
Master in Security and Mobile Computing
June 2010
Danilo Gligoroski, ITEM
Pekka Orponen, Aalto university

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Malware Detection Through Call Graphs

Joris Kinable

Problem Description
The master thesis assignment is part of a larger project called ICT SHOK Future Internet
Programme (ICT SHOK FI). The latter is an ambitious project, which deals amongst other things
with Internet security, routing scalability, information networking, etc. Multiple companies
(Ericsson, Nokia, F-secure, etc) and universities (TKK, University of Helsinki, Tampere university,
etc) cooperate in this
program for a duration of 10 years. More details can be found: http://futureinternet.fi/programme.
htm

As part of the ICT SHOK FI program, the master thesis will constitute to workpackage 6 (WP6) as
defined in the ICT SHOK FI program plan. More specifically, the master thesis will investigate the
detection of malware through the use of call graphs. A major challenge for anti-virus companies is
to analyze and process the large amount of malware samples they receive on a daily basis. In
practice, many malware samples are simply variations of previously-seen malware programs.
Hence, the ability to quickly determine whether a sample or a variation of it has been previously
encountered, would highly speed up the processing of new incoming samples. To facilitate the
recognition of samples, a high-level structure, i.e. an abstraction, of the sample is required, like for
example the call-graph. Approaches to perform malware detection through the use of call-graphs
will be investigated in the thesis.

Assignment given: 01. February 2010
Supervisor: Danilo Gligoroski, ITEM

Aalto University

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Joris Kinable

Malware Detection Through Call Graphs

Master’s Thesis

Espoo, June 30, 2010

Supervisors: Professor Pekka Orponen, Aalto University

Professor Danilo Gligoroski, Norwegian University of Science and Technology

Advisor: Alexey Kirichenko, M.Sc., F-Secure Corporation

i

AALTO UNIVERSITY ABSTRACT OF
MASTER’S THESIS

Faculty of Information and Natural Sciences
Degree Programme of Security and Mobile Computing

Author: Joris Kinable
Title of thesis:

Malware Detection Through Call Graphs

Date: June 30, 2010 Pages: 7 + 51
Professorship: Theoretical Computer Science Code: T-79
Supervisors: Professor Pekka Orponen

Professor Danilo Gligoroski

Each day, anti-virus companies receive large quantities of potentially harmful executables.

Many of the malicious samples among these executables are variations of earlier encountered

malware, created by their authors to evade pattern-based detection. Consequently, robust

detection approaches are required, capable of recognizing similar samples automatically.

In this thesis, malware detection through call graphs is studied. In a call graph, the functions

of a binary executable are represented as vertices, and the calls between those functions as

edges. By representing malware samples as call graphs, it is possible to derive and detect

structural similarities between multiple samples. The latter can be used to implement generic

malware detection schemes, which can proactively detect existing versions of the malware,

as well as future releases with similar characteristics.

To compare call graphs mutually, we compute pairwise graph similarity scores via graph

matchings which minimize an objective function known as the Graph Edit Distance. Finding

exact graph matchings is intractable for large call graph instances. Hence we investigate

several efficient approximation algorithms. Next, to facilitate the discovery of similar mal-

ware samples, we employ several clustering algorithms, including variations on k-medoids

clustering and DBSCAN clustering algorithms. Clustering experiments are conducted on a

collection of real malware samples, and the results are evaluated against manual classifica-

tions provided by virus analysts from F-Secure Corporation. Experiments show that it is

indeed possible to accurately detect malware families using the DBSCAN clustering algo-

rithm. Based on our results, we anticipate that in the future it is possible to use call graphs

to analyse the emergence of new malware families, and ultimately to automate implementing

generic protection schemes for malware families.

Keywords: Malware detection, Graph Edit Distance, Graph Similarity,
Classification, DBSCAN

Language: English

ii

Acknowledgements

In front of you lies a completed Master thesis; a product of 5 months intensive
writing, coding and experimenting. And even though the front page mentions only
a single author, clearly this work could not have been completed without the con-
tinuous support of others.
First of all, I would like to express my gratefulness towards my supervisors, and
in particular to Professor Pekka Orponen. He provided many good viewpoints,
interesting discussions, and above all invaluable comments on my work with an
unprecedented precision.
This thesis has been written as part of a mutual effort of Nokia Corporation, F-
Secure Corporation, and Aalto University. At times, this collaboration has been
challenging since each party had its own priorities, visions and goals, but overall
it has been a truly inspiring and rewarding work experience. The data security
company F-Secure provided us with the required call graph samples, allowing us to
conduct experiments on real-world data. Credit for the coordination and sample
production go respectively to Alexey Kirichenko and Gergely Erdélyi. Further-
more, they provided useful feedback during numerous occasions. In this context,
also my colleagues play an important role. Especially with Orestis Kostakis I have
had many fine conversations.
Next, I would also like to thank Karin Keijzer for her feminine view on this thesis,
i.e. suggestions for colors, layout and formatting, and of course her patience to lis-
ten to my endless monologues and discussions regarding the thesis content. Finally,
also my family and friends have to be acknowledged for their moral support. My
father, Dirk Kinable, deserves special mentioning as he has always been willing to
share his extensive linguistic knowledge with me.

This work was supported by TEKES as part of the Future Internet Programme
of TIVIT (Finnish Strategic Centre for Science, Technology and Innovation in the
field of ICT).

iii

iv

Abbreviations and Acronyms

ABS Absorbing States
DBSCAN Density-Based Spatial Clustering of Applications

with Noise
FLIRT Fast Library Identification and Recognition Tech-

nology
GA Genetic Algorithm
GED Graph Edit distance
GMI Generalized Matrix Inversion
IAT Import Address Table
MCS Maximum Common Subgraph
MI Matrix Inversion
RWP Random Walk Probability (vector)
SE Sum of error
SSE Sum of Squared Error
TR Transient states

v

vi

Contents

Abbreviations and Acronyms iv

1 Introduction 1

2 Introduction to Call Graphs 3

3 Graph Matching 5

3.1 Basic terminology and notation . 5

3.2 Graph matching techniques . 5

3.3 Graph similarity . 7

3.4 Graph edit distance approximation 8

3.5 Genetic search . 9

4 Vertex Matching 13

4.1 Structural Matching . 13

4.2 Random Walk Probability Vectors 14

5 Graph similarity: experimental results 21

5.1 Graph similarity metrics . 21

5.2 Malware family analysis . 22

6 Clustering 27

6.1 k -medoids clustering . 27

6.2 Clustering performance analysis . 29

6.3 Determining the number of clusters 31

6.3.1 Sum of (Squared) Error . 33

6.3.2 Silhouette Coefficient . 34

vii

viii CONTENTS

6.3.3 G-means algorithm . 35

6.3.4 Experimental results . 37

6.4 DBSCAN clustering . 39

7 Conclusion 45

List of Tables

4.1 Stochastic transition matrix and corresponding RWP vectors 17

ix

x LIST OF TABLES

List of Figures

2.1 Example of a call graph . 4

3.1 Genetic selection and crossover. 11

4.1 Absorbing Markov chain. 16

4.2 Two call graphs with overlapping absorbing state set. 16

4.3 Nontrivial sink recognition and removal. 18

5.1 Comparison of approximation methods for graph similarity 23

5.2 Intra family graph comparisons . 25

5.3 Inter family graph comparisons . 25

6.1 Measuring cluster quality . 31

6.2 Result of trained clustering . 32

6.3 Result of k-means++ clustering . 33

6.4 1-dimensional cluster projection . 35

6.5 Artificial similarity matrix . 37

6.6 Finding koptimal in an artificial data set. 38

6.7 Finding koptimal in a data set containing malware call graphs. 38

6.8 Discovering necessary parameters for DBSCAN clustering. 41

6.9 Result of DBSCAN clustering. 42

6.10 Plot of the diameter and tightness of DBSCAN clustering. 43

xi

xii LIST OF FIGURES

Chapter 1

Introduction

In an era where information is at the center of our society, cyber criminality is
faring well. Backed by large organizations, operating across multiple countries,
cyber criminals are nearly untraceable [27]. Jurisdictional issues caused by the
borderlessness of the Internet further hamper combating cyber criminality effec-
tively, hence rendering it a very attractive crime scene [27]. Security companies
fight an ongoing war against this criminality. On a daily basis, tens of thousands
samples with potentially harmful executable code are submitted for analysis to
the data security company F-Secure Corporation [24]. Similarly, Symantec Cor-
poration report in their latest Internet Threat Report [42] that to protect against
malware threats, a total of 5,724,106 new malicious code signatures were added to
the signature database in 2009.
Clearly, to deal with these vast amounts of malware, autonomous systems for pro-
tection, detection and desinfection are required. However, in practice automated
detection of malware is hindered by code obfuscation techniques such as packing or
encryption of the executable code. Furthermore, cyber criminals constantly develop
new versions of their malicious software to evade pattern-based detection by anti-
virus products. In fact there already exist sophisticated self-modifying virusses, as
well as tools to quickly produce variations of the same malware [42].
For each incoming sample of executable code, an anti-virus company typically poses
three questions:

1. Is the sample malicious or benign?

2. Has the sample been encountered before, possibly in a modified form?

3. Does the sample belong to a known malware family?

Analogous to the human immune system, the ability to recognize malware families
and in particular the common components responsible for the malicious behavior of
the samples within a family would allow anti-virus products to proactively detect
both known samples as well as future releases of samples belonging to the same

1

2 CHAPTER 1. INTRODUCTION

malware family. To facilitate the recognition of similar samples or commonali-
ties among multiple samples which have been subject to modification, a high-level
structure, i.e. an abstraction, of the samples is required. One such abstraction is
the call graph. A call graph is a graphical representation of a binary executable in
which functions are modeled as vertices, and calls between those functions as edges
[40].
This thesis, written as part of a joint effort of Aalto University, F-Secure Corpora-
tion, and Nokia Corporation under the Future Internet Programme [1], deals with
the detection of malware through call graphs. So far, only a limited amount of
research has been published on automated malware identification and classifica-
tion through call graphs. Flake [13] and later Dullien and Bochum [11] describe
approaches to find subgraph isomorphisms within control flow graphs, by mapping
functions from one flow graph to the other. Functions which could not be reliably
mapped have been subject to change. Via this approach, the authors of both pa-
pers can for instance reveal differences between versions of the same executable or
detect code theft. Additionally, the authors of [11] suggest that security experts
could save valuable time by only analyzing the differences among variants of the
same malware.
Preliminary work on call graphs specifically in the context of malware analysis has
been performed by Carrera and Erdélyi [8]. To speed up the process of malware
analysis, Carrera and Erdélyi use call graphs to reveal similarities among multiple
malware samples. Furthermore, after deriving similarity metrics to compare call
graphs mutually, they apply the metrics to create a small malware taxonomy us-
ing a hierarchical clustering algorithm. Briones and Gomez [6] continued the work
started by Carrera and Erdély. Their contributions mainly focus on the design
of a distributed system to compare, analyse and store call graphs for automated
malware classification. Finally, the first large scale experiments on malware com-
parisons using real malware samples were recently published in [21]. Additionally,
the authors of [21] describe techniques for efficient indexing of call graphs in hier-
archical databases to support fast malware lookups and comparisons.
In this thesis, we further explore the potentials of call graph based malware iden-
tification and classification. A subdivision in three parts is made. The first part
(Chapters 2, 3) introduces call graphs in more detail and investigates graph simi-
larity metrics to compare malware via their call graph representations. At the basis
of call graph comparisons lie graph matching algorithms. Exact graph matchings
are expensive to compute, and hence we resort to approximation algorithms. Part
two (Chapters 4, 5) discusses several heuristics to support the graph matching al-
gorithms. In addition, the accuracy of several graph matching algorithms using
varying heuristics are studied. Finally, in part three (Chapter 6) the graph simi-
larity metrics are used for automated detection of malware families via clustering
algorithms on a collection of real malware call graphs.

Chapter 2

Introduction to Call Graphs

Many anti-virus products deploy a pattern-based detection approach: virus scan-
ners are built around large databases containing byte sequences which uniquely
characterize individual malware samples. These byte sequences are used to rec-
ognize malware hidden in files or system areas [43]. Maintaining these databases,
as well as rapid detection of malware are no trivial tasks, especially when the
malware writers deploy techniques to hinder pattern-based detection [43]. Conse-
quently, robust detection techniques are required which can recognize variants of
the same malware instances.
To identify both benign and malicious programs, or variations of the same pro-
gram, in a generic way, an abstraction of the software has to be derived. One such
abstraction is the call graph [40]. A call graph is a directed graph whose vertices,
representing the functions a program is composed of, are interconnected through
directed edges which symbolize function calls [40]. A vertex can represent either
one of the following two types of functions:

1. Local functions, implemented by the program designer.

2. External functions: system and library calls.

Local functions, the most frequently occurring functions in any program, are writ-
ten by the programmer of the binary executable. External functions, such as system
and library calls, are stored in a library as part of an operating system. Contrary
to local functions, external functions never invoke local functions. Analogous to
[21], call graphs are formally defined as follows:

Definition 1. (Call Graph): A call graph is a directed graph G with vertex set
V=V(G), representing the functions, and edge set E=E(G), where E(G) ⊆ V(G)×V(G),
in correspondence with the function calls. For a vertex v ∈V, two functions are de-
fined Vn(v) and Vf(v), which provide respectively the function name and function
type of the function represented by v. The function type t ∈{0,1} can either be a
local function (0), or an external function (1).

3

4 CHAPTER 2. INTRODUCTION TO CALL GRAPHS

sub_4079C6

GetProcAddressGetModuleHandleA GetTickCount MessageBoxA

sub_407D36

sub_407D6A

HeapAlloc GetProcessHeap

sub_407D4E

sub_407D1C

start

GetCommandLineA

Figure 2.1: Example of a small call graph, derived from a malware sample with
IDA Pro. Function names starting with ’sub’ denote local functions, whereas the
remaining functions are external functions.

Call graphs are generated from a binary executable through static analysis of the
binary with disassembly tools [24]. First, obfuscation layers are removed, thereby
unpacking and, if necessary, decrypting the executable. Next, a disassembler like
IDA Pro [19] is used to identify the functions and assign them symbolic names.
Since the function names of user written functions are not preserved during the
compilation of the software, random yet unique symbolic names are assigned to
them. External functions however, have common names across executables. In
case an external function is imported dynamically, one can obtain its name from
the Import Address Table (IAT) [35, 28]. When, on the other hand, a library
function is statically linked, the library function code is merged by the compiler
into the executable. If this is the case, software like IDA Pro’s FLIRT [20] has
to be used to recognize the standard library functions and to assign them the
correct canonical names. Once all functions, i.e. the vertices in the call graph, are
identified, edges between the vertices are added, corresponding to the function calls
extracted from the disassembled executable.

Chapter 3

Graph Matching

3.1 Basic terminology and notation

This section provides a short overview of the terminology and notation used in this
thesis. A graph G = (V,E) [49] is composed of vertices V and edges E ⊆ V × V ,
representing functions and function calls respectively in the context of call graphs.
The order of a graph G is the number of vertices |V (G)| in G. In this thesis, we are
only dealing with directed graphs; an edge (also known as arc) is denoted by its
endpoints as an ordered pair of vertices. The first vertex of the ordered pair is the
tail of the edge, and the second vertex is the head. A vertex v is adjacent to vertex
u, if (u, v) ∈ E. The out-degree d+(v) of vertex v is the number of vertices adjacent
to v, i.e. the number of edges which have a tail in v. Similarly, the in-degree d−(v)
equals the number of edges with their head in v. Finally, the degree d(v) of vertex
v equals d+(v) + d−(v). The out-neighborhood (successor set) N+(v) of vertex v
consists of the vertices {w|(v, w) ∈ E}, and the in-neighborhood (predecessor set)
is the set {w|(w, v) ∈ E}.

3.2 Graph matching techniques

Detecting malware through the use of call graphs requires means to compare call
graphs mutually, and ultimately, means to distinguish call graphs representing
benign programs from call graphs based on malware samples. Mutual graph com-
parison is accomplished with graph matching.

Definition 2. (Graph matching): For two graphs, G and H, of equal order, the
graph matching problem is concerned with finding a one-to-one mapping (bijection)
φ : V (G)→ V (H) that optimizes a cost function which measures the quality of the
mapping.

In general, graph matching involves discovering structural similarities between

5

6 CHAPTER 3. GRAPH MATCHING

graphs [37] through one of the following techniques:

1. Finding graph isomorphisms

2. Detecting maximum common subgraphs (MCS)

3. Finding minimum graph edit distances (GED)

An exact graph isomorphism for two graphs, G and H , is a bijective function f(v)
that maps the vertices V (G) to V (H) such that for all i, j ∈ V (G), (i, j) ∈ E(G)
if and only if (f(i), f(j)) ∈ E(H) [49]. Detecting the largest common subgraph
for a pair of graphs is closely related to graph isomorphism as it attempts to
find the largest induced subgraph of G which is isomorphic to a subgraph in H .
Consequently, one could interpret an exact graph isomorphism as a special case of
MCS, where the common subgraph encompasses all the vertices and edges in both
graphs. Finally, the last technique, GED, calculates the minimum number of edit
operations required to transform graph G into graph H .

Definition 3. (Graph edit distance): The graph edit distance is the minimum
number of elementary edit operations required to transform a graph G into graph
H. A cost is defined for each edit operation, where the total cost to transform G
into H equals the edit distance.

Note that the GED metric depends on the choice of edit operations and the cost
involved with each operation. Similar to [50, 37, 21], we only consider vertex
insertion/deletion, edge insertion/deletion and vertex relabeling as possible edit
operations.
We can now show that the MCS problem can be transformed into the GED problem.
Given is the shortest sequence of edit operations ep which transforms graph G
into graph H , for a pair of unlabeled, directed graphs G and H . Apply all the
necessary destructive operations, i.e. edge deletion and vertex deletion, on graph
G as prescribed by ep. The maximum common subgraph of G and H equals the
largest connected component of the resulting graph. Without further proof, this
reasoning can be extended to labeled graphs.

For the purpose of identifying, quantifying and expressing similarities between mal-
ware samples, both MCS and GED seem feasible techniques. Unfortunately, MCS
is proven to be an NP-Complete problem [16], from which the NP-hardness of
GED optimization follows by the prevous argument (The latter result was first
proven in [50] by a reduction from the subgraph isomorphism problem). Since ex-
act solutions for both MCS and GED are computationally expensive to calculate,
a large amount of research has been devoted to fast and accurate approximation
algorithms for these problems, mainly in the field of image processing [15] and for
bio-chemical applications [36, 48]. The remainder of this Section serves as a brief
literature review of different MCS and GED approximation approaches.
A two-stage discrete optimization approach for MCS is designed in [14]. In the first
stage, a greedy search is performed to find an arbitrary common subgraph, after

3.3. GRAPH SIMILARITY 7

which the second stage executes a local search for a limited number of iterations to
improve upon the graph discovered in stage one. Similarly to [14], the authors of
[48] also rely on a two-stage optimization procedure, however contrary to [14], their
algorithm tolerates errors in the MCS matching. A genetic algorithm approach to
MCS is given in [45]. Finally, a distributed technique for MCS based on message
passing is provided in [5].
A survey of three different approaches to perform GED calculations is conducted
by Neuhaus, Riesen, et. al. in [37, 38, 32]. They first give an exact GED algo-
rithm using A* search, but this algorithm is only suitable for small graph instances
[32]. Next, A*-Beamsearch, a variant of A* search which prunes the search tree
more rigidly, is tested. As is to be expected, the latter algorithm provides fast
but suboptimal results. The last algorithm they survey uses Munkres’ bipartite
graph matching algorithm as an underlying scheme. Benchmarks show that this
approach, compared to the A*-search variations, handles large graphs well, without
affecting the accuracy too much. In [22], the GED problem is formulated as a Bi-
nary Linear Program, but the authors conclude that their approach is not suitable
for large graphs. Nevertheless, they derive algorithms to calculate respectively the
lower and upper bounds of the GED in polynomial time, which can be deployed
for large graph instances as estimators of the exact GED. Inspired by the work of
Justice and Hero in [22], the authors of [50] developed new polynomial algorithms
which find tighter upper and lower bounds for the GED problem.

3.3 Graph similarity

In general, a virus consists of multiple components, some of which are new and oth-
ers which are reused from other viruses [24]. The virus writer will test his creations
against several anti-virus programs, making modifications along the way until the
anti-virus programs do not recognize the virus anymore. Furthermore, at a later
stage the virus writer might release new, slightly altered, versions of the same virus.
Descriptions of several possible modification techniques used by malware writers
to avoid detection by anti-virus software are found in [7] and [43].
In this Section, we will describe how to determine the similarity between two mal-
ware samples, based on the similarity σ(G,H) of their underlying call graphs. As
will become evident shortly, the graph edit distance plays an important role in the
quantification of graph similarity. After all, the extent to which the malware writer
modifies a virus or reuses components should be reflected by the edit distance.

Definition 4. (Graph similarity): The similarity σ(G,H) between two graphs G
and H indicates the extent to which graph G resembles graph H and vice versa.
The similarity σ(G,H) is a real value on the interval [0,1], where 0 indicates that
graphs G and H are identical whereas a value 1 implies that there are no similar-
ities. In addition, the following constraints hold: σ(G,H) = σ(H,G) (symmetry),
σ(G,G) = 0, and σ(G,K0) = 1 where K0 is the null graph, G 6= K0.

Before we can attend to the problem of graph similarity, we first have to revisit the

8 CHAPTER 3. GRAPH MATCHING

definition of a graph matching as given in the previous Section. To find a bijection
which maps the vertex set V (G) to V (H), the graphs G and H have to be of the
same order. However, the latter is rarely the case when comparing call graphs.
To circumvent this problem, the vertex sets V (G) and V (H) can be supplemented
with dummy vertices ε such that the resulting sets V ′(G), V ′(H) are of equal size.
A mapping of a vertex v in graph G to a dummy vertex ε is then interpreted as
deleting vertex v from graph G, whereas the opposite mapping implies a vertex
insertion into graph H . Now, for a given graph matching φ, we can define three
cost functions: VertexCost, EdgeCost and RelabelCost.

VertexCost The number of deleted/inserted vertices: |{v : v ∈ [V ′(G)∪V ′(H)]∧
[φ(v) = ε ∨ φ(ε) = v]}|.

EdgeCost The number of unpreserved edges: |E(G)| + |E(H)| − 2 × |{(i, j) :
[(i, j) ∈ E(G) ∧ (φ(i), φ(j)) ∈ E(H)]}|.

RelabelCost The number of mismatched functions, i.e. the number of external
functions in G and H which are mapped against different external functions
or local functions.

The sum of these cost functions results in the graph edit distance λφ(G,H):

λφ(G,H) = V ertexCost+ EdgeCost+RelabelCost (3.1)

Note that, as mentioned before, finding the minimum GED, i.e. min
φ

λφ(G,H), is

an NP-hard problem, but can be approximated. The latter is elaborated in the
next Section.

Finally, the similarity σ(G,H) of two graphs is obtained from the graph edit dis-
tance λφ(G,H):

σ(G,H) =
λφ(G,H)

|V (G)|+ |V (H)|+ |E(G)| + |E(H)|
(3.2)

3.4 Graph edit distance approximation

Finding a graph matching φ which minimizes the graph edit distance is proven to
be an NP-Complete problem [50]. Indeed, empirical results show that finding such
a matching is only feasible for low order graphs, due to the time complexity [32]. As
a solution, Riesen and Bunke propose to use a (|V (G)|+|V (H)|)×(|V (H)|+|V (G)|)
cost matrix C, which gives the cost of mapping a vertex v ∈ V ′(G) to a vertex
v ∈ V ′(H) [38, 37]. Next, Munkres’ algorithm [31, 25] (also known as the Hungarian
algorithm), which runs in polynomial time, is applied to find an exact one-to-one
vertex assignment which minimizes the total mapping cost. Similar to [21], we will
use this procedure to find a graph matching for two call graphs. For a given pair
of call graphs, we first investigate which external functions they have in common.

3.5. GENETIC SEARCH 9

These functions can be directly mapped one-to-one. For the remaining functions,
we create a cost matrix, which is used to find the vertex mapping using Munkres’
algorithm. The general structure of the cost matrix C is as follows [37]:

C =

c1,1 c1,2 · · · c1,m c1,ε ∞ · · · ∞

c2,1 c2,2 · · · c2,m ∞ c2,ε
. . .

...
...

...
. . .

...
...

. . .
. . . ∞

cn,1 cn,2 · · · cn,m ∞ · · · ∞ cn,ε
cε,1 ∞ · · · ∞ 0 0 · · · 0

∞ cε,2
. . .

... 0 0
. . .

...
...

. . .
. . . ∞

...
. . .

. . . 0
∞ · · · ∞ cε,m 0 · · · 0 0

The top left quadrant of cost matrix C gives the cost Cv,w of matching a real
vertex v ∈ V (G) to a real vertex w ∈ V (H). Detailed descriptions for several cost
functions which calculate Cv,w are given in the next Chapter. The top right and
bottom left quadrants of cost matrix C give the cost of matching a real vertex
against a dummy vertex. In particular, Ci,ε equals the cost of deleting a vertex,
whereas Cε,j represents the cost of inserting a vertex. The authors of [21] propose
to choose Ci,ε = Cε,j = 1. However, from our experiments it appears that better
results are obtained if Ci,ε and Cε,j are set to d(vi), vi ∈ V (G), and d(vj), vj ∈ V (H)
respectively. The choice of these costs is explained by the observation that mapping
a real vertex v to a dummy vertex, i.e. vertex deletion, will result in an increase
of the EdgeCost parameter in the edit distance metric (Equation 3.1) equal to the
degree of v. Finally, the cost of mapping a dummy vertex against another dummy
vertex is set to 0 in the bottom right quadrant of C.

3.5 Genetic search

The Hungarian algorithm discussed in the previous Section has a runtime com-
plexity of O(|V |3), where |V | is the vertex cardinality of the largest graph under
comparison [25]. For large call graphs, this potentially poses a problem, since it is
imperative that the graph comparison is performed fast to be applicable for mal-
ware detection and identification. Another issue is the lack of information about
the accuracy achieved when the GED is approximated via the Hungarian algorithm.
Therefore, as a counterweight to the Hungarian algorithm, an alternative approach
is implemented which relies on a Genetic search algorithm to find a vertex mapping
which minimizes the GED.
Genetic algorithms (GAs) are categorized as a special group of search algorithms
inspired by Darwin’s evolution theory. A GA takes a set of candidate solutions,
which is a subset of the entire search space, as input. The set of candidate solu-
tions is called a population or generation, and an individual in the population is

10 CHAPTER 3. GRAPH MATCHING

called a chromosome. The GA produces successive generations by mutating and
recombining parts of the best currently known chromosomes [29].
The GA we use to search for a vertex mapping which minimizes the GED is based
on the work of Wang and Isshii [47]. For a given pair of graphs, G and H , such that
|V (G)| ≤ |V (H)|, each chromosome represents an injective matching of the vertices
from graph G to the vertices in graph H . Each chromosome can be thought of as
a list of |V (G)| genes, where each gene represents a unique mapping of a vertex
v ∈ V (G) onto a vertex w ∈ V (H). The ’fitness’ of a gene indicates how well vertex
v ∈ V (G) maps onto vertex w ∈ V (H). To calculate the fitness of a gene, one can
use the same cost functions as used to calculate the entries of the cost matrix C for
the Hungarian algorithm as discussed in the previous Section. Examples of possi-
ble cost functions are given in the next chapter. Finally, the quality of a complete
matching, i.e. the fitness of a chromosome, is assessed via the GED (Equation 3.1).
A chromosome has a higher fitness compared to the fitness of another chromosome
if the vertex mapping it represents results in a lower GED than that of the other
chromosome.
Chromosomes for the initial population are generated at random; vertices in graph
G are matched randomly against vertices in graphH , under the restriction that the
result is an injective mapping. Furthermore, to ensure diversity of the individuals
in the population, no two chromosomes in the initial population can be identical.
A new population is created by performing crossover operations and mutations on
the chromosomes of the current population. Crossover operations can be inter-
preted as a recombination of two parent chromosomes, thereby obtaining a single
child chromosome, which inherits the qualities of both parents. For a given pair of
chromosomes, A, B, where the fitness of chromosome A is larger or equal to the
fitness of chromosome B, the crossover operation is now defined as follows (Figure
3.1a) [47]:

1. Copy all genes from chromosome A which have a higher or equal fitness
compared to the corresponding genes in chromosomeB to the offspring. Copy
the remaining genes from chromosome B to the offspring.

2. The offspring should be an injective mapping; a single vertex in graph H
cannot be mapped to multiple vertices in graph G. This requirement can
however be violated when one copies the remaining genes from chromosome
B to the offspring after having the fitter genes selected from chromosome A
(Figure 3.1a). These violations are solved by selecting an unused vertex from
graph H to be matched against the respected vertex in graph G.

3. Finally, the fitness of the new offspring is compared against the fitness of
parent A. If the fitness of parent A is higher, we discard the new offspring
and we use parent A as the new offspring. This procedure ensures that the
total fitness of the population remains the same or improves during each cycle
in the evolution.

The selection of chromosomes for the crossover operation is depicted in Figure 3.1b.
The general idea behind this selection scheme is to combine chromosomes of lower

3.5. GENETIC SEARCH 11

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

1
1

2
2

3
3

4
7

5
1

6
6

7
4

8
8

9
9

1
5

2
7

3
3

4
2

5
6

6
8

7
4

8
9

9
1

1
5

x x

0.1 0.6 0.7 0.4 0.2 0.9 0.3 0.5 0.8

0.9 0.4 0.2 0.6 0.5 0.1 0.8 0.3 0.7

Fitness

Parent A

Parent B

Offspring

Fitness

(a) Crossover example. A gene, rep-
resented by a box, gives a mapping of
v ∈ V (G) (white) against w ∈ V (H)
(red).

previous
population

next
population

chromosome 1

chromosome 2

chromosome 3

chromosome 4

chromosome 5

chromosome 6

chromosome 7

chromosome 8

chromosome 9

chromosome 1

chromosome 2

chromosome 3

chromosome 4

chromosome 5

chromosome 6

chromosome 7

chromosome 8

chromosome 9

fi
tn

e
s
s

high

low

(b) Selection of chromosomes for
crossover.

Figure 3.1: Genetic selection and crossover (Source: [47])

fitness with chromosomes of higher fitness to discover new chromosomes of even
higher fitness, while simultaneously preserving diversity among the chromosomes
[47]. First the chromosomes in a population are sorted according to decreasing
fitness. Next, the crossover procedure is performed on the ith and (i + 1)th chro-
mosome for i = [1, 2, ..., n+1

2], as well as on the jth and (n+ 1− j)th chromosome
for j = [1, 2, .., n2], where n equals the population size (Figure 3.1b).
Finally, to further improve the population diversity, mutations are performed. For
a fixed number of chromosomes, genes are changed at random, while preserving
the requirement that the resulting chromosome should be an injective mapping.

12 CHAPTER 3. GRAPH MATCHING

Chapter 4

Vertex Matching

The approximation algorithm for the graph edit distance as discussed in Chapter
3.4 attempts to find the smallest edit distance by solving a least cost assignment
problem on a cost matrix C. The entries in this matrix represent the cost of
matching i ∈ V (G) to j ∈ V (H). Similarly, the GA discussed in Section 3.5 uses
these vertex match costs to direct the search toward an optimal solution. This
chapter derives several cost functions as estimators of Ci,j : the cost of matching
vertex i to vertex j. Clearly, more accurate cost estimations will enable us to find
better graph matchings and hence more accurate edit distances.

4.1 Structural Matching

The cost of matching a pair of nodes, Ci,j could equal the relabeling cost as defined
for the graph edit distance in Equation 3.1:

Crel(i, j) =

0 if Vf (i) = Vf (j) = 0
0 if Vf (i) = Vf (j) = 1 ∧ Vn(i) = Vn(j)
1 otherwise

(4.1)

Using this relabeling cost function, Munkres’ algorithm is capable of matching iden-
tical external functions in a pair of graphs, but the local functions pose a problem
because the relabeling cost function yields no information about the different local
functions. As a solution, the authors of [21, 50] independently suggest to embed
structural information in the matching cost of two functions. The following equa-
tion achieves the latter by also taking the neighborhoods of vertices (functions) i
and j into consideration:

Ci,j =Crel(i, j)+

d+(i) + d+(j)− 2× (N+(i) ∧N+(j))+

d−(i) + d−(j)− 2× (N−(i) ∧N−(j))

(4.2)

13

14 CHAPTER 4. VERTEX MATCHING

where the notation N ∧M denotes the similarity of the neighborhoods N and M ,
defined as follows:

N ∧M = max{
∑

i∈N

(1− Crel(i, P (i))|

P : N →M (injective)}

In short, the above equation makes the assumption that if two functions i, and j
are identical, then they should also invoke the same functions. Similarly, if i and
j indeed represent the same function, it is likely that they are also called upon by
functions with a high mutual similarity.

4.2 Random Walk Probability Vectors

In the previous Subsection, all local functions in the neighborhood of vertices v
and w are considered identical due to the lack of information about the functions
and their canonical names, and hence there is no relabeling cost induced when two
local functions are matched (Equation 4.1). In reality however, two local functions
can rarely be considered identical. In this Section, a more fine-grained approach
is developed to estimate the similarity between two local functions with a higher
accuracy. In this context, similarity is defined as follows:

Definition 5. (Vertex similarity): The similarity σ(v,w) between two vertices
v ∈ V (G) and w ∈ V (H) indicates the extent to which function Vn(v) resem-
bles function Vn(w). Similar to the definition of graph similarity, σ(v,w) is a real
value on the interval [0,1].

Before the similarity between two vertices can be calculated, we first need to estab-
lish a metric which allows for mutual comparison between two local functions. Let
S and T be partitions of V such that S = {v ∈ V (G)|N+(v) = ∅ ∨N+(v) = {v}}
and T = V (G) \ S. The vertices in S are terminal nodes: they do not call other
functions except possibly themselves, and are therefore represented as leaves in the
graph. Typically, all external functions belong to the set S, in addition to some
local functions. This partitioning allows us to interpret the call graph as an ab-
sorbing Markov chain, where T contains the transient states, and S the absorbing
states (Figure 4.1).

Definition 6. (Absorbing Markov Chain): An absorbing Markov chain is a weighted
directed graph G, where a path exists from each vertex v ∈ V (G) to an absorbing
state s. The weight of an edge w(i, j) in an absorbing Markov chain denotes the
probability of moving from state i to state j. A state s ∈ V (G) is called absorbing if
it is impossible to leave it, i.e. d+(v) = 0∨N+(v) = {v} 1. For all absorbing states

1Strictly speaking, true absorbing Markov chains do not have states with d+(v) = 0; all
absorbing states obey N+(v) = {v}. However, this extension of the concept of absorbing states
allows us to interpret call graphs as absorbing Markov chains.

4.2. RANDOM WALK PROBABILITY VECTORS 15

i, w(i, i) = 1 [17]. Furthermore, w(i, j) > 0 for all (i, j) ∈ E and
∑

j w(i, j) = 1
for all i ∈ V .

To characterize a vertex vi, a probability vector P vi is associated with it2: P vi =
(pviv1 , p

vi
v2
, ..., pvivk), where p

vi
vj

denotes the probability that a random walk from vertex
vi terminates in absorbing state vj . We will refer to these vectors as Random walk
probability (RWP) vectors. Note that for each RWP vector, the following equation
holds:

|Pvi |
∑

j=0

pvivj = 1 (4.3)

Definition 7. (Simple Random Walk): Given a graph G. A simple random walk
from vertex v0 ∈G is an alternating sequence v0,e1,v1,...,ek ,vk of edges and vertices
where the probability of moving from vertex vi via edge ei+1 to vertex vi+1 equals

1
d+(vi)

. Let pv0vk denote the probability that a simple random walk which starts in v0
ends in vk. The probability pv0vk satisfies the recursive formula:

pv0vk =

∑

w∈N+(v0)
pwvk

d+(v0)

pvkvk = 1

RWP vectors provide an abstract means to characterize transient functions. Intu-
itively, two functions with the same RWP vectors have a high probability to have
similar functionality and behave in the same way. Consequently, a high similarity
score should be assigned to them compared to two functions with very different
RWP vectors.
To calculate the similarity of two vertices from different graphs, their similarity
vectors should have the same dimensions. The latter requirement can be met by
choosing the set with absorbing states S as S = {v ∈ V (G)|Vf (v) = 1} ∩ {v ∈
V (H)|Vf (v) = 1} ∪ {ε}. Here ε is a dummy vertex which symbolizes all absorbing
states outside the intersection of the external functions in graphs G and H . An
example has been depicted in Figure 4.2.

The problem which now arises is how to calculate the RWP vectors for a given graph
G in an efficient and scalable fashion. After all, call graphs can contain thousands of
vertices and edges. The answer lies in the use of a stochastic transition matrix and
the theory behind absorbing Markov chains [17]. First, obtain a |V (G)| × |V (G)|
stochastic transition matrix P , where

Pi,j =

1
d+(i) if i ∈ T , j ∈ (S ∪ T), (i, j) ∈ E(G)

1 if i, j ∈ S, Vf (i) = Vf (j)
0 otherwise

2This characterization idea is proposed by prof Pekka Orponen [33]. Efficient calculations of
these vectors are explored by the author as part of this thesis work.

16 CHAPTER 4. VERTEX MATCHING

½

½

½

½ ½

½

0 1 2 3 4

Figure 4.1: Absorbing Markov chain. Vertices 0,4 are absorbing states, whereas
1,2 and 3 are the transient states. Source:[17]

A B C

0

1 2

3

Graph G

A C D

0

1

Graph H

External Function (absorbing)

Local Function (absorbing)

Local Function (transient)

Figure 4.2: Two call graphs with a mutual absorbing state set S = {A,C, ε}.

In accordance with definition 6, each entry Pi,j in P represents the probability of
moving from state i to j. Now one can reorder the states in the transition matrix
so that the transient states come first. The result should be a transition matrix
which can be represented in the following canonical form [17]:

P =

TR. ABS.

TR. Q R

ABS. 0 I

 (4.4)

Here, 0 is an |S| × |T | zero matrix, and I an |S| × |S| identity matrix.

Definition 8. Let P be the stochastic transition matrix of an absorbing Markov
chain. Then Pn

i,j of the matrix Pn is the probability to reach state j, starting from
state i, in n state transitions [17].

In particular, for the purpose of the RWP vectors, we are interested in submatrix
Rn (Eq. 4.4) of matrix Pn, when n → ∞; the long-term probabilities of reaching
absorbing state j ∈ S from a transient state i ∈ T . A matrix containing these
long-term probabilities is obtained via the following equation [17]:

N = (I −Q)−1 (4.5)

B = N ×R (4.6)

4.2. RANDOM WALK PROBABILITY VECTORS 17

TR. ABS.

0 1 2 A C *

TR.

0 0 1

2

1

2
0 0 0

1 1

3
0 0 1

3
0 1

3

2 0 0 0 0 1

3

2

3

ABS.

A 0 0 0 1 0 0

C 0 0 0 0 1 0

* 0 0 0 0 0 1

(a) The stochastic transition matrix of graph
G depicted in Figure 4.2

A C *

0 1

5

1

5

3

5

1 6

15

1

15

8

15

2 0 1

3

2

3

(b) The RWP vec-
tors, obtained from ta-
ble 4.1a

Table 4.1: Example of a stochastic transition matrix and corresponding RWP
vectors, based on graph G in Figure 4.2

Here, I and Q are the submatrices as defined in Eq. 4.4. In the context of absorbing
Markov chains, matrix N (Eq. 4.5) is sometimes referred to as the fundamental
matrix. An entry ni,j in N gives the expected number of times transient state j
occurs in a sequence of state transitions which starts in state i, before the sequence
terminates in an absorbing state [17]. Finally, a row vector Bi in the result matrix
B (Eq. 4.6) represents the RWP vector for transient state i. As an example, Table
4.1 shows the RWP vectors for graph G in Figure 4.2.

Given two transient states v ∈ V (G), and w ∈ V (H), and their corresponding RWP
vectors P v, respectively Pw, the similarity score σ(v, w) as defined in Definition 5
can now be calculated using the total variation distance, closely related to the `1
norm, over the RWP vectors:

σ(v, w) =
1

2

|Pw|
∑

i=1

|pvi − pwi |, 0 ≤ σ(v, w) ≤ 1 (4.7)

For two external functions, v ∈ V (G) and w ∈ V (H), σ(v, w) = 0 if they represent
the same external function. In all other cases, σ(v, w) equals 1.

Throughout the reasoning in this Subsection, we made the following implicit as-
sumption: a call-graph can always be converted to an absorbing Markov chain as
defined in Definition 6. Unfortunately, there exist call-graphs which violate Def-
inition 6; not all states have a path to an absorbing state. An example of such
a violation is depicted in Figure 4.3a; the strongly connected component marked
by the dashed box has no outgoing edges to an absorbing vertex. We will refer
to these structures as ’nontrivial sinks’ because from a structural point of view a
nontrivial sink behaves as an absorbing state. Once a state transition reaches a
nontrivial sink, it is impossible to get out of the nontrivial sink again.

When a nontrivial sink is present in the call graph, Equation 4.5 is rendered invalid
because I−Q results in a singular matrix, which one cannot invert. Two solutions
exist to deal with this problem:

18 CHAPTER 4. VERTEX MATCHING

A C

0

1
2

3 4

(a) Sink present

A C

0

1
2

3 4

dstate

(b) Sink removed

Figure 4.3: When a stochastic matrix is created based on the graph in Figure 4.3a,
the result is a singular matrix caused by the sink marked by the dashed box. The
nontrivial sink can be removed with Algorithm 2 resulting in the graph depicted
in Figure 4.3b

1. Relax the matrix inversion in Eq. 4.5 through the use of Generalized matrix
inversion [30].

2. Remove the nontrivial sink structures.

The generalized matrix inversion (GMI) [30] preserves most of the properties of the
normal matrix inversion (MI). In fact, for a nonsingular matrix the result obtained
via GMI is identical to the result of MI. However, for a singular matrix, GMI
produces a non-unique estimate of a matrix inverse. After applying GMI to a
singular matrix, the result can be directly plugged into equation 4.6. Although
this approach does not require any preprocessing of the call graph, the downside
is that the vectors in matrix B (Eq. 4.6) no longer obey the property of RWP
vectors as defined in Eq. 4.3, which makes it much harder to interpret the RWP
vectors. Therefore, a more natural and computationally inexpensive solution is to
remove the sink structures altogether. The latter can be achieved by identifying the
nontrivial sinks, and connecting them with an absorbing local function; after all, a
nontrivial sink structure behaves exactly the same as an absorbing local function.
Note that this procedure does not change the RWP vectors. Identifying vertices
which are part of sink structures can be achieved using Algorithm 1. Next, the
nontrivial sinks can be removed by adding a dummy vertex dstate, representing
an absorbing state, to V (G), and adding edges from all identified vertices to the
dummy vertex (Algorithm 2). The result of Algorithms 1 and 2 on the graph in
Figure 4.3a is depicted in 4.3b.

4.2. RANDOM WALK PROBABILITY VECTORS 19

Algorithm 1: Identify vertices in sink structures

Input: Call graph G
Output: Set of vertices which belong to sinks in the call graph

1 Queue open ← {v ∈ V (G)|d+(v) = 0 ∨N+(v) = {v}};
2 visited ← ∅;
Move in an upward sweep through the graph, starting at the leaves
(absorbing states), thereby marking all reachable vertices

3 while open 6= ∅ do
4 v ← pop(open);
5 visited← visited ∪ {v};
6 foreach w ∈ N−(v) do
7 if w /∈ visited then

8 open← open ∪ {w};
9

10 return V (G)\visited

Algorithm 2: Neutralize all sink structures in a graph

Input: Set of vertices S which are part of sinks
Output: A graph G′ where all sinks are removed

Add a dummy absorbing state dstate to the graph, and connect all vertices
in S to the dummy vertex.

1 V (G′)← V (G) ∪ {dstate};
2 E(G′)← E(G);
3 foreach v ∈ S do

4 E(G′)← E(G′) ∪ {(v, dstate)};

5 return G′(V,E)

20 CHAPTER 4. VERTEX MATCHING

Chapter 5

Graph similarity:
experimental results

Chapter 3 introduced two algorithms (Sections 3.4 and 3.5) which attempt to find
a vertex mapping (bijection) for a given pair of graphs which minimizes the Graph
Edit Distance (Equation 3.1). In order to find a mapping that approximates the
minimum GED as well as possible, both algorithms require good cost estimations of
matching one function against the other. Two estimators are presented in Chapter
4. The first estimator (Section 4.1) uses a relabeling cost function and a neigh-
borhood comparator (Equation 4.2), whereas the second utilizes Random Walk
Probability vectors (Section 4.2). The main purpose of this chapter is to evaluate
the performance of these two estimators, as well as two additional hybrid versions.
The evaluation is conducted on a set of 194 call graphs provided by the data security
company F-Secure Corporation.

5.1 Graph similarity metrics

In Section 3.4, the Hungarian algorithm has been introduced, which finds a vertex
mapping of minimum cost for a given pair of graphs. Using Equations 3.1 and
3.2, one can calculate the GED and corresponding graph similarity score for the
resulting vertex mapping.
Figure 5.1 shows the similarity scores obtained via the Hungarian algorithm with
four different vertex matching cost estimators on a set of 1000 unique graph pairs
selected randomly from our call graph data set. The outcomes of the first esti-
mator, based on relabeling costs and neighborhood comparisons (Equation 4.2) as
presented in Section 4.1 are depicted by the green curve. Since this estimator is
also applied in [50, 21], we will use it as a reference against which we situate the
outcomes of the three other estimators.
Section 4.2 argues that the relabeling cost function (Equation 4.2) used in the

21

22 CHAPTER 5. GRAPH SIMILARITY: EXPERIMENTAL RESULTS

former estimator is not an accurate approach to compare functions, since it can-
not distinguish between local functions. Therefore, Section 4.2 introduces Random
Walk Probability vectors to uniquely characterize a function. The vertex similarity
scores obtained via Equation 4.7 can be directly inserted into the cost matrix used
by the Hungarian algorithm. The resulting pairwise graph similarities are shown
with purple in Figure 5.1. It is interesting to observe that this approach allows
us to find for some graphs lower Graph Edit Distances, and consequently higher
pairwise similarities. However, in most comparisons this approach is outperformed
by the former vertex match cost estimator.
Based on the previous results, we attempted to combine Equations 4.2 and 4.7 into
a new estimator to further improve the accuracy of the similarity scores. Combi-
nation of the two Equations is performed by replacing the relabeling cost function
(Equation 4.1) in Equation 4.2 with Equation 4.7 which calculates the vertex sim-
ilarity scores via the RWP vectors. The results of the newly obtained estimator
are depicted by the dark blue line in Figure 5.1. Unfortunately, one can observe
that the latter results are very similar to those obtained via the relabeling cost
function (Figure 5.1, green line). Only for a few graph pairs a smaller GED was
found. Finally, purely from an experimental point of view, we replaced the rela-
beling function by Equation 4.7 only in the neighborhood comparison, i.e. in the
’where’ clause, of Equation 4.2, while preserving the relabeling function (Equation
4.1) in the main body of Equation 4.2. The result, depicted by the red line in Fig-
ure 5.1 does not show any significant deviation from the previous estimator (light
blue line). Just for a small number of graph pairs a marginal accuracy increase is
observed.
Comparing the approaches which use the more computationally expensive similar-
ity scores obtained via the RWP vectors against the cheap relabeling cost function
as proposed in [50, 21], we have to conclude that the accuracy gain is too low to
outweigh the extra computation time involved.
As an alternative to the Hungarian algorithm, a genetic search algorithm is pre-
sented in Section 3.5. The algorithm requires two parameters: the population size
and a mutation rate. The former has been fixed to 100 chromosomes, and a single
gene is mutated in 30% of the chromosomes in the population after crossover has
been applied. Unfortunately, the average runtime of the genetic search algorithm
appears to be significantly longer than the runtime of the Hungarian algorithm to
find results of equal accuracy. Various changes to both the population size as well
as the mutation rate did not change these results. The remainder of this thesis
will therefore utilize Equation 4.2 in combination with the Hungarian algorithm to
estimate the minimum GED and corresponding graph similarity.

5.2 Malware family analysis

An important goal of the graph comparisons is the ability to recognize malware
samples with strong similarities. Before we turn to the subject of fully automated
malware identification and classification in the subsequent Sections, this Section

5.2. MALWARE FAMILY ANALYSIS 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

P
ai

rw
is

e
si

m
ila

ri
ty

Graph pair

RWP in neighborhood, Relabeling in center
RWP in center, no neighborhood
RWP in center and neighborhood

Relabeling in center and neighborhood

Figure 5.1: Comparison of four estimators used in cooperation with the Hungarian
algorithm in an attempt to find, for a given pair of graphs, a vertex matching which
minimizes the GED.

24 CHAPTER 5. GRAPH SIMILARITY: EXPERIMENTAL RESULTS

briefly investigates the meaning of graph similarity in the context of malware. To
this extent, the earlier mentioned data set consisting of 194 call graphs of malware
samples has been partitioned into 24 malware families by analysts of F-Secure Cor-
poration. This classification is performed by an analyst via semantic evaluation of
the malware behavior. The samples within each of the families are believed to have
a mutual similarity. We have taken four of the larger families and compared the
graphs within each family mutually (Figure 5.2). The Baidu family, for instance,

consists of 10 samples, and hence we can make 102−10
2 = 45 pairwise comparisons.

The resulting similarity scores are depicted in the frequency chart (Figure 5.2a).
Note that we do not compare a graph against itself, since this always results in
a similarity score of 0 (σ(G,G) = 0), in accordance with Equation 3.2. Ideally,
all samples within a family would exhibit a strong mutual similarity, but as one
can observe from Figure 5.2 this is not necessary the case. Each of the four fam-
ilies contain some samples which are significantly distinct from the other samples
in the same family. For identification purposes, it is not strictly required that a
sample has a high similarity to all other samples in its family, as long as there are
no samples in other families with a higher resemblance because this would lead to
classification errors. Figure 5.3 compares samples between families. Indeed, Figure
5.3 shows that the selected families are significantly dissimilar. A high similarity
among the samples within a family, together with a high dissimilarity between dif-
ferent families would highly simplify malware identification and classification. The
next chapter will examine graph classification in greater detail; based on the graph
similarity scores, we will attempt automated partitioning and family recognition.

5.2. MALWARE FAMILY ANALYSIS 25

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(a) Baidu (10 samples)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(b) Boaxxe (17 samples)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(c) Pushbot (15 samples)

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(d) Systemhijack (14 samples)

Figure 5.2: Intra family comparison. The samples inside a family are compared
mutually. Typically, one would expect a high similarity among the samples within
a single family.

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(a) Boaxxe versus Baidu

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

F
re

q
u

en
cy

Similarity (Smaller values indicate stronger similarities)

(b) Systemhijack versus Pushbot

Figure 5.3: Inter family comparison. The samples among families are compared.
Typically, one would expect no or few similarities between families.

26 CHAPTER 5. GRAPH SIMILARITY: EXPERIMENTAL RESULTS

Chapter 6

Clustering

To support the identification process, an important step is to be able to classify
malware samples, thereby grouping similar samples together. This chapter focuses
on the clustering of malware samples into malware families.

6.1 k-medoids clustering

One of the most commonly used clustering techniques is k-means clustering. The
formal description of k-means clustering is summarized as follows [3, 10]:

Definition 9. (k-means Clustering): Given a data set χ with samples, where
each sample x ∈ χ is represented by a vector of parameters. k-means clustering
attempts to group all samples into k clusters. For each cluster Ci ∈ C, a cluster
center µCi

can be defined, where µCi
is the mean vector, taken over all the samples

in the cluster. The objective function of k-means clustering is to minimize the total
squared Euclidean distance ||x− µCi

||2 between each sample x ∈ χ, and the cluster
center µCi

of the cluster the sample has been allocated to:

min
k

∑

i=1

∑

x∈Ci

||x− µCi
||2

The above definition assumes that for each cluster, it is possible to calculate a
mean vector, the cluster center (also known as centroid), based on all the samples
inside a cluster. However, with a cluster containing call graphs, it is not a trivial
procedure to define a mean vector. Consequently, instead of defining a mean vector,
a call graph inside the cluster is selected as the cluster center. More specifically,
the selected call graph has the most commonalities, i.e. the highest similarity, with
all other samples in the same cluster. This allows us to reformulate the objective

27

28 CHAPTER 6. CLUSTERING

function:

min

k
∑

i=1

∑

x∈Ci

σ(x, µCi
)

where σ(G,H) is the similarity score of graphs G and H as discussed in Chapter 3.
The latter algorithm is more commonly known as a k-medoids clustering algorithm,
where the cluster centers µCi

are referred to as ’medoids’.
Since finding an exact solution in accordance with the objective function has been
proven to be NP-hard [9], our k-medoids clustering utilizes an iterative approach 1.
First, the k-medoids clustering algorithm finds an arbitrary solution, after which
the algorithm attempts to find better solutions until no more improvements occur.
The pseudo-code of the k-medoids algorithm is given in Algorithm 3.

Algorithm 3: The k-medoids clustering algorithm

Input: Number of clusters k, set of call graphs χ.
Output: A set of k clusters C

1 foreach Ci ∈ C do

2 Initialize µCi
with an unused sample from χ;

3 repeat

4 Classify the remaining |χ| − k call graphs. Each sample x ∈ χ is put
in the cluster which has the most similar cluster medoid;

5 foreach Ci ∈ C do

6 Recompute µCi
;

7 until The objective function converges ;
8 return C = C0, C1, ..., Ck−1

In [26], a formal proof on the convergence of k-means clustering with respect to
its objective function is given. To summarize, the authors of [26] proof that the
objective function decreases monotonically during each iteration of the k-means
algorithm. Because there are only a finite number of possible clusterings, the
k-means clustering algorithm will always obtain a result which corresponds to a
(local) minimum of the objective function. Since k-medoids clustering is directly
derived from k-means clustering, the proof also applies for k-medoids clustering.
To initialize the cluster medoids, we use three different algorithms. The first ap-
proach, Algorithm 4, selects the centroids at random from χ.
Arthur and Vassilvitskii observed in their work [3] that k-means clustering, and
consequently also k-medoids clustering, is a fast, but not necessarily accurate ap-
proach. In fact, the clusterings obtained through k-means clustering can be arbi-
trarily bad [3]. In their results, the authors of [3] conclude that bad results are
often obtained due to a poor choice of the initial cluster centroids, and hence they

1The author of this thesis designed this algorithm as a variation of the k-means clustering
algorithm. Later he discovered that this variation has also been independently proposed by Park
and Jun [34] as an improved version of the Partitioning Around Medoids clustering algorithm
[23].

6.2. CLUSTERING PERFORMANCE ANALYSIS 29

propose a novel way to select the initial centroids, which considerably improves
the speed and accuracy of the k-means clustering algorithm [3]. The algorithm,
referred to by the authors as k-means++, is given in Algorithm 5.
Finally, the last algorithm to select the initial centroids will be used as a means to
assess the quality of the clustering results. To assist the k-medoids clustering algo-
rithm, the initial medoids are selected manually. We will refer to this initialization
technique as ”Trained initialization”.

Algorithm 4: Initializing cluster medoids: uniform random medoid se-
lection

Input: Number of clusters k, set of call graphs χ.
Output: k cluster medoids µCi

1 for i = 1 to k do

2 µCi
← random graph x ∈ χ;

3 χ← χ\{µCi
};

4 return µC0
, µC1

, ..., µCk−1

Algorithm 5: Initializing cluster centroids: k-means++

Input: Number of clusters k, set of call graphs χ.
Output: k cluster medoids µCi

1 Take µC0
at random from χ;

2 repeat

3 Take a new medoid µCi
from χ, choosing x ∈ χ with probability

D(x)2∑
y∈χ D(y)2 ;

Here, D(x) is the similarity of x ∈ χ and the most similar medoid
µCi

which has been selected so far.

4 until k medoids have been chosen;
5 return µC0

, µC1
, ..., µCk−1

6.2 Clustering performance analysis

In this Section, we will test and investigate the performance of the clustering ap-
proaches, in combination with the graph similarity scores obtained via the GED
algorithm discussed in Chapter 3. The data set χ we will use consists of 194 samples
which are manually classified by F-Secure Corporation into 24 families. Evaluation
of the cluster algorithms is performed by comparing the obtained clusters against
these 24 partitions. To get a general impression of the samples, the call graphs in
our test set contain on average 234 nodes and 488 edges. The largest sample has
748 vertices and 1875 edges. Family sizes vary from 2 samples to 17 samples.
Before k-medoids clustering can be applied on the data collection, we need to select

30 CHAPTER 6. CLUSTERING

a suitable value for k. Let koptimal be the natural number of clusters present in
the data set. Finding koptimal is not a trivial task. One could argue that koptimal

equals 24, the number of families F-Secure provided us with. This, however, is
not necessarily a correct assumption. As an analogy, we could attempt to perform
clustering on a large group of people. The clustering criteria could, among others,
be eye color, or family ties. Both criteria yield valid, but possibly different clusters
of varying sizes. Hence, koptimal depends on the selected cluster criteria. The same
holds for the call graph clusters as provided by F-Secure. Although two malware
samples could be very dissimilar from a graph-structural point of view, both sam-
ples could have similar behavior or malicious purposes. Consequently, a malware
analyst might decide to categorize both samples in the same family.
Since koptimal is unknown, we attempt to find it by trying multiple values for k,
and measuring the quality of the obtained clustering (Figure 6.1). In Figure 6.1,
the average distance d̄(xi, µCi

) between a sample xi in cluster Ci and the medoid
of that cluster µCi

is plotted against the number of clusters in use. Note that each
time k-medoids clustering is repeated, the algorithm could yield a different cluster-
ing due to the randomness in the algorithm. Hence, for a given number of clusters
k, we run k-medoids clustering 50 times, and average d̄(xi, µCi

). When the number
of clusters k equals 1, then the average distance d̄(xi, µCi

) is maximal. d̄(xi, µCi
)

converges to 0 when k increases towards the number of samples in the data set.
Ideally, when one plots d̄(xi, µCi

) against an increasing number of clusters, one
should observe a quick decreasing d̄(xi, µCi

) on the interval [k = 1, koptimal] and
a slowly decreasing value on the interval [koptimal, k = |χ|]. Unfortunately, figure
6.1 shows a steadily decreasing curve for k = [1, 50], which makes it impossible to
deduce koptimal from Figure 6.1. A more in-depth discussion on how to find the
koptimal using alternative quality metrics is given in the next Section. For now,
we assume that koptimal equals 24 as follows from the manual partitioning of the
samples by F-Secure.
When comparing the different initialization methods of k-medoids clustering, based
on Figure 6.1, one can indeed conclude that k-means++ yields better results than
the randomly initialized k-medoids algorithm. Furthermore, the best results are
obtained with Trained clustering where a member from each of the 24 predeter-
mined malware families is chosen as the initial medoid of a cluster.
Figures 6.2, 6.3 depict heat maps of two possible clusterings of the sample data.
Each square in the heat map denotes the presence of samples from a given malware
family in a cluster. As an example, cluster 0 in Figure 6.2 comprises 86% Ceeinject
samples, 7% of Runonce samples and 7% of Neeris samples. The family names
are invented by data security companies and research labs and serve as a means
to distinguish families, but a detailed discussion about the characteristics of each
family is beyond the scope of this thesis.
Figure 6.2 shows the results of k-medoids clustering with Trained initialization.
The initial medoids are selected by manually choosing a single sample from each of
the 24 families identified by F-Secure. The clustering results are very promising:
nearly all members from each family end up in the same cluster (Figure 6.2). Only
a few families, such as Baidu and Boaxxe, are scattered over multiple clusters,

6.3. DETERMINING THE NUMBER OF CLUSTERS 31

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50

AV
G

di
st

a
nc

e
sa

m
pl

e
to

m
e

do
id

Number of clusters

k-means++

k-medoids

k-medoids Trained

Figure 6.1: Quality of clusters. The average distance d̄(xi, µCi
) between a sample

xi in cluster Ci and the cluster’s medoid µCi
is averaged over 50 executions of the

k-means algorithm.

which is in accordance with our findings in Section 5.2. Figure 6.3 shows the clus-
tering results of k-means++ 2, without the use of vertex matching. Clearly, the
clusterings are not as accurate as with our trained k-medoids algorithm; samples
from different families are merged into the same cluster. Nevertheless, in most clus-
ters samples originating from a single family are prominently present. Yet, before
one can conclude whether k-means++ clustering is a suitable algorithm to perform
call graph clustering, one first needs an automated procedure to discover, or at the
minimum estimate with reasonable accuracy, koptimal. This will be investigated in
the next Section.

6.3 Determining the number of clusters

In the previous chapter, a brief discussion about the optimal number of clusters
koptimal has been included. However, from the graph depicted in Figure 6.1, it is
not evident which value should be chosen as koptimal, based on the average distance

2A similar figure for randomly initialized k-medoids clustering is omitted due to its reduced
accuracy with respect to k-means++.

32 CHAPTER 6. CLUSTERING

0

5

10

15

20

C
e

e
in

je
ct

S
ys

te
m

hi
ja

ck

S
ta

rt
pa

ge

V
bi

nd
e

r

V
un

do
bh

R
un

on
ce

B
oa

xx
e

T
ds

s

A
ut

or
un

R
e

do
sd

ru

R
e

fp
ro

n

B
a

id
u

B
e

bl
oh

V
e

sl
or

n

V
un

do

N
e

e
ris

P
us

hb
ot

C
hi

fr
a

x

M
ul

tib
a

nk
e

r

D
a

on
ol

B
ifr

os
e

Z
lo

b
dl

l

Z
lo

b

B
iv

id
on

C
lu

st
e

r
ID

Malware family

0

0.2

0.4

0.6

0.8

1

Figure 6.2: A heat map depicting a non-unique clustering of 194 samples in 24
clusters using trained k-means clustering. For this particular result, d̄(xi, µCi

) =
0.221. The color of a square depicts the extent to which a certain family is present
in a cluster.

6.3. DETERMINING THE NUMBER OF CLUSTERS 33

0

5

10

15

20
C

e
e

in
je

ct

S
ys

te
m

hi
ja

ck

S
ta

rt
pa

ge

V
bi

nd
e

r

V
un

do
bh

R
un

on
ce

B
oa

xx
e

T
ds

s

A
ut

or
un

R
e

do
sd

ru

R
e

fp
ro

n

B
a

id
u

B
e

bl
oh

V
e

sl
or

n

V
un

do

N
e

e
ris

P
us

hb
ot

C
hi

fr
a

x

M
ul

tib
a

nk
e

r

D
a

on
ol

B
ifr

os
e

Z
lo

b
dl

l

Z
lo

b

B
iv

id
on

C
lu

st
e

r
ID

Malware family

0

0.2

0.4

0.6

0.8

1

Figure 6.3: A heat map depicting a non-unique clustering of 194 samples in 24
clusters using k-means++ clustering. For this particular result, d̄(xi, µCi

) = 0.240.

from a sample to its corresponding cluster centroid. In this Section, three additional
techniques for finding koptimal are explored.

6.3.1 Sum of (Squared) Error

The Sum of Error (SEp), measures the amount of scatter in a cluster. The general
formula of SEp is:

SEp =

k
∑

i=1

∑

x∈Ci

(d(xi, µCi
))p (6.1)

In this equation, d(x, y) is a distance metric which measures the distance between
a sample and its corresponding cluster centroid (medoid) as a positive real value.
Here we choose d(xi, µCi

) = 100×σ(xi, µCi
). The most commonly used value for p

in Equation 6.1 equals 2. The resulting equation is known as the Sum of Squared
Error (SSE) [44]. The power p can be altered to penalize outliers, i.e. vertices which
are relatively distant from their cluster medoids, more or less severely.

34 CHAPTER 6. CLUSTERING

6.3.2 Silhouette Coefficient

The average distance between a sample and its cluster medoid as used as a per-
formance measure in Section 6.2, measures the cluster cohesion [44]. The cluster
cohesion expresses how similar the objects inside a cluster are. The cluster separa-
tion on the other hand reflects how distinct clusters mutually are. An ideal clus-
tering results in well-separated (non-overlapping) clusters with a strong internal
cohesion. Therefore, koptimal equals the number of clusters which maximizes both
cohesion and separation. The notion of cohesion and separation can be combined
into a single function which expresses the quality of a clustering: the silhouette
coefficient [44, 39].
For each sample xi ∈ χ, let a(xi) be the average similarity of sample xi ∈ Ck in
cluster Ck to all other samples in cluster Ck:

a(xi) =

∑

xj∈Ck
σ(xi, xj)

|Ck| − 1
(xi ∈ Ck)

Furthermore, let bk(xi), xi /∈ Ck be the average similarity from sample xi to a
cluster Ck which does not accommodate sample xi.

bk(xi) =

∑

xj∈Ck
σ(xi, xj)

|Ck|
(xi /∈ Ck)

Finally, b(xi) equals the minimum such bk(i):

b(xi) = min
k

bk(xi) k ∈ {0, 1, .., |C|}

The cluster for which bk(xi) is minimal is the second best alternative cluster to
accommodate sample xi. From the discussion of cohesion and separation, it is
evident that for each sample xi, it is desirable to have a(xi) � b(xi) so to obtain
a clustering with tight, well-separated clusters.
The silhouette coefficient of a sample xi is defined as:

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(6.2)

It is important to note that s(xi) is only defined when there are 2 or more clusters.
Furthermore, s(xi) = 0 if sample xi is the only sample inside its cluster [39].
The silhouette coefficient s(xi) in Equation 6.2 always is a real value on the interval
[−1, 1]. To measure the quality of a cluster, we can simply compute the average
silhouette coefficient over the samples of the respected cluster. An indication of the
overall clustering quality is obtained by averaging the silhouette coefficient over all
the samples in χ.
For a single sample xi, s(xi) reflects how well the sample is classified. Typically,
when s(xi) is close to 1, the sample has been classified well. On the other hand,
when s(xi) is a negative value, then sample xi has been classified into the wrong

6.3. DETERMINING THE NUMBER OF CLUSTERS 35

φ(χ)

χ

Figure 6.4: Sample point distribution when 2-dimensional data points in a perfectly
distributed cluster are projected to a 1-dimensional space.

cluster. Finally, when s(xi) is close to 0, i.e. a(xi) ≈ b(xi), it is unclear to which
cluster sample xi should belong: there are at least two clusters which could accom-
modate sample xi well.
The silhouette coefficient provides important information about the optimal num-
ber of clusters. When the number of clusters is chosen too small such that several
natural clusters are merged together, there will be clusters with a relatively bad
cohesion. Consequently, the samples in those clusters have a relatively high a(xi),
resulting in a low silhouette coefficient s(xi) for these samples. If, on the other
hand, the number of clusters is chosen too high, some natural clusters will split
into two or more clusters. Samples belonging to those natural clusters typically
have low values for b(xi). The latter again causes low silhouette coefficients.

6.3.3 G-means algorithm

The k-medoids clustering algorithm implicitly assumes that one can partition all
samples in such a way that the samples inside a cluster are spherically distributed
around a single sample: the cluster medoid. The sample density in the direct
vicinity of this sample is high, and decreases the further one moves away from the
center. Theoretically, each sample point can be represented by a multidimensional
vector, marking the location of the sample with respect to the medoid in a multi-
dimensional space. Consequently, when the samples inside a cluster are projected
onto a straight line, a 1-dimensional representation of the cluster is obtained, which
hypothetically follows a Gaussian distribution [18] (Figure 6.4).
The G-means clustering algorithm is based on the hypothesis that every cluster

has some underlying Gaussian distribution. G-means initiates the k-medoids clus-
tering algorithm with a low value of k. For each resulting cluster, the algorithm
tests whether the samples in the cluster follow a Gaussian distribution. If the latter
is the case, then the cluster is assumed to be correct, otherwise, the G-means clus-
tering algorithm ’splits’ the cluster by selecting two new medoids from the cluster.

36 CHAPTER 6. CLUSTERING

The k-medoids algorithm is repeated on the entire data collection with the extended
set of medoids. It follows that each split operation results in an increase of k by
1. The G-means clustering terminates as soon as each cluster follows a Gaussian
distribution. Consequently, by initializing k to 1, the G-means clustering algo-
rithm will automatically attempt to find koptimal [18]. According to experiments
conducted by the authors of [18], the G-means algorithm successfully determined
koptimal for several data sets. Unfortunately, no other independent comparative
studies on the optimality of G-means clustering have been published. Also note
that the resulting koptimal is not necessary identical to the koptimal discovered via
the silhouette coefficient or the SEp as discussed in the previous Sections; there
does not exist a consensus on the value koptimal should yield.
To assess whether the data points in a cluster follow a Gaussian distribution, the
G-means algorithm utilizes the Anderson-Darling normality statistic [2] which has
been corrected for the sample size [41]. The full algorithm has been given in Algo-
rithm 6. Since we do not have a multidimensional vector describing a sample, we
use the distance (similarity) from a sample to its medoid, to project our samples
onto a 1-dimensional surface. Given the symmetric, bell-shaped Gaussian distri-
bution, we assume that all resulting distances can be placed on the right hand side
of the bell curve, and that the sample mean X̄ yields a small positive value ε, e.g.
0 ≤ ε ≤ 0.3. Moreover, the standard normal Cumulative Distribution Function
(CDF) φ(x) approaches 1 for x = 1. To split a cluster which does not follow a
Gaussian distribution, the authors of [18] suggest two approaches to select two new
medoids from the respected cluster. Unfortunately, both approaches require a vec-
tor representation of the samples. Using the similarity matrix it would be possible
to calculate vector representations of the graphs using multidimensional scaling,
however for simplicity we will use the medoid selection procedure as used for the
k-means++ algorithm (Algorithm 5) to select the new medoids.

Algorithm 6: Anderson-Darling test for Normality, with sample size cor-
rection

Input: List of data samples X : [x0, x1, ..., xi], sample size n = |X |
Output: true if X is Gaussian, false otherwise

1 Calculate sample mean X̄ and standard deviation σ;

2 Standardize the values: Y = [x−X̄
σ
|x← X];

3 Sort Y ascending;
In the following equation, φ(x) is the standard normal CDF:

4 A2 = − 1
n

∑n
i=1 (2i− 1)(lnφ(Yi)) + (ln(1− φ(Yn+1−i)))− n;

Adjust for the sample size [41]:

5 A2
∗ = A2(1 + 4

n
− 25

n2);
Test whether X follows a Gaussian distribution with a significance level
of 1%. The critical value 1.8692, which corresponds with the 1%
significance level, is taken from [2].

6 return A2
∗ ≤ 1.8692

6.3. DETERMINING THE NUMBER OF CLUSTERS 37

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

aa
bb
cc
dd

a b c d e f g h i j k l m n o p q r s t u v w x y z a
a

bb cc dd

O
bj

e
ct

Object

0

0.2

0.4

0.6

0.8

1

Figure 6.5: Artificially created similarity matrix of 30 objects. There are 5 well-
separated, tight clusters of varying size. The colors reflect pairwise similarity scores
of the objects.

6.3.4 Experimental results

To obtain some insight in the behavior of SEp and the silhouette coefficient as
metrics for establishing koptimal, both functions are first applied on an artificial
data set. The artificial data set contains 30 objects. Pairwise similarities for these
objects (Figure 6.5) are manually chosen such that all objects can be grouped into
5 well-separated clusters of different sizes.

Figure 6.6a plots the number of clusters against the SSE of the artificial data.
Since the quality of the clustering is susceptible to the choice of initial centroids
of k-means++ clustering, the clustering has been repeated 10000 times for each
k. The lowest SSE score obtained in such a sequence, i.e. the best clustering, is
used to draw the figure. The optimal number of clusters koptimal is clearly visible
in Figure 6.6a due to the so-called ’elbow’ at k = 5. A similar observation can be
made from the silhouette plot in Figure 6.6b: the silhouette coefficient peaks at
koptimal. Also, the elbow in the graph of the average a(xi) score is informative.
When k < koptimal, natural clusters are merged together and an increase of k will
cause a rapid decrease of the average a(xi) score. As soon as k becomes greater or
equal to koptimal, the slope of the a(xi) curve decreases (Figure 6.6b).

Figure 6.7 plots the same information as Figure 6.6, but this time for the collection

38 CHAPTER 6. CLUSTERING

100

1000

10000

100000

1e+06

5 10 15 20 25 30

S
u

m
o

fS
q

u
ar

ed
E

rr
o

r

Number of clusters

(a) SSE

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

S
co

re

Number of clusters

Silhouette: Averages(i)
Averagea(i)
Averageb(i)

(b) Silhouette Coefficient

Figure 6.6: Finding koptimal in an artificial data set

1000

10000

100000

1e+06

1e+07

1e+08

0 20 40 60 80 100

S
u

m
o

fE
rr

o
r

(S
S

p
)

Number of clusters

SSE (p=2)
p=1.5

p=3

(a) SEp for various p

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

S
co

re

Number of clusters

Silhouette: Averages(i)
Averagea(i)
Averageb(i)

(b) Silhouette Coefficient

Figure 6.7: Finding koptimal in the set with 194 pre-classified malware samples.

of 194 real malware samples. Interestingly, the SEp curves for different values of
p in Figure 6.7a do not reveal an elbow as can be observed in Figure 6.6a for the
artificial data. Similarly, no clear peak in the silhouette plot (Figure 6.7b) is visible
either, making it impossible to define koptimal. Consequently, we have to conclude
that it is infeasible to partition the malware samples in cohesive, well-separated
clusters based on our graph similarity scores, and hence we cannot obtain the
partitioning of the samples in the 24 families as proposed by F-Secure Corporation
in an automated fashion.
The absence of well-separated clusters where all samples are ordered in a spherical
fashion around the cluster center is also supported by the results obtained via the G-
means clustering algorithm. Several applications of the G-means cluster algorithm
resulted in 100 or more clusters, which is not a realistic number for just 194 samples.
The G-means algorithm could be adapted to test for other distributions besides the
Gaussian distribution, but based on our experiments we do not believe that the
sample to medoid distances follow any well known distribution in particular.

6.4. DBSCAN CLUSTERING 39

6.4 DBSCAN clustering

In the previous chapter, we have concluded that the entire sample collection cannot
be partitioned in well-defined clusters, such that each cluster is both tight and
well-separated. Central to the k-medoid clustering algorithm stands the selection
of medoids. A family inside the data collection is only correctly identified by k-
medoids if there exists a medoid with a high similarity to all other samples in
that family. This, however, is not necessary the case with malware. Instead of
assuming that all malware samples in a family are mutually similar to a single
parent sample, it is more realistic to assume that malware evolves. In such an
evolution, malware samples from one generation are based on the samples from
the previous generation. Consequently, samples in generation n likely have a high
similarity to samples in generation n+ 1, but samples in generation 0 are possibly
quite different from those in generation n, n � 0. This evolution theory suggests
that there are no clusters where the samples are positioned around a single center
in a spherical fashion, which makes it much harder for a k-means based clustering
algorithm to discover clusters. Although it is not possible to partition all 194
samples in well defined clusters, both Figure 6.2 and Figure 6.3 nevertheless reveal
a strong correspondence between the clusters found by the k-medoids algorithm,
and the clusters as predefined by F-Secure Corporation. This observation motivates
us to investigate partial clustering of the data. For this purpose, we apply the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering
algorithm [44, 12]. DBSCAN clustering searches for dense areas in the data space,
which are separated by areas of low density. Samples in the low density areas are
considered noise and are therefore discarded, thereby ensuring that the clusters are
well-separated. An advantage of DBSCAN clustering is that the high density area’s
can have an arbitrary shape; the samples do not necessarily need to be grouped
around a single center.
DBSCAN distinguishes between three types of sample points:

• Core points. A sample is a Core point if it has more than a predetermined
number MinPts of samples in its direct vicinity. The vicinity is specified by
a radius Rad: a distance or a similarity score.

• Border points: samples which are not Core points themselves, but are within
the radius Rad of a Core point.

• Noise points: all samples which are neither Core points nor Border points.

Formally, we can define the three categories of samples as follows:

• Core points: Pc = {x ∈ χ, |NRad(x)| > MinPts}, where
NRad(x) = {y ∈ χ, σ(x, y) ≤ Rad}

• Border points: Pb = {x ∈ (χ\Pc), ∃y ∈ Pc : σ(x, y) ≤ Rad}

• Noise points: Pn = χ\(Pc ∪ Pb)

40 CHAPTER 6. CLUSTERING

An informal description of the DBSCAN clustering algorithm is given in Algorithm
7.

Algorithm 7: DBSCAN clustering algorithm

Input: Set of call graphs χ, MinPts, Rad
Output: Partial clustering of χ

1 Classify χ in Core points, Border points and Noise;
2 Discard all samples classified as noise;
3 Connect all pairs (x, y) of core points with σ(x, y) ≤ Rad;
4 Each connected structure of core points forms a cluster;
5 For each border point identify the cluster containing the nearest core
point, and add the border point to this cluster;

6 return Clustering

The question now arises how to select the parameters MinPts and Rad. Based
on experimental results, the authors of [12] find MinPts = 4 to be a good value
in general. To determine a suitable value for Rad, the authors suggest to create a
graph where the samples are plotted against the distance (similarity) to their k-
nearest neighbor in ascending order. Here k equals MinPts. The reasoning behind
this is as follows: Core or Border points are expected to have a nearly constant
similarity to their k-nearest neighbor, assuming that k is smaller than the size of
the cluster the point resides in, and that the clusters are roughly of equal density.
Noise points, on the contrary, are expected to have a relatively larger distance to
their k-nearest neighbor. The latter change in distance should be reflected in the
graph, since the distances are sorted in ascending order.
Figure 6.8a shows the similarity of a malware sample to its k-nearest neighbor, for
various k. Arguably, one can observe rapid increases in slope both at Rad = 2.2
and Rad = 4.8 for all k. A Rad = 4.8 radius can be considered too large to apply
in the DBSCAN algorithm since such a wide radius would merge several natural
clusters into a single cluster. Even though Rad = 2.2 seems a plausible radius, it is
not evident from Figure 6.8a which value Minpts should yield. To circumvent this
issue, DBSCAN clustering has been performed for a large number of Minpts and
Rad combinations (Figure 6.8b). For each resulting partitioning, the quality of the
clusters has been estimated with the silhouette coefficient. From Figure 6.8b one
can observe that the best clustering is obtained for Minpts = 3 and Rad = 0.3.
While comparing Figure 6.8b against Figure 6.8a, it is not clear why Rad = 0.3
is a good choice. We however believe that the Silhouette coefficient is the more
descriptive metric.

Finally, Figure 6.9 gives the results of the DBSCAN algorithm for Minpts = 3
and Rad = 0.3 in a frequency diagram. Each colored square gives the frequency of
samples from a given family present in a cluster. The top two lines of the diagram
represent respectively the total size of the family, and the number of samples from
a family which were categorized as noise. For example, the Boaxxe family contains
17 samples in total, which were divided over clusters 1 (14 samples), 6 (1 sample),

6.4. DBSCAN CLUSTERING 41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200

S
im

ila
rit

y
to

k
-n

ea
re

st
n

ei
g

h
b

o
r

Malware sample

3-nearest neighbor
4-nearest neighbor
5-nearest neighbor
6-nearest neighbor

(a) Similarity to k-nearest neighbor, for
different values of k, sorted in ascending
order.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ilh

o
u

et
te

co
ef

fic
ie

n
t

Rad

minPts=3
minPts=4
minPts=5
minPts=6

(b) Silhouette Coefficient for different
combinations of Rad and MinPts.

Figure 6.8: Finding Rad and MinPts

and 17 (2 samples). No samples of the Boaxxe family were classified as noise. The
fact that the Boaxxe family is partitioned in multiple clusters is not surprising;
Figure 5.2b already revealed that the Boaxxe family as defined by human analysts
at F-Secure Corporation contains several samples which structurally differ signifi-
cantly from the other samples in the family.
The results from the DBSCAN algorithm on the malware samples are very promis-
ing. Except for three clusters, each cluster identifies a family correctly without
mixing samples from multiple families. Furthermore, the majority of samples orig-
inating from larger families were classified inside a cluster and hence were not
considered noise. Families which contain fewer than Minpts samples are mostly
classified as noise (e.g. Vundo, Blebloh, Startpage,etc), unless they are highly sim-
ilar to samples from different families (e.g. Autorun). Finally, only the larger fam-
ilies Veslorn (8 samples) and Redosdru (9 samples) were fully discarded as noise.
Closer inspection of these two families indeed showed that the samples within the
families are highly dissimilar from a call graph point of view.
Finally, Figure 6.10 depicts a plot of the diameter and the cluster tightness, for
each cluster in Figure 6.9. The diameter of a cluster is defined as the similarity of
the most dissimilar pair of samples in the cluster, whereas the cluster tightness is
the average similarity of a pair of samples. Most of the clusters are found to be
very coherent. Only for clusters 2, 6, and 7, the diameter differs significantly from
the average pairwise similarity. For clusters 2 and 6, this is caused by the presence
of samples from 2 different families which are still within Rad distance from each
other. Cluster 7 is the only exception where samples are fairly different and seem
to be modified over multiple generations. Lastly, a special case is cluster 16, where
the cluster diameter is 0. The call graphs in this cluster are isomorphic; one can-
not distinguish between these samples based on their call graphs, even though they
come from different families. Closer inspection of the samples in cluster 16 by F-
Secure Corporation revealed that the respected samples are so-called ’droppers’. A
dropper is an installer which contains a hidden malicious payload. Upon execution,
the dropper installs the payload on the victim’s system. The samples in cluster

42 CHAPTER 6. CLUSTERING

C
lu

st
er

ID

Malware family

0

5

10

15

Unclustered:
Total:

S
ys

te
m

hi
ja

ck
B

oa
xx

e
P

us
hb

ot
N

ee
ri

s
D

ao
no

l
B

ai
du

T
ds

s
Z

lo
b

V
un

do
bh

C
hi

fr
ax

R
ef

pr
on

C
ee

in
je

ct
B

ifr
os

e
Z

lo
b

dl
l

M
ul

tib
an

ke
r

V
un

do
A

ut
or

un
B

eb
lo

h
S

ta
rt

pa
ge

B
iv

id
on

R
un

on
ce

V
bi

nd
er

V
es

lo
rn

R
ed

os
dr

u 0

2

4

6

8

10

12

14

16

18

Figure 6.9: DBSCAN clustering with Minpts = 3, Rad = 0.3. The colors depict
the frequency of occurrence of a malware sample from a certain family in a cluster.

16 appear to be copies of the same dropper, but each with a different malicious
payload. Based on these findings, the call graph extraction has been adapted such
that this type of dropper is recognized in the future. Instead of creating the call
graph from the possible harmless installer code, the payload is extracted from the
dropper first, after which a call graph is created from the extracted payload.

6.4. DBSCAN CLUSTERING 43

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14 16

S
im

ila
ri

ty

Cluster ID

Average clustera(i)
Diameter

Figure 6.10: Plot of the diameter and tightness of the DBSCAN clustering.

44 CHAPTER 6. CLUSTERING

Chapter 7

Conclusion

The main subject of this thesis has been the investigation of means to compare
malware mutually via their call graph representations. Moreover, we explored au-
tomated identification and classification of malware families. New samples which
are found to be very similar to known malicious code, are likely mutations of the
same malicious code. Automated recognition of similarities as well as differences
among these samples will ultimately aid and accelerate human analysis, rendering
it no longer necessary to write detection patterns for each individual sample within
a family. Instead, anti-virus engines can employ generic signatures targeting the
mutual similarities among samples in a malware family.
After an introduction of call graphs in Chapter 2 and a brief description on the
extraction of call graphs from malware samples, Chapter 3 discusses methods to
compare call graphs mutually. Graph similarity is expressed via the Graph Edit
Distance, which, based on our experiments in Chapter 6, seems to be a viable met-
ric. Nevertheless, using this metric, it remains to be seen how well it is possible
to distinguish malware from benign software. Especially benign software infected
with malicious code could pose a serious challenge, because the malicious sample
would possess a high similarity to the originally benign version of the software.
Another issue of concern regarding the GED is its expressiveness of malware simi-
larity. Currently, the GED metric only considers elementary local operations such
as vertex (edge) deletion and addition or vertex relabeling. It is however unclear
how well these edit operations capture the reality. Possibly the virus writer could
make simple high level modifications on the virus, which result in a large number
of elementary edit operations from a call graph perspective. An overview of fre-
quently applied malware mutations is given in [7]. We suggest to incorporate some
of these mutations in the GED metric.
Pairwise graph similarity is calculated by finding a graph matching which mini-
mizes the GED. Unfortunately, exact graph matching algorithms are intractable
for large graph instances. Consequently, Sections 3.4 and 3.5 elaborate on two ap-
proximation algorithms for finding accurate graph matchings. The first algorithm
is based on the Hungarian algorithm, whereas the second one is a Genetic Search

45

46 CHAPTER 7. CONCLUSION

algorithm. To obtain accurate graph matchings, both algorithms require informa-
tion about pairwise vertex (function) similarties for the graphs under comparison.
This information is provided through cost functions as discussed in Chapter 4. As
it turns out, the computationally least expensive cost function based on neighbor-
hood comparisons and relabeling cost (Equation 4.2) as applied in [21, 50] provides
the best results, i.e. matchings with the lowest Graph Edit Distance.
Currently, the cost functions in Chapter 4 only consider structural properties.
Therefore, a natural extension of the cost functions is to compare the content
of the functions semantically. The latter can for instance be accomplished by the
approach proposed by Walenstein, Venable, et. al. in [46]. They suggest to de-
scribe each function as a vector of features. As an example of a feature, they give
the frequencies of opcode n-grams. Next, the similarity of a pair of functions is es-
timated by taking the cosine similarity of their respected feature vectors. The use
of opcode frequencies to characterize functions is also encouraged by the results
of Bilar as he discovered that opcodes can be used to distinguish malware from
benign software [4].
To facilitate the discovery of malware families, Chapter 6 applies several cluster-
ing algorithms on a set of malware call graphs. Verification of the classifications
is performed against a set of 194 unique malware samples, manually categorized
in 24 malware families by the data security company F-Secure Corporation. The
clustering algorithms used in the experiments include various versions of the k-
medoids clustering algorithm, as well as the DBSCAN algorithm. One of the issues
encountered with k-medoids clustering is the specification of the desired number
of clusters. Metrics to determine the optimal number of clusters did not yield
conclusive results, and hence it followed that k-means clustering is not effective to
discover malware families.
Much better results on the other hand are obtained with the density-based clus-
tering algorithm DBSCAN; using DBSCAN we were able to successfully identify
malware families. At the date of writing, automated classification is also attempted
on larger data sets consisting of a few thousand samples. F-Secure is currently an-
alyzing the results, but since this is a time consuming process, the results could
not be included in time in this thesis.
Future goals are to link the malware identification and family recognition software
to the live stream of daily incoming samples. Observing the emergence of new mal-
ware families, as well as automated implementation of protection against malware
families, belong to the long term prospectives of malware detection through call
graphs.

Bibliography

[1] “The Future Internet Programme,” 2010, Visited on 01-2-2010. [Online].
Available: http://futureinternet.fi/programme.htm

[2] T. Anderson and D. Darling, “Asymptotic theory of certain “goodness of
fit” criteria based on stochastic processes,” Annals of Mathematical Statis-
tics, vol. 23, pp. 193–212, 1952.

[3] D. Arthur and S. Vassilvitskii, “k-means++: the advantages of careful seed-
ing,” in SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
2007, pp. 1027–1035.

[4] D. Bilar, “Opcodes as predictor for malware,” International Journal of Elec-
tronic Security and Digital Forensics, vol. 1, no. 2, pp. 156–168, 2007.

[5] S. Bradde, A. Braunstein, H. Mahmoudi, F. Tria, M. Weigt, and R. Zecchina,
“Aligning graphs and finding substructures by message passing,” May 2009,
Visited on March 2010. [Online]. Available: http://arxiv.org/abs/0905.1893

[6] I. Briones and A. Gomez, “Graphs, entropy and grid computing: Automatic
comparison of malware,” in Proceedings of the 2008 Virus Bulletin Conference,
2008, Visited on May 2010. [Online]. Available: http://www.virusbtn.com/
conference/vb2008

[7] D. Bruschi, L. Martignoni, and M. Monga, “Code normalization for self-
mutating malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 46–54,
2007.

[8] E. Carrera and G. Erdélyi, “Digital genome mapping-advanced binary
malware analysis,” in Virus Bulletin Conference, 2004, Visited on May 2010.
[Online]. Available: http://www.virusbtn.com/conference/vb2004

[9] S. Dasgupta, “The hardness of k-means clustering,” Tech. Rep., 2008.

[10] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition).
Wiley-Interscience, November 2000, ch. 10, pp. 517–598.

47

http://futureinternet.fi/programme.htm
http://arxiv.org/abs/0905.1893
http://www.virusbtn.com/conference/vb2008
http://www.virusbtn.com/conference/vb2008
http://www.virusbtn.com/conference/vb2004

48 BIBLIOGRAPHY

[11] T. Dullien and R. Rolles, “Graph-based comparison of executable objects,”
in Symposium sur la Sécurité des Technologies de l’Information et des
Communications (SSTIC), 2005, Visted on May 2010. [Online]. Available:
http://actes.sstic.org/SSTIC05/Analyse differentielle de binaires/

[12] M. Ester, H.-P. Kriegel, J. S, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of 2nd
International Conference of Knowledge Discovery and Data Mining. AAAI
Press, 1996, pp. 226–231.

[13] H. Flake, “Structural comparison of executable objects,” in Proceedings of
the IEEE Conference on Detection of Intrusions, Malware and Vulnerability
Assessment (DIMVA), 2004, pp. 161–173.

[14] N. Funabiki and J. Kitamichi, “A two-stage discrete optimization method
for largest common subgraph problems,” IEICE Transactions on Information
and Systems, vol. 82, no. 8, pp. 1145–1153, 19990825. [Online]. Available:
http://ci.nii.ac.jp/naid/110003210164/en/

[15] X. Gao, B. Xiao, D. Tao, and X. Li, “Image categorization: Graph edit dis-
tance+edge direction histogram,” Pattern Recognition, vol. 41, no. 10, pp.
3179 – 3191, 2008.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, January 1979.

[17] C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Society, July 1997, ch. 11, pp. 405–470, Visited on April
2010. [Online]. Available: http://www.dartmouth.edu/∼chance/teaching
aids/books articles/probability book/amsbook.mac.pdf

[18] G. Hamerly and C. Elkan, “Learning the k in k-means,” in Advances in Neural
Information Processing Systems, vol. 17. MIT Press, 2003.

[19] Hex-rays, “The IDA Pro disassembler and debugger,” http://www.hex-
rays.com/idapro/, Visited on 12-2-2010.

[20] ——, “Fast library identification and recognition technology,”
http://www.hex-rays.com/idapro/flirt.htm, 2010, Visited on 12-2-2010.

[21] X. Hu, T. Chiueh, and K. G. Shin, “Large-scale malware indexing using
function-call graphs.” in ACM Conference on Computer and Communications
Security, E. Al-Shaer, S. Jha, and A. D. Keromytis, Eds. ACM, 2009, pp.
611–620.

[22] A. Justice, D. Hero, “A binary linear programming formulation of the
graph edit distance,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, pp. 1200–1214, 2006. [Online]. Available: http://people.
ee.duke.edu/∼lcarin/JusticeHero.pdf

http://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/
http://ci.nii.ac.jp/naid/110003210164/en/
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
http://people.ee.duke.edu/~{}lcarin/JusticeHero.pdf
http://people.ee.duke.edu/~{}lcarin/JusticeHero.pdf

BIBLIOGRAPHY 49

[23] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduc-
tion to Cluster Analysis (Wiley Series in Probability and Statistics). Wiley-
Interscience, March 2005, pp. 68–125.

[24] A. Kirichenko, “Research Collaboration Manager F-Secure Ltd.” personal
communication, 2010.

[25] E. L. Lawler, Combinatorial Optimization: Networks and Matroids. Mineola
(NY): Dover Publications, 2001, ch. 5, pp. 201–207, originally published: New
York : Holt, Rinehart, and Winston, c1976.

[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval, 1st ed. Cambridge University Press, 2008, ch. 16.

[27] T. Micro, “The business of cybercrime - a complex business model,” A Trend
Micro White Paper, 2009, Visted on May 2010.

[28] Microsoft, “Microsoft portable executable and common object file format
specification,” 2008, Visted on 12-2-2010. [Online]. Available: http://www.
microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx

[29] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997, ch. 9, pp. 259–280.

[30] E. Moore, “A generalized inverse of matrices.” in Proceedings of the Cambridge
Philosophical Society, 1955, pp. 394–395.

[31] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[32] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms for the
computation of graph edit distance,” in Structural, Syntactic, and Statistical
Pattern Recognition. LNCS, vol. 4109/2006. Springer, 2006, pp. 163–172.

[33] P. Orponen, “Professor Aalto University, Head of Dept. of Information and
Computer Science,” personal communication, 2010.

[34] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clus-
tering,” Expert Systems with Applications, vol. 36, no. 2, Part 2, pp. 3336 –
3341, 2009.

[35] M. Pietrek, “An in-depth look into the win32 portable executable file format,”
2002, Visited on 12-2-2010. [Online]. Available: http://msdn.microsoft.com/
nl-nl/magazine/cc301805%28en-us%29.aspx

[36] J. W. Raymond and P. Willett, “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures,” Journal of Computer-
Aided Molecular Design, vol. 16, p. 2002, 2002.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx
http://msdn.microsoft.com/nl-nl/magazine/cc301805%28en-us%29.aspx
http://msdn.microsoft.com/nl-nl/magazine/cc301805%28en-us%29.aspx

50 BIBLIOGRAPHY

[37] K. Riesen and H. Bunke, “Approximate graph edit distance computation by
means of bipartite graph matching,” Image and Vision Computing, vol. 27,
no. 7, pp. 950 – 959, 2009, 7th IAPR-TC15 Workshop on Graph-based Rep-
resentations (GbR 2007).

[38] K. Riesen, M. Neuhaus, and H. Bunke, “Bipartite graph matching for
computing the edit distance of graphs,” in Graph-Based Representations in
Pattern Recognition, 2007, pp. 1–12. [Online]. Available: http://dx.doi.org/
10.1007/978-3-540-72903-7 1

[39] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1, pp. 53–65,
1987.

[40] B. Ryder, “Constructing the call graph of a program,” Software Engineering,
IEEE Transactions on, vol. SE-5, no. 3, pp. 216 – 226, may 1979.

[41] M. A. Stephens, “Edf statistics for goodness of fit and some comparisons,”
Journal of the American Statistical Association, vol. 69, no. 347, pp. 730–737,
1974. [Online]. Available: http://dx.doi.org/10.2307/2286009

[42] Symantec Corporation, “Symantec Global Internet Security Threat Report
Volume - Trends for 2009 - Volume XV,” April 2010. [Online]. Available:
http://www.symantec.com

[43] P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley
Professional, 2005, ch. 6.

[44] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Ad-
dison Wesley, May 2005, ch. 8, pp. 487–568.

[45] M. Wagener and J. Gasteiger, “The determination of maximum common sub-
structures by a genetic algorithm: Application in synthesis design and for the
structural analysis of biological activity,” Angewandte Chemie International
Edition, vol. 33, pp. 1189 – 1192, 1994.

[46] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and A. Lakhotia, “A.:
Exploiting similarity between variants to defeat malware: vilo method for
comparing and searching binary programs,” in Proceedings of BlackHat DC
2007, 2007.

[47] Y. Wang and N. Ishii, “A genetic algorithm and its parallelization for graph
matching with similarity measures,” Artificial Life and Robotics, vol. 2, no. 2,
pp. 68–73, 1998.

[48] N. Weskamp, E. Hullermeier, D. Kuhn, and G. Klebe, “Multiple graph align-
ment for the structural analysis of protein active sites,” IEEE/ACM Trans.
Comput. Biol. Bioinformatics, vol. 4, no. 2, pp. 310–320, 2007.

http://dx.doi.org/10.1007/978-3-540-72903-7_1
http://dx.doi.org/10.1007/978-3-540-72903-7_1
http://dx.doi.org/10.2307/2286009
http://www.symantec.com

BIBLIOGRAPHY 51

[49] D. B. West, Introduction to Graph Theory (2nd Edition). Prentice Hall,
August 2000.

[50] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing stars: On
approximating graph edit distance,” PVLDB, vol. 2, no. 1, pp. 25–36, 2009.

	Title Page
	Problem Description
	Abbreviations and Acronyms
	Introduction
	Introduction to Call Graphs
	Graph Matching
	Basic terminology and notation
	Graph matching techniques
	Graph similarity
	Graph edit distance approximation
	Genetic search

	Vertex Matching
	Structural Matching
	Random Walk Probability Vectors

	Graph similarity: experimental results
	Graph similarity metrics
	Malware family analysis

	Clustering
	k-medoids clustering
	Clustering performance analysis
	Determining the number of clusters
	Sum of (Squared) Error
	Silhouette Coefficient
	G-means algorithm
	Experimental results

	DBSCAN clustering

	Conclusion

