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Abstract

Isogeometric analysis (IGA) is a new approach in the world of Finite Element

Analysis (FEA). The idea is to merge the Computer Aided Design (CAD) model

directly into FEA. This was not possible until now due to di�erent basis functions

in CAD model and the FEA model. After introducing IGA in 2005 by [9], a lot of

research improved the approach, which is why the idea came up to combine IGA with

a digital twin. A digital twin is a digital representation of a physical structure, which

is updated all the time and fed with information from the physical twin. Updates can

be structural changes, cracks in the structure or a swap of parts. In this �eld IGA will

increase the e�ciency of the work�ow, since the updated digital twin can be directly

used for structural analysis. Digital twin will be a key technology for the upcoming

Industry 4.0 and therefore the importance and usage of digital twin will increase.

To analyse a big structure, such as a digital twin, the existing implementation

needs some improvements in regards to e�ciency.

After describing the mathematical background of NURBS and the state of the art

of IGA, di�erent approaches are discussed to improve the e�ciency and extend the

existing code. Knot removal, neglecting small trimmed areas and polynomial degree

for integration are discussed. Especially neglecting of small trimmed areas shows good

improvements regarding the condition of the sti�ness matrix. A value of 1% for the

ratio between trimmed area and element area seems to be a good value, which is

proved by di�erent geometries. Further the import of IGES �les was updated to read

in multiple patches and the plotting of trimmed surfaces in physical space to plot

multiple patches trimmed patches.

The work with the digital twin of `Gunnerus' shows some problems with the digital

twin itself and with the existing IGA code. The digital twin consists of to many

single patches to couple every patch by hand and the thickness of every plate is lost.

Therefore only small areas of `Gunnerus' are modelled. On the other hand is that the

existing element cases for trimmed elements are not su�cient. Tests with `Gunnerus'

have shown that there are trimming lines on the boundary and cuts through two

vortex points of one element. This case is not covered by the existing one. This is not

within the scope of this thesis and needs further research.
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1 INTRODUCTION 1

1 Introduction

In the marine industry exist many geometries which are in one dimension much smaller

than in the other two dimensions, such as the ship hull or plates for hatches. To account

for its curved nature, the ship hull can be modelled as a shell structure. Shell structures

carry their load `through its shape' and the curved surface results in an interaction between

membrane and bending moments. Similar to the beam theory, two di�erent shell theories

exist. One is called Reissner-Mindlin theory or thick shell theory. It can be compared to

the Timoshenko-beam theory and takes into account transverse shear deformations [17].

The Reissner-Mindlin theory is valid for shells, where the plate thickness p is divided by

length l to the power of three ch less than one. If d
l � 1 the thin plate theory can be

used. This theory is also called Kirchho�-Love theory and is based on the assumption of

the `classical plate theory' of Gustav R. Kirchho�. The Reissner-Mindlin theory is used

although most of the shells are thin shells, in the �nite element method. Furthermore the

Kirchho�-Love theory could be applied.

The �nite element method is the standard in Computer Aided Engineering CAE and

is widely used in structural analysis. The geometric model is described by many small ele-

ments. These elements are de�ned by nodal points, which are connected by basis function,

normally linear polynomials. In Computer Aided Design CAD it is treated di�erently.

Here the geometric model is described by non-uniform rational B-Splines NURBS. They

are based also on nodal points, but the basis function are polynomials of higher order,

which is why they can represent the geometry in a more detailed way. The geometric

model is the foundation for the analysis model and causes problemes due to the di�erent

basis functions. The transition from the CAD model to the CAE model is called meshing

and it is presented as the most time-consuming step and is presented as the bottleneck of

the �nite element method. Lovadina et al. [15] states that the mesh generation accounts

for more than 80% of overall analysis time. For simple geometries, automatic meshing

works �ne but for more complex geometries, such as ship hulls, wind blades etc. it can be

done only semi-automatically and is rather time consuming. This is the reason why there

are new approaches to avoid the meshing, such as Isogeometric analysis IGA.

Hughes et al. [9] presented the idea of IGA, which uses the same geometric model,

based on NURBS for the analytical model. The result is that the analysis can work with

the exact geometrical model and can be applied to all di�erent �elds of engineering. First

tests of IGA show great advantages in comparison to the traditional FEM, such as high

accuracy and robustness. This is a result of higher polynomial degree, which provides

higher continuity.

During the design of complex structures, even for smaller geometries a common tool

is the trimming. The trimming tool cuts of surfaces or curves in the model. This is a

quiet powerful tool because adjustments can be done easily. In addition the trimming

tool does not change any description of the surface or curve. It makes the part invisible,

which is trimmed. Whereas the knot vectors, control points and basis functions are still
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1 INTRODUCTION 2

the same. This is a big challenge for IGA, because it is only working with the description

of control points, knot vectors and basis functions. In order to solve this problem two

di�erent solutions exist. First, avoiding trimming during the design phase, but this would

be to time consuming and the main advantage of IGA would be neglected, the other

option is that IGA �gures out the trimmed patches and computes them in a special way.

S. Schønfeldt [19] wrote an implementation to the existing research code of NTNU, which

can import IGES, categorizes the element into the possible trimming cases and calculates

the integration points for the analysis.

A novel idea is to combine IGA with a digital twin. The digital twin is an `integrated

multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses the best

available physical models, sensor updates, �eet history, etc., to mirror the life of its �ying

twin' [20]. This will be one of the key concepts of the Industry 4.0, which is coming closer

and closer. In that way information can be exchanged between the physical system and the

digital twin and vice versa. This can help to understand how the physical system works

and how to improve the product lifecycle of that system. Here the bottleneck of FEM

results in spending a lot of time in meshing. For every change at the digital twin a new

mesh has to be generated, due to updates on the structure, etc. With IGA the e�ciency

of this work�ow will signi�cantly increase. In this thesis `Gunnerus' the research vessel of

NTNU will be used as a digital twin. It was built during a summer job by �ve students of

NTNU. The digital twin contains a structural model, which is used to perform IGA on a

complex structure with trimmed surfaces.

The thesis is outlined as follows:

• Chapter 2 : The geometrical basics, which is needed for this thesis, with respect to

geometric modelling of NURBS in 1D and 2D is represented, as well the re�nement

of NURBS. Further a small outline of IGES and trimming in CAD is presented to

understand the work�ow between CAD and IGA in a better way.

• Chapter 3 : This chapter provides an overview of IGA. It explains the basics of

NURBS-based IGA and the actual development of the in-house research code with

special focus of the trimming option.

• Chapter 4 : The revision of the implementation for analysis on trimmed surfaces is

outlines, with some benchmark test. The aim is to improve the code in regards of

e�ciency.

• Chapter 5 : In this chapter, IGA is performed on the structural model of Gunnerus.

Also, the upcoming challenges are presented and discussed.

• Chapter 6 : A conclusion and outlook on the basis of the thesis is presented.
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2 GEOMETRICAL DESCRIPTION 3

2 Geometrical Description

To describe geometric shapes mathematically, it is important to use functions which are

extremely �exible and have independent parameters to represent a wide range of geometric

shapes. Parametric functions o�er almost all these requirements. With parametric rep-

resentation, it is possible to describe even complex curves as an archimedean spiral. This

is why it is the most common way of representing curves and surfaces in CAD. All the

following methods are based on parametric representation.

2.1 NURBS Curves and Surfaces

NURBS curves and surfaces are based on Béziers and B-Splines [18]. Only B-Splines are

described shortly in the next part. For a more detailed description of Béziers and B-Splines

the reader is referred to [18].

2.1.1 Knot vector

The knot vector Ξ = [ξ1, ξ2, ..., ξn+p+1] de�nes the parametric space. ξi are the parametric

coordinates or knots and divide the B-Spline curve in di�erent sections. The parametric

coordinates ξi have to be ordered in the way of ξi ≤ ξi+1, that is the only requirement

for knot vectors [18]. Otherwise, the knot vector is divided into two types: periodic and

open. If the knot vector has a multiplicity p+ 1 at the �rst and last knot it is called open

knot vector, otherwise it is a periodic knot vector. This gives the open knot vector the

possibility to describe the exact start and end point of a curve, which is why the open knot

vector is state of the art in CAD[16].

The two types of knot vectors can be speci�ed more precise with the two classes non-

uniform and uniform. If all knots have the same distance to each other, they are called

uniform otherwise non-uniform.

2.1.2 Basis function

The B-Spline basis functions are based on the knot vector and the polynomial degree and

are computed by the Cox-deBoor recursion formula [4]. The start of computing the �rst

basis function is with p = 0 and is de�ned as:

Ni,0(ξ) =

1 ξi ≤ ξ < ξi+1

0 otherwise
(1)

for p ≥ 1 it is

Ni,p(ξ) =
(ξ − ξi)Ni,p−1(ξ)

ξi+p − ξi
+

(ξi+p+1 − ξ)Ni+1,p−1(ξ)

ξi+p+1 − ξi+1
(2)

From this equation some important properties of B-Splines can be deduced [9, 10]:

• local support, i.e. a basis function Ni,p(ξ) is non-zero only in the interval [ξi, ξi+p+1]
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2 GEOMETRICAL DESCRIPTION 4

(a) B-Spline curve with its control point (dashed line) and knot position on
the curve

(b) Corresponding basis functions de�ned in parameter space

Figure 1: Cubic B-Spline curve with the clamped knot vector Ξ =
[0, 0, 0, 0, 0.2, 0.5, 0.8, 1, 1, 1, 1] and its basis functions
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2 GEOMETRICAL DESCRIPTION 5

• partition of unity, for ∀ξ
∑n

i=1Ni,p(ξ) = 1

• each basis function is non-negative, i.e. Ni,p(ξ) ≥ 0

• linear independence, i.e.
∑n

i=1 αiNi,p(ξ) = 0 ⇐⇒ αi = 0, i = 1, 2, ..., n

The knot vector and the resulting basis functions for a random B-Spline curve is shown in

Figure 1.

2.1.3 B-Spline curves

B-Splines are non-interpolating, piecewise de�ned polynomial curves. They are de�ned by

the following entities:

• set of control points, Pi, i = 1, ..., n

• set of basis functions Ni, i = 1, ..., n

Yields to

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi (3)

as a formula for a B-Spline curve.

An important aspect of the B-Spline curves is the continuity, C. It describes the

`smoothness' of the curves and it exists three main di�erent discontinuities. If the in-

ner knot has a multiplicity of k = p, the continuity will be C0. This will lead to a change

in position. The other two discontinuities are:

• C1 change in tangent, i.e. a kink in the curve

• C2 change in acceleration

Figure 2 shows a B-Spline curve with di�erent continuities at di�erent knots.

Figure 2: B-Spline curve with C1 and C2 continuity

Hughes et al. [9] summarizes the important properties of B-Spline curves with the

respect to IGA as follows:
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2 GEOMETRICAL DESCRIPTION 6

• the curve has continuous derivatives of order p − 1, but not at repeated knots or

control points

• the curve is C∞ continuous between two knots and is Cp−k continuous at a knot of

multiplicity of k

• An a�ne transformation of a B-Spline curve is obtained by applying the transform-

ation to the control points

2.1.4 B-Spline surfaces

A B-Spline surface is calculated by the tensor product of B-Spline basis functions in two

parametric dimensions ξ and η. It is expressed by Rogers [18] as:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p (ξ)Mj,q(η)Pi,j (4)

where Ni,p (ξ) and Mj,q(η) are the basis functions corresponding to the control points in

s-direction n and t-direction m, two knot vectors Ξ and H and the polynomial degrees p

and q, which do not have to be equal.

The Figure 3 shows an example of a quadratic B-Spline surface, with its control net

(dashed lines).

Figure 3: B-Spline surface
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2 GEOMETRICAL DESCRIPTION 7

2.1.5 NURBS

`NURBS' stands for Non-Uniform Rational B-Splines. `Non-uniform' means that the knot

vector is not uniform in general. `Rational' refers to the basis function. For NURBS the

basis functions are piecewise rational polynomials. For B-Splines, the basis functions are

piecewise polynomials.

The main di�erence of NURBS regarding B-Splines is that NURBS have an additional

parameter. Each coordinate has an individual weight wi. This yields that the control point

Pi = (xi, yi, zi, wi) can be represented in a projective R4 space. A NURBS curve is the

projection of a B-Spline in R4 with homogeneous control points onto R3 [16]:

C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n
k=1Nk,p(ξ)wk

(5)

The NURBS basis function is:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
i=1Ni,p(ξ)wi

(6)

Yielding to the more common form:

C(ξ) =

n∑
i=1

Ri,p(ξ)Pi (7)

Equation 5 shows that B-Splines are a special case of NURBS. NURBS with equal control

weights are B-Splines. This is also the biggest advantage of NURBS. With the control

weight, there are almost no limitations regarding modelling complex shapes, which is why

NURBS are established as a standard in CAD modelling.

NURBS surfaces are de�ned similar to the B-Spline surfaces, as [16]:

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Pi,j (8)

with

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(9)

Equation 8 is not a tensor product of one-dimensional NURBS basis functions. The equa-

tion is based on the weighted ratio of tensor products of B-Spline basis functions.

2.1.6 Re�nement

There are two di�erent methods to re�ne NURBS curves and surfaces:

• knot insertion, corresponding to FEM h-re�nement

• order elevation, corresponding to FEM p-re�nement

Both methods do not change the shape of the NURBS curve and they both enter more

control points to the curve as a re�nement, which results in a more accurate analysis. The
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2 GEOMETRICAL DESCRIPTION 8

Figure 4: NURBS curve, same control points as in Figure 1a but with di�erent weights

knot insertion [9] divides the curve into smaller knot spans by adding an extra knot. As

a consequence, the continuity of this point will be reduced by one. The order elevation

increases the polynomial degree of the basis function, while keeping the knot interval

constant before and after the re�nement.

Hughes et al. [9] introduces the k-re�nement. The k-re�nement combines the knot

insertion and the order elevation by combining the two advantages of them. But it is

important to mention that the two re�nement methods are not interchangeable, as shown

in Figure 5. In the k-re�nement �rst the order elevation is done before the knot insertion.

This is the common procedure in all existing IGA codes.

2.2 IGES code

As mentioned before, NURBS are the basics for CAD and CAD is common tool in the

engineering world and a lot of di�erent CAD software exist. Every software uses their one

�le format and the other software can not read them. Therefore a neutral �le format was

needed. Nowadays there exists two the IGES �le format and the STEP �le format.

In the internal research code is a script implemented, which can read IGES �les and

gives out the number of patches, the control points, knot vectors, polynomial degree of the

surface and existing curves.

IGES stands for Initial Graphics Exchange Speci�cation and is used to transfer geo-

metry data and CAD models from one program to another one. It is a vendor-neutral �le

format, which was initiative of the United States Air Force Integrated Computer Aided

Manufacturing program in 1979 [22].

The �le is an ASCII test based format and every line has exactly 80 characters. Also

the �le is split into �ve sections [1]:

1. Start (Sender comments)
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⇓
(a) Ξ = [0, 0, 1, 1], p = 1

� �

(b) re�nement process

Figure 5: two di�erent orders of applying knot insertion and order elevation. Figure (a)
shows the original con�guration, which will be re�ned. On the left side �rst knot insertion
and then order elevation has been done. On the right side �rst order elevation and then
knot insertion took place. This is the new k- re�nement [9]
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2. Global (general �le characteristics)

3. Directory Entry (Entity index and common attributes)

4. Parameter Data (Entity Data)

5. Terminate (Control totals)

In the appendix D is a generic IGES �le of a untrimmed trapezium. The important sections

of the IGES �le for IGA are the sections Directory Entry and Parameter data. Both of

them contain entities, which can be geometry and non-geometry entities. The geometry

entities de�ne the physical shape of a product and include points, curves, surfaces, solids.

The non-geometry entities specify annotation, de�nition, structure, colours etc. It exists

around 150 di�erent entities, but the important ones for IGA are: 128, 143 and 126.

• 128 describes Rational B-Spline surfaces

• 143 describes bounded surfaces

• 126 describes Rational B-Spline curves

An entity, for example 128, is described in the Directory Entry as follows:

1 128 4 0 0 1 0 0 000010000D

7

2 128 0 -1 4 8 0 0 TrimSrf 0D

8

Each line is separated into ten character �elds, which contain eight characters and every

entity gets two lines. That ends in 20 characters �elds for every entity. These �elds map

to following properties:

Table 1: format of the Directory Entry section [1]

col

1-8

col

9-16

col

17-24

col

25-32

col

33-40

col

41-48

col

49-56

col

57-64

col

65-72

col

73-80

Entity
type

para
meter
data

Struct
ure

Line
Font
pattern

Level view Trans
forma
tion
Mat-
rix

Label
Dis-
play
As-
soc.

Status
num-
ber

Seque
nce
num-
ber

Entity
type

line
weight
num-
ber

colour
num-
ber

Para
meter
line
count

Form
num-
ber

Reser
ved

Reser
ved

Entity
label

Entity
sub-
script
num-
ber

Seque
nce
num-
ber

These �elds de�ne the following properties for every entity:

Gerrit Witte



2 GEOMETRICAL DESCRIPTION 11

Entity type Identi�es the entity type

Parameter structure Pointer to the �rst line of the parameter data for the entity

Structure zero or pointer to de�nition entity or zero

Line font patter number to line font pattern entity (Type 304) or zero

Level speci�es levels to be associated with this entity or zero

View de�nes viewing options, View Entity (Type 410) or zero

Transformation matrix references a transformation entity (Type 124) or zero

Label Display Associativity pointer to the Directory Entry of a label Display Associ-

ativity (Type 402) or zero

Status number contains four sections of two numbers. 1-2: Blank status; 3-4: Subor-

dinate Entity Switch; 5-6: Entity Use Flag; 7-8: Hierarchy

Sequence number physical count of this line from the beginning of the Directory section

Line weight number System display thickness

Colour number de�nes the colour of the entity

Parameter line count Quantity of lines in parameter section which are related to this

entity

Form number describes the form or the representation of the entity or zero

Entity Label right justi�es or NULL

Entity subscript number digit unsigned number related to the entity label

The Parameter Data Section comes after the Directory Entry and lists the data for each

respective entry. For the entity type 128 the entry can look like this:

1 128,1,1,1,1,0,0,1,0,0,0.0D0 ,0.0D0 ,9000.0D0 ,9000.0D0 ,0.0D0 ,0.0D0 , 0000007P

4 8000.0D0 ,8000.0D0 ,1.0D0 ,1.0D0 ,1.0D0 ,1.0D0 ,250.0D0 ,28.0D0 ,0.0D0,

0000007P 5 9250.0D0 ,28.0D0 ,0.0D0 ,250.0D0 ,8028.0D0 ,0.0D0 ,9250.0D0

,8028.0D0, 0000007P 6

2 0.0D0 ,0.0D0 ,9000.0D0 ,0.0D0 ,8000.0D0 ,0,1,5; 0000007P

7

The commas separate the parameters and the semi-colon ends the listings. The columns

from 4-64 contain parameter data, 65-72 the data entry pointer number (needs to be odd)

and 73 to 80 the Sequence number similar to the one from the Directory Entry. In the

following the parameter data for a Rational B-Spline curve (Type 126) are explained,

because that contains the information, which are needed for IGA.
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Table 2: parameter data for Type 126 [1]

Index in list Type of data Name Description

1 Integer K Upper index of sum

2 Integer M Degree of basis function

3 Integer Prop1 0=nonplanar, 1=planar

4 Integer Prop2 0=open curve, 1=closed curve

5 Integer Prop3 0=rational, 1=polynomial

6 Integer Prop4 0=nonperiodic, 1=periodic

7 Real T(1) First value of knot sequence

8+K+M Real T(1+K+M) Last value of knot sequence

9+K+M Real W(0) First weight

9+2K+M Real W(K) Last weight

10+2K+M Real X(0) x-coordinate of �rst CP

11+5*K+M Real Z(K) y-coordinate of last CP

12+5*K+M Real V(0) Start parameter value

13+5*K+M Real V(1) Last parameter value

14+5*K+M Real Xnorm Unit normal x (if planar)

15+5*K+M Real Ynorm Unit normal y (if planar)

16+5*K+M Real Znorm Unit normal z (if planar)

With these information all the necessary information can be selected from the IGES

�le for IGA. The research code will split the Directory Entry in the number of di�erent

patches. A trimmed patch will start with type 128 and the last entry for that patch is

ending with type 143. In between of these lines the information of the curves type 126 are

stored. A untrimmed patch will only contains type 128 without any bounded surfaces or

curves depending on how it was modelled.

2.3 Trimming in CAD

A common tool in CAD is the trimming. Trimming makes parts of structures or patches

invisible without changing the mathematical description. Figure 6 shows a untrimmed

rectangular with a line (blue line) through the rectangular. The line will be the trimming

line for the trimmed case. For both cases the mathematical description with the control

points is shown (small squares in the corners). It can be seen that for both cases the math-

ematical description does not changed only the visible surface. This tool is really helpful

for modelling complex structures because it is not always possible to model individual parts

as precise as their are needed and then trimming is the solution.
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(a) untrimmed

(b) trimmed

Figure 6: Trimming of a patch in Rhino
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3 Isogeometric Analysis

Isogeometric Analysis is a new approach, which uses the same mathematical description

for the analysis model and geometrical model. This means in practice that the geometrical

model from a Computer Aided Design (CAD) program can be used directly for the analysis

with Finite Element Analysis (FEA). The advantage of IGA will be that the whole process

of meshing can be omitted. It is estimated that the whole meshing process takes 80% of

the overall analysis time [15]. The reason why the it is necessary to mesh from CAD to

FEM is that these two approaches uses di�erent basis functions. CAD uses normally basis

functions with higher polynomial degree. In comparison FEM is only using linear basis

function, called Lagrange polynomials. This problem is solved with IGA, because it uses

the same basis functions as CAD. IGA was introduced by Hughes et al. [9].

3.1 NURBS-based Isogeometric analysis

In general, all functions, which are used in CAD can be used for IGA, as well. They have to

ful�l the necessary conditions for basis functions, such as linear independence and partition

of unity. The reason why NURBS are chosen is that they are the most common used in

CAD and they ful�l the requirements [9]. Other alternatives to NURBS are subdivision

surfaces and T-Splines [10].

There are some similarities between FEA and IGA, e.g. both analyses work with

elements. The elements can be de�ned in two di�erent ways in NURBS-based IGA. One

approach is that the NURBS elements are de�ned by the knot spans of the knot vectors.

In other words, one NURBS patch is subdivided into elements by the knot vector. The

other approach is that one NURBS patch is one element. Each approach has its own

advantages and disadvantages. In the end everyone has to decide for oneself which approach

is preferred.

There are more similarities and di�erences between classical FEA and IGA, which

Hughes et al.[9] summarise as shown in Table 3. For example FEA works with nodal

points and IGA uses instead control points or the elements in FEA are de�ned by the

mesh and in IGA the element boundaries are de�ned by the knots.

Table 3: comparison of FEA and IGA based on NURBS [9]

FEA IGA Similarities

Nodal points Control points Compact support

Nodal variables Control variables Partition of unity

Mesh Knots Isoparametric concept

Basis interpolates nodal
points and variables

Basis does not interpolate
nodal points and variables

A�ne covariance

Approximate geometry Exact geometry Patch tests satis�ed

Polynomial basis NURBS basis

Gibbs phenomena Variation diminishing

Subdomains Patches
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3.2 NURBS-based Kirchho�-Love shell

In his doctoral-thesis J. Kiendl [10] developed a shell element on the Kirchho�-Love shell

theory with NURBS as a basis function. The purpose was to use the Kirchho�-Love shell

elements for IGA. Kirchho�-Love shells need a C1-continuity for ful�lling the compatib-

ility conditions. The reason for that is that the curvature is expressed with the second

derivative of the geometry description. This is not possible with Lagrange polynomials as

basis functions, without modi�cation. Lagrange polynomials are common in FEM, which

is why Reissner-Mindlin shell formulation is used more often. Reissner-Mindlin formula-

tion takes into account the transverse shear strain, which ends up with variational index

one and therefore only a C0-continuity is required. With NURBS as basis functions, the

Kirchho�-Love shell formulation can be implemented without further modi�cations.

This thesis provides only a small outline of the NURBS-based Kirchho�-Love shell

formulation. For a more detailed version, the reader is referred to [10] and [11]. A general

point is that the following formulas are valid for a displacement-based Kirchho�-Love shell

formulation and not only for the discretization with NURBS.

In Kirchho�-Love shell theory, it is assumed that the cross sections, which are normal

to the middle surface, remain normal after bending/deformation. This means that the

transverse shear strains are neglected. For thin structures as for most ship hull construc-

tions, it is a reasonable assumption. As a result of this assumption, each point of the shell

can be described by its normal vector and the middle surface.

In the following derivation, for non-linear cases, the Einstein's summation convention

is used and indices in Greek letters take the values {1, 2}, whereas indices in Latin letters

take the values {1, 2, 3}.
The base vectors ai on the middle surface are obtained by:

aα = x,α (10)

a3 =
a1 × a2

|a1 × a2|
(11)

The metric and curvature coe�cients of the middle surface are de�ned as:

aαβ = aα · aβ (12)

bαβ = −aα · a3,β = −aβ · a3,α = aα,β · a3 (13)

Corresponding to the �rst fundamental form of surfaces and second fundamental form of

surfaces. The strain coe�cients Eαβ for thin and moderate thick shells are de�ned by:

Eαβ = εαβ + θ3καβ =
1

2
(aαβ −Aαβ) + θ3(Bαβ − bαβ) (14)
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Figure 7: vectors along the patch coupling line of patch SA [8]

where εαβ is the membrane strain and καβ represents the changes in curvature due to

bending.

Corresponding to the strain coe�cients, the stresses are split into two parts the stresses

due to bending moments m and stress resultants n for normal forces. Because of sym-

metry, the tensors m and n only have three independent components [m11,m22,m12] and

[n11, n22, n12] and can be computed with the material matrix D and Voigt notation: n̄11

n̄22

n̄12

 = t ·D ·

 ε̄11

ε̄22

2ε̄12

 (15)

 m̄11

m̄22

m̄12

 =
t3

12
·D ·

 κ̄11

κ̄22

2κ̄12

 (16)

The bar over the coe�cients indicates them as coe�cient to a Cartesian basis. This trans-

formation is necessary, because the material matrix D has physical material parameters

referring to the local Cartesian coordinate system. With all these formulas, everything is

set to calculate the internal virtual work:

δWint = −
ˆ

Ω

(S : δE)dΩ = −
ˆ

A

(n : δε+m : δκ)dA (17)

Further the sti�ness matrix can be derived from the second derivatives of the virtual work.

For the exact formulations, the reader is referred to Kiendl [10].

Another advantage of the NURBS-based Kirchho�-Love shell is that it needs neither

rotational degrees of freedom nor nodal directors. Nevertheless, in some cases, such as

coupling of NURBS patches or clamped boundary conditions, the rotations have to be

described at the shell boundary.

3.3 Patch coupling

NURBS patches can represent a lot of di�erent geometrical models, but sometimes it is

better to use more than one NURBS patch to model complex structures, due to practical

or technical limitations in geometry modelling [8]. If more patches are in use, they have

to be coupled somehow. The challenge is to provide the C1 continuity from the Kirchho�-
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Love shell element, because the basis functions at the patch boundaries only provide C0

continuity, which is why the rotation-free IGA elements need a special treatment.

State of the art is the penalty method, because of its simplicity and �exibility. The

main drawback of this method is the choice of the penalty parameter. If the value of the

penalty parameter is too small, the result will not be precise enough and with a too high

value the matrix may become ill-conditioned and the equation will have large numerical

errors.

In others works, di�erent approaches of penalty methods are shown for the use of patch

coupling. All these approaches have some limitations or are not easy to implement for a

general purpose analysis code. For example the approach of Breitenberger et al. [2] is

limited for rotational deformation less than 90◦.

3.3.1 Penalty coupling of non-matching isogeometric Kirchho�-Love shell patches

Herrema et al. [8] developed a new penalty method sharing similarities with Breitenberger

et al. [2] and Duong et al. [6], where only one penalty coe�cient is needed for displacement

and rotation. The new method is proofed for smooth and non-smooth, matching and non-

matching patch interfaces.

In the following a small summary of the method is given. For a more detailed version,

the interest reader is referred to the paper [8].

The coupling between two surfaces (SA and SB) along a curve L have to ful�l the

displacement continuity and rotation continuity. The curve can be an interface curve or a

trimmed curve. To ful�l the requirements, the coordinates of the integrations points along

the line and the normal vector a3, tangent vector at and in-plane normal vector an need

to be known. Afterwards, the penalty virtual work for the displacement continuity :

δW pd =

ˆ

L

αd(u
A − uB) ∗ (δuA − δuB)dL (18)

and for the rotation continuity

δW pr =

ˆ

L

αr((a
A
3 ∗ aB3 − åA3 ∗ åB3 )(δaA3 ∗ δaB3 − δ̊aA3 ∗ δ̊aB3 ) (19)

+ (aAn ∗ aB3 − åAn ∗ åB3 )(δaAn ∗ δaB3 − δ̊aAn ∗ δ̊aB3 )dL (20)

can be computed. The superscripts A and B indicate the two di�erent patches. At the end

the formulation of virtual work, Equation 21, has to be ful�lled at any arbitrary variation

of the displacement variable δur.

δW = δW int + δW pd + δW pr − δW ext (21)
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(b) undeformed, with boundary conditions and load
(c) deformed

(c) rectangular with an arc

(e) undeformed, with boundary conditions and load
(f) deformed

(f) plate with a cylinder

Figure 8: Patch coupling along a trimming line
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3.3.2 Patch coupling for trimmed surfaces along a trimming line

The scope from the work of [8] was to �nd a penalty formulation for an interface curve.

This formulation is extended for trimming curve. The in-house research code provides

information about points on the trimming curve, the tangential vector at each point and

mapping between the parameter and physical space. With these information, the coupling

between trimmed patches along a trimming line is working.

In the following two models with two patches each are presented. The two patches are

coupled along a trimming line.

The �rst model is a rectangular plate, which is trimmed by an arc (s. Figure 8a). The

rectangular is clamped on the left side (red line) and the load act in positive x-direction

on the upper end of the arc (arrows).

Figure 8d shows a plate with a cylinder. The cylinder is modelled through the plate.

The plate gets trimmed by the cylinder and a hole is generated. The whole model consists

of one untrimmed patch, the cylinder, and one trimmed patch, the plate with the hole.

The two patches are coupled along the trimming line of the hole. The plate is clamped on

the right side (red line) and the load is a line load in z-direction, acting on the left side of

the plate. Figure 8 shows the coupled and deformed results for both models.

3.4 Trimming in IGA

During the set-up of IGA as a fully functional tool, some challenges came up. Some are

solved and some still need some re�nement. In the following the challenge `trimming'

will be presented, which is still under development for the IGA code of NTNU Marine

Technology [19].

3.4.1 State of the art

Trimming is a widely used method in CAD. The visible part of geometries like surfaces

or curves will be modi�ed by cutting parts. The important point with respect to FEA

or IGA is that the parameters of the curve or surface do not change in a mathematical

way. In other words, IGA will use the original geometry instead of the trimmed surface

for calculation of integration points. This ends up in the following problems which have to

be solved for a su�cient use of IGA:

• to detect which element is trimmed

• mapping of trimmed elements

For FEA the problem with trimming is solved during the meshing part. It is one of the

reasons why meshing takes approximately 80% of the analysis time.

S. Schønfeldt wrote her master thesis about the problems of detecting and mapping of

trimmed elements and tried to solve them. In the following, a small outline of her work is

presented. For more details, the reader is referred to her work [19].
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The challenge is to �gure out if an element is trimmed or not. For that two searching

steps were implemented. Both searching steps are done in the parametric domain to have

always rectangular elements. The �rst searching step compares the distance vector d with

the inner radius rin and outer radius rout. The distance vector starts from the midpoint

of the element to the closest point on the trimming curve (see Figure 9). For that the

trimming curve of every element is divided into di�erent parts with start- and endpoint.

Afterwards the distance between every point and the midpoint is computed and the vector

with the shortest distance is the distance vector. The inner and outer radius are de�ned

as:

rin = min{si+1 − si
2

,
tj+1 − tj

2
} (22)

rout =
1

2
∗
√

(si+1 − si)2 + (tj+1 − tj)2 (23)

Then the elements can be classi�ed as

• The element is untrimmed, if rout < |d|

• The element is trimmed, if rin > |d|

• more information is needed, if rin ≤ |d| < rout

If the element is untrimmed, it has to be checked whether it is in the trimmed domain or

not. For that the tangential vector v of the trimming curve is needed. The direction of the

trimming curve is always clockwise, whenever the inside region of the trimming curve is in

void region. This means if the cross product of the distance vector is positive the element

will be in the trimmed domain (active) and contribute to the sti�ness matrix.

Figure 9: 1st searching step [19]

With the second searching step, the trimmed or unknown element is speci�ed in a more

precise way. A discrimination of all vertex points of the element is performed. If one or

more vertex points are not active the element is trimmed.
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Figure 10: 2nd searching step [19]

The two searching steps divide the trimmed element in three cases (see Figure 11):

1. three vertex-points are active

2. two vertex-points are active

3. one vertex-point is active

Figure 11: the three cases of trimmed elements: three vertex points active (left), two
vertex-points are active (middle), one vertex-points are active (right) [19]

These two searching steps have some constraints regarding the elements.

• the sign of the tangential vector at any point on the trimming curve needs to be

equal

• no closed curves inside an element

• one trimming curve per element

• trimming curve needs to cross at least one vertex

• the trimmed element has to be one of the three cases (see Figure 11)

If one of these constraints is violated re�nement will mostly solve the problem.

The next problem of trimmed elements is the mapping. As mentioned before, the

mathematical description of the element does not change after the trimming. This means
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the Gaussian quadrature points are at the same place as before the trimming. If these

Gaussian quadrature points are used, an area which does not exist any more contributes

to the sti�ness matrix and the element gets sti�er than it is. This is the reason why the

Gaussian quadrature points have to be rearranged for the trimmed elements.

There are several di�erent methods to do that, but the three most important ones

are the NURBS enhanced triangles method by Kim et al. [12, 13], Adaptive Gaussian

integration procedure by Breitenberger [3] and blending function method by Guo et al.

[7]. The three methods use di�erent approaches to map the Gaussian quadrature points.

NURBS enhanced triangles method divides the element into normal triangles and NURBS

curved triangles. The normal triangles were integrated with Gauss quadrature points for

triangles. The NURBS curved triangles use several mappings to transform the Gaus-

sian space to the parametric space. The Adaptive Gaussian integration procedure tries to

remodel the trimmed element by an untrimmed element in the Gaussian space. The blend-

ing function method reconstructs the physical part of the trimmed element by dividing the

trimming curve at all intersectional points. The interested reader is referred to Guo et al.

All three methods have drawbacks and advantages. In the end Schønfeldt decides to use

the blending function method.

For the blending function method the elements need to be described by quadrilateral

or triangular elements. If this is not the case the elements have to be divided into more

elements until every element is represented by a quadrilateral or triangular element. Also

every element case has to be de�ned in this way it is orientated in the parametric space,

because the element case can be rotated by 0◦, 90◦, 180◦ or 270◦ (see Figure 12).
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(a) Rotation 0◦ (b) Rotation 90◦

(d) Rotation 180◦ (e) Rotation 270◦

Figure 12: Rotation of quadrilateral trimmed elements

For every rotation a di�erent mapping is needed. In the following the four mappings

for the quadrilateral element are shown:

0◦ rotation: [
s

t

]
=

1

4
((1− ξ)(1− η)P1 + (1− ξ)(1 + η)P4) +

1

2
Cn(η)(1 + ξ) (24)

90◦ rotation: [
s

t

]
=

1

4
((1− ξ)(1 + η)P1 + (1 + ξ)(1 + η)P4) +

1

2
Cn(ξ)(1− η) (25)

180◦ rotation: [
s

t

]
=

1

4
((1 + ξ)(1 + η)P1 + (1 + ξ)(1− η)P4) +

1

2
Cn(−η)(1− ξ) (26)
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270◦ rotation: [
s

t

]
=

1

4
((1 + ξ)(1− η)P1 + (1− ξ)(1− η)P4) +

1

2
Cn(−ξ)(1 + η) (27)

The Jacobian matrix for the quadrilateral element is as follows:

JR =

[
∂s
∂ξ

∂t
∂ξ

∂s
∂η

∂t
∂η

]
(28)

The mapping for triangular elements can be found in Kudela [14].
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4 Improvements of IGA and the internal research code

For the upcoming task to model parts of the R/V `Gunnerus' the existing IGA code for

trimmed surfaces needs some improvements in regard of e�ciency. The improvements will

be based on the existing code because writing an own code will be to complex and is not

part of this master thesis.

At the moment the implementation for analysis of trimmed surfaces works only for

trimmed surfaces and there is another implementation which is working for non trimmed

surfaces. This second code is a lot more complex and works with a higher e�ciency,

which is why the idea is to implement the trimmed surface analysis into the second code.

After merging the two codes, the implementation for analysis of trimmed surfaces reads

in trimmed and untrimmed surfaces and commits for untrimmed surfaces the geometrical

data of the re�ned patch, such as control points, knot vector etc. For trimmed patches

the implementation stores the coordinates of the Gauss integration points, plotting points

and further information to couple patches along the trimming curve and the geometrical

description.

After converting the two implementation, di�erent approaches, such as neglecting small

trimmed elements, knot removal and polynomial degree for the Gauss integration points

were implemented and discussed to improve the e�ciency of the code.

4.1 Validation of the existing IGA trimming code

S. Schønfeldt programmed her own IGA code for trimmed surfaces. Furthermore there is

another in-house research code, which is used for non trimmed analysis. After coupling

these two codes, some tests have been done to check if the merged version works in the

correct way. The �rst test is performed with a section of the deck of `Gunnerus'. The deck

contains two trimming curves and consists of one patch. It is �xed on the two edges with

no trimming curve and loaded with a point load in the middle of the deck. The expected

result is a symmetric deformation. As Figure 13 shows, the deformation is not symmetric.

Therefore mistakes exits in the code.

Figure 13: Deck-1 wrong deformation

Investigations with comparison of the sti�ness matrix and mapping show that the
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problem lies in the code of trimmed surfaces. The mapping of special element cases are

not correct. These element cases are 7, 8, 9 and 10. They have two active vortex points and

one trimming curve, but they are orientated di�erently. That means that the trimming

curve lies in element case 7 on the left side in the parameter space and in element case 8

on the right side. The same is valid for element case 9 and 10. Element case 9 has the

trimming curve at the upper side and element case 10 at the lower side. For more precise

investigations, every element case is modelled by a patch containing one element. Then

the patch is loaded in the middle with a point load. The results are shown in Figure 14.

It can be seen that the deformation for element case 7 and 10 is wrong. The deformation

cannot be positive and negative at the same time for one element. The Figure 14a shows

the two element cases 7 and 10 within one plot, because due to rotation of the plot the

patch can have the same orientation. The same is valid for Figure 14b, which shows the

correct deformation. In both �gures the surface is the trimmed area, the black line shows

the element boundaries and the triangle the boundary conditions. All four patches are

�xed on the two sides next to the trimming line. The problem was a wrong derivative in

the mapping script for quadrilateral and triangular trimmed elements, which belong to the

element cases 7 and 10.

(a) Element case 7 and 10
(wrong)

(b) Element case 8 and 9 (correct)

Figure 14: deformation of element cases 7, 8, 9, 10

Further tests with a symmetric trapezium and a plate with a hole are repeated to

validate the changes in the code. These two geometries are selected because they can be

modelled in an easy way without trimming curve. For that the two geometries are modelled

with trimmed curves and then computed with the original code and the modi�ed version, as

well without trimmed curves. The untrimmed model is used as reference, because previous

tests have shown that they are correct. For all analyses the same input parameters are

used, which are shown in Table 4. The values for the load and thickness do not have any

realistic character. They are de�ned in a way to have a result which is not unrealistic.

The tables in the Appendix 10 and 11 show the result for the analysis. The column called

`displacement' describes the position in parametric space of the measurement points of the

displacement. The Figures 15 and 16 show the result in a plot. It can be seen that the
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results for both geometries for the untrimmed and trimmed modi�ed case convert fast to

the exact result. The original code shows for all investigated points no convergence.

Table 4: input parameters for validation analysis

(a) Trapezium

Trapezium

Parameter Value

E 210000 N
mm2

ν 0, 3

Thickness 100mm

Point load 2000N

Pl (0, 5/0, 5)

degree of surface 2

(b) 1/4 plate with hole

1/4 plate with hole

Parameter Value

E 210000 N
mm2

ν 0, 3

Thickness 1mm

Point load 200N

Pl (0, 5/0, 5)

degree of surface 2

(a) Point (0,5/0,6) (b) Point (0,5/0,4)

(c) Point (0,4/0,5)

Figure 15: deformation on three di�erent points on `Trapezium'

Figure 16: deformation of `plate with hole'
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4.2 Flying Nodes

Control points with a very small in�uence on the trimmed surface can change their position

during analysis. That means that they can be far away from the deformed trimmed surface.

Figure 17 shows a plot of control points (red circles), where one control point is far away

from the surface. These control points are called `�ying nodes' [3]. They do not in�uence

the solution of the analysis but they in�uence the condition of the sti�ness matrix. In

consequence the sti�ness matrix can be singular and the solution is not valid anymore.

A solution is to exclude these elements from the calculation of Gauss integration points

and sti�ness matrix. These elements get inactive and the control points are added to the

supports.

Figure 17: Flying nodes

The idea is to �nd a ratio between the element size and the trimmed area size. If this

size is smaller than a speci�c value, this element will be inactive and no Gauss integration

points will be computed. Instead the control point (`Flying node') will be added to the

supports. To have a more e�cient code only the area ratio for element cases with one

or two active vertex points are calculated. The element cases with three active vertex

points will never have a small area ratio so that �ying nodes will appear. The area of the

element and the area of the trimmed area are calculated in the parametric space. As a

simpli�cation the trimmed curve is assumed to be straight. For element cases with one

active vertex point is the area a triangle and for two active vortex points a rectangular.

Another simpli�cation for the trimming curve in the case of two active vortex points is

that the trimming curve enters and exits the element on the same height. This can result

in big deviation between the calculated area and the real area. For instance if the shape of

the real area is almost a triangle, on the one side the curve enters the element quite high
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and on the other side it exits the element quite low, the calculated area will be around

two times bigger or half than the real area. The area of the rectangular is computed by

the length of the element and the height of one of the two intersection points, without

comparing them or calculating the average height of the intersection points. Nevertheless,

if the variation between the height of the two intersection points is high, the area ration

between the trimmed domain and the element area will not be small and therefore these

elements will be always active. If the element have di�erent sub elements, due to inner

knots, the area of every subelement will be added up to the total area.

Another problem showed up with the elements with one vortex point but with di�erent

sub elements due to inner knots. If an element has sub elements only one sub element will

have a triangular shape, the other ones will have a rectangular shape (s. Figure 18). The

problem is that the sub element is still speci�ed as a element with one vortex and the area

will be calculated as a triangle, which makes the area smaller than it is. At the end all the

areas of the sub element are summed up to the total trimmed area and compared with the

total element area. This simpli�cation can in�uence the decision if the element should be

active or non active, but in the following benchmark tests this simpli�cation do not show

big in�uence on the result. Perhaps on more complex structure and more inner knots, this

can a�ect the result and has to be investigated in more detail.

Figure 18: Sub elements of elements with one active vortex point
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(a) 1patch (b) area (c) Deck-1

Figure 19: geometries for benchmark test �ying nodes

4.2.1 Benchmark test for �ying nodes

The investigation of which area ratio is small enough to in�uence the condition of the matrix

in a good way is done with a simple benchmark test with three di�erent geometries. The

�rst investigation is related to which area size should be neglected. Therefore all three

geometries are simulated with di�erent meshes to create elements with small trimmed

areas. Afterwards, the condition of the sti�ness matrix is checked in regards to singularity

under which area ratio. The �rst geometry is a rectangular with a trimming curve on

the upper side called `1patch' (s. Figure 19a). The second geometry is a square with a

trimmed edge called `area' (s. Figure 19b). These two geometries are exemplarity modelled

geometries and therefore the third geometry is from `Gunnerus' and is called Deck-1 (s.

Figure 19c). All geometries are �xed on two sides in all three directions and are loaded

with an area load. Again the values for the load and thickness are chosen freely. The

values are not based on any realistic case.

Table 5 shows the condition of the sti�ness matrix for the case that all trimmed elements

are used to calculate the global sti�ness matrix. After analysing the result it is decided to

test what the condition of the global sti�ness matrix will be if trimmed elements under 1%

and 3% are neglected. Likewise, the deformation of di�erent locations on the surface will

be checked to evaluate the in�uence on the result due to neglecting areas. The positions

of measurement are indicated by red dots in Figure 19.

The exact results for the deformation and condition of sti�ness matrix are shown in the

appendix B. The condition of the sti�ness matrix improves for neglecting elements with

less than 1%. For the comparison of the deformation only the result with non singular

matrices are allowed to take into account. The results do not change for the di�erent mesh

sizes between the results of all elements are active and only elements with an area ratio

bigger than 1% . For higher polynomial degrees, such as four the sti�ness matrix is in

some cases still singular. If eps = 0, 03 the condition of the sti�ness matrix is even better

but for smaller meshes the accuracy is worse than for 1%. For example for `1patch' result

for the deformation at point (0,5/0,5) converge to 1, 393mm. With the mesh size 8x8 and

polynomial degree 2 the result for 1% is 1, 3741mm and for 3% it is 1, 3738mm. With
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Table 5: results of the convergence study

(a) condition of sti�ness matrix for Deck-
1

Amin Mesh deg matrix

0,035 8x8
2 ok
3 ok
4 ok

0,0261 16x16
2 ok
3 ok
4 singular

0,0053 10x10
2 ok
3 singular
4 singular

7,67e-4 25x25
2 ok
3 singular
4 singular

(b) condition of sti�ness matrix for area

Amin Mesh deg matrix

0,0312 7x7
2 ok
3 ok
4 ok

0,0312 15x15
2 ok
3 ok
4 singular

0,001 33x23
2 singular
3 singular
4 singular

2,98e-4 21x45
2 singular
3 singular
4 singular

(c) condition of sti�ness matrix for
1patch

Amin Mesh deg matrix

0,0106 25x25
2 ok
3 singular
4 ok

0,0015 8x8
2 ok
3 ok
4 singular

3,41e-4 16x16
2 singular
3 singular
4 singular

3,47e-5 10x10
2 singular
3 singular
4 singular

Table 6: input parameter for benchmark test (�ying nodes)

parameter geometry value

E all 210000 N
mm2

ν all 0, 3

Thickness
1patch 2mm
area 2mm

Deck-1 100mm

area load
1patch 20N
area 20N

Point load Deck-1 2000N

Pl Deck-1 (0, 5/0, 5)

degree of surface all 3

eps for small areas all 0, 01
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the increase of mesh size this di�erence is getting less but it shows the in�uence of setting

small elements without to inactive. Therefore for further simulation all elements with a

smaller area ratio of 1% is neglected.

4.3 Knot removal

One big disadvantage of IGA is that in some cases there are more Gauss integration points

than necessary to have a correct result. Figure 20 shows that in some elements exist more

Gauss points than in others. The reason for the extra Gauss integration points are internal

knots in the element. The trimming curve is described by a knot vector. This knot vector

can contain internal knots, which lead to extra Gauss points in an element.

Figure 20: Gauss points

To compute the Gauss integration point the internal research code �rst adds knots at

the intersection points and than splits the trimming curve in smaller curves. The new

curves are starting from one knot and ending at the next knot. For every curve the Gauss

integration points are computed, which means if there are two sections of the trimming

curve in one element there will be a double amount of Gauss integration points. In Figure

20 the red dashed lines shows the position of the knot, where the curve of one element is

split in sub-curves. The idea is to remove the internal knot of one element after adding

the knots on the intersection points.

The p-th degree NURBS curve de�ned on a knot vector U = (u1, ..., um), control points

P = (P1, ..., Pn), weights w = (w1, ..., wn), has a knot which can be removed ur. This knot

cannot be a boundary knot, which is why we have p+ 1 < r < m− p. Due to the removal

of one knot the number of control points will be decreased by one. The new control points

Q = (Q1, ..., Qn−1) and weights can be derived as follows [16]:
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Qwi = Pwi , i = 1, .., r − p− 1 (29)

Qwi−1 = Pwi , i = r, ..., n (30)

For r − p ≤ i ≤ r − 1− p/2

Qwi =
Pwi − (1− αi)Pwi−1

αi
(31)

with

αi =
ur − ui+1

ui+p+2 − ui+1
(32)

For r − 1− p/2 ≤ j ≤ r − 2

Qwj =
Pwj − (1− αj)Pwj+2

1− αj
(33)

with

αi =
ur − uj+1

uj+p+2 − uj+1
(34)

With the calculation of the new control points and weights the new NURBS curve is set.

In comparison to adding knots to a knot vector the removal of knots can change the

shape of the curve. Some complicated shapes need at least three control points, which is

why a tolerance need to be speci�ed. In the internal research code the distance between

the old and new NURBS curve is calculated. If the distance is smaller than the tolerance

the internal knot will be removed.

Figure 21a shows the original trimmed curves for the patch (Deck-1) from Gunnerus.

The black circles represent the control points and the blue crosses mark the inner knots.

The knots on the intersection points are not plotted. The Figure 21b plots the trimmed

curve with removed inner knots. The lower trimming curve has only two knots left and

the upper one only one. Also the control points are a lot less. This knot removal is done

with a tolerance of 0,01 and shows how the knot removal works on NURBS.
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(a) original trimming curves

(b) removed knots, with tolerance 0,01

Figure 21: Knot removal for Deck-1

After computing the Gauss integration points for the new trimming curves, Figure 22

shows less Gauss integration points than the original Gauss integration points in Figure

20.
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Figure 22: new Gauss points after knot removal, Tol 0,01

The new Matlab code for removing knots is implemented in the existing research code

and the value for the tolerance of the changes between original and new NURBS-curve

must be set.

4.3.1 Benchmark test for knot removal

To �gure out a good value the geometry of `Deck-1' is used. That geometry has a lot of

inner knots and is therefore suitable to test out the knot removal function. Table 7 shows

the input parameter and Figure 23 shows the boundary conditions and the points where

the displacements are measured for references (blue dots). Four points are selected close

to the trimming curve, because at these points most changes are expected to happen due

to slope changes.

Table 7: input parameter for benchmark test of knot removal on Deck-1

parameter value

E 210000 N
mm2

ν 0, 3

Thickness 100mm

Point load 2000N

Pl (0, 5/0, 5)

degree of surface 3

eps for small areas 0, 01
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Figure 23: Points of measurements

Two analyses are performed: one with 0 tolerance, which means no knot is removed

and one with 0,1. At this value there are no inner knots for the elements. Both analyses

run with di�erent mesh sizes until convergence appears. The exact values can be looked

up in the Appendix C and Figure 24 shows the convergence of the test. The plot shows

only three of the �ve investigation points, because two points are symmetrc and have the

same result. It can be seen that the results between all inner knots and without inner

knots are the same for meshes �ner than 8x8 and the results for mesh 4x4 varies a little

bit. Therefore a tolerance of 0, 1 seems good for this speci�c case.

(a) results for no knot removal (b) results with knot removal

Figure 24: results of benchmark test for knot removal

In cases of one trimming curve around the whole patch, which can be often found on

the structural model of Gunnerus, the slope of the trimming curve changes. Figure 25

shows the frame 50. Figure 25a shows the original trimming curve with all knots and

Figure 25 shows the removal of all inner knots with a tolerance of 0, 1. In the two areas

marked with a green circle the shape of the trimming curve changes a lot. In that areas

there are kinks of the trimming curve and without internal knot the kinks cannot represent
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in a correct way. As described later on in 5.2 one trimming curve around a patch causes

problems with the existing code this will not be investigated in this thesis. However it will

be investigated in more detail in the future. For the simulation later on, the tolerance for

knot removal will be set to 0, 1 because for the cases which are analysed in this thesis, this

number shows satisfactory accuracy.

(a) original shape

(b) shape with removed knots

Figure 25: changes on trimming curve due to knot removal

4.4 Degree for Integration

As described in 4.3 IGA has sometimes to many Gauss integration points, which makes

the computation ine�cient. In the research code the polynomial degree of the surface will

be compared with the polynomial degree of the trimming curve and than the maximum
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value will be chosen. The polynomial degree decides over the amount of Gauss integration

points. If the polynomial degree is three, there will be four gauss points for full integration

and three for reduced integration. In general GP = p+ 1 for full and GP = p for reduced

integration, with p polynomial degree and GP number of Gauss integration points.

The geometry `Deck-1' which was used in the benchmark test for knot removal contains

trimming curves with polynomial degree of 3 and the NURBS surface has a polynomial

degree of 1. The tests which are performed in the benchmark test for knot removal show

that there are di�erences between polynomial degree 2 or 3, which is why the existing code

will not be changed due to having a more precise solution with less elements.

4.5 Plotting of trimmed surface

The implementation of the trimming script into the in-house research code demands

changes in the script of plotting trimmed surfaces in physical space. The modi�ed version

works with the function of computing the Gauss integration points. The function computes

instead of the coordinates of Gauss integration points the coordinates of points which can

be used to plot the surface later on. The points will be symmetric all over the element and

the number of points per element is de�ned by the number of element and the resolution.

The resolution speci�es the total number of points in a row over the whole patch. In other

words for the same resolution the number of plotting points is proportional to the number

of elements and vice versa.

The surface is plotted element wise with the plotting surface function in Matlab. In

this way the mesh for the trimmed surface can be plotted. The mesh shows the boundaries

of every element which is why a line around the element should be plotted. A challenge is

to sort the points on the element boundary in the correct way to plot a line in the correct

order from one point to the other. For single elements without subelements, the plotting

of the mesh works in a good way. For elements with subelements due to inner knots, the

function needs further improvements.
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5 Gunnerus

Figure 26: `Gunnerus' [21]

Until now the internal research code was only tested for simple trimming cases and max-

imum one patch. These are special cases and not practical for investigating a whole system.

Therefore the implementation is extended and improved to combine multiple trimmed sur-

faces and investigated on a complex system. In this case, it will be the research vessel of

NTNU `Gunnerus' (Figure 26). The research vessel Gunnerus was built in 2006 by Larsnes

Mekansike Verksted for the Norwegian University of Science and Technology (NTNU). The

main dimensions of the ship are listed in Table 8.

Table 8: main dimensions of Gunnerus

Length over all 31, 25m

Length between pp 28, 90m

Length in waterline 29, 90m

Breath middle 9, 60m

Breath extreme 9, 90m

Depth 4, 20m

Draught 2, 70m

Dead weight 107t

The following chapter presents the work with a digital twin with respect to IGA as well

the problem which occurs during that work. These problems will be discussed, too.
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5.1 Digital twin Gunnerus and structural model

Figure 27: Gunnerus as a digital twin

In the summer 2018 �ve students of NTNU built a digital twin of Gunnerus as a cooperation

between DNV-GL and NTNU (s. Figure 27). Both parties have plans to use the digital

twin in the future. NTNU plans to use the digital twin for teaching. Then the students

have an object on which they can work for example the e�ects of di�erent sea states acting

on the digital twin/ship. For DNV-GL the main focus lies on supporting their project

`Approved'. The project contains a new digital standard for the exchange of information

and digital models between shipyards, designers and classi�cation societies. In order to

achieve this, they need information from tests, which the digital twin of Gunnerus can

provide [5]. The result of the work of the students is a digital twin in the basics and needs

further investigation and work to create a fully operational digital twin. This is not part

of this master thesis and the information which are needed to apply IGA to Gunnerus as

a digital twin are included in the existing digital twin.

The digital twin contains also a structural model of Gunnerus based on CAD drawing.

This CAD drawing (s. Figure 28) is used for testing and investigating the internal research

code.
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Figure 28: Gunnerus as a CAD drawing with all structural elements

The structural model contains 11888 single patches due to the high accuracy of model-

ling, for example every sti�ener is modelled. Another reason why the amount of patches is

so high is the usage of shell elements, every sti�ener is modelled out of 6 patches. Further

the structural model do not have any information about the thicknesses. To analyse them,

every thickness has to be added by hand to the IGA code by studying the classi�cation

drawings. Therefore it is not suitable to analyse the whole ship because it will take too

much time to couple every single patch to each other and adding every speci�c thickness

to the speci�c patch. That will be out of the range of this master thesis. Thus only small

areas of Gunnerus will be investigated with the IGA code.

5.2 Problems with structures of Gunnerus

As mentioned before there exists too many patches and the lack of information regarding

thickness in the structural model, which is why the plan is to investigate only small areas

of Gunnerus. During the search of suitable areas another problem shows up. Almost all

patches are modelled with only one trimming line around the whole patch. Figure 29

shows generic the frame 50. The red line shows the trimming curve around the patch in

the parameter space. The resulting Gauss integration points are plotted in Figure 30. The

Gauss integration points are not correct for the elements 1, 32, 40 and 57. The element 1

is detected as element case 1, that means this element is not available for analysis; element

57 is detected as -1, which means it is an inactive element and element 32 and 40 are

detected as element case 8, which means element with 3 active vortex points. The correct

element cases would be for element 1 case 7, element 32 case 8 (two active vortex points),

element 40 case 6 and element 57 case 5 (3 active vortex points).

These problems of �nding the correct element cases are caused by the trimming curve,

which lies on the boundary. In the following the problem is explained on element 1. The
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element has two vortex points on the trimming line. On these points the trimming line

is straight, therefore the crossproduct is 0. This means that the tangential vector on the

trimming line and the distance vector from the vortex point to the trimming line are

collinear/parallel. This result gains no information in regards to inactive or active vortex

points. The vortex point in the right bottom corner has a negative crossproduct and is

therefore inactive. The vortex point in the right bottom corner has a positive crossproduct

and is therefore active. This special trimming case is not covered by the implemented

element cases in the research code neither at any other research ([7, 12]).

In the previous test this was not a problem because the import-IGES script deletes

all straight lines. The import-IGES script assumes all boundaries as trimming lines. The

result without deleting the straight lines is that corner elements will have more than one

trimming curve, which the code cannot handle. Boundary lines are in general straight

lines and trimming lines are most of the time not straight. This is the reason why straight

lines are deleted. This simpli�cation causes an other limitation of the existing code. If the

trimming line is straight and is not on the boundary, the trimming line will be deleted and

is not available for further analysis.

In the case of frame 50 this solution does not work because it is modelled by only one

curve. This curve has straight parts but also curved parts, which is why it is not deleted

and causes problems to �nd the correct element case.

Figure 29: frame 50 of Gunnerus in parametric space
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Figure 30: Gauss integration points for frame 50 in original shape

A possible solution to �x this problem is to remodel the patch in a patch with two

trimming curves. That could be a solution for really small structures but is not feasible

for bigger structures, such as `Gunnerus'. The result would be remodelling the whole ship

and than the advantage of IGA would have been disappeared in regards to the classical

FEM.

The frame 50 is remodelled in an exemplary manner, to show that remodelling �x this

problem (Figure 31). The remodelled frame is not as precise in the tip as the original one,

but the element cases are the correct ones, same as the Gauss integration points. The

orientation of the remodelled frame is di�erent in parametric space but the physical space

is still the same. This does not have any in�uence on the analysis except for applying the

load or possible patch coupling. The coordinates should switch from u to v and v to u to

have the same result if the original geometry would work.
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(a) remodelled frame in parameter space

(b) Gauss integration points of remodelled frame 50

Figure 31: remodelled frame 50

5.3 Simulation with parts of Gunnerus

In Chapter 4 the patch `Deck-1' was often used for di�erent benchmark tests. It is a patch

from `Gunnerus', which originally has two holes inside the patch. For simpli�cation, These

are deleted and the trimming curve around the patch was split in four parts. Therefore the

problem with the trimming curves along the boundary is solved and the patch could be

analysed. The result for `Deck-1' can bee seen in Chapter 4. Figure 32 shows the original
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geometry with two holes and the deformed shape. The deformation of the simpli�ed model

is not representative. Normally the deck is clamped on all four edges and has sti�eners

underneath. Due to the explained problems and handicaps with the digital twin and IGA-

code, the boundary condition and load case is chosen to show the potential of IGA.

(a) original geometry
(b) deformed structure, plot factor = 5000

Figure 32: Deck-1

The other geometry, which is analysed, is a part of the upper deck and contains of two

patches. Figure 33 shows the geometry and the position at `Gunnerus'. The geometry is

modelled out of two patches. The upper curved patch is an untrimmed patch. The other

patch is trimmed. One trimming curve goes around the whole patch, which is why this

patch is remodelled. Afterwards the outer trimming line is split in six curves. Two of the

six are trimming lines. The three windows are modelled in that way, that one trimming

line is one window. The small square, which can be seen on Figure 33 is not a structural

element, which is why it is not modelled.

Figure 33: second geometry of Gunnerus
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To perform the analysis the load case and input parameter have to be de�ned. The

input parameters are shown in Table 9. The thickness is the real one of the that structure

but the sti�eners are excluded, the boundary conditions and line load are not inspired by

reality. Therefore the deformation does not represent a possible deformation in real life.

The geometry with boundary conditions and line load is plotted in Figure 35 the deformed

structure, as well.

Table 9: input parameters

parameter value

Young's modulus E 210000 N
mm2

Poisson's ratio 0, 3

Thickness 6mm

line load −0, 2N

degree of surface 3

eps for small areas 0, 01

To prove the solution, the analysis is run with di�erent mesh sizes and the deformation is

measured at one point at every patch and is checked if it converges. The exact deformation

for the convergence test are shown in Table 15 in the Appendix. The measurement point

on the untrimmed patch is at 0, 5/0, 5 in parametric space and at the trimmed patch at

0, 2/1.

The results in Figure 34 do not show convergence yet. The convergence test is stopped

with the �nal mesh size of 80x70 for the trimmed patch and 30x130 for the untrimmed

patch. Finer meshes cannot be simulated due to lack of computational power with the

provided computers. The existing results show already a tendency of convergence. There-

fore the results seem to be correct.

(a) trimmed patch (b) untrimmed patch

Figure 34: results of convergence study
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(a) boundary conditions and load

(b) deformed structure, plot factor 10

Figure 35: Deck roof
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6 Conclusions and Outlook

The scope of the master thesis is to improve the e�ciency and extend the existing IGA

in-house research code, so that the code can analyse the digital twin of the R/V `Gunnerus'.

To reach the goal of a more e�cient in-house research code, the implementation for

analysis on trimmed surfaces is merged into the implementation for analysis on untrimmed

surfaces. The trimmed surface implementation works as a preprocessing step and calculates

the Gauss integration points for computing the sti�ness matrix, which is done in the

untrimmed surface implementation and in the solving, as well. The merging decreases the

amount of computational time and some tests show the reliability of the merging.

Further the code was extended with di�erent implementations, such as knot removal or

neglecting small trimmed elements. The neglecting of small trimmed elements under 1% of

the untrimmed element size seems to be a good estimate. For the investigated geometries,

the condition of the sti�ness matrix changed in a positive direction and for most cases

the sti�ness matrix is not singular anymore. The knot removal works in his basics. For

trimming curves without a kink the tolerance of 0, 1 seems to be a good value, but for

trimming curves with a kink the shape of the trimming curve changes a lot. Therefore

more investigation in regards of a suitable tolerance needs to be performed in the future.

Besides the improvements for the analysis functions, the IGES-import functions needed

some upgrades. The script can read single and multiple patches as well as untrimmed and

trimmed ones, which is why it can be used for more complex structures now.

The digital twin of `Gunnerus' contains all structural elements of the ships, which ends

up in a huge number of surfaces. This ends up in a lot of work, because the existing

in-house research code needs information of every patch coupling and thicknesses of every

surfaces, which has to implemented by hand. Moreover, the structural model does not

provide information about the thickness of individual surfaces. The information about the

thicknesses provide the classi�cation drawing. Therefore more work needs to be done in

this direction. How can the structural contain the thickness of shell elements, how are

they stored. The IGES-�le contains information in regards to boundaries of a surface or

curve. It would increase the e�ciency of the IGA but further work is needed to extract

that information and implementing it in the code.

Finally, the analysis of `Gunnerus' failed on another point. The actual number of

di�erent trimmed element cases are not enough to analyse `Gunnerus'. Most surfaces are

modelled with one trimming curve around it. This causes problems due to a trimming

curve on more than one element edge. This element case is not covered by the existing

element cases for trimmed surfaces. This is the reason why the cases for trimmed elements

have to be extended or more detailed research needs to be done to solve that problem. By

remodelling the part, the solution in this thesis is not suitable for big structures.

For the investigated cases, IGA showed great results and the advantage of using the

modelled geometry directly without complex meshing was really handy. The world of

engineering is ruled with simpli�cation and for some cases it is useful to have a really
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detailed model but it is suitable to have such a detailed model all the time. Sometimes

only a rough analysis is enough. In that case a model with almost 12000 patches is not

ideal due to computational e�ort and a simpli�ed model would be better. It would be

interesting to investigate how detailed the model needs to be to give a satisfactory result

and how to construct a simpli�ed model out of a really detailed CAD drawing.
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Appendix

A Validation of merging the two codes

mesh displacement untrimmed trimmed original trimmed modi�ed

3x3

0,4/0,5 -0,2385 -0,3547 -0,2410
0,6/0,5 -0,2431 -0,3587 -0,2451

0,5/1(0,5/0,125) -0,2563 -0,4586 -0,2578
0,5/0,6(0,5/0,875) -0,2563 -0,3213 -0,2578

9x9

0,4/0,5 -0,2587 -0,2706 -0,2589
0,6/0,5 -0,2655 -0,2719 -0,2656

0,5/1(0,5/0,125) -0,2785 -0,3027 -0,2787
0,5/0,6(0,5/0,875) -0,2785 -0,2977 -0,2787

19x19

0,4/0,5 -0,2613 -0,2785 -0,2613
0,6/0,5 -0,2681 -0,2876 -0,2681

0,5/1(0,5/0,125) -0,2812 -0,3198 -0,2813
0,5/0,6(0,5/0,875) -0,2812 -0,2918 -0,2813

33x33

0,4/0,5 -0,2617 -0,2579 -0,2617
0,6/0,5 -0,2686 -0,2633 -0,2686

0,5/1(0,5/0,125) -0,2817 -0,2681 -0,2817
0,5/0,6(0,5/0,875) -0,2817 -0,2787 -0,2817

40x40

0,4/0,5 -0,2618 -0,2607 -0,2618
0,6/0,5 -0,2687 -0,2684 -0,2687

0,5/1(0,5/0,125) -0,2818 -0,2370 -0,2818
0,5/0,6(0,5/0,875) -0,2818 -0,2836 -0,2818

49x49

0,4/0,5 -0,2620 -0,2718 -0,2620
0,6/0,5 -0,2689 -0,2872 -0,2689

0,5/1(0,5/0,125) -0,2818 -0,2703 -0,2818
0,5/0,6(0,5/0,875) -0,2818 -0,2985 -0,2818

Table 10: trapezium

mesh displacement untrimmed trimmed original trimmed modi�ed

3x3 0,2/0 -0,0357 -0,0357 -0,0325

9x9 0,2/0 -0,0388 -0,0361 -0,0389

19x19 0,2/0 -0,0393 -0,0444 -0,0393

33x33 0,2/0 -0,0394 -0,0401 -0,0394

40x40 0,2/0 -0,0394 -0,0420 -0,0394

49x49 0,2/0 -0,0394 -0,0412 -0,0394

Table 11: plate with hole (left,down)
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B Benchmark test �ying nodes

1patch area Deck-1

Mesh deg u Matrix Mesh deg u Matrix Mesh deg u Matrix

8x8

2
1,3741

7x7

2
2,7105

8x8

2

0,2794
1,55 2,7565 0,2906

1,5702 2,7105 0,2995

3
1,3929

3
2,7116 0,2995

1,5701 2,7578

3

0,2833
1,5903 2,7116 0,2949

4
1,393

4
2,7116 0,3039

1,5701 2,7579 0,3039
1,5905 2,7116

4

0,2834

10x10

2
1,3809

15x15

2
2,7114 0,295

1,5572 2,7576 0,3039
1,5776 2,7114 0,3039

3
1,393

3
2,7116

10x10

2

0,2808
1,5701 2,758 0,2921
1,5904 2,7116 0,3011

4
1,393

4
2,7116 singular 0,3011

1,5701 2,758 singular

3

0,2832
1,5906 2,7116 singular 0,2949

16x16

2
1,3883

33x23

2
2,7116 0,3039

1,5651 2,7579 0,3039
1,5855 2,7115

4

0,2834

3
1,393

3
2,7116 singular 0,295

1,5701 2,758 singular 0,304
1,5906 2,7116 singular 0,304

4
1,393 singular

4
2,7116 singular

16x16

2

0,2822
1,5701 singular 2,758 singular 0,2937
1,5907 singular 2,7116 singular 0,3027

25x25

2
1,391

21x45

2
2,7115 0,3027

1,5681 2,7578

3

0,2833
1,5885 2,7115 0,2948

3
1,393 singular

3
2,7116 singular 0,3038

1,5701 singular 2,758 singular 0,3038
1,5907 singular 2,7116 singular

4

0,2831 singular

4
1,393 singular

4
2,7116 singular 0,2948 singular

1,5701 singular 2,758 singular 0,3038 singular
1,5905 singular 2,7116 singular 0,3038 singular

25x25

2

0,2828
0,2944
0,3034
0,3034

3

0,2832
0,2948
0,3039
0,3039

4

0,2832 singular
0,2949 singular
0,3039 singular
0,3039 singular

Table 12: results of benchmark test eps = 0, 01
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1patch area Deck-1

Mesh deg u Matrix Mesh deg u Matrix Mesh deg u Matrix

8x8

2
1,3738

7x7

2
2,7105

8x8

2

0,2794
1,5497 2,7565 0,2906
1,5699 2,7105 0,2995

3
1,393

3
2,7116 0,2995

1,5701 2,7578

3

0,2833
1,5904 2,7116 0,2949

4
1,393

4
2,7116 0,3039

1,5701 2,7579 0,3039
1,5905 2,7116

4

0,2834

10x10

2
1,3809

15x15

2
2,7114 0,295

1,5572 2,7576 0,3039
1,5776 2,7114 0,3039

3
1,393

3
2,7116

10x10

2

0,2808
1,5701 2,758 0,2922
1,5904 2,7116 0,3012

4
1,393

4
2,7116 singular 0,3012

1,5701 2,758 singular

3

0,2833
1,5906 2,7116 singular 0,295

16x16

2
1,3883

33x23

2
2,7114 0,304

1,5651 2,7577 0,304
1,5855 2,7114

4

0,2835

3
1,393

3
2,7115 0,2952

1,5701 2,7579 0,3041
1,5906 2,7115 0,3041

4
1,393 singular

4
2,7115 singular

16x16

2

0,2822
1,5701 singular 2,7579 singular 0,2938
1,5907 singular 2,7115 singular 0,3028

25x25

2
1,391

21x45

2
2,7093 0,3028

1,5681 2,756

3

0,2832
1,5885 2,7095 0,2949

3
1,393

3
2,7094 0,3039

1,5701 2,7561 0,3039
1,5907 2,7095

4

0,2832 singular

4
1,393 singular

4
2,7094 singular 0,2949 singular

1,5701 singular 2,7561 singular 0,3039 singular
1,5905 singular 2,7095 singular 0,3039 singular

25x25

2

0,2832
0,2949
0,3038
0,3039

3

0,2835
0,2953
0,3042
0,3043

4

0,2836 singular
0,2953 singular
0,3042 singular
0,3044 singular

Table 13: results of benchmark test eps = 0, 03
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C Benchmark test knot removal

tol = 0 tol = 0, 1

Mesh deformation points Mesh deformation points

4x4 0,3078 (0.5/0.5) 4x4 0,3079 (0.5/0.5)

0,1502 (0.1875/0.0625) 0,1503 (0.1875/0.0625)

0,1502 (0.1875/0.9375) 0,1503 (0.1875/0.9375)

0,2343 (0.75/ 0.25) 0,2345 (0.75/ 0.25)

0,2343 (0.75/ 0.75) 0,2345 (0.75/ 0.75)

8x8 0,308 (0.5/0.5) 8x8 0,308 (0.5/0.5)

0,1499 (0.1875/0.0625) 0,1499 (0.1875/0.0625)

0,1499 (0.1875/0.9375) 0,1499 (0.1875/0.9375)

0,2331 (0.75/ 0.25) 0,2331 (0.75/ 0.25)

0,2331 (0.75/ 0.75) 0,2331 (0.75/ 0.75)

16x16 0,3084 (0.5/0.5) 16x16 0,3084 (0.5/0.5)

0,15 (0.1875/0.0625) 0,15 (0.1875/0.0625)

0,15 (0.1875/0.9375) 0,15 (0.1875/0.9375)

0,2331 (0.75/ 0.25) 0,2331 (0.75/ 0.25)

0,2331 (0.75/ 0.75) 0,2331 (0.75/ 0.75)

25x25 0,3083 (0.5/0.5) 25x25 0,3083 (0.5/0.5)

0,15 (0.1875/0.0625) 0,15 (0.1875/0.0625)

0,15 (0.1875/0.9375) 0,15 (0.1875/0.9375)

0,2332 (0.75/ 0.25) 0,2332 (0.75/ 0.25)

0,2332 (0.75/ 0.75) 0,2332 (0.75/ 0.75)

32x32 0,3084 (0.5/0.5) 32x32 0,3084 (0.5/0.5)

0,15 (0.1875/0.0625) 0,15 (0.1875/0.0625)

0,15 (0.1875/0.9375) 0,15 (0.1875/0.9375)

0,2332 (0.75/ 0.25) 0,2332 (0.75/ 0.25)

0,2332 (0.75/ 0.75) 0,2332 (0.75/ 0.75)

Table 14: results of benchmark test knot removal

D IGES �le

1 S

1

2 1H,,1H;,, G

1

3 121HC:\Users\Gerrit\Documents\Schiffbaustudium\NTNU \3. Semester\Project G

2

4 work\Sofie MATLAB\Sofie MATLAB\Trapez_ungetrimmed.igs , G

3

5 26 HRhinoceros ( May 22 2017 ) ,31HTrout Lake IGES 012 May 22 2017, G

4
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6 32,38,6,308,15, G

5

7 , G

6

8 1.0D0 ,2,2HMM ,1 ,0.254D0 ,13 H190226 .125408 , G

7

9 0.001D0 , G

8

10 9000D0, G

9

11 , G

10

12 , G

11

13 10,0,13 H190226 .125408; G

12

14 314 1 0 0 0 0 0 000000200D

1

15 314 0 1 1 0 0 0 COLOR 0D

2

16 406 2 0 0 1 0 0 000000300D

3

17 406 0 -1 1 3 0 0LEVELDEF 0D

4

18 128 3 0 0 1 0 0 000000000D

5

19 128 0 -1 5 8 0 0 TrimSrf 0D

6

20 116 8 0 0 1 0 0 000000000D

7

21 116 0 -1 1 0 0 03d Point 0D

8

22 116 9 0 0 1 0 0 000000000D

9

23 116 0 -1 1 0 0 03d Point 0D

10

24 116 10 0 0 1 0 0 000000000D

11

25 116 0 -1 1 0 0 03d Point 0D

12

26 116 11 0 0 1 0 0 000000000D

13

27 116 0 -1 1 0 0 03d Point 0D

14

28 314 ,0.0 ,0.0 ,0.0 ,20 HRGB( 0, 0, 0 ); 0000001P

1

29 406,2,1,8 HStandard; 0000003P

2 128,1,1,1,1,0,0,1,0,0,0.0D0 ,0.0D0 ,9219.544457292888D0,

0000005P 3 9219.544457292888D0 ,0.0D0 ,0.0D0 ,8000.0D0

,8000.0D0 ,1.0D0 ,1.0D0 , 0000005P 4 1.0D0 ,1.0D0 ,0.0D0 ,0.0D0 ,0.0D0
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,9000.0D0 ,2000.0D0 ,0.0D0 ,0.0D0, 0000005P 5

30 8000.0D0 ,0.0D0 ,9000.0D0 ,6000.0D0 ,0.0D0 ,0.0D0 , 0000005P

6

31 9219.544457292888D0 ,0.0D0 ,8000.0 D0; 0000005P

7

32 116 ,9000.0D0 ,6000.0D0 ,0.0D0 ,0; 0000007P

8

33 116 ,9000.0D0 ,2000.0D0 ,0.0D0 ,0; 0000009P

9

34 116 ,0.0D0 ,8000.0D0 ,0.0D0 ,0; 0000011P

10

35 116 ,0.0D0 ,0.0D0 ,0.0D0 ,0; 0000013P

11

36 S0000001G0000012D0000014P0000011 T

1

E Convergence study for parts of Gunnerus

mesh size deformation

patch 1 16x16 -103,3503

patch 2 4x20 0,7330

patch 1 32x32 -108,5031

patch 2 8x40 0,7509

patch 1 40x40 -109,5090

patch 2 12x60 0,6948

patch 1 60x60 -110,9238

patch 2 24x120 0,6001

patch 1 70x70 -112,2072

patch 2 25x130 0,5553

patch 1 80x70 -112,8194

patch 2 30x130 0,5177

Table 15: results of convergence test
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