
Monocular Visual Odometry for a
Mini ROV

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Johan Loe Kvalberg

2019
Johan Loe Kvalberg

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ar

in
e

Te
ch

no
lo

gy

Monocular Visual Odometry for a Mini
ROV

Johan Loe Kvalberg

Marine Technology
Submission date: June 2019
Supervisor: Professor Martin Ludvigsen

Norwegian University of Science and Technology
Department of Marine Technology

 NTNU Trondheim
 Norwegian University of Science and Technology
 Department of Marine Technology

MASTER THESIS IN MARINE CYBERNETICS

SPRING 2019

FOR

STUD. TECH. JOHAN LOE KVALBERG

Title: Monocular Visual Odometry for a mini ROV.

Background
There has been a huge rise of small sized Remotely Operated Vehicles (ROVs), both aiming for the low-
cost market and private consumers, and as a substitution for costly inspection operations with work class
ROVs or divers. In addition to be used for underwater discoveries and recreational use, the mini ROVs
can be used in various tasks, such as underwater inspection, environmental monitoring and research. The
low cost and easy handling has made it possible to avoid hiring professional divers or ROV ships with
operators.

Even though many mini ROVs are promoted with easy operation, the user can experience a lack of control
due to operation with a manual joystick. In addition, currents and drag forces from the umbilical can
largely affect the small vehicles. The option of dynamic positioning of the ROV would be beneficial in
many settings for easily handling. For small sized ROVs, the use of computer vision is one of the most
promising methods for navigation and motion estimation. The limitations of a single camera, limited
amount of sensors, and low computational power sets high demands to effective, accurate and robust
algorithms.

Work Description
1. Background and literature review to provide information and relevant references on:

a. Navigation and control with the help of computer vision.
b. Limitations and challenges associated with a monocular camera scheme.
c. Available and open source graphical software packages.
d. Feature extraction and description in camera images.

2. Development of a monocular visual odometry algorithm:
a. Development with use of the Blueye Pioneer ROV and camera.
b. Focus on real time application implementation
c. Sensor fusion with IMU and/or depth sensor.
d. Explain the choices of the core components in the visual motion estimation algorithms.

3. Experimental work;
a. Testing on prerecorded datasets as a proof of concept.
b. Implementation and testing on the Blueye Pioneer ROV

 NTNU Trondheim
 Norwegian University of Science and Technology
 Department of Marine Technology

The report shall be written in English and edited as a research report including literature survey,
description of mathematical models, description of algorithms, simulation results, model test results,
discussion and a conclusion including a proposal for further work. Source code should be provided on a
CD, memory stick or similar. It is supposed that the Department of Marine Technology, NTNU, can use
the results freely in its research work, unless otherwise agreed upon, by referring to the student’s work.
The thesis should be submitted in within June 2019.

Supervisor: Martin Ludvigsen

Abstract

This thesis presents a real-time motion estimation of a small sized remotely operated vehicle

(ROV) using a single camera and a pressure sensor. This in order to increase the level of au-

tomation and ease for navigation for underwater vehicles. The motion estimation is performed

through so-called monocular visual odometry (MVO), which estimates the change in position

and attitude with the use of camera images. This is done by estimating the cameras relative mo-

tion, and thus the ROV motion, from one camera image to the next. The estimations is to be

used for dynamic positioning.

The motion information from the images is extracted with a feature-based method using

oriented Features from Accelerated Segment Test and rotated Binary Robust Independent El-

ementary Features (ORB). ORB is used to extract and describe features in the images, while

matching of the features is performed with Brute-Force matching comparing the Hamming dis-

tances of the binary descriptors. Based on the matches between two consecutive frames, Nistér’s

five-point algorithm with Random Sample Consensus (RANSAC) is used to obtain the essential

matrix, from which the relative translation and rotation is computed.

The implemented MVO algorithm is able to run with at an average of 10 frames per second.

The performance of the monocular visual odometry algorithm is tested on both prerecorded

datasets and real-time tests in the Marine Cybernetics Laboratory. The results shows that the

algorithm is able to estimate the relative motion in air, but not in the underwater environment.

Due to high errors in the rotational estimates, the resulting position estimates becomes too un-

stable to be used in a dynamic positioning implementation.

A visual inertial odometry method using the inertial measurement unit (IMU) onboard the

ROV was tried implemented. Due to an uncalibrated accelerometer, the motion estimations and

IMU measurements were fused through an error state Kalman Filter (ESKF). Not being able to

distinguish the measurement bias from the real values in the ESKF, the implementation ended

up with not being used in the final presented algorithm.

In order to improve the motion estimation, a structure from motion or simultaneous lo-

calisation and mapping approach should be considered. Estimating the vehicles position with

respect to known features or objects would reduce the errors and drifts accumulated through a

visual odometry approach.

i

Sammendrag

Denne oppgaven presenterer en estimering av bevegelsen til en liten fjernstyrt undervanns-

farkost (ROV) i sanntid, ved bruk at et enkelt kamera og en trykksensor. Dette, for å øke nivået

av automasjon, og for å forenkle navigasjon av undervannsfarkoster. Estimering av bevegelse er

gjort gjennom såkalt monokulær visuell odometri, som estimerer endringen i posisjon og ori-

entering ved bruk av kamerabilder. Dette gjøres ved å estimere kameraets relative bevegelse,

og dermed ROV-bevegelsen, fra ett kamerabilde til det neste. Estimatene er ment å brukes for

dynamisk posisjonering.

Bevegelsesinformasjonen blir hentet ut gjennom en metode basert på kjennetegn i bildet,

ved bruk av ORB (oriented Features from Accelerated Segment Test and rotated Binary Robust

Independent Elementary Features). ORB blir brukt til å hente ut og beskrive kjennetegn i bildet.

Sammenligningen av kjennetegn er gjort gjennom Brute-Force matching ved å sammenligne

Hamming-distansen til de binære beskrivelsene. Basert på sammenligning av kjennetegn mel-

lom to påfølgende bilder brukes Nistér’s fem-punkts algoritme med Random Sample Consensus

(RANSAC) til å beregne den essensielle matrisen som relativ translasjon og rotasjon kan hentes

ut ifra.

Den implementerte MVO-algoritmen klarer å kjøre med et gjennomsnitt på 10 bilder i sekun-

det. Ytelsen til algoritmen er testet både på ferdige datasett og i Marin kybernetikk sitt labora-

torium. Resultatene viser at algoritmen klarer å estimere relativ bevegelse over vann, men ikke

under vann. På grunn av store feil i rotasjonsestimatene blir posisjonsestimatene for ustabile til

å bli brukt i en dynamisk posisjoneringsimplementasjon.

En visuell odometri metode ved bruk av treghetssensoren om bord i ROVen ble forsøkt im-

plementert. På grunn av et ukalibrert akselerometer er bevegelsesestimatene og måledata fra

treghetssensoren slått sammen gjennom et error-state Kalman Filter (ESKF). Ettersom det ikke

ble klart å skille mellom bias og målinger i den forsøkte ESKF implementeringen ble denne

tilnærmingen ikke brukt i den endelige implementasjonen av algoritmen.

For å forbedre bevegelsesestimatene bør en tilnærming gjennom ”structure from motion”

eller en simultan lokalisering og karlegging (SLAM) vurderes. Beregning av farkostens posisjon

i forhold til kjente kjennetegn eller gjenstander vil redusere avvik og drift akkumulert gjennom

en visuell odometri-tilnærming.

ii

Preface

This master thesis is a part of the study program Marine Technology at the NTNU, and it was

carried out during the spring semester of 2019. The objective of the thesis is to use visual input

from a camera together with computer vision to estimate the motion of a small sized ROV. The

resulting estimates are to be used for dynamic positioning.

The author of this thesis did not have any experience in the field of computer vision before

the work was embarked. The learning process have therefore been steep, yet exciting. The use of

computer vision in the underwater environment for various tasks is truly a research topic with

vast possibilities.

The work has been carried out at the Department of Marine Technology and in cooperation

with Blueye Robotics, with Professor Martin Ludvigsen as supervisor.

Trondheim, June 20, 2019

Johan Theodor Loe Kvalberg

iii

Acknowledgement

During the work and research related to this thesis, there have been different people that de-

serves the authors gratitude. I would like to thank my supervisor Professor Martin Ludvigsen at

NTNU for helpful guidance and support, in addition to informative discussions during meet-

ings. I would also like to thank Oscar Pizarro and Petter Norgren for taking the time to discuss

the topic presented and guidance with technical issues, and Professor and Dean Ingvald Strøm-

men for letting me borrow his private Blueye Pioneer for finalising of the results.

The tests conducted in the MC-lab at the Department of Marine Technology at NTNU had

not been possible without help with the experimental setup, both in the lab and in Qualisys,

from Mikkel C. Nieslen and Torgeir Wahl.

This thesis has been carried out in cooperation with Blueye Robotics. I would like to thank

the entire Blueye team for helpful guidance and support, and for lending out necessary equip-

ment to carry out different experiments.

J.T.L.K

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Acknowledgement iv

Table of Contents v

List of Figures vii

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Background . 1

1.1.1 ROVs . 1

1.1.2 Computer Vision . 3

1.1.3 Visual Odometry . 7

1.2 Challenges with underwater imagery . 7

1.2.1 Open CV . 8

1.2.2 ROS . 9

1.3 Problem formulation . 10

1.4 Scope and limitations . 10

1.5 Structure of thesis . 11

1.6 Thesis contribution . 11

2 Theory 13

2.1 Blueye Pioneer Underwater Drone . 13

2.2 Notations . 14

v

TABLE OF CONTENTS vi

2.3 Kinematics . 15

2.3.1 Reference frames . 15

2.3.2 Transformations . 16

2.3.3 Thrust allocation . 18

2.4 Sensors . 19

2.4.1 Inertial Measurement Unit . 19

2.4.2 Pressure Sensor . 20

2.5 Error state Kalman Filter (ESKF) . 21

2.6 Camera Model . 24

2.6.1 Pinhole Camera Model . 24

2.6.2 Digital image representation . 26

2.6.3 Distortion . 27

2.7 Feature detection and description . 29

2.7.1 ORB (Oriented FAST and Rotated BRIEF) . 29

3 Method 32

3.1 Accelerometer calibration . 32

3.2 Camera calibration . 34

3.3 Motion estimation . 35

3.4 Feature matching . 38

3.5 Feature detector comparison . 38

3.6 Program Implementation . 41

3.7 Simulation and test scenarios . 43

3.7.1 KITTI dataset . 44

3.7.2 In air evaluation . 44

3.7.3 Tests in MC-lab . 44

3.7.4 Scale estimation . 46

4 Results 47

4.1 Comparison with KITTI dataset . 47

4.2 In air evaluation . 48

4.3 Pool tests . 50

4.3.1 Scenario 1: Surge translation . 50

4.3.2 Scenario 2: Forward-backward translation . 50

4.3.3 Scenario 3: Sway translation . 53

4.3.4 Scenario 4: Station keeping . 55

4.4 Scale estimation . 57

TABLE OF CONTENTS vii

5 Discussion 58

5.1 Results . 58

5.2 General comments . 59

6 Conclusion 62

6.1 Concluding Remarks . 62

6.2 Further Work . 63

Bibliography 64

A Drone Specifications ii

A.1 Drone . ii

A.2 Camera . ii

A.3 Lens . iii

A.4 LED lights . iii

A.5 Sensors . iii

A.6 In air calibration results . iv

List of Figures

1.1 CURV II . 2

1.2 Losses of light in an underwater imaging system . 8

2.1 Blueye Pioneer . 14

2.2 Reference frames . 16

2.3 Body frame on Blueye Pioneer . 17

2.4 Thruster setup on Blueye Pioneer . 19

2.5 Pinhole camera model . 24

2.6 Sharpening kernel . 26

2.7 RGB representation . 27

2.8 Distortion effects . 28

2.9 FAST sampling pattern . 30

3.1 Acceleration estimates from the EKSF simulation . 34

3.2 Camera calibration . 35

3.3 Epipolar constraint . 36

3.4 Graphical representation of monocular visual odometry 37

3.5 Feature matching . 38

3.6 TURBID dataset . 39

3.7 Comparison of features detected in the TURBID dataset 40

3.8 Detected and tracked features in the POOL dataset 41

3.9 MVO pipeline . 43

3.10 Hallway used for in air evaluation . 45

3.11 Blueye Pioneer with markers . 45

3.12 Object used as reference during testing . 45

4.1 Results from comparison with the KITTI dataset, first sequence 47

4.2 Results from comparison with the KITTI dataset, second sequence 48

4.3 In air evaluation: Estimated trajectory . 49

4.4 Results scenario 1: North-East plot of the estimated trajectory and ground truth . . 50

viii

LIST OF FIGURES ix

4.5 Results scenario 1: Measured and estimated movement in surge, sway and heave . 51

4.6 Results scenario 1: Measured and estimated orientation 51

4.7 Results scenario 2: North-East plot of the estimated trajectory and ground truth . . 52

4.8 Results scenario 2: Measured and estimated movement in surge, sway and heave . 52

4.9 Results scenario 2: Measured and estimated orientation 53

4.10 Result scenario 3: North-East plot of the estimated trajectory and ground truth . . 54

4.11 Results scenario 3: Measured and estimated movement in surge, sway and heave . 54

4.12 Results scenario 3: Measured and estimated orientation 55

4.13 Results scenario 5: North-East plot of the estimated trajectory and ground truth . . 56

4.14 Results scenario 5: Measured and estimated movement in surge, sway and heave . 56

4.15 Results scenario 5: Measured and estimated movement in roll, pitch and yaw . . . 57

4.16 Box plot of scale estimations . 57

List of Tables

2.1 Technical specifications . 13

2.2 SNAME notation . 14

3.1 Parameters used in the ESKF simulation . 33

3.2 Underwater calibration results: Intrinsic parameters and distortion coefficients . . 35

3.3 Computational time of feature detection in the TURBID dataset 40

3.4 Computational time of feature detection and matching in the POOL dataset 41

A.6 In air calibration results: Intrinsic parameters and distortion coefficients iv

x

Acronyms

APS Acoustic positioning system

AUV Autonomous underwater vehicle

BRIEF Binary Robust Independent Elementary Features

DOF Degrees of freedom

DVL Doppler velocity log

ECEF Earth centred earth fixed frame

ECI Earth-centred inertial frame

EKF Extended Kalman Filter

ESKF Error-state Kalman filter

FAST Features form Accelerated Segment Test

IMU Inertial measurement unit

INS Inertial Navigation Sytems

KF Kalman filter

MC-lab Marine Cybernetics Laboratory

MEMS Microelectromechanical systems

MES Measurement frame

MVO Monocular Visual Odometry

NED North east down Frame

RANSAC Random sample consensus

xi

LIST OF TABLES xii

ROV Remotely operated vehicle

SfM Structure from Motion

SNAME Society of Naval Architects and Marine Engineers

TMS Tether management system

VIO Visual Inertial Odometry

VO Visual Odometry

Chapter 1

Introduction

1.1 Background

1.1.1 ROVs

The worlds oceans covers more than 70 percent of the planet’s surface. In many ways, the ocean

is the lifeblood of Earth by driving weather, regulating temperature, and support all living organ-

isms [1]. Still, the depth of the oceans holds vast unexplored, unmapped and unobserved areas.

In order to explore these distant areas, different underwater vehicles are used and is under con-

stant development. Remotely operated vehicles (ROVs) and autonomous underwater vehicles

(AUVs) are two types of unmanned underwater vehicles which dominate this branch.

An ROV normally consists of a frame with buoyancy elements, a camera for visual control,

and thrusters in order to make the vehicle move. Many ROVs have typically manipulator arm

in order to perform different tasks. The ROV is powered through a cable, called umbilical or

tether, which allows data, including audio, images or video, navigation information and sensor

readings to be transmitted back to the operator. This allows the ROV to be controlled from a

safe, dry and comfortable place, normally a ship or a platform [2].

Exactly who to credit for developing the first ROV is unknown, however some of the first use

cases of a tethered ROV can be traced back to 1953, developed by Dimitri Rebikoff. The ROV was

named POODLE, and was used primarily for archeological research. Its impact on ROV history

was not tremendous [3]. Still, it was a start. In the 1950s the United States Navy began devel-

oping vehicles that contributed towards an operational system. Their problem was to recover

lost torpedoes and mines. They developed a manoeuvrable underwater camera system, which

eventually became the Cable-controlled Underwater Research Vehicle (CURV). The CURV´s sis-

ter vehicle, CURV II, is shown in figure 1.1

The use cases for ROVs are many, and spans from site surveys, inspections and operations

assistance, to exploration and recreational use. Before offshore activities such as drilling or in-

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The US Navy’s CURV II vehicle [3]

stallation, an inspection of the seabed is needed. This can be preformed with use of an ROV.

ROVs are normally used for observation and verification, and for engagement and release of

guide wires and hooks. In operation assistance, the ROV can perform flow control by chokes

and valves. In the last years, small ROVs have emerged in the market, focusing on exploration

and recreational use. Due to their small size, low weight and ease of use, they can be transported

and controlled by one person only.

ROV classification

The International Maritime Contractors Association (IMCA) have made a classification of ROVs.

The vehicles can be classified into five categories dependent on their size and field of use:

• Class I - Observation ROVs. This class consists of small vehicles fitted with camera, light

and sonar only. These vehicles are intended for pure observation, even though they may

be able to carry an additional sensor, as well as an additional camera.

• Class II - Observation ROVs with payload option. These vehicles are fitted with two cam-

eras or sonars which are viewed/used simultaneously. They also have a basic manipula-

tive capability. These vehicles should not loose original functionality while carrying two

additional sensors or manipulators.

• Class III - Work class vehicles. These ROVs are able to carry additional sensors and ma-

nipulators. They commonly have a multiplexing capacity that allows additional sensors

and tools to be operated without the need of hard-wiring them through the tether system.

These vehicles are typically larger and more powerful than vehicles that belong to class I

and II.

• Class IV - Towed and bottom-crawling vehicles. These large and heavy vehicles may have

limited propulsion power, and some have the need of being towed or pulled through the

water by a surface vessel or a winch. Some have only a limited manoeuvrability and are

CHAPTER 1. INTRODUCTION 3

able to swim limited distances. Bottom-crawling vehicles use a track or wheel system to

move around. They are often designed for one specific task, e.g. cable burial.

• Class V - Prototype or development vehicles. Vehicles that are still being developed and

those regarded as prototypes are included in this class. Special purpose vehicles that does

not fall into one of the other classes is also assigned. AUVs are also included in this class.

In order to fully define the full range of vehicles, a more robust naming convention is used to

categorise the vehicles even further. The categories are based on the vehicles weight. The light-

est vehicles (up to 91 kg) belongs to the OCROV class. Within the OCROV category, three sub-

categories are again presented where Mini (or medium) OCROVs are vehicles with submersible

weight between 4.5kg and 32kg. In other words, the limit of single-person hand deployment [3].

The vehicle used in this thesis, the Blueye Pioneer, belongs to the Mini OCROVs (herby denoted

as mini ROVs) and is further presented in section 2.1.

Mini ROVs entering the market

Today most subsea inspections, maintenance and repair operations are performed with he sup-

port of offshore vessels. In addition to the offshore vessel itself, the operations are dependent

on ROV systems, tools and experienced operators. The efficiency in the operations is highly

dependent on the experience of the ROV operator. The operations of most ROVs are manually

controlled, with little or no automatic control functions nor autonomy. The day rate for a sup-

port vessel is in the range of hundreds of thousands of dollars [4].

With the use of mini ROVs as an option to dive teams and work class ROVs, a cost-effective

solution is available. From a vessel, small boat or quay, these vehicles can be steered by the

means of a hand console. Focusing on ease of use, the mini ROVs does not require a professional

operator. The last decade, several mini ROVs have entered the market. Some are targeting the

professional market, while others are focusing on recreational use and the consumer market.

This has lead to that the Mini ROV is the highest volume market segment [5].

1.1.2 Computer Vision

In able to gather data and comprehend its surroundings, the vehicles are dependent on sensing

technology. For us humans, eyes are a very effective sensor for recognition, navigation, obstacle

avoidance and vision manipulation [6]. Therefore, due to the high content of information they

deliver, cameras have become an important sensor for navigation and sensing. How computers

can deal with the information given by video images is through computer vision. This field has

therefore been of interest to robotic researchers for a long time. The use of computer vision have

been important in the development of positioning control of robots, and this technological field

have developed drastically the last decade due to the access of higher computational power.

CHAPTER 1. INTRODUCTION 4

A fundamental problem in positioning control with computer vision is the ability to compute

the relative motion between the camera and an object. Humans process visual information in

semantic space, meaning that we recognise and classify objects based on their shape, bound-

aries, line-segments etc [7]. Since these features cannot be detected robustly by computers, the

process methodology is quite different in computer vision. Instead informative features such as

colour and texture is used to extract information from digital images. Distinct features such as

corners, edges and ridges can be used as key points for tracking algorithms.

The problem of estimating a vehicles motion based on visual input started in the early 1980s

by Moravec [8]. Most of the early research in VO was encourraged by the NASA Mars exploration

program in order to measure 6 degree-of-freedom motion on their all-terrain rovers [9]. The

work by Moravec stands out for not only presenting the first pipeline for motion estimation,

whose main function blocks are still used today, but for also describing one of the first corner

detectors. A predecessor for, among others, the Harris corner detector [10].

Today, computer vision algorithms and software libraries with advanced functions are avail-

able. The development have been great, resulting in functionalities such as rendering a 3D

model from overlapping images, advanced tracking of objects, automatic object detection and

recognition and even self driving cars.

The use of camera images in order to determine odometry information is defined as visual

odometry (VO). Information from one or several cameras can be used to estimate a vehicles 3D

motion. The term was first defined in the paper by Nistér et al. [11], where they present both

a monocular and stereo scheme for a feature-based VO-method. The most common ways to

extract motion information from camera images is feature-based or appearance-based meth-

ods. Feature-based methods use salient and repeatable features extracted, or tracked, across

the images. Features are point of interest in the image that are invariant to scale, illumination,

rotation and viewpoint. The points are often described by the appearance of patches of pixels

surrounding the point location [12]. With the use of these visual descriptors, comparisons can

be established when looking for corresponding points between images.

Today, there are many different feature based algorithms, some of which have become stan-

dards, both when it comes to robust feature detection and description. The detector-descriptor

which is best suited for a certain application needs to be determined based on a trade-off be-

tween accurate and robust detection, and low computational time [13]. Among the well known

feature detector-descriptors are SIFT, SURF, ORB, BRISK, AKAZE and KAZE.

Appearance-based methods use the intensity information of all the pixels, e.g. to compute

the optical flow [14] which is the velocity distribution of the motion in an image. Optical flow

calculations make use of the assumption that the intensity of a pixel defining and object does

not change between consecutive frames, and that neighbouring pixels have similar motion.

Through the years, the optical flow technique has improved since the early stages at [14]. Dif-

CHAPTER 1. INTRODUCTION 5

ferent objective functions, optimisation methods used, and modern implementation practices

influence the accuracy as stated in [15]. The Lucas-Kanade method is a differential method for

optical flow estimation, and is a widely used method in computer vision. The method assumes

that the flow is essentially constant around the pixel under consideration, and through the least

squares criterion solves the basic optical flow equations for all pixels in the neighbourhood [16].

As for the feature-based method, a lot of optical flow algorithms have also been developed

in order to perform tracking or motion estimation. The choice of method is highly depen-

dent on the accuracy required, computational time and the application for the method. How-

ever, appearance-based methods rely on constant brightness [15], which is a condition hard to

achieve in underwater environments when operating in deeper waters, and with artificial light-

ing moving together with the camera.

Visual odometry estimates can be used in conjunction with information from other sources

such as GPS, IMU, wheel encoders etc. If an inertial measurement unit is used within the visual

odometry system, it is commonly referred to as Visual Inertial Odometry (VIO). VIO is widely

used in localisations where GPS measurements its not available, e.g. indoor or underwater.

Fusing of VO estimates and IMU measurements is either done through a filtering approach,

or a smoothing approach through nonlinear optimisation. Filtering approaches enables a fast

inference, but the accumulation of linearisation errors aggravates the accuracy. Full smoothing

approaches on the other hand are more accurate, but computational demanding [17].

In VIO the accuracy of the IMU is of great importance in order to perform precise motion

estimation. Nowadays cheaper and smaller IMUs, such as the MEMS IMU, are being used, e.g.

in commercial quadcopters and smartphones [18]. A precondition for many of these VIO ap-

plications is that they need calibrated IMU measurements. Bonin-Font et. al presents in [19] a

solution for inertial sensor self-calibration. The data given by the MEMS IMU, pressure sensor

and a stereo camera rig is fused, adjusted and corrected in a multiplicative error state Kalman

filter. Including the biases of the inertial sensors in the state vector results in self-calibration and

stabilisation of the sensors, improving the estimates of the robot orientation.

Even though most research in VO has been done using stereo cameras, monocular visual

odometry (MVO) is also an important aspect in VO. The difference from the stereo scheme is

that 3D motion estimations have to be done from 2D data. Another important difference is that

the absolute scale unknown. Without the scale, camera poses are determined with respect to

the relative scale between the first two frames, which is usually set to one. Different approaches

of scale estimation have therefore been published.

Creuze presents in [20] an online estimation of the scale factor. The VO method is aided

by inertial and pressure measurements. The odometry algorithm calculates the optical flow

using the iterative Lucas-Kanade method with pyramids. Compensation of yaw, pitch and roll is

applied to the feature points extracted from the images in the odometry algorithm. A zooming

CHAPTER 1. INTRODUCTION 6

ratio is also calculated based on the difference in depth between the image frames, which is

included in the online estimation of the scale factor and altitude estimation.

During the last decade, a variety of different visual odometry and visual simultaneous locali-

sation and mapping (SLAM) techniques have been presented, whereas several of them are open

source packages. A benchmark comparison of publicly-available visual-inertial odometry algo-

rithms have been made in [21]. A lot of these type of comparisons consider high quality visual

data which is not applicable in the underwater domain. Even though a lot of the open source

packages are supported by impressive demonstrations, the demonstration scenarios are limited

to a specific set of conditions. In [22] they make a cross validation of the most promising open

source packages by testing them on the datasets provided for each package, and on self pro-

duced datasets. These datasets are from both indoor and outdoor, captured by flying, terrestrial

and underwater vehicles.

Introduction of vision sensors for control have several advantages compared to classical po-

sitioning sensors. E.g. magnetic sensors suffers from a low update rate and are strongly effected

when operating close to man-made metallic surfaces. Translation sensors such as accelerom-

eters and DVLs are integrating sensors, hence they are subject to drift and not well suited for

station keeping [23]. The use of vision sensors for station keeping is a narrow topic which, to the

knowledge of the author, is not widely researched the last couple of years. In order to robustly

determine scale or depth of feature coordinates in the image, the methods are either presented

with the assumption of planar surfaces [23], or downward looking camera in combination with

a depth sensor [24] [25].

Recent years, machine learning has found its way into different computer vision problems.

Most applications deals with standard problems like image classification, object detection and

segmentation, [26], [27] and [28]. Some research has also been introduced in VO applications,

such as [29] and [30], to better predict velocity and direction changes, and estimation of the

vehicles trajectory and current pose.

In addition to visual odometry, there are different areas where underwater computer vision

is used. An example is Narimani et al. [31], which performs target tracking of an underwater

pipeline. Through an image processing method including edge detection, they are able to esti-

mate the angle between the AUV and a pipeline on the seabed. In [32] they present a design of an

AUV built to study marine animals by automatically track and follow them. Through image fea-

ture matching techniques, different species is identified from instantaneous images captured

by the vehicles camera. Li, Dejun et al. [33] present a vision guidance algorithm for terminal

docking of an AUV using one camera and one light.

CHAPTER 1. INTRODUCTION 7

1.1.3 Visual Odometry

By using data from sensors one can estimate changes in position and attitude over time. This

is called odometry or egomotion. In mobile robot navigation, one example is measuring the

wheel rotation through devices such as rotary encoders. Odometry of any type will always drift

due to affecting errors, and the global error will likely diverge as the errors accumulate over

time. This results in that no odometry system is stable in any sense. The errors are categorised

as either systematic or non-systematic. Examples of systematic errors may be unequal wheel

diameters, misaligned wheels, finite encoder resolution and finite encoder sampling rate. The

non-systematic errors may occur from traveling on uneven ground or wheel slippage from over-

acceleration, fast turning or interacting with external bodies.

For a flying or underwater robot the problem of odometry must be addressed with another

approach. Visual odometry is the process of determining equivalent odometry information us-

ing only camera images. This is done by estimating the robot’s relative motion from one camera

image to the next. By assuming that features in the images is stationary, these features can be

detected and matched from image to image. The motion of the camera can then be estimated

by evaluating the position change of the features. These methods are described in the following

sections. Any robot with a sufficiently quality camera can make use of visual odometry. One of

the greatest advantages of visual odometry is that no kinematic models of the robot are needed.

1.2 Challenges with underwater imagery

The underwater environment introduces challenges with respect to imagery and computer vi-

sion which is not present on land. In many locations, there is little variation to scenery, e.g the

sea floor consists manly of sand and does not offer many distinct structures and features which

can be used for extracting keypoints.

The level of turbidity can cause trouble wen using cameras underwater. Seawater has gen-

erally a lot of different particles in it, resulting in feature based approaches might falsely detect

particles as a feature. This can have strong effect on the algorithm’s accuracy. Particles moving

through the field of view due to current can cause a feature based algorithm to estimate a false

translation.

Water absorbs different wavelength at different depths. This results in loss of colours, and

the visual appearance of the environment can become monotonous. Colour gradients may be

a valuable information source which might not be available underwater. The spectral attenu-

ation is dependent on plankton in the water, coloured dissolved matter and suspended matter

[34]. Blues and greens are transmitted quite well in pure water in comparison to red which are

attenuated quite strongly. Several implications is caused by this, for example will the range of

the camera from the target strongly determine the perceived colour of an object, and the high

CHAPTER 1. INTRODUCTION 8

attenuation of red makes it very difficult to detect at significant ranges.

Figure 1.2: Illustration of the losses of light in an underwater imaging system [35]

In the underwater imaging process, artificial light is projected on the scene and its reflec-

tions are captured by the camera. The image is made from the registration of photons which are

transmitted and attenuated through the water column before the are reflected back to the cam-

era. Due to light-scattering, the light that is forming the imagery is reduced. The photons are

scattered and absorbed by the target or the seabed. The small portion which is reflected back to

the camera are again subject to scattering and absorption by the seawater and its components.

Some of these photons may also be subject to scattering at a small angle, which results in a blur-

ring effect in the image as their trajectory back to the camera is not straight [36]. The different

losses of light in an underwater imaging system is illustrated in figure 1.2.

Backscatter is when a portion of the source illumination is reflected into the receiver’s field

of view. This is due to particles and inhomogeneities in the water. The amount of particles and

inhomogeneities are often referred to as turbidity. The image contrast can be strongly degraded

because of this.

1.2.1 Open CV

OpenCV (Open Source Computer Vision Library) is an open source computer vision and ma-

chine learning software library. OpenCV was first presented in 1999. Today the library consists

CHAPTER 1. INTRODUCTION 9

of more than 2500 optimized algorithms, which consist of both classic and state-of-the art com-

puter vision and machine learning algorithms [37]. It has interfaces for C++, Python and Java,

and supports the most common operating systems such as Windows, Linux, Mac OS, iOS and

Android. It is the most used computer vision library, and its users spans from millions of indi-

viduals to well known companies like Google, Yahoo, Microsoft, Intel, IBM etc. [37]. OpenCV

has therefore a huge user community on the Internet, which makes it easy to solve upcoming

problems with the help of others. The algorithms can be used e.g. to identify objects, perform

different adjustments to the image, extract 3D point-clouds from stereo cameras, classify hu-

man behaviours, or track an object of interest.

In this thesis, algorithms from the OpenCV library are mostly used for feature detection, de-

scription and matching across image frames, and relative pose estimation for monocular visual

odometry. In other words, only a small portion of the vast possibilities the library offers is used.

1.2.2 ROS

The framework used for writing software on the Blueye Pinoneer is the Robot Operating System

(ROS). This is a flexible framework that with its collection of tools, libraries and conventions

simplifies the task of creating complex and robust robot behaviours [38]. Creating robust and

well-functioning robot software is hard, because problems that is trivial to us humans might

strongly depend of the type of situation and surroundings. These variations is difficult to imple-

ment, and as a result ROS was built to encourage collaborative robotics software development.

By the contributions of different groups that may specialise in different fields, ROS was designed

such that these groups could build upon each others work.

At the lowest level, ROS acts as a communication infrastructure, where it offers an inter-

face for message passing that provides inter-process communication [39]. This middelware, as

it is commonly referred to, provides publishing and subscription of message passing, as well

as recording and playback of messages. It also provides request and response remote proce-

dure calls and a distributed parameter system. The message system in ROS manages the com-

munication between distributed nodes through the publish/subscribe mechanism. The pub-

lish/subscribe system is anonymous and asynchronous, which promotes flexibility and mod-

ularity in your system. Nodes are responsible for the robots functions through calculation,

connect and understand hardware data, communication and more. Nodes communicate by

publishing and subscribe to topics. The communication service also supports synchronous re-

quest/response interaction through the use of services.

On top of the core middelware components, ROS provides common robot-specific libraries

and tools, such as standard message definitions, a robot geometry library to manage coordinate

frame transforms, a robot description language to describe and model your robot, preemptable

remote procedure calls, diagnostics, pose estimation, localisation and mapping.

CHAPTER 1. INTRODUCTION 10

1.3 Problem formulation

During manually control of the Blueye Pioneer mini ROV, the user may experience lack of con-

trol due to currents and drag forces from the umbilical. Depending on the environment, these

forces may change continuously. It may also induce motions and oscillations that are hard to

compensate for manually. In case of an inspection or exploration the user may want the drone

to stand still in respect to a certain object or area of interest. In order to achieve this we are

dependent on motion measurements from the vehicle.

In underwater environments there are limited access on positioning data. The challenges of

underwater navigation is connected to the limitations of acoustic positioning and dead-reckoning

navigation. In order to improve underwater navigation and situational awareness, computer

vision techniques are being used. The development within this field have been immense the

last decades, which reveal new possibilities for underwater operations. From camera images,

motion information can be extracted. This can help to increase the level of automation and

autonomy, safety and efficiency in underwater operations.

This thesis will focus on how computer vision can be used to extract motion information

from underwater camera images, which are to be used for position estimation of a mini ROV.

The approach is more thoroughly presented in the next section.

1.4 Scope and limitations

This thesis will focus on the development and implementation of a monocular visual odometry

algorithm for a mini ROV. The MVO approach was chosen as a camera assisted motion estima-

tion of the mini ROV, where the estimates can be used for dynamic positioning. The Blueye

Pioneer underwater drone is used as experimental platform, and one of the conditions during

development was to only use the sensors already equipped on the vehicle. The implementa-

tion is therefore based on a monocular camera system, a MEMS IMU and a pressure sensor for

depth measurements. This has led to some computational limitations, especially regarding de-

velopment of state estimators through fusing of different sensor data. The MVO algorithms are

to be used in a real-time application on the Blueye Pioneer. The choice of algorithms and their

computational speed therefore had to be considered. The algorithms are developed in Python

with the use of the computer vision and machine learning software OpenCV. ROS is the software

framework used on the Blueye Pioneer, which provides a great development platform with great

flexibility and robustness.

The MVO algorithms are tested on both prerecorded datasets and in the MC-lab. The posi-

tioning system software, Qualisys, used for ground truth measurements in the MC-lab had its

limitations to operational space in the pool and determination of the vehicles orientation. Mea-

CHAPTER 1. INTRODUCTION 11

surement drop outs do to movement outside its range, or wrong orientation measurements was

therefore frequently experienced. However, the tests presented in this thesis clearly shows the

properties of the MVO algorithm.

1.5 Structure of thesis

This thesis is organised in a classical manner with introduction, theory, method, results, discus-

sion and conclusion. The results which contributes to the choice of method is presented in a

natural manner during the description of method. The different chapters are organised in the

following manner:

• Chapter 1: Introduction. This chapter presents the background, discussing ROVs and

computer vision, in addition to what has been done in the field of computer vision used

for motion estimation. The scope and limitations are also presented.

• Chapter 2: Theory. Here, the theory used for development is presented. Modelling and

mathematical expressions for the ROV, sensors and camera is presented, as well as a de-

scription of the feature detection and descriptor used.

• Chapter 3: Method. This chapter presents the used method for developing and testing

the implemented MVO algorithm. Choices that have been made along the process with

explanatory results is also presented chronologically. A description of the different evalu-

ation methods and test scenarios is presented.

• Chapter 4: Results. This chapter presents the results from the different test scenarios of

the MVO algorithm.

• Chapter 5: Discussion. Discussion of the achieved results compared with the objectives,

theory and method used is presented.

• Chapter 6: Conclusion. This chapter presents the conclusion with concluding remarks

and recommendations for further work.

1.6 Thesis contribution

The main topic of this thesis is to investigate the possibilities of using monocular visual odom-

etry for position estimation, keeping in mind that the position estimates should be used in a

dynamic positioning application. The objective for this research is to increase the level of au-

tonomy for ROV operation as well as the level of accuracy for ROV navigation. There has been an

CHAPTER 1. INTRODUCTION 12

extensive research in the use of computer vision for navigation and odometry. However, most

of these methods have been applied in areal or surface technologies.

The research conducted in this thesis will contribute to highlight the possibilities and limi-

tations of underwater visual odometry, including feature detection, matching and underwater

image processing. The research presented investigates wether a feature-based method can be

used to extract motion information in an underwater environment. Many advanced approaches

have been developed and presented with promising results. However, a fundamental method

have been chosen as a base of development in this thesis.

Computer vision abilities are vital for increasing the level of autonomy and possible opera-

tions for ROVs. This thesis can therefore give valuable information and inputs in future devel-

opment of underwater computer vision applications.

Chapter 2

Theory

2.1 Blueye Pioneer Underwater Drone

The experimental platform used in this thesis is the Blueye Pioneer underwater drone. The

drone is developed by the Norwegian based company Blueye Robotics. The company is a spin-

off from the Centre of Autonomous Marine Operations and Systems (AMOS) at NTNU [40]. The

underwater drone can be classified as a mini ROV, with its small size and low weight. The drone

is equipped with four thrusters, two rear, one vertical and one lateral. The lateral thruster makes

it ideal for inspection tasks as it makes it possible to keep a constant heading while moving

sideways. A full-HD camera is located at the front of the drone, together with a 3300 lumen LED

light located below the camera. The drone is also equipped with an IMU, consisting of a three-

axis accelerometer, angular velocity sensor and magnetometer, as well as a temperature sensor.

Pressure sensors is included to measure both depth and internal pressure. A picture of the drone

is shown in figure 2.1, while the main specifications are presented in table 2.1. A detailed list of

the different specifications is listed in appendix A.

Table 2.1: Technical specifications

Technical specifications Value
Dimensions 485£257£354 mm (L x W x H)
Weight in air 8.6 kg (with salt water ballast)
Maximum rated depth 150 m
Forward speed at normal use 2 m/s (4 knots)
Weight 8.6 kg
Thrusters 4 x 350 W

13

CHAPTER 2. THEORY 14

Figure 2.1: Illustration of the Blueye Pioneer. Photo courtesy of Blueye Robotics

2.2 Notations

The notation used in this thesis is based on the SNAME convention and from Fossen’s vectorial

model [41]. The ROV operates in six degrees of freedom. The position, orientation and linear

and angular velocities are given in generalised coordinates. The notation is given in table 2.2.

Table 2.2: SNAME notation

DOF Forces and moments Linear and angular velocity Positions and Euler angles
1 Surge X u x
2 Sway Y v y
3 Surge Z w z
4 Roll K p ¡
5 Pitch M q µ
6 Yaw N r ¡

Generalised coordinates

The general coordinates for position and velocity are given by (2.1) and (2.2)

¥=
£
x, y, z, ¡, µ, √

§> (2.1)

∫=
£
u, v, w, p, q, r

§> (2.2)

Sub-vectors from (2.1) and (2.2) are defined to express linear and angular position and ve-

CHAPTER 2. THEORY 15

locity vectors which are given by (2.3)

p =

2

664

x

y

z

3

775 , v =

2

664

u

v

w

3

775 , £=

2

664

¡

µ

¡

3

775 , !=

2

664

p

q

r

3

775 (2.3)

where p 2R3£1 is the linear position, v 2R3£1 is the linear velocity,£ 2R3£1 is the attitude or

angular position, and ! 2R3£1 is the angular velocity.

Notation norms

All matrices are expressed in boldface uppercase letters and vectors are expressed in boldface

lowercase letters. An estimate of the variable x is expressed as x̂, while the time derivative of x

is denoted as ẋ. The time derivative of the estimate is expressed as ˙̂x. The error, defined as the

difference between the estimate of a variable and its true value, is expressed as x̃.

The skew-symmetric matrix S can be used as cross-product operator to calculate the cross

product, £, between two vectors a and b 2R3£1:

a£x := S(a)b (2.4)

where S, with the skew symmetric properties, is defined as

S(∏) =°S>(∏) =

2

664

0 °∏3 ∏2

∏3 0 °∏1

°∏2 ∏1 0

3

775 , ∏=

2

664

∏1

∏2

∏3

3

775 (2.5)

2.3 Kinematics

2.3.1 Reference frames

When analysing the motion of a marine craft, it is convenient to define it with respect to a refer-

ence frame. There are different reference frames used for navigational purposes, and the most

common ones are

• ECI: The Earth-centred internal frame {i } = (xi , yi , zi). The origin oi is located at the Earth’s

centre with axes as shown in figure 2.2

• ECEF: The Earth-centred Earth-fixed frame {e} = (xe , ye , ze). This also has its origin oe

located the Earths centre, but its axes rotates with angular rate!e relative to the ECI frame,

which is fixed in space.

CHAPTER 2. THEORY 16

• NED: North-East-Down frame {n} = (xn , yn , zn). The origin on is defined relative to Earth’s

reference ellipsoid [41]. This is the reference frame we normally refer to.

• BODY: The body-fixed reference frame {b} = (xb , yb , zb). This coordinate frame is fixed to

the vehicle, which means that it moves together with the vehicle, and its origin ob and

orientation is described relative to the inertial reference frame.

• MES: The measurement frame {m} = (xm , ym , zm). This frame is usually moving and rotat-

ing with the body frame. The measurements given from an instrument on the vehicle is

expressed in this frame.

Figure 2.2: The reference frames with respect to the inertial frame (ECI), [41]

Dependent on accuracy, both {e} and {n} can be assumed inertial. For slowly moving ve-

hicles, and marine crafts operating in a local area with approximately constant longitude and

latitude, {n} can be assumed inertial. If moving far away from the origin oe , the flat earth ap-

proximation in {n} will not be applicable. In this case {e} can be used.

For the Blueye Pioneer, the body frame {b} is defined as shown in figure 2.3

2.3.2 Transformations

A vector that is given in one frame, can be expressed in another using a transformation ma-

trix. Sub and superscripts are used to determine which reference frame a vector is decomposed

in. The following notation is used when transforming a vector from one coordinate frame to

CHAPTER 2. THEORY 17

Figure 2.3: Definition of body frame on Blueye Pioneer

another.

vto = Rto
fromvfrom (2.6)

vfrom denotes a vector that is transformed to a new reference frame by applying the rotation

matrix Rto
from. The result is the vector vto.

E.g. in order to decompose the body-fixed velocity vector in NED reference frame, we make

use of a rotation matrix Rn
b (£nb). Here, £nb is the rotation vector with the Euler angles roll (¡),

pitch (µ), and yaw (√) as argument,£nb =
£
¡,µ,√

§>. The notation with subscript nb means that

the coordinates are given in frame {n} with respect to frame {b}. The transformation matrix is

given as

Rn
b (£nb) = Rz,√Ry,µRx,¡ (2.7)

where

Rx,¡ =

2

664

1 0 0

0 c¡ °s¡

0 s¡ c¡

3

775 , Ry,µ =

2

664

cµ 0 sµ

0 1 0

°sµ 0 cµ

3

775 , Rz,√ =

2

664

c√ °s√ 0

s√ c√ 0

0 0 1

3

775 (2.8)

here s· and c· are short for sin(·) and cos(·) respectively. The inverse transformation is given as

Rn
b (£nb)°1 = Rb

n (£nb) = R>
x,¡R>

y,µR>
z,¡ (2.9)

One can see from (2.8) that this representation gives a singularity at ¡= 90°. One can therefore

make use of quaternions to avoid this.

With the assumption that √ and µ is small, which is a good approximation for underwater

vehicles [41], we can write Rn
b (£nb) º Rz,¡

CHAPTER 2. THEORY 18

Quaternions

An alternative to Euler angle representation is quaternions. This is a four-parameter method

where a quaternion q is defined as a complex number with one real part ¥ and three imaginary

parts given by the vector

"= ["1,"2,"3]> (2.10)

Quaternions can be used in order to prevent representation singularity of the Euler angels. They

are usually given in unit form, called unit quaternions, which then satisfies q>q = 1. A quater-

nion is expressed on the form

q =

2

66664

¥

"1

"2

"3

3

77775
(2.11)

If the Euler angles £nb are known, the corresponding unit quaternions can be computed as

follows

q =

2

66664

cos(√/2)cos(µ/2)cos(¡/2)+ sin(√/2)sin(µ/2)sin(¡/2)

cos(√/2)cos(µ/2)sin(¡/2)° sin(√/2)sin(µ/2)cos(¡/2)

sin(√/2)cos(µ/2)sin(¡/2)+cos(√/2)sin(µ/2)cos(¡/2)

sin(√/2)cos(µ/2)cos(¡/2)°cos(√/2)sin(µ/2)sin(¡/2)

3

77775
(2.12)

Translation of e.g. a linear velocity vector from an inertial reference frame to a body fixed

reference frame can be expressed as

ṗn
b/n = Rn

b (q)vb
b/n (2.13)

where the rotation matrix Rn
b (q) is given as

Rb
n(q) =

2

664

1°2("2
2 +"2

3) 2("1"2 °"3¥) 2("1"3 +"2¥)

2("1"2 +"3¥) 1°2("2
1 +"2

3) 2("2"3 °"1¥)

2("1"3 °"2¥) 2("2"3 +"1¥) 1°2("2
1 +"2

2)

3

775 (2.14)

2.3.3 Thrust allocation

The thruster layot on the Blueye Pioneer is as presented in figure 2.4. The thrusters on the drone

is fixed, meaning that all control forces are produced by thrusters in fixed directions. The control

force inputs are given in surge, sway, heave and yaw, which is the same number as degrees of

freedom for the drone, meaning it is possible to find an "optimal" distribution of control forces

f for each DOF by using an explicit method [41].

The thrust allocation implemented allocates the given vehicle force in body frame to a dshot

CHAPTER 2. THEORY 19

signal, representing a desired thrust from each thruster. The thrust allocation consist of a set of

lever arms and direction of force for each thruster as a matrice B. The force to thrust relation is

given as

ød = Bf

) f = B°1ød

(2.15)

Where the matrix B and the desired thrust ød is given as

B =

2

66664

1 1 0 0

0 0 1 0

0 0 0 1

°ly,st ar °ly,por t lx,sw ay 0

3

77775
ød =

2

66664

X

Y

Z

N

3

77775
(2.16)

The constants ly,st ar , ly,por t and lx,sw ay specify the distance from the centre of origin in body

frame to each thruster.

The thrust force is linearised by the third degree polynomial to approximate resulting force

at a specific thruster permil. The polynomial constants are found by fitting the loadcell data to

the polynomial. There are different constants for positive and negative physical directions.

Figure 2.4: Thruster setup on the Blueye Pioneer. Photo courtesy of Blueye Robotics

2.4 Sensors

2.4.1 Inertial Measurement Unit

The Blueye Pioneer is equipped with an inertial measurement unit (IMU) consisting of a three-

axis accelerometer, three-axis gyroscope and a three-axis magnetometer measuring 3-DOF ac-

celeration, angular rate and magnetic field components. Thanks to a significant reduction in

CHAPTER 2. THEORY 20

price during the last decades, inertial measurement technology is available for commercial use.

This, together with the reduction in size makes them well suited for smaller vehicles such as

mini ROVs [42].

The IMU has an update rate normally ranging from 100 - 1000 Hz. This is a higher update

rate than other positioning sensors such as the doppler velocity log (DVL) or acoustic position-

ing systems (APS). Limitations in MEMS technology results in that the IMU still suffer from bias

instability, noisy output and drift. In order to compensate for these effects, calibration is a nec-

essary step prior to application of appliance.

The measurement equations for the three-axis accelerometer, gyro and magnetometer are

given in (2.17), (2.18), (2.19)

ab
imu = Rb

n (£)
°
v̇n

m/n °gn¢
+bb

acc +nb
acc (2.17)

!b
imu =!b

m/n +bb
gyro +nb

gyro (2.18)

mb
imu = Rb

n (£)mn +bb
mag +nb

mag (2.19)

where ab
imu 2 R3£1 is the measured acceleration vector, !b

imu 2 R3£1 is the turn rate vector

from the gyroscope, and mb
imu 2R3£1 is the magnetic field components. The accelerometer and

gyro biases are denoted as bb
acc and bb

gyro while bb
mag is the local magnetic disturbance. nb

acc, nb
gyro

and nb
mag are additive zero-mean sensor measurement noise.

In order to perform more accurate visual odometry, sensor readings from an IMU is often

included in some sort of way. We then characterise it as a visual-inertial odometry. Combining

inertial and visual measurements has become popular as they offer complementary character-

istics. Traditionally, sensor reading from the IMU is fused with the estimates from the visual

odometry algorithm through filtering, like the work presented in [43] and [44]. Now, optimi-

sation based methods are on the rise, such as [45] and [46]. A prerequisite for many of these

applications is that they need a pre-calibrated IMU. If not, they need to perform an online self-

calibration. Bonin-Font et al. presents in [43] an online calibration method done through a

multiplicative error-state Kalman Filter (MESKF). A calibration is needed in order to compen-

sate for drift and biases in the sensor measurements. The drift is accumulated through the sam-

ples and generates an important deviation of the final pose estimation integrated from the INS

measurements with respect to the ground truth. Some manufacturers provide an estimation of

these systematic errors, assuming they are constant. But in practice they are not. Consequently,

it turns out to be very difficult to compensate for their effect [43].

2.4.2 Pressure Sensor

The Blueye Pioneer is equipped with a pressure sensor which makes it able to calculate the

vehicles current depth based on a measured pressure. The measurements from the sensor gives

CHAPTER 2. THEORY 21

depth down to millimetre precision, which makes it suitable to use as an additional input in the

odometry algorithm. The update rate is approximately 40 Hz. This is superior compared to the

update rate in the implemented MVO algorithm, which is 7-10 Hz.

2.5 Error state Kalman Filter (ESKF)

The error state formulation of the Kalman filters deal with nominal variables and their errors.

Both ESKF and EKF should lead to the similar results, but the ESKF generates lower values for

the covariance, and the error variables are better at being represented as linear as the their vari-

ations are much slower than changes on the nominal navigation data. [43].

The EKF state representation is supported by the fact that the estimated state vector, x̃ at

time instant k consists of the true state, x, and an error, ±x:

x̃k = xk +±xk (2.20)

The nominal and error state vector are involved in the process. The nominal state vector xk

at time k is expressed as

xk =
£
pk ,qk ,vk ,!k ,ak ,dk bk

§> (2.21)

where pk is the position of the ROV with respect to the inertial global frame, qk is the orientation

expressed in quaternions, vk is the linear velocity, !k is the angular rate, ak is the acceleration,

dk is the the gyroscope drift and bk is the accelerometer bias. The biases in the accelerometer

and the gyroscope are assumed to be constant. It is also assumed that the nominal states does

not include noise or model imperfections.

The error state vector at time k, ±xk , including the errors caused by sensor biases and ran-

dom noise is denoted as:

±xk =
£
±pk ,±qk ,±vk ,±!k ,±ak

§> (2.22)

where ±pk is the error in position, ±qk is the error in attitude in the form of a rotation vector,

±vk is the error in linear velocity, ±!k is the error in angular rate, and ±ak is the error in linear

local acceleration. The sensor bias and noise in acceleration and angular rate are included in

the errors.

Nominal State Prediction

The sensor readings from the inertial sensors are used at this stage to estimate the relative dis-

placement of the vehicle between two filter iterations. These measurements contain a bias and

a noise, assumed to be additive and zero-mean Gaussian [43]. By assuming that the inertial sen-

sor is located approximately in the centre of the vehicle, and that the centripetal acceleration is

CHAPTER 2. THEORY 22

negligible, the uncalibrated acceleration measurements can be given as

am = (a°gb)+b+na (2.23)

Here, am is the measured acceleration, a is the real body acceleration, gb is the gravity expressed

in the body frame, b is the accelerometer bias and na is the measurement noise.

The discrete equations that govern the nominal states are given as:

p̂k = p̂(k°1) +R(k°1)v̂(k°1)¢t + 1
2

R(k°1)â(k°1)¢t 2 (2.24a)

q̂k = (qm § q̂)(k°1) (2.24b)

v̂k = v̂(k°1) + â(k°1)¢t (2.24c)

!̂k = (!m ° d̂)(k°1) (2.24d)

âk = (b̂°gb °am)(k°1) (2.24e)

d̂k = d̂(k°1) (2.24f)

b̂k = b̂(k°1) (2.24g)

where R is the rotation matrix from local to global coordinates, and ¢t is the time step interval

between the current and predicted nominal state. The sign, §, denotes the quaternion product.

Error State Prediction

The error is defined as a difference between the real value of a variable and its estimate. The

estimation of the error state vector at time k is defined as:

±x̃k = f (xk°1)+≤k (2.25)

where f (xk) is the set of functions that predicts the error state (2.26). The error of the predic-

tion model is modelled as a zero-mean Gaussian, ≤k = N (0,Qk), where Qk is the model noise

covariance.

CHAPTER 2. THEORY 23

The estimated error states are given by the following discrete equations:

±p̃k = ±p̃(k°1) +R±ṽ(k°1)¢t °R
°
ṽ(k°1) £±q̃(k°1)

¢
¢t

° 1
2

R
°
ã(k°1) £±q̃(k°1)

¢
¢t 2 + 1

2
R±ã(k°1)¢t 2

(2.26a)

±ṽk = ±ṽ(k°1) +gb £±q̃(k°1)¢t +±ã(k°1)¢t (2.26b)

±!̃k = ±!̃(k°1) (2.26c)

±ãk = ±ã(k°1) (2.26d)

±q̃k = Rm±q̃(k°1) +
°
°I¢t +

1°cos
°
|!(k°1)|¢t

¢

|!(k°1)|2
V

°
|!(k°1)|¢t ° sin

°
|!(k°1)|¢t

¢

|!(k°1)|3
V2

¥
±!̃(k°1)

(2.26e)

Since the values forming the error states are all reset to zero after the nominal state correction,

the values computed by equations (2.26) are always zero. However, the system covariance matrix

Pk propagates according to the Kalman filter equation, since the Jacobian matrix Fk = @ f (xk)
@±xk

|±x̃k ,

at time k is different from zero.

Error Kalman Update

The measurement error ±zk is denoted as the difference between a sensor reading zk and its

prediction ẑk computed in the nominal state:

±zk = zk ° ẑk (2.27)

The classical Kalman Filter equations are used to calculate the updated error state vector

±x̃k|k and its covariance:
ỹk = ±zk °Hk±x̃k

Kk = P̄k H>
k

°
Hk P̄k H>

k +Rk
¢°1

±x̃k|k = ±x̃k +Kỹk

P̂k = (I°Kk Hk) P̄k

P̄(k+1) = Fk P̂k F>
k +Q

(2.28)

The nominal state vector is then corrected with the values from the updated error state vec-

tor.

CHAPTER 2. THEORY 24

2.6 Camera Model

The process of image formation, whether it is in a camera or an eye, involves a projection from

the three-dimensional world onto a two-dimensional surface. Camera models is used to de-

scribe the mathematical relationship between three-dimensional coordinates in space and its

projection onto a two-dimensional image plane. Different camera models exists for different

camera types, wether it is a wide field-of-view camera equipped with a fisheye lens, a catadiop-

tric camera which consists of a camera lens and a mirror two broaden its field of view, or a more

normal type of camera used as a web camera or the ones equipped in a smartphone. One of the

widely used mathematical models in computer vision which describes the perspective transfor-

mation is the pinhole camera model.

2.6.1 Pinhole Camera Model

The central perspective imagine model, also known as the pinhole camera model, shown in

figure 2.5 is common to use in computer vision. The lighting rays converge at the origin of the

camera frame C , resulting in inverted image is projected onto the image plane at z = ° f . The

camera is modelled as a box, with a small hole on one side and a photographic plate on the

opposite side. The model is centred around the optical axis, which coincides with the z-axis of

the coordinate frame which is located at the centre of projection, known as the focal point C , or

principle point.

Figure 2.5: Pinhole camera model

The distance from the image plane to the camera centre is the focal length f . Geometrical

relations gives:
x
f
= X

Z
and

y
f
= Y

Z
(2.29)

In computer vision we make use of homogenous coordinates. This is done by introducing

one more dimension to the coordinate system. For a point in a 2D image frame, the point will

have three coordinates, and for a point in a 3D camera frame, the point will have four coordi-

CHAPTER 2. THEORY 25

nates. In computer vision, the extra coordinate will have the value of one. Mapping a 2D point

from (x, y) ! (x, y,1) defines an inclusion from the Euclidean plane to the projective plane. Writ-

ing equation (2.29) in matrix form with the use of homogenous coordinates, we get:

∏

2

664

x

y

1

3

775=

2

664

f 0 0 0

0 f 0 0

0 0 1 0

3

775

2

66664

X

Y

Z

1

3

77775
(2.30)

where the depth, ∏, is equal to Z . By introducing the notation

K =

2

664

f 0 0

0 f 0

0 0 1

3

775 , x =

2

664

x

y

1

3

775 , X =

2

66664

X

Y

Z

1

3

77775
(2.31)

in equation (2.30), we get

∏x = K [I3x3|03x1]X = PX (2.32)

where P = K [I3x3|03x1]. In this manner, the matrix P relates extended image coordinates x =
(x, y,1) to extended object coordinates X = (X ,Y , Z ,1) through the equation

∏x = PX (2.33)

The matrix P is called the camera matrix, and equation (2.33) is called the camera equation

[47]. In a redefined camera model, the matrix K is replaced by

K =

2

664

f s f cx

0 Æ f cy

0 0 1

3

775 (2.34)

This matrix consists of the intrinsic parameters, as they model the intrinsic properties of the

matrix. f is the focal length, Æ is the aspect ratio, s is the skew parameter, and cx and cy is the

principle point coordinates. For most cameras, the skew parameter is close to zero (s º 0) and

the aspect ratio is close to one (Æº 1). The focal length can also be given for both axes as fx and

fy where the relation fx =Æ fy applies.

By studying equation (2.30), we see that in order to determine the distance to a 3D point

we need two pinhole cameras, since every image point is the projection of all infinite 3D points

lying on the ray passing through the same image point and the centre of projection, C , in figure

CHAPTER 2. THEORY 26

2.5.

Since an image is a two-dimensional projection of a three dimensional scene, depth recovery

from a single image, without additional knowledge of the scene, is mathematically impossible.

For an image sequence of a rigid three dimensional scene taken from a single moving camera, it

is possible to compute the motion up to a scale factor. In order to determine the 3D position for

a feature, the moving camera must observe it repeatedly each time, capturing a ray of light from

the feature to its optic centre. The angle between the captured rays from different viewpoints is

the feature’s parallax. This parallax is what allows it’s depth to be estimated [48].

2.6.2 Digital image representation

A digital image is represented through a matrix where each cell corresponds to a pixel. Each pixel

usually consists of three values defining its colour. A video with a resolution of 1920x1080 pixels

and a frame rate of 30fps therefore consist of 6,220,800 values 30 times pr second, which clearly

explains why computational time is strongly effected by the resolution. Optimised algorithms

are therefore critical, and before the algorithms are applied, the images are usually downsized or

cropped. Through manipulation of the different values in the image matrix, specific tasks can

be performed, such as masking out a feature, blur the image, change the contrast or perform

edge detection. This can be done through kernels or different filter operations.

Kernels is simply small matrices, and the wanted effect is accomplished through convolution

between the kernel and the image. It is related to a form of the mathematical convolution, where

each element of the image is added to its local neighbours, weighted by the kernel. For example

sharpening the image can be done through a kernel given as:

2

664

0 °1 0

°1 5 °1

0 °1 0

3

775 (2.35)

The sharpening effect is shown in figure 2.6

Figure 2.6: The resulting effect of applying a sharpening kernel as given in (2.35). Before (left)
and after (right)

CHAPTER 2. THEORY 27

The pixel is defined by its colour values, and there are many different colour models used in

order to describe the colour. For computer- and TV-displays RGB and HSV are used. The RGB

model is an additive colour model that consists of the three colours red, green and blue. The

amount of each colour is defined by a number between 0 and 255. In this manner a broad array

of colours can be produced. In OpenCV, the BGR colour definition is used. It is the same as RGB,

only the numbers defining the resulting colour is given as blue, green and red instead of red,

blue and green, respectively. A visualisation of the RGB representation is given in figure 2.7. The

HSV (Hue Saturation Value) model is an alternative representation to the RGB colour model,

designed to be more representative to the way humans perceive colours. Hue determines the

main colour, saturation the intensity and value the brightness.

Figure 2.7: RGB representation. A pixel intensity is represented by three values which describe
its colour.

2.6.3 Distortion

Due to imperfections in lenses, a variety of distortions is introduced. This imperfections can

be geometric distortions causing points on the image plane to be displaced from where they

should be, spherical aberration or astigmatism (variation of focus across the scene) or chromatic

aberration (colour fringing).

Geometrical distortion are the major problems we encounter in robotic applications [6]. The

main types of geometrical distortion is radial distortion and tangential distortion. Radial distor-

CHAPTER 2. THEORY 28

tion causes straight lines to appear curved, and the distortion becomes larger the farther points

are from the centre of the image. The radial error can be approximated by a polynomial

±r = k1r 3 +k2r 5 +k3r 7 + . . . (2.36)

where r is the distance of the image point from the principle point.

A point with coordinates (u, v) after distortion is given by

ud = u +±u , vd = v +±v (2.37)

where the displacement is

"
±u

±v

#

=
"

u
°
k1r 2 +k2r 4 +k3r 6 + . . .

¢

v
°
k1r 2 +k2r 4 +k3r 6 + . . .

¢

#

| {z }
radial

+
"

2p1uv +p2
°
r 2 +2u2¢

p1
°
r 2 +2v2¢+2p2uv

#

| {z }
tangential

(2.38)

Two common types of radial distortion are positive and negative distortion, also known as

barrel distortion and pincushion distortion [6]. Barrel distortion causes lines at the edge of the

image to curve outwards which occurs when magnification decreases with distance from the

principle point. The opposite effect, when magnification increases with distance from the prin-

ciple point, causes pincushion distortion, which results in that straight lines curves inward. The

two distortion effects is shown in figure 2.8.

Figure 2.8: Distortion effects. Barrel distortion (middle) and pincushion distortion (right).

The distortion coefficients are parameterised by (k1,k2, p1, p2,k3) which are considered ad-

ditional intrinsic parameters.

CHAPTER 2. THEORY 29

2.7 Feature detection and description

In order to perform motion estimation, 3D reconstruction, image mosaicking etc, we need in-

terest points in the image that can help us compare different images. An interest point can be an

edge, a corner, or a local intensity maximum or minimum. An important factor is that interest

points needs to be distinguishable, meaning that they can be recognised in different lighting,

viewpoint or orientation. For example in the field of object detection and tracking is this impor-

tant as the features must be recognised in uncorrelated images.

In able to compare features from one image with the next, each feature is given a descriptor

describing the feature. The descriptor is usually a vector of N unique numbers. Two features

can then be matched if their corresponding descriptors are sufficiently similar.

There are may different feature detection algorithms and descriptors developed. The differ-

ent methods are developed for different applications and have therefore different advantages.

When comparing different feature detection algorithms the main criteria is speed and accuracy.

For online applications speed is an important factor, whereas for processing application accu-

racy may be more critical. For navigation, online feature detection algorithms is used. In order

to get up-to-date information about the vehicles orientation and position, the algorithm needs

to be fast [13] [49]. For post processing such as mapping, high accuracy is more important than

speed in order to get a good result.

2.7.1 ORB (Oriented FAST and Rotated BRIEF)

ORB (Oriented FAST and Rotated Brief)[50] is a binary descriptor based on BRIEF [51] and FAST

[26].

FAST keypoint detector

The FAST (Features form Accelerated Segment Test) keypoint detector [26] operates by consid-

ering a circle of sixteen pixels around the corner candidate p. If there exists a set of n contiguous

pixels in the circle around p which are all brighter than the intensity of the candidate pixel Ip ,

plus a threshold t , or darker than Ip ° t , p is classified as a corner. This is illustrated in figure

2.9. Instead of checking 12 contiguous corner, the FAST implementation used in ORB checks 9.

Hence the name FAST-9. This algorithm shows good performance [26], [50].

Since FAST does not produce a measure of cornerness, it has large responses along edges.

A Harris corner measure [10] is therefore applied to order the FAST keypoints. To find a target

number N of keypoints, the threshold is set low enough to get more than N keypoints. The

keypoints are then ordered according to the Harris measure, and the top N points are picked.

A scale pyramid of the image is employed where FAST features filtered by Harris measure is

produced at each level of the pyramid. This is done since FAST does not produce multi-scale

CHAPTER 2. THEORY 30

Figure 2.9: Corner detection test in an image patch. The highlighted squares are the pixels used
in the corner detection. [26]

features.

FAST features also does not have an orientation component. An effective measure of corner

orientation is applied, based on the intensity centroid technique by Rosin [52]. This technique

assumes that a corner’s intensity is offset from its centre, and by finding the vector from the

corners centre, o, to the centroid c, the orientation of the patch can be determined. The moment

of the patch is defined by Rosin as:

mpq =
X

x,y
xp , y p I (x, y) (2.39)

where p and q are the order of the moments. The centroid can then be found by

c =
µ

m10

m00
,

m01

m00

∂
(2.40)

A vector, ~oc, from the corners centre to the centroid can then be constructed. The orientation

of the patch is then:

µ = atan2(m01,m10) (2.41)

where atan2 is the quadrant-aware version of arctan.

The rotation invariance of this measure is improved by making sure that moments are com-

puted with x and y remaining within a circular region of radius r . r is empirically chosen to be

the patch size, so that x and y run from [°r,r].

CHAPTER 2. THEORY 31

rBRIEF descriptor

The modified BRIEF (Binary Robust Independent Elementary Features) descriptor used in ORB

is a rotation aware BREIF in order to allow BREIF to be invariant to in-plane rotation.

The BRIEF descriptor [51] is constructed from a set of binary intensity tests. From these tests

a bit string description of an image patch can be made. For a smoothed image patch p, a binary

test ø is defined by:

ø(p; x, y) :=

8
<

:
1, : p(x) < p(y)

0, : p(x) ∏ p(y)
(2.42)

where p(x) is the intensity of p at a point x. The feature is defined as a vector of n binary tests:

fn(p) =
X

1∑i∑n
2i°1ø(p; xi , yi) (2.43)

the length of the vector is chosen as n = 256.

In order to make BRIEF invariant to in-plane rotation, a method to steer BRIEF according to

the orientation of keypoints is applied [50]. A 2£n matrix, S, is defined for any feature set of n

binary tests at location (xi , yi):

S =
"

x1, . . . , xn

y1, . . . , yn

#

(2.44)

A "steered" version Sµ of S is constructed by using the patch orientation µ and the corre-

sponding rotation matrix Rµ:

Sµ = RµS (2.45)

The steered BREIF operator then becomes

gn(p,µ) := fn(p)|(xi , yi) 2 Sµ (2.46)

A lookup table of precomputed BRIEF patterns are constructed where the angle is discretised

to increments of 2º/30(= 12degrees). The correct set of points Sµ will be used to compute its

descriptor as long as the keypoint orientation µ is consistent across views [50].

An important property of BRIEF is that each bit feature has a large variance and a mean close

to 0.5. But once BRIEF is oriented along the keypoint direction, the means are shifted to a more

distributed pattern. A high variance is desirable as it makes the feature more discriminative

because it responds differentially to inputs. Also, if the tests are uncorrelated, each test will

contribute to the result. Therefore, ORB runs a greedy search among all possible binary test to

find the ones that have means close to 0.5 and high variance, as well as being uncorrelated. The

result is called rBRIEF, which has a significant improvement in variance and correlation over

steered BRIEF. [50]. The combination of oFAST and rBRIEF is what is called ORB.

Chapter 3

Method

3.1 Accelerometer calibration

Since the accelerometer equipped on the Blueye Pioneer is not calibrated, either a pre-calibration

of the accelerometer or an online calibration method is needed. As the Pioneers are equipped

with the same sensor-suite, the calibration parameters should in theory be equal for all of them.

But this is not the case in practice. The same sensors may have differences when it comes to

manufacturing, such as misalignments of the axes, or that the orientation may not be exact. If

the MEMS accelerometer is used in environments with variations with respect to temperature,

the user may need to frequently recalibrate [53]. An online calibration method is therefore de-

sired in order to improve the measurement accuracy.

An online calibration method with the use of an error state Kalman Filter, based on the

work in [43], was tried implemented. The chose of an error state Kalman filter over a total state

Kalman filter (also known as indirect and direct Kalman filters, respectively) has multiple bene-

fits when implemented in conjunction with an inertial navigation system (INS). Being in the INS

loop and using the total state representation, a dynamic model would have to be incorporated

such that the filter would maintain explicit, accurate awareness of the vehicle’s motion. It would

also have to attempt to suppress noisy data at a relatively high frequency [54]. A dynamic model

often consists of complex non-linear equations which are hard to determine. Some models may

require a large number of states, which can lead to large computational demands.

Simulation results

The ESKF implementation is developed through simulation. In this manner the filter imple-

mentation can be controlled by applying known states. The implemented ESKF filter consists

of the stages and states presented in section 2.5. The IMU on the Blueye Pioneer has an update

rate of 100 Hz, so the time step in the simulation is set to 0.01 seconds. The sensor readings, zk ,

32

CHAPTER 3. METHOD 33

sent to the filter at time k consists of the following:

zk =

2

66664

pk

√k

!m,k

am,k

3

77775
(3.1)

where pk is the position of the vehicle with respect to the global frame, √k is the current mea-

sured heading, and !m,k and am,k is the measured angular velocity given by the gyroscope and

measured acceleration given by the accelerometer, respectively. In the simulation the current

position, is calculated as given in (2.24a) and (2.24c), based on the known acceleration. The

position measurements are given by the visual odometry algorithm in a final implementation.

The noise variance in acceleration, æ2
na

, and angular velocity æ2
n! , as well as drift and bias is

given in table 3.1.

Table 3.1: Parameters used in the ESKF simulation

Parameter Value

Accelerometer

æ2
na

0.004
bx 0.02
by 0.02
bz 0.02

Gyroscope

æ2
n! 0.004

dx 0.0
dy 0.0
dz 0.0

The system is simulated with an acceleration step input of 0.05m/s2 after 5 seconds which

also last for 5 seconds. The results is shown in figure 3.1. The goal of the EKSF implementation

is to correctly estimate the bias of the accelerometer measurements and at the same time filter

out the noise. As shown by the results, the filter does not estimate the bias and true acceleration

correctly. When the system is in steady state, i.e. when the true acceleration is zero, the filter

estimates the bias correctly. The wrong estimates occur when the the step input is applied. The

change in acceleration is considered a bias and not true acceleration. The true acceleration is

therefore always estimated to zero.

The ESKF may have several advantages compared to a standard extended Kalman filter when

implemented together with an IMU. But for a low cost IMU, as the one used in this thesis, it may

lead to difficulties. One of the reasons why this implementation did not work properly is because

it is a sensor based observer instead of a model based observer. For cheap sensors which may

not be accurate, the distinction between correct measurements and noise may be harder to

CHAPTER 3. METHOD 34

determine. This can clearly be seen in in the results, where the true change in acceleration is

considered as bias.

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.1

0

0.1

0.2

[m
/s

2
]

Accelerometer estimates

a
m,x

a
x

b
x

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.05

0

0.05

0.1

[m
/s

2
]

a
m,y

a
y

b
y

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.05

0

0.05

0.1

[m
/s

2
]

a
m,y

a
z

b
z

Figure 3.1: Acceleration estimates from the EKSF simulation

Implementing a well functioning ESKF for this application is both time consuming and chal-

lenging since it needs to work on multiple devices in order to be implemented as a universal cal-

ibration method on all units of the Blueye Pioneer. The implementation was therefore consid-

ered as too time consuming, and was decided not to be implemented in the final MVO algorithm

in order to research and finalise the other needed parts of an implementation.

3.2 Camera calibration

In order to determine the cameras intrinsic parameters, a calibration of the camera is necessary.

The intrinsic parameters consists of the focal length, the optical centre which is determined by

the principle point coordinates, the skew coefficients, and the distortion coefficients which are

considered additional. The intrinsic parameters is needed in order to determine the matrix K,

given by (2.34). The calibration process is done by picturing a model with a known geometri-

CHAPTER 3. METHOD 35

cal pattern, such as classical black-white chessboard or a symmetrical circle pattern. The in-

trinsic parameters are then determined by looking at the final geometrical pattern [55]. The

calibration procedure for the camera in the Blueye Pioneer is done in water which is shown in

figure 3.2. Most computer vision software or programming tools with computer vision ability,

e.g. OpenCV or Matlab, has the ability to perform a calibration process based on predetermined

camera models.

Figure 3.2: Calibration of camera using a checkerboard pattern

The results from the calibration procedure is presented in table 3.2

Table 3.2: Underwater calibration results: Intrinsic parameters and distortion coefficients

fx 1354.45761 pixels
fy 1379.97405 pixels
cx 891.06972 pixels
cy 756.19288 pixels
k1 -0.2708139
k2 0.2005247
p1 0.0208302
p2 0.0002806
k3 -0.1013460

3.3 Motion estimation

Consider a point correspondence represented by two image points q1, q2 given by homogenous

coordinates in two successive image frames, Ik and Ik°1. The geometric relation between the

CHAPTER 3. METHOD 36

Figure 3.3: Illustration of the epipolar constraint

two image frames are given by the so called essential matrix E. The camera motion parameters

can be extracted from the essential matrix up to an unknown scale for the translation. The

essential matrix is given on the form:

Ek = Rk S(tk) (3.2)

where R is the rotation matrix, and S(t) is the matrix representation of the cross product with t,

given as

S(t) =

2

664

0 °tz ty

tz 0 °tx

°ty tx 0

3

775 (3.3)

The essential matrix can be computed using the 2D-to-2D correspondences between the im-

age points. The epipolar constraint is the main property of the 2D-to-2D based motion estima-

tion [9]. This constraint determines the line in which the corresponding point lies in the other

image, called the epipolar line and shown in figure 3.3. The epipolar constraint is described by:

q>
2 K>EKq1 = 0 (3.4)

In order to determine the the essential matrix, Nistér’s five-point algorithm [56] is used. The

algorithm consists of computing the coefficients of a tenth degree polynomial in closed form

and, subsequently, finding its roots. The algorithm requires the minimum number of points

possible, since the essential matrix has only five degrees of freedom.

The rotation matrix R and translation t are recovered from the essential matrix based on

theorem 3 given in [56] which states that given a singular decomposition of the essential matrix

as

E ª Udiag(1,1,0)V> (3.5)

where ª denotes equality up to scale. U, and V are chosen such that det(U) > 0 and det(V) > 0.

CHAPTER 3. METHOD 37

Then:

t ª tu ¥ [u12,u23,u33]> (3.6)

and R is equal to

Ra ¥ UDVT or Rb ¥ UD>V> (3.7)

Any combination of R and t according to conditions above satisfies the epipolar constraint in

(3.4).

In order to resolve this, it is assumed that the first camera matrix is [I3x3|03x1] and the trans-

lation t is of unit length. There are then four possible solutions. In order to determine which

choice corresponds to the true configuration, we make use of the cheirality constraint which

says that scene points should be in front of the camera.

By denoting the rotation and translation between the two last camera frames to be Rk and

tk , the current camera pose expressed by Rtot ,k ttot ,k can then be written by:

Rtot ,k = Rtot ,k°1Rk (3.8)

ttot ,k = ttot ,k°1 +∏Rtot ,k tk (3.9)

where ∏ is the scale parameter.

Finally the set of camera poses C0:n = {C0, . . . ,Cn} where n 2 [0,k] contains the transforma-

tions of the camera with respect to the initial coordinate frame at k = 0. A visualisation of the

motion estimation is shown in figure 3.4.

Figure 3.4: Graphical representation of monocular visual odometry

CHAPTER 3. METHOD 38

3.4 Feature matching

Tracking of detected features are done by matching features in two subsequent frames. The

matching is done by the Brute-Force matcher. Brute-Force matching is simple as it match fea-

tures based on distance calculation. The closest feature is returned as a match. The distance

between two binary string descriptors is obtained by calculating the Hamming distance. The

Hamming distance between two strings of equal length is the number of positions which are not

equal. E.g. the Hamming distance between 4195824 and 4395324 is 2. Calculating the Hamming

distance is faster than computing the Euclidean distance, which is an advantage with respect to

computational effort [51]. Figure 3.5 shows feature matching between two image frames.

Figure 3.5: Matching of features detected using ORB and matched with use of the Hamming
distance

3.5 Feature detector comparison

Timing and accuracy of feature-based tracking is important in a real-time application in order to

end up with reliable position estimates. Therefore, correct choice of feature-detector-descriptor

is critical in feature-matching applications. Computational efficiency and robustness is two key

characteristics of a good feature-detector-descriptor. A reasonable quick computational time is

critical in order to implement a feature-based tracking algorithm real time.

SIFT, SURF, KAZE, AKAZE, ORB and BRISK are among the fundamental feature-detectors

[49]. Both SIFT and SURF are patented, which results in that these feature-detector algorithms

are not considered further in this thesis. Also, because of the patent, these algorithms are part

of what OpenCV calls "non-free" modules in newer versions of the computer vision library. A

comparison of ORB, BRISK, AKAZE and KAZE follows.

In order to distinguish which feature-detector to use, the different algorithm have been

tested on datasets that simulates the environment for where a dynamic positioning feature for

the Blueye Pioneer would be beneficial. One ability of a robust feature-detector for use in un-

CHAPTER 3. METHOD 39

Figure 3.6: The Milk subset of the TURBID dataset (6 out of 20 images). Degradation is increased
in each image by adding a controlled amount of milk between each image.

derwater environments is good performance in different levels of turbidity. Ocean turbidity,

also known as "cloudiness" or "haziness", is caused by individual particles in the seawater. This

particles can be too small to be seen without magnification. Scattering and attenuation of light

cause the loss of water transparency, and results in turbid images. As light is backscattered, a

visibility condition similar to when headlights on a car is used in fog arises.

The TURBID dataset consists of a collection of underwater images, generated to contribute

to the underwater research area [57]. The turbidity, and consequently the amount of degrada-

tion in each image, is increased by adding a specific amount of whole milk into the water tank.

The Milk subset is used for comparison analysis in this thesis. In this subset, a set of 20 images

is taken. The images are taken in a water tank of a man made scene. The first image is taken in

clear water and works as a reference image. A collection of the subset is shown in figure 3.6. The

subset is herby referred to as the TURBID dataset.

A comparison of number of features found by AKAZE, KAZE, ORB and BRISK in each image

of the TURBID dataset is shown in figure 3.7. The first image is the reference image, taken in

clear water. The average computational time for detection features in each image by the feature-

detector algorithms is presented in table 3.3. The ORB algorithm shows an extreme superiority

when it comes to feature detection. The oriented FAST detector used in ORB, has an overall

better performance compared to the other detectors. Also, ORB detect features in the images

with high turbidity where the other algorithms does not. However, matching time for such a

large number of features, prolongs the total image matching time.

The computational time for feature detection in the TURBID dataset shows that BRISK and

ORB has a clear advantage compared to AKAZE and KAZE. KAZE uses an average of 0.4770 sec-

onds to find features in each image. Together with matching, this algorithm has too long com-

putational time to be implemented in a real-time application. The same applies for AKAZE.

There was not to be found any correlation between turbidity level and computational time of

feature detection, which is worth to mention as the features found in each image is naturally

affected by the turbidity. For this dataset, ORB has the fastest computational time for feature

detection.

CHAPTER 3. METHOD 40

0 2 4 6 8 10 12 14 16 18

Images

0

2000

4000

6000

8000

10000

12000

14000

N
u

m
b

e
r

o
f

d
e

te
ct

e
d

 f
e

a
tu

re
s

ORB
BRISK
KAZE
AKAZE

Figure 3.7: Comparison of features detected in the TURBID dataset

Table 3.3: Computational time of feature detection in the TURBID dataset

ORB BRISK KAZE AKAZE
Detection [s] 0.0158 0.0170 0.4770 0.0689

A comparison of the feature-detectors is also done on images taken from the test facility

in Marine Technologies MC-Lab. The dataset consists images taken with the Blueye Pioneer,

where the drone performs a forward motion towards a floating cross. Two of the images can be

seen in figure 3.5. The dataset consists of 160 images. The dataset is herby referred to as the

POOL dataset. In addition to feature detection, a matching between the features found in two

following pictures throughout the dataset is done to compare the tracking abilities of the algo-

rithms. ORB in an unbounded state detects a large number of features, as seen in the results

from the TURBID dataset. Hence, an increased computational time for feature-matching. The

feature matching cost can be reduced by using its detector in a bounded state. The max amount

of features is therefore put to 500 in this thesis. BRISK, ORB and AKZE have binary descrip-

tors, so matching is preformed as described in section 3.4. KAZE uses a string based descriptor,

which means that the matching has to be done differently using L1-norm or L2-norm. In this

comparison, L2-norm is chosen. The results is presented in figure 3.8 and table 3.4.

ORB detects most features in this dataset as well. The number of features found in these

images are much lower than the number of features found in the TURBID dataset. This clearly

affects the total computational time. BRISK shows a faster total computational time than ORB.

However, the difference is so small that it is not considered advantageous in a real-time imple-

CHAPTER 3. METHOD 41

0 20 40 60 80 100 120 140 160

Image

50

100

150

200

250

300

350

400

450

500

N
u

m
b

e
r

o
f

d
e

te
ct

e
d

 f
e

a
tu

re
s

0 20 40 60 80 100 120 140 160

Image

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r

o
f

tr
a

ck
e

d
 f

e
a

tu
re

s
b

e
tw

e
e

n
 f

ra
m

e
s

BRISK
ORB
AKAZE
KAZE

Figure 3.8: Number of detected features (left) and tracked features between images (right) in the
POOL dataset

Table 3.4: Computational time of feature detection and matching in the POOL dataset

ORB BRISK KAZE AKAZE
Detection [s] 0.0094 0.0090 0.3444 0.0752
Detection + matching [s] 0.0217 0.0195 0.3534 0.0837

mentation, and the number of features detected by ORB makes the algorithm more accurate in

terms of pose estimation.

By the comparison of the feature detector and descriptor algorithms, ORB is chosen as the

algorithm used in the MVO implementation in this thesis. Comparison of the algorithms are

also done by [49], however not in water. The results are similar, with ORB being the preferred

algorithm.

3.6 Program Implementation

The monocular visual odometry implementation conducted in this thesis uses the theory previ-

ously described in chapter 2 and the methods described in section 3.3 and 3.4. The implemen-

tation is also based on results from the method described earlier in this chapter.

For two successive image frames captured at time step k ° 1 and k, features in both im-

ages are extracted, as well as given a descriptor, using ORB. Before the features are extracted,

the images are corrected for distortion. The found features are matched using the Brute-Force

matcher comparing their Hamming distance as described in section 3.4. The found matches are

then sorted based on the distance, as the matches characterised as "best" are the ones with the

shortest Hamming distance.

Unfortunately, not all matches will be a correct match. A way to sort of the incorrect matches

is through a nearest-neighbour search. The idea is presented in [58]. This is done by returning

CHAPTER 3. METHOD 42

two descriptors that are a match for each feature. By comparing their distance, the closest neigh-

bour is the actual match, while the second-closest is defined to be the closest neighbour not to

be a match. For each feature, two matches and two Hamming distances will then be computed.

To sort of the matches that are incorrect, the ratio between the closest and the second closest

neighbour is compared. To be accepted as a correct match, the closest neighbour must have

a lower distance than the second closest. As defined in [58], the distances of the two neigh-

bours will be quite similar if an incorrect match occurs. Thus, the closest neighbour will only

be accepted as a correct match if the distance is lower than a threshold defined. For the MVO

implementation in this thesis, this closest neighbour will be accepted as match if the distance is

lower than 80% of the second closest.

Based on the matches between two consecutive image frames, Nistér’s five-point algorithm

with random sample consensus (RANSAC) is used to compute the essential matrix. The given

matches contains outliers, hence RANSAC is used as this method is suited for applications in au-

tomated image analysis where an interpretation is based on data given by error-prone feature-

detectors [59]. A simple example is fitting a line in two dimensions given a set of observations.

Assuming that the observations contain both inliers and outliers, i.e. points which approxi-

mately can be fitted to the line and points which cannot be fitted to the line, a simple least

square method would produce a line that fits badly to the data including both inliers and out-

liers. This is because the least square method produce a line that is optimally fitted to all points,

including the outliers. RANSAC, on the other hand, attempts to only use the inliers in its calcu-

lation by fitting the linear models to several random samplings of the data and return only the

models that has the best fit to a subset of the data. In this manner, it excludes the outliers. A

random subset consisting of inliers would have the best model fit, since the inliers tend to be

more linearly related than a random mixture of inliers and outliers. In addition to the matches

and a fitting model given as input to RANSAC, some confidence parameters are set. The thresh-

old parameter defines when a datapoint fits the model, while the probability defines the desired

probability that we get a good sample. The threshold is set to 0.5 and the probability is set to

0.999 in the implemented algorithm.

After the essential matrix is computed, the translation and rotation between the image frames

can be extracted as described through equation (3.5) to (3.7). The calculated translation and ro-

tation between the two consecutive images are then added to the total translation and rotation,

as given by equation (3.8) and (3.9). Before a new image is captured and the cycle starts over, the

features found in the first image is stored in order to be matched with the new features found

the incoming image.

The implemented MVO algorithm is able to deliver position estimates with an update rate of

approximately 10 Hz, meaning the algorithm can process approximately 10 frames per second

in the given environments. A pipeline of the MVO is shown in figure 3.9.

CHAPTER 3. METHOD 43

Figure 3.9: Monocular visual odometry pipeline from feature detection to motion estimation

By using one camera, we can no longer tell if we are looking at a large object in the distance

or a smaller object close to the camera since we have lost the depth information. Just try to

close one eye and determine an unknown distance. Therefore, a scale parameter needs to be

estimated in order to add a scale to the motion estimations from the MVO-algorithm.

A translation in heave is performed to estimate the scale parameter. In this manner, a mea-

surable translation where the distance is known can be compared to the estimated translation

from the MVO algorithm. In the beginning of every run, the drone is moved 20cm in heave. The

scale, ∏ is then calculated as the relationship between the measured and estimated translation

in heave from the MVO algorithm.

∏= |zk ° z0

ẑk
| (3.10)

where zk and z0 is the measured depth at time k and the initial depth at time k = 0, respectively,

an x̂k is the estimated translation in heave form the MVO algorithm.

3.7 Simulation and test scenarios

The implemented algorithm is tested through different simulations and real-time tests. This

section will present the different scenarios, while the results with comments will be presented

in the next chapter. The underwater environment offers greater challenges with respect to com-

puter vision as stated in section 1.2. In order to verify the different aspects of the algorithm, as

well as evaluate its performance and try to find its limitations, a set of different tests conducted

both in-air and underwater were chosen. The next subsections presents the different simulation

and test scenarios.

CHAPTER 3. METHOD 44

3.7.1 KITTI dataset

As an initial test, the MVO algorithm was evaluated on the KITTI dataset [60]. The dataset works

as a benchmark suite for real-world computer vision. Different tasks of interest can be used

with the dataset, such as stereo, optical flow, visual odometry, SLAM, 3D object detection and

3D tracking. The dataset is recorded from a car driving around in the city of Karlsruhe, Germany,

and consists of camera images, laser scans, high-precision GPS measurements and IMU accel-

erations from a combined GPS/IMU system. The purpose of the dataset is to contribute to the

development of computer vision [60].

The dataset has its own visual odometry subset consisting of 22 stereo sequences. 11 of

them are provided with ground truth trajectories. The MVO algorithm is tested on two of the

sequences and the results are presented in the following. The first sequence consists of footage

from a road with smooth turns and few road changes. The second sequence is recorded in a city

with several sharp and 90 degree turns, as the cars is driving around blocks and changing streets,

which provides a good test of the rotational accuracy of the algorithm. The MVO algorithm is

tested on a 60 second sample of both sequences.

As the sequences consists of recorded camera images with known ground truth, there is no

way to perform the scale estimation procedure implemented in the MVO algorithm as stated in

section 3.6. The effect of a wrong scale parameter is therefore not visible in the this comparison.

The scale parameter, ∏, used in the KITTI dataset is calculated as

∏=
q

(x °xprev)2 + (y ° yprev)2 + (z ° zprev)2 (3.11)

where (x, y, z) and (xprev, yprev, zprev) is the known ground truth coordinates for current and pre-

vious camera frame, respectively.

3.7.2 In air evaluation

The MVO algorithm was tested on the Blueye Pioneer in air. A calibration procedure as de-

scribed in section 3.2 was done in air prior to the test. The calibration results is presented in

appendix. A simple scenario was presented, where the drone where moved through a straight

office hallway. A picture from the hallway can be seen in figure 3.10.

3.7.3 Tests in MC-lab

The final and main tests where conducted in the MC-lab at Marine technologies facilities at Ty-

holt. The laboratory consists of a 40m x 6.45m x 1.5m pool with a Qualisys real-time positioning

system. The system consists of 6 Oqus cameras and the Qualisys Track Manager (QTM) soft-

ware [61]. By applying markers on the Blueye Pioneer, the Qualisys software makes it possible

CHAPTER 3. METHOD 45

Figure 3.10: Hallway used for in air evaluation. Features detected are marked green

to record 6-DOF movement of the mini ROV. As the walls and bottom of the pool contains few

features, a simple cross made of out of buoyant material was made to use as an object of inter-

est. Figure 3.11 and 3.12 shows the experimental setup of the Blueye Pioneer with markers, and

the object of interest.

Figure 3.11: Blueye Pioneer
equipped with markers to mea-
sure position and orientation

Figure 3.12: Object used as reference during
testing

Different scenarios where tested in the MC-Lab to evaluate the different aspects of the MVO

algorithm. Pure translation scenarios and station keeping where tested while performing mo-

tion estimation. During testing, it was soon realised that the applied algorithm did not perform

CHAPTER 3. METHOD 46

well enough in able to be used for dynamic positioning. The reasons why is discussed in chapter

5. The different test scenarios were still conducted in order of trying to find the limitations of

the algorithm and sources of errors of the results. The different test scenarios presented is:

1. Pure surge translation backwards from the object of interest.

2. Forward and backward translation.

3. Sway translation.

4. Station keeping.

3.7.4 Scale estimation

In addition to the different test scenarios, a series of scale estimations were performed. As stated

earlier in section 3.6, the scale is estimated in the beginning of every run. Using the measure-

ments from the depth sensor the drone is driven straight upwards 20 cm. The scale is then

calculated as the relation between the measured and estimated translation in heave from the

MVO algorithm.

Chapter 4

Results

This chapter presents the different results from the simulation and test scenarios presented in

section 3.7.

4.1 Comparison with KITTI dataset

The results is shown in figure 4.1 and 4.2 .

From the results of the first sequence, figure 4.1, the MVO algorithm manage to estimate the

trajectory well. However, the position error accumulates with distance, and the position error is

approximately 14 meters after 60 seconds.

The results from the second test shows that the algorithm estimates the trajectory well while

the car is driving on a straight path. The position error quickly rises as the first turn is performed,

and it is clear from the presented results that the wrong rotation estimation is the cause of the

accumulated error throughout the rest of the sequence. While the car is driving on a straight

path, the MVO algorithm estimates a straight trajectory. Still, because of the the wrong estimates

in rotation, the position error is above 80 meters after 60 seconds in this scenario.

0 100 200 300 400

East [m]

-40

-20

0

20

40

60

80

100

120

N
o
rt

h
 [
m

]

Estimated and true North-East position

0 10 20 30 40 50 60

Time [s]

0

5

10

15

20

E
rr

o
r

[m
]

Position error

Figure 4.1: Results from comparison with the KITTI dataset, first sequence

47

CHAPTER 4. RESULTS 48

0 20 40 60 80 100 120

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Estimated and true North-East position

0 10 20 30 40 50 60

Time [s]

0

10

20

30

40

50

60

70

80

90

E
rr

o
r

[m
]

Position error

Figure 4.2: Results from comparison with the KITTI dataset, second sequence

4.2 In air evaluation

The results is presented in figure 4.3. The results have no ground truth for comparison, but as the

applied movement is a pure surge translation, it is easy for the reader to visualise the expected

ground truth when evaluating the results. The ROV was moved approximately 18 meters. The

estimated translation in surge is therefore close to the true translation.

It is expected from a well functioning visual odometry algorithm that the result of the trajec-

tory estimation would be a straight path. The results shows that the MVO algorithm estimates

the trajectory well. It has an offset of ±0.4 meters in sway along the trajectory.

CHAPTER 4. RESULTS 49

-0.4 -0.2 0 0.2 0.4

East [m]

0

2

4

6

8

10

12

14

16

18

N
o

rt
h

 [
m

]

Estimated trajectory North-East

Figure 4.3: Estimated trajectory of motion through a straight hallway

CHAPTER 4. RESULTS 50

4.3 Pool tests

4.3.1 Scenario 1: Surge translation

A pure surge translation were tested to analyse the algorithms ability to perform motion es-

timation in what was considered a simple scenario. This scenario is also comparable to the

in-air evaluation presented in section 4.2, which therefore gives an indication on the challenges

associated with the underwater environments. The North-East map is given in figure 4.4, the

estimated change in position and rotation is given in figure 4.5 and 4.6, respectively.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

East [m]

-5

-4

-3

-2

-1

0

1

N
o
rt

h
 [
m

]

Estimated and true North-East position

Figure 4.4: Results scenario 1: North-East plot of the estimated trajectory and ground truth

The algorithm estimates a wrong orientation from the beginning, resulting in an estimated

translation in sway instead of surge during the first seconds. After 16 seconds the ground truth

position data from Qualisys have a sudden change. The software looses track of some or all the

markers on the ROV, and estimates an orientation which causes the sudden change. The results

after 16 seconds should therefore not be considered in the evaluation.

4.3.2 Scenario 2: Forward-backward translation

In order to analyse the change in translation, a forward-backward test were conducted. The

North-East plot is presented in figure 4.7, estimated change in position in figure 4.8, and esti-

mated change in orientation in figure 4.9.

The North-East plot clearly shows the errors of a wrongly estimated scale parameter. The

algorithm estimates a 14 meter forward surge translation, which should be around 2 meters.

Studying the surge plot in figure 4.8 shows that the MVO algorithm does not manage to esti-

mate the change in surge motion, where the backward motion is not correctly estimated. The

CHAPTER 4. RESULTS 51

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-4

-2

0

S
u
rg

e
 [
m

]

Estimated and true position

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-1

0

1

2

S
w

a
y

[m
]

0 2 4 6 8 10 12 14 16 18 20

Time [s]

0

1

2

3

H
e
a
ve

 [
m

]

Figure 4.5: Results scenario 1: Measured and estimated movement in surge, sway and heave

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-100

0

100

R
o

ll
[d

e
g

]

Estimated and true orientation

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-40

-20

0

20

40

60

P
itc

h
 [

d
e

g
]

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-100

0

100

Y
a

w
 [

d
e

g
]

Figure 4.6: Results scenario 1: Measured and estimated orientation

transition between forward and backward motion happens after ª 20 seconds. The orientation

estimation has a sudden change in roll at the same time. The wrong estimations in rotation

clearly affect the position estimation, resulting in wrong estimates because of an orientation of

the drone that is not correct. This is also clearly in the heave motion. The drone is kept on a

constant depth throughout the test, but the MVO algorithm estimates a depth below 6 meters

after 35 seconds.

CHAPTER 4. RESULTS 52

-2 -1.5 -1 -0.5 0 0.5 1 1.5

East [m]

-2

0

2

4

6

8

10

12

14

16

N
o
rt

h
 [

m
]

Estimated and true North-East position

Figure 4.7: Results scenario 2: North-East plot of the estimated trajectory and ground truth

0 5 10 15 20 25 30 35

Time [s]

0

5

10

S
u
rg

e
 [
m

]

Estimated and true position

0 5 10 15 20 25 30 35

Time [s]

-1

0

1

S
w

a
y

[m
]

0 5 10 15 20 25 30 35

Time [s]

0

2

4

6

H
e
a
ve

 [
m

]

Figure 4.8: Results scenario 2: Measured and estimated movement in surge, sway and heave

CHAPTER 4. RESULTS 53

0 5 10 15 20 25 30 35

Time [s]

-100

0

100

R
o

ll
[d

e
g

]

Estimated and true orientation

0 5 10 15 20 25 30 35

Time [s]

-40

-20

0

20

40

P
itc

h
 [

d
e

g
]

0 5 10 15 20 25 30 35

Time [s]

-100

0

100

Y
a

w
 [

d
e

g
]

Figure 4.9: Results scenario 2: Measured and estimated orientation

4.3.3 Scenario 3: Sway translation

In the previous scenarios surge motion have been under evaluation, while in this scenario sway

motion is considered. The North-East plot is presented in figure 4.10, estimated change in posi-

tion is presented in figure 4.11, and estimated change in position in figure 4.12. A negative sway

motion is applied, while the heading is tried kept constant throughout the test. The underwater

drone will therefore move to the left with respect to the body frame, and in this manner the ob-

ject of interest will move through the image frame, starting in the far left and ending up in the

far right.

The results, as the previous scenarios, shows that the MVO algorithm is not capable of com-

puting a correct motion. During the test, the underwater drone moves approximately 1.7 meters

to the left, and 0.45 meters backwards while keeping an almost constant heading. Studying fig-

ure 4.11, the MVO algorithm is not capable of computing the sway motion at all. Throughout

the test, the estimated sway coordinate ŷ have small fluctuations around zero.

CHAPTER 4. RESULTS 54

-2 -1.5 -1 -0.5 0 0.5

East [m]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

N
o
rt

h
 [

m
]

Estimated and true North-East position

Figure 4.10: Result scenario 3: North-East plot of the estimated trajectory and ground truth

0 5 10 15 20 25

Time [s]

-0.4

-0.2

0

S
u
rg

e
 [
m

]

Estimated and true position

0 5 10 15 20 25

Time [s]

-1.5

-1

-0.5

0

S
w

a
y

[m
]

0 5 10 15 20 25

Time [s]

-0.1

0

0.1

H
e
a
ve

 [
m

]

Figure 4.11: Results scenario 3: Measured and estimated movement in surge, sway and heave

CHAPTER 4. RESULTS 55

0 5 10 15 20 25

Time [s]

-100

0

100

R
o
ll

[d
e
g
]

Estimated and true orientation

0 5 10 15 20 25

Time [s]

-50

0

50

P
itc

h
 [
d
e
g
]

0 5 10 15 20 25

Time [s]

-100

0

100

Y
a
w

 [
d
e
g
]

Figure 4.12: Results scenario 3: Measured and estimated orientation

4.3.4 Scenario 4: Station keeping

Since the MVO algorithm was made with intention of being used for dynamic positioning, the

ability of position estimation during station keeping was tested. The resulting North-East map

is shown in figure 4.13, the estimated position in surge, sway and heave together with ground

truth is shown in figure 4.14, and the estimated orientation is shown in figure 4.15.

The station keeping is preformed in 60 seconds. The results shows that the drift in surge is

higher than for sway and heave, with approximately 5 meters. There is high fluctuations in all 3

DOFs, making it easy to see that the position estimates from the MVO-algorithm could not be

used not be used for dynamic positioning without any manipulation.

CHAPTER 4. RESULTS 56

-4 -3 -2 -1 0 1 2

East [m]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

N
o
rt

h
 [

m
]

Estimated and true North-East position

Figure 4.13: Results scenario 5: North-East plot of the estimated trajectory and ground truth

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-6

-4

-2

0

S
u

rg
e

 [
m

]

Estimated and true position

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-3

-2

-1

0

1

S
w

a
y

[m
]

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-1

0

1

2

3

H
e

a
ve

 [
m

]

Figure 4.14: Results scenario 5: Measured and estimated movement in surge, sway and heave

CHAPTER 4. RESULTS 57

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-100

0

100

R
o

ll
[d

e
g

]

Estimated and true orientation

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-50

0

50

P
itc

h
 [

d
e

g
]

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-100

0

100

Y
a

w
 [

d
e

g
]

Figure 4.15: Results scenario 5: Measured and estimated movement in roll, pitch and yaw

4.4 Scale estimation

A series of 65 scale estimations is performed, where the results is given by the box plot in figure

4.16. The median is 0.088152, while the max and min values are 1.4989 and 0.018228, respec-

tively.

1

0

0.5

1

1.5

S
c
a
le

Scale estimation

Figure 4.16: Box plot of a series of 65 scale estimations performed

Chapter 5

Discussion

5.1 Results

The results form the KITTI dataset 4.1 shows that the MVO algorithm has a potential of estimat-

ing the trajectory correctly. Still, the wrong estimation in rotation results in that the accumulated

position error grows rapidly after only two ª 90° turns, as shown from the results in sequence 2,

figure 4.2. However, when evaluating the results with the final use case in mind, the mini ROV

will not perform any massive rotations as the goal is to keep the camera fixed to an area or object

of interest. The results shows good estimations in translation, which is key.

The fluctuations experienced in the in-air test (figure 4.3) can be a result of a non-steady ap-

plied surge motion. As the test was conducted in air, the ROV could obviously not move around

on its own. The surge motion was achieved by placing the drone on a trolley, and push it through

the hallway. Hence, there is a high probability that the velocity was not constant throughout the

test. Unwanted sway motions may also have occurred resulting in the fluctuations. A wrong

scale parameter may also amplify the fluctuations in sway. The low amount of detected features

on the white walls in the hallway can also affect the estimation, and contribute to the offset.

In all of the tests conduced in the MC-lab there is a big offset in heave motion, especially

the first two scenarios. However, the depth estimates would not be used in a further dynamic

positioning implementation, since the underwater drone is equipped with a depth sensor which

is more reliable.

The unstable rotation estimations from the MVO algorithm is a clear cause of the instability

in the MVO algorithm. A way of compensating for this instability would be to compute a rota-

tion matrix from the angle measurements from the digital compass. The digital compass in the

Blueye Pioneer has a drift of around 1 degree per minute. This will of course be a factor that

will affect the compensation. However, while performing dynamic positioning with the Blueye

Pioneer the elapsed time during a dynamic positioning maneuver will in most cases be in the

magnitude of a few minutes. Hence, a few degrees offset will not affect the user experience and

58

CHAPTER 5. DISCUSSION 59

may be considered as good enough. Compensation of the rotation matrix was not considered in

this thesis, as the main focus was to reveal the capabilities of a pure monocular visual odometry

implementation.

The ability of calculating a correct scale parameter is one of the main problems when work-

ing with monocular visual odometry. The method used in the presented MVO algorithm is based

on several assumptions. The effect of these is evident through the results. The scale is only cal-

culated in heave (z - direction), and is assumed equal in the other directions. The scale should

take into account movement in all directions, as the scale calculation for the KITTI dataset in

equation (3.11). The scale is also kept constant throughout the different tests. During the dif-

ferent scenarios the drone where manually controlled, hence the velocity was not kept constant

constant during the whole test. It is reasonable to assume that the calculated translations must

have a higher scale parameter when the drone moves with higher velocities compared to when

the drone is standing still. That will not be the case with the scale estimation procedure used.

One of the main challenges with the use of monocular visual odometry in combination with

station keeping is the prevention of drift. Rotational and translational motion is estimated at

the same time with the used method. However, a main source of drift in visual odometry is

inaccuracy in the rotation estimate, both seen from the results obtained, and stated in [62].

This inaccuracy results in unreliable position estimates. The current position of the camera is

estimated in the VO method by accumulating the motions between each image. The matched

features used to determine the rotation between frames is not stored or remembered in any sort

of way. Therefore, the different rotations can be characterised as individual contributions which

added together results in the current camera pose. Hence, the drift accumulates as the rotation

calculation have no feedback or other way of correcting itself. In a station keeping point of

view, a structure from motion or SLAM method would therefore bee a better choice. In a SLAM

based method, a previous visited location can be detected through global map optimisation

using techniques like bundle adjustment or loop closure with pose graph optimisation [63]. This

is presented more thoroughly in section 6.2.

5.2 General comments

A challenge when operating in underwater environments is the loss of features and degradation

of image quality due to turbidity, scattering and attenuation. Even though the 5-point algorithm

used to obtain the essential matrix, only need five distinctive points [56], the probability of a

correct solution increases with more features. If a large number of features is detected within

a small area of the image, the information contribution from the different features at the same

area would not contribute to as accurate pose estimation as if the features where more spread

out across the image frame. Comparing the results from the in-air evaluation (Figure 4.3) and

CHAPTER 5. DISCUSSION 60

the pool results (section 3.7.3), this may bee one of the causes of the wrong estimates in the

results form the underwater tests. A lot of the features detected in the underwater tests, where

features on the object placed in the pool. These features are therefore concentrated on a small

part of the image, when the underwater drone is far away from the object, and may therefore

result in an unreliable rotation estimation.

Another important aspect of the computer vision problem is with how much certainty can

we guarantee a correct match between features. For the implementation presented in this the-

sis, there will be incorrect matches that will affect the pose estimation. In the process from

feature detection to the relative pose obtained form the essential matrix, there are two mecha-

nisms that filters out the outliers. During the matching process, the nearest-neighbour search

with a ration test is performed. However, this method may lead to incorrect matches when there

are similar features in the image. This may occur in underwater images as stated above, and in

section 1.2.

The other mechanism is related to the outliers relevance to the pose estimation, instead of

filtering them out of of the matching sequence. By applying RANSAC when computing the fun-

damental matrix, the possible solutions affected by the wrong matches will appear as an outlier

and contribute to a solution with a lower probability value in the RANSAC algorithm. Hence,

the solution consisting the wrong match will be discarded. However, if a large amount of the

matches computed are wrong the matches will consist of outliers, and RANSAC will be affected.

Hence, the outcome will be wrong translation and rotation calculations. There is no guaran-

tee that a random subset of inliers will be picked by RANSAC. The probability of the algorithm

succeeding highly depends on the proportion of inliers in the data, as well as the choice of the

different algorithm parameters such as threshold and the probability limit.

Underwater imagery introduces challenges w.r.t. lighting and lens distortion which can

cause the standard pinhole model to be inaccurate or invalid [64]. Due to air particles in the

water the refractive index will change. On the Blueye Pioneer a flat-panel window is used for the

underwater camera housing. Flat ports introduce significant distortions due to the refraction at

the air-glass and glass-water interfaces [65]. Instead, the Pinax Model introduced by Łuczyński

et al. (2017) which combines the aspects of a virtual pinhole model with the projection function

for the axial camera model can be used for accurate and efficient refraction correction. This is

not done in this thesis, but is something worth looking into in further development.

The performance and accuracy of the camera parameters obtained from the camera calibra-

tion procedure can also vary. If the calibration is performed with the checkerboard pattern at a

constant distance, the calibration parameters is linearised around that distance. If the camera

then operates with an object at a distance closer or further away than the distance used during

calibration, this will affect the performance. Based on talks with experts, the influence of not

calibrating the camera at the same distance as for the MVO application may vary, and may not

CHAPTER 5. DISCUSSION 61

even have any noticeable difference. However, it may be a factor that contributes to the total

error.

Rolling shutter effect can cause distortions that may introduce non-trivial errors in the VO

system [63]. The camera on the Blueye Pioneer has an electronic rolling shutter. This means that

each row of the sensor array is exposed at a different time, resulting in the so-called rolling shut-

ter. If the video camera or the object moves during image capturing, the rolling shutter effect

can cause great geometric distortions in the image. This can result in that the object appears

slanted, sheared, shrunk, elongated or even arbitrarily deformed [66]. The rolling shutter effect

is more visible when the velocities are higher, or in combination with high rotational velocities.

High velocities will not happen when the MVO algorithm is used for dynamic positioning, hence

this effect may not be as decisive as the other topics discussed. There are also different methods

to model and compensate for rolling shutter effect [66].

The video camera on the Blueye Pioneer can deliver video with 30 frames per second. For a

slow-moving ROV, the features found in one image will therefore be located at a small distance

from the features located in the following image. One way to speed up the MVO algorithm, and

to filter out outliers, is to alter the algorithm to check for matches in area around the feature,

expanding for the previously known position. This method will probably fail sometimes, result-

ing in that all features found in the image needs to be matched. Nevertheless, this method will

be equally fast or faster than the implemented method presented in this thesis, as the search

space for a match is narrowed down in most cases. This matching approach is presented in [67],

although it is used in a stereo camera-scheme. An outlier that may be considered a match when

the position of the feature is not taken into account may also be filtered out with this approach.

Chapter 6

Conclusion

6.1 Concluding Remarks

Motion estimation of a mini ROV is implemented through a monocular visual odometry (MVO)

application. The MVO-algorithm consists of a feature-based motion estimation, with ORB as

feature detector and descriptor. Through comparison with other fundamental feature-based

detectors, ORB shown best results in terms of computational efficiency, robustness and accu-

racy in underwater environments.

The MVO-algorithm is implemented in Python using the OpenCV computer vision library

in a ROS software framework. The application manage to run with a computational speed pro-

cessing 10 frames per second in the given environments, which is considered successful and

advantageous for accurate real-time motion estimation. The tests conducted through the dif-

ferent test scenarios, both above and under water and on prerecorded datasets, shows that the

algorithm manages to provide a successful motion estimation in translation when performed

in air. However, the errors in the rotational estimation results in high accumulated errors over

time. The underwater environment adds additional challenges with respect to feature detection

and robust matching, which results in that the motion estimation errors become too large too

quickly for the implemented MVO-algorithm to be used for the intended dynamic positioning

purpose.

The problem of determining a correct scale parameter in monocular camera scheme was

solved with use of the depth sensor equipped on the mini ROV. However, the results shows that

a more sophisticated solution should be considered in order to improve the accuracy of the MVO

algorithm.

To improve the MVO-algorithm’s motion estimation a visual inertial odometry scheme with

use of a MEMS IMU was tried carried out. An online self calibration procedure with an error

state Kalman Filter (ESKF) was conducted. Due to challenges of distinguish noise and cor-

rect measurements from the MEMS IMU in an ESKF manner, the implementation was non-

62

CHAPTER 6. CONCLUSION 63

successful and not used in the presented MVO algorithm.

6.2 Further Work

This thesis has implemented a motion estimation application through monocular visual odom-

etry. The main purpose of the motion estimation was to be used for dynamic positioning of a

mini ROV. However, through the research done in this thesis, other approaches or additional

features should be considered in order to get more accurate results.

The use of an IMU within the visual odometry system, so-called visual inertial odometry

(VIO), could improve the motion estimation and give additional benefits. This could be done

either through a filter approach attempted in this thesis, or a smoothing approach through non-

linear optimisation. There are also many public VIO-pipelines available, such as the ones pre-

sented in [21], which are worth looking into even though the majority are made for arial vehicles.

Another approach of determining the scale factor then the one presented in this thesis should

also be considered. Through combined measurements from an IMU and a pressure sensor, an

online estimation of the scale factor could be achieved, as stated in [20]. The calculation of a

correct scale parameter is a central part of an accurate MVO-algorithm.

Structure form motion (SfM) is the process of determining the 3D structure of a scene or

an object, from 2D images. By moving around an object, or around in a scene, a lot of three-

dimensional information can be collected. A unique metrical reconstruction of an object is

known possible if four points is seen from three different perspectives [68]. Three dimensional

information is obtained by looking at the correspondence between images gathered. These cor-

respondences is found by matching features in the same manner as done in VO. The features are

tracked from one image to the next to calculate the transformation and rotation of the camera.

When corresponding features are found throughout several frames, the 3D coordinates is

updated in order to get a more correct representation of the scene. For a station keeping prob-

lem, we can assume that the scene is static and objects detected are stationary. When the 3D

coordinates are known with a certain probability, the estimation of the camera position can be

done with respect to the known features. In this manner, there is always a known reference in

the image, which the pose estimation can use as a base. Each position estimate is calculated in-

dividually, avoiding the problem of accumulated errors as obtained in a standard VO approach.

As described in chapter 5, a camera calibration procedure that take into consideration the

refraction at the air-glass and glass-water interfaces would result in more accurate intrinsic pa-

rameters. The resulting effect of using a different calibration model, e.g. the Pinax Model [65],

may not be decisive for the end result, but worth looking into for further development.

Bibliography

[1] NOAA National Oceanic and Atmospheric Administration. How much of the ocean have

we explored? https://oceanservice.noaa.gov/facts/exploration.html. Online,

accessed 2018-12-03.

[2] Steven W Moore, Harry Bohm, Vickie Jensen, and Nola Johnston. Underwater robotics: sci-

ence, design & fabrication. Marine Advanced Technology Education (MATE) Center Mon-

terey, CA, 2010.

[3] Robert D Christ and Robert L Wernli Sr. The ROV manual: a user guide for remotely operated

vehicles. Butterworth-Heinemann, 2013.

[4] Ingrid Schjølberg, Tor B Gjersvik, Aksel A Transeth, and Ingrid B Utne. Next generation

subsea inspection, maintenance and repair operations. IFAC-PapersOnLine, 49(23):434–

439, 2016.

[5] Sheldon Rubin. Mini-ROVs, going where no ROV has gone before. In 2013 OCEANS-San

Diego, pages 1–4. IEEE, 2013.

[6] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB, volume 73

of Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011.

[7] Bo Zhang. Computer vision vs. human vision. Cognitive Informatics (ICCI), 2010 9th IEEE

International Conference on, pages 3–3, 2010.

[8] Hans P Moravec. Obstacle avoidance and navigation in the real world by a seeing robot

rover. Technical report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1980.

[9] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE robotics &

automation magazine, 18(4):80–92, 2011.

[10] Christopher G Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey

vision conference, volume 15, pages 10–5244. Citeseer, 1988.

64

https://oceanservice.noaa.gov/facts/exploration.html

BIBLIOGRAPHY 65

[11] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Proceedings of the

2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004., volume 1, pages I–I. Ieee, 2004.

[12] Richard Szeliski. Computer Vision: Algorithms and Applications. Texts in Computer Sci-

ence. London, 2011.

[13] Şahin Işık. A comparative evaluation of well-known feature detectors and descriptors. In-

ternational Journal of Applied Mathematics, Electronics and Computers, 3(1):1–6, 2014.

[14] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial intelligence,

17(1-3):185–203, 1981.

[15] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow estimation and their

principles. In 2010 IEEE computer society conference on computer vision and pattern recog-

nition, pages 2432–2439. IEEE, 2010.

[16] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an ap-

plication to stereo vision. 1981.

[17] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-manifold

preintegration for real-time visual–inertial odometry. IEEE Transactions on Robotics,

33(1):1–21, 2016.

[18] Joan Sola. Quaternion kinematics for the error-state kalman filter. arXiv preprint

arXiv:1711.02508, 2017.

[19] Francisco Bonin-Font, Miquel Massot-Campos, Pep Negre-Carrasco, Gabriel Oliver-

Codina, and Joan Beltran. Inertial sensor self-calibration in a visually-aided navigation

approach for a micro-auv. Sensors, 15(1):1825–1860, 2015.

[20] Vincent Creuze. Monocular Odometry for Underwater Vehicles with Online Estimation of

the Scale Factor. In IFAC 2017 World Congress, Toulouse, France, July 2017.

[21] Jeffrey Delmerico and Davide Scaramuzza. A benchmark comparison of monocular visual-

inertial odometry algorithms for flying robots. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 2502–2509. IEEE, 2018.

[22] Alberto Quattrini Li, Adem Coskun, Sean M Doherty, Shervin Ghasemlou, Apoorv S Jagtap,

M Modasshir, Sharmin Rahman, A Singh, Marios Xanthidis, Jason M O’Kane, et al. Exper-

imental comparison of open source vision-based state estimation algorithms. In Interna-

tional Symposium on Experimental Robotics, pages 775–786. Springer, 2016.

BIBLIOGRAPHY 66

[23] J-F Lots, David M Lane, Emanuele Trucco, and François Chaumette. A 2d visual servo-

ing for underwater vehicle station keeping. In Proceedings 2001 ICRA. IEEE International

Conference on Robotics and Automation (Cat. No. 01CH37164), volume 3, pages 2767–2772.

IEEE, 2001.

[24] Chao-Lin Kuo, Long-Yi Chang, Ying-Che Kuo, Chia-Hung Lin, and Kuei-Mei Lin. Visual

servo control for the underwater robot station-keeping. In 2017 International Conference

on Applied Electronics (AE), pages 1–4. IEEE, 2017.

[25] Xavier Cufí, Rafael Garcia, and Pere Ridao. An approach to vision-based station keeping

for an unmanned underwater vehicle. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 1, pages 799–804. IEEE, 2002.

[26] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.

In European conference on computer vision, pages 430–443. Springer, 2006.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-

mantic segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[29] Kishore Reddy Konda and Roland Memisevic. Learning visual odometry with a convolu-

tional network. In VISAPP (1), pages 486–490, 2015.

[30] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu. Undeepvo: Monocular visual

odometry through unsupervised deep learning. In 2018 IEEE International Conference on

Robotics and Automation (ICRA), pages 7286–7291. IEEE, 2018.

[31] Mehdi Narimani, Soroosh Nazem, and Mehdi Loueipour. Robotics vision-based system for

an underwater pipeline and cable tracker. pages 1–6. IEEE Publishing, 2009.

[32] G. Santhan Kumar, Unnikrishnan V. Painumgal, M.N.V. Chaitanya Kumar, and K.H.V. Ra-

jesh. Autonomous underwater vehicle for vision based tracking. 133:169–180, 2018.

[33] Dejun Li, Tao Zhang, and Canjun Yang. Terminal underwater docking of an autonomous

underwater vehicle using one camera and one light. Marine Technology Society Journal,

50(6):58–68, 2016.

[34] Martin Ludvigsen, Tharindu D. M. Hewage, and Kristine Klingan. Lecture Notes: AT-334

Arctic Marine Measurements Techniques, Operations and Transport. 2016.

BIBLIOGRAPHY 67

[35] CJ Funk, SB Bryant, and PJ Heckman Jr. Handbook of underwater imaging system design.

Technical report, Naval Undersea Ceter San Diego CA, 1972.

[36] Martin Ludvigsen. An ROV toolbox for optical and acoustical seabed investigations. 2010.

[37] OpenCV team. About. https://opencv.org/about/. Online, accessed: 2019-05-19.

[38] Open Source Robotics Foundation. About ros. http://www.ros.org/about-ros/. On-

line, accessed: 2018-11-01.

[39] Open Source Robotics Foundation. Core components. http://www.ros.org/
core-components/. Online, accessed: 2018-11-01.

[40] Blueye Robotics. Our story. https://www.blueyerobotics.com/page/our-story. On-

line, accessed: 2019-05-30.

[41] T.I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley &

Sons, 2011.

[42] Fredrik Dukan. Rov motion control systems. 2014.

[43] Francisco Bonin-Font, Miquel Massot-Campos, Pep Lluis Negre-Carrasco, Gabriel Oliver-

Codina, and Joan P Beltran. Inertial sensor self-calibration in a visually-aided navigation

approach for a micro-auv. Sensors (Basel, Switzerland), 15(1), 2015.

[44] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based visual-

inertial odometry. The International Journal of Robotics Research, 32(6):690–711, 2013.

[45] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular

visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020, 2018.

[46] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale.

Keyframe-based visual–inertial odometry using nonlinear optimization. The International

Journal of Robotics Research, 34(3):314–334, 2015.

[47] Eduardo Bayro Corrochano. Handbook of Geometric Computing: Applications in Pattern

Recognition, Computer Vision, Neuralcomputing, and Robotics. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2005.

[48] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse depth parametrization

for monocular slam. IEEE transactions on robotics, 24(5):932–945, 2008.

https://opencv.org/about/
http://www.ros.org/about-ros/
http://www.ros.org/core-components/
http://www.ros.org/core-components/
https://www.blueyerobotics.com/page/our-story

BIBLIOGRAPHY 68

[49] Shaharyar Ahmed Khan Tareen and Zahra Saleem. A comparative analysis of sift, surf,

kaze, akaze, orb, and brisk. In 2018 International Conference on Computing, Mathematics

and Engineering Technologies (iCoMET), pages 1–10. IEEE, 2018.

[50] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R Bradski. Orb: An efficient alter-

native to sift or surf. In ICCV, volume 11, page 2. Citeseer, 2011.

[51] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust

independent elementary features. In European conference on computer vision, pages 778–

792. Springer, 2010.

[52] Paul L Rosin. Measuring corner properties. Computer Vision and Image Understanding,

73(2):291–307, 1999.

[53] L Ye, A Argha, BG Celler, HT Nguyen, and SW Su. Online auto-calibration of triaxial

accelerometer with time-variant model structures. Sensors and Actuators A: Physical,

266:294–307, 2017.

[54] Stergios I Roumeliotis, Gaurav S Sukhatme, and George A Bekey. Circumventing dynamic

modeling: Evaluation of the error-state kalman filter applied to mobile robot localization.

In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.

99CH36288C), volume 2, pages 1656–1663. IEEE, 1999.

[55] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on

pattern analysis and machine intelligence, 22, 2000.

[56] David Nistér. An efficient solution to the five-point relative pose problem. IEEE transac-

tions on pattern analysis and machine intelligence, 26(6):0756–777, 2004.

[57] Amanda Duarte, Felipe Codevilla, Joel De O Gaya, and Silvia SC Botelho. A dataset to eval-

uate underwater image restoration methods. In OCEANS 2016-Shanghai, pages 1–6. IEEE,

2016.

[58] David G Lowe et al. Object recognition from local scale-invariant features. In iccv, vol-

ume 99, pages 1150–1157, 1999.

[59] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[60] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets Robotics:

The KITTI Dataset. International Journal of Robotics Research (IJRR), 2013.

BIBLIOGRAPHY i

[61] NTNU. Marine cybernetics laboratory (MC-lab). https://www.ntnu.edu/imt/lab/
cybernetics. Online, accessed: 2019-12-06.

[62] Pyojin Kim, Brian Coltin, and Hyoun Jin Kim. Visual odometry with drift-free rotation esti-

mation using indoor scene regularities. In BMVC, 2017.

[63] Nan Yang, Rui Wang, Xiang Gao, and Daniel Cremers. Challenges in monocular visual

odometry: Photometric calibration, motion bias, and rolling shutter effect. IEEE Robotics

and Automation Letters, 3(4):2878–2885, 2018.

[64] Tali Treibitz, Yoav Schechner, Clayton Kunz, and Hanumant Singh. Flat refractive geometry.

IEEE transactions on pattern analysis and machine intelligence, 34(1):51–65, 2011.

[65] Tomasz Łuczyński, Max Pfingsthorn, and Andreas Birk. The pinax-model for accurate and

efficient refraction correction of underwater cameras in flat-pane housings. Ocean Engi-

neering, 133:9–22, 2017.

[66] Chia-Kai Liang, Li-Wen Chang, and Homer H Chen. Analysis and compensation of rolling

shutter effect. IEEE Transactions on Image Processing, 17(8):1323–1330, 2008.

[67] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d reconstruction

in real-time. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 963–968. Ieee, 2011.

[68] Jan J Koenderink and Andrea J Van Doorn. Affine structure from motion. JOSA A, 8(2):377–

385, 1991.

https://www.ntnu.edu/imt/lab/cybernetics
https://www.ntnu.edu/imt/lab/cybernetics

Appendix A

Drone Specifications

A.1 Drone

Specs Value

Ingress protection IPX8

Dimensions 485 x 257 x 354 mm (LxWxH)

Weight in air 8.6 kg (with salt water ballast)

Construction ABS enclosures, Aluminium

pressure enclosures,

Polycarbonate (PC) windows

Buoyancy material HCP 30 Polymer Foam

Maximum rated depth 150 m

Forward speed at normal use 2 m/s (4 knots)

Thrusters 4 x 350 W

Run time at normal use Approx. 2 hours

Operating temperature -5 to +40 °C

A.2 Camera

Specs Value

Sensor CMOS, 1/3 inch

Shutter speed 1/30 s – 1/8000 s

Picture max resolution 2M (1920 x 1080)

Video resolution FHD: 1920 x 1080 25/30 Fps,

HD: 1280 x 720 25/30 Fps

ii

APPENDIX A. DRONE SPECIFICATIONS iii

Specs Value

Video type MP4

Video storage bit-rate 2 to 16 MBit/s

SD card 64 GB

A.3 Lens

Specs Value

Image Circle 1/3”

Focal length 2.1 mm

Aperture f/1.8

Iris Type fixed

MOD 200mm

Resolution MP

Angle of View (D / H / V) 170°/ 130°/ 96°

Back Focal Length 6.25 mm

Mount M12x0.5-6g

A.4 LED lights

Specs Value

Luminous flux 3300 Lumen

Colour temperature 5000 K

Colour rendering index (CRI) 70

Adjustable dimming Yes

A.5 Sensors

Specs Value

IMU 3 axis gyro & accelerometer &

magnetometer

Depth sensor Resolution: 0.2mbar

Depth sensor operating range 0 to 30 bar

APPENDIX A. DRONE SPECIFICATIONS iv

Specs Value

Temperature sensor +/- 1°

A.6 In air calibration results

The in air calibration is done in the same procedure as described in section 3.2. The results is

shown in table A.6

Table A.6: In air calibration results: Intrinsic parameters and distortion coefficients

fx 978.36617202 pixels
fy 975.69987506 pixels
cx 985.08473535 pixels
cy 541.52130078 pixels
k1 -0.37370139
k2 0.26899755
p1 -0.00120655
p2 -0.00185788
k3 -0.1411856

