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Preface

This master thesis is based on the research carried out during the spring semester
of 2019 at the Department of Marine Technology, Norwegian University of Science
and Technology. The main topics of this thesis mathematical modelling of underwa-
ter vehicle-manipulator system, and a robotic manipulator affects the response and
movement of a remotely operated vehicle submerged in water. This work is a result
of individual work and study, and help from my supervisor, Martin Ludvigsen. This
master thesis has been a challenging task, but it has been rewarding and taught me a
lot. I want to express my gratitude to Martin Ludvigsen and Stein Melvaer Nornes, for
valuable comments and remarks regarding the draft of this thesis.

Trondheim, July 2019
Felir Genstad.
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Abstract

This master thesis considers the interaction between a manipulator and a Remotely
Operated Vehicle (ROV), as a Underwater Vehicle-Manipulator System (UVMS). The
Norwegian University of Science and Technology have developed a new ROV, Minerva
2, which is considered in this thesis. There are mainly two aspects which is focused upon
in this project, the mathematical modelling of the UVMS, and how the manipulator
with different configurations and joint rotations, is affecting the ROV.

The mathematical modelling of the UVMS is done by considering a second order dif-
ferential equation, often called mass-damper-spring system, to derive the equation of
motion for the system. Mass properties is used to determine the rigid body motion,
while hydrodynamic parameters and matrices have been established in order to account
for the effect of being submerged in water. The matrices describing the dynamics of the
manipulator are dependent on the configuration of the manipulator, and is therefore
needed to be calculated every iteration of the simulation.

Kinematic modelling of the manipulator was developed according the Denavit-Hartenberg
(DH) convention. The relation between each link is found by assigning a reference frame
in each module, and by knowing the distance between each joint, a rotation transfor-
mation is performed in order to translate from one reference frame to another. The
kinematics are used to determine the position and orientation of the end-effector, given
the different joint angles.

Simulink is the platform used to perform the simulations. The equation of motion of
the UVMS is modelled as a block diagram in the Laplace domain. Several simulations
were conducted, the manipulator configurations were varying and movements to the
joints were added, to observe how the manipulator affected the response of the ROV.
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Sammendrag

Denne masteroppgaven omhandler samspillet mellom en manipulator og en fjernstyrt
undervannskjoretgy, dette systemet blir ogsa kalt et undervanns kjgretgy-manipulator
system. Norges Tekniske og Naturvitenskapelige Univeristet har utviklet en ny fjern-
styrt undervannskjgretgy, Minerva 2, som er i fokus i denne masteroppgaven. Det er i
hovedsak to aspekter som er fokusert pa i dette prosjektet, og det er den matematiske
modelleringen av undervanns kjgretgy-manipulator systemet, og hvordan manipula-
toren ved forskjellige konfigurasjoner og bevegelser, pavirker Minerva 2.

Den matematiske modelleringen av systemet er gjort ved a vurdere en andre ordens
differensialligning, ofte kalt masse-fjeer-demper-system, for a utlede bevegelsesligningen
for systemet. Massegenskapene brukes til a bestemme bevegelsen til det stive legemet,
mens de hydrodynamiske parameterne og matrisene er etablert for a ta i betraktning
effekten av a veere nedsenket i vann. Matrisene som beskriver manipulatorens dynamikk
er avhengig av manipulatorens konfigurasjon, og er derfor beregnet i hver iterasjon av
simuleringene.

Den kinematiske modelleringen av manipulatoren ble utviklet i henhold til Denavit-
Hartenberg (DH) konvensjonen. Forholdet mellom hver manipulator del ble funnet ved
a tilordne et referansesystem i hvert ledd, og ved a i tillegg vite avstanden mellom hvert
ledd, blir en rotasjonstransformasjon brukt til a transformere egenskaper fra et referans-
esystem til et annet. Kinematikken brukes til a bestemme posisjonen og orienteringen
til endeeffektoren, gitt de forskjellige leddvinklene.

Simulink er plattformen som brukes til a utfgre simuleringene. Bevegelsesligningen til
undervanns kjgretgy-manipulator systemet er modellert som et blokkskjema i Laplace-
domenet. Flere simuleringer ble utfgrt, hvor manipulatorkonfigurasjonene varierte og
rotasjoner i leddene ble pasatt for a observere hvordan manipulatoren pavirket respon-
sen til Minerva 2.
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Chapter

Introduction

1.1 Background and Motivation

The ocean plays a significant part to the habitants of the earth. It covers about 71 % of
the earth’s surface, and it provides us with resources, energy, transportation and numer-
ous other beneficial possibilities. Yet, only 5 % of the ocean space is discovered. It was
not possible to reach great depth until recent years, because of the lack of appropriate
technology. But with the introduction of the Unmanned Underwater Vehicles (UUV)
in the 20’th century, the deepest parts, for the first time in history, are now accessible
to the mankind. New technology, reduced costs and improved sensors have made it
possible to produce underwater vehicle systems for both commercial and recreational
use. The application range of the UUVs is very broad, for instance they are commonly
used in the oil and gas industry, for structural inspection and installation, science and
research, such as seabed mapping, marine biology and oceanographic research. Based
on this, it is fair to say that the ocean currently is and always will be, in the foreseeable
future, an important development platform.

(a) AUV Remus100 (b) ROV Minerva

Figure 1.1: Typical AUV and ROV designs
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There are mainly two types of UUVs, Remotely Operated Vehicles (ROV) and Au-
tonomous Underwater Vehicles (AUV). Physically, these are mainly distinguished by
whether or not they are tethered. ROVs requires educated personnel to control the
vehicle. Since the staff is located above the sea surface, the control of the ROV is de-
pendent on a tether to transfer the signals from the operation room to the ROV. This
causes restrictions of the survey area, since the tether has limits considering the length.
ROV are mostly used for inspection, maintenance and repair, due their high payload
and maneuvering capabilities. AUVs on the other hand, is not dependent on any tether
to operate, and can therefore cover larger areas. Additionally, with their high speed
and autonomous capabilities, it makes them suited for monitoring and mapping of the
seabed, which is where they are most commonly used. Since the AUVs are not depen-
dent on any tethers, the power source needs to be mounted on board. Thus, the power
consumption is of great concern. In order to minimize the power consumption, the AUV
need to be hydrodynamic and as light as possible. Hence, the most common shape of
AUV is today torpedo-like. This shape brings small hydrodynamic forces, which makes
it possible to achieve high speed with respect to minimal power consumption. These
types of AUVs are controlled by vertical and horizontal control fins, which makes the
maneuverability properties of the vehicles quite limited, and therefore not well designed
for intervention tasks.

ROVs on the other hand has very limited autonomy properties, where the more ad-
vanced autonomy functionality that is installed on working class ROV today is dynamic
positioning (DP) or station keeping systems. Autonomous functionalities often requires
navigation and guidance, which also includes localization and and path planning (Ei-
dsvik 2018]). These tasks are done by the operator through an umbilical cable. However,
the development of the ROV tends towards increasing the level of autonomy, to make it
able to perform intervention and inspection tasks on its own. Since ROV are equipped
with thrusters in multiple degrees of freedom (DOF), it is able to maintain good ma-
neuverability at low speed, and therefore it is capable to perform intervention tasks.
However, the complex shape of the ROV and the difficulty of predicting the response
that comes with it, makes it hard to design controllers. Hence, the use of the human
operator.

Since the industry always looks for more cost efficient methods, the development of
the ROV tends, as stated earlier, towards autonomy. Here, the human operator is not
needed anymore, and a great expense is eliminated. By introducing autonomous ROV,
the time efficiency will also increase, because being dependent on an operator, takes
up a lot of time. Considerable amount of training and education isd required in order
to be approved to control the ROV, as well as the person has to be present under the
whole task duration. Therefore, implementing autonomous systems results in higher
efficiency and reduced costs.

The development of autonomous system in ROV has made progress and results. In the
early stages of the ROV history, the operator had to control each thurster individually.
However, automatic depth control simplified the operation, as the ROV commonly are
neutrally buoyant. The development of control systems that automated the process
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of maintaining positions and tracking, enabled the pilot to focus on monitoring and
planning of operations that requires human intervention and decision making (Dukan
2014). Hence, developing methods, models and tools to estimate the response of the
ROVs is important in order to design better control schemes that can contribute to
more autonomous systems, as well as aiding the human operators.

1.1.1 Remotely Operated Vehicles

ROVs are usually dived into classes depending on their purpose. According to (Standard-
Norge 2003)), ROVs are mainly divided into five different classes:

Class I - Pure Observation: Pure observation ROVs are physically limited to video
observation. They are mainly equipped with a video camera, lights and thrusters.
Without considerable amount of modifications, they can only perform observation op-
erations.

Class II - Observation with payload option: Observation ROV that have the
capability of carrying at least two additional sensors, are classified as a Class II ROV.
The added sensors are often still colour video cameras, cathodic protection measurement
systems, additional video cameras and sonar systems. It is required that the Class
IT ROV maintain the capability of operating without loss of original function while
carrying additional payload, such as other sensors.

Class III - Work class vehicles: Class I1I vehicles are vehicles that are large enough
to carry additional sensors and/or manipulators. These vehicles often have multiplex-
ing capability which allows the additional sensors and tools to operate without being
hardwired thorugh the umbilical cables. Clas III is then again sub-divided into three
groups dependent on their horse power (Hp).

e Class IIT A - Workclass vehicles < 100 Hp
e (lass III B - Workclass vehicles 100 Hp to 150 Hp

e Class III C - Workelass vehicles > 150 Hp

Class IV - Seabed-working vehicles: Seabed-working vehicles maneuver on the
seabed by using wheels or belt traction system, thrusters or water jets, or by com-
binations of these. These types of vehicles are often much larger and heavier than a
Class III ROV, and this is because they are often used in cable and pipeline trenching,
excavation, dredging and other seabed operations, that requires a lot of force.
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Class V - Prototype or development vehicles: Class V includes the vehicles
that are being developed or those regarded prototypes. Special-purpose ROVs, such as
seabed-working vehicles, can also be assigned as Class V vehicles. Currently, AUVs are
also assigned to Class V.

(c) Class III ROV, Minerva (d) Class IV ROV, vLBC

Figure 1.2: Different ROV classes

Today, the workclass ROV is the most common ROV type that used in installation-
, maintenance- and repair operations in the industry. This is because of the high
payload capacity and the ability to operate in deep water. According to estimates
from (Group , the world’s ROV expenditure will total more than $ 10 billion
between 2018-2022. The majority of these operations will be performed by workclass
ROVs. ROVs usually consists of a set of thrusters, that makes it possible to control
the ROV in all the desired DOFSs, sensors, for instance inertial measurement units
(IMU), magnetometers or gyro compasses, acoustic transceivers, and Doppler velocity
logs (DVL), as well as mission related tools, such as manipulators, lights and video
cameras. Workclass ROVs are usually designed with a large metacentric height to
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maintain proper stability with respect to rotation around its horizontal axes (roll and
pitch). In addition to a large metacentric height, ROV are often equipped with movable
ballast and buoyancy elements, with the purpose to shift the center of gravity (COG)
and/or center of buoyancy (COB) to accommodate for varying operational conditions.

1.1.2 Manipulators

Workclass ROVs are often equipped with one or two manipulators, depending on the
type of operation the ROV is designed for. The main reason for equipping ROVs
with manipulators is to design it for intervention tasks. With mounting the ROV with
manipulators, additional hydrodynamic, hydrostatic and rigid body inertia forces and
moments will affect the vehicle (Schjglberg . If the ROV is large enough, these
effects are negligible. However, these effects usually have to be modelled and taken
into account when designing workclass ROVs. Here the manipulator is of considerable
size, and the presence of the manipulator will create forces and moments on the ROV
that affects the response of the system. In addition, when the manipulators performs
intervention tasks, they come in contact with the environment, which creates contact
forces that also will affect the ROV. No matter the size difference between the ROV
and the manipulator, the contact forces can be of considerable size, that needs to be
taken into account when modelling the system.

The manipulator used in this thesis, Orion 7R, is shown in Figure .1 This is a 7
DOF manipulator produced by FMC Technologies Schilling Robotics. It is a compact
and light-weight manipulator system designed for light- and medium-class ROVs. The
arm’s structural segments are fabricated from hard-anodized extruded aluminum for
strength and corrosion resistance (Robotics [2013)).

Figure 1.3: Orion 7R Manipulator

Orion 7R is equipped with position sensors which are magnetically coupled and sealed
in titanium housings, and all of the servo valves and subsea-electronics are in one
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enclosure. The specifications of the Orion 7R is presented in Table ?7.

Table 1.1: Specification of Orion TR

Parameter Value
Reach 1532 [mm]
Materials Anodized Aluminium, Stainless steel, Titanium
DOFs 7
Standard Depth 6500 [msw]|
Weight in air 54 [kg]
Weight in water 38 [kg]
Lift at full extension 68 [kg]
Maximum lift, nominal 250 [kg]
Standard Gripper Opening 97 [mm]
Grip Force, nominal 4448 |N]
Wrist Torque, nominal 205 [Nm]
Wrist Rotate, continuous 6-35 [rpm]

The dimension of each module of the manipulator is seen in Figure -[L.4d These
Figures gives an overview of all the dimensions of Orion 7R, as well as a planar and
elevation view when fully extended.
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Figure 1.4: Dimension of Orion 7R

Each of the joints is capable of rotating in at least one direction, and these rotations
can be seen in Table [L.2

Table 1.2: Rotation capability of each joint

Joint Degree of Rotation
Base Yaw, Linear 120°
Shoulder Pitch, Linear 120°
Elbow Pitch, Linear 120°
Forearm Roll, Rotary 270°
Wrist Pitch, Linear 120°
Wrist Roll, Rotary 360°
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1.1.3 Underwater Vehicle-Manipulator Systems

A Underwater Vehicle-Manipulator System (UVMS) is an underwater robot intended
to operate with dexterity in workspace larger than for a manipulator with a fixed
base. Manipulators are designed to handle and manipulate objects with dexterity and
accuracy, but the fixed base limits the workspace. Therefore, mounting the manipulator
on a underwater vehicle, the workspace would significantly improve. A UVMS consists
therefore of

e A base, normally with actuation, which can move freely in a given environment.

e One or more manipulator arms mounted on the base.

As stated, it is the base that provides the mobility of the system, and enables it to
move across large geographical areas. For UVMS, the geographical area is restricted to
under water, and some of the important working areas are:

e The vehicle is docked an an ocean pipeline while the manipulator perform main-
tenance work.

e The manipulator performs service tasks while the vehicle is at a fixed position.

e The vehicle follows an ocean pipeline while the manipulator performs inspection
around the pipe.

There are many different task and services the UVMS can provide. The underwater
environment is not very accessible to humans. Therefore, as UVMS can operate in deep
waters and over large geographical area, it has received increased amount of attention
in later years. This means, underwater robots can be utilized where humans either
cannot or do not want to operate as the health risks are too great.

1.2 Minerva 2

The ROV considered in this master thesis is the Minerva 2. This is the new ROV
developed by NTNU, and is shown in Figure [1.5]
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Figure 1.5: CAD model of Minerva 2

This is a working class ROV with a mass of 1500 [kg], and it is equipped with forward
look multibeam sonar, acoustic underwater positioning and navigation systems, such as
HiPAP, and DVLs and IMUs for position measurements. The ROV has seven thrusters
available, where four of them are placed in the horizontal plane. The remaining three
thruster are position in a vertical plane (Holven . To avoid water being flushed
through the vehicle, the thrusters are slightly tilted, and all of them are have an fixed
orientation. The geometry is presented in Figure [1.6a], [1.65 and [1.6c, These figures
shows the thruster geometry in the xz-plane, xy-plane and yz-plane, respectively. The
coordinate system is oriented so the x-axis is directed to port, y-axis is directed upwards
and the z-axis is directed forward. The different positions and angles presented in these

figures are shown in Table [I.3] and
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Table 1.3: Angles of the thrusters

Thruster nr. | Symbol Angle [Deg]
1 o 45
2 Qo -45
3 Q3 -45
4 oy 45
D Qs 15
6 Qg -30
7 lo'0e 30

Table 1.4: Positions of the thruster relative to COG in body frame

Thruster nr. | X [mm] Y [mm] Z [mm]

1 520 165 920
2 -520 165 920
3 520 165 -920
4 -520 165 -920
3 0 231.37  -940.19
6 975.71  284.68 250
7 -075.71  284.68 550

1.3 Litterature Study

Current research and development of underwater vehicles is extensively tending towards
making ROVs more autonomous. Since these are the vehicles mainly used in underwater
operations, these types of vehicles are in focus. To be able to perform intervention tasks,
they need to be equipped with some sort of manipulators, and in order to perform, the
dynamics of this coupled system need to be modelled appropriately. If the modelling is
not sufficient enough, making controllers or autonomous system suitable to control the
system, would be difficult. Therefore, in recent years, different methods to model the
dynamics have been proposed in various literature.

In 1995 (Mcmillan, Orin, and Mcghee |1995)) presented an algorithm that had been
developed for a dynamic simulation of an underwater vehicle equipped with a manipu-
lator. The basis for this method was a land-based algorithm, since these already had

11
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several efficient algorithm to date. This system is using articulated bodies, and is more
computationally efficient compared to Newton-Euler approaches, which is usually used
in in ROV-manipulator modelling. Hydrodynamic effect on rigid bodies, such as added
mass, drag, fluid acceleration and buoyancy forces are incorporated in the system. Fur-
thermore, this result is extended to systems with serial chains of rigid bodies, and
efficiently added into the algorithm. One main advantage of this method and frame-
work is its ability to simulate and make computations on a variety of models in which
the hydrodynamic forces on a link is a function of velocity and acceleration.

The same year, 1995, (Mclain, Rock, and M. Lee 1995) presented another approach on
how to perform the coordinated control of the ROV and manipulator system, where
they also tested this method experimentally. It was shown that the dynamic interaction
between the robotic arm and the underwater vehicle was very significant as it moves
through water. By using a new highly accurate approach to model the hydrodynamic in-
teraction forces, which was developed as a part of this study, a coordinated arm/vehicle
control strategy was implemented. The dynamic interaction forces acting on the vehi-
cle due to the manipulator arm was predicted and fed forward into the control system.
This resulted in a greatly enhanced station-keeping capability, and the tracking errors
and settling times for the manipulator’s end point was significantly reduced. Hence,
correctly modelling of the manipulator and ROV interaction can significantly increase
the performance of the ROV system.

(Schjplberg [1996)) presented a model of the combined ROV and manipulator dynamics
on matrix-vector form by utilizing the Newton-Euler approach. The recursive Newton-
Euler approach is extended to include added mass forces, vortex-induced forces, buoyant
forces, rotational damping moments and current loads acting on an underwater manip-
ulator. The dynamics of the manipulator is written on matrix form, and the equation
of motion of the vehicle is retrieved taking into account forces from the manipulator
acting on the vehicle. The model has the benefit of simplifying nonlinear control the-
ory, whereas, for instance, the feedback linearization technique is evaluated through
simulation of decoupling schemes. The total equation of motion is written in a matrix-
form where structural properties like symmetry, skew-symmetry and positiveness are
established. This simplifies the control design and enables the use of Lyapunov stability
theory, which is beneficial.

Jee-Hwan Ryu and Dong-Soo Kwon from Korea Advanced Institute of Science and
Technology (Ryu, Kwon, and P.-M. Lee [2001)) presented in 2001 a scheme for obtaining
high maneuverability of underwater robot manipulators mounted on a ROV. To com-
pensate for the dynamic interaction between the manipulator and ROV, force-torque
(F/T) information between the manipulator and the vehicle is used to regulate the
states of the ROV. When the F/T sensor was not available,aobserver was used to take
its place. This paper proposes a disturbance observer to estimate the forces between
the manipulator and vehicle. To obtain the dynamics of the system, Euler-Lagrange
method was applied, and this formulation was used to test how a feed-forward based
observer could counteract the buoyancy and inertia forces arising from the interaction
with the robotic arm. The obtained results from this paper showed that the observer
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were able to counteract these forces, and therefore were able to significantly improve
the trajectory tracking and the performance of the ROV.

(Sarkar and Podder 2001)) came up with a new motion coordination algorithm in 2001
for autonomous underwater manipulator-vehicle system. The dynamics behind this
system is derived from using Quasi-Lagrange formulation. The algorithm generates
desired trajectories for both the vehicle and the manipulator with respect to minimize
the total hydrodynamic drag on the system. The Quasi-Lagrange formulation brings
the benefit of representing the kinetic and potential energy in the body-fixed frame of
the vehicle rather than the inertial frame. The fact the velocity is represented in the
body-fixed frame, also simplifies the implementation of the feed-forward control. The
results of the work show promise and indicates potential of the proposed approach re-
garding to provide a useful motion planning framework for underwater robotic systems.
However, all the results are from computer simulations, hence, all the uncertainties and
complexities of a real world environment might not have been captured. Therefore,
further testing of this approach is required in order to to verify the suitability and the
advantages for an autonomous system.

Just last year, (Huang et al. [2017)) published an article about general modeling of an
unmanned underwater vehicle and manipulator using an Newton-Euler approach. The
equation of motion of the total system is given by:

MRB (q)l/+ CRB(q> V)V_'_MA(q)V.r + CA(CI, Vr)Vr +D(q> Vr)”r +g(q) + TMmom — Tctrl;

(1.1)

where v is the velocity vector of the vehicle, q is the generalized coordinate vector
of the manipulator joints, Mgrp is mass matrix, Crp is the Coriolis and centripetal
matrix, v, is the relative velocity vector relative to the ocean current, Ma(q) is the
added mass matrix, Ca(q, ) is the Coriolis and centripetal added mass matrix, D(q, /)
is the hydrodynamic drag matrix, g(q) is the restoring forces and moments vector, Tegy
is the control forces and moments vector and Tyimom represents the coupling forces and
moments between the vehicle and manipulator during manipulation. Recursive Newton-
Euler formulation was used to calculate the joint forces, and the coupling forces and
moments was determined by evaluating the first joint, joint 1. A 3-link manipulator was
investigated, and the presented model was synthesized into a numerical simulator, and
the response from the forces and moments was inspected. The simulations from this
method showed that manipulator movements created large enough moments to make
the vehicle roll and pitch violently. Hence, the forces from the manipulator need to be
counteracted by a controller to avoid critical rotations.

1.4 Project Structure

Chapter 2-6 of this thesis will cover the relevant theory. Here the mathematical mod-
elling of the ROV, the manipulator and the combined underwater vehicle-manipulator
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system is presented. Chapter 7 concerns the method used to simulate the system, and
how results are retrieved. Chapter 8 is the result section. Here the simulations are
presented and the result of the ROV’s displacement and rotations when exposed to
different manipulator configurations and movements. Afterwards the results are ana-
lyzed and discussed in Chapter 9, before Chapter 10 concludes the thesis and proposes
possibilities and relevant further work areas.
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Chapter

Rigid Body Kinematics

2.1 Rigid Body Kinematics

Kinematics treats the geometrical aspect of motion, and any dynamics analysis starts off
with a kinematic study. It defines the admissible configurations and velocities without
taking what causes the motion into account. The location of a rigid body is described
by its position and orientation. The position is given by the location of the origin of
the reference frame attached to the body with respect to an inertial reference frame,
and the orientation is described by representing the coordinate axis, of the reference
frame attached to the rigid body, in the inertial reference frame (Fossen 2011)).

2.1.1 Reference Frames

The reference frames used to represent the position and orientation of the vehicle system
in R? is shown in Figure The system consists of six independent coordinates, three
for position and three Euler angles for the orientation. A body-fixed reference frame,
denoted Frame B, is fixed in the vehicle body, and an inertial frame, denoted Frame I,
is similar reference frame fixed in space. The body-fixed reference frame is a moving
coordinate frame, and its position and orientation is described relative to the inertial
reference frame. To describe the configuration and kinematics of the manipulator, a
frame is attached to each link according to the Denavit-Hartenberg convention, where
the number of reference frames, are determined by the number of links N. The base
frame is denoted Frame (0, while the reference frame attached to link N is denoted
Frame N.
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Manipulator

Link 1

Frame 0

Frame [
z
Vehicle

Figure 2.1: Coordinate frames attached to the Vehicle-Manipulator System

2.1.2 Euler Angles

A commonly used representation of the vehicle orientation is the Euler angles represen-
tation. The orientation of a rigid body is given by a sequence of three rotations about
the coordinate axes. There are many different sequences, 12 in total, and the most
common ones are ZYX, ZX7 and ZYZ, which are often referred to as Euler angles type
I, IT and III, respectively. The ZYX Euler angles are known as the roll, pitch and yaw
angles, and are often used to describe the orientation of marine vessels and vehicles.

2.1.3 The Rotation Matrix

Any orientation can be achieved by composing three elemental rotation, where the
starting configuration is known. Equivalently, any rotation matrix can be decomposed

into a product of the rotation matrices. If we write the basis of a rigid body as {e;, e;e; ,
this can be written in term of the inertial coordinate frame {e,,e,, €.} as
e; = Ty2€y + Tay€y + Tz (2.1)
6; - Tyxex + /’nyyey + ryzez (22)
e; = Tup€p + Toyly + 7526, (2.3)
Alternatively, this can be written as
6;3 €x
e;/ = {7’1 To 7“3} ey (2.4)
e, e,
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. ’ ro .
where the vectors 71, 7o and 73 are coordinates of the base {e,, e e, } relative to
{es, ey, e.}. The matrix

R=|n 7 nl 25

is called the Rotation matriz. There are numerous ways to determine the rotation
matrix, but by following one of the sequences mentioned in the previous section, the
ZYX Euler angles, we first rotate an angle ¢ about the x-axis, represented by R, (¢),
then a rotation 6 about the y-axis, represented by R, (#), and lastly a rotation ) about
the z-axis, represented as R,(¢)). A single rotation about the x-axis can be seen in
Figure 2.24] and a three consecutive rotation can be seen in Figure [2.2h]

X

(a) Rotation about the x-axis (b) A three consecutive rotation

Figure 2.2: The orientation of a rigid body represented by reference frame %, with basis
{el, e;, e, } with respect to an inertial reference frame %y with basis {es, e,, e, } for rotations
with one and three degrees of freedom

Hence, the rotation matrix can be written as

R=R.(V)R,(0)R.(¢p) € R (2.6)

The rotation matrix gives a complete description of the orientation of a rigid body
with reference frame %, relative to an inertial frame .%,. The rotation matrix can also
be used to rotate a vector p', observed in reference frame i, into the same vector p’,
observed in reference frame, j, by

17



Chapter 2. Rigid Body Kinematics

pi = Rjipj (2-7)

where Rj; is the rotation matrix from reference frame ¢ to reference frame j. The column
vector of the rotation matrix represents the unit vectors of a orthonormal frame i.e.

fori=j.

R

The orthogonality and unity conditions adds three restrictions to the rotation matrix.
Since the rotation matrix consists of nine elements, we see that the orientation of the
rigid body has three degrees of freedom. The conditions can also be written as

RR’ =R'R =1 (2.8)
and by post multiplying with R~ we get
R =R (2.9)

which is a property frequently used, and often simplifies problems.

2.2 Quaternion Orientation Representation

An alternative to the Euler angles representation, is the use of quaternions. This is a
four-parameter method based on unit quaternions. The main motivation to use four
parameters to represent an orientation is to avoid the Euler angle singularities. A
quaternion is a complex number consisting of one real part, 1, and the imaginary parts
given by

€=le epes]” (2.10)

The set Q of quaternions, satisfying qTq = 1, is defined as

Q={da"qa=1,q=[n€"]" e € R’and n € R} (2.11)

The scalar part n and the vector part e of the quaternion represent a rotation by an
angle # around an unit axis A, and are defined as:

1= COS — 2.12
7 (

€ = [e1 €2 €3] == Asin = (2.13)
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where A = [A\; Ay A3]7 is a unit vector satisfying

€
A=+ ifvVele #£0 2.14
e % (2.14)

Hence, the following parametrization is valid

n
€ é
1 COS 5
q= = €Q 0<p<2r (2.15)
€9 Asin 2
2
€3

This also implies that the unit quaternion satisfy the constraint qTq = 1, that is

+eat+eatea=1 (2.16)

The coordinate transformation matrix for the unit quaternion, can be expressed as
(Fossen [2011)):

R(q) = R, e = I3x3 + 2nS(€) + 2S%(e) (2.17)

2.3 Rigid Body Transformations

A rigid body’s location is described by the position and orientation of a reference frame
attached to the body with respect to the inertial frame. The configuration of the body
frame is found by firstly represent the origin of the body frame with respect to the
inertial frame, as seen from the inertial frame, and secondly write the orientation of the
body frame with respect to the inertial frame as if they were coinciding.

Commonly, the position and velocity vector of the rigid body is presented as

T U
Y v
z w
n= , V= (2.18)
) p
0 q
Y r
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The position vector, 1, is defined in the global reference frame, NED, and the velocity
vector, v, is described in the body fixed reference frame.

In order to establish a model representing, and since the position vector, , and the
velocity vector, v, is defined in different reference frames, a mapping between them is
established. The relation between the derivative of the position vector, 7, and the body
velocity vector, v, is given by

n=Jmyv (2.19)

where J is the rotation transformation matrix defined as

RE(©) 054
J— 5(©)  Osxs (2.20)
03><3 T@((—))

R} is the rotation matrix from the body frame to NED frame, ® denotes the Euler
angles [¢ 0 ] and Tg is a transformation matrix relating the body fixed angular
velocities w = [p, ¢, r] and the Euler angles ®. By utilizing the ZYX rotation sequence,
the transformation matrix can be written as

1 sin¢cosf cos¢otanf

Te(®)= |0 cos ¢ —sin¢ (2.21)
sin ¢ cos ¢
0 s 056

Hence the velocity transformation matrix is given by

x cpeld  cssy — spegp  cpepstd + svsp 0 0 0
Yy sicl  spshsy + cpep  sOscop —cpsgp 0 0 0 v
0

z —s6 csp cOeo 0 O w
= b0 cost (2.22)
gb 0 0 0 1 0 0 P
0 0 0 0 0 cp —so| |q
Kl co

where s(-) and ¢(-) denotes sin and cos, respectively. It can be observed from Equation
that Te, and thus J, is not defined for §# = &7. This is the Euler angle singularity,
and it appears for the ZYX-sequence as 6 reaches 7. The singularity is results of the
operation where the terms are divided by cf), since cos &5 = 0.
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The velocity transformation describes the kinematics of a rigid body motion in R® when
the velocities are represented in the body frame. On the other hand, if the velocities
is preferred represented in the inertial frame, the reverse relation is given by a velocity
transformation matrix given as

1 0
J— 33 (2.23)
03.s Te(Rp)™
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Chapter

Rigid Body Dynamics

3.1 Rigid Body Dynamics

This section considers the dynamics of the ROV. The relevant models and tools used
to determine the dynamic properties of the system is presented, and how the different
parameters are determined.

3.1.1 Assumptions

When modelling a physical system, assumptions are made to either simplify the system
of even making it possible to model it. A common assumption to make in hydrodynamic
modelling is to say that the fluid is viscid and incompressible.

An uncoupled system is another assumption often made, the off-diagonal parameters
of the mass matrix and damper matrix are very difficult to identify. From (Fossen
2011), this assumption is made by saying that ROV are only allowed to operate at low
speeds. If the velocities are too large, the motion will be highly nonlinear and coupled,
and the assumption in invalid. If the ROV has three planes of symmetry, which can
be assumed in the ROV case, one can justify that the contributions of the off-diagonal
parameters of the added mass matrix and damping matrix can be neglected compared
to the diagonal elements (Fossen 2011)).

3.1.2 Governing Equations

In order to represent a physical problem accurately, a set of governing equations needs
to be established. Since the system is a non-flexible underwater vehicle, the equation
of motion can be deduced from Newton’s 2nd law. The forces and moment acting on
the body, is described by:
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TRB = 7-hyd + Ths + T cable + Tmanipulator +T (31)

where Tpp are the inertia forces and moments acting on the body, 7,4 are the hy-
drodynamic forces and moments, 7, are hydrostatic restoring forces, T.que are cable
forces and moments, Tanipuiator are the manipulator forces and moments and 7 are the
thruster forces and moments.

For marine crafts it is desireable to derive the Equation of Motion (EOM) for an ar-
bitrary origin, CO, to take advantage of the craft’s geometric properties. Since the
hydrodynamic forces and moments are computed in CO, the EOM is also expressed
from CO. The rigid body dynamics in a body-fixed reference frame located at CO are
obtained from the Newton-Euler equations of motion (Fossen 2011). The obtained
expression is as following,

Frp my+wxr+wxv+wx (wxr)
TRB — = (32)
mpp Iw +w x Iw+mr x (U +w xv)

where Fgrp are the inertial forces, mpzp are the inertial moments, v are the linear
velocities, w are the angular velocities and r is the vector from the body-fixed reference
frame to the centre of gravity of the ROV. The inertial forces and moments are expressed
in the body-fixed reference frame, while the linear and angular velocities are expressed
in the body-fixed reference frame origin relative to the inertial reference frame origin.
According to (Fossen [2011)), Equation can also be written in a vectorial setting:

TRB — MRBZ./ + CRB(V)I/, (33)
where Mpgp is the rigid body mass matrix, Crp represents the Coriolis and centripetal
vector term from Equation [3.2) and v is generalized velocity vector. If the Coriolis and
centripetal matrix Cpp is parametrized independent of linear velocity, v = [u, v, w]7,

and the ocean current is irrotational and constant, the rigid body kinetics satisfies
(Fossen 2011])

TRB — MRB’>T‘ + CRB(’/T)VM (34)

where v, is the relative velocity due to the current,

v, = (3.5)

and MRgg is given by:
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ml —mS(rP
Mpg= | © (rg) (3.6)
mS(ry) Iy —mS?*(rp)
m 0 0 0 mzg — —My,
0 m 0 —mz, 0 mgy
0 0 m m —mx 0
= Yo ! (3.7)
0 —mzy, —MyY, 1, I, -1,
mzg 0 —mxzy  —Iyy I, —1,
—my, M, 0 L., -1, I,

Where m is the mass of the body, rg =[x, Yy, 2] 1s the vector form the origin to the
center of gravity (COG), I, is the inertia matrix and the [;; term denotes the moments
of inertia about the origin. The other matrix term, Crp in Equation [3.4]is given by:

Cra) = | "0 ~mSSEy) (33)
mS(rh)S(vy)  —S(Iyw,) |

For a body that is submerged in any fluid, a buoyancy force will appear. This is a result
of the displaced fluid, and will act as a force in the center of buoyancy (COB), which
is the centre of mass of the displaced fluid. Since the centre of gravity and center of
buoyancy does not always coincide, these two forces will act on different locations on the
body, which makes moments arise. A submerged body is stable if the COB is located
above the COG. This is because any perturbations from this state will create a lever
arm between the forces and therefore generate moments counteracting the displacement.
The net force and moments in the 6 DOF is derived as shown in Equation [3.9]

(W — B)siné
—(W — B) cosfsin ¢
—(W — B)cosf cos ¢
The = (1) = . (3.9)
—(ygW — ypB) cos @ cos ¢ + (2,W — 2,B) cos 8 sin ¢

(2gW — 2,B) sin @ + (z,W — x,B) cos 0 cos ¢

—(x,W — x,B) cossin ¢ — (y,W — y,B) sin 6

W is the weight of the vehicle, B is buoyancy, the x, y and z terms are elements of
the r vector, and represents the position of the body-fixed reference frame given in the
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inertial reference frame, and the angles # and ¢ are elements of 1 which is a vector of
Euler angles between the body-fixed and inertial reference frame.

3.1.2.1 Added Mass

In hydrodynamics it is common to assume that the hydrodynamic forces and moments
on a rigid body can be superimposed into the following equation:

Thyd = _MA’)’I‘ - CA(”'I‘)VT - D(VT)VT' (310)

M, is the added mass matrix, C4 is the Coriolis and centripetal added mass matrix
and D is the hydrodynamic damping matrix. The nonlinear Coriolis and centripetal
added mass matrix is due to the rotation of the body-fixed frame relative to the inertial
reference frame, and can be derived using an energy formulation based on the constant
added mass matrix, M 4. Whcih can be written in matrix form as following:

qu X@U wa Xp Xq X,;T
You Yiv Yyw Y Y Yir
Zuu Z@U wa Zp Zq ZT'T
My = — (3.11)

Kau K@’U wa Kp Kq Kﬂ‘
Mau M@U Mww M, Mq‘ M?'“r

p.

N{LU N@U Nww Np Nq Nf"'r

Since any motion of the vessel induces motion to a motion less fluid, the fluid must
move aside and then close behind the vessel in order to let it move through the fluid.
As a consequence, the fluid now possesses kinematic energy it else would not have.
By using Kirchoft’s equation one can derive the Coriolis and centripetal added mass
matrix. For a rigid body moving through an ideal fluid the hydrodynamic Coriolis and
centripetal matrix can always be parameterized so it is always skew-symmetric (Fossen
2011). Such a parametrization is:

0 —S(A v + Ay
Culv) = 3x3 (Avy 12V2) (3.12)
—S(A11v1 + Apry) —S(Agvy + Agprs)

S denotes the cross product operator, and the A;; terms are given by:
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Ay A
M, — 11 A2 (3.13)
Ao Ay

Furthermore, Cx () can be written in component form according to:

0 0 0 0 —das a9
0 0 0 as 0 —a
0 0 0 —as aq 0
CA(I/) = (314)
0 —as a9 0 —b3 bg

as 0 —ay b3 0 - bl
—as aq 0 —bg b1 0

Where the components represents the following:

a1 = Xau + X0 + Xow + Xpp + Xyq + X7 (3.15)
ag = Yau + Yy + Yyw + Yip + Yiq + Yer (3.16)
az = Zyu + Zyv + Zyw + Zgp + Z4q + Zir (3.17)
ay = Kyu + Kyv + Kyw + Kpp + Kyq + Kir ( )
a5 = Myu+ Myv + Myw + Myp + Myq + Myr (3.19)
ag = Nyu+ Nyv 4+ Nyw 4+ Nyp + Nyg + Ner (3.20)

3.1.2.2 Damping

The main contributors to the hydrodynamic damping, D(v,)v, are:

e Skin friction: Linear frequency-dependent skin friction is due to laminar bound-
ary layer, while nonlinear skin friction is due to turbulent boundary layer.

e Damping Due to Vortex Shedding: D’Alambert’s paradox states that no
hydrodynamic forces act on a fully submerged body with constant velocity in
a nonviscous fluid. However, in a viscous fluid, frictional forces are present so
that the system is no conservative with respect to energy. This is referred to as
interference drag. It is a result of vortex shedding at sharp edges (Fossen 2011).

The expression for interference drag, also recognized as one of the terms in Morison’s
equation, is:
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F(u) = —pC(Rx)Alulu (3.21)

where p is the water density, Cp(Ry) is the drag coefficient as a function of the Reynolds
number, A is the projected area relative to the flow and wu is the flow velocity (Eidsvik
2018). Equation shows that the drag terms contribute to both linear and quadratic
damping. Due to difficulties of separating these terms, even though experiments shows
that the total drag force on a submerged vehicle can be appropriately described by the
sum of a linear and quadratic drag component, the hydrodynamic damping can now be
described by:

D(v,)v, = Dpv, + Dqu,|v,| (3.22)

The linear damping matrix, with decoupled surge dynamics, can be written as:

X, 0 0 0 0 0
0O Y, 0 Y, 0 Y
0 0 Z, 0 Z, 0
D, = (3.23)
0 K, 0 K, 0 K,
0 O M, O M, O
o N, O N, 0 N,
where the diagonal terms are given by:
Aq1(0
—Xu = By = m+ An(0) (3.24)
Tsurge
A9 (0
=Y, = B, = m 1 42(0) (3.25)
Tsway
_Zw = B33v + B33(whe(we = 2A<heavewheave[m + A33 (whea'ue)] (326)
_KP - B44v + B44 + B44(w7’oll) = 2ACrollwroll [[x + A44(wroll)] (327)
— M, = Bssy + Bss(wpiten) = 2ApitenWpiten[ Ly + Ass (Wpiten)] (3.28)
I, + Age(0
—N, = Begy = L + Ag(0) (3.29)
Tyaw

For ROV the damping matrices can be simplified into diagonal matrices. This is because
these are the terms that dominates, and it is difficult and time consuming to determine
the off diagonal parameters. Since these often contributes to negligible effects, it is
common set them to zero. The damping equation is strictly positive since it describes
energy being removed from the system.
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3.1.2.3 Combined Model

The total equation of motion can be written as:

(Mgp +Ma)P + (Crp(v,) + Ca(v,))v, + Doy, + Do, v, +g(n) =7 (3.30)

In order to make this an appropriate model of the real physical system, all the matrices
need to be accurately estimated. The mass, Coriolis and centripetal, and damping
matrices are of dimensions 6 x 6, while the hydrostatic and thruster forces and moments
are 6-by-1 vectors. After the equation of motion is derived, the rest becomes a matter
of deriving the matrices and vector in order to correctly model the ROV system. This is
costly, time consuming and complex. In order to determine the parameters, assumptions
are used to simplify the complex system. Together with the necessity of performing
experiments, this can produce inaccurate results because of measurements errors, flaws
in experimental setup and simplifications of the system.
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Chapter

Manipulator Kinematics

A robotic manipulator is a collection of rigid bodies whose relative motion is constrained
by admissible velocities of the joints connecting two consecutive rigid bodies in the
system. (From 2014). The joint motion is often very simple one degree of freedom
linear or rotational motion. Manipulator systems therefore consists of either revolute
or prismatic joints or a combinations of these. The manipulator system considered in
this thesis, Orion 7P, shown in Figure 4.1} is built up by revolute joints. This gives
very favorable characteristics to the robot’s workspace, and it makes the modelling a
lot easier, as the homogeneous transformation matrices can be written in a very simple
form.

Figure 4.1: Manipulator system, Orion 7R

The Orion manipulator system is a compact, lightweight series, suitable for light, and
medium-class ROVs. All of its segments are fabricated from hard-anodized extruded
aluminium, which provides strength and corrosion resistance. It is a 7 degree of free-
dom system, consisting solely of revolute joints. The position sensors are magnetically
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coupled and sealed in laser welded titanium housings ensuring protection. Some of the
design parameters, properties and limitations can be seen in Table and Table [1.2]

4.1 Kinematics

In robotics there are two types of kinematics, direct kinematics and inverse kinematics.
In the direct kinematics the end-effector orientation is calculated by knowing the joint
angles. In inverse kinematics, the end-effector position and orientation is given, and
then the needed joint angles to make this possible are calculated.

The configuration of a body frame {b} can be represented in the fixed space frame
{s} by specifying the position p of the frame {b} in {s} coordinates. This type of
configuration is given by the homogeneous transformation matrix, T, given by

rin Trie Tz Py
ro1 Toa Tz
T3 Tr3a T3z P

0 0 0 1

4.1.1 Denavit Hartenberg Convention

When assigning the reference frames for each of the mnaipulator links, the Denavit-
Hartenberg(DH) convention is used. This convention assumes that joints can be mod-
eled as ideal revolute joints and that the joints are fixed relative to their associated
links. Any robotic manipulator can be described kinematically by giving the values of
four quantities for each link. Two describe the link itself, while the two other describe
the link’s connection to the neighbouring link. The four parameters are (Spong 2006):

a; - Link length: Distance from z; to z;.; along x;.

e «; - Link twist: Angle from z; to z;,; about z;.

e d; - Link offset: Distance between z; 1 to z; along z;.
e 0, - Joint angle: Angle from z;_; to x; about z;.

By following this convention, coordinate frames are attached to the joints connecting
different links, and each homogeneous transformation between the frames is represented
as a product of four basic transformations, also known as the link transformation.
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A; = Rot, g, Trans, 4, Trans, q, Rot ., (4.2)
co, —sp, 0 O |1 0 0 O[|1 O O a [1 O 0 O
se, ¢c 0 0[]0 1 0 O[O0 1 0 O] |0 coy —Sa; O
0 0O 1 0[]0 0 1 df| |0 01 0| [0 sq €0 O
0 O 0 1|10 00 1{1]0 0 0 1|0 O 0 1
Co;, —350,Ca; 50, Sa; a;Cy,
So;,  Co,Ca;  —C0;Sa; Q;iSp

_ | Co 0 0 (4.4)

0 Sa; Cay d;
0 0 0 1

The matrix, A;, is a function of one variable, hence three of four quantities are constant.
For revolute joints #; is the variable, while d; is the variable for prismatic joints. It is
not possible to represent any arbitrary homogeneous transformation using only four
parameters. Therefore, the possible homogeneous transformations in the form of
need to be expressed. Given two frames, denoted 0 and 1, seen in Figure satisfying
the following DH assumptions:

e The axis x; is perpendicular to the axis z.
e The axis z; intersects the axis zj.

then there exist a unique homogeneous transformation matrix A that transforms the
coordinates of frame 1 into frame 0.

Figure 4.2: Coordinate frames satisfying the DH assumptions
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To be able to find all these parameters, all the axis of the system needs to be defined.
Figure 4.3| shows how the reference frames of each joint and module is defined, in order
to determine the DH-parameters and the transformation matrices.

Figure 4.3: Schematic representation of the coordinate-axes used to determine DH param-
eters and homogeneous transformation matrices

With this setup of the reference frames, the obtained Denavit-Hartenberg parameters
are shown in Table [4.1]

Table 4.1: Denavit-Hartenberg Parameters

i | aq[rad] | a;[mm)] | d;[mm] | 0;[rad]
1)z | 619 | 0 0,
2/ 0 | 9571 | 0 |6+T
3| = 125 0 |61
4| -z 0 580 | 0,
5| -z | 259 0 05
6| -z 0 0 O

4.1.2 Direct Kinematics

When the Denavit-Hartenberg parameters and the transformation matrix are deter-
mined, the position of the end-effector can be calculated, given the joint angles. The
transformation between the base-frame and the end-effector frame is done by finding
the transformation between each adjacent reference-frame, T§, T2, T3 ... T%, then mul-
tiplying these together. Each of these transformations are found by Equation [4.5]
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Co; —50;Cai  80;5qa;  QiCo;
N S0;  Co;Ca;  —CO;Sa; QiSe;
T, 1= € R*%(4.5)
0 Sa; Ca; d;
0 0 0 1

The transformation from the base-frame to the end-effector reference-frame is then
calculated using Equation 77
TS = T¢ + T? T3« T3+ T * T (4.6)

A point, P in the body frame, b, for instance the position of the end-effector, can be
represented in the fixed base frame, s, through

) s}
P o P

1 1

(4.7)

After the position is calculated, the Euler angles, o, 8 and +, needs to be determined.
These are computed according to Equation (4.8)-(4.10)

B = atan2(—1/r3; + 135, 733) (4.8)

a = atan2(£rag, £ri3) (4.9)
v = atan2(%rs, Fra) (4.10)

The signs of the rotation terms in the expression for v and ~, is dependent on whether
B is positive or negative. These calculations are carried out with the assumption that
every position within the manipulators reach is possible. In other words, there are no
mechanical constraints.

There are mainly two important interpretations of the homogeneous transformation
matrix. Firstly, when the transformation between two coordinate frames is known, any
quantity calculated in one coordinate frame can be transformed to the other by simple
matrix multiplication. Secondly, we can describe how a reference frames moves in space
as a time-varying homogeneous transformation matrix. This matrix therefore gives us
the time evolution of a rigid body in space as observed from a single reference frame
(From 2014)).
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4.1.3 Inverse Kinematics

Inverse kinematics is the determination of joint variables given the end-effector position
and orientation. The solution of the inverse kinematic problem is of fundamental im-
portance in order to transform the motion, assigned to end-effector in the operational
space, into the corresponding joint space motion that allows execution of the desired
motion.

Compared to direct kinematics, the inverse kinematics is a much more complex problem,
because of the following reasons (Siciliano et al. [2009)):

e The equations to solve are in general nonlinear, and thus it is not always possible
to find a closed-form solution

e Multiple solution may exist.

e Infinite solutions may exist, for instance in the case of a kinematically redundant
manipulator.

e There might be no admissible solution, in view of the manipulator kinematic
structure.

There are different methods applicable in order to solve the inverse kinematics problem,
and in this thesis the geometric method and algebraic method is used.

4.1.3.1 Solvability

Solving the inverse kinematic is a nonlinear problem, and as for any nonlinear prob-
lem, or set of equations, the existence of solutions must be of concern. The question
of whether any solution exists is often answered by inspecting the workspace. The
workspace is the volume of spasce which the end-effector can reach. For a solution
to exist the specified point must lie withing the workspace. Often, the workspace is
considered by two different definitions, dextrous and reachable workspace. Dextrous
workspace is that volume of space that the robot end-effector can reach with all orien-
tations. Meaning, that at each point in the dextrous workspace the end-effector can be
arbitrarily oriented. The reachable workspace is that volume of space that the robot
can reach in at least one orientation (Craig 1989).

A possible problem within the inverse kinematics, is the existence of multiple solutions.
For instance, consider a three link manipulator as shown in Figure [4.4]
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-.____._-‘.
- -
~

Figure 4.4: Three link manipulator

A planar arm with three revolute joints has a large dextrous workspace, because the a
position within the workspace can be reached with any orientation. As seen from this
Figure, the end-effector position can be reached in two different configurations. The
second joint can be placed in two different positions, where the dashed line represents
the second solution. The fact that the manipulator can reach the same position with
different configurations, can cause problem since it has to chose a solution. A criteria
applicable here, is to chose to closest configuration solution to the current configuration.
This type of criteria is shown in Figure

Figure 4.5: Three link manipulator with two solutions

If the current position of the end-effector is at point A, then the most logically solution
to reach point B is to chose the configuration as shown in the figure, rather than the
solution the dashed line represents.

The number of soltion is dependent on the number of joints in the manipulator but also
the link parameters, a;_1, a;_jandd; from the Denavit-Hartenberg convention, and the
ranges of motion of the joints.
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4.1.3.2 Geometric method

This method is based on using basic trigonometric relations and planar geometry in
order to calculate the joint angles. To use this method it is common to divide the
manipulator into several plane-geometry problems, where joints that only works in a
2D-plane is considered.

If a joint is rotatable so if enables the next joint to operate in all 3 dimensions, a
trigonometric approach will, more often than not, be insufficient. In order to solve such
a problem, the algebraic method can be utilized.

4.1.3.3 Algebraic method

The algebraic method is a method that calculates the joint angles by solving the fol-
lowing equation:

11 Ti2 T13 Dz

To1 Toa T23 Dy :T(1)(91>*T%*Tg(‘%)*T§(93)*T2(94)*T2*Tg(95)*T§(96) (4.11)

31 T32 733 Pz

~~
tool
base

where 9% T is a given homogeneous link transformation and 6; .. .60 are the unknown
joint angles.

This method often follow the following procedure:

T3(06) = [To(01) * T3 + T5(0s) + T5(6s) + T3(60) = TS+ Tg(0s)] "ot T (4.12)
T§(65) * T3(6s) = [Tg(61) * TF * T5(6a) * T5(6s) + T3(6s) + Tg] % T (4.13)
TS« Tg(05) * T3(0) = [To(01) * TT = T5(02) * T3(6s) + T3(02)] 'poec T (4.14)
: (4.15)
T % -+ TG(0s) = [To(01)] ' T (4.16)

Since one or more joint angles are already determined from the geometric method,
several steps in this procedure can often be ignored. To solve each of the equations
only one slot of each matrix needs to equal to each other. By inspecting the left hand
side matrix and the right hand side matrix, one can choose the combination which
gives the easiest solvable equation. In other words, the algebraic method is basically
manipulating the given equations into a form for which a solution is known.
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4.2 Twists

The notion of twists provides a compact way of representing the relative velocity of a
reference frame with respect to another. The twist V can be written as

Vb = [vaTb w:fb] (4.17)

where v,p and wap represents the linear and angular velocity of frame F, relative to
frame F,. Often, the twist are categorized as body twist or spatial twist. For body twist,
the relative velocity, Vap, is written as seen from JF;, while for spatial twist, according
to (From [2014)), the linear part of the spatial velocity of a rigid body relative to a
reference frame is the velocity of a point attached to a possible imaginary extension of
the body, moving through the reference frame. To avoid ambiguity, the body is twist is
denoted with a superscript B, VB and the spatial twist is denoted with a superscript
S, VS,

The spatial twist is often used to derive the velocity kinematics, therefore, a mapping
between body twist and spatial twist is practical. The adjoint transformation associated
with the homogeneous transformation matrix, is such a mapping. This transformation
is represented by the matrix Ady,, which is defined as

Ra Aa Ra
Adp, = | b PebTlab) o goxo (4.18)

0 Rab

R..,) —REp.
Adgl = | abPab | o (4.19)
ab O RTb

where Ry, is the rotation matrix from frame a to b, and pap, maps the position vector
into its skew-symmetric matrix representation, which is defined as

0 —P3 P2
P=|ps 0 —m (4.20)
—p2 D1 0

The mapping of body twist into spatial twist is done accordingly

VS, = Ady, VE (4.21)

Some important properties of the adjoint transformation matrix are (Murray [1994))
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Ad,. = AdapAdpe (4.22)
Ad! = Ad.. (4.23)

Further on, (Murray 1994) states that if we let . and F; be attached to the same rigid
body and let Vo, and Vgq be their respective body velocities, then we can use adjoint
transformation matrix to map between the two

Voe = Adr,, Vod (4.24)

This is proved by starting with the following

Vgc = AdTocVOC (425)
V54 = Adr,,Voa (4.26)

Since the spatial twist is not dependent on a specific frame on the rigid body, we have
that

Voe = Vo (4.27)
Then we can substitute equation (4.25)) and (4.26)) and retrieve

Ady, V5. = Adr,,Viq (4.28)
V. = Adg Adr,, V5, (4.29)
Voo = Adr,,Adr,, Vg (4.30)
Ve = Adr,, Vg (4.31)

4.3 Static Forces and Moments in the Manipulator

When the manipulator is in contact with the surrounded environment, contact forces
is applied to the end-effector. These forces then creates forces and moments in joints,
which propagates all the way through to the base of the manipulator. These forces
and moments affects the behaviour of both the manipulator and the base to which it
is mounted on. To be able to control either the manipulator itself or the vehicle it is
mounted on, it is important to calculate these.
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4.3.1 Jacobian Matrix

The Jacobian matrix is a multidimensional form of the derivative, and is often used to
map the dynamic relationship between the joints in a manipulator, i.e. how movement
in one joint causes other joints also to move. Additionally, it can be used to calculate
the magnitude of the torque occurring at the joints. The Jacobian is usually defined as

shown in Equation (4.32)).

v =1J(q)q (4.32)

where v is the 6x1 Cartesian velocity vector of the end-effector, J 4 is the Jacobian
matrix and q is the vector of the manipulator joint angles. The velocity vector contains
both linear and angular velocity, such as

v = . (4.33)

The number of rows in the Jacobian matrix equals the number of states in the veloc-
ity vector, while the number of columns is dependent on the number of joints in the
manipulator. Various methods can be used to calculate the Jacobian matrix. By par-
tial differentiating the kinematic equations of the mechanism with respect to the joint
angles, the Jacobian is found. Anther method, is by utilizing the table in Figure 4.2

Table 4.2: Calculate the Jacobian

Prismatic | Revolute

0 0
Linear RY .| 0 R) , | 0| x(d)—d),)

1 1
0 0
Rotational 0 RY ;|0
0 1

Here, R?_, is the rotation matrix from frame {0} to frame {i—1}, d? is the displacement
vector from frame {0} to frame {n} (n is the number of joints), d?_; is the displacement
vector from frame {0} to frame {i — 1}.
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Singularities When operating with Jacobian matrices to either calculate velocities
or forces, properties such as invertibility needs to be considered. Which also means,m
if the matrix is nonsingular. If the matrix is nonsingular, we can calculate joint rates
from the Cartesian velocities by inverting the Jacobian matrix:

a=71"(qw (4.34)

Most manipulators has values of q, which makes the Jacobian matrix singular. Then it
is not possible to invert it, ans these locations are singularities. All manipulators have
singularities at the boundary of their workspace, but also within the workspace.

Workspace-boundary singularities occurs when the manipulator is either at its maxi-
mum reach, i.e. fully stretched, or folded back on itself in such a way that the end-
effector is at its boundary of the workspace. These can be easily avoided by not driving
the manipulator to the border of its workspace.

Internal singularities occurs inside the reachable workspace and are generally caused by
alignment of two or more axes of motion, or by attainment of particular end-effector
configurations. These singularities is of greater concern, as they can be encountered
anywhere in the workspace for planned path in the operational space.

4.3.2 Joint Torques

Calculating the torques at the joints, can be done by the following equation:

r=J'F (4.35)

T is a vector of torques at the joints, JF is the force-moment vector acting on the
end-effector and J is the Jacobian matrix. This relation allows us to convert Cartesian
quantities into joint-space quantities without performing any inverse kinematics func-
tions, which generally is very useful in robotics. When the Jacobian loses full rank,
there are certain directions in which the end-effector cannot exert static forces even if
desired. That is, if the Jacobian becomes singular, F could be increased or decreased
in certain directions without affecting the calculated joint torques values for 7. This
means that near singular configurations, mechanical advantage tends toward infinity,
such that small joint torques generates large forces at the end-effector (Craig |1989).

4.3.3 Force Propagation

Manipulator’s design and configuration makes it quite trivial to figure out how forces
and moments propagate through the chainlike nature. When it acts on the environment,
forces are created at the end-effector. These forces will propagate through the links of
the manipulator, and create moments in the joints, which also affects the vehicle it is
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4.3. Static Forces and Moments in the Manipulator

mounted on. It is therefore important to address how the different forces acts in and
on the manipulator, in order to model its affection on the vehicle.

When considering static forces in a manipulator, all the joints are locked, in order to
make it behave like a structure. Further on, each link is considered and force-moment
balance relationship is derived. Finally, the static torque required to keep the joint in
static equilibrium is calculated. The force equilibrium becomes:

fi— fis1=0 (4.36)

where f; is the force exerted on link ¢ by link ¢ — 1. By summing the torques about the
origin in frame ¢, this static equilibrium equation follows:

n; — N1 — -Pi+1 X fi+1 =0 (437)

where n; is the torque exerted on link 7 by link ¢ — 1 and P, is the distance between
the origin of frame i to the origin of frame i + 1. By starting the description of the
force and moment applied to the manipulator at the last link, we can calculate the force
and moment applied by each link down to the base, link 0. To describe these forces
and moments in each link’s reference frame, the rotation matrix relating frame i + 1 to
frame 7 is used. The propagation of forces and moments can therefore be described as
following:

fi=t R iy (4.38)
n; :EJrl RiHmH -+ PiJrl X fz (439)

Additionally to considering equilibrium at each, in order to determine the force prop-
agation in the manipulator, one could transform the static forces and moments at the
end-effector to the other link and joints by the use of the rotation matrices.

Cartesian Transformation of Static Forces The general force vector has a 6 x 1
representation, such as

F
F= (4.40)
N

where F is a 3 x 1 force vector, and N is a 3 X 1 moment vector. Further on, we
can introduce a 6 x 6 mapping operation that transform a force-moment vector in one
frame to a force-moment vector in another frame. This way, we can calculate the force-
moment vector at the base frame from the force-moment vector at the end-effector
frame. The relationship is derived as following

43



Chapter 4. Manipulator Kinematics

AF, AR 0

A A A A
NA PBORG XBR BR

(4.41)

AR is the rotation matrix from fram B to frame A, and the cross product is understood

as the matrix operator

O —Dz py
APporcx = | p, 0 —p,
—py Pz O

Equation can be written more compactly as

F4 =5 T,"Fp

where 47T is used to denote a force-moment transformation (Craig [1989).

(4.42)

(4.43)
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Manipulators with conventional prismatic or revolute joints are most efficiently mod-
elled using an Lagrangian framework. Since the motion of the end-effector and the
workspace of the manipulator are defined by the limitations of the joints, the Lagrangian
framework is a natural choice of modelling method, because these constraints are in-
cluded in the dynamics by choosing the generalized coordinates as the joints variables
(From 2014)).

5.1 Kinetic and Potential Energy in Multibody Sys-
tems

In order to carry out the Lagrangian modelling the total energy of the system needs to
be known. The total energy is found by kinetic and potential energy of each rigid body
with respect to a common inertial reference frame.

From equation (4.32) and [4.33we know that the velocity vector of a link 4, can be

written on the form:

Vi = | = Ji(a)q (5.1)

where vg; and wy; are the linear and angular velocities, respectively, of link 7, and J;
is the jacobian matrix. Thus, the velocities of the links are determined as long as the
joint angles are known. From this, we can calculate the kinetic energy of each link
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1
Ki= B (Voi) "LV

1
= §<AdTio Vo) ' L,Adr, Vo

1 . .
= §(Ji(q)q)TAd%OIiAdTioJi(q)q

1, )
= §qTJi(q>TAd£OIiAdTioJi(q>q

1

= §q;‘er(Q)Qz (5.2)

I, is the generalized inertial matrix and Adrg, is the adjacent of the homogeneous
transformation matrix. Since only Euclidean transformations are considered, we can

rewrite equation (5.2]) to

Ky = %U;Mi(q)vi (5.3)

Hence, we can see from equation (5.2)) that the inertia matrix of link i can be expressed
as:

M;(q) = Ji(q)TAd%OIiAdTioJi(Q) (5.4)

From this, the total kinetic energy of the manipulator can be calculated by summing
the kinetic energy of each link (From [2014)

n

Kla,v) = 507 (3 Mia)w (55)

=1

The same procedure is used to determine the potential energy of the manipulator, i.e.
first expressing the potential energy for each link, U, and then take the sum of the
potential energies. The potential energy of the system is related to the hydrostatic
restoring force, and is found by

where g; are the hydrostatic restoring forces and moments of link ¢ and [7;]; denotes
element 7 of the state vector n; of joint 1.

5.2 Equation of Motion

Now that the total energy of the system is found, we write the Lagrangian on the
normal form as
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L(q,q) = K(q,q) —U(q) (5.6)

Then, the dynamics is found by the Lagrangian equation by

d (0L oL
%(&ji) " e =T —Tq— Ths (5.7)

7 is the control torque of the joints, 74 is the hydrodynamic drag forces and moments
vector and 7y, is the hydrostatic restoring forces and moments vector (Eidsvik [2018]).

The partial derivatives of the Lagrangian equation are

n

c;ltgi dt (Z Mij(q ) = (My(q)d; + My;(q)§) (5.8)

7j=1
oc 1 aM]k( ). .U

By substituting (5.8)) and (5.9 into the Lagrangian equation, we get

" . 1 oM;; . . [)\Y T 81\/1 . . ou
S My, + L3 (P g o Ma Vb iy | + L =7, (510

The aim for the equation of motion for the manipulator is to be written in the same form
as the equation of motion for the ROV, i.e. on matrix form. The dynamics of a serial
manipulator can be written in terms of the generalized coordinates ¢, which are chosen
as the joint positions, and generalized velocities, ¢, which are joint velocities. This can
be chosen for any manipulator consisting of 1-DOF revolute or prismatic joints. Further
on, we can then write the manipulator dynamics in matrix form through the equation
of motion

M(a)d + C(q,4)q + N(q) = (5.11)
Here M(q) is the manipulator inertia matrix, defined in equation (5.4), C(q,q) is

the Coriolis matrix, N(q) is the potential force matrix. The Coriolis matrix is often
expressed in terms of the Christoffel symbol, T', as

zg q7 { Z Fz]qu} (512)
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where I is foud by

1 (aMij LMy ank> (515

o\ o dq; dq;

If gravitational forces are present, the potential forces, N(q), needs to be included. The
gravitational forces of each link, i, can be calculated as

F, = | = —mig (5.14)

where Ryg; is the rotation matrix from the base frame to the body frame of link 4,
e, = [001]7, r? is the centre of gravity of link i expressed in the i’th reference frame
and f; represents the forces acting on link 7 at the centre of gravity. These gravitational
forces creates joint torques, which also need to be calculated, This can be done by

¢ = J](q)Ad], (q)Fi(q). (5.15)

Equation (5.15)) represents the joint torques in each of the joints associated with link i,
therefore, in order to calculate the total effect of the gravitational forces, summing the
effect of each link is done, which is shown in equation (}5.16)).

N(a)=> 77 (5.16)

Now that the dynamics of the ROV and the manipulator are defined, a model of which
combines these two dynamics can be designed, called Underwater Vehicle-Manipulator
Systems (UVMS).
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Dynamics of Underwater
Vehicle-Manipulator System

In this chapter, the dynamics of the underwater vehicle-manipulator system is derived.

6.1 Dynamics

The dynamic equations of UVMS needs special considerations, because it includes a
combinations of non-Euclidean configuration spaces and multibody systems. Therefore,
models used for single rigid bodies or multibody systems with Euclidean configuration
spaces cannot be applied, because it will not result in well defined dynamics of the
system. In the previous sections, the dynamics of a single rigid body, the ROV, and a
multibody system, the manipulator, have been presented, in this section the dynamics
of these systems combined will be derived, in terms of quasi velocities.

For manipulators with Euclidean joints, the quasi velocity is equal to the generalized
velocity, while for the rigid body it is given by its velocity vector. Therefore, the
combined state space can be written as
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T u
y v
VA w
(0 v p
e=|"|=1lol. <¢=|"=]q (6.1)
q
10} r
q1 q1
In n

Since the dynamics of the UVMS are preferably on the same form as EOM of a rigid
body and the manipulator, it should be written on the form

é = Ja(é)c (62)
M(q){ + C(q. )¢+ N(€) =7 (6.3)

Where M(q) is the inertia matrix, C'(g, () is Coriolis and centripetal matrix, N(() are
the potential forces and J, is velocity transformation matrix. The velocity transforma-
tion matrix is given by

Ju(§) = 0 Toy(n2) 0 (6.4)

where I denotes the identity matrix and Tg, is a matrix relating body velocities and
the time derivatives of the Euler angles. Having a Jacobian matrix in the state space
equation, makes it prone to singularities. Furthermore, we can also note the difference
between the non-Euclidean transformation of the vehicle, where it is configuration de-
pendent, and the Euclidean transformation of the manipulator, where is a linear and
constant relation between the position and the velocity through the identity matrix.

Now that the state space is defined, the dynamics can be derived, using similar approach
as previously. The velocity of link ¢ with respect to the base frame is calculated as

Vi =Ad; Vi + Vi = Ad; Vi + Ady i (6.5)
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where V§ is the base velocity and J;¢q represents the velocity of the links. In order to
find the kinetic energy in terms of the link velocities represented in the link frame, we
need to add the vehicle velocity represented in the base frame to the links. From here,
we find that the kinematic energy of each link is given by

1
K= §(V§’i)TIiV(‘,3i (6.6)
1 . _ _ .
=5 (Vop +Ji(@)@)" Adp, TAdg, (Vo + Ji(@)d) (6.7)
1 . :
= 5(Voy + Ji(a)a) " Adr,, LiAdr, (Vg, + Ji(a)d) (6.8)
1 . VBb
=5 [(V(]?b)TqT] Mi(q) | 7 (6.9)
q
1 T
=3v M;(q)v (6.10)

where the inertia matrix can be written in terms of the adjoint map Adrp, and the
Jacobian j; as

Mi(q) = AdT. LAdr,  AdL LAdr,J; 6.1)
1 JTAAL, LAdy, JTAAE LAdr,J;

where J; is defined as

Ji=[Adr,, X7 Adre, X3 ... Adr,Xi 03 ix (6.12)

and X! is the body joint twist. Given a joint 7 with axis pi represented in .%;, then the
body joint twist is given by

X = (6.13)

Now the kinetic energy of the links are established, and with the same calculations the
kinetic energy of the base, the ROV, is found by
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1
K= 5(V(‘?I)TI Ve (6.14)
1 T T 7B .
(HV + Ji(a)a)"AdT, LAdT, (HVE, + Ji(q)d) (6.15)
1 - )

5((VOb)THT +4"Ji(q)")AdT, LAdy, (HVE, + Ji(q)d) (6.16)

11 - ) VB
=3 [(VOBb>TqT} Mi(q) | ™ (6.17)

q

1 T

=5V M;(q)v (6.18)

where H is a selection matrix that represents a mapping from a velocity state in R” to
the twist in R®. The inertia matrix for the rigid body, can be written as

I, 0
My = | (6.19)
0 0

Therefore, the total kinetic energy of the vehicle-manipulator system can be written as

K(d, Vob) = —CT ( > oM (q)> ¢= —CT< "+ ZM ) (6.20)

Since the kinetic energy is not dependent on the homogeneous transformation matrix,
T, or the choice of inertial reference frame, the inertia matrix can be expressed in
terms of the adjoint map, Adr, (¢) and the link Jacobian J; as

- ZMmq) (6.21)

Z Q) LIS (q) (6.22)

" |HTAd{ L;Ady, H HTAdT TL;Adr,J

= T, 1T i T in (6.23)

= | ITAAL, LAdp, H JTAdY LAdr, J;

where J2 = [Ady, H Adr,J;]. Furthermore, the dynamics follows form the La-
grangian equation, where the potential forces U, also are included
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}:T

BT ou
am‘

S~ dgmyr| K | 0 | ok +—a“

VOz sz

55 JBIJB<>%§:JBIJB (IE)"W,IB1¢ + (I =T (6.24)
i=b

Thus, we can get the dynamics on the desired matrix form, as shown in (6.25) and
(6.26)

€=1Ja(6)¢ (6.25)
M(a)¢ + C(q, )¢+ N(¢) = 7. (6.26)
The inertia matrix is given by
=> (I8 (QLIZ(q) (6.27)
i=b
The Coriolis matrix is given by
> (IR (@LI (@) — (T3 (@Wi(Ve)Ig(q) (6.28)
i=b
where
0 aiéé
B\ ovg:
Wi(V0i> - oK K (629)
31/(])?} 6w(])3i
and the potential forces are given as
N(&) =Y (32) " (@Adrg,(r,, @)Fg(Ton, q) (6.30)

i=b

where Fl are the potential forces of link ¢ in the manipulator.(From 2014) (Eidsvik
2018)

The derivation of Jg B and W; can be seen the Appendix.
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Chapter

Method

This chapter concerns the method used to simulate the system. For this master the-
sis, MATLAB and Simulink was the two software’s used for modelling and simulation.
MATLAB was mainly used to perform the necessary calculations regarding the differ-
ent matrices, while Sitmulink were used to build the UVMS model and simulate the
dynamics and the response of the system. All the mathematical calculations are based
on the theory presented in the previous chapters.

7.1 UVMS Model

The following section will present the Simulink-model used to simulate the system,
and all the relevant blocks will be reviewed. The Simulink-model for the underwater
vehicle-manipulator system is presented in Figure [7.1]

o .

- >
Matrix
Measured_States Multiply dzeta  measured states|——»((AL)
i \easul 'S

Dynamics Matrices

Figure 7.1: Underwater vehicle-manipulator system modelled in Simulink
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This overview shows the dynamics of the simulation. The different matrices used to
model the EOM is calculated in the block called ” Dynamic Matrices”. These are added
together before multiplied with the inverse of the mass matrix to create the second
order derivative term in the EOM, and then used as an input to the "Measure states”
block. The system has two different input signals and only one output, where the "mea-
sured_states” is the feedback-term. ”measured_states is a MATLA B-structure contain-
ing the different states, transformation matrices and jacobians, needed to perform the
calculations of the dynamic matrices.

7.1.1 Dynamic Matrices

The modelling and calculation of the matrices is shown in Figure [7.2]

@—————>] Measured_States 4

eeeeeeeeeeeeeeeeee Corioli
C_rb(zeta)

Measured_States. ¢ .=.| MMMMMMM | States «
| Kinoics_Parameters Persistent_Forc

N(xi)

fon

D)

Figure 7.2: Calculation of dynamic matrices

Each of the matrices are calculated in separate MATLAB-scripts, before three of them
are multiplied with the {-vector and given as output, as seen from Figure[7.1] The input
to this block is the ”Measured_States”-term and the ”getzeta” function retrieves the
velocities of the system, which is used as input to several matrix-calculations. Constants
and other physical properties are defined and given as input to the model.

7.1.2 Measure States

The ”Measure states”-block, from Figure [7.1], is presented in Figure [7.3]
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5

@\ Measured_States (1)
casu s

Figure 7.3: Calculation of dynamic matrices

In this block, the ” Measure_states”-term is created. This is the input and output of the
UVMS-model, and contains all the information of the system, i.e. the accelerations,
velocities and position of the system, and transformation matrices and Jacobians, as
stated before. The acceleration is directly given from the derivative of (, while the
velocities are calculated by integration. When ( is calculated, it is both stored in the
”Measure_states”-term and used to calculate the position and orientation of the system,
which is performed in the ”zeta2xi”-block. "xi” is a vector containing the position and
orientation of the ROV, as well as the joint angles of the manipulator. This state-vector
is also stored in the ”Measure_states” structure.

7.1.2.1 zeta2xi

Figure [7.4] shows the model which is calculating the position and orientation of the
ROV, and the joint angles of the manipulator.
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Figure 7.4: Calculation of dynamic matrices

The orientation comes with a quaternion representation, which is implemented in the
MATLAB-script called ”zeta to dot xi”. The output of this script is the derivative
of the position, orientation and the joint angles, which further on is integrated before
they are given as an output. The second MATLA B-script contains a simple algorithm
to add rotation to the manipulator joints. This is done by adding a constant angular
velocity to the joint different joints.

7.1.2.2 Kinematic Transformations

The kinematic transformation subsystem, shown in Figure [7.5] calculates the different
transformation matrices and jacobians needed to calculate the dynamic matrices. The
manipulator’s’ configuration is updated here, which is later on used to calculate the
different dynamic properties for that certain configuration. This information is an
output in the form of a structure, which is stored in the "Measure_states”-term.

(D E—
Xi
Ti P Ti 4 Kinematics :@
getTransformations getJacobians Kinematics
DH » DH
DH
DH parameters
Transformations Jacobians

Figure 7.5: Calculation of dynamic matrices
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7.2 Numerical Values of the Matrices Used in the
Simulations

Some of the matrices used in the simulations regarding the ROV are constant. This
means that they are predefined and not needed to be calculated for every iteration as
the other matrices. All the manipulator matrices are calculated in-loop, while the mass
matrices and damping matrices for the ROV are pre-defined. The numerical values of
these matrices are given below.

1700 0O 0 0

0 1700 O 0
0 1700 0
0 0 1381.6 0
0 0 0 1314.60
0 0 0 0 704

o o O
o o o O

o o o O

9509 0 —70 0 —28 0
0 99%3 0 —-18 0 —18

—70 0 7311 0 105 0
0 —-18 0 9776 0 —41

—28 0 105 0 2244 0

0 —18 0 —41 0 4919
55.9736 0 0 0 0 0
0 61.6000 0 0 0 0
0 0 6315183 0 0 0
Dy = (7.3)
0 0 0 1329311 0 0
0 0 0 0 4564635 0
0 0 0 0 0  100.8714
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561.7

o o o O

0 0
878.7 0

0 15788

0 0

0 0

0 0

o o o o o

(7.4)
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Results

In this section the result of the simulations are presented. The main goal of the simula-
tions is to observe the response of the ROV when the manipulator either are standing
still in different configurations, or performing simple movements. For the simulations
three different manipulator configurations are considered. Firstly, the manipulator is
configured in a stowed position, secondly, it is fully extended in x-direction, and lastly,
the manipulator is fully extended in negative z-direction. The simulations with the
manipulator in stowed position are performed with intentions to cover the vehicle-
manipulator interaction when the manipulator is idle. As for the other two configura-
tions, they are chosen too represent commonly used configurations while the UVMS is
in operation, as well as obtain the greatest magnitudes regarding the response. It is
not necessary simulate a whole lot of configuration between the stow-configuration and
the maximum reach configuration, this is mainly because the response will be of the
same sort, just with a decreased response magnitude.

8.1 Manipulator in Stowed Position

In the first simulation the manipulator has its stowed configuration. The joint angles
are constant though out the simulation, where all of them are set to zero except for the
wrist pitch angle, which is set to —90° to straighten out the arm.
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Figure 8.1: Response of the system to a stowed manipulator

The displacement of the ROV in Figure shows small response amplitudes in surge
and sway, but a quite significant response in heave. As for the orientation, presented
in Figure [8.1b] the rotations are only around —0.001 — 0.04 [rad], which is around
0.5° — 2.3°. The simulation duration was set to 60 seconds, as this was an appropriate
time interval to determine the response. At the end of each simulation all the oscillations
are dying out, and the heave and yaw response is continuing in the same order.

8.2 Manipulator Fully Extended

In the second simulation case, the manipulator is at its maximum reach in the x-
direction, or straight forward seen form the ROV. There are performed two different
simulations for this case, one for when the manipulator is still and one for when it starts
at its maximum reach configuration and ends at the stow configuration.
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8.2.1 Standing Still

The following joint angles were used in this simulation:

q=[0° —60°120° 0° — 60° 0] (8.1)
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Figure 8.2: Response when the manipulator is at its full reach

8.2.2 Moving

To simulate a movement of the fully extended manipulator, the base yaw was linearly
increased from 0° to 60°. Since the manipulator has a 120° limitation of the base yaw,
which is 60° to each side from the stow position, a simulation where the manipulator

is moving in the area of 0° — 60° is chosen. The following start and end configuration
were used

Qstart = [0° — 60° 120° 0° — 60° 0°]" (8.2)
Qena = [60° — 60° 120° 0° — 90° 0°]"
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Figure 8.3: Response when the manipulator is fully extended and moving

Figure[8.3¢/shows the joint angle representing the base yaw of the manipulator is chang-
ing to simulate a fully extended manipulator rotating to the left, as seen from the ROV.
The displacement is shown in Figure while the orientation is shown in Figure[8.3b

8.3 Manipulator Oriented Downwards

For the last simulation the manipulator is configured to its max reach in the negative
z-direction. This configuration is supposed to represent the configuration when the
manipulator is picking something up from the ground beneath the ROV.

8.3.1 Standing Still

For when the manipulator is standing still the following joint angles were used

q=[0° —60°60° 0° —90° 0°]" (8.4)
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Figure [8.4] shows the total response of the UVMS.
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Figure 8.4: Response when the manipulator is standing still and oriented downwards

8.3.2 Moving

To simulate a relevant scenario where the manipulator is moving, the manipulator starts
being oriented in the negative z-direction and moves towards the stow position. This
represents the movement from when the manipulator is picking objects up from the
ground and transports it back to the ROV. The following start and stop configurations
were used

Qstart = [0° — 60°60°0° — 90°0°]" (8.5)
Qena = [0° 0° 0° 0° —90° 0°]"
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Figure 8.5: Response when the manipulator is configured downwards

Figure [8.5¢| shows the rotation of the manipulators’ shoulder and elbow pitch. The
total rotation is 60° over a period of ten seconds. The displacement and orientation
is showed in Figure R.5a] and [8.5b] Compared to the previous simulations, the pitch
oscillations is of greater significance. It oscillates between [—0.08, 0.06] [rad] to begin
with, before it stabilizes around 0.04 [rad)].
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Discussion

This chapter has the intention to analyze and discuss the results in section [§] in the
same order as they were presented.

9.1 Manipulator in Stowed Position

This section mainly concerns Figure [8.1] These plots presents the results of the simu-
lations performed when the manipulator is at its stowed position. There are no manip-
ulator movements present, hence the joint angles are constant for the whole duration
of the simulation.

Figure [8.1a] shows small displacements in surge and sway, while heave is significantly
larger. On its own, the ROV is a neutrally or slightly positive buoyant system. However,
the extra weight of the manipulator makes the gravitational force on the system larger
than the buoyancy, making the system to sink, instead of staying neutrally or positive
buoyant. Since the ROV has no restoring force in the translation DOF’s there is nothing
that is gonna prevent the system from sinking as a results of the added system mass,
hence the heave response as observed in Figure [8.1a] The surge and sway response
is of insignificant magnitudes, and does not lead to any notable response. Since the
manipulator mainly affects the ROV in the z-direction, because of the gravitational
force, the response in x- and y-direction will obviously be small. Nevertheless, coupling
forces and displacements creates forces in several dimensions, which results in the small
responses in other DOF's.

Since the manipulator is mounted in front of the ROV, the forces created which affects
the ROV will therefore result in mainly moments about the local y-axis. These moments
will make the ROV rotate around the y-axis, also called pitching. The form of the roll
and pitch motion, as seen in Figure [I.4a] is characterized by it oscillatory motion. This
motion is a result of the restoring forces present in these DOF’s. On the contrary,
the yaw motion is a more linear motion, because there are no forces counter acting
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any rotations around the local z-axis. The magnitude of the pitch motion, which is
the most dominant motion amongst the rotational motions, is about 0.04 [rad| which
is approximately 2.3°. This is not a significantly large rotation, but it indicates that
the system needs actuation in order to stabilize, as it is not capable of doing it on its
own. This is also in a static position, where dynamic forces are negligible, so greater
responses will occur when dynamic motion are included.

9.2 Manipulator Fully Extended

For the simulations when the manipulator is is at its maximum reach straight ahead of
the ROV, two different cases were simulated. One where the manipulator is standing
still, and one where it rotates 60° to the left side of the ROV.

As seen from Figure [8.2] and [8.3] the displacement of the system is relatively similar.
The surge and sway response is quite insignificant, while the heave motion, as with the
first simulation, steadily decreases throughout the simulation.

On the other hand, the differences between the rotations are more notable. When the
manipulator is standing still, the pitch motion is the only rotation of significance. Since
the are no movement involved, there are little coupling effects, and therefore responses
mainly in one DOF. The magnitude of the pitch motion when the manipulator is fully
extended is quite larger then when stowed. When fully extended the pitch motion
can reach a rotation of about 8.6°. This enlargement of the rotation comes from the
configuration of the manipulator. When it is fully extended, the distance from the
manipulator base to the end-effector has increased, meaning that the moment arm is
larger, which results in larger moments about the local y-axis. When moments increase,
the rotation also increases, as seen from the simulations. When the manipulator ro-
tates 60° to left, other rotational motions becomes significant. The movement of the
manipulator creates forces in other directions, and moments about the x-axis and z-axis
occur. As seen from Figure [8.:3D] the roll motion is greater than the yaw motion. This
is mainly a result of the forces created when manipulator rotates. When it rotates to
the left, a moment arm to the x-axis arises, and increases proportionally as the base
of the manipulator rotates. When it has rotated 60°, the moment arm is at its maxi-
mum, and the gravitational forces creates moments about the x-axis, causing this roll
motion. As for the yaw motion, since the movement of the manipulator mainly is in the
xy-plane, the gravitational forces does not create any moments about the z-axis, so the
yaw motion will be of lesser magnitude. However, the moments created about the x-
and y-axis, makes the ROV tilt to either of the sides, and this tilt contributes to small
force components that creates moments about the z-axis. These forces and moments
creates the small yaw motion.
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9.3 Manipulator Oriented Downwards

In the last simulation case, the manipulator was oriented downwards, to represent
the position of the manipulator when it is picking objects up from the ground. It is
performed two different simulations with this configuration, one where the manipulator
is fixed in this position, and one where it moves back to the stowed position. The
results from these simulations is showed in Figure [8.4 and [8.5] The displacement of the
system for this configuration is very similar to the other simulations, where the surge
and sway is of small magnitudes and the heave motion is strictly decreasing throughout
the simulation.

Figure |8.5¢| shows the rotation of joint ¢2 and ¢3 to obtain the desired motion. The
starting point is +60°, respectively, and both ends at 0° after approximately 10 seconds.
Similarly as the previous simulation including motion of the manipulator, the rotational
speed is constant.

The rotational response of the system can be seen in Figure and [8.5] Clearly, the
pitch motion is the dominant rotation. Since the manipulator is oriented downwards,
the largest force components created will be along the z-axis, and the largest moments
created is about the y-axis. However, there exist small moment contribution in the
other dimensions as well, leading to the observed roll and yaw motion. The large
pitch oscillations seen in Figure [8.5b], comes from the forces created by the manipulator
motion and the restoring forces of the ROV trying to counter act the moments created.
Amplitude wise, the oscillations experienced in this simulation, is the largest of all the
simulations performed. This comes as a results of the motion mainly being directed
along one axis, mainly the z-axis, so the moments created are focused around one
specific axis, making it harder for the restoring forces to counter act the motion.
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Conclusion

In this master thesis an underwater vehicle-manipulator system was modelled. The
UVMS consisted of the ROV Minerva 2, and the manipulator Orion 7R. The purpose
was to calculate and simulate the interaction between the manipulator and the ROV,
and to see how the ROV would respond to different manipulator configurations and
simple movements.

To model the UVMS, a second order differential equation, the equation of motion,
was used. This is a common equation used to describe surface vessel and underwater
vehicles, including vehicle-manipulator systems. After the necessary matrices were
obtained, the equation was transformed into Laplace-domain and modelled in Simulink,
which was used for simulations.

The simulation covered three different manipulator configurations, stowed position,
fully extended in x-direction and fully extended in negative z-direction. For the two
fully extended simulations, some movements of the manipulator was included, where
some of the joints were rotating during the simulation. This had the purpose of cover
basic movements of the manipulator, and to observe how Minerva 2 responded to these
movements.

The results showed that Minerva 2 mainly experienced pitch and roll motion, and the
restoring forces were able to counter act these rotations, and stabilize the system at a
couple of degrees of rotation. Since roll and pitch are the only DOFs with restoring
forces, the responses in the other 4 DOFs could not counter act the applied forces, and
therefore continued to increase during the simulation when there was forces present in
the certain DOFs.

10.1 Further Work

Now that a model for the UVMS consisting of Minerva 2 and Orion 7R is built, control
systems, for both the ROV and the manipulator, should be added. So far, the model
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can simulate the response the ROV experiences from manipulator configurations and
movements. Now, the ROV needs to counter act these displacements and rotations, in
order to keep the system stable. Since Minerva 2 is sufficiently actuated, designing a
controller to counter act forces and moments in all the DOF's is possible.

In addition to a controller for the ROV, an controller for the manipulator is also nec-
essary. In this master thesis all the movement and rotations of the manipulator joints
are done by adding a constant angular velocity to joints. This, however, is preferably
done by a controller that calculates a path for the joints to follow, and how to follow
it.

Sine the manipulator is mounted on the ROV to perform intervention tasks, it is needed
to model the contact forces between the manipulator and the surroundings, and how
these forces will affect the ROV. The ROV needs to keep stable while the manipula-

tor performs its tasks, and it is therefore vital that these interactions are accurately
modelled.
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Appendix A

Differentiation of Jacobian Matrix

Following, the differentiation of the Jacobian matrix used to calculate the Coriolis
matrix is derived.

: d
B -1 —
d ., d, ., . d
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where the following properties are used
Ry = (Rib)T (A.7)
and where
wlgk = Wor, — (Rbk)T‘*’Ob (A.8)




Appendix A. Differentiation of Jacobian Matrix

Now we get that

Wi, = wp, — Rai l03x3 I3><3} (Jﬁ() (A.9)
The time derivative of py; is
Py = Ry HAd ;1 J;q (A.10)
where
H = [ngs 03><3:| (A.11)
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Derivation of W,

The matrix W;, used to calculate the Coriolis matrix is derived below.
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where I,is the inertia matrix and rz is the vector from the origin of link i to centre of

gravity of link i.
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