Sys-
tem (ROS). Station keeping capabilities are also vali-
dated on the real-life system in the marine cybernetics
(MC) lab at Tyholt.
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Method
The proposed method is to develop a dual control design, which combines a proportional-derivative (PD) controller
with a deep deterministic policy gradient (DDPG) algorithm. DDPGs are the type of DRL algorithms that are
characterised as off-policy, model-free and actor-critic policy gradients. The benefit of using these is that no
assumptions about the environment or dynamic model are needed, which means that the problems related to
classical control designs are removed.
The goal is to accomplish station keeping, which is the ability to maintain a constant position and orientation
(pose), with regard to a reference object. To do this, a DDPG algorithm is used to control the states: surge
x and sway y, while the PD algorithm is used to control the states: heave z, pitch φ, roll θ and yaw ψ. The
reason for not using DRL techniques on all 6 states is that difficulties related to convergence towards an optimal
policy increases exponentially with the number of DRL states. The developed DDPG algorithm and controller
architecture are displayed in the figure below.

Results and Discussion
The algorithm was trained for ≈ 600 episodes in the simulated environment, where each episode is ran for 1000
simulation steps or until the vehicle satisfies station keeping capabilities (< 1000). Training is restarted from
episode 400 due to problems with the software when the number of episodes increased. The right figures displays
the last 50 episodes, and as shown the agent has converged towards and optimal policy, using approximately 203
steps each simulation to accomplish station keeping.

The performance of the controller was evaluated in both simulation and real-life. The left figure below display
the validation results from simulation, where the agent received arbitrary desired poses for station keeping. As
shown, the vehicle is accomplishing station keeping with error values in the order of 10−2m. The right figure
displays the results from real-life experiments, where the agent is given a new arbitrary desired pose at t = 18s.
The agent is able to sufficiently reduce the error, but the values are now in the order of 10−1m. The main reason
for the differences in performance was due to the flaws in the real-life pose measurement system, Qualisys.

The problems related to Qualisys made it difficult to measure the performance of the controller to its full extent.
Further work on the topic should try to resolve this issue, and one method could be to implement an observer,
such that observer estimates can be used when the pose is lost. Furthermore, DDPG algorithms suffers from
convergence issues. However, this is not the case for TRPO and PPO methods, which could be a possible
implementation for further work.


