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Problem description

This paper studies the optimal level of investment in research and development under
uncertainty with the use of real option theory.
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Sammendrag

Denne oppgaven ser på det optimale investeringsnivået i forskning og utvikling for et
firma som har muligheten til å gjennomføre et teknologibytte. Oppgaven modellerer

investeringen i forskning og utvikling ved å påvirke hoppstørrelsen i en
Poisson-hoppeprosess. Vi undersøker både en deterministisk og stokastisk

hoppstørrelse. Oppgaven finner at et optimum kun eksisterer hvis det er en avtagende
avkastning på investeringen i forskning og utvikling. Vi finner også at det er optimalt

for firmaet å øke investeringen i forskning og utvikling når innovasjonsnivået i
markedet øker. Oppgaven viser også at det optimale handlingsmøsteret for å investere i
forskning og utvikling ikke er monoton når investeringskostnaden, ved å ta i bruk ny

teknologi, øker.



Abstract
This paper looks at the optimal investment level in research and development for a

firm that holds an option to make a technology switch. The paper models the
investment in R&D by affecting the jump size in a Poisson jump process. We

investigate both a deterministic and stochastic jump size. The paper conducts a
sensitivity analysis that finds that for the optimum to be well defined there has to be a
diminishing return on investment in R&D. We find that it is optimal for the firm to

invest more in R&D as the level of innovation in the market increases. The paper also
finds that the optimal policy for investing in R&D is not monotonic when the

investment cost of adopting new technology changes.
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1 Introduction

Growth has become the epitome of modern civilization and is present in many forms,
e.g. an increase in population, an increase in the amount of available resources, or de-
velopment of new technology. Growth is one of the key parameters we use to judge if
a company is successful or not. How then can a company sustain its growth, or even
better, how can they increase the rate of growth itself? It can be argued that technology
has held center stage when it comes to the growth and creation of new companies the
last century. The increasing amount of money invested in research and development
(R&D) indicates that this is no secret to large companies. The question that then arises
is how much a company should invest in R&D. This is a difficult question to answer,
partially due to the high levels of uncertainty related to conducting R&D.

An industry where this has become especially true is in the industry of micro processors.
The industry is particularly known for a consistent and high level of development. This
progress is so consistent that it has been given its own law, the well known Moore’s
law. In resent years the level of innovation in the industry has declined, tending away
from Moore’s Law (Thornhill, 2018). This is in part due to the physical limitations that
has started to affect the development of new micro processors. In short, the transistors
have become as small as quantum physics allow them to be, at least with the current
level of technology. This has resulted in the pursuit of alternative technologies. One
promising lead are quantum computers that utilizes the properties of atoms to conduct
calculations. This search for alternative technologies stands as an excellent example of
some of the challenges that are involved with R&D. Companies like Google and IBM
have invested massive amounts into the development of quantum computers (Mosvitch,
2019), but it is still unclear if the technology is even practical and economically sound
compared to traditional transistor processors. This makes optimizing the amount in-
vested in R&D hard to determine, not only is it difficult to guarantee the results from
the R&D venture, but the value of the resulting technology can itself be uncertain.

This paper uses an analytical approach to address some of the aspects and challenges a
firm might encounter when trying to decide how much they should invest in R&D. We
treat the opportunity to adopt new technology as a real option, and let the firm influ-
ence the expected value of the option through R&D. The paper expands on the model
presented in Huisman (2001) by allowing for an investment in R&D. The model uses a
Poisson Jump process to imitate a changing technological progress that the firm can uti-
lize. There seems to be two clear approaches when trying to account for R&D when using
a Poisson jump process as a basis. The first is to affect the arrival rate through R&D,
this has been explored in the preliminary work, and some of the results are presented
in Appendix A. The work concluded in two surprising findings: The firms willingness to
invest in R&D increases if the level of free innovation in the market increases. We also
found a non-monotonic behavior when the cost of adopting new technology changed. In
this paper we look at the alternative method where we let the investment in R&D affect
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the jump size in the Poisson process. Our first model let the firm invest some amount
into R&D that directly changes the jump size in the process. In our second model we
let the firm invest some amount into R&D to affect the expected jump size, where the
jump size follows an exponential distribution.

Huisman (2001) uses both decision theoretic models and game theoretic models. This
paper does not look at the game theoretic aspects of investing in R&D. An alterna-
tive way of modeling investment in technology is presented in a paper by Kwon (2010).
The paper looks at a firm that faces a declining market. The market is modelled using
Brownian motion with a negative drift. The firm holds an option to exit the market at
any time, and a one-time option to boost the profit rate by investing in a technology
improvement. A paper by Hagspiel et al. (2016) models a declining market similarly to
Kwon (2010). The model differ by also including the opportunity to optimize the level
of production capacity. This is similar to our paper as it also deals with an optimiza-
tion problem simultaneously as an optimal stopping problem. Our model includes the
one-time option to adopt new technology, but our model does not include an option to
exit the market. We assume that the supply is always equal to the demand, and let the
profit of the firm only be reliant on the technology level. A paper by Hagspiel et al.
(2015) looks at technology adoption when the firm faces uncertainty of timing of new
technology improvements. The paper models the technology level using a jump process
like in Huisman (2001), but extends the existing model by allowing for the arrival rate
to change after a jump in the Poisson process.

The paper finds that an increase in the base level of innovation in the market results in
a higher investment level in R&D. This means that the our models predicts that inno-
vation will result in more innovation. Another finding of the paper is a non-monotonic
behavior of the firm when the cost of adopting new technology increases. Our model
predicts that the firm would increase the investment level in R&D until the investment
cost of adoption reaches a certain level. The firm would then reduce the size of the
investment in R&D.

The paper is structured as follows. Section 2 derives a model that lets the firm in-
vestment in R&D to affect a deterministic jump size in the technology process. Section
3 presents the results from this model and the apparent implication and predicted be-
haviour of the firm. Section 4 derives the model where the jump sizes follow exponential
distribution. Section 5 looks at the results from this model and its implications. Section
6 concludes on the findings of this paper.

2 Model I: Deterministic jump size

Huisman (2001) presents a model where the technology development is modeled using
a Poisson jump process. We utilize the same model, but let the firm invest in R&D at
the beginning of the project. The investment in R&D affects the Poisson jump process
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and consequently the value of the project. In the first model we treat the jump size as
a constant determined by the investment size in R&D while deriving the option value
and optimal investment level. The main focus of this paper is to look at the effects of
changing the initial parameters and how this shapes the behavior of the firm.

One could imagine different approaches of modelling the affects of investment in R&D
with the use of the model presented in Huisman (2001) as a basis. The choice of letting
the investment change the jump size, and not any other parameters, seems reasonable
in some industries. Companies that release new products every year often release new
products that are in direct competition to their existing products. The model could
therefore be seen as the value of single product launch. The arrival rate of the possible
advancements are therefore already set by the firm, but how innovative the new product
is, can be affected by the firm through R&D. The model therefore let the investment in
R&D affect how large the jump in innovation becomes. The choice of not adopting a new
technology after a jump can easily be defended if the current product is too profitable,
and firm therefore waits. The results of any R&D venture is not lost, but the firm has
not taken advantage of its potential.

There seems to be two major reasons for a firm to conduct R&D when we exclude
R&D into supportive elements, e.g. reducing production costs, better marketing tech-
niques, more efficient supply chains. The first is the possibility of releasing new products
to the customers as a response to a declining market, as modeled in Kwon, 2010 and
Hagspiel, Huisman, Kort, et al., 2016. The other is to get a competitive advantage over
other firms to capture or maintain market share. The two are not necessarily exclusive,
but might result in very different levels on investment in R&D. Both rely on increasing
or maintaining the profit flow from customers, but the difference might be seen as a firm
that holds a monopoly position and one that co-exists with other firms.

Huisman (2001) also looks at models with a game theoretical approach, accounting
for interactions with other firms. The presence of other firms could affect investment
level in several ways, one being patent protection. If the firm was the first to create a
new technology or advancement, the firm could apply for patent protection, stopping
other firms from copying the results of their R&D venture. It should be noted that
patents do not always give the desired protection, and many countries have a tendency
to ignore patent protection (Love, 2012). The other case would be where another firm
made advances in the same technology, and then applying for a patent. The result could
be catastrophic, giving the competitor massive market power. Either by demanding
high licensing fees to use their technology, or by not allowing competitors to use the
technology at all.

The micro processor industry provides a good example. The industry is for all practical
purposes a duopoly when it comes to providing commercial processors to the consumer
market (Jeyaratnam, 2019). The power balance between Intel and AMD, the two main
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competitors, changed when Intel launched a new series of processors in 2006. Intel used
this position to greatly inflate its prices, as AMD did not have the technology to compete.
AMD has since then used massive amounts of money to develop a new line of processors
which they launched in 2019 (Lee, 2019). The new processors are predicted to heavily
impact the market share of Intel in the coming years. This example shows how impor-
tant research and development can be in order to maintain market share. The example
also shows a case where a competitor is not able to utilize the technology developed by
the competitor, or is at least not able to utilize it to a large extent. Intel experienced
a long period with nearly the power of a monopoly. We therefore treat the sudden re-
newed competition by AMD in 2019 as an unexpected market penetration. Since it can
be extremely hard to predict new market penetrations, and since the game theoretical
aspect is outside the scope of this paper, we assume that the firm is a monopoly. We
do look at the affect of a base level of innovation in the market. This could be seen as
R&D preformed by other firms and could account for some affects we suspect to see from
the presence of other firms. We also look at a case where the investment cost accounts
for the current technology level by increasing the cost of R&D. This will influence the
amount of R&D conducted, but we will not look at the action as a response to other
firms actions, where one could assume that there exists a Nash equilibrium in the level
of R&D performed.

2.1 Assumptions

We start by deriving the model presented in Huisman (2001), with the option to invest
some amount in R&D to affect a deterministic jump size in the Poisson jump process.

We look at a risk-neutral monopolistic firm that holds an option to invest in new technol-
ogy. The firms profit function is only dependent on the technology level, and produces
products with the current technology level ζ(t). The firms technology level is unchanged
until it decides to pay an investment cost I and adopt a new technology level. We assume
that the firm can only adopt new technology once, and consequently have to produce
with that technology level forever. The technology development over time is modeled
using a Poisson jump process and denoted θ(t). The firm is currently producing at tech-
nology level ζ0 ≤ θ0, where θ(0) = θ0. The firm has an instantaneous profit function
π(ζ(t)), where π : R+ → R. We also assume that the firm discounts with the risk-free
rate r. Our extension also allows the firm to invest some amount IRD into R&D, the
investment changes the jump size in the Poisson jump process. The size of the jump
is denoted u(k), where k is a metric that represent the level of R&D performed. The
shape of u(k) and IRD will be discussed later in the paper.
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The Poisson jump process can mathematically be stated as:

dθ(t) =

{
u(k) with probability λdt

0 with probability (1− λdt)
(1)

The arrival rate λ determines the likelihood of a jump occurring in any time interval dt.
The size of lambda is assumed to be constant and non-zero.

The complete problem can then be stated as:

F (θ(t), k|ζ0) = sup
τ,k

E

(∫ τ

0

π(ζ0)e
−rtdt+

∫ ∞
τ

π(θ(τ))e−rtdt− Ie−rτ − IRD(k)

)
(2)

0 tτ

-I
π(ζ0) π(θ(τ))−IRD(k)

Figure 1: Timeline of project investments and profit flow.

Equation (2) shows how the firm pays an initial amount into R&D and by that af-
fects the jump size. The equation then shows the expected value of the project from
producing with the current technology level ζ0 until the firm invests amount I at time τ .
The firm then produces with the new technology level θ(τ) forever. Figure (1) shows the
timing of the investment in R&D, profit flow, and the adoption of the new technology
level.

2.2 Deriving option value

Before we can find the optimal value of the effort parameter k, we need to derive the
value function of the project.

Let θ∗ be the technology level for which the firm is indifferent between investing in
the new technology and keeping the current technology. Meaning that the firm will in-
vest for all technology levels θ(t) > θ∗, and refrain from investing for any level θ(t) < θ∗.
For this model we assume that it is possible to update technology only once and that the
firm produces with the new technology level forever. Thereafter the termination payoff
can be stated as:
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V (ζ) =

∫ ∞
t=0

π(ζ)e−rtdt =
π(ζ)

r
, (3)

which is equal to the discounted profit from producing with technology level ζ forever.

When the current technology level θ becomes higher than the optimal technology level
θ∗, the firm pays the investment cost I and starts producing with the new technology.
This leads to the following value function in the stopping region:

Ω(θ) = V (θ)− I θ ≥ θ∗ (4)

The value of the total project solves the following maximization problem:

F (θ(t), ζ0) = max
(
Ω(θ(t)), π(ζ0)dt+ e−rdtE(F (θ(t+ dt)|θ(t))

)
(5)

The first term is the termination payoff. The second term is the value where the firm
receives the current profit π(ζ0) and not stopping at time t but continuing and acting
optimal for time t+dt and onward. This follows from the Bellman principle of optimiza-
tion. The second term in the maximization problem for the continuation region θ < θ∗.
This leads us the following equation for the continuation region:

F (θ(t), ζ0) = π(ζ0)dt+ e−rdtE(F (θ(t+ dt)|θ(t))) (6)

We let dt go towards zero, rearranging and setting e−rdt ≈ (1− rdt).

F (θ(t), ζ0) = π(ζ0)dt+ rE(F (θ(t+ dt)|θ(t))dt+ E(F (θ(t+ dt)|θ(t))) (7)

rE(F (θ(t+ dt)|θ(t))dt = π(ζ0)dt+ E(F (θ(t+ dt)|θ(t)− F (θ(t), ζ0) (8)

rF (θ(t+ dt)|θ(t))dt = π(ζ0)dt+ E(dF (θ(t+ dt))|θ(t)) (9)

rF (θ(t), ζ0) = π(ζ0) + lim
dt→0

1

dt
E(dF (θ, ζ0)) (10)

Equation (10) is the resulting Bellman equation that F must satisfy. The size of the
jump in the Poisson process is equal to u(k) and the result of an investment in R&D.
This results in two scenarios for the continuation region. In the first scenario, the
resulting technology level after the jump is not large enough to trigger investment:
{θ|θ < θ∗ − u(k)}. In the second scenario, the jump will trigger investment in the new
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technology level: {θ|θ∗ − u(k) ≤ θ < θ∗}. We have to solve the cases separately. Notice
that the threshold of the region will be determined by the size of the investment in R&D
due to the change in the jump size.

The equation includes a stochastic component that we solve by applying Itô’s Lemma:

dF (θ(t), t) =
∂F (θ(t), t)

∂t
dt+

∂F (θ(t), t)

∂θ(t)
dθ(t) +

1

2

∂2F (θ(t), t)

(∂θ(t))2
(dθ(t))2 (11)

Since θ(t) follows a Poisson jump process, the third term in the equation can be set to
zero as (dθ(t))2 ≈ 0 when dt goes to zero. We start in the continuation region where
θ(t) < θ∗ − u(k) :

∂F (θ(t), t)

∂t
dt = 0 and

∂F (θ(t), t)

∂θ(t)
dθ(t) = λdt[F (θ + u, ζo)− F (θ, ζ0)] (12)

That gives:
dF (θ(t), t) = λdt[F (θ + u, ζ0)− F (θ, ζ0)] (13)

Which gives us the following equation for the total value:

rF (θ(t), ζ0) = π(ζ0) + λ(F (θ + u(k), ζ0)− F (θ, ζ0)) (14)

The solution of equation (14) is equal to:

F (θ, ζ0) = c

(
λ

λ+ r

)− θ
u(k)

+
π(ζ0)

r
(15)

where c is a constant that can be found by applying the value matching condition at
θ = θ∗ − u(k). We solve the second part of the continuation region, θ∗ − u(k) ≤ θ < θ∗,
by applying Itô’s Lemma again:

∂F (θ(t), t)

∂t
dt = 0 and

∂F (θ(t), t)

∂θ(t)
dθ(t) = λdt(V (θ + u(k))− I − F (θ, ζ0)) (16)

Which gives us the equation:

rF (θ(t), ζ0) = π(ζ0) + λ(V (θ + u(k))− I − F (θ, ζ0)) (17)
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Rewriting gives:

F (θ(t), ζ0) =
π(ζ0)

r + λ(k)
+

λ

r + λ
(V (θ + u(k))− I) (18)

We know that the value in the two regions has to be equal at θ = θ∗ − u:

π(ζ0)

r + λ
+

λ

r + λ
(V (θ∗ − u(k) + u(k))− I) = c

(
λ

λ+ r

)− θ∗−u(k)
u(k)

+
π(ζ0)

r
(19)

Solving this equation for c gives:

c =

(
λ

λ+ r

) θ∗
u(k)

(V (θ∗)− V (ζ0)− I) (20)

Finally, we can express the total value in the three cases. The cost of investing in R&D
occurs at t = 0 at a cost of IRD(k). As the investment in R&D occurs at the beginning
of the project the cost is simply deducted from the total value of the project in the
different cases.

F (θ, k|ζ0) =



(
λ
λ+r

) θ∗−θ
u(k) (V (θ∗)− V (ζ0)− I) + V (ζ0)− IRD(k) if θ < θ∗ − u(k)

π(ζ0)
r+λ

+ λ
r+λ

(V (θ + u(k))− I)− IRD(k) if θ∗ − u(k) ≤ θ < θ∗

π(θ)
r
− I − IRD(k) if θ ≥ θ∗

(21)

As mentioned earlier, the threshold θ∗ determines which value region we are currently
in. We can find the threshold by value matching. We therefore equate the second and
third region and let θ(t) = θ∗:

π(ζ0)

r + λ
+

λ

r + λ

(
π(θ∗ + u(k))

r
− I
)
− IRD(k) =

π(θ∗)

r
− I − IRD(k) (22)

GI(k) =
π(ζ0)

r + λ
+

λ

r + λ

(
π(θ∗ + u(k))

r
− I
)
− π(θ∗)

r
+ I = 0. (23)

GI(k) is an implicit function that gives us the threshold. We do need to define a profit
function π in order to solve the equation. We will define a profit function and functions
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for u(k) and IRD(k) in the next section. Note that θ∗ is dependent on the jump size
u(k), implying that the threshold itself is dependent on the k, i.e. the level of effort put
into R&D . Also note that the threshold is not dependent on the cost of R&D. This is
because IRD(k) is incurred at the beginning and is considered sunk for the problem of
optimal adoption of the technology.

In Appendix B we have also derived the expected time until we reach the optimal
technology level:

E[τ ] =
n∗(k)

λ
(24)

Where E(τ) is the expected time to reach the optimal technology level θ∗, and n∗ is
the number of jumps needed before reaching the optimal technology level. The ap-
pendix also show that the variance is given by:

V ar[τ ] =
n∗(k)

λ2
(25)

2.3 Finding the optimal effort level k

The goal of this section is to find the optimal level of investment in R&D. To be able to
find the optimum we need to define three functions: The profit function π, the response
of the jump size on the level of effort, and the cost of conducting R&D.

2.3.1 The Profit Function

A good model should be flexible to a wide variety of profit functions. This paper does
not take a deeper look at different profit functions, but introduces the same as the one
presented in Huisman (2001), as this makes comparisons to the benchmark model eas-
ier. It also removes the effects of using a different profit function. The profit function is
therefore:

π(ζ) = ϕζb (26)

With:
ϕ = (1− a)

( a
w

) a
1−a

p
1

1−a (27)
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And:
b =

1

1− a
(28)

Where a ∈ (0, 1) is the output elasticity, p is the output price and w is the input price.
These parameters are seen as exogenously given and constant for our model. ζ can
simply be replaced with θ and θ∗ for their respective cases, meaning that the technology
level is the only variable directly affecting the profit.

The reader should note that the number of solutions to the implicit function of the
threshold θ∗ is dependent on the output elasticity a.

2.3.2 Return on effort into R&D

One of the most central parts of this model is the functional form of u(k). The func-
tion expresses what the firm should expect from conducting R&D. In our first model
we assume that the jump size after the firm has conducted R&D is deterministic. This
makes it possible to observe how the value of the investment changes with a change in
the level of R&D. The downside is the lack of uncertainties around conducting R&D
itself, this means that the first model only accounts for the insecurities surrounding the
value of the resulting R&D. The second model uses a jump size that follows a stochastic
distribution, accounting for the fact that the result from conducting R&D can be more
or less successful.

The functional form should reflect that the investment in R&D results in a direct change
in the jump size. Let us first look at a possible candidate:

u(k) =
kβ

10
(29)

Equation (29) shows how the effort k put into R&D is affected by two parameters
that determines the return on conducting R&D. The β-parameter makes it possible to
account for diminishing return (β < 1), constant return to scale (β = 1), or return to
scale (β > 1). We will assume that there are a diminishing return to scale (β < 1) which
partially is supported by Shephard and Färe (1974). This seems reasonable as one should
expect the complexity of organizing an R&D venture to increase with the effort level
k. There are probably a finite amount of researchers, scientists, and engineers within
a certain field of technology. For some industries it is therefore reasonable to assume
that the competence level of the labor is diminishing with the number of employees.
This assumes that the firm employs the best worker first, the second best second, and
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so on. This is not necessarily the case for industries with a large available work force.
But there are also other factors that might result in a diminishing return on investments.

Notice how the jump size is divided by a factor of 10. This is not random, and serves
two purposes. The first purpose is to assure a diminished return on R&D in the region
of the resulting jump size 0 < u ≤ 1. The scaling also ensures that the effort parame-
ter is in the same range as the one used in the preliminary work presented in Appendix A.

This function for the jump size u(k) does not account for the possibility of the return on
R&D being higher in the beginning. The quality of the employees could be increasing
with the level of investment in the beginning as the firm could attract better staff with
higher salaries. This could be modelled using a type of Sigmoid function, either as the
jump size itself, or an inverse Sigmoid function for the β-parameter. This introduces
several challenges when it comes to solving for the optimum. The model also becomes
very sensitive to the shape of the Sigmoid function, making it harder to interpret the
effects of other parameter changes.

The current form of u(k) results in a jump size of zero if the firm restrains from in-
vesting in R&D. This is reasonable if the firm is a monopoly and is not dependent on
any other technologies but the one developed by the firm. This seems unlikely as most
technologies can utilize breakthroughs in other fields. We can include some base level of
innovation as a part of the jump size that is independent from the effort of the firm. This
base level of innovation could also be a result from R&D conducted by other firms, but
that is available to competitors. We account for all available development not conducted
by the firm as u0:

u(k) =
kβ

10
+ u0 (30)

2.3.3 Cost of conducting R&D

The former section established a functional form of the jump size function u(k). The
function does not account for any changes in how the cost develop when we increase the
amount of effort k. We saw how increasing the amount of labourers working on R&D
could result in a diminishing return on effort. One should also most likely experience an
increase in the cost when increasing the effort level. It can be hard to define technologi-
cal progress in a consistent hierarchy, and it can be even harder to quantify technological
progress. This makes it difficult to relate a resulting jump size directly to the cost. The
cost function should therefor relate the value added by R&D to the costs. We will later
see how a small change in the jump size results in a large increase in the project value.
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One cost function would be:

IRD(k) = ck (31)

The constant c accounts for any linear cost relationship. This makes the cost scal-
able to the other parameters. This cost structure does not account for any other effects
that might influence the cost of conducting R&D. The first being the current technology
level θ(t). The complexity of conducting R&D in any fields seems to be rising. One
example is the ever decreasing size of the transistors in a micro processor. This results
in the need for advanced electron microscopes in order to develop and validate the new
processors. This again results in an increasing cost of equipment as the technology de-
velop. The following cost function accounts for this by making the cost dependent on
the current technology level. We also assume that the increase in cost is a result of the
gap between the current technology level available in the market θ0, and the technology
level currently in use by the firm ζ0. Note that we assess the cost with the initial value
of the two parameters as the investment is made at the beginning:

IRD(k|θ0, ζ0) = ck + v

(
θ0
ζ0
− 1

)
k (32)

Equation (32) relates the cost of the technology gap as a fraction between θ0 and ζ0, with
the assumption that θ0 ≥ ζ0. There is no penalty if the current technology level in use
is equal ζ0 is equal to the available technology level θ0. We choose a separate parameter
for the cost of the technology gap as the actual numerical value of the technology level
most likely is different from the expected increase in costs.

2.3.4 Optimal effort level k∗

We have now defined all functions necessary to search for an optimal level of R&D, de-
noted k∗, given a set of input parameters. The optimal level is given when we maximize
the total value of the project. The value is defined by the value function in equation
(21), and has three distinct regions as previously mentioned. The optimum is therefore
dependent on finding the threshold θ∗ in order to determine which value region that is
currently valid. This creates several challenges when it comes to solving for an optimum.
The first being the thresholds dependency on the order of the profit function, resulting
in several possible solutions. The second challenge is that the changing value function
is dependent on the threshold function itself. The third is the nonlinear optimization
problem that results from deriving the optimum. These factors forces us to use numeri-
cal methods to find the optimum as there is no known analytical solution. We introduce
numerical values for the parameters in the next section in order to solve for the optimum.
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3 Results: Model I

In order to use Huisman (2001) as benchmark model, we introduce the same parameter
values to our extended model. The parameters are: a = 1

2
, p = 200, w = 50, r = 0.1,

λ = 1, and I = 1600. Resulting in ϕ = 200 and b = 2 for the profit function. We let
ζ0 = θ0 in all cases, except where we specifically want to observe the effect of a gap in
technology level. The base level of innovation is set equal to u0 = 1, as we expect some
innovation in the market that is not dependent on investments in R&D done by the firm.
This also makes it easier to observe the difference from the benchmark model.

We start by deriving the values for the benchmark model with a jump size of u = 0.1, and
ζ0 = θ0 = 1. We first calculate the optimal technology level θ∗ which is equal to 2.703.
The total value is then, F= 4172.52. We also calculate that 18 jumps are needed to reach
the optimal technology level, this results in E(t∗) = 18 as the arrival rate is equal to one.

Let us look at the existence of an optimal level of investment in R&D before we look at
how changing the initial parameters change the behavior of the firm. If we look closely
at the value function, we can observe that it is strictly increasing with an increase in the
jump size. The exception is when the technology level θ0 is larger than the threshold θ∗.
It should also be mentioned that θ∗ is strictly increasing with the jump size. Figure 2
shows how the value of the project and the threshold increases with the jump size, any
affects from investing in R&D is not included, i.e. c = 0.
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Figure 2: Project value and threshold for different values of u. Other parameters are: r
= 0.1, a = 0.5, w = 50, p = 200, λ = 1, ζ0 = 1, I=1600, θ0 = 1, and c=0
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A key insight from figure 2 is how the increase in value is nonlinear. An optimum exists
where the marginal gain of preforming R&D is equal to the marginal cost. An optimum
would therefore only be possible if there are diminishing return on R&D, assuming a
linear cost structure. The value of the β-parameter therefore determines if there is an
optimum or not. There are little empirical evidence for what the return on R&D should
be, only that it is reasonable to assume that there is a diminished return, meaning
β < 1. We choose a marginal cost of R&D of c = 200, this results in an investment
cost of IRD(k) = 200 when k = 1. This is around 10% of the project value of the
benchmark model given the same parameters. This is similar to the percentages of what
larger technology firms uses on R&D in comparison to total revenue (Truong, 2016). β
is chosen to be equal to 0.3 in cases where we do not look at the effect of changing the
β-parameter.

3.1 Sensitivity analysis

We will now look at how the optimum effort level k∗ changes when changing the input
parameters. The following parameter changes will be investigated: The cost of adopting
new technology I, the base level of innovation in the market u0, a gap between θ0 and
ζ0, and the marginal cost of conducting R&D c. The reader should note that some of
the graphs use scientific notation, this is simply due to practicalities.

Effect of a changing the investment cost I
The first parameter we observe is the investment cost of adopting new technology I.
This cost is incurred when the firm chooses to adopt the new technology level, implying
that the technology level has reached the threshold θ∗. In essence the firm tries to time
when the future value of producing with a new technology level surpasses the discounted
value of the investment cost I. By delaying the adoption, the firm postpones I, reducing
its present value due to discounting.
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Figure 3: Optimal investment level in R&D for different values of I. Other parameters
are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1, ζ0 = 1, θ0 = 1, β = 0.3, and c = 200

Figure 3 shows a non-monotonic behavior of the optimal investment level in R&D when
changing the investment cost I. This strengthens the findings in the preliminary work
presented in Appendix A. We can observe that changing the investment level I only
triggers minor changes in the optimal investment level, but there is still a clear non-
monotonic behavior. This means that in the beginning the firm increases its investment
in R&D as the investment cost increases. This is the optimal strategy for the firm until
the investment cost reaches around I = 8500, for this parameter set. At that point the
value gained from discounting the investment cost I is larger than the added value of
waiting for a higher technology level. The result is a diminish optimal level of effort
k∗. The optimal threshold is still increasing, but the value comes from discounting the
investment cost over time, not reaching a higher technology level.

We can also observe that θ∗ only changes from about 9.1 to 10.1. The effect on the
threshold is monotonic and increasing with the investment cost. This means that the
value of waiting increases, this is in part due to the higher marginal value of discounting
the investment cost. Said differently, the higher investment cost makes it valuable to
discount it over a longer period of time.

Effect of changing the base level of innovation u0

The base level of innovation in the market u0 could affect the optimal investment level
k∗ in three ways. The first being a reduction in the investment in R&D. This could be
a result of the firm reaching the optimal jump size with a lower investment in R&D,
utilizing the free innovation in the market. The second outcome could be that the base
level on innovation would not affect the optimal investment of the firm. The firm would
still benefit from the increased innovation in the market, resulting in a higher project
value. But the marginal gain of investing in R&D would remain unaffected by a higher
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base level of innovation, resulting in a constant investment level. The third outcome
would be where an increased base level of innovation would result in a higher investment
level in R&D. This would mean that the added value would incentives the firm to invest
even more.
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Figure 4: Optimal investment level in R&D for different values of u0. Other parameters
are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1, ζ0 = 1, θ0 = 1, β = 0.3, and c = 200

Figure 4 shows how the willingness to invest in R&D increases with base level of innova-
tion in the market, accordance with the third prediction. This means that the marginal
gain of conducting R&D is increasing with the base level of innovation. We can also
observe that the technology threshold θ∗ is increasing with an increase in u0. This again
means that the firm is willing to wait for a higher technology level before adopting a
new technology. The increased technology threshold increases the value of the project,
resulting in a higher marginal gain from investing in R&D. The marginal cost c of con-
ducting R&D is constant, the optimal investment level k∗ is therefore increased. This
is a result of the nonlinear increase in project value when increasing the jump size as
shown in figure 2. The diminishing return on R&D eventually creates an effort level
where the marginal cost is equal to the marginal gain. This conclusion is strengthened
by the findings in the preliminary work, presented in Appendix A.

Effect of changing the gap between θ0 and ζ0
We assume that the current technology level in use is ζ0 = 1. The increase in the starting
technology level in the market θ0 results in higher R&D costs as modelled with the cost
function presented in 2.3.3. The marginal cost v of the technology gap is unknown. We
therefore look at three different values.
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Figure 5: Optimal investment level in R&D with changing technology level θ0, for v =
0, 200 and 400. Other parameters are: r = 0.1, u0 = 0.1, a = 0.5, w = 50, p = 200, λ =
1, ζ0 = 1, I=1600, and c = 200.

Figure 5 shows that the marginal cost of the technology gap v dictates the behavior of
the firm. The firm wishes to invest increasingly more in R&D if there are no penalties
for a gap in technology. This is in line with the findings of increasing the base level of
innovation in the market. The increase in the starting technology level θ0 has a positive
effect on project value when v = 0, resulting in a higher marginal gain from investing in
R&D.

We can observe that the optimal strategy changes when the firm incurs a penalty due
to the technology gap. An increase in the marginal cost of the technology gap results
in a decrease in the willingness to conduct R&D, as seen by the change between v = 0,
v = 200, and v = 400. We can observe that an increase in the technology gap results
in a larger increase in the total marginal cost of R&D when v = 200, making the firm
wanting to reduce the effort level in R&D. An increase in the technology gap now reduces
the project value.

Effect of changing the marginal cost of investing in R&D
Finally we will observe how a change in the marginal cost of conducting R&D affects
the willingness to invest in R&D.
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Figure 6: Optimal investment level in R&D for different values of c. Other parameters
are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1, ζ0 = 1, θ0 = 1, β = 0.3

Figure 6 shows how an increasing marginal cost results in lower willingness to invest
in R&D. The marginal cost c lowers the total gain from conducting R&D, this is a
direct result of the diminishing return on R&D. The diminishing return makes the cost
of conducting R&D quickly surpass the gained value. One can also observe that the
optimal technology threshold flattens and seems to approach a constant value. This
value is simply the value as if the firm did not conduct any R&D, as that is precisely
the optimal strategy if the marginal costs is to high.

4 Model II: Stochastic Jump Size

Model I has the disadvantage that the firm can exactly determine how the investment
in R&D affects the jump size. There are still uncertainties present in model I since the
arrival rate of the jumps are stochastic. But this resulted in a model that only accounted
for uncertainties outside the influence of the firm. We therefore introduce an alternative
model that accounts for the uncertainties surrounding the results from an investment
in R&D. We now let the jump size follow some stochastic distribution and let the firm
invest in the expected jump size instead of the jump size itself. The first question that
arise is what type of distribution the jump size should follow.

4.1 Assumptions

4.1.1 Distribution of the Jump Size u

Huisman (2001) presents two models that uses a stochastic distribution for the jump
size. The first follows a uniform distribution, and the second follows an exponential
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distribution. The goal of model II is to include the uncertainties related to the success
of the R&D venture. Let us start by evaluating the uniform distribution.

With the uniform distribution there are an equal probability for all values of u within a
domain. Let us say that the domain is u = [a, b]. This would mean that there is an equal
probability for the jump size being any value from a to b. The mean of the distribution
is stated as:

E(u) =
a+ b

2
(33)

One could imagine that the firm could invest some amount into R&D in order to in-
fluence the mean by changing a and b. A natural start for a could be zero, meaning
that there is a chance that the R&D venture failed completely. The challenges is to
set the upper limit of the jump size. This could be done by relating it to the Poisson
process, limiting the jumps to be smaller than some fraction of the current technology
level. Using a uniform distribution seems to have several flaws. The most apparent being
the assumption that there is an equal probability for any jump size to occur within the
domain. It seems unreasonable to assume that it is an equal probability of the R&D
venture to fail completely, or for getting the biggest breakthrough possible. A real life
firm would most likely learn something from any venture, and the probability of making
a revolutionary step should be highly unlikely.

We are therefore looking for a distribution that makes large jumps less probable. One
could expect that the jump size followed a normal distribution. The firm could then
affect the distribution by changing the mean and variance. A challenge with the normal
distribution is that it is symmetric around the mean, resulting in a positive probability
for negative jump sizes. One could limit the negative values by simply equation them to
zero, but this would create a skewness that changed depending on the mean and variance.

Another candidate would be an exponential distribution. The distribution has only
positive values and a diminishing probability for larger values. Another positive feature
is the number of parameters that has to be determined. We only need to know the
rate parameter µ in order to define the distribution. We could then imagine that the
firms investment in R&D affected this one parameter, influencing the distribution of the
expected jump size. The exponential distribution as a density function:

f(u|µ) =


µe−µk if u ≥ 0

0 if u < 0

(34)
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And a expected mean of:

E(u) =
1

µ
(35)

And variance of:

var(u) =
1

µ2
(36)

4.1.2 Return on Effort Into R&D

We let the investment in R&D affect the expected jump size from the exponential dis-
tribution. This means that the firm can not guarantee the resulting jump size, only the
expected size. Equation (35) shows that the expected mean is the inverse of the rate
parameter. This means that an increase in the rate parameter would result in a lower
expected jump size. We want to observe a larger expected jump size when the firm invest
in R&D, we therefore let investments affect the inverse of the rate parameter. Resulting
in a rise of the expected jump size if effort into R&D is increased. This also makes it
easier to compare model I and II. The result from an effort level k is equal too:

µ(k) =
1

kβ + µ0

(37)

We also include the possibility of a base level of innovation µ0. We could include a
base level for the jump size, but this would complicate the derivation of the value func-
tion. The downside is that we most likely can not directly observe the difference between
changing the base level of innovation in the two models. This is because we add a fixed
amount to the jump size in model I u0, and a higher expected jump size in model II
µ0. Notice how we account for a base level in innovation by adding the value under
the fraction, this to insure that an increased base level of innovation results in a higher
expected jump size. We include the β-parameter for the same reason as in model I. The
parameter let us account for a diminishing return on R&D, which we will later show to
be a requirement in order for an optimum k∗ to exist.
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4.2 Deriving Option Value

The value function derived for model I is no longer valid. This is because the jump
size is no longer deterministic. We perform the same derivation as in Huisman (2001),
but include the option of investing in R&D. The value function changes in several ways
from the derivation of model I, the first being only two value regions. The reduction
from three to two value regions is because there is always a positive probability that the
next jump will be large enough to exceed the threshold value. The Bellman equation
for model II is:

F (θ|ζ0) =
π(ζ)

r + λ
+

λ

r + λ

∫ θ∗−θ

u=0

F (θ + u, ζ0)µ(k)e−µ(k)udu

+
λ

r + λ

∫ ∞
θ∗−θ

(V (θ + u)− I)µ(k)e−µ(k)udu

(38)

The first part is the discounted value of producing with current technology level ζ for-
ever. The second expression is the discounted expected value of the project before the
threshold θ∗ is reached, and the value of continuing to act optimally. The third ex-
pression is the discounted expected value of adopting the new technology, paying the
investment cost I, and producing with the adopted technology level forever. Note that
this is done by adding all the expected jumps and their probability, and multiplying by
the value of the project in each case.

The Bellman equation results in a differential equation that is solved in the appendix.
By solving the differential equation we get:

F (θ|ζ0) =
λ

r + λ
e
µ(k)(rθ+λθ∗)

r+λ

∫ ∞
u=θ∗

(V (u)− I)µ(k)e−µ(k)udu

+(1− λ

r + λ
e
µ(k)r(θ−θ∗)

r+λ )V (ζ0)

(39)

The second region is equal to the one in model I. It is simply the expected pay-off value
of the project. We also assume that the investment into R&D is made at the beginning
of the project, meaning we can subtract the cost from the value function:

F (θ, k|ζ0) =



λ
r+λ

e
µ(k)(rθ+λθ∗)

r+λ

∫∞
u=θ∗

(π(u)
r
− I)µ(k)e−µ(k)udu+

(1− λ
r+λ

e
µ(k)r(θ−θ∗)

r+λ )π(ζ0)
r
− IRD(k) if θ < θ∗

π(θ)
r
− I − IRD(k) if θ ≥ θ∗

(40)
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The threshold θ∗ can be found in the same ways as in model I by value matching
at θ = θ∗. This results in the implicit function:

π(ζ0)

r + λ
+

λ

r + λ
eµ(k)θ

∗
+

∫ ∞
u=θ∗

(
π(u)

r
− I)µ(k)e−µ(k)udu =

π(θ∗)

r
− I (41)

GII(k) =
π(ζ0)

r + λ
+

λ

r + λ
eµ(k)θ

∗
+

∫ ∞
u=θ∗

(
π(u)

r
− I)µ(k)e−µ(k)udu− π(θ∗)

r
+ I = 0 (42)

4.3 Finding the Optimal Effort level k

We need a functional form of the profit function and cost function in order to solve for
the optimum effort level. We therefore introduce the same profit and cost functions as
in model I, making it easier to compare the two models. Finding the optimal investment
level in R&D is even more complicated in model II. The threshold function θ∗ includes
an integral that only has a numerical solution. Finding an optimal investment level is
therefore only possible with the use of numerical methods. The next section will intro-
duce numerical values to the parameters and search for the optimal investment level in
R&D through the use of numerical methods.

5 Results: Model II

We start by reintroducing the parameters used in model I for reference. The parameters
are: a = 1

2
, p = 200, w = 50, r = 0.1, λ = 1, and I = 1600. Resulting in ϕ = 200

and b = 2 for the profit function. We let ζ0 = θ0 in all cases, again except where we
specifically want to observe the effect of a gap in technology level. We set the marginal
cost of conducting R&D higher than in model I, c = 2000. The parameter is much
higher in model II as the marginal increase in project value is higher when increasing
the expected value of the jump size in model II, rather than changing the actual jump
size in model I.

The main goal is to observe the effects of introducing uncertainty into the investment in
R&D. The firm has to not only account for a changing technology level, but also that
the results from investment in R&D are stochastic.
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5.1 Sensitivity analysis

Figure 7 is created using a Monte Carlo simulation. The simulation utilizes the optimal
technology threshold derived in equation (42) to time the technology adoption. The
simulation is performed 10 000 times and the 90%-confidence interval is derived from
the resulting data.
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Figure 7: Monte Carlo simulation of the confidence interval of the project value. Other
parameters are: r = 0.1, µ0 = 0, a = 0.5, w = 50, p = 200, λ = 1, ζ0 = 1, I=1600, θ0 =
1, c = 2000, and µ0=0.1.

The simulation shows that the size of the investment in R&D affects the size of the
confidence interval. This can also be observed by the variance, equation (36), of the
expected jump size in the exponential distribution. The variance is dependent on the
inverse of the squared rate parameter. The investment in R&D affects the inverse of the
rate parameter, resulting in an increasing variance as the effort level in R&D increases.
This seems reasonable as an increase in the R&D effort results in a higher expected jump
size as the likelihood of larger advancements from the R&D venture has increased. The
R&D venture could still be unsuccessful resulting in larger range of probable outcomes.
The firm should therefore expect higher uncertainties as the investment level in R&D
increases.
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Effect of a changing the investment cost I
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Figure 8: Optimal investment level in R&D when changing the adoption cost I. Other
parameters are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1,β = 0.3, ζ0 = 1, θ0 = 1, c =
2000.

Figure 8 displays the same non-monotonic behavior has observed in model I. One should
notice that the change in the optimal effort level K∗ is very small. The small change in
optimal effort level is because the project value is very sensitive to changes in the rate
parameter. The change in project value is relatively much larger than the change in the
adoption cost I. Resulting in only minor changes in the optimum effort level.

Effect of changing the base level of innovation µ0

We can not effect the jump size directly in model II, only the expected jump size. This
creates a different affect on the value of the project compared to model I. The reader
should note that the expected jump size decreases with an increase in the rate parame-
ter. This is accounted for by adding the base level of innovation in the denominator in
equation (37), resulting in a higher expected jump size when µ0 increases.
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Figure 9: Optimal investment level in R&D for different values of µ0. Other parameters
are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1,β = 0.3, ζ0 = 1, I=1600, θ0 = 1, c = 2000.

Figure 9 shows the same trend as we observed in model I. The added value to the project
results in the firm wanting to invest more into R&D. This seems to be a result of the
same affects observed in model I, where the marginal gain from investing in R&D is
increasing with the project value. Again, the diminishing return to R&D results in the
existence of an optimum as the marginal cost is of conducting R&D constant.

Effect of changing the gap between θ0 and ζ0
We assume that the current technology level in use is ζ0 = 1. The increase in the start-
ing technology level θ0 results in higher R&D costs as modelled with the cost function
presented in 2.3.3. The cost function is equal for both models.
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Figure 10: Optimal investment level in R&D when changing the gap between θ0 and ζ0.
Other parameters are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1,β = 0.3, ζ0 = 1, I=1600,
c = 2000, µ0=0.1, and v =200.

Figure 10 shows how the firm responds in the same way in both model I and II. A higher
starting technology level in the market θ0 increases the value of the project if there are
no penalties for the gap in technology between θ0 and ζ0. An increase in the marginal
cost of the technology gap results in a reduction in the optimal effort level k∗.

Effect of changing the marginal cost of conducting R&D
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Figure 11: Optimal investment level in R&D for different values the marginal cost c.
Other parameters are: r = 0.1, a = 0.5, w = 50, p = 200, λ = 1,β = 0.3, ζ0 = 1, I=1600,
θ0 = 1, and µ0=0.1.
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Figure 11 shows how an increasing marginal cost results in lower optimal effort parameter
k∗. This again supports earlier findings , and is a result of the same affects observed in
model I.

6 Conclusion

This paper looks at a value maximizing firm considering to invest in R&D. The firm’s
technology affects its profits, and an investment in R&D can affect the size of the tech-
nological innovations available for the firm. The firm can invest in new technology that
results from the R&D venture or that is available in the market. The technology level is
modeled using a Poisson jump process where the investment in R&D are modeled in two
separate ways. The first model lets the firm directly change the jump size in the Poisson
jump process by investing in R&D. The second model assumes that an investment in
R&D affects the expected jump size in the Poisson jump process, with an exponentially
distributed jump size. The paper looks at candidates for both the return on performing
R&D, and the expected costs. The paper also looks at the case where the cost of per-
forming R&D is dependent on the gap between the technology in use by the firm, and
the available technology in the market.

The paper finds that an optimum only exists when there are diminishing returns on
R&D. This is a result of the ever increasing value of the option to wait for new technol-
ogy with an increasing jump size. This is the case for both models. We also find that
an increase in the base level of innovation in the market results in a higher investment
level in R&D. This means that our models predicts that innovation will result in more
innovation. The models also predict that if the technology gap between the firms current
technology level and the one available in the market becomes too high, the firm would
reduce its investments in R&D. This assuming an increased cost of performing R&D if
the firm has gotten too far behind the current technology level.

Another important finding is the non-monotonic behavior of the firm when the cost
of adopting new technology increases. Our model predicts that the firm would increase
the investment level in R&D until the investment cost of adoption reaches a certain
level. The firm would then reduce the size of the investment in R&D. The paper also
find instances where it is not optimal for the firm to invest in R&D. This is the case
where the starting technology is high enough to trigger instantaneous investment in the
new technology and any level of effort k would reduce the total value.

The paper showed that an optimal effort level k∗ exists for a wide range of input parame-
ters, even though we did not find an analytical solution. There are several modifications
to the current models that should be investigated. A real life firm would most likely
be subject to running costs while performing R&D. This would mean that the cost of
conducting R&D would be dependent on the expected time before the R&D venture
was successful or abandoned. One could also investigate different distributions for the
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expected jump size. The exponential distribution will most likely penalize the firm too
hard for low efforts put into R&D.
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Appendix A: Modelling R&D by Affecting the Arrival Rate

In the preliminary work we let the investment in R&D affect the arrival rate of the
Poisson Jump process. We assumed a similar relationship too that presented in model
I:

λ(k) = kβ + λ0 (43)

And:
IRD(k) = ck (44)

Resulting in a value function of:

F (θ, k|ζ0) =



(
λ(k)
λ(k)+r

) θ∗−θ
u

(V (θ∗)− V (ζ0)− I) + V (ζ0)− IRD(k) if θ < θ∗(k)− u

π(ζ0)
r+λ(k)

+ λ(k)
r+λ(k)

(V (θ + u)− I)− IRD(k) if θ∗(k)− u ≤ θ < θ∗(k)

V (θ)− I − IRD(k) if θ ≥ θ∗(k)

(45)

The two most interesting results from the preliminary work were:

• The model predicts that firm increases its investment in R&D with an increase in
the base level of innovation. Depicted in figure 12.

• The optimal policy for investing in R&D is not monotonic when the investment
cost of adopting new technology changes. Depicted in figure 13.
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Figure 12: Optimal k and technology threshold for different investment cost I in adoption
of new technology. With r = 0.1, u = 0.1, a = 0.5, w = 50, p = 200, λ0 = 1, ζ0 = 1, β
= 0.1, θ0 = 1, c = 200.
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Figure 13: Optimal k and technology threshold for different values of base level of
innovation, λ0. With u = 0.1, r = 0.1, I = 1600, a = 0.5, w = 50, p = 200, θ0= 1, ζ0 =
1, β = 0.1, c = 200.

Appendix B: Proof of Expected Adoption Time τ

We know that the number of jumps before we invest in the new technology has to be
the difference between the optimal technology level and the starting technology level,
divided by the jump size u(k), plus one:
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n∗ =

⌊
θ∗ − θ
u(k)

⌋
+ 1 (46)

The fraction is always rounded down as the number of jumps needed has to be an integer.
We know that a jump occurs with a probability of λdt and has a Poisson distribution,
we can use this to calculate the expected adoption time τ . The following derivation is
equal to the one presented in Huisman (2001), but also include the extensions in our
model.

We are deriving the expression:

E[τ ] =

∫ ∞
t=0

(1− P (τ ≤ t))dt. (47)

This is the same as the sum of the probability of the n jumps past n∗:

E[τ ] =

∫ ∞
t=0

(1−
∞∑

n=n∗

P (N(t) = n))dt. (48)

This is equal to:

=

∫ ∞
t=0

n∗−1∑
n=0

P (N(t) = n)dt =

∫ ∞
t=0

n∗−1∑
n=0

e−λt
(λt)n

n!
dt. (49)

The Second term is replaced with probability function for the Poisson jump process.
The integral is solved by observing that the expression is equal to the density function
of the gamma distribution:

=
n∗−1∑
n=0

1

λ

∫ ∞
t=0

λn+1tn

n!
e−λtdt =

n∗

λ
. (50)

Equation (37) show the final expression for the expected time to reach the optimal
technology level θ∗. The variance of the expected time can be stated as:

V ar(τ) = E[(τ)2]− (E[τ ])2. (51)
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The first term can be found in the same way as the derivation of the expected time to
optimal technology level. And is equal to:

E[(τ)2] =
n∗(n∗ + 1)

λ2
(52)

Giving:

V ar(τ) =
n∗(n∗ + 1)

λ2
−
(
n∗

λ

)2

=
n∗

λ2
. (53)

Appendix C: Solution to the Differential Equation in Model II

The solution to the differential equation is presented in Huisman (2001), p.38:

F (θ|ζ0) =
π(ζ)

r + λ
+

λ

r + λ

∫ θ∗−θ

u=0

F (θ + u, ζ0)µ(k)e−µ(k)udu

+
λ

r + λ

∫ ∞
θ∗−θ

(V (θ + u)− I)µ(k)e−µ(k)udu

(54)

We then define the derivatives:

δF (x)

δx
= f(x) and

δG(x)

δx
= g(x) (55)

Let us also define:

δh(x)

δx
= g(x−∞)e

λ
r+λ

x (56)

We can rewrite the differential equation as:

δF (x)

δx
=

π(ζ)

r + λ
+

λ

r + λ
(F (θ∗)− F (x) +G(x+∞)−G(θ∗)) (57)

Differentiation gives:
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δ2F (x)

δx2
= − λ

r + λ

(
δF (x)

δx
− δG(x+∞)

δx

)
(58)

With:

δF (x)

δx
=

(∫
λ

r + λ

δG(x+∞)

δx
e

λ
r+λ

xdx+ c

)
e−

λ
r+λ

x (59)

c is an unknown constant. Combining the previous equations gives:

F (x) =

∫ (∫
λ

r + λ

δG(x+∞)

δx
e

λ
r+λ

xdx+ c

)
e−

λ
r+λ

xdx (60)

Equation (56) gives:

F (x) = −

(
h(x) +

c
λ
r+λ

)
e−

λ
r+λ +G(x+∞) (61)

Finally we get an expression for the c:

c =

(
π(ζ)

r + λ
+

λ

r + λ

∫ ∞
y=0

g(θ∗ + y)dy

)
e

λ
r+λ

θ∗ − λ

r + λ
h(θ∗) (62)

The final solution is found when substituting equation (62) into equation (59).


