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Abstract

In this thesis we expand the search for all tilting objects of a triangulated category
to the more general silting objects. We show that mutation on these objects preserves
the silting property, and that in the case of bounded derived categories of hereditary
algebras, iterated irreducible mutation is indeed transitive. This is shown through the
theory of exceptional sequences.

We give a first introduction to silting theory, and provide a nontrivial partial ordering
on the collection of silting subcategories of any given triangulated category. A more
detailed treatment is given to the silting theory in the setting of Krull-Schmidt tri-
angulated categories. In particular, we show bijections between classes of silting objects
of these and the silting objects in certain Verdier localizations.

The theory is supplemented throughout by examples from representation theory and
Auslander-Reiten theory.

I denne tesen utvider vi v̊ar søken etter tilteobjekter til de mer generelle silte-
objektene. Vi viser at mutasjon p̊a silteobjektene bevarer silteegenskapene, og at for
bundne deriverte kategorier av hereditære algebraer, s̊a er iterert irredusibel mutasjon
faktisk transitivt. Dette vises ved bruk av teori rundt eksepsjonelle sekvenser.

Det gis her en grunnleggende introduksjon til silteteori, og det inroduseres en ikke-
triviell partiell ordning p̊a silteunderkategoriene til enhver gitt triangulert kategori.
Ekstra plass blir tilsidesatt til å studere silteteori for Krull-Schmidt-triangulerte kate-
gorier. Spesielt viser vi en bijeksjon mellom klasser av silteobjekt for slike kategorier og
silteobjektene tilhørende en bestemt Verdierlokalisering av kategorien.

Teorien er supplementert med eksemper hentet fra representasjonsteori og Auslander-
Reitenteori.
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1 Introduction and Preliminaries

1.1 Introduction

Rickard’s Morita theorem [15] connects the study of derived equivalences to the study of tilting
objects, as it asserts a derived equivalence of algebras if one appears as an endomorphism ring of
a tilting object in the other. This motivates the search for a process which lets us find said tilting
objects, and the natural candidate for such a process is that of mutation.

Mutation denotes a process defined on a class of structures in a category. As in biology, mutation
indicates a small change in the fundamental building blocks as we pass from one instance to the
next. In algebra, it changes the structure in a predetermined fashion such that the result is another
instance of the same kind of structure. A question can be asked then of how much of the structure
is actually preserved by the mutation, and what properties we may have lost. In [5] is defined
mutation of quivers, quivers with potentials, cluster-tilting objects and tilting modules over 3-
Calabi-Yau algebras. In this thesis, we consider the mutation of tilting objects in triangulated
cateories. In a perfect world, there would be an easily available mutation which allowed us to find
all the tilting objects of a given triangulated category from a starting object. Attempts at finding a
general mutation scheme for this purpose has not yet been entirely successful, as the tilting property
has a tendency to get lost as part of the process.

To remedy this, we focus our attention on an article by Aihara and Iyama [1], and on their mutation
of the more general silting objects and -subcategories of triangulated categories. Herein is provided
a mutation which always works, i.e. the silting property is preserved by mutation, and the question
which remains then is that of transitivity – that is, whether or not all silting objects are connected
by a sequence of mutations. By introducing a partial ordering on the silting subcategories of a given
triangulated category, the transitivity becomes a question of graph connectivity. Silting reduction
then allows us to find connected components of said graphs by considering bijections of certain
sets of silting subcategories to the silting subcategories of certain Verdier localizations. Finally, we
present a positive result on the transitivity in the case of bounded derived categories of piecewise
hereditary algebras by connecting the theory to that of exceptional sequences.

The categories of main interest to us are the bounded derived categories of hereditary path algebras.
While an attempt has been made to provide general results, we often restrict to Krull-Schmidt
triangulated categories, as they are sufficient generalizations of these.

Examples are amply provided, contextualizing the theory through the bounded derived categories
of well-understood algebras. For these examples, we assume knowledge of AR-theory as taught by
Happel [7].

Most main results, and the main bulk of notation in this thesis are as found in Aihara and Iyama [1].
Where the original article is advanced and to-the-point, a great effort has been put in by the author
to make this thesis as detailed and approachable as possible. This includes the frequent introduction
of lemmas to provide the necessary theory where [1] demands immediate expertise.
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1.2 Preliminaries and Conventions

The specific assumptions on T will be presented where needed. in the case of uncertainty, T will
usually denote a triangulated category [11] equipped with the shift functor, denoted by [1]. We

assume that the triangulated categories have split idempotents: For any idempotent X
f=f2−−−→ X,

there is an object Y and morphisms X
π−→ Y and Y

ι−→ X such that ιπ = f and πι = 1Y .

For general additive categories, when we say D is a subcategory of C it is always meant that it is
full and closed under isomorphism.

For an additive category C and a collection of objects X in C, denote by smdX the smallest
subcategory of C which contains X and is closed under taking summands. Furthermore, we denote
by addX the smallest subcategory of C which contains X and is closed under taking summands
and finite coproduct.

When we say ’let C be a category’ or ’let C be a subcategory of D’, it is implied that C = add C.
Under these conventions smdX is not necessarily a subcategory of C, but rather a collection of
objects.

A ring is in this thesis always considered to be unital. For a ring R, modR denotes the category
of finitely generated left R-modules. Furthermore, P(modR) denotes the subcategory of modR of
projective, finitely generated R-modules.

For A,B ⊆ ObT , we denote by A ∗ B the collection of objects X ∈ T which exist as the central
object of some triangle

A // X // B // X[1]

where A ∈ A and B ∈ B. The collection A ∗ B is called the extension of A and B in T .

Following are some basic properties of the extensions in a triangulated category.

Remark 1.1. Let T be a triangulated category and A,B ⊆ ObT collections of objects containing
0. Then A is contained in both A ∗ B and B ∗ A.

Proof. Let A ∈ A. We have the triangles A // A // 0 // A[1] and 0 // A // A // 0 . Thus
as 0 is in both A and B, the result follows.

In particular, this means X ⊆ X ∗ X and X = X ∗ 0 = 0 ∗ X .

Remark 1.2. Let A,B be collections of objects in T , then

(A ∗ B)[i] = A[i] ∗ B[i].

Proof. Assume X ∈ A ∗ B. There is a triangle

A // X // B // A[1],

and for any i ∈ Z a triangle

A[i] // X[i] // B[i] // A[i+ 1].

Hence X[i] ∈ A[i] ∗ B[i], so (A ∗ B)[i] ⊆ A[i] ∗ B[i]. Similarly, if Y ∈ A[i] ∗ B[i], there is a triangle

A[i] // Y // B[i] // A[i+ 1],
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and also
A // Y [−i] // B // A[1].

Thus Y [−i] ∈ A ∗ B, and so Y ∈ (A ∗ B)[i], completing the inclusions.

Having three collections of objects, A,B and C, we can naturally define (A∗B) ∗ C and A∗ (B ∗ C).
As the next remark asserts, these two constructions are equal.

Remark 1.3. Let A,B and C be collections of objects in the triangulated category T . Then

(A ∗ B) ∗ C = A ∗ (B ∗ C)

and we simply write A ∗ B ∗ C.

Proof. Let X ∈ A(∗B ∗ C), so there is a triangle

A
f // X

g // Y
h // A[1]

with A ∈ A and Y ∈ B ∗ C. Thus there is also a triangle

B
ϕ // Y

θ // C
σ // B[1]

with B ∈ B and C ∈ C. Furtermore, we complete the morphism θg to a triangle

X
θg // C // Z // X[1].

By rotating the first two triangles once, we get by the octahedral axiom the diagram

X
g //

θg ,,

Y
h //

θ

��

A[1]
−f [1]//

��

X[1]

C //

σ

  

Z //

��

X[1]

B[1]
−ϕ[1]

##��
A[2] Y [1].

The dotted vertical arrows indicate the triangle

A[1] // Z // B[1] // A[2]

meaning Z ∈ A[1] ∗ B[1], so by Remark 1.2 Z[−1] ∈ A ∗ B. By rotating this new triangle once, we
arrive at

Z[−1] // X // C // Z

meaning X ∈ (A ∗ B) ∗ C. The other inclusion is shown using an, arguably even simpler, dual
argument.
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Remark 1.4. Let X ,Y be collections of objects in T which are closed under coproduct. Then X ∗Y
is closed under coproduct.

Proof. For A,B ∈ X ∗ Y, we have triangles

X // A // Y // X[1]

and
X ′ // B // Y ′ // X ′[1].

Their term-wise coproduct is the triangle

X ⊕X ′ // A⊕B // Y ⊕ Y ′ // (X ⊕X ′)[1]

and so A⊕B ∈ X ∗ Y as well.

A subcategory S of T is said to be thick [17] if it is a sub-triangulated category of T and closed
under taking direct summands. For S a collection of objects, thickS means the smallest sub-
triangulated category of T containing S which is closed under taking direct summands. Similarly
to the case with smd above, this may lead to some confusion as a sub-triangulated category S of T
is not automatically assumed to be thick. In order to avoid such confusion, an attempt to clarify
this will be made wherever necessary.

A category is said to be skeletally small if the collection of isomorphism classes of objects forms a
set.

The approximations defined below will be used extensively throughout this thesis.

Definition 1.5. Let T be any category, S a subcategory of T and T ∈ T .

(i) A morphism T
f−→ S is a left S-approximation of T if S is in S and any T

f ′−→ S′ with S′ in S
factors through f . In other words,

HomT (S, S′)
−◦f−−→ HomT (T, S′)

is surjective for all S′ in S.

If any object T ∈ T has a left S-approximation, S is said to be covariantly finite in T .

(ii) A morphism S
f−→ T is a right S-approximation of T if S is in S, and any S′

f ′−→ T with S′ in
S, factors through f . In other words,

HomT (S′, S)
f◦−−−→ HomT (S′, T )

is surjective for all S′ in S.

If any object T ∈ T has a right S-approximation, S is said to be contravariantly finite in T .

A subcategory S of T which is both contravariantly- and covariantly finite, is said to be functorially
finite in T .
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Definition 1.5 (i) is visualized by the diagram

T

f ′   

f // S

g
��
S′,

signaling that for any morphism f ′ from T to an object S′ ∈ S, there is some S
g−→ S′ such that

f ′ = gf . A dual diagram illustrates part (ii).

We note that approximations are additive.

Lemma 1.6. Let T be a triangulated category and S ⊆ T a subcategory.

(i) If T1
f1−→ S1 and T2

f2−→ S2 are left S-approximations of T1 and T2, then

T1 ⊕ T2

(
f1 0
0 f2

)
−−−−−→ S1 ⊕ S2

is a left S-approximation of T1 ⊕ T2.

(ii) If S1
f1−→ T1 and S2

f2−→ T2 are right S-approximations of T1 and T2, then

S1 ⊕ S2

(
f1 0
0 f2

)
−−−−−→ T1 ⊕ T2

is a right S-approximation of T1 ⊕ T2.

Proof. Only part (i) is proved, as part (ii) is dual. let T1 ⊕ T2
f ′′=( f ′′1 f ′′2 )
−−−−−−−−→ S′′ be any morphism.

Then there are morphisms Si
gi−→ S′′ such that gifi = f ′′i , so by setting g := ( g1 g2 ), we have the

commutative diagram

T1 ⊕ T2

( f ′′1 f ′′2 )
''

(
f1 0
0 f2

)
// S1 ⊕ S2

( g1 g2 )
��
S′′

showing the top row is a left S-approximation

The image of a functor C F−→ D is expressed by F C. This will be used with both Hom- and shift
functors. For a collection of objects X in C, FX will denote the collection of objects in D obtained
by applying F to all objects in X .

Having established these basic notions, we combine them all to the following fact.

Lemma 1.7. Let T be a triangulated category and X ,Y subcategories such that HomT (X ,Y) = 0.
Then for any triangle

X
a // T

b //// Y // X[1]

with X ∈ X and Y ∈ Y, we have that a is a right X -approximation and b a left Y-approximation
of T .

8



Proof. For some X ′ ∈ X , apply HomT (X ′,−) to the triangle to get the long exact sequence

· · · // HomT (X ′, X)
a◦− // HomT (X ′, T ) // HomT (X ′, Y ) // · · · .

The right side vanishes by assumption, so the left morphism is surjective, and a is a right X -
approximation as asserted.

The second part is dual, and it is shown by applying HomT (−, Y ′) to the triangle for any Y ′ ∈ Y.

We say that a morphism X
f−→ Y is right minimal if any epimorphism X

g−→ X such that fg = f

is an automorphism. Dually, f is left minimal if any epimorphism Y
h−→ Y such that hf = f is an

automorphism.

Having several approximations of the same object, we see that the approximating objects are related
as follows:

Lemma 1.8. Let T be a triangulated category, S a subcategory. For some T ∈ T , consider the
triangles

X
f // T

g // Y // S[1]

and

X ′
f ′ // T

g′ // Y ′ // S′[1].

(i) If f and f ′ are right S-approximations of T and f ′ is right minimal, then X ′ is a direct
summand of X and Y ′ is a direct summand of Y .

(ii) If g and g′ are left S-approximations of T and g′ is left minimal, then X ′ is a direct summand
of X and Y ′ is a direct summand of Y .

Proof. We prove part (i) only, as part (ii) is dual.

We obtain the solid parts of the commutative diagram

X ′

h

��

f ′ // T
g′ // Y ′

γ

��

// S′[1]

��
X

h′

��

f // T
g // Y

γ′

��

// S[1]

��
X ′

f ′ // T
g′ // Y ′ // S′[1].

As f and f ′ are right S-approximations of T , they factor through each other by some X ′
h−→ X

and X
h′−→ X ′. Then we can complete the diagram to a composition of triangle morphisms. As

f ′h′h = f , h′h is an isomorphism, and so γ′γ is as well. This means that h and γ are split
monomorphisms, which proves the assertion.

We will often use the shift functor in conjunction with inequalities. As an example, X[> n] means
any shift X[m] of X with m > n, while X[≤ n] means any shift with m ≤ n. This is also combined
with the notation above typically as M[> n], meaning M [m] for any object M ∈ M and any
m > 0.

9



Given a collection of objects X , we sometimes want to consider the objects in T whose Hom-sets
with X are 0.

Definition 1.9. For T a category and X a collection of objects in T , denote by

(i) X⊥T := {T ∈ T | HomT (X , T ) = 0}, and

(ii) ⊥T X := {T ∈ T | HomT (T,X ) = 0},

and call them the right- and left orthogonal complements of X , respectively.

When there is no ambiguity concerning which is the ambient category T , the notation is simplified
to X⊥ and ⊥X . Immediately, we observe that any object X existing in both X and an orthogonal
complement is 0. This as HomT (X,X) = 0. Furthermore, we observe the following property about
the orthogonal complements

Lemma 1.10. Let T be a triangulated category and X ,Y be collections of objects in T such that
Y ⊆ X . Then

⊥X ⊆ ⊥Y.

Proof. Let T ∈ ⊥X . Then HomT (T,X) = 0 for all X ∈ X . By assumption any Y ∈ Y is in X as
well, so HomT (T, Y ) = 0. Thus T ∈ ⊥Y.

Finally, ordered pairs of triangulated categories are given names based on properties between the
two, and shared properties of the pair in relation to the triangulated category as a whole.

Definition 1.11. Let T be a triangulated category and X ,Y ⊆ T subcategories.

(i) The ordered pair (X ,Y) is said to be a torsion pair in T if HomT (X ,Y) = 0 and T = X ∗Y.

(ii) The ordered pair (X ,Y) is a t-structure if (X [1],Y) is a torsion pair and X [1] ⊆ X .

(ii+) If in addition X [1] = X , we say it is a stable t-structure.

(iii) The ordered pair (X ,Y) is a co-t-structure if (X [−1],Y) is a torsion pair and X [−1] ⊆ X .

If (X ,Y) is a t-structure, we call X ∩ Y its heart, and if it is a co-t-structure, X ∩ Y is called its
coheart.

Immediately, we see that the torsion pairs give rise to covariantly- and contravariantly finite sub-
categories.

Corollary 1.12. Let T be any triangulated category with a torsion pair (X ,Y). Then X is a
contravariantly finite subcategory of T , and Y is a covariantly finite subcategory of T . Left X -
approximations and right Y-approximations of the objects in T are given by the triangles which
exist from T = X ∗ Y.

Proof. Let T ∈ T . We have a triangle

X
u // T

v // Y // X[1]

as per T = X ∗ Y. Then by Lemma 1.7, u is a right X -approximation of T , and v is a left
Y-approximation of T .
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Example 1.13. The prototypical torsion pairs are those made from ’left complexes’ and ’right
complexes’ in a derived category [13]. By cutting off the homologies at the right places, we easily
see that the Hom-sets become 0, and what remains is to show the extension of the two is the whole
category.

Let k be a field, Λ some k-algebra of finite global dimension, and

T := Db(mod Λ) ' Kb(P(mod Λ))

We set X to be the subcategory of complexes

X := {X ∈ T | Hn(X) = 0 for all n ≥ 0},

and set Y to be
Y := {Y ∈ T | Hn(Y ) = 0 for all n < 0}.

For any T ∈ T , it T is a complex

T = · · · // T−1 t−1
// T 0 t0 // T 1 t1 // · · · .

From this we define X and Y be

X = · · · // T−1 t−1
// ker t0 // 0 // · · · ∈ X

and

Y = · · · // 0 // T 0/ ker t0
t̄0 // T 1 t1 // · · · ∈ Y,

where T 0/ ker t0
t̄0−→ T 1 is the morphism x+ ker t0 7→ t0(x). Then we have

Y [−1]

f
��

· · · // 0

��

// 0

��

// T 0/ ker t0

��

−t̄0 // · · ·

X

��

· · · // T−1

1��

t−1
// ker t0

( 1
0 )��

// 0

��

// · · ·

cone(f) · · · // T−1

(
t−1

0

)
// ker t0 ⊕ T 0/ ker t0

( 0 t̄0 ) // T 1 t1 // · · ·

Since T 0 ∼= ker t0 ⊕ T 0/ ker t0, we get that cone(f) ∼= T , and there is a triangle

X // T // Y // X[1] , which means (X ,Y) is a torsion pair in T .

The pair (X [−1],Y) does in addition form a t-structure on T . Indeed, (X [−1][1],Y) = (X ,Y) is a
torsion pair, and X also satisfies X [−1][1] = X ⊆ X [−1]. In this case, the heart of our t-structure,
X [−1] ∩ Y, is the category of stalk complexes concentrated in degree 0 – which again is equivalent
to mod Λ. Such a t-structure is sometimes denoted by (T ≤0, T ≥0) or (D≤0,D≥0), the D referring
to T being a derived category.
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2 Silting- and Tilting Subcategories of Triangulated Categories

The main structures to be studied in this thesis are the silting subcategories of triangulated cat-
egories. In this section we provide a definition and basic properties of silting subcategories as by
Aihara and Iyama [1]. Also included is a short sidestep where we view the silting subcategories in
connection to l-Calabi-Yau categories.

It is shown that the partial ordering on silt T given by inclusion is a poor choice. We follow
Aihara and Iyama in their generalization of the partial ordering on tilting objects by Riedtmann-
Schofield [23] and Happel-Unger [10], as they introduce one based on the disappearance of Hom-sets.
As part of proving our notion is actually a partial ordering, we introduce the subcategories T ≤0

M
for silting subcategories M. These will later be used to produce t-structures, and to help bridge
the gap to abelian categories by introducing an analogue to projective resolutions.

The results provided in this section are mainly introductory. The main and final result of this
section is however of interest in and of itself, as is asserts that the existence of one silting object
restricts all silting subcategories to be the additive closures of objects.

2.1 Definitions, Properties, and -Examples

The basic definitions of silting subcategories and silting objects are the following. The generalization
from tilting subcategories and objects is immediate from this.
Definition 2.1. Let T be a triangulated category and M⊆ T a subcategory.

(i) we say M is a silting subcategory of T if HomT (M,M[> 0]) = 0, and thickM = T . The
collection of all silting subcategories of T is denoted by silt T .

(ii) M is tilting if it is silting and HomT (M,M[< 0]) = 0.

(iii) An object M ∈ T is called a silting object if add{M} is a silting subcategory of T . Similarly
for tilting.

The property HomT (M,M[> 0]) = 0 in (i) is often referred to as M being pre-silting. Similarly,
we can also say M is pre-tilting if HomT (M,M[6= 0]) = 0.

The first proposition of this section illustrates a close relationship between silting theory and
representation theory.

Proposition 2.2. Let A be a finite dimensional k-algebra and let T = Kb(P(modA)). Then the
stalk complex A is a tilting object in T .

Proof. Let M := add{A} ⊆ T , and M,M ′ ∈ M. Then clearly, for any n 6= 0, we have
HomT (M,M ′[n]) = 0, as these are stalk complexes of projectives which do not line up. Let
X ∈ T , so there are finitely generated projective A-modules P1, . . . , Pn such that, up to shift

X = · · · // 0 // Pn
pn //// · · · // P1

p1 //// P0
// 0 // · · · .

As A is a finite dimensional k-algebra, the finitely generated projective A-modules are exactly the
direct sums of direct summands of A, so the stalk complexes of the Pi are in M. Consider the

triangle P1
p1 // P0

// cone(p1) // P1[1] . As P0 and P1[1] are in thickM, so is cone(p1). By
definition of the cone, it is

· · · // 0 // P1
p1 // P0

// 0 // 0 // · · · .

12



It is clear from this that the morphism

· · · // 0 // P2

p2
��

// 0 // 0 // 0 // · · ·

· · · // 0 // P1
p1 // P0

// 0 // 0 // · · ·

has the cone

· · · // P2
p2 // P1

p1 // P0
// 0 // 0 // · · ·

which is also in thickM, and that we will obtain X from n iterations of this process.

Thus T = thickM, and M is tilting.

Example 2.3. Let k be a field and A3 the quiver

1
α // 2

β // 3.

Let Λ denote the path algebra kA3. The indecomposable objects in mod Λ are, up to isomorphism,
given [2] by the representations

S3 =P3 = 0 // 0 // k , I2 = k
1 // k // 0 ,

P2 = 0 // k
1 // k , S1 =I1 = k // 0 // 0 ,

I3 =P1 = k
1 // k

1 // k , S2 = 0 // k // 0 ,

and by the Krull-Schmidt theorem [2], all finitely generated (left) Λ modules are finite coproducts
of these. From this, we obtain from Happel [7] the AR-quiver

P1 = I3

��
P2

??

��

I2

��
P3

??

S2

??

I1

in mod Λ. For the derived category T := Db(mod Λ) ' Kb(P(mod Λ)), the indecomposable objects
are exactly the stalks of indecomposable objects in mod Λ [7], and the objects in T are finite
coproducts of these indecomposables. Again, we obtain from Happel’s construction the AR-quiver

· · · P3[−1]

  

S2[−1]

  

I1[−1]

  

P1

  

P3[1]

  

S2[1]

  

I1[1]

  

· · ·

· · ·

>>

  

P2[−1]

>>

  

I2[−1]

>>

  

P2

>>

  

I2

>>

  

P2[1]

>>

  

I2[1]

>>

  

· · ·

· · · I1[−2]

>>

P1[−1]

>>

P3

>>

S2

>>

I1

>>

P1[1]

>>

P3[2]

>>

· · ·

of T .

For completeness, note that the arrows in the AR-quiver do not themselves represent morphisms.
The number of arrows X → Y , however, denotes the dimension of the subspace of HomT (X,Y )
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consisting of irreducible morphisms from X to Y . Thus when we say that we ’read a triangle from
the AR-quiver’, we mean that it is known from AR-theory that there exists such a triangle.

In this particular instance, the Hom-spaces indicated by the arrows are also easily seen to be one-
dimensional. Thus there is only one choice of morphism (up to multiplication by unit in k) wherever
there is an arrow in the AR-quiver, and we find triangles simply by taking cones of these.

The AR-triangles of Kb(P(mod Λ)) are read from this diagram by the subgraphs

X
  

Z
��

·
Y

>>

·
!!

· · X[1]

· · X[1]

Y
  

·
==

X

>>

Z

AA

·

Y
  

·

X

>>

  
Z // X[1]

W

>>

·

as X // Y // Z // X[1] and X // Y ⊕W // Z // X[1] , respectively. The right-
most kind of triangle has morphisms chosen so that the composition along the top of the diamond
shape is the negative of the composition along the bottom.

Consider the object M := P1⊕P2⊕P3, and the categoryM := add{M}. We see that any morphism
from M to M[1] has to pass through I2, and by the AR-triangle

P1
// I2

// P3[1] // P1[1]

and the commutativity of the diagram, we have that HomT (M,M[> 0]) = 0. Also, P3 ∈ thickM,
and so we also see by the triangle above that I2 ∈ thickM as well. Then, by the triangles

P2
// P1 ⊕ S2

// I2
// P2[1]

and
I2

// P3[1]⊕ I1
// P2[1] // I2[1]

we get that S2 and I1 are in thickM as well. It follows from thickM being closed under shift that
it is all of T . Thus M is a silting object in T . It is easily seen that M is in fact also a tilting object
in T . The object M ′ := P1[1]⊕ P2 ⊕ P3 is similarly a silting object of T , but is not tilting, as

0 6= HomT (P2, P1) ⊆ HomT (M′,M′[< 0]).

Similarly, we see that any object ’on a diagonal’

·

·
@@

·
@@

is is a silting object in T . There are several other silting objects in T , such as the opposite diagonals,
and the ’wedges’

·
��

·
��

@@

·

·
@@
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Example 2.4. Let again k be a field. Denote now by Λ the quotient algebra

Λ = kA3/〈βα〉

being the path algebra of A3 with relation. The indecomposable Λ-modules are given by the
representations

S3 =P3 = 0 // 0 // k , I1 =S1 = k // 0 // 0 ,

I3 =P2 = 0 // k
1 // k , S2 = 0 // k // 0 ,

I2 =P1 = k
1 // k // 0 ,

and the AR-quiver of mod Λ is

P2 = I3

��

I2 = P1

��
P3

??

S2

??

I1.

The module I1 = S1 has the projective resolution

· · · // 0 // P3
// P2

// P1

��

// 0 // · · ·

· · · // 0 // 0 // 0 // I1
// 0 // · · ·

and so mod Λ is not hereditary, but has global dimension 2. The stalk complexes of objects have
endomorphism rings which are isomorphic to the endomorphism rings of the objects themselves. As
the endomorphism rings of the indecomposable objects in Λ are one-dimensional vector spaces, it
follows that the stalk complexes cannot have any proper direct summands. I.e. the stalk complexes
of indecomposable Λ-modules are still indecomposable in Kb(P(mod Λ)). Additionally, we similarly
see that so are the shifts of the complex

M = · · · // 0 // P2
// P1

// 0 // 0 // · · · .

It is straight forward to see that there is an isomorphism

kA3/〈βα〉 ∼= Endmod kA3(P3 ⊕ P1 ⊕ I1).

Then by Rickard’s Morita theorem for derived categories [15], there is a triangle equivalence

Kb(P(mod Λ)) ' Kb(P(mod kA3)).

It follows that the complexes mentioned above are exactly the indecomposables of Kb(P(mod Λ)).
We then follow Happel’s construction, and arrive at the AR-quiver

· · · P3

  

I1[−1]

  

P1

  

P2[1]

  

P3[2]

  

I1[1]

  

P1[2]

  

· · ·

· · ·

>>

  

M [−1]

>>

  

S2

>>

  

M

>>

  

S2[1]

>>

  

M [1]

>>

  

S2[2]

>>

  

· · ·

· · · P1[−1]

>>

P2

>>

P3[1]

>>

I1

>>

P1[1]

>>

P2[2]

>>

P3[3]

>>

· · ·
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Again, the subcategory add{P1 ⊕ P2 ⊕ P3} is a silting subcategory, and also, so are the ’diagonals’
and the ’wedges’ as illustrated in Example 2.3.

We know the module categories of kA3 and kA3/〈βα〉 are non-equivalent – one being hereditary
and the other not. As their derived categories are triangle equivalent, their silting objects appear
as the same kinds configurations in the AR-quivers. Going forward, these derived categories will
be the main source of examples. When appropriate, silting objects will simply be referred to as
their configurations within the AR-quivers, and the AR-quiver simply by its general shape.

Our theory is heavily dependent on left- and right D-approximations. This following lemma is
used extensively throughout the theory, as it allows us to more easily locate approximations within
triangles.

Lemma 2.5. Let T be a triangulated category, M ∈ silt T , and D a subcategory of M. Consider
the triangle

X
f // D

g // Y
h // X[1],

where D ∈ D.

(i) If X ∈M, then g is a right D-approximation of Y .

(ii) If Y ∈M, then f is a left D-approximation of X.

Especially, if X ∈ M ∈ silt T and Y ∈ N ∈ silt T , and D is a subcategory of both M and N , then
both f and g are D-approximations.

Proof. If X ∈ M then for any morphism D′
g′−→ Y with D′ ∈ D, hg′ = 0, so g′ factors through g.

Similarly, if Y ∈ M, then for any morphism X
f ′−→ D′ with D′ ∈ D, f ′(−h[−1]) = 0, so f ′ factors

through f .

Example 2.6. Let k be a field and Λ the path algebra kA3. As in Example 2.3, we consider the
category T := Kb(P(mod Λ)). Let M′ be the silting subcategory add{P1 ⊕ P2 ⊕ S2}, and D the
subcategory add{P1 ⊕ P2}.

From the AR-quiver, we read that there is a triangle

P3
// P2

// S2
// P3[1],

and we have P2 ∈ D and S2 ∈ M. There is only one morphism P3 → P2 up to a unit in k. By
Lemma 2.5 (ii), it is then a left D-approximation of P3.

Similarly, if M is the silting subcategory add{P1 ⊕ P2 ⊕ P3} and D is as before, we get that the
morphism P2 → S2 is a right D-approximation of S2.

From this, we see that both M and M′ are silting subcategories of T having D as a subcategory.
The distinction between M and M′ is the interchange of the indecomposable objects P3 and S2.
These objects are related by a triangle which has as its respective morphisms D-approximations of
P3 and S2.

This example very much hints at what is to come in Section 4.1, where we generate new silting
subcategories exactly by interchanging objects related by such triangles.
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Aihara and Iyama provide the following interesting consequence of a triangulated category having
silting subcategories. It asserts a certain ’closeness’ property on the objects in T meaning any
two objects can be shifted sufficiently ’far away’ from each other such that the morphisms between
them vanish.

Proposition 2.7. Let T be a triangulated category with a silting subcategory. Then for any objects
X and Y in T there exists an nXY ∈ Z such that HomT (X,Y [n]) = 0 for all n ≥ nXY .

This property is sometimes denoted simply by HomT (X,Y [≥ nXY ]) = 0 or HomT (X,Y [>> 0]) = 0.
Note that this is equivalent to the similarly defined property HomT (X[<< 0], Y ) = 0.

Proof. Let M∈ silt T , and consider the subcategory

U := {U ∈ T | ∀M ∈M∃ nUM ∈ Z such that HomT (U,M [≥ nUM ]) = 0}

of T . For clarity, nUM is dependent on both U and M . This does not necessarily mean that for
any U ∈ U there is an nU such that HomT (U,M [≥ nU ]) = 0 for all M ∈M.

We first show that U is all of T . This by proving it forms a thick subcategory of T containing
M. Using Neeman’s definition [21] of a sub-triangulated category, this amounts to proving U is an
additive subcategory of T which is closed under isomorphism, shift, extension and taking summand.

As it is a full subcategory, the Hom-sets and composition of morphisms of U are as in T . Thus
the Hom-sets are abelian groups and composition is bilinear. Furthermore 0 ∈ U , and if n ∈ Z,
M ∈M and U,U ′ ∈ U :

HomT (U ⊕ U ′,M [n]) ∼= HomT (U,M [n])⊕HomT (U ′,M [n]), (1)

each summand being 0 for large enough n. Thus U ⊕ U ′ ∈ U , and U is an additive subcategory of
T . In addition, if U ⊕U ′ is in U , each of the summands on the right side of (1) disappear whenever
the left side disappears. Then both U and U ′ are in U , and it is also closed under taking direct
summands.

U is clearly closed under isomorphism, as HomT (U ′,M [n]) ∼= HomT (U,M [n]) for all U ′ ∼= U in T
and all n ∈ Z. For U ∈ U and i ∈ Z, we obtain

HomT (U [i],M [n+ i]) ∼= HomT (U,M [n]),

which means U [i] ∈ U , and that U is closed under shift. Let X ∈ U ∗U and M ∈M. There is then
a triangle

U // X // U ′ // U [1],

in T with U,U ′ ∈ U . By definition of U , there are nUM , nU ′M ∈ Z such that HomT (U,M [n]) = 0
for any n ≥ nUM and HomT (U ′,M [n]) = 0 for any n ≥ nU ′M . Let n ≥ max(nUM , nU ′M ) and apply
HomT (−,M [n]) to the triangle to obtain the long exact sequence

· · · // HomT (U ′,M [n]) // HomT (X,M [n]) // HomT (U,M [n]) // · · · .

As both the left and the right terms vanish, the middle one does too by exactness. Thus for
nXM := max{nUM , nU ′M}, we have HomT (X,M [≥ nXM ]) = 0, so X ∈ U . That is, U is closed
under extension in T , which provides the final puzzle piece showing U is a thick subcategory of
T . Since M is silting, M ⊆ U . This means T = U by T = thickM being the smallest thick

17



subcategory of T containingM, and it thus being a subcategory of all other thick subcategories of
T containing M.

To complete the proof, we provide another, similarly defined subcategory of T , and again prove
that it is all of T . For any X ∈ T , we define the subcategory

VX := {Y ∈ T | ∃nY ∈ Z such that HomT (X,Y [≥ nY ]) = 0}.

Again, the strategy involves showing this is a thick subcategory of T containing M. Seeing that
VX containsM is due to the previous part: As U = T , X ∈ U , and so HomT (X,M [>> 0]) = 0 for
all M ∈M.

For Y ∈ VX and Y ′ ∼= Y in T ,

HomT (X,Y [n]) ∼= HomT (X,Y ′[n]).

so VX is closed under isomorphism in T . Let n ≥ nY so that HomT (X,Y [n]) = 0. Then, for all
i ∈ Z, HomT (X,Y [i][n− i]) ∼= HomT (X,Y [n]) = 0, and so VX is closed under shift. Furthermore,

HomT (X, (Y ⊕ Y ′)[n]) ∼= HomT (X,Y [n])⊕HomT (X,Y ′[n]),

and by a similar argument as before, VX is closed under finite coproduct and taking direct sum-
mands. Let Z ∈ VX ∗ VX . There is then a triangle

Y
f // Z

g // Y ′ // Y [1]

in T with Y, Y ′ ∈ VX . We have that HomT (X,Y [n]) = 0 for all n greater than some nY , and that
HomT (X,Y ′[n]) = 0 for all n greater than some nY ′ . By applying HomT (X,−) to the triangle, we
get the long exact sequence

· · · // HomT (X,Y [n]) // HomT (X,Z[n]) // HomT (X,Y ′[n]) // · · · .

For n ≥ max(nY , nY ′), both the left and the right terms disappear, and so the middle term
disappears as well by exactness. That is, for nZ := max{nY , nY ′}, we have HomT (X,Z[≥ nZ ]) = 0,
and so Z ∈ VX , so VX is closed under extensions. Again, we have a thick subcategory of T
containing M, so VX = T for any X ∈ T , and the proposition has been proved.

It is often desirable to have an additive category where the Hom-sets have more structure than just
being additive groups. The definitions of k-linear and Hom-finite are standard.

Definition 2.8. Let T be a category and k a field. We say that T is k-linear if all Hom-sets
are k-vector spaces and composition of morphisms is k-bilinear. Furthermore, we say that T is
Hom-finite over k if all these Hom-spaces are in addition finite dimensional over k.

The l-Calabi-Yau categories, in particular the 2-Calabi-Yau categories have played important roles
in the development of the contemporary tilting theory [4,5]. Before moving on, we put aside a page
to Aihara and Iyama’s note on how they are related to this this tilting definition.

Definition 2.9. Let T be a k-linear, Hom-finite triangulated category, and let l ∈ Z. We say that
T is l-Calabi-Yau if there is a natural isomorphism

HomT (−,∼) ∼= D HomT (∼,−[l]),

where D is the dual D = Homk(−, k).
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The value of l in an l-Calabi-Yau category can provide useful information about the relationship
between T and the silting- and tilting subcategories of T .

Lemma 2.10. Let the triangulated category T be a nonzero l-Calabi-Yau category for some l ∈ Z.
Then

(i) If l = 0, every silting subcategory of T is tilting.

(ii) If l > 0, T has no silting subcategories.

(iii) If l < 0, T has no tilting subcategories.

Since any tilting subcategory is silting, the conclusion of Lemma 2.10 (i) is that silt T = tilt T .
Likewise (ii) means T has neither silting- nor tilting subcategories, and in the case of (iii) there
are no tilting subcategories. Do note that part (iii) does not exclude the existence of silting
subcategories of T .

Proof. Assume T is l-Calabi-Yau for some l. For objects A,B, in T , we have

HomT (A,B) ∼= HomT (A[l], B[l]).

Applying D(−) then yields

D HomT (A,B) ∼= D HomT (A[l], B[l]) ∼= HomT (B,A[l]).

In particular, for X a nonzero object in T

HomT (X,X[l]) ∼= D HomT (X,X) � 0.

(i) Assume l = 0. Let M∈ silt T , X,Y ∈M and m < 0 an integer.

HomT (Y [m], X) ∼= HomT (Y,X[−m]) = 0,

i.e.
HomT (X,Y [m]) ∼= D HomT (Y [m], X) = 0,

and so HomT (M,M[6= 0]) = 0, and M∈ tilt T , as proposed.

(ii) Assume l > 0. Let 0  M  T be a subcategory. Then for any nonzero X in M,
HomT (X,X[l]) ∼= D HomT (X,X) 6= 0, and so HomT (M,M[> 0]) 6= 0, and M is not silting.

(iii) Assume l < 0, and let 0  M  T be a subcategory. For any nonzero X ∈ M, we have
HomT (X,X[l]) ∼= D HomT (X,X) 6= 0. Then HomT (M,M[< 0]) 6= 0, and so M is not tilting.

Example 2.11 (Non-example). By Example 2.3 T = Kb(P(mod kA3)) has both tilting subcate-
gories and silting subcategories which are not tilting. From Lemma 2.10, we then get that T is not
l-Calabi-Yau for any l ∈ Z.
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2.2 A Partial Ordering on the Silting Subcategories of T

For the layman, the inclusion may present itself as a natural partial ordering on the silting subcat-
egories of the triangulated category T . In this section we show that this partial ordering is trivial.
Instead, we follow Aihara and Iyama [1] in their generalization of the partial ordering on tilting
modules as provided by Riedtmann-Schofield [23] and Happel-Unger [10].

This poset structure has the advantage that it is tightly intertwined with the theory of silting
mutation of Section 4.

As part of the construction, we introduce the subcategories T ≤0
M , and provide some basic properties

of these. In particular, we see in Proposition 2.25 how the partial ordering on silt T is given by the
inclusion of the corresponding categories T ≤0

M .

Finally, we show in Proposition 2.28 that the existence of a silting object in T means that all silting
subcategories of T are given by silting objects.

We start by introducing the notation ≥ which will become our partial ordering.

Definition 2.12. Let T be a triangulated category and M and N silting subcategories of T . We
say that M≥ N if

HomT (M,N [> 0]) = 0.

Immediately, it is clear thatM≥M. This relationship would hold also if we defined ≥ on the set
of pre-silting subcategories of T .

Example 2.13. Assume T = Kb(P(mod Λ)) as in Example 2.3 or Example 2.4. The AR-quiver
has the underlying graph

·
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·
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·
��

·
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·
��

·
��

·
��

·

· · · ·
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·
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·
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·
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·
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·
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·
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· · ·

·
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·
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·
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·
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·
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·

Let M be a silting object of T with three indecomposable summands appearing on a diagonal

·

·
@@

·
@@

and let N be a silting object all of whose indecomposable summands are either shared with M or
to the right of M . Then add{M} ≥ add{N}. Later, we will see that the silting subcategories of
T are exactly the additive closures of the silting objects in T , and that these have exactly three
indecomposable summands. The silting objects N of T such that add{M} ≥ add{N} are then
exactly those for which the indecomposable summands are either shared with M or exist to the
right of M in the AR-quiver.

The rest of this section is aimed at proving that this is a partial ordering on silt T , and also to
exploring the intermediate results used to get there. As we said in the introduction, several of
the intermediate results used to get there are expressed in terms of the following subcategories of
T .
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Definition 2.14. For T a triangulated category andM∈ silt T , define the subcategory T ≤0
M ⊆ T

as
T ≤0
M := {X ∈ T | HomT (M, X[> 0]) = 0} .

For ease of notation, define
T ≤lM := T ≤0

M [−l]

and
T <lM := T ≤l−1

M

for any l ∈ Z. Especially, T <0
M = T ≤0

M [1].

The notation used here is reminiscent of the t-structure (T ≤0, T ≥0) from Example 1.13. As for now,
this can be seen simply as a coincidence. In Section 3, we will see that under certain conditions,

(
⊥T <0
M , T ≤0

M ) will produce a co-t-structure of T .

To more easily be able to follow Aihara and Iyama, we note the following basic properties of
T ≤0
M .

Remark 2.15. Let T be a triangulated category and M∈ silt T .

(i) T ≤0
M is closed under positive shift.

(ii) T ≤0
M is closed under extensions.

(iii) T ≤0
M is closed under taking direct summands.

Proof. The proofs are straight forward

(i) For X ∈ T ≤0
M and n > 0 an integer, we have that for any M ∈M and m > 0,

HomT (M,X[n][m]) ∼= HomT (M,X[n+m]) ⊆ HomT (M, X[> 0]) = 0.

That is, X[n] ∈ T ≤0
M .

(ii) Let X ∈ T ≤0
M ∗ T ≤0

M . There is then a triangle

A // X // B // A[1],

with A,B ∈ T ≤0
M . For any M ∈ M apply HomT (M,−) to the triangle to obtain the long exact

sequence

· · · // HomT (M,A[n]) // HomT (M,X[n]) // HomT (M,B[n]) // · · · .

For n > 0, both the left and right terms vanish by definition of T ≤0
M , and then so does the middle

term, by exactness. Thus HomT (M, X[> 0]) = 0, and so T ≤0
M ∗ T ≤0

M ⊆ T ≤0
M . The other inclusion

follows from Remark 1.1.
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(iii) Assume X ⊕ Y ∈ T ≤0
M . Then for any M ∈M and positive integer n,

0 = HomT (M, (X ⊕ Y )[n]) ∼= HomT (M,X[n])⊕HomT (M,Y [n]).

This means both HomT (M,X[n]) and HomT (M,Y [n]) vanish, and T ≤0
M is closed under taking

direct summands.

This next result makes it easier to prove Lemma 2.18. While it is stated in only two terms, we
show that it easily generalizes to any finite number of terms.

Lemma 2.16. Let T be a triangulated category, M ⊆ T a pre-silting subcategory and m ≥ n
integers. Then

M[m] ∗M[n] ⊆M[n] ∗M[m].

Proof. Let m ≥ n, and assume X ∈M[m] ∗M[n]. Then there is a triangle

M [m] // X //M ′[n]
h //M [m+ 1]

with M,M ′ ∈ M, and the morphism h = 0, so the triangle splits. By taking the coproduct of
identity triangles, we obtain the solid parts of the diagram

M ′[n]

1
��

//M ′[n]⊕M [m]

ϕ

��

//M [m]

1
��

0 //M ′[n+ 1]

1
��

M ′[n] // X //M [m]
0 //M ′[n+ 1].

As the rightmost square commutes, this can be completed to a morphism of triangles by some
ϕ, and as two of the three morphisms are identities, the ϕ is an isomorphism. This means that
X ∈M[n] ∗M[m]. I.e. M[m] ∗M[n] ⊆M[n] ∗M[m].

By successive application of Lemma 2.16 and Remark 1.1, we get that if m ≥ n ≥ r,

M[r] ∗M[m] ∗M[n] ⊆M[m] ∗M[r] ∗M[n]

⊆M[m] ∗M[n] ∗M[r]

⊆M[n] ∗M[m] ∗M[r].

Similarly, we get that for any sequence of integers n1 ≥ · · · ≥ nt

M[n1] ∗ · · · ∗M[nt] ⊆ · · · ⊆ M[nt] ∗ · · · ∗M[n1].

Example 2.17. Let T be as in Example 2.3, M the silting object P1⊕P2⊕P3, andM = add{M}.
By the triangles P3

// P2
// S2

// P3[1] , P1
// I2

// P3[1] // P1[1] and

P1
// I1

// P2[1] // P1[1] we get that

M∗M[1] = add(M∪M[1] ∪ {I1, I2, S2}).

I.e. both M and M[1], and also all the objects ”in between” the two in the AR-quiver. Also,
M[1] ∗M is just add(M∪M[1]) as M in this case is situated entirely to the left of M[1] in the
AR-quiver, and proceeding in triangles amount to movement to the right.
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In addition, it is easily seen that for any n ≥ 2, we have

M∗M[n] =M[n] ∗M = add(M∪M[n]).

Thus for this particular M, there is a proper inclusion as by Lemma 2.16 for m = n + 1, and the
lemma trivially holds for all other m.

Having subcategories of T , we may want to attempt to describe T in terms of these subcate-
gories.

Lemma 2.18. Let T be a triangulated category.

(i) For any subcategory M⊆ T

thickM =
⋃
l>0
ni∈Z

smd(M[n1] ∗ · · · ∗M[nl]).

(ii) For any pre-silting subcategory M⊆ T

thickM =
⋃
l≥0

smd(M[−l] ∗ · · · ∗M[l]).

The expression
⋃

l>0
ni∈Z

smd(M[n1] ∗ · · · ∗M[nl]) may seem daunting at first. What Lemma 2.18 (i)

says is that for any object X ∈ thickM there is an l > 0, a set of l integers {n1, . . . , nl} and an
object Y such that

X ⊕ Y ∈M[n1] ∗ · · · ∗M[nl].

This again, means that there are objects M1, . . . ,Ml ∈M such that X ⊕ Y ∈M1[n1] ∗ · · · ∗Ml[nl].
Part (ii) is really the same result, only here pre-silting allows the ni to appear in order from smallest
to largest.

Proof. We prove both parts by showing inclusion both ways.

(i) For ease of notation, set

RHS :=
⋃
l>0
ni∈Z

smd(M[n1] ∗ · · · ∗M[nl]).

Let X ∈ RHS. Then for some object X ′, some l > 0, M1, . . . ,Ml ∈ M and some set of integers
n1, . . . , nl

X ⊕X ′ ∈M1[n1] ∗ · · · ∗Ml[nl].

For Ni ∈Mi[ni] ∗ · · · ∗Ml[nl] for 1 < i < l, we have triangles

Mi[ni]

��
Ni

// Ni+1

��
Mi[ni + 1],
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and they all fit together into a diagram

M1[n1]

��

M2[n2]

��

· · · Ml−1[nl−1]

��

Ml[nl]

X ⊕X ′ // N2
//

��

· · · // Nl−1

��

// Nl

��

// 0

��
M1[n1 + 1] · · · Ml−2[nl−2 + 1] Ml−1[nl−1 + 1] Ml[nl + 1]

(2)

Now, Nl
∼= Ml[nl] ∈ thickM, so Nl−1 ∈ thickM. Considering the second-to-last triangle, we

similarly get that Nl−2 ∈ thickM. By iterating this process, we arrive at X⊕X ′ ∈ thickM. Since
thick subcategories are closed under taking summands, it follows that X belongs to thickM.

To show the other inclusion, we show RHS is a thick subcategory containingM. Then as thickM
is the smallest such category, the inclusion holds.

Let A⊕B ∈ RHS. Then for some X ′ ∈ T and some n1, · · · , nl ∈ Z

A⊕B ⊕X ′ ∈M[n1] ∗ · · · ∗M[nl].

That is, A ∈ RHS, and RHS is closed under taking direct summands.

If X ⊕X ′ ∈M[n1] ∗ · · · ∗M[nl], and Y ⊕ Y ′ ∈M[m1] ∗ · · · ∗M[mr], then by Remarks 1.1 and 1.4,
we have that

X ⊕ Y ⊕X ′ ⊕ Y ′ ∈M[n1] ∗ · · · ∗M[nl] ∗M[m1] ∗ · · · ∗M[mr].

This means that X ⊕ Y ∈ RHS, and hence RHS is closed under finite coproducts.

Consider a triangle
X // Y // Z // X[1] (3)

in T with X,Z ∈ RHS. Say X ⊕X ′ ∈M[n1] ∗ · · · ∗M[nl] and Z ⊕Z ′ ∈M[m1] ∗ · · · ∗M[mr]. By
adding (3) to the identity triangles

X ′ // X ′ // 0 // X ′[1] and 0 // Z ′ // Z ′ // 0,

we get the triangle

X ⊕X ′ // Y ⊕X ′ ⊕ Z ′ // Z ⊕ Z ′ // (X ⊕X ′)[1].

This means that

Y ⊕X ′ ⊕ Z ′ ∈M[n1] ∗ · · · ∗M[nl] ∗M[m1] ∗ · · · ∗M[mr],

and so Y ∈ RHS, and it is closed under extensions.

By Remark 1.2 X ∈M[n1]∗ · · · ∗M[nl] implies X[i] ∈M[n1 + i]∗ · · · ∗M[nl + i], so RHS is closed
under shift. Then RHS is a thick subcategory of T containing M, and so thickM⊆ RHS. This
shows the other inclusion.
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(ii) Let the subcategory M⊆ T be pre-silting. We set

RHS′ :=
⋃
l≥0

smd(M[−l] ∗ · · · ∗M[l])

and show that RHS′ = RHS = thickM from (i). The inclusion RHS′ ⊆ RHS is obvious.

Let X ∈ RHS, so X ⊕X ′ ∈M[n1] ∗ · · · ∗M[nl], and let {n′1, . . . , n′l} = {n1, . . . , nl} with
n′1 ≤ · · · ≤ n′l. Then by Lemma 2.16

X ⊕X ′ ∈M[n′1] ∗ · · · ∗M[n′l]

In addition, by Remark 1.1, we can ”fill in the blanks” to get

X ⊕X ′ ∈M[−s] ∗M[−s+ 1] ∗ · · · ∗M[s− 1] ∗M[s],

i.e.
X ∈ smd(M[−s] ∗M[−s+ 1] ∗ · · · ∗M[s− 1] ∗M[s]) ⊆ RHS′,

where s = max{|n′1|, |n′l|}.

Lemma 2.18 is still a bit unwieldy. We will iterate on this result twice: Proposition 2.22 iterates
on this by letting M be silting, and in Section 3 Proposition 3.15 iterates this again, allowing us
to remove the smd-parts.

As an attempt to relieve ourselves of unnecessary instances of diagrams such as (2), we show the
following lemma.

Lemma 2.19. Let T be a triangulated category and M a pre-silting subcategory of silt T . Then
For any integers i < j and any l, l′ ≥ 0,

HomT (M[i− l′] ∗ · · · ∗M[i],M[j] ∗ · · · ∗M[j + l]) = 0.

Proof. Without loss of generality, let X = Xi ∈Mi−l′ [i− l′] ∗ · · · ∗Mi[i] and
Y = Yj ∈Mj [j] ∗ · · · ∗Mj+l[j + l]. For j ≤ s < j + l, there are triangles

Ms[s] // Ys // Ys+1
//Ms[s+ 1] (4)

where Ys ∈Ms[s] ∗ · · · ∗Mj+l[j + l]. Similarly, for i− l′ < t ≤ i, there are triangles

Mt[t− 1] // Xt−1
// Xt

//Mt[t] (5)

where Xt ∈Mi−l′ [i− l′] ∗ · · · ∗Mt[t].

For each t, apply HomT (Mt[t],−) to the triangles (4) to get long exact sequences

· · · // HomT (Mt[t],Ms[s]) // HomT (Mt[t], Ys) // HomT (Mt[t], Ys+1) // · · ·

for i− l′ ≤ t ≤ i and j ≤ s < j + l.

The left terms vanish by t < s and M being silting. Furthermore, if s = j + l − 1, we get that
the right term is HomT (Mt[t],Mj+1[j + 1]) = 0. Then by exactness, HomT (Mt[t], Yj+l−1) = 0 as
well. By repeatedly using the exactness of the sequences, we get that HomT (Mt[t], Ys) = 0 for all
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i− l′ ≤ t ≤ i and j ≤ s < j + l. In particular, as Xi−l′ = Mi−l′ [i− l′], we get HomT (Xi−l′ , Ys) = 0
for all s.

Now, for each s, apply HomT (−, Ys) to the triangles (5) to get long exact sequences

· · · // HomT (Mt[t], Ys) // HomT (Xt, Ys) // HomT (Xt−1, Ys) // · · ·

for i − l′ ≤ t ≤ i and j ≤ s ≤ j + l. From the previous part, we see that the left terms all
vanish. Also, for t = i − l′ + 1, the right term vanishes as well, as noted above. Then, by
exactness, HomT (Xi−l′−1, Ys) = 0, and by repeatedly using the exactness of the sequences, we get
that HomT (Xt, Ys) = 0 for all t and s.

This all accumulates in the conclusion that

HomT (Xi, Yj) = HomT (X,Y ) = 0,

which proves the lemma.

For absolute generality of Lemma 2.19, we get the following corollary by a simple application of
Lemma 2.16.

Corollary 2.20. Let T be a triangulated category andM∈ silt T . If {n1, . . . , nr} and {m1, . . . ,ms}
are sets of integers such that ni < mj for all i and j, then

HomT (M[n1] ∗ · · · ∗M[nr],M[m1] ∗ · · · ∗M[ms]) = 0.

Now we present a nice technical tool which helps us determine if an object in an extension M∗N
is just an object of M or N . It will be used already to prove Proposition 2.22 below.

Lemma 2.21. Let T be a triangulated category, M and N subcategories of T and X be an object
in smd(M∗N ).

(i) If HomM(M, X) = 0, then X ∈ N .

(ii) If HomM(X,N ) = 0, then X ∈M.

Proof. Let X ∈ smd(M ∗ N ), and assume HomT (M, X) = 0. Then, for some M ∈ M, N ∈ N
and Y ∈ T , we have a triangle

M

(
a=0
b

)
// X ⊕ Y

( c d ) // N //M [1].

Consider the two triangles

0 // X
1 // X // 0,

and, for some Z,

M
b // Y

γ // Z //M [1].

obtained by completing b to a triangle. Take the sum of these two triangles, and we get the solid
part of the diagram

M

1

��

(
0
b

)
// X ⊕ Y

1

��

(
1 0
0 γ

)
// X ⊕ Z

��

//M [1]

1
��

M

(
0
b

)
// X ⊕ Y

( c d ) // N //M [1].
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We see that the left square commutes and complete it to a morphism of triangles by some
X ⊕ Z → N . As two of the vertical morphisms are identities, the third is an isomorphism, so also
X ⊕ Z ∼= N ∈ N . We have that N is closed under direct summands, so X ∈ N , which proves (i).
Part (ii) is proved analogously.

We continue the effort to describe T in terms of a silting subcategory as started by Lemma 2.18.
By M being a silting subcategory of T , we immediately get part (i) from Lemma 2.18 (ii) by
thickM = T .

Proposition 2.22. Let T be a triangulated category and M a silting subcategory of T . Then

(i)

T =
⋃
l≥0

smd(M[−l] ∗ · · · ∗M[l]),

and

(ii)

T ≤0
M =

⋃
l≥0

smd(M∗ · · ·M[l]).

Proof. For part (ii), let X ∈ T ≤0
M . Then, as T ≤0

M ⊆ T , it follows by part (i) that

X ∈ smd(M[−l]∗ · · · ∗M[l]) for some l ≥ 0. By definition of T ≤0
M , we have HomT (M, X[> 0]) = 0,

and so equivalently HomT (M[< 0], X) = 0. In particular, HomT (M[−l], X) = 0. Lemma 2.21 (i)
then gives us that

X ∈M[−l + 1] ∗ · · · ∗M[l] ⊆ smd(M[−l + 1] ∗ · · · ∗M[l]).

We arrive at X ∈M ∗ · · · ∗M[l] by

HomT (M[−l + 1], X) = · · · = HomT (M[−1], X) = 0

and successively applying Lemma 2.21 l times.

For the other inclusion, let X ∈
⋃
l≥0 smd(M ∗ · · ·M[l]). Then there is an Y , anl ≥ 0 and

M0, . . . ,Ml such that
X ⊕ Y ∈M0 ∗ · · · ∗Ml[l].

For any M ∈M and n > 0, we have

HomT (M,X[n])⊕HomT (M,Y [n]) ∼= HomT (M, (X ⊕ Y )[n]).

By Remark 1.2, the right side is contained in HomT (M,M[n]∗ · · ·M[l+n]), which is 0 by Lemma
2.19. Thus both direct summands on the left side are 0, and so X ∈ T ≤0

M .

The following property of silting subcategories is an important one: In it, Aihara and Iyama assert
that the different silting subcategories of T cannot be nested within each other. That is, T will
never have a silting subcategory properly contained in another silting subcategory.

Theorem 2.23. Let T be a triangulated category and M,N ∈ silt T . If M⊆ N , then M = N .

27



Proof. The theorem is proven by showing the inclusion N ⊆ M. To this end, pick an object
X ∈ N . By N silting and M⊆ N , we get that

HomT (M, X[> 0]) ⊆ HomM(N ,N [> 0]) = 0,

and so X ∈ T ≤0
M . By Proposition 2.22, this means there is an l ≥ 0 and M0, · · · ,Ml ∈M such that

X ∈ smd(M0 ∗ · · · ∗Ml[l]).

Let Y = Y1 ∈M1[1] ∗ · · · ∗Ml[l], so for Yi ∈Mi[i] ∗ · · · ∗Ml[l], we have triangles

Mi[i] // Yi // Yi+1
//Mi[i+ 1]

for 1 ≤ i ≤ l − 1. Apply HomT (X,−) to the triangles to obtain long exact sequences

· · · // HomT (X,Mi[i]) // HomT (X,Yi) // HomT (X,Yi+1) // · · · .

For all these i, the left term vanishes as HomT (X,Mi[i]) ⊆ HomT (N ,N [> 0]) = 0. Also, for
i = l − 1, we have Yi+1 = Yl = Ml[l], so for the same reason as above, HomT (X,Yl) = 0. Then
by exactness, the middle term, HomT (X,Yl−1) vanishes as well. By repeated application of the
exactness, it then follows that HomT (X,Yi) = 0 for all i. In particular HomT (X,Y ) = 0, and so
X ∈M by Lemma 2.21 (ii).

The following result is one of two we need to show ≥ is actually a partial ordering on silt T . Notice

how once we show (
⊥M<0

M , T ≤0
M ) is a co-t-structure, this provides us with the coheart.

Proposition 2.24. If M∈ silt T , then T ≤0
M ∩ ⊥(T <0

M ) =M.

Proof. For ease of notation, set N := T ≤0
M ∩ ⊥(T <0

M ). As HomT (M,M[> 0]) = 0, M ⊆ T ≤0
M .

Also, let X ∈ T <0
M , so X = Y [1] for some Y ∈ T ≤0

M . We have HomT (M, Y [> 0]) = 0, and so
HomT (M,X) = HomT (M,Y [1]) = 0. As this holds for all such M and X,

HomT (M, T <0
M ) = 0,

and so M⊆ ⊥(T <0
M ). Then M⊆ T ≤0

M ∩ ⊥(T <0
M ) = N .

We show that N is a silting subcategory of T , and conclude from this that M = N by Theorem
2.23. By definition, N ⊆ T ≤0

M and N ⊆ ⊥(T <0
M ), so

HomT (N ,N [> 0]) ⊆ HomT (⊥(T <0
M ), T ≤0

M [> 0]).

Let X ∈ ⊥(T <0
M ), so HomT (X, T ≤0

M [1]) = 0. Furthermore, let Y ∈ T ≤0
M and n > 0 an integer. T ≤0

M
is closed under positive shift, and so Y [n− 1] ∈ T ≤0

M . Then

HomT (X,Y [n]) = HomT (X,Y [n− 1][1]) ⊆ HomT (X, T <0
M ) = 0,

and as this holds for all such X,Y, n,

HomT (N ,N [> 0]) = 0.

By definition, thickN contains N , and then also M. As thickM = T is the smallest thick
subcategory of T containing M,

T ⊆ thickN ⊆ T .
This proves thickN = T , and N is a silting subcategory of T containing the silting subcategory
M.

28



As with Proposition 2.24, Proposition 2.25 is needed to show the ≤ being an actual partial ordering
on silt T . It suggests an identification of the to-be-partial ordering with the partial ordering given
by inclusion on the {T ≤0

M | M ∈ silt T }.

Proposition 2.25. For M,N in silt T the two are related as M≥ N if and only if T ≤0
M ⊇ T ≤0

N .

Proof. Assume T ≤0
M ⊇ T ≤0

N . Since N ⊆ T ≤0
N ⊆ T ≤0

M , we have that HomT (M,N [> 0]) = 0, which
is exactly what we want for M≥ N .

For the converse, assume M ≥ N . Then HomT (M,N [> 0]) = 0, so N ⊆ T ≤0
M . By Remark 2.15

(i) and (ii) T ≤0
M is closed under extensions and positive shift, so

N ∗ · · · ∗ N [l] ⊆ T ≤0
M

for any integer l ≥ 0. Also by Remark 2.15 (iii), T ≤0
M is closed under taking summand, and so

smd(N ∗ · · · ∗ N [l]) ⊆ T ≤0
M

for all l ≥ 0. That is
T ≤0
N =

⋃
l≥0

smd(N ∗ · · · ∗ N [l]) ⊆ T ≤0
M ,

which completes the proof.

Finally, we reach the conclusion of this section, which asserts that what we introduced as a partial
ordering on the silting subcategories of T has the property we claim it has.

Theorem 2.26. Let T be a triangulated category. Then the relation ≥ on silt T as given in
Definition 2.12 is a partial ordering.

Proof. We need to show that the ordering is reflexive, antisymmetric and transitive.

Assume M∈ silt T . Then as HomT (M,M[> 0]) = 0, M≥M, which shows ≥ is reflexive.

Assume further that N ∈ silt T such that M ≥ N and N ≥ M. Then by Proposition 2.25,
T ≤0
M = T ≤0

N . Then also

T <0
M = T ≤0

M [1] = T ≤0
N [1] = T <0

N ,

and naturally,
⊥(T <0

M ) = ⊥(T <0
N ).

It follows from Proposition 2.24 that

M = T ≤0
M ∩ ⊥(T <0

M ) = T ≤0
N ∩ ⊥(T <0

N ) = N ,

showing ≥ is antisymmetric.

To finish it off, assume M,L,N ∈ silt T with M ≥ L ≥ N . By Proposition 2.25 we then have
that T ≤0

M ⊇ T ≤0
L ⊇ T ≤0

N , which, again by Proposition 2.25 gives us that M ≥ N , showing ≥ is
transitive.
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When we later introduce silting mutation, we will see that employing left mutation will allow us
to ’move down’ with respect to this partial ordering. Likewise, using right mutation we can will
’move up’. This will be expressed precisely.

As Aihara and Iyama notes, the partial ordering relates links in proper descending (or ascending)
chains to each other by the following:

Proposition 2.27. Let T be a triangulated category and assume M,L and N are silting subcate-
ories of T such that M≥ L ≥ N . Then M∩N ⊆ L.

Proof. Under these assumptions, Proposition 2.25 gives T ≤0
M ⊇ T ≤0

L ⊇ T ≤0
N , and immediately also

that T <0
M ⊇ T <0

L ⊇ T <0
N . Furthermore, by Lemma 1.10, we get that

⊥(T <0
M ) ⊆ ⊥(T <0

L ) ⊆ ⊥(T <0
N ).

Then, we get
M∩N ⊆ ⊥(T <0

M ) ∩ T ≤0
N ⊆ ⊥(T <0

L ) ∩ T ≤0
L = L,

by Proposition 2.24, which is what we wanted to show.

Finally, we conclude Aihara and Iyama by applying the results of this section to show how one
silting object means all silting subcategories are given by objects.

While the proposition is easy to state and remember, it also allows us to distance ourselves from
thinking about silting in terms of subcategories, and approaches a setting where silting is studied
as a property of objects. In particular, it shows how all silting subcategories of Kb(P(mod kA3))
are given by silting objects, i.e. configurations of the AR-quivers.

Proposition 2.28. Let T be a triangulated category. If there is a silting object M ∈ T , then for
any N ∈ silt T , there is an object N such that N = add{N}.

Proof. Let M ∈ T be a silting object, and let N be a silting subcategory of T . Then by Lemma
2.18 (ii)

M ∈ T = thickN =
⋃
l≥0

smd(N [−l] ∗ · · · ∗ N [l]).

i.e. there are objects N−l, . . . , Nl in N such that M ∈ smd(N−l[−l] ∗ · · · ∗Nl[l]). Pick any such set
of objects, and define

N ′ := add{N−l ⊕ · · · ⊕Nl} ⊆ N .

First, observe that HomT (N ′,N ′[> 0]) = 0 as N ′ ⊆ N . Next, note that each Ni ∈ N ′ ⊆ thickN ′.
Since thickN ′ is closed under shift, extensions and direct summands, we get

M ∈ smd(N−l[−l] ∗ · · · ∗Nl[l]) ⊆ thickN ′.

As thickN ′ is closed under isomorphisms, direct summands and finite coproducts, it then follows
that add{M} ⊆ thickN ′. This means that T = thick(add{M}) ⊆ thickN ′ ⊆ T , and thickN ′ = T .

This shows N ′ is silting and contained in N . By Theorem 2.23, N ′ = N , and we have proven the
result by using N := N−l ⊕ · · · ⊕Nl.
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3 Krull-Schmidt triangulated categories

The categories of main interest to us are the easy-to-understand path algebras of finite quivers with-
out cycles, i.e. the hereditary path algebras [2]. For Λ such an algebra, any finitely generated left
Λ-module has a finite decomposition into a coproduct of left Λ-modules, all of whose endomorphism
rings are local [2]. Such a decomposition is also unique up to isomorphism of its components.

As shown in Proposition 3.3, this is also true for Kb(P(mod Λ)), and we fittingly label these cate-
gories as Krull-Schmidt categories.

In this section we study the triangulated categories which inhabit such a Krull-Schmidt property.
The expressions in Proposition 2.22 reach the simpler forms in Proposition 3.15, which allows us
to easier understand the category in terms of its silting subcategories.

We begin by properly defining the central concept:

Definition 3.1. We say that an additive category T is a Krull-Schmidt category if

(i) T is Hom-finite over some field k.

(ii) Any object T ∈ T has a unique (up to isomorphism) finite decomposition

T =
⊕
i<∞

Xdi
i ,

where the Xi are mutually non-isomorphic objects with local endomorphism ring. The di ∈ N
for all i and denotes the number of copies of Xi in T . In the case where all the di = 1, we
say that T is a basic object of T .

Let X ∈ T be a nonzero object such that EndT (X) is local. Assume a decomposition X ∼= X1⊕X2,
and without loss of generality, let X1 6= 0. Consider the morphism

X1 ⊕X2

( 0 0
0 1 )
−−−−→ X1 ⊕X2.

This is clearly not an isomorphism, and as any element in a local ring is either an isomorphism or
nilpotent, it is nilpotent: For some n ∈ N

( 0 0
0 1 )

n
= ( 0 0

0 1 ) = ( 0 0
0 0 ) .

This is only possible when X2 = 0, and so X is indecomposable. Furthermore, as any indecompos-
able object only has one decomposition, all indecomposable objects in a Krull-Schmidt category
have local endomorphism rings. We will often refer to an object in such a category simply by its
decomposition into indecomposables.

Now let X
f−→ Y be a split monomorphism between nonzero, indecomposable objects. Then for

some Y
f ′−→ X, f ′f = 1X . As ff ′ ∈ EndT (Y ), which is a local ring, it is either an isomorphism or

nilpotent. If it is nilpotent, there is an n ≥ 1 such that

(ff ′)n = f(f ′f)n−1f ′ = ff ′ = 0.

Then f ′ = f ′(ff ′) = 0, and so 1X = 0, which is impossible. Thus it is an isomorphism, and so f is a
split epimorphism, and so it is an isomorphism. Similarly we see that any split epimorphism between
nonzero indecomposable objects are isomorphisms. In the case where T is in addition triangulated,
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any monomorphism (epimorphism) is split, and then any monomorphism (epimorphism) between
indecomposable objects is an isomorphism.

The next result is often taught in graduate level university courses in terms of modules over Artin
algebras. We provide here a more general variant for use in Krull-Schmidt categories, as it signifi-
cantly reduces the amount of effort needed in some later proofs.

Proposition 3.2. Let T be a Krull-Schmidt triangulated category and X ∈ T . We then have the
equivalence of categories

add{X} HomT (X,−)−−−−−−−→ P(mod Γ),

where Γ := EndT (X)op.

Proof. First, we note that as T is Hom-finite over k, the algebra Γ is a finite dimensional k-algebra,
and the finitely generated projective Γ-modules are, up to isomorphism, the finite direct sums of
direct summands of Γ. I.e P(mod Γ) = add{Γ}. For any Y ∈ add{T}, there is an n ≥ 1 and an Z
such that Y ⊕ Z ∼= Xn. Then, as Γ-modules,

HomT (X,Y )⊕HomT (X,Z) ∼= HomT (X,Xn) ∼= HomT (X,X)n = Γn,

so HomT (X,Y ) ∈ P(mod Γ).

To complete the proof, we show that HomT (X,−) restricted to add{X} is full, faithful and dense.
We do this by showing

HomT (A,B)
HomT (X,−)−−−−−−−→ Hommod Γ(HomT (X,A),HomT (X,B)) (6)

is an isomorphism for all A,B ∈ add{X}, and by showing HomT (X,−) is dense in mod Γ.

Note that the morphism HomT (X,−) in (6) is the one which maps any A
f−→ B to f ◦ −.

We show the isomorphism (6) in three steps:

(i) A = X: Assume X
f−→ B is such that f ◦ − = 0. I.e. for all X

g−→ X, the composition fg = 0.
Then especially f1X = f = 0, so the map is a monomorphism.

To show it is a split epimorphism, let HomT (X,X)
h−→ HomT (X,B). We map h to the morphism

X
f :=h(1X)−−−−−−→ B, and we show that f ◦ − = h. This is clear since h is a Γ-homomorphism by

assumption: For any X
g−→ X, we can consider g as an element in the left Γ-module Γ. Thus

fg = h(1X)g = h(1Xg) = h(g), so the map is a split epimorphism. Thus (6) is an isomorphism for
A = X.

(ii) A = Xn: To reduce the size of the diagrams, we define eX(−) := HomT (X,−) Due to
Hom-functors being additive, we get the diagram

HomT (Xn, B)

iso γ

��

α // Hommod Γ(eX(Xn), eX(B))

iso δ
��

Hommod Γ(eX(X)n, eX(B))

iso ρ

��
HomT (X,B)n

β // Hommod Γ(eX(X), eX(B))n
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with
f

γ7−→ (f1 · · · fn)
β7−→ (f1 ◦ − · · · fn ◦ −)

and
f

α7−→ f ◦ − δ7−→ (f1 · · · fn) ◦ − ρ7−→ (f1 ◦ − · · · fn ◦ −).

I.e. the diagram commutes, and as each component of β is an isomorphism from (i), the morphisms
β, and then also α are isomorphisms too.

(iii) A⊕A′ = Xn: We obtain a similar diagram as in (ii):

HomT (A⊕A′, B)

iso γ

��

iso

α // Hommod Γ(eX(A⊕A′), eX(B))

iso δ

��
Hommod Γ(eX(A)⊕ eX(A′), eX(B))

iso ρ

��
HomT (A,B)

⊕
HomT (A′, B)

σ=
(
a 0
0 a′

)
//
Hommod Γ(eX(A), eX(B))

⊕
Hommod Γ(eX(A′), eX(B))

.

This diagram commutes for the same reasons as the one in (ii), so σ is an isomorphism as well,
and finally

HomT (A,B)
a=HomT (X,−)−−−−−−−−−→ Hommod Γ(HomT (X,A),HomT (X,B))

is an isomorphism.

Thus the functor HomT (X,−) is fully faithful.

To show it is dense, we let P ∈ P(mod Γ) = add{Γ}, so for some Q and some n ≥ 1, we have
P ⊕Q ∼= Γn. We consider then the idempotent

P ⊕Q
f=( 0 0

0 1 )
−−−−−→ P ⊕Q

in Hommod Γ(Γn,Γn). It has the kernel ker(f) = P . From the first part, we have the isomorphism

HomT (Xn, Xn)
eX=HomT (X,−)−−−−−−−−−−→ Hommod Γ(Γn,Γn),

so there is some idempotent Xn u−→ Xn such that eX(u) = f . As idempotents in T split, we have
the commutative diagram

Xn

π

!!

u // Xn

Y

ι

==

where πι = 1Y . That is, ι is a split monomorphism, and Y is a direct summand of Xn. This also
means that we have the exact sequence

0 // Y
ι // Xn u // Xn
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in T , which yields the exact sequence

0 // eX(Y ) // Γn
f // Γn

in mod Γ. Thus eX(Y ) ∼= P as both are the kernel of f .

We are now able to see that our favorite bounded homotopy categories of projective modules are
Krull-Schmidt, and thus that the Krull-Schmidt triangulated categories are a meaningful abstract
substitution. It is assumed known that these categories are triangulated, see e.g. [26].

Proposition 3.3. Let k be a field and Λ a finite-dimensional algebra over k. Then T := Kb(P(mod Λ))
is a Krull-Schmidt triangulated category.

Proof. Let A ∈ T . By Proposition 3.2 we have the equivalence

add{A} HomT (A,−)−−−−−−−→ P(mod Γ),

where Γ := EndT (A)op. The endomorphism ring of A consists of homotopy classes of chain mor-
phisms A → A. Each degree of such a chain morphism is itself an element in an endomorphism
ring of some object in mod Λ, which is a finite-dimensional k-vector space. As A only has a finite
number of degrees where it is nonzero, it follows that the chain morphisms A → A form a finite-
dimensional k-vector space. Furthermore, the homotopy classes of chain morphisms A→ A form a
finite dimensional k-vector space. Thus we have that Γ is a finite dimensional k-vector space, and
that mod Γ is a Krull-Schmidt category.

Then P := HomT (A,A) has a unique (up to isomorphism) decomposition into indecomposable
Γ-modules

P = P1 ⊕ · · · ⊕ Pn.

As each Pi is in P(mod Γ) and HomT (A,−) is dense, each Pi ∼= HomT (A,Ai) for some Ai ∈ add{A}.
Thus

HomT (A,A) ∼=
n⊕
i=1

HomT (A,Ai) ∼= HomT (A,

n⊕
i=1

Ai),

and by HomT (A,−) being an equivalence, A ∼=
⊕n

i=1Ai. Equivalences preserve decomposability,
so each Ai is indecomposable.

Assume A has two decompositions into indecomposable objects

A ∼=
n⊕
i=1

Ai ∼=
n′⊕
i=1

A′i

where for some j, Aj � A′i for all i. Then P has two decompositions

P ∼=
n⊕
i=1

HomT (A,Ai) ∼=
n′⊕
i=1

HomT (A,A′i),

so n = n′. Also, by HomT (A,−) being an equivalence, HomT (A,Aj) � Hom T (A,Ai) for all i.
This is a contradiction, so the decomposition of A is unique up to isomorphism.
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Let X be idecomposable in Kb(P(mod Λ)). Similar to above, there is now an equivalence

add{X} HomT (X,−)−−−−−−−→ P(mod Γ)

with Γ = EndT (X,X). As X is indecomposable, it is sent to an the indecomposable object
HomT (X,X) by the equivalence. We saw that this a finite dimensional k-vector space above, and
as it is indecomposable, it must be one-dimensional. I.e. HomT (X,X) ∼= k, which is especially a
local ring.

Thus the indecomposable objects in T have local rings, and T is Krull-Schmidt.

Krull-Schmidt categories all have the following nice property.

Proposition 3.4. Let T be a Krull-Schmidt category and M ∈ T . Then add{M} is functorially
finite in T .

The proof is a straight forward basis argument, but the bookkeeping and indexing still makes it
rather ugly.

Proof. We show add{M} is contravariantly finite. The proof of it being covariantly finite is dual.

Let T ∈ T . As T is Krull-Schmidt, there is a decomposition M =
⊕n

i=1Mi, where the Mi are
indecomposable. Also, HomT (Mi, T ) is a finite dimensional k-vector space for each i, and so we
choose for each i a basis {fi1, . . . , fiti} for HomT (Mi, T ). Define the object M ′i :=

⊕ti
j=1Mi, and

let f ′i be the morphism

M ′i =

ti⊕
j=1

Mi
f ′i=( fi1 ··· fiti )
−−−−−−−−−−→ T.

Do the same again to define the object M ′ and the morphism M ′
f ′−→ T by

M ′ :=

n⊕
i=1

M ′i
f ′:=( f ′1 ··· f ′n )
−−−−−−−−−→ T.

We show this is a right add{M}-approximation of T .

To this end, let M ′′
f ′′−→ T be any morphism with M ′′ ∈ add{M}. By definition of add{M},

the object M ′′ is a finite direct sum of summands of M . I.e. there are d1, . . . , dn such that
M ′′ =

⊕n
i=1M

di
i , and the morphism f ′′ is then given by

M ′′ =

n⊕
i=1

Mdi
i

f ′′=( f ′′1 ··· f ′′n )
−−−−−−−−−−→ T,

with Mdi
i

f ′′i−→ T for 1 ≤ i ≤ n.

For each i, f ′′i is then given by f ′′i = ( f ′′i1 ··· f ′′idi ), where Mi

f ′′ij−−→ T for each 1 ≤ j ≤ di. As
f ′′ij ∈ HomT (Mi, T ), there are c1

ij , . . . , c
ti
ij for each j such that f ′′ij = c1

ijfi1 + · · ·+ ctiijfiti . Define

gi :=

 c1i1 ··· c1idi
...

...
c
ti
i1 ··· c

ti
idi

 .
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Then f ′′i = f ′igi, and it is easy to check that the diagram

M ′
f ′ // T

M ′′
f ′′

== g1

. . .
gn

 OO

commutes. This shows f ′ is a right add{M}-approximation of T , and that add{M} is contravari-
antly finite in T .

This result allows us to easily generate functorially finite subcategories of silting subcategories by
simply picking an object X in the silting subcategory and considering add{X}. In particular,
for our example category Kb(P(mod kA3)), we see that choosing any summand of a silting object
yields a functorially finite subcategory of the corresponding silting subcategory. Such subcate-
gories are important when we in Section 4.1 generate new silting subcategories from old ones by
mutation.

The following remark is an easy observation when working in Krull-Schmidt categories. It often
reduces the amount of work needed when working with silting categories with additive genera-
tors.

Remark 3.5. Let T be a Krull-Schmidt triangulated category and X ∈ T . Then M := add{X} is
a silting subcategory of T if and only if HomT (X,X[> 0]) = 0 and thick{X} = T .

Proof. Let X ∈ T be such that HomT (X,X[> 0]) = 0 and thick{X} = T . By T being Krull-
Schmidt, there is a decomposition

X = X1 ⊕ · · · ⊕Xm

with Xi indecomposable. Then HomT (Xi, Xj [> 0]) = 0 for all i and j. Furthermore, any Y ∈ M
is of the form Y = Xd1

1 ⊕ · · · ⊕Xdm
m , for some di ≥ 0. Then for any Y, Y ′ ∈M and n > 0,

HomT (Y, Y ′[n]) =
m⊕

i,j=1

HomT (Xi, Xj [n])did
′
j = 0,

showing HomT (M,M[> 0]) = 0. In addition, X ∈ thick(M), so thick(M) = T , and M is silting.

For the other direction, assume M is silting. then clearly HomT (X,X[> 0]) = 0, and as thick{X}
contains all summands of X and all finite coproducts of such summands, M ⊆ thick{X}. This
shows T = thick(M) ⊆ thick{X}, and so both directions hold.

Note that in this Krull-Schmidt case, the subcategoriesM of T containing an additive generator M
also contains a basic additive generator M ′. This basic generator is the coproduct of the mutually
non-isomorphic summands of M called the basic version of M .

Proposition 3.6. Let T be a Krull-Schmidt triangulated category with a silting object. Then there
is a bijection between the silting subcategories of T and the basic silting objects in T .

Proof. As by Proposition 2.28, T having a silting object means any silting subcategory is add{M}
for some object M . Then the basic version M ′ of M generates the same category, and we have our
bijection.
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If M
f−→ N is a right M-approximation of N , M ′ ∈ M, and M ′

f ′−→ N is some morphism, then

M ⊕M ′ ( f f ′ )−−−−→ N is a right M-approximation of N as well. Indeed, let M ′′ ∈ M and M ′′
f ′′−→ N

be any morphism. Then there exists some M ′′
h−→M such that f ′′ = fh. Then clearly is easily seen

that the diagram

M ⊕M ′
( f f ′ ) // N

M ′′

(
h
0

) OO
f ′′

88

commutes as well. Conversely, we show in Lemma 3.7 that for any M-approximation, there is a
decomposition such that one of the components is a minimal approximation. This lemma, and by
extension Proposition 3.2, are the main reasons for why we in this thesis assume the Krull-Schmidt
categories to be Hom-finite.

Lemma 3.7. Let T be a Hom-finite category over some field k. For any morphism M
f−→ N in T ,

there are decompositions

(i)

M ∼= X ⊕ Y f=( fX fY )−−−−−−−→ N

where X
fX−−→ N is a right minimal morphism and fY = 0.

(ii)

M
f=
(
fX
fY

)
−−−−−−→ X ⊕ Y ∼= N

where M
fX−−→ X is a left minimal morphism and fY = 0.

Proof. We prove part (i). The a proof of part (ii) is dual.

Define A := M ⊕N . From Proposition 3.2 we have the equivalence

add{A} HomT (A,−)−−−−−−−→ P(mod Γ)

where Γ := EndT (A)op. By applying this equivalence to the morphsim M
f−→ N , we then obtain

MP := HomT (A,M)
fP :=HomT (A,f)// HomT (A,N) =: NP ,

i.e. the morphism MP
fP−→ NP in mod Γ. In this case, we know [3] there is a decomposition

MP
∼= M ′P ⊕M ′′P

fP =( f ′P f ′′P )
−−−−−−−−→ NP

where M ′P
f ′P−→ NP is right minimal and f ′′P = 0.

Since HomT (A,−) is dense, there are M ′ and M ′′ in add{A} such that HomT (A,M ′) ∼= M ′P and
HomT (A,M ′′) ∼= M ′′P . It follows that

HomT (A,M ′ ⊕M ′′) ∼= M ′P ⊕M ′′P ∼= MP
∼= HomT (A,M),
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and as HomT (A,−) is an equivalence, M ∼= M ′ ⊕ M ′′. Also, as HomT (A,−) is full, there are

morphisms M ′
f ′−→ N and M ′′

f ′′−→ N such that HomT (A, f ′) = f ′P and HomT (A, f ′′) = f ′′P . As

fP = (f ′P f ′′P )

= (HomT (A, f ′) HomT (A, f ′′))

= HomT (A, (f ′ f ′′))

we have f = (f ′ f ′′). As HomT (A,−) is faithful, f ′′ = 0. To see that f ′ is right minimal, let

M ′
g−→ M ′ be such that f ′g = f ′. Then by applying HomT (A,−), we see that HomT (A, g) is an

isomorphism by the minimality of f ′P . Again, by HomT (A,−) being an equivalence, it follows that
g is an isomorphism, and that f ′ is right minimal.

By applying Lemma 3.7, we immediately get the following equivalent definitions of right- and left
minimal morphisms

Corollary 3.8. Let k be a field and T an additive category such that for all A,B ∈ T , HomT (A,B)

is a finite dimensional vector space over k. Let X
f−→ Y be a morphism in T .

(I) The following are equivalent:

(i) f is right minimal.

(ii) For any decomposition

X = X ′ ⊕X ′′ f=( f ′ f ′′ )−−−−−−−→ Y

with X ′ 6= 0, f ′ 6= 0.

(II) The following are equivalent:

(iii) f is left minimal.

(iv) For any decomposition

X
f=

(
f ′

f ′′

)
−−−−−−→ Y ′ ⊕ Y ′′ = Y

with Y ′ 6= 0, f ′ 6= 0.

Proof. We prove (I). Let f be right minimal. To arrive at a contradiction, assume there is a
decomposition

X = X ′ ⊕X ′′ f=( f ′ f ′′ )−−−−−−−→ Y,

with X ′ and X ′′ nonzero but f ′ = 0. Then the diagram

X ′ ⊕X ′′

h=( 0 0
0 1 )

��

f // Y

1
��

X ′ ⊕X ′′ f // Y

commutes. This is a contradiction, as h is not an isomorpism. Thus no such composition exists.

Assume (ii). By Lemma 3.7, there is a decomposition of X and f as

X = X ′ ⊕X ′′ f=( f ′ f ′′ )−−−−−−−→ Y,
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where f ′ is right minimal and f ′′ = 0. By our assumption, we then have that X ′′ = 0, and so
X = X ′ and f = f ′, which is right minimal.

The proof of (II) is dual.

It is now easy to show that sums of minimal morphisms are themselves minimal. More precisely,
we have the following result:

Corollary 3.9. Let T be a Krull-Schmidt triangulated category, and let X
f−→ Y and X ′

f ′−→ Y ′ be
morphisms.

(i) If f and f ′ are left minimal, then X ⊕X ′ f⊕f
′

−−−→ Y ⊕ Y ′ is left minimal.

(ii) If f and f ′ are right minimal, then X ⊕X ′ f⊕f
′

−−−→ Y ⊕ Y ′ is right minimal.

Proof. A proof is provided for part (ii). As T is Krull-Schmidt, there are unique (up to isomor-
phism) decompositions

X =

n⊕
i=1

Xi
f=(f1···fn)−−−−−−−→ Y,

and

X ′ =

n+m⊕
i=n+1

Xi
f ′=(fn+1···fn+m)−−−−−−−−−−−→ Y ′,

where the Xi are indecomposable. By Corollary 3.8 (I), the fi are all nonzero. The direct sum of
these is

⊕n+m
i=1 Xi

(
f1 ··· fn 0 ··· 0
0 ··· 0 fn+1 ··· fn+m

)
=f⊕f ′

// Y ⊕ Y ′,

and the restriction of this morphism to an indecomposable summand is either
(
fi
0

)
6= 0 or

(
0
fi

)
6= 0.

Again, by Corollary 3.8, this gives that f ⊕ f ′ is a right minimal morphism. The proof for part (i)
is dual.

From Kelly [16], we have the following notions of an ideal of a (pre)-additive category

Definition 3.10. For a pre-additive category A, we define an ideal I in A as follows:

(i) ObI = ObA.

(ii) For any objects X,Y ∈ I, HomI(X,Y ) ⊆ HomA(X,Y ) is a subgroup with the property that
for any f ∈ HomA(A,B), g ∈ HomI(B,C) and h ∈ HomA(C,D)

A
f∈A // B

g∈I // C
h∈A // D

then gf ∈ HomI(A,C) and hg ∈ HomI(B,D).

We say that I is a maximal ideal in A if it is a proper ideal in A and it is not properly contained
in any proper ideal of A. The Jacobson radical of A, JA is defined to be the intersection of all the
maximal ideals of A.

Also from [16], the Jacobson radical JA has the following properties.
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Proposition 3.11. Let A be an additive category.

(i) A morphism X
f−→ Y between indecomposable objects in T is in the Jacobson radical if and

only if it is not an isomorphism.

(ii) A morphism
⊕n

i=1Xi
f−→
⊕m

j=1 Yj with Xi, Yj indecomposable is in the Jacobson radical if

and only if all its components Xi
fij−−→ Yj are not isomorphisms.

(iii) A morphism r is in the Jacobson radical if and only if 1− r is an isomporhism.

Lemma 3.12. Let T be a Krull-Schmidt triangulated category, and assume there is a triangle

X
g // Y

f // Z // X[1]

in T with f a right minimal morphism. Then g is in JT .

Proof. Assume g is not in JT . Then there is an indecomposable summand X ′ 6= 0 of X which is
isomorphic to a summand Y ′ of Y under g. In other words, by letting the vertical morphisms be
the inclusions into the coproducts, there is an isomorphism g′ such that the diagram

X ′

ιX
��

g′ // Y ′

ιY
��

X
g // Y

f // Z // X[1].

commutes. Since f is right minimal, we have by Corollary 3.8 that its restriction to any nonzero
summand is nonzero. I.e. fιY 6= 0, and as g′ is an isomorphism, neither is fιY g

′. But since f and g
are successive morphisms in a triangle, fιY g

′ = fgιX = 0. Thus we have arrived at a contradiction,
showing that g is in JT .

The following lemma is an important tool used in later proofs. The parts of it correspond to
Propositions 2.1, 2.3 and the dual to 2.3 by Iyama and Yoshino [14], respectively. Again, we honor
tradition and refer to parts (ii) and (iii) collectively as ’Wakamatsu’s Lemma’.

Lemma 3.13. Let T be a Krull-Schmidt triangulated category, and M a subcategory of T .

(i) If N ⊆ T is a subcategory such that HomT (M,N ) = 0. Then M∗N is closed under taking
direct summands: smd(M∗N ) =M∗N .

(ii) If M is contravariantly finite in T and M∗M ⊆M, then (M,M⊥T ) is a torsion pair.

(iii) If M is covariantly finite in T and M∗M ⊆M, then (⊥TM,M) is a torsion pair.

Proof. We show parts (i) and (ii), as (iii) is just dual to (ii).

(i) Let X1 ⊕X2 ∈M ∗N . There is a triangle

M

(
a′1
a′2

)
// X1 ⊕X2

( b′1 b
′
2 ) // N //M [1]
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with M ∈ M and N ∈ N . Each of the a′i are easily seen to be right M-approximations of Xi,
respectively, and so by Lemma 3.7, these decompose as

M = Mi ⊕M ′′i
a′i=( ai 0 )
−−−−−−→ Xi

with Mi
ai−→ Xi right minimal M-approximations of the Xi. We complete both these to triangles

Mi
ai // Xi

// Ui //Mi[1]

and add them to obtain

M1 ⊕M2

(
a1 0
0 a2

)
// X1 ⊕X2

// U1 ⊕ U2
//M1[1]⊕M2[1].

Here, the left morphism is a right minimal M-approximation of X1 ⊕X2 by Corollary 3.9, so by
Lemma 1.8 M1⊕M2 is a direct summand of M , and more importantly, U1⊕U2 is a direct summand
of N . As N is closed under direct summands, Ui ∈ N , and so Xi ∈M ∗N .

(ii) Clearly, by definition, we have that HomT (M,M⊥) = 0. What remains then is to show that
T =M∗M⊥.

Let T ∈ T . As M is contravariantly finite in T we have by Lemma 3.7 that there is a triangle

M
a // T

b // N
c //M [1]

with a a right minimal M-approximation of T . Then by Lemma 3.12, c ∈ JT . To finish the proof
we need only see that N ∈M⊥.

Let M ′
f−→ N be any morphism with M ′ ∈M, and complete it to a triangle

M ′
f // N

g // L
h //M ′[1].

By the octahedral axiom, we then have the diagram

T
b //

gb ,,

N
c //

g

  

M [1]
−a[1] //

��

T [1]

L //

h ##

M ′′[1]
−d[1] //

��

T [1]

M ′[1]
−f [1]

%%��
M [2] N [1].

The vertical triangle gives us M ′′ ∈M∗M =M, and a morphism M ′′
d−→ T . We refit the triangles
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into the solid parts of the diagram

M ′′

||
d
��

M ′

f

��
M

a // T

gb
��

b // N

g

��

c //M [1]

L
g′

::

��

L

h
��

M ′′[1] M ′[1]

As a is a right M-approximation of T , d factors through a, and so bd = 0. Then for some g′ we
get b = g′gb, and so (1N − g′g)b = 0. This again means that 1N − g′g factors through c, and that
1N −g′g ∈ JT . Then g′g is an isomorphism by Proposition 3.11, and so g is a split monomorphism.
By [11] this means f = 0, so N ∈ X⊥.

Theis next result is a fundamental property of torsion pairs, and is used to make Proposition 3.15
easier to prove.

Lemma 3.14. Let T be any triangulated category. If (X ,Y) and (X ′,Y) are torsion pairs in T ,
then X ′ = X . Likewise, if (X ,Y) and (X ,Y ′) are torsion pairs, then Y = Y ′.

Proof. Let X ∈ X , so X ∈ T = X ′ ∗Y ⊆ smd(X ′ ∗Y). Since HomT (X,Y) = 0, we have by Lemma
2.21 that X ∈ X ′. Then by a symmetric argument, we arrive at X = X ′. This line of reasoning is
easily adjusted to show the second statement.

As alluded to earlier, in the setting of Krull-Schmidt triangulated categories, Proposition 2.22
reaches a simpler form. Proposition 3.15 (i) and (ii) update Proposition 2.22 to this new setting,
while part (iii) shows the left orthogonal complement of T ≤0

M is the ’negative’ part of T as given

by (i). Finally, we see how the T ≤0
M are used to make torsion pairs and co-t-structures.

Proposition 3.15. Let T be a Krull-Schmidt triangulated category, and M∈ silt T . Then

(i)

T =
⋃
l≥0

M[−l] ∗ · · · ∗M[l],

(ii)

T ≤0
M =

⋃
l≥0

M∗ · · · ∗M[l],

and

(iii)
⊥(T ≤0

M ) =
⋃
l>0

M[−l] ∗ · · · ∗M[−1].

Furthermore, (⊥(T ≤0
M ), T ≤0

M ) is a torsion pair of T , and (
⊥

(T <0
M ), T ≤0

M ) is a co-t-structure with
coheart M.
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Proof. By Lemma 2.19
HomT (M[−l],M[−l + 1] ∗ · · · ∗M[l]) = 0

for all l ≥ 0. Then by Lemma 3.13 (i) smd(M[−l]∗ · · · ∗M[l]) =M[−l]∗ · · · ∗M[l]. By Proposition
2.22 (i), we then get part (i).

Part (ii) is proved similarly by Proposition 2.22 (ii) and observing that by Lemma 2.19

HomT (M,M[1] ∗ · · · ∗M[l]) = 0

for any l ≥ 0.

For part (iii), let

RHS :=
⋃
l>0

M[−l] ∗ · · · ∗M[−1].

Let X be any object in RHS, so X ∈ M[−l′] ∗ · · · ∗ M[−1] for some l′ > 0. By part (ii), any
Y ∈ T ≤0

M is inM∗ · · · ∗M[l] for some l ≥ 0. Then we have by Lemma 2.19 that HomT (X,Y ) = 0,
so we have that

HomT (RHS, T ≤0
M ) = 0.

Let T ∈ T . By part (i) e have that T ∈M[−l] ∗ · · · ∗M[l] for some l ≥ 0. That is, by Remark 1.3

X ∈ (M[−l] ∗ · · · ∗M[−1]) ∗ (M∗ · · · ∗M[l]) ⊆ RHS ∗ T ≤0
M ,

showing T = RHS ∗ T ≤0
M .

Then (RHS, T ≤0
M ) is a torsion pair in T . By Corollary 1.12, T ≤0

M is a covariantly finite subcategory

of T . Also, T ≤0
M is closed under extensions, and it follows from Lemma 3.13 (iii) that (⊥(T ≤0

M ), T ≤0
M )

is also a torsion pair in T .

We then get by Lemma 3.14 that RHS =
⊥

(T ≤0
M ), which shows part (iii).

It is easy to check from first principles that ⊥(T <0
M )[−1] = ⊥(T ≤0

M ), so (⊥(T <0
M )[−1], T ≤0

M ) is a

torsion pair in T . Similarly, we see that ⊥(T <0
M )[−1] ⊆ ⊥(T <0

M ), so by Defninition 1.11 we have

that (⊥(T <0
M ), T ≤0

M ) is a co-t-structure in T

By Proposition 2.24, T ≤0
M ∩ ⊥(T <0

M ) =M, and this co-t-structure has coheart M.

The following proposition concerns the kinds of triangles which appear in Example 3.17. We show
that there are restrictions which can be made to these triangles, which then allows for an updated
definition of the M-resolution of an object in T .

Proposition 3.16. Let T be a Krull-Schmidt triangulated cateogory. For any silting subcategory
M of T , and any N0 ∈ T ≤0

M , there is, for some l ≥ 0 a sequence of triangles

N1
g1 //M0

f0 // N0
// N1[1],

· · ·

Nl
gl //Ml−1

fl−1 // Nl−1
// Nl[1],

0
gl+1 //Ml

fl // Nl
// 0,

such that fi is a minimal right M-approximation of Ni and gi+1 belongs to JT for each 0 ≤ i ≤ l.
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Proof. As N0 ∈ T ≤0
M , we have by Proposition 3.15 that N0 ∈ M ∗ · · · ∗M[l] for some l ≥ 0. Then

by the rotation axiom there is a triangle

N ′1
u //M ′0

f ′0 // N0
v // N ′1[1] (7)

where M ′0 ∈M and N ′1[1] ∈M[1] ∗ · · · ∗M[l], and f ′0 is a rightM-approximation of N0 by Lemma
1.7 and Lemma 2.19.

Thus by Lemma 3.7 we can write M ′0 = M0 ⊕ M ′′0
f=( f0 0 )−−−−−−→ N0, where f0 is a minimal right

M-approximation of N0, and we have a triangle

N1
g1 //M0

f0 // N0
// N1[1], (8)

where by Lemma 3.12, g1 is in the Jacobson radical. By Lemma 1.8, we also have that N1 is a
direct summand of N ′1, so N1 ∈M[1] ∗ · · · ∗M[l] by Lemmas 3.13 (i) and 2.19.

Then, make a triangle (7) for N1, and repeat the exact same arguments as done for the previous
one to obtain the next triangle of the form (8). Then do the same again for N2, and so on, until
we reach Nl ∈M, providing us with the final triangle where fl is an isomorphism.

Example 3.17. In abelian categories A with enough projectives, we consider the projective reso-
lutions p(X) of objects X. These are complexes

· · · // P−1 p−1
// P 0 p0 // X // 0 // · · · ,

which are exact everywhere, except at X, where cok p−1 = X. The notion of being a projective
object P is however dependent on the existence of an exact structure on A, as the property is given
by HomT (P,−) being exact. Thus projectivity and projective resolutions lose much of its merit in
this setting.

By using the theory we introduce in this thesis we can mimic much of the construction of projective
resolutions. This is not meant as a straight up alternative, but rather as a way to help understand
this new theory in terms of something familiar.

Recall that the construction of the projective resolution is as follows: For X ∈ A take a projective

cover P 0 p0−→ X, and the kernel ker p0 ι0−→ P 0 of this morphism. Then take a projective cover

P−1 π−1

−−→ ker p0, and compose the two to the morphism p−1 := ι0π−1. Continue this by repeating
these steps, using p−1 in the place of p0, and so on. The following diagram illustrates this.

· · ·
π−3

##

p−3
// P−2

π−2

$$

p−2
// P−1

π−1

##

p−1
// P 0 p0 // X

ker p−2
ι−2

::

ker p−1
ι−1

::

ker p0
ι0

<<

Note that ker pi = kerπi as the ιi+1 are inclusions.

We mimic this algorithmic construction by using triangles in place of short exact sequences, i.e.
substitute the kernels by the corresponding weak kernels (cylinders) from the triangles.
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Let T be a Krull-Schmidt triangulated category and M ∈ silt T . For any X ∈ T there are by
Proposition 3.15 (i) an l ≥ 0 and M−l, . . . ,Ml ∈M such that X ∈M−l[−l] ∗ · · · ∗Ml[l]. From this
we produce can the diagram

0 · · · N−l+2[1]

Nl

??

gl

��

· · · N−l+1

??

g−l+1

��
Ml[−l]

fl
??

//Ml−1[−l] · · · //M−l+1[−l]

f−l+1
??

//M−l[−l]
f−l

��
0

gl+1

??

· · · N−l+2

��

g−l+2

??

X

��
· · · N−l+3[1] N−l+1[1]

where the diagonal parts are triangles with N−l+i ∈ M−l+i[−l] ∗ · · · ∗Ml[l − i]. Similarly to how
the projective resolution produces a complex of projective objects, this yields a complex

· · · // 0 //Ml[−l]
glfl // · · ·

g−l+1f−l+1 //M−l[−l]
f−l // X // 0 // · · · .

with objects Mi[−l] ∈M[−l]. We call this an M[−l]-resolution of X.

By Proposition 3.15 (ii), we can do even better by restricting X to be in T ≤0
M : Then for some l ≥ 0

there are M0, . . . ,Ml ∈M such that X ∈M0 ∗ · · · ∗Ml[l], and we get the diagram

0 · · · N4[1] N2[1]

Nl

??

gl
��

· · · N3

??

g3
��

N1

??

g1
��

Ml

fl ??

//Ml−1

fl−1
��

//Ml−2 · · · //M2

f2 ��

//M1

f1 ??

//M0
f0
��

0
gl+1

??

Nl−1

��

gl−1

??

· · · N2

��

g2

??

X

��
Nl[1] · · · N3[1] N1[1],

(9)

where the diagonal parts are triangles with Ni ∈Mi ∗· · ·∗Ml[l− i]. As before, this yields a complex

· · · //Ml
glfl // · · · g2f2 //M1

g1f1 //M0
// X // 0 // · · · ,

and time the objects Mi are inM. The similarities to projective resolutions are evident: Instead of
projective covers, we take fi, which are right minimalM-approximations by Lemmas 1.7 and 2.19,
and instead of the kernel of said covers, we take the weak kernel of fi by choosing the morphism
gi+1.

This complex is now anM-resolution of X, and we can define the length of it to be the largest index
i of a nonzero Mi. Continuing down this path of analogous concepts, we define the M-dimension
of X to be the smallest l ≥ 0 such that there exists an M-resolution of X of length l. Now it is
clear that T ≤0

M is exactly the subcategory of T of objects of finite M-dimension, where

M∗ · · · ∗M[l]
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is the collection of objects in of M-dimension less than or equal to l.

Building on this, Proposition 3.16 asserts that for any X ∈ T ≤0
M , we have a diagram (9) where the

fi are right minimal M-approximations and gi+1 are in JT . We then say that the complex

· · · // 0 //Ml
glfl // · · · g2f2 //M1

g1f1 //M0
// X // 0 // · · ·

is a minimal M-resolution of X. Note that as gi+1 ∈ JT , so is gi+1fi. Thus in a minimal M-
resolution, all the differentials are non-isomorphisms on the summands of the Mi.

Now a concrete example: In the case where T = Kb(P(mod kA3)) and M = add{P1 ⊕ P2 ⊕ P3},
we get for the objects S2 and S2[1] the diagrams

0

P3

??

��
P3

1 ??

// P2

��
0

??

S2

��
P3[1]

and
P3[1]

0

��

S2

??

��
P3

//
1
��

P2
//

??

0

��
P3

??

��

S2[1]

��
0 S2[1]

and the corresponding M-resolutions

· · · // 0 // P3
// P2

// S2
// 0 // · · ·

and
· · · // 0 // P3

// P2
// 0 // S2[1] // 0 // · · ·

respectively.

This showcases the distinction between projective resolutions and M-resolutions. A projective
resolution ends once ker pi = 0, whereas this needs not be the case for M-resolutions, allowing for
more resolutions in T than in mod kA3.

Having two objects such that we can apply Proposition 3.16, we can read from their corresponding
sets of triangles the following property.
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Lemma 3.18. Let T be a Krull-Schmidt triangulated category, M a silting subcategory of T and
N0, N

′
0 ∈ T

≤0
M . For N0 and N ′0, get the respective triangles

N1
g1 //M0

f0 // N0
// N1[1],

· · ·

Nl
gl //Ml−1

fl−1 // Nl−1
// Nl[1],

0
gl+1 //Ml

fl // Nl
// 0.

N ′1
g′1 //M ′0

f ′0 // N ′0
// N ′1[1],

· · ·

N ′l′
g′
l′ //M ′l′−1

f ′
l′−1 // N ′l′−1

// N ′l′ [1],

0
g′
l′+1 //M ′l′

f ′
l′ // N ′l′

// 0.

from Proposition 3.16.

If HomT (N0, N
′
0[l]) = 0, then add{Ml} ∩ add{M ′0} = 0.

Proof. The objects X ∈ add{Ml} ∩ add{M ′0} are exactly the ones which are finite coproducts of
indecomposable, simultaneous summands of Ml and M ′0.

From Proposition 3.11 we know a ∈ HomT (Ml,M
′
0) belongs to the Jacobson radical if and only

if each component of a is a non-isomorphism. If Ml and M ′0 share an isomorphic summand,
there exists a morphism Ml → M ′0 with a component which is an isomorphism. We then show
add{Ml} ∩ add{M ′0} = 0 by proving any a ∈ HomT (Ml,M

′
0) is in JT .

Assume first l = 0. Then from N0 we have the triangle 0 //M0
f0 // N0

// 0 , with f0 an
isomorphism. Apply HomT (M0,−) to the triangle to get the long exact sequence

· · · // HomT (M0, N
′
1)

g′1◦− // HomT (M0,M
′
0)

f ′0◦− // HomT (M0, N
′
0) // · · · .

The right term vanishes by assumption as M0
∼= N0 and HomT (N0, N

′
0) = 0. That is, − ◦ g′1 is

surjective, and all morphisms M0 → M ′0 factor through g′1. As g′1 is in the Jacobson radical, any
morpism M0 →M ′0 is as well.

Now, assume l > 0, and apply HomT (−, N ′0) to the triangles for N0. From the first triangle, we
get the sequence

· · · // HomT (M0[−l + 1], N ′0) // HomT (N1[−l + 1], N ′0) // HomT (N0[−l], N ′0) // · · · ,

where the right side vanishes by HomT (N0, N
′
0[l]) = 0 and the left side by

HomT (M0[−l + 1], N ′0) ⊆ HomT (M[−l + 1],M∗ · · · ∗M[l′])

which is 0 by Lemma 2.19. It follows by exactness that the middle term vanishes as well. If there
is more than one triangle, we get the sequence

· · · // HomT (M1[−l + 2], N ′0) // HomT (N2[−l + 2], N ′0) // HomT (N1[−l + 1], N ′0) // · · · ,

from the second one. Here the right side vanishes by the previous triangle, and the left side again by
Lemma 2.19. So by exactness, the middle term vanishes as well. Continue this for all the triangles,
and we get

HomT (Nl−1[−1], N ′0) ∼= HomT (Nl−2[−2], N ′0) ∼= · · · ∼= HomT (N0[−l], N ′0) = 0.
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As Ml
∼= Nl, we rotate the second-to-last triangle from N0 to get

Nl−1[−1] //Ml
gl //Ml−1

fl−1 // Nl−1.

Let a ∈ HomT (Ml,M
′
0), and consider the solid part of the following diagram.

Nl−1[−1]

��

α //Ml

a′

zz
a

��

gl //Ml−1

b′
h

||
b
��

fl−1 // Nl−1

��
N ′1 g′1

//M ′0 f ′0

// N ′0
// N ′1[1].

Since gl is a leftM-approximation of Ml there is a morphism Ml−1
h−→M ′0 such that a = hgl. Then

f ′0aα = f ′0hglα = 0, so there is a morphism Nl−1[−1]→ N ′1 making the left square commute. The

morphism Ml−1
b−→ N ′0 then exists by axiom. As f ′0 is a right M-approximation of N ′0, there is a

morphism Ml−1
b′−→M ′0 such that b = f ′0b

′. Now, as f ′0(a−b′gl) = 0, we have a morphism Ml
a′−→ N ′1

such that a − b′gl = g′1a
′. Both gl and g′1 are in JT and so is a = g′1a

′ + b′gl, and the proof is
complete.

The easiest situation to be in regarding silting is when there exists an indecomposable silting object
M ∈ T . Given such a situation, Aihara and Iyama provides the following result, asserting that
the silting subcategories of T are exactly those which are additively generated by a shift of M .
Later, we will show that all silting objects in a Krull-Schmidt category have the same number of
indecomposable summands. This result then shows a special case where all silting objects have one
indecomposable summand.

The most trivial example of such a triangulated category is Db(mod kA1) – the derived category of
the path algebra which arrives from the quiver with only one vertex and no arrows.

Lemma 3.19. Let T be a Krull-Schmidt triangulated category. If M ∈ T is an indecomposable
silting object, i.e. M := add{M} ∈ silt T , then silt T = {add{M [i]} | i ∈ Z}

Proof. Let N ∈ silt T . By Proposition 2.28 there is an N ′ ∈ T such that N = add{N ′}. Assume
without loss of generality that N ′ is basic.

By Propostition 2.7 we have that HomT (M,N ′[>> 0]) = 0. If HomT (M,N ′[k]) = 0 for all k ∈ Z,
then N ′ ∈ T ≤0

M and by Proposition 3.15 (ii) there is some l′ ≥ 0 such that N ′ ∈M ∗ · · · ∗M[l′].

As HomT (M,N ′[k]) = 0 for all k, we also have that N ′[−l′ − 1] ∈ T ≤0
M . By Remark 1.2 and

Proposition 3.15 (iii)

N ′[−l′ − 1] ∈M[−l′ − 1] ∗ · · · ∗M[−1] ⊆ ⊥(T ≤0
M ).

This means
HomT (N ′, N ′) ∼= HomT (N ′[−l′ − 1], N ′[−l′ − 1]) = 0,

and N ′ = 0. This is impossible as thick{N ′} = T 6= thick{0} by Remark 3.5.
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We then let k be the largest integer such that HomT (M,N ′[k]) 6= 0, and set N := N ′[k]. Clearly,
N ∈ T ≤0

M , and so we have triangles

N1
g1 //M0

f0 // N // N1[1],

· · ·

Nl
gl //Ml−1

fl−1 // Nl−1
// Nl[1],

0
gl+1 //Ml

fl // Nl
// 0.

for N as provided by Proposition 3.16. In order to arrive at a contradiction, assume M0 = 0. Then
we have the triangle

N1
// 0 // N // N1[1],

and so N ∼= N1[1] ∈ M[1] ∗ · · · ∗M[l]. Then HomT (M,N) ∼= HomT (M,N1) = 0 by Lemma 2.19,
which contradicts the construction of N . We conclude that M0 6= 0. Going forward, we then allow
ourselves to assume that the l ≥ 0 is chosen minimally, so that Ml 6= 0.

Assume for now that l > 0. Then as N is silting,

HomT (N,N [l]) ∼= HomT (N ′[k], N ′[k + l]) ∼= HomT (N ′, N ′[l]) = 0,

and by Lemma 3.18, add{Ml} ∩ add{M0} = 0. As M is indecomposable and Ml,M0 ∈ add{M}
are nonzero, they both share the summand M 6= 0. These are contraditions, and we conclude that
l = 0. The first (and only) triangle is then

0 //M0
// N // 0.

This gives N ∼= M0 ∈ add(M). As N ′ is basic N = N ′[k] is as well. I.e N ∼= M , so we have
N ′ ∼= M [−k]. This means that add{N ′} = add{M [−k]}, which proves the lemma.

The upcoming Corollary 3.25 provides an interesting fact about the silting objects of a Krull-
Schmidt triangulated category in that they will have the same number of indecomposable sum-
mands. We build towards this result as done by Aihara and Iyama by considering the Grothendieck
group of the Krull-Schmidt triangulated category in question. To begin the journey towards this
corollary, we define the Grothendieck group of a triangulated category by simply exchanging the
short exact sequences in the tradidtional definition [2] by triangles.

Definition 3.20. For a triangulated category T , let F(T ) be the free abelian group where the
elements are isomorphism classes [T ] of objects in T . Define the subgroup R(T ) as

R(T ) :=
〈
{[Y ]− [X]− [Z] | ∃ triangle X // Y // Z // X[1] in T }

〉
The Grothendieck group K0(T ) is the group

K0(T ) = F(T )/R(T ).

Following the definintion, the Grothendieck group of T , identifies the isomorphism class [Y ] of a
center object in a triangle in T by the sum [X] + [Z] of the isomorphism classes of the left and
right objects.
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Let [T ] ∈ K0(T ). Then, as T is Krull-Schmidt, there is a decomposition T ∼=
⊕n

i=1 Ti, where the
Ti are indecomposable in T . There is a triangle

T1
// T //

⊕n
i=2 Ti

// T1[1],

giving [T ] = [T1] + [
⊕n

i=2 Ti]. This is clearly extendable so that

[T ] =
n∑
i=1

[Ti].

Thus any element in K0(T ) is generated by the {[X] | X ∈ T indecomposable}. Theorem 3.24
takes it one step further, showing K0(T ) is generated by the indecomposable objects of any silting
subcategory of T .
Example 3.21. Let Λ be kA3 so that the AR-quiver has the shape
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We know the triangles in Db(mod Λ) from triplets of successive arrows in the shapes

· · ·
��

·

��

·

·
��

· ·

@@

·

·

@@

·

@@

· · ·

and from
·

��

·

·

@@

��

· // ·

·

@@

·
Thus we can easily see the structure of the Grothendieck group. Any central object is identified by
the sum of the two objects diagonally above it, and also the two diagonally below it. Additionally,
it can be identified as the sum of the top and bottom objects to the left and the object directly to
its right, and the other way around. Any object on the top row is identified with the sum of the
object diagonally down to the left and the object two spots diagonally down to the right, and vice
versa. Similarly any object on the bottom row is identified by the sum of the object diagonally up
to the left and the one two spots diagonally up to the right, and vice versa. Finally the sum of the
objects at the top and the bottom of a square is the sum of the objects to the left and right of the
square.

In particular, we have [P2] = [P3] + [S2] and also [S2] = [P2] + [P3[1]]. This gives
[P3] + [P2] + [P3[1]] = [P2], so [P3[1]] = −P3. As this holds in general, the Grothendieck group of
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T can be represented in its entirety by

−[I1]

##

[P1]

!!

−[P3]

$$

−[S2]

$$

−[I1]

· · · [P2]

<<

""

[I2]

;;

##

−[P2]

::

$$

−[I2]

::

$$

· · ·

[P3]

;;

[S2]

==

[I1]

::

−[P1]

::

[P3]

We could come up with a similar story when Λ is kA3/〈βα〉 as well by simply interchanging the
actual objects in the triangles to be those from the corresponding AR-quiver.

For the next two results, we will need a certain map. It is very much the map which in a clever
way sends an object in T to a corresponding element in K0(T ).

Definition 3.22. Let T be a Krull-Schmidt triangulated category, andM∈ silt T . We define the
map

ObT γ−→ ZindM.

by its properties:

(i) It bijectively maps the objects ofM to the elements in ZindM with nonnegative entries. It does
this by counting up the indecomposable summands of M , and adding 1 to the corresponding
copy, ZMi , each time Mi is counted. The inverse is the obvious one.

(ii) For any N ∈ T ≤0
M , take l ≥ 0 and triangles as provided by Proposition 3.16, and define

γ(N) :=
l∑

i=0

(−1)iγ(Mi).

(iii) Finally, for general T ∈ T , we have by Proposition 3.15 (i) that T ∈ M[−k] ∗ · · · ∗M[k] for
some l ≥ 0. Then by Remark 1.2, T [k] ∈ M ∗ · · · ∗ M[2k], which is in T ≤0

M by Proposition
3.15 (ii).

We set
γ(T ) := (−1)kγ(T [k]).

We prove the following important propery of γ.

Lemma 3.23. For T a Krull-Schmidt triangulated category with M ∈ silt T , let ObT γ−→ ZindM

be as in Definition 3.22. If X // Y // Z // X[1] is a distinguished triangle in T , then

γ(Y ) = γ(X) + γ(Z). Furthermore, by defining γ([T ]) = γ(T ), we get a homomorphism

K0(T )
γ−→ ZindM.

Proof. As X,Y, Z ∈ T , there are lX , lY , lZ ≥ 0 such that

X ∈M[−lX ] ∗ · · · ∗M[lX ],

Y ∈M[−lY ] ∗ · · · ∗M[lY ],

and
Z ∈M[−lZ ] ∗ · · · ∗M[lZ ].
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Then for L := max{lX , lY , lZ}

X[L] ∈M ∗ · · · ∗M[lX + L] ⊆ T ≤0
M ,

Y [L] ∈M ∗ · · · ∗M[lY + L] ⊆ T ≤0
M ,

and
Z[L] ∈M ∗ · · · ∗M[lZ + L] ⊆ T ≤0

M .

So if we show γ(Y [L]) = γ(X[L]) + γ(Z[L]), then by Definition 3.22 (iii), we would have

γ(Y ) = γ(X) + γ(Z). (10)

To this end, we rename the objects such that X,Y and Z are in T ≤0
M .

To prove the Lemma, we want to use induction on l ≥ 0. For a fixed l, consider the following
statements:

(i)l (10) holds if X,Y, Z ∈M ∗ · · · ∗M[l].

(ii)l (10) holds if X,Y ∈M ∗ · · · ∗M[l] and Z ∈M ∗ · · · ∗M[l + 1].

(iii)l (10) holds if X ∈M ∗ · · · ∗M[l] and Y,Z ∈M ∗ · · · ∗M[l + 1].

For (i)0, we have X,Y, Z ∈ M, so the triangle splits, and Y ∼= X ⊕ Z. Then clearly, by Definition
3.22 (i), (10) holds. To complete the proof, we show

(i)l ⇒ (ii)l ⇒ (iii)l ⇒ (i)l+1,

and the result will follow from induction.

Let l ≥ 0, and assume (i)l. Take a triangle X // Y // Z // X[1] with X,Y ∈M∗· · ·∗M[l]

and Z ∈ M ∗ · · · ∗ M[l + 1]. There are M0, . . . ,Ml+1 ∈ M such that Z ∈ M0 ∗ · · · ∗Ml+1[l + 1].
Then there is a triangle

Z1
//M0

// Z // Z1[1],

with Z1 ∈M1 ∗ · · · ∗Ml+1[l]. By Definition 3.22 (ii), we have

γ(Z1) =
l∑

i=0

(−1)iγ(Mi+1) =
l+1∑
i=1

(−1)i−1γ(Mi),

and also

γ(M0)− γ(Z1) = (−1)0γ(M0) +
l+1∑
i=1

(−1)iγ(Mi) =
l+1∑
i=0

(−1)iγ(Mi) = γ(Z).

By the octahedral axiom, we have, for some W , the diagram

Y [−1] //

--

Z[−1] //

##

X //

��

Y

Z1
//

""

W //

��

Y

M0

""��
X[1] Z,
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where the dotted triangle splits, since HomT (M0, X[1]) = 0. Then there is a triangle

M0
//M0 ⊕X //// X //M0[1],

and so W ∈ M ∗ (M∗ · · · ∗M[l]) = (M∗M) ∗ · · · ∗M[l]. As M is silting, M∗M =M. Then

X //W //M0
// X[1] satisfies the conditions for (i)l to hold, and γ(W ) = γ(X)+γ(M0).

Another application of the octahedral axiom produces the diagram

M0[−1] //

--

Z[−1] //

##

Z1
//

��

M0

X //

##

W //

��

M0

Y

##��
Z1[1] Z.

The dotted triangle satisfies the conditions for (i)l to hold, and so

γ(W ) = γ(Z1) + γ(Y ).

Combine all these, and we have

γ(Y ) = γ(W )− γ(Z1) = (γ(X) + γ(M0))− (γ(M0)− γ(Z)) = γ(X) + γ(Z),

showing (ii)l also holds.

Assuming (ii)l and a triangle as in (iii)l, we can do the same over again: Find a triangle for Z
with M0 and Z1, use the octahedral axiom twice to get the W ∼= M0 ⊕X and a triangle satisfying
(ii)l. Combine the γ-expressions that appear, and we see that (iii)l holds. The same strategy also
produces a proof of (iii)l implying (i)l+1.

For the ’furthermore’ part, first assume [T ] = [T ′], then T ∼= T ′. Then we can interchange T and

T ′, within the triangles in T , and clearly K0(T )
γ−→ ZindM is well-defined. Let [T ], [T ′] ∈ K0(T ).

There is a triangle
T // T ⊕ T ′ // T ′ // T [1],

so
γ([T ] + [T ′]) = γ([T ⊕ T ′]) = γ(T ⊕ T ′) = γ(T ) + γ(T ′) = γ([T ]) + γ([T ′]).

Together with the fact that γ(0) = 0, this shows it is a homomorphimsm.

The reason why we introduce Grothendieck groups in the first place is Theorem 3.24. By this
result, we see that any silting subcategory of T gives rise to a basis for K0(T ). This is then applied
to the silting objects to see they have the same number of indecomposable summands.

Theorem 3.24. If T is a Krull-Schmidt triangulated category with a silting subcategory M. Then
the Grohendieck group K0(T ) of T is a free abelian group with a basis indM.

Proof. Let [T ] ∈ K0(T ), so T ∈ T . Then for some l ≥ 0, T ∈M[−l] ∗ · · · ∗M[l]. It follows that

[T ] = [M ′0]− [M ′−1],
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for some M ′0 ∈M ∗ · · · ∗M[l] and M ′−1 ∈M[−l + 1] ∗ · · · ∗M. Furthermore, split [M ′0] as

[M ′0] = [M0]− [M ′1],

where M0 ∈M and M ′1 ∈M ∗ · · · ∗M[l − 1]. Do the same for [M ′i ], 1 ≤ i < l to get

[M ′0] = [M0]− [M1] + · · ·+ (−1)l[Ml].

Similarly, we can split [M ′−1] as
[M ′−1] = [M−1]− [M ′−2],

where M−1 ∈M and M ′−2 ∈M[−l+ 2] ∗ · · · ∗M. Do the same for [N ′i ], −l < i ≤ −2, and we have

[T ] =

l∑
i=−l

(−1)i[Mi]

where each Mi ∈M. By the triangle

M ′i
//
⊕n

j=1M
′
j

//
⊕n

j=1
j 6=i

M ′j
//M ′i [1],

the summands [Mi] with Mi inM are generated by the [M ′] with M ′ indecomposable inM. Then
so is [T ], and K0(T ) is generated by indM. To prove the theorem it remains to show the generators
are linearly independent.

To this end, consider the map γ from Definition 3.22. By Lemma 3.23, γ defines a homomorphism
K0(T )→ ZindM. Now since γ(indM) is a basis for ZindM, indM is a linearly independent set in
K0(T ).

As we alluded, the theorem is now applied to show that the number of indecomposable summands
does not vary across silting objects. It is important for many practical examples, as it helps identify
the silting subcategories by excluding the silting objects with the wrong number of summands.
This is particularly useful when we are looking at derived categories of path algebras, where the
subcategories are in bijection with the basic silting objects.

Corollary 3.25. Let T be a Krull-Schmidt triangulated category, and let M,N ∈ T be basic silting
objects in T . Then M and N have the same number of non-isomorphic indecomposable summands.

Proof. Since the Grothendieck group is a free abelian group with bases ind(add{M}) and
ind(add{N}), the two have the same cardinality. This means the number of isomorphism classes
of indecomposable summands of M is the same as the number of isomorphism classes of indecom-
posable summands of N – as asserted.

Example 3.26. For T = Db(mod kA3) we now know all the silting objects have exactly three
indecomposable summands – by the fact that P1 ⊕ P2 ⊕ P3 is such an object. It should be noted
that this does not mean that all the basic objects having three indecomposable summands are
silting objects. For example we see that P3⊕P2⊕S2 is not silting, as there is a nonzero morphism
S2 → P3[1].
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4 Obtaining New Silting Subcategories From Old Ones

As is tradition in algebra, we borrow the notion of mutation from another field of science, in this
case biology, and creatively mold its meaning into what we want it to be.

To us, mutation denotes a process of obtaining from a structure of some kind a new structure of the
same kind. In [5] is discussed mutation of quivers and cluster-tilting objects. In Section 4.1 of this
thesis we consider Aihara and Iyama’s approach as in [1] in its discussion of the mutation of silting-,
and to some degree tilting subcategories. While the process of mutation on silting subcategories
will be considered in general, our main focus will be on the class of Krull-Schmidt triangulated
categories as defined in Section 3.

Section 4.2 introduces silting reduction. Here we consider the Verider localization of a triangu-
lated category, and connect certain silting subcategories of T to the silting subcategories certain
Verdier localizations T /S bijectively. The final result here shows how mutation commutes with this
bijection, thus allowing us to understand mutation in silt T through mutation in silt T /S.

4.1 Mutation of Silting Subcategories

In this section we introduce a kind of mutation of a subcategory M of T with respect to to a
covariant- or contravariant subcategory D of M. When performed on a silting subcategory, it will
be named silting mutation, and we will see that the end result will itself be a silting subcategory
of M. Silting mutation is thus a method of obtaining new silting subcategories from old ones. We
give conditions under which this holds for tilting subcategories as well.

We also look at the relationship between silting mutation and the partial ordering on silt T intro-
duced in Section 2.2.

We begin by defining the mutation:

Definition 4.1. Let T be a triangulated category. ForM∈ silt T and a covariantly finite subcat-
egory D ⊆ M, we define a subcategory µ+(M;D) ⊆ T , called the left mutation of T with respect

to D, by the following process: Take any object M ∈ M, and a left D-approximation M
f−→ D of

M . Complete the approximation to a triangle

M
f // D // NM

//M [1].

Then we define
µ+(M;D) := add(D ∪ {NM |M ∈M}).

Dually, if D is contravariantly finite, we define the right mutation by

µ−(M;D) := add(D ∪ {N ′M |M ∈M})

where N ′M is an object which appears in

N ′M
// D

g //M // N ′M [1],

which completes a right D-approximation D
g−→M to a triangle.
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Example 4.2. Let T := Kb(P(mod kA3)) and M be the silting subcategory add{P1 ⊕ P2 ⊕ P3}.
By Propositions 3.3 and 3.4 add{P1 ⊕ P2}, add{P1 ⊕ P3} and add{P2 ⊕ P3} are all functorially
finite in T . Then in particular, they are functorially finite subcategories of M.

We find µ+(M;D) for D = add{P1 ⊕ P2}. By definition, we have

µ+(M;D) = add({P1 ⊕ P2} ∪ {NM |M ∈M}).

A general object in M is of the form M = Pn1
1 ⊕ P

n2
2 ⊕ P

n3
3 for some ni ≥ 0. As P1 and P2 are

in M, the identities are approximations of these. A left D-approximation of P3 is given by the
morphism P3 → P2, which has at its 0’th degree the map f , given by

0 //

��

0

��

// k

1
��

0 // k
1 // k.

This is exactly the morphism indicated by the arrow P3 → P2 in the AR-quiver in Example 2.3,
and so the right side of the triangle is S2. As approximations are additive, we obtain a triangle

Pn1
1 ⊕ P

n2
2 ⊕ P

n3
3

// Pn1
1 ⊕ P

n2
2 ⊕ P

n3
2

// 0⊕ 0⊕ Sn3
2

// (Pn1
1 ⊕ P

n2
2 ⊕ P

n3
3 )[1]

with the leftmost morphism a left D-approximation of M . Thus NM
∼= Sn2

2 , and
µ+(M;D) = add{P1 ⊕ P2 ⊕ S2}.

This mutation can be illustrated by
· P1

P2

>>

  
P3

// S2.

This is easily adapted to see that we similarly get left mutations

µ+(M; add{P2 ⊕ P3}) = add{P2 ⊕ P3 ⊕ P1[1]}

and
µ+(M; add{P1 ⊕ P3}) = add{P1 ⊕ P3 ⊕ I2},

which are illustrated by the diagrams

· P1

$$

· ·

P2 · ·

P3

@@

· · P1[1]

· P1

��
·

P2

??

))

·
��

P3

??

· I1.

We can also find the right mutations of M with respect to these subcategories, and this is done
similarly by finding left approximations and consulting the AR-quiver to get the corresponding
triangles.

In addition, we note that the mutations here are themselves silting subcategories. Also, the sub-
category which we mutated with respect to is still a (functorially finite) subcategory after the
mutation. By Lemma 1.7, we then get that left mutation with respect to the same subcategory
will bring us right back to M, as the approximations are given by the same triangles as before.

These are not just coincidences, but direct consequences of Theorem 4.3 and Proposition 4.7.
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In the next two theorems we present an advantage Aihara and Iyama shows the silting subcategories
have over their tilting counterparts. The mutation of a silting subcategory will always produce a
silting subcategory. As the tilting subcategories are also silting, their mutations will thus be silting
too. Theorem 4.5 shows a special condition under which the mutation of a tilting subcategory will
in fact be tilting. By Proposition 4.7 we see that as long as the mutation of M is nontrivial, it
produces a silting subcategory different from M.

Theorem 4.3. Let T be a triangulated category, M ∈ silt T , and D a covariantly (resp. con-
travariantly) finite subcategory of M. Then µ+(M;D) (resp. µ−(M;D)) is a silting subcategory
of T .

For the time being, µ+(M;D) is constructed by making explicit choices for the leftD-approximations
of the M ∈ M. This will later turn out to be unnecessary, as any such choice will generate the
same category.

A proof of Theorem 4.3 is provided for the case of left mutation. The right case is dual.

Proof. In order to prove µ+(M;D) is silting, we show that

(i) thick(µ+(M;D)) = T , and

(ii) HomT (µ+(M;D), µ+(M;D)[> 0]) = 0.

For any M ∈M there is a triangle

M
f // D // NM

//M [1],

and by rotation, a triangle

NM [−1] //M
f // D // NM ,

with f a left D-approximation, and D,NM ∈ µ+(M;D). As thick implies closed under shift,
NM [−1] ∈ thick(µ+(M;D)), and as it is also closed under extension, M ∈ thick(µ+(M;D)). Thus
thick(µ+(M;D)) is a thick subcategory of T contatining M, so

T = thickM⊆ thick(µ+(M;D)) ⊆ T ,

showing (i).

Recall that
µ+(M;D) = add(D ∪ {NM |M ∈M}),

where the NM are objects appearing as the right sides of triangles

M
f // D // NM

//M [1], (11)

completing a left D-approximation M
f−→ D of M . To show (ii), then means to show the following

four points:

(I) HomT (D,D[> 0]) = 0.

(II) HomT (D, NM [> 0]) = 0 for any M ∈M.
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(III) HomT (NM ,D[> 0]) = 0 for any M ∈M.

(IV ) HomT (NM , NM ′ [> 0]) = 0 for any M,M ′ ∈M.

Part (I) is seen straight from D ⊆M ∈ silt T .

For any M ∈M, take some D′ ∈ D and apply HomT (D′,−) to triangle (11) to get the long exact
sequence

· · · // HomT (D′, D[n]) // HomT (D′, NM [n]) // HomT (D′,M [n+ 1]) // · · · .

For n > 0 the left and right sides are 0 by D′, D,M ∈M and n, n+ 1 > 0. Hence the middle term
is also 0. This shows (II).

Next, apply HomT (−, D′) to (11) to get a long exact sequence

· · · // HomT (M [1], D′[n]) // HomT (NM , D
′[n]) // HomT (D,D′[n]) // · · · ,

and note that the right side is 0 for all n > 0. If n > 1, we get

HomT (M [1], D′[n]) ∼= HomT (M,D′[n− 1]) = 0,

and by exactness, HomT (NM , D
′[n]) = 0. The case n = 1 requires an additional step: Since f is a

left D-approximation of M ,

HomT (D,D′)
−◦f // HomT (M,D′)

is surjective. Then, if we apply HomT (−, D′) to the triangle to get the exact sequence

· · · // HomT (D,D′)
−◦f // HomT (M,D′) // HomT (NM [−1], D′) // HomT (D[−1], D′) // · · · ,

where the left morphism is surjective and the right term HomT (D[−1], D′) = 0. It follows by
exactness that

HomT (NM , D
′[1]) ∼= HomT (NM [−1], D′) = 0,

which shows (III).

Next, for some M ′ ∈ M apply HomT (−,M ′) = 0 to the triangle (11) corresponding to M to get
the long exact sequence

· · · // HomT (M [1],M ′[n]) // HomT (NM ,M
′[n]) // HomT (D,M ′[n]) // · · · . (12)

For n > 1 the left and right sides are 0, so by exactness HomT (NM ,M[> 1]) = 0. Then, apply
HomT (NM ,−) to the triangle (11) corresponding to M ′ ∈M to get the long exact sequence

· · · // HomT (NM , D[n]) // HomT (NM , NM ′ [n]) // HomT (NM ,M
′[n+ 1]) // · · · .

For n > 0 the left and right sides vanish by (III) and (12), giving HomT (NM , NM ′ [> 0]) = 0. This
shows (IV ), which again shows (ii), which completes the proof.

By this next corollary, we see that our choice of approximations do not matter for the construction
of µ±(M;D). Having this, we can allow ourselves to focus the examples completely on the AR-
quiver of our hereditary algebra without worrying that the approximations read from this would
be inferior candidates.
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Corollary 4.4. Let T be a triangulated category, M ∈ silt T , and D a covariantly (resp. con-
travariantly) finite subcategory of M. Then the construction of µ+(M;D) (resp. µ−(M;D)) is
well-defined. I.e. it is independent of the choice of left (resp. right) D-approximations of the objects
in M.

Proof. Let D be a covariantly finite subcaegory of M ∈ silt T . For any M ∈ M, make a choice of
left D-approximation f of M , and construct

µ+(M;D) = add(D ∪ {NM |M ∈M})

from this. Similarly, make another (possibly different) choice of left D-approximation f ′ of M , and
construct

µ+(M;D)′ = add(D ∪ {N ′M |M ∈M})

from this. Then for any M ∈M, we have the diagram

M

1

��

f ′ // D′

δ

��

g′ // N ′M
//M [1]

1
��

M
f // D

g // NM
//M [1],

with the rows being the triangles used in the constructions above. Now, f factors through f ′ by
some δ, so the left square commutes. Then by an axiom equivalent to the octahedral axiom [12],
there is a triangle

D′ // D ⊕N ′M // NM
// D′[1].

The rightmost morphism is 0 as NM and D are in µ+(M;D), so the triangle splits, and
D ⊕ N ′M ∼= D′ ⊕ NM . This means N ′M ∈ µ+(M;D), and so µ+(M;D) ⊆ µ+(M;D)′. These are
silting subcategories of T , and it follows that they must be equal.

Since any tilting subcategory is in particular silting, a mutation of such a tilting subcategory will
by Theorem 4.3 again be silting. As alluded to in the introduction, the mutation of a tilting
subcategory need not itself be tilting, which can be used as an argument to why silting is an
improvement upon tilting. Even in the reasonably nice Kb(P(mod kA3)), we saw in Example 4.2
that the tilting subcategory add{P1 ⊕ P2 ⊕ P3} can be right mutated into add{P2 ⊕ P3 ⊕ P1[1]}.
This is easy to check that this is only silting and not tilting.

There are, however, conditions under which mutation on a tilting subcategory always works.

Theorem 4.5. Let T be a triangluated category, and M a tilting subcategory of T :

(i) If D ⊆M is a covariantly finite subcategory, then the following are equivalent:

(I) µ+(M;D) is tilting.

(II) For all M ∈ M, there is a left D-approximation M
f−→ D such that HomT (D′, f) is

injective for all D′ ∈ D.

(ii) If D ⊆M is a contravariantly finite subcategory, then the following are equivalent:

(III) µ−(M;D) is tilting.
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(IV ) For all M ∈ M, there is a right D-approximation D
g−→ M such that HomT (g,D′) is

injective for all D′ ∈ D.

We call these kinds of mutation tilting mutation. Only statement (i) is proven here, as (ii) is done
in a dual manner.

Proof. It is already known from Theorem 4.3 that µ+(M;D) is silting. To see it is tilting, it then
suffices to check that HomT (µ+(M;D), µ+(M;D)[< 0]) = 0. In other words, we need to show that
(II) is equivalent to

(a) HomT (D,D[< 0]) = 0. (This holds in general from M being tilting.)

(b) HomT (D′, NM [< 0]) = 0 for any D′ ∈ D and M ∈M.

(c) HomT (NM ′ , NM [< 0]) = 0 for all M ′,M ∈M.

(d) HomT (NM , D
′[< 0]) = 0 for all M ∈M, D′ ∈ D.

Assume (I). For any M ∈ M, any corresponding triangle as in (11) and any D′ ∈ D, apply
HomT (D′,−) to the triangle and get the long exact sequence

· · · // HomT (D′, NM [−1]) // HomT (D′,M)
f◦− // HomT (D′, D) // · · · .

As HomT (D′, NM [−1]) = 0 by (b), we have by exactness that f ◦ − is injective. This shows
(I)⇒ (II).

We then assume (II), pick any M ∈M, and use the f as guaranteed by (II) to get a triangle

M
f // D

g //MN
//M [1]

as in (11). For any D′ ∈ D, we apply HomT (D′,−[n]) to the triangle to get the long exact sequence

// HomT (D′, D[n]) // HomT (D′, NM [n]) // HomT (D′,M [n+ 1])
f [n+1]◦−// HomT (D′, D[n+ 1]) // .

Since M is tilting, we have HomT (D′, D[n]) = 0 for all n < 0. If in addition n < −1 we have
HomT (D′,M [n+ 1]) = 0 for the same reason, and by exactness, HomT (D′, NM [n]) = 0. If
n = −1, i.e. n + 1 = 0, and so f [n + 1] ◦ − = f ◦ − is injective by our choice of f . This shows
HomT (D′, NM [n]) = 0 by exactness, which gives us (II)⇒ (b).

For any M ∈ M, take triangle as in (11). For D′ ∈ D, apply HomT (−, D′) to it to get the long
exact sequence

· · · // HomT (M [1], D′[n]) // HomT (NM , D
′[n]) // HomT (D,D′[n]) // · · · .

For n < 0, the left term vanishes as it is isomorphic to HomT (M,D[n − 1]) and D ⊆ M – which
is tilting. The same goes for the right term. Thus HomT (NM , D

′[n]) = 0 by exactness, showing
(II)⇒ (d).

For some M ′ ∈M apply HomT (M ′,−) to a triangle as in (11) to get the long exact sequence

· · · // HomT (M ′, D[n]) // HomT (M ′, NM [n]) // HomT (M ′,M [n+ 1]) // · · · . (13)

Again, both the left and right terms vanish for n < −1, so the middle term vanishes as well.
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Now we take a triangle as in (11) for the object M ′, and for some M ∈M we apply HomT (−, NM )
to it to get the long exact sequence

· · · // HomT (M ′[1], NM [n]) // HomT (NM ′ , NM [n]) // HomT (D′, NM [n]) // · · · .

For n < 0, the left term is isomorphic to HomT (M ′, NM [n − 1]), which vanishes by (13). The
right term vanishes by (b), and it follows from exactness that the middle term vanishes as well.
Thus (II) ⇒ (c). This completes our list, and finally provides us with the logical equivalence
(I)⇔ (II).

We introduced the partial ordering on silt T , claiming that it would come in handy when studying
silting mutation. Following Theorem 4.3, one may wonder if M and µ±(M;D) are related by the
partial ordering, and if so, how they are related. The answer to this starts with Proposition 4.7,
wherein we show that any nontrivial mutation of a silting subcategory is related to the original in
a well-ordered manner.

Another important consequence of Proposition 4.7 is that mutation is reversible: Having left (right)
mutated M with respect to D, we can right (left) mutate the result – again with respect to D, to
get back to M. This relies on the following proposition.

Proposition 4.6. Let T be a triangulated category, and let M∈ silt T .

(i) If D is a covariantly finite subcategory of M, then it is a contravariantly finite subcategory of
µ+(M;D).

(ii) If D′ is a contravariantly finite subcategory of M then it is a covariantly finite subcategory of
µ−(M;D′).

Proof. As per usual, only D being contravariantly finite in µ+(M;D) is proven. The second part
is dual.

By definition, any object X ∈ µ+(M;D) is of the form X =
⊕n

i=1Xi, where Xi ∈ D, or
Xi ⊕ X ′i ∼= NM for some X ′i ∈ µ+(M;D) and some M ∈ M. If Xi ∈ D, the identity is a right
D-aproximation, and NXi = 0. If Xi ⊕X ′i ∼= NM , there is an M ∈M and a triangle

M
f // D

g=

( gXi
gX′

i

)
// Xi ⊕X ′i //M [1]

with f a left D-approximation. We get that g is a right D-approximation by Lemma 2.5, and easily
see that gXi and gX′i are left D-approximations as well.

Thus any direct summand of X has a right D-approximation, and the direct sum of these approx-
imations is clearly a left D-approximation of X. As this holds for any X ∈ µ+(M;D), we get that
D is contravariantly finite in µ+(M;D).

Proposition 4.7. Let T be a triangulated category, and M a silting subcategory of T .

(i) If D is a covariantly finite subcategory of M, then

µ−(µ+(M;D);D) =M
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and
M≥ µ+(M;D),

with equality if and only if D =M.

(ii) If D is a contravariantly finite subcategory of M, then

µ+(µ−(M;D);D) =M

and
µ−(M;D) ≥M,

with equality if and only if D =M.

Proof. As before, only the first part will be proven, as the second part is dual. For M ∈M, there
is a triangle

M
f // D

g // NM
//M [1] (14)

with f and g D-approximations, and NM ∈ µ+(M;D). We have that

µ−(µ+(M;D);D) = add(D ∪ {N ′X | X ∈ µ+(M;D)})

where N ′X is given by a triangle

N ′X
f ′ // D′

g′ // X // N ′X [1]

completing a rightD-approximation g′. The triangle (14) givesM ∼= N ′NM
, andM⊆ µ−(µ+(M;D);D).

These are silting subcategories of T . As one is contained within the other, they must be the same.

Next, for any M ∈ M, complete a left D-approximation to a triangle as above, and apply
HomT (M ′,−) to it for any M ′ ∈M to get the long exact sequence

· · · // HomT (M ′, D[n]) // HomT (M ′, NM [n]) // HomT (M ′,M [n+ 1]) // · · · .

For n > 0, the left and right terms vanish by M being silting and D ⊆ M. It then follows by
exactness that the middle term vanishes too. Let M ∈ M, X ∈ µ+(M;D) and n > 0. Then for
some m ≥ 0, we have X =

⊕m
i=1Xi, where either Xi ∈ D or Xi ⊕ Yi = NM ′ for some Yi and some

M ′ ∈M. Additionally, both HomT (M,−) and shift are additive functors, so

HomT (M,X[n]) ∼=
m⊕
i=1

HomT (M,Xi[n]).

Whenever Xi ∈ D, we get that HomT (M,Xi[n]) = 0, and if Xi ⊕ Yi = NM ′ , then

HomT (M,Xi[n])⊕HomT (M,Yi[n]) ∼= HomT (M,NM ′ [n]) = 0,

so HomT (M,Xi[n]) = 0. This shows HomT (M, µ+(M;D)[> 0]) = 0, and that M≥ µ+(M;D).

Clearly, if D = M, then µ+(M;D) = M as all the D-approximations are identities and the NM

are just zero. Furthermore, if D  M, take M ∈M \D, and a triangle

M
f // D

g // NM
h //M [1]

as before. If f is a split monomorphism, D ∼= M⊕NM , and so M ∈ D, which we assumed it wasn’t.
Thus f is not a split monomorphism, and so h 6= 0 [11]. In other words, HomT (NM ,M [1]) 6= 0,
and so NM is not in M, proving the mutation is a silting subcategory different from M.
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While the theory surrounding silting mutation up to this point is general, we allow ourselves to
focus our attention back at the Krull-Schmidt triangulated categories. Here, the indecomposable
objects inM will be used to define special kinds of subcategories ofM. In the situation where the
silting subcategories are given by silting objects, such special subcategories amount to removing
summands from the silting object. These will be useful later, as they play important roles when
studying whether or not we can mutate from any given silting subcategory of T to any other.

These special subcategories are defined as follows:

Definition 4.8. Let T be a Krull-Schmidt triangulated category, and let M ∈ silt T . For a
subcategory X ⊆M, define the subcategory MX of M by

MX := add(indM\ indX ).

It may be that the number of indecomposable objects in X , up to isomorphism, is 1. In this case
we call mutation of M by MX an irreducible mutation of M.

For an indecomposable object X ∈ M, set MX to be the category add(indM \ {X}), i.e. the
objects ofMX are finite coproducts of any of the indecomposable objects inM, except for X. The
mutation µ±(M;MX) then corresponds to a process of interchanging X by some other object, Y ,
in such a way that the additive closure of the new set of objects is a silting subcategory of T . This
is exactly what was done in Example 4.2, in this case interchanging the summand X of the silting
object by the summand NX .

Under some special conditions, it is possible to squeeze a silting subcategory in between distinct
related silting subcategories using irreducible silting mutation. We observe that these special con-
ditions are met whenever T has a silting object.

Proposition 4.9. Let T be a Krull-Schmidt triangulated category such that for any silting subcat-
egory X ∈ silt T and any indecomposable X ∈ X , XX is functorially finite in X . If M,N ∈ silt T
are such that M > N , then there exists an irreducible left silting mutation L of M such that
M > L ≥ N .

Proof. Note that we assume M and N to be distinct. Thus we can take an N0 ∈ N which does
not belong to M. Since M > N means that HomT (M,N [> 0]) = 0, we automatically get that
N ⊆ T ≤0

M . By Proposition 3.16 we obtain from N0 an l > 0 and corresponding triangles

N1
g1 //M0

f0 // N0
// N1[1],

N2
g2 //M1

f1 // N1
// N2[1],

· · ·

0 //Ml
fl // Nl

// 0.

with Mi ∈ M and Ni ∈ Mi ∗ · · · ∗ Ml[l − i] ⊆ T ≤0
M . As T is Krull-Schmidt, we can take an

indecomposable summand X of Ml, and define L := µ+(M;MX). We show that this L satisfies
the proposition.

By definition, L is given by
L = add(MX ∪ {NX})
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where NX is obtained from a triangle

X
f //M

g // NX
// X[1]

completing a left MX -approximation X
f−→ M . Since MX  M, we have by Proposition 4.7 (i)

that M > L. To show L ≥ N we need to show HomT (L,N [> 0]) = 0 for all L ∈ L. As we have
seen before, HomT (L′,N [> 0]) = 0 is clearly true for all summands L′ of L which lie in MX . It
then only remains to show that HomT (NX ,N [> 0]) = 0 so that HomT (L′,N [> 0]) = 0 also for
any summand of NX .

To this end, let N ∈ N and apply HomT (−, N) to the triangle above to obtain the long exact
sequence

· · · // HomT (X,N [n]) // HomT (NX [−1], N [n]) // HomT (M [−1], N [n]) // · · · .

For n > 0 the left term vanishes as it is in HomT (M,N [> 0]), and the right term as it is isomorphic
to HomT (M,N [n+ 1]) ⊆ HomT (M,N [> 0]). Then by exactness we have HomT (NX ,N [> 1]) = 0,
and we are left with checking HomT (NX ,N [1]) = 0. Again, we employ the usual strategy and
apply HomT (−, N) to our triangle for some N ∈ N to obtain the long exact sequence

· · · // HomT (M,N)
−◦f // HomT (X,N) // HomT (NX [−1], N) // HomT (M [−1], N) // · · · .

Again, the rightmost term is 0. We show the leftmost morphism−◦f is surjective, and then conclude
from exactness that HomT (NX ,N [1]) = 0. As N ∈ T ≤0

M , we obtain l′ ≥ 0 and l′ corresponding
triangles

N ′1
g′1 //M ′0

f ′0 // N // N ′1[1],

N ′2
g′2 //M ′1

f ′1 // N ′1
// N ′2[1],

· · ·

0 //M ′l′
f ′
l′ // N ′l′

// 0.

with M ′i ∈ M and N ′i ∈ M ′i ∗ · · · ∗M ′l′ [l′ − i] as by Proposition 3.16. For any morpism X
a−→ N ,

consider the solid parts of the diagram

NX [−1] // X

b

{{
a

��

f //M

c

uu

g // NX

N ′1
g′1 //M ′0

f ′0 // N // N ′1[1].

Since f ′0 is a right M-approximation of N , a factors through f ′0 by some X
b−→M ′0. Since both N0

and N ′0 := N are in N , it follows by Lemma 3.18 that add{Ml} ∩ add{M ′0} = 0. We picked X as a
summand of Ml, so X ∈ add{Ml} and so it cannot be in add{M ′0}. This means that M ′0 ∈M but
does not have the summand X, so by definition of MX , we have M ′0 ∈MX .

Since f is chosen to be a left MX -approximation of X, b factors through f by some morphism
M

c−→M ′0. That is, a = f ′0b = f ′0cf , which means that − ◦ f is surjetive. Thus
HomT (NX ,N [> 0]) = 0, and we can conclude that L ≥ N .
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For these Krull-Schmidt categories, irreducible silting mutation corresponds to minimal movement
within the partial ordering structure on silt T . That is, by applying left (right) irreducible mutation
to M, we get a silting subcategory M > N (N >M) where no silting subcategory L is properly
placed in between the two as M > L > N (N > L >M).

This is shown in Theorem 4.12. To streamline the proof, we first prove Lemma 4.11. This again
is proved by use of Lemma 4.10, which says that minimal approximations appear together in
triangles.

Lemma 4.10. Let T be a Krull-Schmidt triangulated category, M∈ silt T , and X ∈M an object
which has no summands in D.

(i) If D is a covariantly finite subcategory of M, then for any triangle

X
f // D

g // NX
// X[1] ,

where X
f−→ D is a left minimal D-approximation of X, we get that D

g−→ NX is a right
minmal D-approximation of NX .

(ii) If D is a contravariantly finite subcategory of M, then for any triangle

N ′X
f // D

g // Y // X[1]

where D
g−→ X is a right minimal D-approximation of X, we get that N ′X

f−→ D is a left
minimal D-approximation of N ′X .

Proof. We prove part (i), as part (ii) is dual. As f is a left D-approximation of X, g is a right
D-approximation of Y by Lemma 2.5 (i). By Lemma 3.7, we can decompose D and g as

D = D′ ⊕D′′ g=( g′ 0 )−−−−−→ NX ,

where g′ is right minimal. Complete g′ to a triangle X ′
f ′ // D′

g′ // NX
// X ′[1] , and we

have the solid part of the diagram

X

��

f // D′ ⊕D′′

( 1 0
0 1 )
��

( g′ 0 ) // NX

( 1
0 )
��

// X[1]

��
X ′ ⊕D′′(

f ′ 0
0 1

)// D′ ⊕D′′(
g′ 0
0 0

)// NX ⊕ 0 // (X ′ ⊕D′′)[1].

It can be completed to a morphism of triangles, and by two of the vertical morphisms being
isomorphisms, so is the third one. This means D′′ = 0, so D = D′ and g = g′, which is right
minimal.

As we claim that mutation is an ’interchange of indecomposable summands’ of silting objects, we
claim that when interchanging something indecomposable, what we gain is again indecomposable.
Lemma 4.11 shows that this is in fact the case.
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Lemma 4.11. Let T be a Krull-Schmidt triangulated category, M∈ silt T , and X ∈M indecom-
posable.

(i) If D is a covariantly finite subcategory of M, then for any triangle

X
f // D

g // NX
// X[1] ,

where X
f−→ D is a left minimal D-approximation of X, we have that NX is indecomposable

as well.

(ii) If D is a contravariantly finite subcategory of M, then for any triangle

N ′X
f // D

g // X // X[1] ,

where D
g−→ X is a right minimal D-approximation of X, we have that N ′X is indecomposable

as well.

Proof. A proof of part (i) is provided.

To arrive at a contradiction, we assume NX is not indecomposable. As T is Krull-Schmidt, we
have a decomposition NX =

⊕n
i=1 Yi where the Yi are (nonzero) indecomposable objects, and

since our mutations are additive categories, the Yi are all in µ+(M;D). By Proposition 4.6, D is

contravariantly finite in µ+(M;D), so we take right minimal approximations Di
gi−→ Yi of the Yi.

we complete these to triangles

Xi
fi // Di

gi // Yi // Xi[1],

and add them together to get the solid part of the diagram

XOO

��

f // DOO

��

g // NXOO

1
��

// X[1]
OO

��⊕n
i=1Xi ⊕n

i=1 fi

//
⊕n

i=1Di ⊕n
i=1 gi

//
⊕n

i=1 Yi
//
⊕n

i=1Xi[1].

By Lemma 4.10 (i), g is a right minimal D-approximation of NX , and by Corollary 3.9 (ii)
⊕n

i=1 gi
is also a right minimal D-approximation of NX . It then follows by Lemma 1.8 that D ∼=

⊕n
i=1Di

and X ∼=
⊕n

i=1Xi.

By Lemma 4.10, the fi are left minimal approximations of the Xi, and by Corollary 3.9 (i), and
Lemma 1.6 we have that

⊕n
i=1 fi is a left minimal D-approximations as well.

Assume that there is a j such that Yj ∈ MX . The minimal right approximation gj is then the
identity, which means that Xj = 0 and fj = 0. But by Lemma 3.8 (II) this is a contradition, as
now

⊕n
i=1 fi is not left minimal. This means Y has no summands in MX , and so all the Xi 6= 0,

which means X decomposes nontrivially. This is again a contradiction, and we conclude that NX

is indecomposable.

We can now formally state and prove the claim that irreducible mutation is reversible, and that it
amounts to ’minimal movement’ within the partial ordering on silt T .
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Theorem 4.12. Let T be a Krull-Schmidt triangulated category such that for any X ∈ silt T and
any indecomposable object X ∈ X , the category XX is functorially finite in X . If M,N ∈ silt T ,
then the following are equivalent:

(i) N is an irreducible left mutation of M.

(ii) M is an irreducible right mutation of N .

(iii) M > N , and if L ∈ silt T with M≥ L ≥ N then M = L or L = N .

Proof. The theorem is proved by showing (i)⇔ (ii) and (i)⇔ (iii).

Assume (i), so N is an irreducible left mutation of M. That is, N = µ+(M;MX) for some
indecomposable object X ∈M. By definition, N = add(MX ∪{NX}), where NX is obtained from
some triangle

X
f // D

g // NX
h // X[1]

completing a left MX -approximation X
f−→ D. Since µ+(M;MX) does not depend on the specific

approximation, we can assume f is left minimal by Lemma 3.7. By Proposition 4.7 (i), M =
µ−(N ;MX). Thus M is a right mutation of M. By Lemma 4.11, NX is indecomposable, and
so MX = NY for some indecomposable object Y ∈ N . In other words; M is a right minimal
approximation of N . Showing (ii)⇒ (i) is dual.

To show (i) ⇔ (iii), first assume (iii). As M > N , we have by Proposition 4.9 that there exists
an irreducible left mutation L of M such that M > L ≥ N . By our assumption, we then have
L = N , showing (i).

Assume (i), so N = µ+(M;MX) for an indecomposable X ∈ M. Assume, in order to arrive at
a contradiction, that there exists a silting subcategory L of T such that M > L > N . Again, by
Proposition 4.9, there exists an irreducible left mutation K of M such that M > K ≥ L > N , and
so, by applying Proposition 2.27, we get that M∩N ⊆ K. We have that

M = add(MX ∪ {X}),

and
N = add(MX ∪ {NX}),

meaning M ∩ N = MX ⊆ K. Then both N and K are irreducible left mutations of M made
by substituting the same indecomposable object X, and so K = N . This is a contradiction to
K ≥ L > N , and so no such L exists.

The theory is contextualized by an example:

Example 4.13. As per usual, let T be Kb(P(mod Λ)), where Λ is the path algebra kA3 or
kA3/〈βα〉.

Let M be the silting object X ⊕ Y ⊕ Z, where the X,Y, Z are on a diagonal

·
  

Z

Y

>>

  
X

>>

·
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of the AR-quiver of T .

From Proposition 3.4, we know that for any summand N of M , add{N} is functorially finite in T .
In particular, add{N} is covariantly finite in add{M}.

Choosing N := Y ⊕ Z, we get the left add{N}-approximation X → Y from the corresponding
arrow in the AR-quiver. Similarly, X → Y is also a right add{X ⊕ Z}-approximation of Y , and
Y → Z is both a left add{X ⊕ Z}-approximation of Y and a right add{X ⊕ Y }-approximation of
Z by Lemma 2.5.

For ease of notation, all summands in this example are denoted by X,Y and Z, even though they
change as by the mutation performed on the silting objects.

Left mutation of M with respect to X,Y and Z produces the respective silting objects MX ,MY

and MZ , of which the summands are given by by the diagrams

MX : · Z

Y

??

��
· // X,

MY : · Z
��
·

·
((

BB

·
��

X

BB

· Y,

MZ : · ·

##

· ·
Y · ·

X

@@

· · Z.

respectively. The dotted arrows indicate which summands are interchanged. These new objects
correspond to the mutations µ+(add{M}; add{M}X), µ+(add{M}; add{M}Y ) and
µ+(add{M}; add{M}Z).

By Proposition 4.7, add{M} > N , where N is any of these mutations. This coincides with what
was seen before: The silting objects N of T such that add{M} ≥ add{N} are exactly those whose
summands are shared with M or are to the right of M in the AR-quiver. We also know from
Theorem 4.12 that these cannot be irreducibly mutated into each other, as this would violate the
fact that each was obtained through irreducible left mutation of add{M}.

Also by Theorem 4.12 and Proposition 4.7, these are right mutated back to add{M} by mutating
with the same summand of M . We also see this by 4.10, as we interchange the summand by going
back through the triangle and arriving again at X.

Futhermore, as add{MX} is again a silting subcategory, it can itself be left mutated to yield the
silting objects MX,X ,MX,Y and MX,Z , given by

MX,X : · Z · X

Y

AA

· ·
· ·

;;

· ·,

MX,Y : · Z
��

· // Y

· X

@@

MX,Z : · ·

$$

· ·
Y
��
· ·

· X · Z.

Similarly for MY and MZ , we get

MY,X : · Z
��

·
· X

��
·
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· Y,

MY,Y : · Z · · Y

·
BB

· · ·
X

BB

· ·

;;

· ·,

MY,Z : · ·
((
·

· · Z

X · Y

AA

,

and

MZ,X : · · · ·
Y
��
· ·

· // X · Z

MZ,Y : · · · ·
· //· Y

��
X · · Z

MZ,Z : · · · · · Z

Y · · · ·
X

@@

· · ·

<<

· ·
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When starting at a given silting object, distinct irreducible left mutations amount to interchanging
different summands, and so the – in this case three, different mutations all give distinct results.
That is, there is exactly one irreducible left mutation for each indecomposable object in M, and
similarly for right mutation.

Note that mutation of MX,Y to MX,Y,X is given by

MX,Y,X : · Z
��

·
· Y

��
· · // X,

which is the same set of summands as in MY,X . This shows that there may be more than one
sequence of mutations sharing a start- and endpoint, and these sequences may even be of different
length.

4.2 Silting Reduction and Verdier Localization of T

Having introduced both silting mutation theory and Krull-Schmidt triangulated categories, we
start nudging the focus towards the question of transitivity of Section 5. In this section we will
consider the Verdier localization of a triangulated Krull-Schmidt category T with respect to a thick
subcategory S. The goal is very much the same as in Aihara and Iyama [1] to show that under
certain conditions on S, the silting subcategories of this localization are in bijection with certain
classes of silting subcategories of T .

In Theorem 5.9 of Section 5.1 we apply this to see that these classes of silting subcategories are
indeed transitive under iterated irreducible silting mutation.

The Verdier localization is a generalized variant of the localization employed when obtaining a
derived category from a homotopy category [26].

Definition 4.14. Let T be a triangulated category, and let S ⊆ T a thick subcategory. We say

that a morphism X
f−→ Y in T is a quasi-isomorphism with respect to S if for any triangle

X
f // Y // Z // X[1]

Z ∈ S. Define the Verdier localization [20], T /S of T with respect to S as follows:

(i) ObT /S := ObT .

(ii) For X,Y ∈ T /S, the morphisms in HomT /S(X,Y ) are given by roof diagrams

U
q
~~

f
  

X Y

for U
f−→ Y a morphism and U

q−→ X a quasi-isomorphism in T .

The canonical functor, or localization functor T L−→ T /S is the one which takes objects to themselves

and morphisms X
f−→ Y to the corresponding roof

X
1
}}

f
  

X Y
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For ease of notation, we will denote T /S simply by U .

Consider the subcategory

S⊥T = {T ∈ T | HomT (S, T ) = 0} ⊆ T .

If we assume S ⊆ T is a thick and contravariantly finite subcategory, then by Lemma 3.13 (ii), we
have a torsion pair (S,S⊥T ) in T . As S[1] = S, we get by Definition 1.11 that it additionally forms
a stable t-structure of T . In particular, this means that T = S ∗ S⊥, i.e. for any T ∈ T there is a
triangle

S
a // T

b // U
c // S[1] (15)

with S ∈ S and U ∈ S⊥.

From [25] and [20], we know that the Verdier localization has the following important proper-
ties.

Proposition 4.15. Let T be a triangulated category and S ⊆ T a thick subcategory. For U the
Verider localization of T with respect to S, we have:

(i) U is a triangulated category, where the triangles are the images of triangles in T .

(ii) The canonical functor L maps quasi-isomorphisms in T to isomorphisms in U .

(iii) If S is contravariantly finite in T , the restriction

L|S⊥ : S⊥ ∼−→ U

of L to S⊥T is an equivalence.

Straight away, we get the following result.

Proposition 4.16. Let T be a Krull-Schmidt triangulated category, and S a thick subcategory of
T . For any T ∈ T and a triangle

S
a // T

b // U
c // S[1],

with S ∈ S and U ∈ S⊥T , a is a right minimal S-approximation, and b is a left minimal S⊥T -
approximation of T .

Proof. That a and b are approximations is by Lemma 1.7. It remains to check the minimality.

By Lemma 3.7, there is a decomposition S = S′ ⊕ S′′
a=( a′ 0 )−−−−−−→ T , where a′ is a right minimal

S-approximation of T . Complete a′ to a triangle S′
a′ // T

b′ // U ′
c′ // S′[1] , and we have the

solid part of the commutative diagram

S

1
��

a // T

( 1
0 )
��

b // U

ϕ

��

c // S[1]

1
��

S′ ⊕ S′′
(
a′ 0
0 0

)
// T ⊕ 0

(
b′ 0
0 0

)
// U ′ ⊕ S′′[1]

(
c′ 0
0 1

)
// S′[1]⊕ S′′[1].
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As the left square commutes, the diagram is completed to a morphism of triangles by some ϕ,
which is an isomorphism as the two leftmost vertical morphisms are isomorphisms. This means
S′′[1] ∈ S⊥T . As S is closed under shift, we also have S′′[1] ∈ S. Then

HomT (S′′, S′′) ∼= HomT (S′′[1], S′′[1]) = 0,

which means S = S′ and so a = a′. A proof showing b is left minimal is dual.

As the functor L is dependent on the subcategory S, it has the following properties in regards to
S and the triangles which appear from the torsion pair (S,S⊥).

Lemma 4.17. Let T be a Krull-Schmidt triangulated category, and S a thick and contravariantly

finite subcategory. For U = T /S the Verdier localization and T L−→ U the canonical functor, we
have that:

(i) For any T ∈ T and a triangle

S
a // T

b // U
c // S[1]

with S ∈ S and U ∈ S⊥, then T ∼= U in U .

(ii) LS = 0.

(iii) Let T
f−→ T ′ be any morphsim in T . Then Lf in U is given by g in a morphism of triangles

S

��

// T

f
��

// U

g

��

// S[1]

��
S′ // T ′ // U ′ // S′[1]

where the rows are triangles with S, S′ ∈ S and U,U ′ ∈ S⊥.

Proof. From Proposition 4.16 T
b−→ U is a left minimal S⊥-approximation of T . As S ∈ S, which is

closed under shift, S[1] ∈ T , and so T
b−→ U is a quasi-isomorphism, and by Proposition 4.15 (ii),

T
Lf−−→ U is an isomorphism in U . This shows part (i).

For part (ii), note that for any S ∈ S, (15) takes the form

S
1 // S // 0 // S[1].

It follows from (i) that S ∼= 0 in U .

Now let T
f−→ T ′ be any morphism in T . By (15), we then have the solid part of the diagram

S
a //

��

T

f
��

b // U

g

��

// S[1]

��
S′

a′ // T ′
b′ // U ′ // S′[1],

(16)
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Now b′fa ∈ HomT (S,S⊥) = 0 fa factors through a′, and we can complete the diagram to a
morphism of triangles by the dotted vertical maps as indicated. Applying L to the diagram yields
the morphism of triangles

S

��

La // T

Lf
��

Lb // U

Lg
��

// S[1]

��
S′

La′ // T ′
Lb′ // U ′ // S′[1]

in U .

Again, Lb and Lb′ are isomorphisms by part (i), so we have an isomorphism

HomU (T, T ′)
Lb′◦−◦(Lb)−1

−−−−−−−−−→ HomU (U,U ′).

In particular, it maps Lf isomorphically to Lg. Furthermore, by Proposition 4.15 (iii), L is an
isomorphism on the Hom-sets

HomT (U,U ′)
L−→ HomU (U,U ′),

and so g is mapped isomorphically to Lg. Then

HomT (U,U ′) ∼= HomU (U,U ′) ∼= HomU (T, T ′)

and for all intents and purposes, g, Lg and Lf are the same morphism. By abuse of notation, Lf
is thus given by U

g−→ U ′ as in (16).

Before introducing the main result of the section, Theorem 4.19, we show the following lemma.

Lemma 4.18. Let T be a Krull-Schmidt triangulated category and M ∈ silt T . Assume S is a
thick and contravariantly finite subcategory of T , and that D ∈ siltS is such that D ⊆M.

If M ∈M, then in a triangle

S
a //M

b // U // S[1]

with S ∈ S and U ∈ S⊥ the object S is in S≤0
D .

Recall that
S≤0
D = {X ∈ S | HomS(D, X[> 0]) = 0},

and
⊥SS≤0

D = {Y ∈ S | HomT (Y,S≤0
D ) = 0}.

Proof. Let M ∈M, and consider the triangle

S
a //M

b // U // S[1]

with S ∈ S and U ∈ S⊥. By Proposition 3.15(
⊥S (S≤0

D ),S≤0
D

)
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is a torsion pair in S. In particular
⊥SS≤0

D ∗ S
≤0
D = S, there is a triangle

S′′
c // S

d // S′ // S′′[1]

with S′ ∈ S≤0
D , and S′′ ∈ ⊥SS≤0

D .

By Proposition 3.15 (iii) there is an l > 0 such that S′′ ∈ D[−l] ∗ · · · ∗ D[−1]. As D ⊆M, we then
have

HomT (S′′,M) ⊆ HomT (M[−l] ∗ · · · ∗M[−1],M)

which is 0 by Lemma 2.19.

Then ac = 0 so there is some S′
e−→M such that a = ed.

S′′
c // S

a

��

d
// S′

f
uu

e
��

// S′′[1]

S
a //M

b // U // S[1]

Similarly, be ∈ HomT (S,S⊥) = 0, so there is a morphism S′
f−→ S such that e = af . Combining

these, we get a = afd, so a(1S − fd) = 0.

S

||
1S−fd
��

U [−1] // S
a //M

b // U

It follows that 1s − fd factors through U [−1]. Since S is closed under shift, and

HomT (S[1], U) ⊆ HomT (S,S⊥) = 0,

we get that 1s − fd factors through 0. That is, fd = 1S , and d is a split monomorphism, i.e. the
triangle

S
d // S′ // S′′[1]

−c[1] // S[1]

splits. We conclude from this that S ⊕ S′′[1] ∼= S′ ∈ S≤0
D , and so S ∈ S≤0

D .

Having Lemma 4.18, we can now state and prove the main result.

Theorem 4.19. Let T be a Krull-Schmidt triangulated category, and let S be a thick subcategory

of T . Let U be the Verdier localization T /S, and T L−→ U the canonical functor.

(i) If S is a contravariantly finite subcategory of T , then for any D ∈ siltS, the map

{M ∈ silt T | D ⊆M} → siltU

given by M 7→ LM is injective.

(ii) If S is a functorially finite subcategory of T , then the map in (i) is bijective.

The consequence of Theorem 4.19 (ii) is immediate, as siltS⊥ in part (ii) represents all the silting
subcategories of M which contain any silting subcategory of S.

Proof. Part (i) is shown by proving LM is a silting subcategory of U , and then that M 7→ LM is
injective. Then we prove (ii) by showing the map is also surjective.
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(i) Let X ∈ thickM = T . Then by Proposition 3.15 there is an l > 0 such that
X ∈M[−l] ∗ · · · ∗M[l]. I.e. there are Mi ∈M and M ′i ∈M[i] ∗ · · · ∗M[l] and triangles

Mi[i]

��
M ′i

//M ′i+1

��
Mi[i+ 1]

which fit together in the diagram

M−l[−l]

��

M−l+1[−l + 1]

��

· · · Ml−1[l − 1]

��

Ml[l]

X //M ′2
//

��

· · · //M ′l−1

��

//M ′l

��

// 0

��
M−l[−l + 1] · · · Ml−2[l − 1] Ml−1[l] Ml[l + 1]

in T . We now apply L to the whole diagram to get a new diagram

LM−l[−l]

��

LM−l+1[−l + 1]

��

· · · LMl−1[l − 1]

��

LMl[l]

LX // LM ′2
//

��

· · · // LM ′l−1

��

// LM ′l

��

// 0

��
LM−l[−l + 1] · · · LMl−2[l − 1] LMl−1[l] LMl[l + 1]

of triangles in U . Staring with the rightmost triangle, we have LMl−1[l−1] and LMl[l] in thickLM,
so the middle term, LM ′l−1 is as well. We then do the same for the second-to-last triangle, the
third-to-last, and so on. After 2l − 1 steps we conclude LX ∈ thickLM, which means that
L thickM⊆ thickLM. We then conclude from M∈ silt T that

U = LT = L thickM⊆ thickLM,

and we are halfway done showing LM∈ siltU . What remains is to show that
HomU (LM, LM[> 0]) = 0. To this end we let M and M ′ be any objects inM. As before, (S,S⊥)
is a torsion pair, and we have the triangles

S
a //M

b // U // S[1] (17)

and

S′
a′ //M ′

b′ // U ′ // S′[1]

with S, S′ ∈ S and U,U ′ ∈ S⊥. By applying HomT (M ′,−) to (17) we get the long exact sequence

· · · // HomT (M ′,M [n]) // HomT (M ′, U [n]) // HomT (M ′, S[n+ 1]) // · · · ,
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and for n > 0, the left term vanishes as M is silting. By Lemma 4.18 we know that S ∈ S≤0
D , and

as D ⊆M, we have

S≤0
D =

⋃
l≥0

D ∗ · · · ∗ D[l] ⊆
⋃
l≥0

M∗ · · · ∗M[l] = T ≤0
M

so
HomT (M ′, S[n+ 1]) ⊆ HomT (M, T ≤0

M [> 0]) = 0.

Hence both the left and right terms in the exact sequence vanish, and it follows by exactness that
also HomT (M ′, U [n]) = 0.

For the next step, we apply HomT (−, U ′) to (17) and obtain the long exact sequence

· · · // HomT (S[1], U ′[n]) // HomT (U,U ′[n]) // HomT (M,U ′[n]) // · · · .

Consider any part of the sequence where n > 0. Since S is a thick subcategory of T , it is closed
under shift, and

HomT (S[1], U ′[n]) ∼= HomT (S[1− n], U ′) ⊆ HomT (S,S⊥) = 0.

Then both the left and right terms of the exact sequence disappear, and it follows by exactness
that the middle term vanishes as well. Since M ∼= U and M ′ ∼= U ′ in U , we get that

HomU (M,M ′[n]) ∼= HomU (U,U ′[n]) = 0,

for all M,M ′ ∈ LM and n > 0, proving LM is a silting subcategory of U .

Next we show that this map is injective. Assume M,N ∈ silt T with D ⊆ M,N and that
LM = LN . Let M ∈M and N ∈ N , and we obtain triangles

SM
aM //M

bM // UM // SM [1] and SN
aN // N

bN // UN // SN [1]

for M and N as by (17). For some n > 0 and some morphism M
f−→ N [n], consider the solid part

of the diagram
SM //

��

M //

f

��

ϕ

{{

UM //

0
��

SM [1]

��
SN [n]

aN [n] // N [n]
bN [n] // UN [n] // SN [n+ 1]

.

As
HomT (SM , UN [n]) ∼= HomT (SM [−n], UN ) ⊆ HomT (S,S⊥) = 0,

there is a morphism SM → SN [n] making the left square commute. Then there is also a morphism
UM → UN [n] completing the diagram to a morphism of triangles. This morphism is 0 as LM = LN
is silting, and so HomT (UM , UN [> 0]) = 0. It follows that bN [n]f = 0, and f factors through aN [n]

by some M
ϕ−→ SN [n]. Now, as SN ∈ S≤0

D by Lemma 4.18, HomT (M,SN [n]) is also contained in

HomT (M, T ≤0
M [> 0]) = 0

as D ⊆M. Thus ϕ = 0, so f = 0. That is, HomT (M,N [> 0]) = 0, and so M≥ N .

By a completely symmetric argument, we also have N ≥M, showing the two are the same by the
antisymmetric property of ≥. That is, M = N , and the map is injective.
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(ii) To showM 7→ LM is surjective on siltU , assume S is in addition a covariantly finite subcat-
egory of T . As seen before, (⊥S (S≤0

D ),S≤0
D ) is a torsion pair in S by Proposition 3.15 (ii). Then,

by Remark 1.2 and S being closed under shift,

⊥S (S<0
D ) ∗ S<0

D = ⊥S (S≤0
D )[1] ∗ S≤0

D [1] = (⊥S (S≤0
D ) ∗ S≤0

D )[1] = S[1] = S,

and so (⊥S (S<0
D ),S<0

D ) is also a torsion pair in S. In particular, it follows from Corollary 1.12 that
S<0
D is covariantly finite in S. Combining this with the fact that S is covariantly finite in T , we

get that S<0
D is covariantly finite in T . By Lemma 3.13 (iii), we then have that (⊥T (S<0

D ),S<0
D ) is

a torsion pair in T .

Fix a silting category N ′ ∈ siltU . As S⊥ L−→ U is an equivalence, N ′ = LN for some N ∈ siltS⊥.
For any N ∈ N , there is a triangle

SN
α //MN

β // N
γ // SN [1], (18)

with MN ∈ ⊥T (S<0
D ) and SN [1] ∈ S<0

D by the torsion pair above. From S ⊆ T we have that
⊥S (S<0

D ) ⊆ ⊥T (S<0
D ), and then by Proposition 2.24,

D = S≤0
D ∩

⊥S (S<0
D ) ⊆ S≤0

D ∩
⊥T (S<0

D ).

As any object in S≤0
D ∩

⊥T (S<0
D ) is in particular in S≤0

D ⊆ S, the inclusion ⊇ also holds, and it

follows that D = S≤0
D ∩

⊥T (S<0
D ).

Note that β is a right
⊥

(S<0
D )-approximation of N , as by Corollary 1.12. Then, by Lemma 3.7,

there exists a decomposition MN = X ⊕ Y β=(βX 0 )−−−−−−→ N , where βX is a right minimal
⊥

(S<0
D )-

approximation of N . Complete βX to a triangle ZN
αX // X

βX // N // ZN [1] , and add it to
the identity triangle for Y . This yields the solid part of the diagram

SN

��

α //MN

1

��

β // N

( 1
0 )
��

γ // SN [1]

��
ZN ⊕ Y

(
αX 0
0 1

)
// X ⊕ Y

(
βX 0
0 0

)
// N ⊕ 0 // (ZN ⊕ Y )[1].

The central square commutes, so it is completed to a morphism of triangles by the outermost
vertical morphism. As the two central vertical morphisms are isomorphisms, then so is the last
one. This means Y is a direct summand in S≤0

D ∩
⊥T (S<0

D ) = D. By Lemma 1.8 X is independent

of the right minimal
⊥T (S<0

D )-approximation of N . It follows that MN is uniquely given by X and
a summand in D.

The next step now is to show that the category

M := add(D ∪ {MN | N ∈ N})

is in silt T . Note that by our previous endeavor, this construction is well-defined. We begin by
showing HomT (M,M[> 0]) = 0 – by checking for each combination of objects from M.

It is easily seen that D[> 0] ⊆ S<0
D , and so HomT (MN ,D[> 0]) = 0. We choose some N ∈ N , some

D′ ∈ D, and we apply HomT (D′,−) to the triangle (18) for N . This yields the long exact sequence

· · · // HomT (D′, SN [n]) // HomT (D′,MN [n]) // HomT (D′, N [n]) // · · · .
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For n > 0, the left side disappears as SN ∈ S≤0
D by Lemma 4.18, and the right side as N ∈ N ⊆ S⊥,

so HomT (D′[−n], N) ⊆ HomT (S,S⊥) = 0. Then the middle term also vanishes by exactness.
Similarly, for any N ′ ∈ N , apply HomT (−, N ′) to (18), and get the exact sequence

· · · // HomT (N,N ′[n]) // HomT (MN , N
′[n]) // HomT (SN , N

′[n]) // · · · . (19)

For n > 0, the left term disappears as N is silting, and the right side again as HomT (SN [−n], N ′) ⊆
HomT (S,S⊥) = 0. Then the middle term disappears as well, again by exactness. For any N ′ ∈ N ,
make a triangle

SN ′ //MN ′
// N ′ // SN ′ [1]

with MN ′ ∈
⊥

(S<0
D ) and SN ′ [1] ∈ S<0

D as we did for N . Then, apply HomT (MN ′ ,−) to the triangle
for N to get the long exact sequence

· · · // HomT (MN ′ , SN [n]) // HomT (MN ′ ,MN [n]) // HomT (MN ′ , N [n]) // · · · .

For n > 0, the left term disappears by definition of ⊥(S<0
D ), and the right term by (19). Thus

HomT (MN ′ ,MN [> 0]) = 0. This completes the argument, and M⊆ T is pre-silting.

The object SN is in

S≤0
D =

⋃
l≥0

D ∗ · · · ∗ D[l] ⊆
⋃
l≥0

M∗ · · · ∗M[l]

and by Remark 1.1, we have⋃
l≥0

M∗ · · · ∗M[l] ⊆
⋃
l≥0

M[−l] ∗ · · · ∗M[l].

Furthermore, as HomT (M[−l],M[−l + 1] ∗ · · · ∗ M[l]) = 0 by Lemma 2.19, we get from Lemma
3.13 (i) that ⋃

l≥0

M[−l] ∗ · · · ∗M[l] =
⋃
l≥0

smd(M[−l] ∗ · · · ∗M[l])

which equals thickM by Lemma 2.18 (ii). The conclusion of this is that SN , and then also
SN [1] ∈ thickM. As MN is in thickM by default, we see from triangle (18) that N ∈ thickM.
Then

S⊥ = thickN ⊆ thickM,

and, as D ⊆M,
S = thickD ⊆ thickM.

Then we see from (S,S⊥) being a torsion pair in T that

T = S ∗ S⊥ ⊆ thickM,

which means that thickM = T , and finally that M is a silting subcategory of T .

To complete the proof, we need to show that LM ' N . We do this by showing LM = LN , and
use that LN ' N . First, let N ∈ N , and consider again the triangle (18). As L is a triangle
functor, this yields the triangle

LSN // LMN
// LN // LSN [1]
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in U . LSN and LSN [1] are 0 as SN , SN [1] ∈ S. I.e. we have

0 // LMN
// LN // 0,

and so LN ∼= LMN ∈ LM and LN ⊆ LM.

For the other inclusion, let X ∈ LM. Then X = LM for some M ∈ M. By definition of M, we
have M =

⊕n
i=1Mi, where Mi ∈ D, or for some M ′i and some Ni ∈ N , we have Mi ⊕M ′i = MNi .

In the latter case, there is a triangle

SNi
//Mi ⊕M ′i // Ni

// SNi [1],

and by applying L, a triangle

0 // LMi ⊕ LM ′i // LNi
// 0,

which means LMi is a summand of LNi ∈ LN . Then LM is a summand of
⊕m

i=1 LNi ∈ LN , and
so it follows that LM ∈ LN , and that LM = LN .

Example 4.20. Let T be Db(mod kA3) and S := thick{P3 ⊕ P2}. The AR-quiver for T is as in
Example 2.3 given by

· · · P3[−1]

  

S2[−1]

  

I1[−1]

  

P1

  

P3[1]

  

S2[1]

  

I1[1]

  

· · ·

· · ·

>>

  

P2[−1]

>>

  

I2[−1]

>>

  

P2

>>

  

I2

>>

  

P2[1]

>>

  

I2[1]

>>

  

· · ·

· · · I1[−2]

>>

P1[−1]

>>

P3

>>

S2

>>

I1

>>

P1[1]

>>

P3[2]

>>

· · ·

It is straight forward to check now that S = add{(P3 ⊕ P2 ⊕ S2)[i] | i ∈ Z}, and furthermore that
S⊥ = add{I1[i] | i ∈ Z}. The set of silting subcategories of S⊥ is then {Ni := add{I1[i]} | i ∈ Z.

Let D ⊆ S be the subcategory add{P2 ⊕ P3}. Clearly, thickD = S, and we also see from the
AR-quiver that HomT (D,D[> 0]) = 0, so D ∈ siltS. The silting subcategories of T containing D
are, as we have seen from previous examples, the

{Mi := add{P3 ⊕ P2 ⊕ P1[i]} | i ≥ 0}

and the
{Nj := add{P3 ⊕ P2 ⊕ I1[j]} | j < 0}.

We now apply the canonical functor L to these. As LS = 0, we obtain from any Nj , the category
LNj ' add{LI1[j]} for the corresponding j. Since I1[j] ∈ S⊥, this corresponds to
add{I1[j]} ∈ siltS⊥ where j < 0. ForMi, we similarly get LMi ' add{LP1[i]} for the correspond-
ing i ≥ 0.

There is a triangle P1
f // I1

// P2[1] // P [1] , and as P2[1] ∈ S, the morphism f is a quasi-

isomorphism. Thus LP1
∼= LI1 in T /S, and LMi corresponds to add{I1[i]}, where i ≥ 0.

Thus we have the bijection.

This example also illustrates a relationship between the indecomposable objects in the Mi and
Nj which are not in D and the indecomposable objects in LMi and LNj , respectively. This next
proposition shows that this is no coincidence.
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Proposition 4.21. Let T be a Krull-Schmidt triangulated category and M∈ silt T Assume S is a
thick and contravariantly finite subcategory of T , and that D ∈ siltS is such that D ⊆ M. Define

U as the Verdier localization T /S, and let T L−→ U be the canonical functor. Consider the ideal
[D] of M in which the morphisms are those that factor through objects in D. Then the functor

M L−→ LM induces an equivalence

M/[D]
L−→ LM

from the quotient categoryM/[D] to LM. In particular, L induces a bijection between indM\indD
and indLM.

Proof. The quotient category M/[D] has as objects the objects of M, and a morphism M → M ′

in M/[D] is a coset f̄ := f + Hom[D](M,M ′). For M
f̄−→M ′ and M ′

ḡ−→M ′′ morphisms in M/[D],
the composition ḡf̄ is given by

gf + Hom[D](M,M ′′).

With this in mind, define M/[D]
L−→ LM by(

M
f+Hom[D](M,M ′)
−−−−−−−−−−−→M ′

)
7→
(
M

Lf−−→M ′
)
.

Then f̄ = ḡ means f − g factors through D, and so

Lf̄ − Lḡ = Lf − Lg = L(f − g) = 0,

and the induced functor is then well-defined.

To show this induced functor is an equivalence, we show it is fully faithful and dense. As the objects
of M/[D] are exactly the objects of M, the induced functor is clearly dense.

For any morphism M
f−→ M ′ in M, we have seen that M

Lf−−→ M ′ is given, up to equivalence, by
U

g−→ U ′ in the diagram

S

��

a //M

ϕ

zz
f
��

b // U

g

��

c // S[1]

��
S′

a′ //M ′
b′ // U ′

c′ // S′[1],

where the rows are triangles as by (17). Assume g = 0. Then b′f = 0, and f factors through a′

by some M
ϕ−→ S′. By Lemma 4.18, S′ ∈ S≤0

D , so by Proposition 3.15 (ii) there is some l ≥ 0 such
that S′ ∈ D ∗ · · · ∗ D[l]. This implies the triangle

D
α // S′

β // D′ // D[1],

with D ∈ D and D′ ∈ D[1] ∗ · · · ∗ D[l]. Apply HomT (M,−) to it to get the long exact sequence

· · · // HomT (M,D)
α◦− // HomT (M,S′)

β◦− // HomT (M,D′) // · · · .

Since HomT (M,D′) ⊆ HomT (M,M[1] ∗ · · · ∗M[l]), which is 0 by Lemma 2.19, the left morphism
is surjective. Thus ϕ factors through D ∈ D, and it follows that so does f . This means f is 0 in
M/[D], so the induced L is faithful.
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To show fullness, let U
g−→ U ′ be some morphism. Again, we have the diagram

S
a //M

f
��

b // U

g

��

c // S[1]

S′
a′ //M ′

b′ // U ′
c′ // S′[1],

where the rows are triangles as by (17). As before, we see by Lemma 4.18, an also by Remark 1.1 that
S′[1] ∈ D[1]∗· · ·∗D[l+1] for some l ≥ 0. Then HomT (M,S′[1]) ⊆ HomT (M,M[1]∗· · ·∗M[l+1]) = 0

by Lemma 2.19, and there is a morphism M
f−→M ′ making the center square commute. This means

there is an M
f−→M ′ such that g = Lf , and that L is full, and thus an equivalence.

In particular, it gives a bijection of the indecomposable objects inM/[D] and the indecomposables
objects in LM. The construction of M/[D] can be viewed as just setting all objects in D to be 0.
Thus the (nonzero) indecomposable objects inM/[D] are the indecomposable objects inM which
do not belong to D, and the bijection

indM\ indD ↔ indLM

follows.

Before moving on to the final parts of the thesis, we’ll see that given nice conditions, the functor
L commutes with mutation. Recall that for X a collection of objects in the silting subcatgory
M∈ silt T , we defined MX as

MX = add(indM\ indX ).

The lemma is as follows:

Lemma 4.22. Let T be a Krull-Schmidt triangulated category with a silting object, andM∈ silt T .
Assume S is a thick and contravariantly finite subcategory of T , and D ∈ siltS such that D ⊆M.

Let T L−→ U := T /S be the canonical functor.

(i) For any covariantly finite subcategory X of M such that X ∩ D = 0,

Lµ+(M;MX ) = µ+(LM;LMLX ).

(ii) For any contravariantly finite subcategory X of M such that X ∩ D = 0,

Lµ−(M;MX ) = µ−(LM;LMLX ).

Proof. As T has a silting object, it follows from Proposition 2.28 that all silting subcategories are
of the form add{Z} for some (basic) object Z.

Let M = add{M} be in silt T for a basic object M . Then D = add{D} and X = add{X} for
summands D and X of M . As D ∩ X = 0, we also have that for some Y ,

M = D ⊕X ⊕ Y,

and M = add{D ⊕ X ⊕ Y }. It follows that MX = add{D ⊕ Y } and, as LS = 0, we have
L(MX ) = add{LY }. Also, LM = add{LX ⊕ LY }, and LX = add{LX}, so (LM)LX = add{LY }
as well.
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By definition, we have

Lµ+(M;MX ) = L add(MX ∪ {NA | A ∈M})
= add(L(MX ) ∪ {LNA | A ∈ X})
= add({LY } ∪ {LNA | A ∈ X}),

and

µ+(LM; (LM)LX ) = add((LM)LX ∪ {NU | U ∈ LM})
= add({LY } ∪ {NU | U ∈ LX})

To prove the two are the same, we show the equality of {LNA | A ∈ X} and {NU | U ∈ LX}.
As MX = add{D ⊕ Y }, it is functorially finite in T by Proposition 3.4. Then especially, for any

A ∈ X , there is a left MX -approximation A
f−→ B and a triangle

A
f // B // NA

// A[1]

in T . By applying L, we obtain a triangle

LA
Lf // LB // LNA

// LA[1]

in U . As an attempt to avoid confusion, the reference to L has been kept in to remind the reader
that these are objects in U . Now LA ∈ LX and LB ∈ L(MX ) = (LM)LX . Thus what remains
to prove LNA ∈ {NU | U ∈ LX} is to see that Lf is a left L(MX )-approximation. To this end,
let C ∈ L(MX ) = add{LY } and apply HomT (−, C) to the previous triangle to get the long exact
sequence

· · · // HomU (LB,C)
−◦Lf // HomU (LA,C) // HomU (LNA[−1], C) // · · · .

We have that NA ∈ µ+(M;MX ) and Y ∈MX ⊆ µ+(M;MX ), so

HomU (LNA[−1], LY ) ∼= HomT (NA, Y [1]) ⊆ HomT (µ+(M;MX ), µ+(M;MX )[> 0]) = 0.

Then, as C ∈ add{LY }, we have HomT (LNA[−1], C) = 0 as well by HomT (LNA[−1],−) being
additive. Thus the right term of the exact sequence vanishes, and − ◦ Lf is surjective, so Lf is a
left MX -approximation of LB.

This shows LNA = NLA, so that {LNA | A ∈ X} ⊆ {NU | U ∈ LX}.

The other direction follows directly from this: Let U ∈ LX . Then U = LA for some A ∈ X , and as

shown in the previous case, there is a left (LM)LX -approximation LA
Lf−−→ LB. Also NLA = LNA,

so for any U ∈ LX , NU ∈ {LNA | A ∈ X}. This proves part (i). Part (ii) is dual.
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5 Transitivity of Iterated Irreducible Silting Mutation

By Theorem 4.3 we saw that a mutation of a silting subcategory is itself silting. A natural question
to ask then is if the silting subcategories of a given category T can all be mutated into each other.
We study this property from Aihara and Iyama’s viewpoint of the Krull-Schmidt triangulated
categories, and the distinction from the derived categories of hereditary path algebras will be
reduced further, as we often will assume the existence of silting objects in T .

The transitivity of the silting mutation is visualized through the connectedness of the silting quiver
of T . For the general study, we employ the theory of exceptional objects and -sequences, and use
it to show transitivity for the algebras whose derived categories are triangle equivalent to those of
hereditary path algebras.

5.1 Silting Quivers

Given silting subcategories M and N of T , we wish to see when one is a mutation of the other.
More generally, we wish to know if it is possible to perform a sequence of irreducible left- and/or
right mutations, where we start with M and end with N . The concept to be studied is the
following:

Definition 5.1. Let T be a triangulated category, and let M,N ∈ silt T . We say that M and N
are transitive under iterated irreducible silting mutation if there is a sequence of left- and/or right
irreducible silting mutations which brings us from one to the other. Analogously, we say that silting
objects M and N are transitive under iterated irreducible silting mutation if addM and addN are
transitive under iterated irreducible silting mutation.

A collection of silting subcategories is said to be transitive under iterated irreducible silting mutation
if all pairs of silting subcategories are so.

The moniker transitive is due to this relation being, well, transitive. Clearly, a sequence of irre-
ducible mutations taking M to N , followed by a sequence of irreducible mutations taking N to
L, means there is now a sequence of irreducible mutations taking M to L. The relation is simi-
larly both symmetrical and reflexive, and so we may ask how many equivalence classes of silting
subcategories there are in silt T , and under which conditions there is exactly one.

For a more hands-on approach, we introduce the silting quiver :

Definition 5.2. For a triangulated category T . The silting quiver of T has as its vertices the set
of silting subcategories of T . It has an arrow from vertexM to vertex N if N is an irreducible left
mutation of M.

Definition 5.1 can then be restated as:

Definition 5.3. Let T be a triangulated category. The silting subcategories M and N of T are
said to be transitive under iterate irreducible silting mutation if, in the underlying graph of the
silting quiver of T , M and N belong to the same connected component.

The questions regarding transitivity of silting subcategories of T are then questions concerning the
connected components of the underlying graph of the silting quiver: How many components are
there, and under which conditions is this graph fully connected?

In Section 3 we considered Krull-Schmidt triangulated categories T where for any indecomposable
object X of any silting subcategory M, the category MX = add(indM \ {X}) was functorially
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finite in M. In these cases the silting quiver will coincide with the Hasse diagram of the partial
ordering ≥ on silt T . Indeed, there is an arrow from M to N if N is an irreducible left mutation
of M, which by Theorem 4.12 is exactly when M > N and there is no L ∈ silt T in between
them.

Let T be Kb(P(mod Λ)) for some finite dimensional k-algebra Λ. T is then a Krull-Schmidt trian-
gulated category and has the silting object given by the stalk complex of Λ. Then by Proposition
3.4, T is exactly of this form.

Example 5.4. Having introduced the silting quiver, it is only fitting that we also include an
example of such a quiver. The standard example of Db(mod kA3) is too big to handle in this
situation. We choose therefore to rather consider the simpler algebra Λ := kA2, where A2 is the
quiver

1
α // 2.

The indecomposable left Λ-modules are then

S2 = P2 : 0 // k

P1 = I2 : k
1 // k

S1 = I1 : k // 0 ,

and the AR-quiver

· · · I1[−1]

��

P1

��

P2[1]

��

I1[1]

��

· · ·

· · ·

??

P2

??

I1

??

P1[1]

??

· · ·

is found using the construction from Happel [7]. The mutation here is even simpler than in the
previous examples. The object P1 ⊕ P2 is a tilting object by Proposition 2.2, and the triangles in
Db(mod Λ) are given by any sequence of successive objects and morphisms in the AR-quiver. The
silting quiver is too large to include in its entirety. We instead do as in Aihara and Iyama [1] and
present a part of a component of the quiver and provide an explanation of its general structure.
As there is a bijection between the silting subcategories and -objects of Db(mod kA2), we use the
silting objects as vertices.
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...

�� ��

...

�� ��

...

��

...

��

��

...

�� ��

...

�� ��

I1[−2]⊕ P2

�� ��

I1[−1]⊕ P2[1]

�� ��

· · ·

��

I1[−1]⊕ P1[−1]

��

��

I1 ⊕ P1[−2]

�� ��

I1[1]⊕ P2[−3]

�� ��

P1 ⊕ P2[−1]

�� ��

P1[1]⊕ P2[−2]

�� ��

· · ·

��

I1[−1]⊕ P2

��

��

I1[−2]⊕ P2[1]

�� ��

I1[−1]⊕ P2[2]

�� ��

I1 ⊕ P1[−1]

�� ��

I1[1]⊕ P1[−2]

�� ��

· · ·

��

P1 ⊕ P2

��

��

P1[1]⊕ P2[−1]

�� ��

P1[2]⊕ P2[−1]

�� ��

I1[−1]⊕ P2[1]

�� ��

I1[−2]⊕ P2[2]

�� ��

· · ·

��

P1 ⊕ I1

��

��

I1[1]⊕ P1[−1]

�� ��

I1[2]⊕ P1[−2]

�� ��

P1[1]⊕ P2

�� ��

P1[2]⊕ P2

�� ��

· · ·

��

P2[1]⊕ I1

��

��

I1[−1]⊕ P2[2]

�� ��

I1[−2]⊕ P2[3]

�� ��

P1 ⊕ I1[1] I1[2]⊕ P1[−1] · · ·

...
...

...

...
...

. . .

The objects to the left in this silting quiver are the silting objects where the indecomposable direct
summands are next to each other in the AR-quiver, and the vertical arrows then represent the
right mutations done by using the approximations from the AR-triangles. We observe then that
upwards movement in the silting quiver amounts to passing to silting objects further to the left
in the AR-quiver, and vice versa for downwards movement - as expected by the definition of left-
and right silting mutation. Also, moving to the right in the silting quiver amounts to passing to
silting objects which has summands further away from each other, while moving to the left passes
to objects whose summands are closer.

As we will see in Theorem 5.26, this category is transitive under iterated irreducible silting mutation,
and this component describes the entire silting quiver of Db(mod Λ)

The first result concerning transitivity is the following corollary to Lemma 3.19.

Corollary 5.5. Let T be a Krull-Schmidt triangulated category with an indecomposable silting
object, then iterated irreducible silting mutation on silt T is transitive.
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Proof. Assume M ∈ T is an indecomposable silting object in T . By Lemma 3.19, the silting
subcategories of T are then all of the form add{M [i]} for i ∈ Z.

As M is indecomposable, there is only one choice of indecomposable object in M, and thus only
one irreducible left mutation of M, namely

µ+(M;MM ) = µ+(M; 0) = add{NM}.

Since MM = 0, a left MM -approximation of M is the 0-map. I.e. we have the triangle

M // 0 // NM
//M [1],

which means NM
∼= M [1] and µ+(M;MM ) = add{M [1]}. Similarly, µ−(M;MM ) = add{M [−1]}.

As M [n] is indecomposable for any n ∈ Z, we can do this over and over to irreducibly mutate from
any silting subcategory of T to any other – as asserted.

Example 5.6. Let A be a finite dimensional local k-algebra and T = Kb(P(modA)). The endo-
morphism ring of the stalk complex of A is isomorphic to the endomorphism ring of A, as the only
null-homotopic map is 0. By the equivalence

modA
HommodA(A,−)−−−−−−−−−−→ P(mod Γ)

from Proposition 3.2 we get that EndmodA(A) is local, and as we saw in the beginning of Section 3,
this means A is indecomposable (in this case both in modA and T ). Thus T has the indecomposable
silting object A, and iterated irreducible silting mutation in T is transitive.

Consider again the situation where for any M ∈ silt T and any indecomposable M ∈ M, the
categoryMM is functorially finite inM. Such anMM is not itself a silting subcategory of T , but
is contained in one, and they are exactly one indecomposable object away from each other. This
property identifies an interesting class of subcategories of T , defined below.

Definition 5.7. Let T be a Krull-Schmidt triangulated category, and D a subcategory of T . D
is said to be almost complete silting if it is contained in some silting subcategory M of T , and
| indM\ indD| = 1.

Example 5.8. Let T be a Krull-Schmidt triangulated category with silting objects, and let M ∈
silt T . Then, by Proposition 2.28, there is a basic object M such thatM = add{M}. If M has the
decomposition

⊕n
i=1Mi with Mi indecomposable, we get that for 1 ≤ j ≤ n, the category

MMj = add
{ n⊕
i=1
i 6=j

Mi

}

is almost complete silting.

Note that if T has an indecomposable silting object M , then the subcategory D, only containing the
zero object, is almost complete silting. Corollary 5.5 then asserts that the silting subcategories of
T which contain D are transitive under iterated irreducible silting mutation. Theorem 5.9 presents
conditions under which this holds in general.
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Theorem 5.9. Let T be a Krull-Schmidt triangulated category with silting objects, and D an almost
complete silting subcategory of T . If thickD is functorially finite in T , then the set
{M ∈ silt T | D ⊆M} is transitive under iterated silting mutation.

Proof. T has silting objects, so for any silting subcategory M of T , there is by Proposition 2.28 a
(basic) M ∈ T such that M = add{M}. As D is almost complete silting, there is an N ∈ silt T
such that D ⊆ N and | indN \ indD| = 1. This means that there are indecomposable and pairwise
non-isomorphic objects X1, . . . , Xn ∈ T , where

N = add{X1 ⊕ · · · ⊕Xn}

and
D = add{X1 ⊕ · · · ⊕Xn−1}.

Let X := Xn be the unique object in indN \ indD. Set U := T / thickD. By Proposition 4.21,

the canonical functor T F−→ U induces an equivalence N/[D] ' FN , and a bijection between
indN \ indD and indFN . This means FX is the unique (up to isomorphism) indecomposable
object in FN , and so FN = add(FX). By Theorem 4.19, FN ∈ siltU , so U has the indecomposable
silting object FX, and siltU is transitive under iterated irreducible silting mutation by Corollary
5.5.

As S is functorially finite in T , apply Theorem 4.19 (ii) to get that F induces a bijection between
the silting subcategories of T containing D and the silting subcategories of U .

By Corollary 3.25, all basic silting objects in T have the same number of indecomposable summands.
It follows that if M∈ silt T with D ⊆M, then for some indecomposable YM,

M = add{X1 ⊕ · · · ⊕Xn−1 ⊕ YM},

and that mutation on {M ∈ silt T | D ⊆ M} amounts to mutating with respect to D, i.e.
interchanging the singular indecomposable direct summand YM. This means mutation on {M ∈
silt T | D ⊆ M} is mutation µ±(M;D) = µ±(M;MYM), and from Lemma 4.22, such mutation
commutes with F , and {M ∈ silt T | D ⊆ M} is transitive under iterated irreducible silting
mutation.

5.2 Transitivity for Derived Categories of Finite Dimensional Piecewise
Hereditary Algebras

In this final section, we show that if A is a finite dimensional piecewise hereditary algebra, then
Db(modA) is transitive under iterated irreducible silting mutation. This is done by following a
similar strategy to that of Aihara and Iyama, in that we employ the theory of exceptional sequences
and braid group actions on these to prove the results.

Recall that an abelian category H is a hereditary category if

ExtiH(X,Y ) = HomD(H)(X,Y [i]) = 0

for all X,Y ∈ H and i ≥ 2. In particular, if H has enough projectives, the length of any projective
resolution is at most 1. Having this, we say that an algebra Λ is a hereditary algebra if mod Λ is a
hereditary abelian category.
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In [19] is defined the canonical algebras which are one-point extensions of certain path algebras.
These algebras are not necessarily hereditary, but have global dimension ≤ 2. Sticking to the
notation from [19], we have the following definition.

Definition 5.10. Let H be a hereditary abelian k-finite category. A finitely generated k-algebra
A is said to be piecewise hereditary of type H if there is a triangle equivalence

Db(modA)
∆' Db(H).

We assume k is algebraically closed.

In addition, the following is true due to Happel and Reiten [8, 9].

Theorem 5.11. Let A be a finite dimensional piecewise hereditary k-algebra. Then there is a
finite dimensional hereditary k-algebra or a finite dimensional canonical k-algebra Λ and a triangle
equivalence

Db(modA)
∆' Db(mod Λ).

Thus clearly, both the finite dimensional hereditary k-algebras and the finite dimensional canonical
k-algebras are piecewise hereditary, and up derived equivalence, these are the only ones. The study
of the piecewise hereditary algebras thus encompass the ’nice’ hereditary path algebras we usually
want to consider. Also included among these is now the algebra kA3/〈βα〉, as its bounded derived
category is seen to be triangle equivalent to that of the hereditary kA3.

Remark 5.12. We note the following facts about piecewice hereditary algebras.

(i) Both the hereditary and canonical algebras are of finite global dimension. Thus we get that if
Λ is a finite dimensional hereditary or -canonical k-algebra over some field k

Db(mod Λ) = Kb(P(mod Λ)).

by Theorem A.1.

(ii) Let A be a finite dimensional piecewise hereditary k-algebra and T = Db(modA). Since
T ' Kb(P(mod Λ)) for a finite-dimensional k-algebra Λ, it follows from Propositions 2.2 and
3.3 that T is a Krull-Schmidt triangulated category with silting objects.

To prove transitivity of iterated irreducible silting mutation, we will, as Aihara and Iyama, make
use of the theory of exceptional sequences.

Definition 5.13. Let T be any Krull-Schmidt triangulated category. An object T ∈ T is called
an exceptional object if

(i) EndT (T ) is a division algebra over k, and

(ii) HomT (T, T [6= 0]) = 0.

A sequence (X1, . . . , Xn) in T is called an exceptional sequence if

(iii) Xi is a nonzero exceptional object in T for all i, and

(iv) For all j < i and any n ∈ Z, we have HomT (Xi, Xj [n]) = 0.
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Furthermore, an exceptional sequence (X1, . . . , Xn) is said to be full if thick{X1 ⊕ · · · ⊕Xn} = T .
The set of isomorphism classes of full exceptional sequences in T is denoted by exp T .

Since an exceptional object X ∈ T has EndT (X) a division algebra, it has a local endomorphism
ring. We saw in Section 3 that this amounts to X being indecomposable.

If we let X = (X1, . . . , Xn) be a full exceptional sequence in T and let l = (l1, . . . , ln) ∈ Zn, we
define

lX := (X1[l1], . . . , Xn[ln]).

It is straight forward to check the axioms and see that this produces a full exceptional sequence in
T again. We also see that this defines an action of Zn on the set of full exceptional sequences in T
of length n.

Furthermore, we let Bn be the braid group on n indices. That is, Bn is generated by the elementary
braids σ1, . . . , σn−1. For clarification, in B3, the elements σ1, σ−1

1 , σ2 and σ−1
2 would be

1

��

2

��

3

��
1 2 3,

1

��

2

��

3

��
1 2 3,

1

��

2

��

3

��
1 2 3,

1

��

2

��

3

��
1 2 3

respectively.

In Bn, we have the relations
σiσj = σjσi

for all 1 ≤ i, j < n with |i− j| > 1, and

σiσi+1σi = σi+1σiσi+1

for all 1 ≤ i < n.

Similarly to how we let Zn act on the full exceptional sequences, we define an action of Bn on the
full exceptional sequences on T : For a full exceptional sequence X = (X1, . . . , Xn), we define, for
1 ≤ i < n the object LXi+1Xi by the triangle

Xi
//
∐
l∈Z (D HomT (Xi, Xi+1[l]⊗k Xi+1[l]) // LXi+1Xi[1] // Xi[1].

Similarly, we define the object RXiXi+1 by the triangle

RXiXi+1
//
∐
l∈Z (HomT (Xi[l], Xi+1)⊗k Xi[l]) // Xi+1

// RXiXi+1[1].

We then define the action of the braids σi, σ
−1
i ∈ Bn on X = (X1, . . . , Xn) by

σiX = (X1, . . . , Xi−1, RXiXi+1, Xi, Xi+2, . . . , Xn),

and
σ−1
i X = (X1, . . . , Xi−1, Xi+1, LXi+1Xi, Xi+2, . . . , Xn)

respectively.

This action will not be studied in detail here. Instead we will refer to the following theorem by
[6,18,24].
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Theorem 5.14. Let A be a finite dimensional piecewise hereditary k-algebra and T = Db(modA).
Then Bn×Zn acts transitively on the set of full exceptional sequences in T of length n. We denote
the action of (σ, v) ∈ Bn × Zn on X ∈ exp T by (σ, v)X.

This theorem will be applied to prove the main result of this section, which asserts the transitivity of
iterated irreducible silting mutation within these kinds of triangulated categories. To get there, we
prove some intermediate results. Note that the property HomT (X,Y [>> 0]) = 0 for all X,Y ∈ T
holds whenever T is the derived category of an abelian category of finite global dimension.

Proposition 5.15. Let T be a Krull-Schmidt triangulated category such that for any X,Y ∈ T
we have HomT (X,Y [>> 0]) = 0. For any full exceptional sequence X = (X1, . . . , Xn) in T , there
exists an integer a ≥ 0 such that for any sequence (l1, . . . , ln) ∈ Zn satisfying li + a ≤ li+1 for all
i < n, we have that X1[l1]⊕ · · · ⊕Xn[ln] is a silting object in T .

Proof. By assumption we have that for any Xi, Xj in X, there exists some integer nXiXj such that
HomT (Xi, Xj [n]) = 0 for all n ≥ nXiXj . We set a := max{nXiXj | 1 ≤ i ≤ n and 1 ≤ j ≤ n}, and
show that this a satisfies the proposition.

Let li, . . . , ln satisfy li + a ≤ li+1, and set

S := X1[l1]⊕ · · · ⊕Xn[ln].

As T is a Krull-Schmidt triangulated category, it follows from Remark 3.5 that we only need to
check HomT (S, S[> 0]) = 0 and thick{S} = T .

Since thick{S} is closed under direct summands, shifts and finite coproducts, it contains X1⊕· · ·⊕
Xn, and so it is all of T by X being full. Furthermore, if m > 0, we have

HomT (S, S[m]) ∼=
n⊕

i,j=0

HomT (Xi[li], Xj [lj ][m])

∼=
n⊕

i,j=0

HomT (Xi, Xj [lj − li +m]).

j < i: Then HomT (Xi, Xj [lj − li +m]) = 0 by X being exceptional.

j = i: Then HomT (Xi, Xj [lj − li +m]) = HomT (Xi, Xi[m]) = 0 by Xi being exceptional.

j > i: Then HomT (Xi, Xj [lj − li +m]) = 0 since lj − li +m > a ≥ nXiXj .

Thus all summands are 0, so HomT (S, S[> 0]) = 0.

This next lemma generalizes both the base step and the induction step of the proof of Aihara and
Iyama’s Lemma 5.17.

Lemma 5.16. Let T be a Krull-Schmidt triangulated category and X1, . . . , Xn ∈ T indecomposable
objects such that M := add{X1 ⊕ · · · ⊕ Xn} ∈ silt T . Fix an i ∈ {1, . . . , n}. If for all j 6= i, we
have HomT (Xj , Xi) = 0, then

µ±(M;MXi) = add{X1 ⊕ · · ·Xi[±1]⊕ · · ·Xn}.

In other words, add{X1⊕· · ·Xi[∓1]⊕· · ·Xn} is obtainable by irreducible mutation from add{X1⊕
· · · ⊕Xn}.
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Proof. We show that

µ−(M;MXi) = add{X1 ⊕ · · ·Xi[−1]⊕ · · ·Xn},

as the other part is dual.

The indecomposable objects inM are exactly the Xj for 1 ≤ j ≤ n, soMXi is the additive closure
of the other Xj :

MXi = add(indM\ {Xi}) = add
{ n⊕
j=1
j 6=i

Xj

}
.

Let M ∈M be some object. Then for some di ≥ 0, we have M = Xd1
1 ⊕ · · · ⊕Xdn

n . We set

D :=
n⊕
j=1
j 6=i

X
dj
j ∈MXi

to be the direct summand of M obtained by removing all copies of Xi. In addition, we set D
ι−→M

to be the natural inclusion. Our first goal is to show this is an MXi-approximation of M . To do

this, we consider any morphism D′
g′−→ M with D′ ∈ MXi , and show it factors through ι. The

object D′ is now of the form

D′ =
n⊕
j=1
j 6=i

X
d′j
j

for some d′j ≥ 0, and we obtain from this the solid part of the diagram

D =
⊕n

j=1
j 6=i

X
dj
j

ι //
⊕n

j=1X
dj
j = M

D′ =
⊕n

j=1
j 6=i

X
d′j
j .

OO

g′

77

By assumption, HomT (Xj , Xi) = 0 for all j 6= i Thus the morphism g′ is one from
⊕n

j=1, j 6=iX
d′j
j

to
⊕n

j=1 j 6=iX
dj
j . I.e. it factors through ι, and ι is a right MXi-approximation of M .

As the mutation is independent on the choice of approximation, we can find our N ′M by completing
ι to a triangle

N ′M
// D

ι //M // N ′M [1].

Here we know the right side splits by [11] as the inclusion is a split monomorphism. That is,
M ∼= D ⊕ N ′M [1], which by uniqueness of decomposition in T and by definition of D means that

N ′M [1] ∼= Xd1
i , and so N ′M

∼= Xi[−1]d1 . It follows that

µ−(M;MXi) = add(MXi] ∪ {N
′
M |M ∈M})

= add
({ n⊕

j=1
j 6=i

Xj

}
∪ {Xi[−1]}

)
= add{X1 ⊕ · · · ⊕Xi[−1]⊕ · · · ⊕Xn}
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as claimed.

We apply Lemma 5.16 in the proof of Lemma 5.17 (ii).

Lemma 5.17. Let T be a Krull-Schmidt triangulated category and X = (X1, . . . , Xn) a full excep-
tional sequence in T such that X1⊕· · ·⊕Xn is a silting object. For any set of integers l1 ≤ · · · ≤ ln,
we have the following:

(i) X1[l1]⊕ · · · ⊕Xn[ln] is a silting object.

(ii) If l1 ≥ 0, then X1[l1]⊕· · ·⊕Xn[ln] and X1⊕· · ·⊕Xn are transitive under iterated irreducible
silting mutation.

Proof. For ease of notation, set S = X1[l1]⊕ · · · ⊕Xn[ln], and M := add{S}.

(i) From Remarks 5.12 and 3.5 we only need to check silt{S} = T and HomT (S, S[> 0]) = 0. We
already saw that thick{S} = thick{X1 ⊕ · · · ⊕Xn} = T . Also, for m > 0

HomT (S, S[m]) ∼=
n⊕

i,j=0

HomT (Xi, Xj [lj − li +m]),

and the direct summands where j < i vanish as Xi comes before Xj in the exceptional sequence
X. Those where j = i vanish as the Xi are exceptional objects. If j > i, then lj − li ≥ 0, so
lj − li + m > 0. As Xi and Xj are in the silting category add{X1 ⊕ · · · ⊕ Xn}, these summands
disappear as well, and S is a silting object.

(ii) We start this part by performing right mutation on S with respect to X1[l1]. That is, we find
µ−(M;MX1[l1]).

For any j > 1, we have that HomT (Xj [lj ], X1[l1]) = 0 as X1 comes before Xj in X. Then we have
by Lemma 5.16 that

µ−(M;MX1[l1]) = add{X1[l1 − 1]⊕ · · · ⊕Xn[ln]}.

Note especially that we can do this step l1 ≥ 0 times to arrive at add{X1 ⊕X2[l2]⊕ · · · ⊕Xn[ln]}.
Also, if l1 > 0, then l2 > 0 as well.

For the general step, assume there is an i ∈ {2, . . . , n} such that li−1 < li. We perform left mutation
on S with respect to the direct summand Xi[li]. For 1 ≤ j ≤ n, we have

j < i: Then li − lj > 0, and HomT (Xj [lj ], Xi[li]) ∼= HomT (Xj , Xi[li − lj ]) = 0, as Xi and Xj are in
the silting category add{X1 ⊕ · · · ⊕Xn}.

j > i: Then HomT (Xj [lj ], Xi[li]) = 0 as Xi comes before Xj in X.

So HomT (Xj [lj ], Xi[li]) = 0 for all j 6= i, and it follows from part (i) and Lemma 5.16 that

µ−(M;MXi[li]) = add{X1[l1]⊕ · · · ⊕Xi[li − 1]⊕ · · · ⊕Xn[ln]}

We now combine these two steps. By first performing the base step l1 times we obtain add{X1 ⊕
X2[l2] ⊕ · · · ⊕Xn[ln]}. Then, we do the general step for i = 2 a total number of l2 times, then l3
times for i = 3 etc. It is clear that this sequence of irreducible right silting mutation takes us from
add{S} to add{X1 ⊕ · · · ⊕Xn}, as asserted.
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Note that the assumption l1 ≥ 0 is due to the fact that this process only ever decreases the value
of li. Before moving on to strictly considering derived categories of piecewise hereditary algebras,
Lemma 5.17 is applied to show the following transitivity result:

Proposition 5.18. Let T be a Krull-Schmidt triangulated category, X = (X1, . . . , Xn) a full
exceptional sequence in T and l1, . . . , ln a sequence of integers. If X1⊕ · · · ⊕Xn and X1[l1]⊕ · · · ⊕
Xn[ln] are silting objects, then the two are transitive under iterated irreducible silting mutation.

Proof. Pick m1 ≥ max{0,−l1}, and for each 1 < i ≤ n, iteratively pick
mi ≥ max{mi−1,mi−1 + li−1 − li}. Then we have

0 ≤ m1 ≤ · · · ≤ mn

with
0 ≤ m1 + l1 ≤ · · · ≤ mn + ln.

By Lemma 5.17, X1 ⊕ · · · ⊕Xn and X1[m1 + l1]⊕ · · · ⊕Xn[mn + ln] are transitive. Furthermore,
since (X1[l1], . . . , Xn[ln]) is a full exceptional sequence in T such that X1[l1] ⊕ · · · ⊕ Xn[ln] is a
silting object, Lemma 5.17 gives us that X1[l1]⊕ · · · ⊕Xn[ln] and X1[l1 +m1]⊕ · · · ⊕Xn[ln +mn]
are transitive as well. By the transitivity of being transitive, X1[l1]⊕· · ·⊕Xn[ln] and X1⊕· · ·⊕Xn

are transitive under iterated irreducible silting mutation.

The following Lemmas are due to Krause [17] and Happel [7], respectively. They are stated here
for reference, but not proved.

Lemma 5.19. Let H be a hereditary abelian category. Then

(i) The indecomposable objects in D(H) are stalk complexes of indecomposable objects in H.

(ii) Nonzero morphisms X
f−→ Y between indecomposable objects in D(H) can only exist when

they are concentrated in either the same degree or the codomain is concentrated in degree one
lower than the domain. I.e. if

X = · · · // 0 // Xn // 0 // · · · ∈ H[n]

Y = · · · // Y n−1 // 0 // 0 // · · · ∈ H[n+ 1].

Lemma 5.20. Let A be a finite dimensional piecewise hereditary k-algebra and T = Db(modA).
Let H be a hereditary abelian category such that T ' Db(H).

(i) Assume X,Y ∈ H are indecomposable objects such that Ext1
H(Y,X) = 0. Then any nonzero

morphism X
f−→ Y is either a monomorphism or an epimorphism.

(ii) Assume X,Y ∈ H are such that their stalk complexes are exceptional objects in Db(H). If
HomH(X,Y ) 6= 0 and Ext1

H(X,Y ) 6= 0, then Ext1
H(Y,X) 6= 0.

In this next link in our chain of lemmas, we show that in this case of piecewise hereditary algebras,
there are conditions under which the Hom-Ext-sequences obtained from R HomH(−,∼) [26] are
stalk complexes.
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Lemma 5.21. Let A be a finite dimensional piecewise hereditary k-algebra and T = Db(modA).
Assume X,Y ∈ T are indecomposable objects such that HomT (X ⊕ Y, (X ⊕ Y )[> 0]) = 0. Then
HomT (X,Y [l]) = 0 for all but possibly one l ∈ Z.

Proof. As A is piecewise hereditary, we know there is an abelian hereditary category H and a

triangle equivalence T F−→ Db(H).

Since F is a triangle equivalence, it maps triangles to triangles, so for any T ∈ T , we get the
triangle

FT // FT // 0 // F (T [1])

in Db(H), which means F (T [1]) ∼= (FT )[1], so F commutes with shift.

Since X is indecomposable, so is FX, and for any n ∈ Z, we have

HomT (X,X[n]) ∼= HomDb(H)(FX,FX[n]).

From the assumption on X ⊕ Y we get that HomT (X,X[n]) = 0 for all n > 0, and by Lemma
5.19 (ii) the same is true for all n > 0. In addition, it follows from Lemma 5.20 (i) that the
endomorphism ring EndDb(H)(FX) is a division algebra, so that FX is an exceptional object in

Db(H). Clearly, this is also true for FY , and for any shifts of FX and FY .

In particular, we have by Lemma 5.19 (i) that both FX and FY are stalk complexes of indecom-
posable objects in H. We then let a ∈ Z be such that FX and FY [a] are concentrated in the same
degree, and let X ′, Y ′ ∈ H be such that FX is a stalk complex of X ′ and FY [a] is a stalk complex
of Y ′. By Lemma 5.19 (ii), we then know that

HomT (X,Y [a+ l]) ∼= HomDb(H)(FX,FY [a+ l]) ∼= ExtlH(X ′, Y ′) = 0

for all l except possibly l ∈ {0, 1}.

With the goal being to arrive at a contradiction, we assume both HomT (X,Y [a]) and
HomT (X,Y [a+ 1]) ∼= Ext1

H(X ′, Y ′) 6= 0. Then by Lemma 5.20 (ii), we have
Ext1

H(Y ′, X ′) ∼= HomT (Y [a], X[1]) 6= 0.

Since HomT (X,Y [a + 1]) 6= 0, we have that HomT (X ⊕ Y, (X ⊕ Y )[a + 1]) has a nonzero direct
summand, and is nonzero. By assumption of X and Y , this means 1 + a ≤ 0 so a < 0.

On the other hand, since HomT (Y [a], X[1]) 6= 0, we get that HomT (X ⊕ Y, (X ⊕ Y )[1− a]) has a
nonzero direct summand, and is nonzero. Again by assumption of X and Y , this means 1− a ≤ 0
so a > 0, and we arrive at our contradiction, completing the proof.

Now we will show that basic pre-silting objects in which the summands exist in a cyclic sequence
where any one summand has a nonzero morphism to the next, are indecomposable.

Lemma 5.22. Let A be a finite dimensional piecewise hereditary k-algebra and T = Db(modA).
Assume X1, . . . , Xn, Xn+1 = X1 ∈ T are indecomposable and Xi � Xj for all i 6= j. If

(i) HomT (
⊕n

i=1Xi,
⊕n

i=1Xi[> 0]) = 0, and

(ii) there are integers l1, . . . , ln ∈ Z such that for 1 ≤ i ≤ n, HomT (Xi, Xi+1[li]) 6= 0,

then n = 1.
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Proof. By (i), any l > 0 implies

HomT

( n⊕
i=1

Xi,

n⊕
i=1

Xi[l]
)
∼=

n⊕
i,j=0

HomT (Xi, Xj [l]) = 0, (20)

and so also HomT (Xi, Xj [> 0]) = 0 for all i and j. It then follows from HomT (Xi, Xi+1[li]) 6= 0
that li ≤ 0 for all i.

As A is piecewise hereditary, we know there is a hereditary abelian category H and a triangle

equivalence T F−→ Db(H). Then, as Xi is indecomposable, FXi is indecomposable in Db(H). By
Lemma 5.19 (i) this means that FXi is a stalk complex of some object Hi ∈ H, i.e. FXi ∈ H[ai]
for some ai ∈ Z. We have

HomT (Xi, Xi+1[li]) ∼= HomDb(H)(FXi, FXi+1[li]) ∼= Ext
ai+1−ai+li
H (Hi, Hi+1) 6= 0,

and as we know from Lemma 5.19 (ii), this means that ai+1 − ai + li ∈ {0, 1} for all i. Also,∑n
i=1(ai+1 − ai + li) =

∑n
i=1 li since an+1 = a1, and since we saw that li ≤ 0 for all i, we obtain

0 ≤
n∑
i=1

li =
n∑
i=1

(ai+1 − ai + li) =
n∑
i=1

(0 or 1) ≥ 0.

This means that both li and ai+1 − ai + li = 0 for all i. I.e ai+1 − ai = 0 for all i, so a1 = · · · = an.

From this we have that the FXi are all stalk complexes in Db(H) in the same degree, so

HomT (Xi, Xj [l]) ∼= HomDb(H)(FXi, FXj [l]) ∼= ExtlH(Hi, Hj)

for all i and j, and all l ∈ Z.

With the intention of arriving at a contradiction, let’s assume n > 1. By assumption (ii), we can
pick a nonzero morphism

fi ∈ HomH(Hi, Hi+1) ∼= Ext0
H(Hi, Hi+1) ∼= HomT (Xi, Xi+1)

for all 1 ≤ i ≤ n. Since the Xi are non-isomorphic, fi is not an isomorphism. Furthermore,

HomT (Xi+1, Xi[1]) ∼= Ext1
H(Hi+1, Hi) = 0

by (20), so Lemma 5.20 (i) gives fi either a monomorphism or an epimorphism.

Set f := fn · · · f1 : H1 → H1. If f is an isomorphism, H1
f1−→ H2 is a split monomorphism, and

as the Hi are indecomposable, this means that either f1 is an isomorphism or H1 = 0. Neither of
these are true, as the latter implies X1 = 0, so we conclude that f is not an isomorphism.

Assume then that all the fi are monomorphisms, so that H1
f−→ H1 is also a monomorphism. The

endomorphism ring for H1 is local since

EndH(H1) ∼= EndT (X1),

and X1 is indecomposable in the Krull-Schmidt category T , so f is nilpotent. Then fn = 0 for
some n ≥ 0, and so f = 0 by it being a monomorphism. This again means 0 = ker(f) ∼= H1, which
is not true. Hence we have a contradiction, and not all fi are monomorphisms. An analogous line
of reasoning shows that not all the fi are epimorphisms either.
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To summarize; each fi is shown to be either a monomorphism or an epimorphism, but not all are
of the same type. By the circular nature of our Xi, this means that there is some i ∈ {1, . . . , n}
where fi is an epimorphism and fi+1 is a monomorphism. The composition fi+1fi is then nonzero,
and by Lemma 5.20 (i) it is itself either a monomorphism or an epimorphism. In the first case, fi
is then both a monomorphism and an epimorphism – which is impossible. Similarly, the latter case
is also impossible as neither fi+1 is both a monomorphism and an epimorphism.

This shows it is impossible for n to be greater than 1.

Proposition 5.15 asserts that within the realm of piecewise herediatry algebras, any full exceptional
sequence gives rise to a silting object The following asserts the converse; that any silting object
gives rise to a full exceptional sequence.

Proposition 5.23. Let A be a finite dimensional piecewise hereditary k-algebra, T = Db(modA)
and let X1, . . . , Xn ∈ T be nonzero, indecomposable objects such that M := X1⊕· · ·⊕Xn is a basic
silting object in T . Then there is a permutation of the indices {X ′1, . . . , X ′n} = {X1, . . . , Xn}, such
that (X ′1, . . . , X

′
n) is a full exceptional sequence in T .

Proof. We define a partial ordering on the indecomposable summands of M as follows: Say Xi ≤ Xj

if there is a sequence Xi = Xi1 , . . . , Xim = Xj of indecomposable summands of M such that

HomT (Xia , Xia+1 [Z]) 6= 0

for all 1 ≤ a < m. Xi ≤ Xj and Xj ≤ Xk means we have two sequences as above. By connecting
them at Xj we clearly get such a sequence from Xi to Xk, showing Xi ≤ Xk. Since Xi 6= 0, we also
have Xi ≤ Xi. Finally, if we have Xi and Xj summands of M with Xi ≤ Xj and Xj ≤ Xi, we get
the setup as in Lemma 5.22, telling us that Xi = Xj . This proves ≤ gives a partial ordering.

The key to continue now is to realize that if Xi � Xj , then HomT (Xi, Xj [Z]) = 0. This includes
both the cases where Xj < Xi and the cases where the two are not related by ≤ at all. We rename
{X1, . . . , Xn} as {X ′1, . . . , X ′n} in such a way that all the Xj with Xi ≤ Xj are placed after Xi. This
way we guarantee that j < i gives HomT (X ′i, X

′
j [Z]) = 0. The properties of the partial ordering

allow us to do this in a well-defined manner. Our claim then is that X′ := (X ′1, . . . , X
′
n) is a full

exceptional sequence in T .

As usual, there is a hereditary abelian category H and a triangle equivalence T F−→ Db(H). Since
Xi ∈ T is indecomposable, there is from Lemma 5.19 (i) an ni ∈ Z and an Hi ∈ H for each i such
that FXi[ni] is isomorphic to the stalk complex of Hi concentrated in degree 0. Then

HomT (Xi, Xi[l]) ∼= HomDb(H)(FXi[ni], FXi[ni + l]) ∼= ExtlH(Hi, Hi)

Since
Ext1

H(Hi, Hi) ∼= HomT (Xi, Xi[1]) = 0,

Lemma 5.20 (i), gives us that any nonzero morphism f ∈ EndH(Hi) ∼= EndT (Xi) is either a
monomorphism or an epimorphism. As Xi is an indecomposable in the Krull-Schmidt category T ,
any non-zero f is then an isomorphism. This means any nonzero f has a multiplicative inverse
- i.e. the endomorphism ring is is a division algebra. Furthermore, by Lemma 5.21, we also get
HomT (Xi, Xi[6= 0]) = 0, and so Xi is an exceptional object.

By construction, X′ is then an exceptional sequence, and as thick{
⊕n

i=1X
′
i} = thick{M} = T , it

is also shown to be full.

95



In order do make some notation more compact, we introduce a simple naming convention.

Definition 5.24. Let T be a Krull-Schmidt triangulated category, and X = (X1, . . . , Xn) an
exceptional sequence in T . We define

[[X]] := X1 ⊕ · · · ⊕Xn.

Using this new notation, an exceptional sequence X is full if thick{[[X]]} = T .

Lemma 5.25. Let A be a finite dimensional piecewise hereditary k-algebra, T = Db(modA) and
X = (X1, . . . , Xn) ∈ exp T be such that [[X]] is a silting object. Then, for any 1 ≤ i < n, there
exist l,m ∈ Zn such that [[(σi, l)X]] and [[(σ−1

i ,m)X]] are iterated irreducible silting mutations of
[[X]].

Proof. We fix an i ∈ {1, . . . , n− 1} and apply Lemma 5.21 to Xi ⊕Xi+1 to we get that
HomT (Xi, Xi+1[a]) 6= 0 for at most one a ∈ Z. Since [[X]] is silting, a ≤ 0. In the case where such
an integer does not exist, we set a := 0.

For any j ∈ {1, 2, . . . , i − 1} and any l ∈ {a, a + 1, . . . , 0}, there is an integer bjl ≥ 0 such that
HomT (Xj , Xi+1[l+ n]) = 0 for all n ≥ bjl. By letting −b := max{bjl} ≥ 0, we then have an integer
b ≤ 0 such that

HomT (Xj [b], Xi+1[l]) = 0 (21)

for all 1 ≤ j < i and all a ≤ l ≤ 0. Then, we define the full exceptional sequence Y as

Y := (X1[b], . . . , Xi−1[b], Xi, . . . , Xn),

and note that [[Y]] is a silting object by Lemma 5.17 (i). The first goal is to show that [[Y]] and
[[X]] are transitive under iterated irreducible silting mutation.

By using the sequence of integers (−b, . . . ,−b) of length n, we get by Lemma 5.17 that [[Y]] and

X1 ⊕ · · · ⊕Xi−1 ⊕Xi[−b]⊕ · · · ⊕Xn[−b]

are transitive under iterated irreducible silting mutation. If it just so happens that −b = 0, we are
done. If, however −b > 0, we get by Lemma 5.17 that

X1 ⊕ · · · ⊕Xi−1 ⊕Xi[−b]⊕ · · · ⊕Xn[−b]

and
[[X]] = X1 ⊕ · · · ⊕Xi ⊕ · · · ⊕Xn}

are transitive under iterated irreducible silting mutation. Combine these, and we get that [[X]] and
[[Y]] are transitive under iterated irreducible silting mutation. Next, set

Z := (X1[b], . . . , Xi−1[b], Xi, Xi+1[a], Xi+2, . . . , Xn),

so that
σiZ := (X1[b], . . . , Xi−1[b], RXi(Xi+1[a]), Xi, Xi+2, . . . , Xn).

The next goal is to show that [[Z]] and [[Y]] are transitive under iterated irreducible silting mutation.
Note that if a = 0, [[Z]] = [[Y]], and we are done. Assume a < 0, and consider the right mutation
µ−Xi+1

(add{[[Y]]}). We have that

HomT (Xj [b], Xi+1) = 0
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for all j < i,
HomT (Xi, Xi+1) = 0

by assumption that a < 0, and
HomT (Xj , Xi+1) = 0

for j > i+ 1 as Y is an exceptional sequence. Thus it follows from Lemma 5.16 that

µ−Xi+1
(add{[[Y]]}) = add{X1[b]⊕ · · · ⊕Xi−1[b]⊕Xi ⊕Xi+1[−1]⊕ · · · ⊕Xn}

If a < −1, it is possible to repeat the process – mutating the new category with respect to Xi+1[−1].

Let µ
−(n)
i+1 (add{[[Y]]}) be the result after n iterated irreducible silting mutations done with respect

to the i + 1’st summand. Then it is clear that µ
−(−a)
i+1 (add{[[Y]]}) = add{[[Z]]}, so that [[Y]] and

[[Z]] are transitive under iterated irreducible silting mutation.

We perform one additional mutation, to obtain µ−Xi+1[a](add{[[Z]]}). Set

M := X1[b]t1 ⊕ · · ·Xi−1[b]ti−1 ⊕Xti
i ⊕Xi+1[a]ti+1 ⊕Xti+2

i+2 ⊕ · · · ⊕X
tn
n

to be a general object in add{[[Z]]}, and define D to be the object

D := X1[b]t1 ⊕ · · · ⊕Xti
i ⊕

(∐
l∈Z

(HomT (Xi[l], Xi+1[a])⊗k Xi[l])
)ti+1

⊕Xti+2

i+2 ⊕ · · · ⊕X
tn
n

obtained from M by interchanging every copy of Xi+1[a] by
∐
l∈Z(HomT (Xi[l], Xi+1[a])⊗k Xi[l]).

Since HomT (Xi[l], Xi+1[a]) = 0 for all l 6= 0, we get that

D = X1[b]t1 ⊕ · · · ⊕Xi−1[b]ti−1 ⊕Xti
i ⊕

(
HomT (Xi, Xi+1[a])⊗k Xi

)ti+1 ⊕Xti+2

i+2 ⊕ · · · ⊕X
tn
n

Note that HomT (Xi, Xi+1[a]) is a finite-dimensional k-vector space, say HomT (Xi, Xi+1[a]) ∼= ks.
This means that

HomT (Xi, Xi+1[a])⊗k Xi
∼= ks ⊗k Xi

∼= Xs
i ,

and so D ∈ add{[[Y]]}Xi+1[a]. Furthermore, let D
f−→M be f = ι1⊕· · ·⊕ ιi⊕ϕti+1 ⊕ ιi+2⊕· · ·⊕ ιn.

I.e. the inclusion into the biproduct for all summands except no. i + 1, where we use the second
morphism in the triangle

RXi(Xi+1[a]) // HomT (Xi, Xi+1[a])⊗k Xi
ϕ // Xi+1[a] // RXi(Xi+1[a])[1]. (22)

from the definition of RXi(Xi+1[a]). We show this is a right add{[[Y]]}Xi+1[a]-approximation of M .
Let

D′ := X1[b]t
′
1 ⊕ · · ·Xi−1[b]t

′
i−1 ⊕Xt′i

i ⊕X
t′i+2

i+2 ⊕ · · · ⊕X
t′n
n

be some object in add([[Y]])Xi+1[a], and D
f ′−→M any morphism. As before

HomT (Xj [b], Xi+1[a]) = 0

for 1 ≤ j < i by (21), and
HomT (Xj , Xi+1[a]) = 0
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for j > i+ 1 by [[X]] silting. If a = 0 and HomT (Xi, Xi+1[a]) = 0, then D is a summand of M and
f ′ clearly factors through f . Else, HomT (Xi, Xi+1[a]) 6= 0, and we see that

D
f //M

D′

g

OO

f ′

==

commutes, where g = ι1 ⊕ · · · ιi−1 ⊕ (f ′ ⊗k −)⊕ ιi+2 ⊕ · · · ⊕ ιn. Thus f is a right add{[[Y]]}Xi+1[a]-
approximation of M . Then by Lemma 1.6, ϕ is a right add{[[Y]]}Xi+1[a]-approximation of Xi+1[a],
and by (22), NM = RXi(Xi+1[a])ti+1 . This means that

µ
−(−a+1)
i+1 (add{[[Y]]}) = add{[[σiZ]]}

so [[X]] and [[σiZ]] are transitive under iterated irreducible silting mutation. Let

l := (b, . . . , b, 0, a, 0, . . . , 0).

Then

(σi, l)X = σi(X1[b], . . . , Xi−1[b], Xi, Xi+1[a], Xi+2, . . . , Xn)

= σiZ,

and the proof is half complete. The other half is dual.

We now have the necessary tools to prove the main result:

Theorem 5.26. Let A be a finite dimensional piecewise hereditary k-algebra and T := Db(modA).
Then iterated irreducible silting mutation on silt T is transitive.

Proof. We know there is an finite dimensional hereditary or -canonical algebra Λ such that
T ' Kb(P(mod Λ)), and Λ is a silting object in Kb(P(mod Λ)) by Lemma 2.2. Thus by Proposition
3.6, we only need to consider the basic silting objects in T . To that end, let

T := X1 ⊕ · · · ⊕Xn

and
U := Y1 ⊕ · · · ⊕ Yn

be basic silting objects in T , these direct sums being their respective basic representations. We
permute the indices as per Proposition 5.23 so that X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn)
are full exceptional sequences. By Theorem 5.14 Bn × Zn acts transitively on exp T , so for some
(σ, l) ∈ Bn × Zn, we have (σ, l)X = Y. The braid σ ∈ Bn is a product of the elementary braids
σ±1 , . . . , σ

±
n , say

σ = σ±im · · ·σ
±
i1
.

By Lemma 5.25, there is an r1 ∈ Zn such that [[(σ±i1 , r1)X]] is an iterated irreducible silting mutation

of [[X]]. Now (σ±i1 , r1)X is a full exceptional sequence in T with [[(σ±i1 , r1)X]] a silting object. Thus

by Lemma 5.25 again there exists an r2 ∈ Zn such that [[(σ±i2 , r2)(σ±i1 , r1)X]] = [[(σ±i2σ
±
i1
, r2+r1)X]] is
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an iterated irreducible silting mutation of [[(σ±i1 , r1)X]] – i.e. an iterated irreducible silting mutation
of [[X]]. We keep going, and get that there are r1, . . . , rm ∈ Zn such that

[[(σ, r)X]] := [[(σ±im · · ·σ
±
i1
, rm + · · ·+ r1)X]]

is an iterated irreducible silting mutation of [[X]]. We also have that

(σ, r)X = (σσ−1σ, r− l + l)X = (0, r− l)Y = (r− l)Y,

and by Proposition 5.18 [[(r− l)Y]] and [[Y]] are transitive under iterated irreducible silting muta-
tion. This completes the chain, and T = [[X]] and U = [[Y]] are transitive under iterated irreducible
silting mutation.
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A Appendix

The following is an important result which lets us work with our derived categories using chain
maps in the homotopy category. It is shown here as it will allow us to work with examples using
AR-theory.

Theorem A.1 (Equivalence of Db(mod Λ) and Kb(P(mod Λ)). Let Λ be a finite dimensional algebra
over a field k. Then

Db(mod Λ) ' K−,b(P(mod Λ)).

As we work directly with complexes, we will use the notation X · for objects which are explicitly
complexes. This to avoid confusion. Note that in the case where Λ is in addition hereditary,
K−,b(P(mod Λ)) = Kb(P(mod Λ)).

Proof. To show this we find a functor F : K−,b(P(mod Λ)→ Db(mod Λ) which is full, faithful and
dense.

The first step is to show that any object of Db(modΛ) is isomorphic to a complex of projectives,
bounded to the right, and bounded in homology in both directions. We show this by a modified
induction proof: Let A· ∈ Db(modΛ). We assume A· is of the form

A· = · · · // An−2 dn−2
// An−1 dn−1

// An
dn // Pn+1 dn+1

// Pn+2 // · · · .

For P i projective. As 0 is projective, this covers both the situation where An is the last nonzero
term, and the term where there are more nonzero, but projective, terms to the right of An.

We now produce a quasi-isomorphism from a new complex, replacing two terms, as follows: By
taking the projective cover Pn � An, we get the commutative diagram

p(A·) :=

f ·

��

· · · // An−2

(
dn−2

0

)
//

1
��

X
( 0 1 ) //

( 1 0 )
��

Pn
dn◦πn

//

πn

����

Pn+1 dn+1
//

1
��

Pn+2 //

1
��

· · ·

A· = · · · // An−2 dn−2
// An−1 dn−1

// An
dn // Pn+1 dn+1

// Pn+2 // · · ·

Where X is the pullback

X = An−1
∐
An

Pn =
{

(a, p) ∈ An−1 ⊕ Pn | dn−1(a) = πn(p)
}
.

The map
(
dn−2

0

)
is the unique map such that the left square commutes and the top composes to

0, by the pullback property of X.

Clearly, for i ≥ n+ 2, the homologies of these complexes match up, and the identity on these terms
induce identity on homology. This is also true for i ≤ n − 3. For n − 2 ≤ i ≤ n + 1, we check
manually.

Hn−2(p(A·)) = ker
(
dn−2

0

)
/ im(dn−3).

ker
(
dn−2

0

)
=
{
a ∈ An−2 | ker

(
dn−2(a)

0

)
= ker ( 0

0 )
}
∼= ker(dn−2).

Then Hn−2(p(A·)) = ker(dn−2)/ im(dn−3) = Hn−2(A·), and the induced map is the identity map.
That is, Hn−2(f ·) is an isomorphism.
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Next we have
Hn−1(p(A·)) = ker( 0 1 )/ im

(
dn−2

0

)
.

We have:
ker( 0 1 ) = {(a, b) ∈ X | (0, b) = (0, 0)}

∼=
{
a ∈ An−1 | dn−1(a) = πn(0) = 0

}
= ker(dn−1)

and
im
(
dn−2

0

)
=
{(

dn−2(a)
0

)
| a ∈ An−2

}
∼=
{
dn−2(a) | a ∈ An−2

}
= im(dn−2).

Thus
Hn−1(p(A·)) = ker( 0 1 )/ im

(
dn−2

0

) ∼= ker(dn−1)/ im(dn−2) = Hn−1(A·).

The induced map
ker( 0 1 )/ im

(
dn−2

0

)
→ ker(dn−1)/ im(dn−2),

given by
(a, 0) + im

(
dn−2

0

)
7→ πn(p) + im(dn−1)

is well-defined, injective and surjective, and so Hn−1(f ·) is an isomorphism.

Hn(p(A·)) = ker(dn ◦ πn)/ im( 0 1 ).

The induced map Hn(f) : ker(dn ◦ πn)/ im( 0 1 ) → ker(dn)/ im(dn−1) is given by p + im( 0 1 ) 7→
πn(p) + im(dn−1).

πn(p) + im(dn−1) = 0 ⇔ πn(p) ∈ im(dn−1)
⇔ πn(p) = dn−1(a) for some a ∈ An−1

⇔ (a, p) ∈ X for some a ∈ An−1

⇔ p ∈ im( 0 1 )
⇔ p+ im( 0 1 ) = 0,

so its kernel is 0. Also, πn is surjective, so ∀a ∈ ker(dn) ∃p ∈ Pn with a = πn(p). Furthermore
dn(a) = (dn ◦ πn)(p) = 0 implies p ∈ ker(dn ◦ πn).

So for any s + im(dn − 1) ∈ ker(dn)/ im(dn−1) there is a p + im( 0 1 ) ∈ ker(dn ◦ πn)/ im( 0 1 ) such
that the first is mapped to the second by Hn(f ·).

I.e Hn(f ·) is an isomorphism.

Hn+1(p(A·)) = ker(dn+1)/ im(dn ◦ πn).

The image is

im(dn ◦ πn) =
{
p ∈ Pn+1 | p = dn(πn(p′)) for some p′ ∈ Pn

}
=
{
p ∈ Pn+1 | p = dn(a) for some a ∈ An

}
= im(dn).

So Hn+1(p(A·)) = ker(dn+1)/ im(dn) = Hn+1(A·), and the induced morphism Hn+1(f ·) is the
identity - an isomorphism.
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Thus we have proved, by brute force, that p(A·)
f−→ A· is a quasi-isomorphism.

Repeat this process sequentially to replace all terms in A· by projective objects. Note that at the
leftmost term of A·, this process becomes the process of taking projective resolution. There is
thus no guarantee that the complex of projectives will ever terminate as we move leftwards. The
complex will however be bounded in homology by its quasi-isomorphism to A·. In the case where
our algebra has finite global dimension, this process will terminate, yielding a bounded complex of
projectives quasi-isomorphic to A·.

Now let P · ∈ K−,b(P(mod Λ)). Define the functor F to D−(mod Λ) by F (P ·) = P ·. That is, the
obvious functor taking a morphism to its corresponding roof.

This induces, by [22] and by our subcategories being full, an isomorphism

HomK−,b(P(mod Λ))(P
·, Q·)→ HomDb(mod Λ)(P

·, Q·).

Hence our functor is fully faithful.

F needs not be dense in D−(mod Λ). However, let A· ∈ Db(mod Λ). Then we have p(A·) ∈
K−,b(P(mod Λ)), and so ∀A· ∈ Db(mod Λ) ∃p(A·) ∈ K−,b(P(mod Λ)) such that F (p(A·)) = p(A·) ∼=
A·. We have an equivalence

F : K−(P(mod Λ))→ D−(mod Λ),

such that the restriction of F to K−,b(P(mod Λ)) is dense in Db(mod Λ). This proves the statement.
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