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Abstract

One of the main goals of image restoration is the ability to extract information from cor-
rupted sources of image data. The main goal of this thesis is to investigate one powerful
method of image restoration, and that is using variational algorithms to optimize a func-
tional. High-quality images are needed in a wide variety of practical applications so that
appropriate information can be extracted from them, including in medical imaging, satel-
lite imaging, astronomy, sonar, radar, among other applications. These images tend to
have various sources of noise and other imperfections, and we investigate different ways
to model and correct this.

In this thesis, we will make use of a modified Chambolle-Pock algorithm, which was
originally developed for image denoising, but will now being used for more general appli-
cations, including super-resolution. This algorithm uses total variation and regularization
to provide a stable solution to an otherwise highly unstable problem. In this thesis, we
will investigate these types of problems in depth. We will further investigate this by im-
plementing the primal-dual algorithm on images both for deblurring as well as for image
super-resolution.
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Sammendrag

Hovedformålet med bildegjenoppretting er å kunne hente informasjon fra ødelagte kilder
til bildedata. Hovedmålet med denne oppgaven er å undersøke en kraftig metode for
bildegjenoppretting, og det er å bruke variasjonsalgoritmer for å optimalisere en funksjonell.
Bilder av høy kvalitet er nødvendig i et bredt spekter av praktiske applikasjoner, slik at rel-
evant informasjon kan hentes fra dem, blant annet i medisinsk bildebehandling, satellitt-
bildebehandling, astronomi, sonar og radar. Disse bildene har en tendens til å ha forskjel-
lige støykilder og andre mangler, og vi undersøker forskjellige måter å modellere og å rette
på dette.

I denne masteroppgaven vil vi bruke en modifisert Chambolle-Pock-algoritme, som op-
prinnelig ble utviklet for å fjerne støy fra bilder, men vil nå brukes til mer generelle ap-
plikasjoner, som for eksempel superoppløsning. Denne algoritmen bruker total variasjon
og regularisering for å gi en stabil løsning på et problem som er ellers ustabilt. Vi vil
undersøke og gi eksempler på disse typer problemer. Vi vil også undersøke dette ved
å implementere den primale-duale algoritmen på bilder både for å skarpe bilder og for
superoppløsning av bildene.

iii



iv



Preface

This thesis fulfills the requirement for the International Master’s Degree in Mathematical
Sciences, with a specialization in Applied Mathematics. It was completed in collaboration
with my supervisor Markus Grasmair, Associate Professor in the Department of Mathe-
matical Sciences at the Norwegian University of Science and Technology in the city of
Trondheim, Norway.

I would like to express gratitude to the many people that have helped me on this journey.
Thanks to Markus Grasmair for providing helpful insights and feedback into this project,
as well as for proposing this interesting problem. Many thanks are also due to my family
back home for their great support as I undertook this journey. I would also like to extend a
great thanks to all of the Norwegian people for welcoming me into their community, and
enhancing my time here.

Special thanks to Orbit NTNU, a student-run organization at this university that will be
launching a selfie-taking CubeSat into low-earth orbit in 2020. I am forever grateful to
them for including me in their many adventures and projects, and for providing me with
a lot of great experience. Congratulations on the recent successful balloon mission, and
thanks for allowing me to be a part of that team and use images obtained from that satellite
balloon test in this master thesis.

v



vi



Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents viii

List of Figures ix

Abbreviations x

1 Introduction 1

2 Image Restoration 3
2.1 Mathematical Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Discrete Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Image Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Image Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Gaussian Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Image Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Down-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Up-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Total Variation and Variational Calculus 13
3.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Discrete Total Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Discrete Divergence Theorem . . . . . . . . . . . . . . . . . . . 16

vii



4 Primal-dual Optimization Methods 19
4.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Chambolle-Pock Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Denoising Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Applications to General Image Restoration . . . . . . . . . . . . . . . . . 25

4.4.1 Conjugate Gradient Descent . . . . . . . . . . . . . . . . . . . . 26
4.4.2 Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Numerical Results 29
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Image super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 L-Curve Method for selecting λ . . . . . . . . . . . . . . . . . . 35

6 Conclusion 39

References 41

Appendix A 43

Appendix B 53

viii



List of Figures

2.1 Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Gaussian blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Down-sampling operator . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Down-sampled images . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Upsampling Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Denoising Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Deblurring Demo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Deblurring Demo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Super-resolution Demo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Super-resolution Demo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Tau selection demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 L-curve log-log plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 L-curve Demo 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 L-curve Demo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



Abbreviations

RGB = Red, Green, Blue
ROF = Rudin-Osher-Fatemi
TV = Total Variation

x



Chapter 1
Introduction

Whenever cameras take images, or when digital images are transferred or compressed,
there is typically some blurring, noise, or other loss of information. There are various
ways that one can attempt to restore this loss of information, including image sharpening,
wavelet transforms, and optimization with regularization. The reason we want to do this is
so that we can restore these lost features to a recognizable form. This has many practical
applications in a wide variety of fields, including photography, medical imaging, satellite
imagery, and computer vision.

We seek to process raw image data in order to restore some of their finer characteristics
that may have been lost due to natural noise or other processes on the image. The problem
then is to reverse what we call ”camera artifacts” to produce the best possible original im-
age. From a practical standpoint, this enables us to restore the image to make its original
features more easily recognizable. From a linear algebra standpoint, this is not a well-
posed problem, but as we will see in later chapters, we can get some results if we use
regularization and optimization techniques. It is assumed that the reader is familiar with
standard linear algebra notation and operators.

In Chapter 2, we will look at the mathematical formulations for these types of problems.
Some examples of artifacts or other known operations that need to be reversed are static
noise, blurring, or down-sampling. We start out by describing the mathematical proper-
ties of an image, from both a continuous and discrete perspective. We will further define
the noise, blurring, down-sampling, and up-sampling operators in a mathematically robust
way. In Chapter 3, we will discuss total variation concepts from a theoretical perspective
and investigate certain properties of the gradient and divergence. In Chapter 4, we inves-
tigate saddle-point optimization problems and look at ways to solve these problems using
convex optimization techniques. Here we must also lay a groundwork for convex analysis.
For the purposes of this thesis, we will mostly consider grey-scale images. We will then
describe some of the problems we wish to look at in this thesis in Chapter 5. Implemented
Matlab functions will be appended to Appendix A. Test cases are given in Appendix B.
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Chapter 2
Image Restoration

2.1 Mathematical Images
In the continuous bounded domain Ω ⊂ Rn, we will define a continuous image to be a
function u : Ω → Rd from a spatial domain of dimension n to an output range of dimen-
sion d. This is not to say that the function is necessarily continuous, but that it is defined
over a continuous domain of real numbers. We should not confuse this with the more
common definition of an image, which is the mapping of a subset of a functional domain.
In the case of common gray-scale images, we use n = 2, d = 1. That is to say the image
function maps points in R2 to a single brightness value in R. For RGB color images, we
have n = 2, d = 3, and the output value is a vector which contains integer values for the
three basic color channels (RGB). These types of images are commonly used in photog-
raphy to detail a visual scene. Some examples of higher-dimensional images may include
medical scans, computer graphics, subsurface imaging for oil exploration or seismic data,
and so on. For simplicity, we restrict ourselves to two spacial dimensions and assume that
Ω is a rectangular domain [0, x]× [0, y].

2.1.1 Discrete Images

To discretize an image, and thus make it something we can perform computations with, we
sample the image in an evenly distributed manner. This type of discretization is generally
not the same as that performed by a camera, which relies on taking the averages over a
small area. This is therefore more of a theoretical construction. Later on, we will see
that this is essentially analogous to down-sampling from an infinite resolution. We impose
these sample points onto a rectangular sampling grid, at well defined intervals of length
∆x and ∆y along the respective axes, and call those values pixels. We specify a resolution
m × n, which tells us the number of pixels in each of the respective columns and rows,
and choose ∆x and ∆y accordingly to be the continuous spacing between each discrete
interval. We then impose the values of these pixels into a rectangular matrix U ∈ Rm×n.

3



Chapter 2. Image Restoration

We sample the function as follows, where we assume that the origins are identical:

Ui,j = u(i∆x, j∆y) (2.1)

In the case of color images, we end up with a m × n × 3 array, where the red, blue, and
green components each have their own separatem×nmatrices. In this case, each channel
of the RGB color scheme is also governed by this equation (2.1).

2.2 Image Noise
The problem of image denoising arises from the fact that many cameras and other imaging
instruments introduce some small errors into the image, known as noise. This can be
caused by high temperature, radiation, sensor vibration, or other physical considerations
that affect the camera. This is usually modelled as what we call Gaussian noise, where
the amount of noise disturbance in each pixel of the image is assumed to be modelled by
the normal distributed. The following probability function is generally used to model this
noise, where x is a random variable.

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.2)

The standard deviation σ controls how much variance the noise will have, and the mean
value µ represents the average noise. In the context of image processing, we will generally
assume µ = 0. The noise is modelled additively by the equation V = U+NG, where U is
an unknown noise-free image, and V is the known noisy data. The array NG is randomly
Gaussian distributed, where each element of is an independent Gaussian variable, and
is of the same size as V . In later chapters we will investigate the use of mathematical
optimization techniques and total variation to minimize this noise, and use this to estimate
the noise-free image u. See Figure 2.1 for an example of an artificially generated noisy
image with zero mean. The standard deviation in this figure is σ = 40 while the values
range from −177 to 185.

Figure 2.1 Left: Original 360x480 Image Right: Gaussian noise added with σ = 40
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2.3 Image Operations

2.3 Image Operations
The problem of deblurring is very similar to that of denoising. Blurring can be caused by
many of the same things related to noise, including motion and vibration as well as lens
focus and the atmosphere. In practice, we will typically see a combination of both blurring
and noise. The main difference is that the values of any given pixel can be affected by the
values of nearby pixels. We model this blurring operation of a discrete image mathemat-
ically by convoluting a small matrix with the larger image. This convolution operation is
mathematically formulated as follows.

2.3.1 Convolution
Suppose we have a continuous image u(x, y) on a rectangular domain Ω. Then define k to
be another continuous function where the following is satisfied:∫∫

Ω

k(p, q)dpdq = 1 (2.3)

The function k is also known as a kernel, and should also satisfy the following property.∫∫
Ω

|k(p, q)|dpdq ≤ K (2.4)

This makes the kernel much nicer to work with and will allow us to better define the
convolution. The convolution of u with the kernel k is defined in the following way.

k ∗ u(x, y) =

∫∫
k(p, q)u(x− p, y − q)dpdq (2.5)

If Ω is a bounded domain, then it can either be extended with zeros, or else each point can
be reflected across the boundary so that u(x− p, y− q) is well-defined. In the case where
u is represented as a discrete image, or a matrix, then we can rewrite the convolution in
the following matrix notation, where the edges of u are padded with zeros or other values
as needed.

(k ∗ u)ij =
∑
p

∑
q

(kpqui−p,j−q) (2.6)

The matrix k is a convolution matrix corresponding to its continuous counterpart, where
the center of the matrix represents the origin of the continuous domain of the kernel func-
tion. This kernel will generally be represented as a relatively small matrix whose elements
are normalized such that they sum to 1. The reason for this, as well as for the condition
(2.3) is so that the image values don’t get changed in scale. Additionally, we note that the
convolution operator is self-adjoint, that is to say:

〈k ∗ x, y〉 = 〈x, k ∗ y〉 (2.7)

This follows directly from the definitions, and because this convolution with k is a sym-
metric operator.

5



Chapter 2. Image Restoration

2.3.2 Gaussian Blur
The simplest type of blurring kernel we can implement is the averaging kernel. In this
case, all the values of the kernel are the same, and the kernel is normalized so that its total
sum is 1. If we convolute this type of kernel with itself a few times, then the Central Limit
Theorem suggests that we will approach what is called a Gaussian kernel, which is more
widely applicable [1]. The following suggests an example of this:

B =
1

9

1 1 1
1 1 1
1 1 1

 ⇒ B∗B =


0.0123 0.0247 0.0370 0.0247 0.0123
0.0247 0.0494 0.0741 0.0494 0.0247
0.0370 0.0741 0.1111 0.0741 0.0370
0.0247 0.0494 0.0741 0.0494 0.0247
0.0123 0.0247 0.0370 0.0247 0.0123


See Figure 2.2 for an example of this type of kernel. In the figure, the blurring kernel
is a symmetric 11x11 Gaussian matrix, where the distance from the center represents a
normally distributed variable. This type of blurring kernel may be used for smoothing or
pre-processing an image, but in our case we may also consider it as a description or source
of natural blur, which we must then unblur. Assume that we are given v and k such that.
The problem is then to solve the following equation for u

v = k ∗ u (2.8)

We may also assume that there is some additive noise, in which case the model becomes

v = k ∗ u+ n (2.9)

In Chapter 5, we will explore some examples of these types of problems. In Chapter 4, we
will describe a way to solve this problem by optimizing.

Figure 2.2 Left: Original 360x480 Image Right: Gaussian blur with σ = 40

6



2.4 Image Super-resolution

2.4 Image Super-resolution
The problem of image super-resolution can be described as follows. Suppose we have
several different images of the same scene, or a video, taken from slightly different posi-
tions. We then take several different frames or still images, and then plot them together on
a higher resolution grid. If we look at Figure 2.4, we can imagine that one of the images
on the right is taken from one position, while the other image is taken from a slightly dif-
ferent position. We must then optimize to choose a higher resolution image that best fits
this solution, and later we will use total variation to accomplish this.

2.4.1 Down-sampling
In order to mathematically formulate this problem, let us begin by defining the operator
AJ as the down-sampling operator on a point set J by a scaling factor of F . The set J
consists of integer shifts (i, j) in the discrete image, where 1 ≤ i, j ≤ F . This set must
also have no duplicate values. For our purposes, we will assume M and N to be evenly
divisible by F , though this may not always be the case. We denote the k-th shift vector
in the set by J(k). That is to say, the operator AJ : RM×N → RM ′×N ′×|J| maps a full
M × N image to a stack of |J | lower-resolution images. We mathematically formulate
this operation as follows:

(AJu)i,j,k = up,q (2.10)

where p and q are indices in the larger image that we wish to down-sample:

p = [J(k)]x + (i− 1)F (2.11)
q = [J(k)]y + (j − 1)F (2.12)

where [J(k)]x and [J(k)]y are respectively the x and y components of the point J(k).
We can easily observe that the operator AJ is a linear map. This is due to the following
observations. If we scale the right-hand side of (2.10) by a constant c ∈ R, then the same
scaling happens to the left-hand side, and we get the following (2.13). Furthermore, if
we split the operand into a sum of two matrices, then we end up with the sum of two
down-sampled image sets.

AJ(cu) = c(AJu) AJ(u+ v) = (AJu) + (AJv) (2.13)

See Figure 2.4 for an illustration of this operator. Here we have an image on the left that
gets down-sampled to two smaller images on the right, where the pixels are represented by
letters. We will also see an example of a down-sampled image, with the resolution made
intentionally low (36× 48) so as to see the effect that this operator has. Here

7



Chapter 2. Image Restoration

Figure 2.3 Down-sampling operator AJ , where J = {(1, 1), (3, 3)}, F = 4

Figure 2.4 Original and down-sampled images

8



2.4 Image Super-resolution

2.4.2 Kronecker Product

Before we introduce the up-sampling operator, it is useful to know about the Kronecker
product of two matrices. What this operation does is take the product of every possible
entry of A multiplied by every possible entry of B. The Kronecker product of two real
matrices A ∈ Rm×n and B ∈ Rp×q is defined as the following mp× nq matrix, A⊗B:

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 (2.14)

where A ∈ Rm×n and B ∈ Rp×q are given as follows:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 B =


b11 b12 . . . b1q
b21 b22 . . . b2q

...
...

. . .
...

bp1 bp2 . . . bpq

 (2.15)

Now let us define the matrix (1)i′j′ as the following m × n matrix for 1 ≤ i′ ≤ m and
1 ≤ j′ ≤ n:

[(1)i′j′ ]ij =

{
1 when i = i′ & j = j′,

0 otherwise.
(2.16)

This essentially tells us that only the (i′, j′) entry of this matrix is 1, while all other entries
are zero. When we define the up-sampling operator, this matrix will be the second operand
of the Kronecker product.

2.4.3 Up-sampling

The up-sampling operator A′J : RM×N×|J| → RMF×NF is defined as the operator where
a stack of images such as the one on the right of Figure 2.4 is inserted into a larger grid at
regularly spaced intervals, such as the one on the left, with zeros in all other spaces. This
can be represented mathematically as follows. Suppose we have a set of images (or video)
v, represented as a 3D-array. Let (1)J(k) be the F × F matrix as defined in the previous
paragraph, where F is our scaling factor. Then the up-sampling operator A′J of v with
respect to the set J is defined as follows:

(A′Jv) =

|J|∑
k=1

v ⊗ (1)J(k) (2.17)

where J(k) is the k-th point in the ordered set J . This can also be thought of as an inser-
tion operation, where we insert each of the J images into their proper place on the grid.

9



Chapter 2. Image Restoration

Notice that this operator A′J is both a right-inverse and adjoint of the down-sampling
operator AJ . This is due to the following observation, as well as the basic definitions of
each of these operators:

AJ(A′Jv) = AJ

|J|∑
k=1

v ⊗ (1)J(k) = v (2.18)

Though these computations can easily get very messy if we tried to write them out, one can
look at the definitions to get an intuition of why this is the case. We are simply inserting the
values of v into a large matrix, and then resampling those values from the same points that
they were inserted into. On the other hand, the up-sampling operator is not a left-inverse
of AJ , due to the inherent information loss in the down-sampling operation, unless the set
J consists of all possible shift vectors, i.e. |J | = F 2. The up-sampling operatorA′J is also
in fact the adjoint operator to the down-sampling operator AJ .

〈AJu, v〉 = 〈u,A′Jv〉 (2.19)

This is also an intuitive result, because if we reduce these inner products to sums, we
would be able to see that the non-zero terms are all the same. We provide an example of
this operator with Figure 2.5.

2.4.4 Super-resolution
In Chapters 4 and 5, we will consider the operatorAJ as an operator that we wish to invert.
Here, we have v as a given stack of images, and the set J will be chosen visually based
on the actual image data. This is made easier by performing an edge-detection operation
on each of the image frames before-hand. Edge detection is essentially a way of detecting
steep changes or discontinuities in an image, and in our case is accomplished by perform-
ing a convolution of the image with a heavily weighted kernel. A slightly more compli-
cated method of accomplishing this is by estimating the optical flow to determine which
direction the scene is moving. For additional information about image super-resolution,
see [8]. We will try to find an unknown u ∈ RM×N such that the following equation is
approximately solved:

AJu = v (2.20)

which is not a very well defined system, so we should instead minimize the following
functional:

‖AJu− v‖2L2 → minu (2.21)

Later on, we will also introduce regularization and total variation, which in practice is
necessary due to the ill-posedness of this problem. The norm of the 3-D array of images
is defined to be the Euclidean norm of the vector of norms given by each individual layer.
Simply stated, this is the square root of the sum of all possible entries in the array. Note that
these methods assume that when we down-sample, we are actually sampling one single
pixel from the unknown higher resolution image. In practice this will likely not be true,
though in theory it will still provide a good basis for this problem.

10



2.4 Image Super-resolution

Figure 2.5 Top four images: Low-resolution images at their indicated shifts
Bottom-left: Upsampled image Bottom-right: Original.
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Chapter 3
Total Variation and Variational
Calculus

3.1 General Theory

Consider that we have some image u. In this chapter, we will discuss the mathematics of
total variation. This is a particularly useful construct for image optimization as it serves
as a nice regularization for solving many inverse problems in image restoration. It has use
in a wide variety of applications, and tends to have a smoothing effect on the images that
it restores [3]. In comparison to wavelet-based methods which rely on noise thresholding,
total variation has the advantage of being more intuitive, and better suited to use in natural
smooth images. Thus we will use this method of solving deblurring and denoising prob-
lems in later chapters. Here we will mathematically formulate total variation as well as the
gradient and divergence, and show some important results from this.

In the continuous case, consider that we have a continuous 2D image function u : Ω→ R,
where Ω ⊂ R2. The total variation is defined as follows [2]:

R(u) = sup

{∫∫
Ω

u(x, y)divω(x, y)dxdy : ω ∈ C1
0 (Ω;R2), |ω(x, y)| ≤ 1 ∀(x, y) ∈ Ω

}
(3.1)

where we have zero boundary conditions on Ω, where ω : R2 → R2 is a vector-valued
function, and where divergence is defined in the following notation:

divω = ∇ · ω =
∂ωx
∂x

+
∂ωy
∂y

(3.2)
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Chapter 3. Total Variation and Variational Calculus

3.1.1 Divergence Theorem
One particularly useful fact in regards to this is that the divergence and the negative gradi-
ent operators are adjoint of one another. That is to say,

〈u,−divω〉L2 = 〈∇u, ω〉L2 ∀u ∈ C1(Ω), ω ∈ C1
0 (Ω;R2) (3.3)

where ω : R2 → R2 is defined to be some dual variable function, u : R2 → R is a
real-valued image function, and the gradient∇u is defined to be as follows:

∇u =

(
∂u

∂x
,
∂u

∂y

)
(3.4)

In the continuous domain, this is a direct result of the Divergence Theorem, where n is the
normal vector to the boundary ∂Ω∫

Ω

∇ · Fdx =

∫
∂Ω

F · n ds (3.5)

The product rule for the divergence can be stated as follows, where u(x, y) ∈ R and
ω(x, y) ∈ R2:

∇ · (uω) = u · divω + ω · ∇u (3.6)

We also know that since ω ∈ C1
0 (Ω;R2), that it must be zero everywhere at the boundary

∂Ω. We can substitute F (x, y) for the product of scalar u(x, y) and vector ω(x, y) and use
this to obtain ∫

∂Ω

(uω) · n ds = 0 (3.7)

Furthermore, we can use the product rule and Divergence Theorem to obtain the following
result:

〈u, divω〉L2 + 〈∇u, ω〉L2 =

∫
Ω

∇ · (uω)dx =

∫
∂Ω

(uω) · n ds = 0 (3.8)

This shows us that the result (3.3) holds. In the following section, we will discretize the
gradient and divergence and develop a similar result from there. We will see that these
results are closely related to one another because the discrete definitions of the divergence
and gradient are close approximations of their continuous counterparts. This will also give
us a theoretical basis for solving inverse problems using the total variation.

14



3.2 Discrete Total Variation

3.2 Discrete Total Variation
Next we will define R(u) to be the total variation of the image u, where u is a discrete
image in a two-dimensional plane. For simplicity, we are only considering the case where
we have a grey-scale image. Ultimately, the goal behind having a discrete formulation such
as this is that it becomes possible to perform numerical computations with. We define the
discrete total variation as follows:

R(u) =

M∑
i=1

N∑
j=1

‖(∇u)i,j‖R2 (3.9)

where the discrete gradient (∇u)i,j of the image u is defined as follows [2]:

(∇u)xi,j =

{
ui+1,j − ui,j , if i < M
0, if i = M

(3.10)

(∇u)yi,j =

{
ui,j+1 − ui,j , if j < N
0, if j = N

(3.11)

and we combine these two components to define the discrete gradient∇u as follows:

(∇u)i,j = ((∇u)xi,j , (∇u)yi,j) (3.12)

Equivalently, we can also extend the boundaries by setting

uM+1,j = uM,j (3.13)
ui,N+1 = ui,N (3.14)

to obtain the following simple formula

(∇u)xi,j = ui+1,j − ui,j (3.15)

(∇u)yi,j = ui,j+1 − ui,j (3.16)

The discrete divergence for p = (px, py) is defined in the following way, where px and py

are dual variables in RM×N , and where p is a dual variable in the set V = U × U :

(divp)xi,j =


pxi,j − pxi−1,j , if 1 < i < M,

pxi,j , if i = 1,

−pxi−1,j , if i = M

(3.17)

(divp)yi,j =


pyi,j − p

y
i,j−1, if 1 < j < N,

pyi,j , if j = 1,

−pyi,j−1, if j = N

(3.18)

We sum these two components to define the divergence of p in the following way:

divp = (divp)xi,j + (divp)yi,j (3.19)
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Chapter 3. Total Variation and Variational Calculus

3.2.1 Discrete Divergence Theorem

What we wish to establish now is that the negative divergence and the discrete gradient are
adjoint in the real inner product domain. The motivation for knowing this is that in Chapter
4, it will allow us to transform our minimization problem into a problem that we can use
our algorithm to solve. This is not a trivial result, so we will briefly show here that the
following equality described in (3.3) holds by using the discrete definitions of divergence
and gradient and expanding the sums.

〈u,−(divp)x〉 =
∑
i,j

−ui,j(divp)xi,j

=

N∑
j=1

M∑
i=1

−ui,j(divp)xi,j

=

N∑
j=1

(
uM,jp

x
M−1,j − u1,jp

x
1,j −

M−1∑
i=2

ui,j(p
x
i,j − pxi−1,j)

)

=

N∑
j=1

(
uM,jp

x
M−1,j − u1,jp

x
1,j +

M−1∑
i=2

ui,jp
x
i−1,j −

M−1∑
i=2

ui,jp
x
i,j

)

And now, noting that we can split the sums, we can further rewrite this in terms of the
discrete gradient:

=

N∑
j=1

(
M∑
i=2

ui,jp
x
i−1,j −

M−1∑
i=1

ui,jp
x
i,j

)

=

N∑
j=1

(
M−1∑
i=1

ui+1,jp
x
i,j −

M−1∑
i=1

ui,jp
x
i,j

)

=

N∑
j=1

(
M−1∑
i=1

(ui+1,j − ui,j)pxi,j

)
=
∑
i,j

pxi,j(∇u)xi,j

= 〈(∇u)x, px〉
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3.2 Discrete Total Variation

The proof for showing the result in the y-dimension is quite similar:

〈u,−(divp)y〉 =

M∑
i=1

N∑
j=1

−ui,j(divp)yi,j

=

M∑
i=1

(
ui,Np

y
i,N−1 − ui,1p

y
i,1 −

N−1∑
j=2

ui,j(p
y
i,j − p

y
i,j−1)

)

=

M∑
i=1

(
N∑
j=2

ui,jp
y
i,j−1 −

N−1∑
j=1

ui,jp
y
i,j

)

=

M∑
i=1

(
N−1∑
j=1

(ui,j+1 − ui,j)pyi,j

)
=
∑
i,j

pyi,j(∇u)yi,j

= 〈(∇u)y, py〉

And the two results are easily combined as follows:

〈u,−divp〉 = 〈u,−(divp)x〉+ 〈u,−(divp)y〉
= 〈(∇u)x, px〉+ 〈(∇u)y, py〉
= 〈∇u, p〉

Thus, we can also rewrite the discrete total variation as follows:

R(u) =
∑
i,j

‖(∇u)ij‖

= sup
‖p‖∞≤1

〈∇u, p〉

=
∑
i,j

sup
‖pij‖≤1

〈(∇u)ij , pij〉

= sup
‖p‖∞≤1

(
−
∑
i,j

uij(div p)ij

)
= sup
‖p‖∞≤1

〈u, div p〉

which as we can now see, is the same definition that we had for total variation in the
continuous case. In the following chapter, these results will enable us to formulate the
algorithms needed for image reconstruction and optimization.
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Chapter 4
Primal-dual Optimization Methods

4.1 General Theory

Here we will develop the algorithms that are used in Chapter 5. We must start by intro-
ducing the general theory of primal-dual problems for convex functions. The problem
of image restoration with total variation is fortunately a convex problem, so this will be
particularly useful for that development. Refer to [6] for more background on convex
analysis, and refer to [5] for a development of the primal-dual problem. To put it simply, a
function f : Rn → R is a convex function if for λ ∈ [0, 1] and x, y ∈ Rn, we have

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) (4.1)

Moreover, a function f is defined as concave if−f is convex. A function is proper convex
or proper concave if the inequality in the definition is proper. Furthermore, we want our
functions to be coercive. A coercive function is defined as a function f such that

f(x)→∞ as ‖x‖ → ∞ (4.2)

Convex functions have many useful theorems and properties which we will briefly sum-
marize here. The most important result is that if f is continuous, coercive, and convex,
then it has at least one global minimum. Now let us define X and Y to be two vector
spaces, each with an associated norm and inner product. We assume K : X → Y to be a
continuous linear map with norm ‖K‖:

‖K‖ = sup
x∈X
{‖Kx‖Y : x ∈ X where ‖x‖X ≤ 1} (4.3)

Consider F : Y → R ∪ {+∞} and G : X → R ∪ {+∞} to be two continuous, coercive,
convex functions on their respective domains. This means that at least global minimum
exists for each of them. Since the sum of two convex, continuous, and coercive functions
holds those same properties itself, this means the sum F +G : X ×Y → R∪{+∞} also
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Chapter 4. Primal-dual Optimization Methods

obtains a global minimum. What we wish to consider is how to reformulate and solve the
following minimization problem, written in primal form:

minx∈X F (Kx) +G(x) (4.4)

Before this is done, we need to introduce the concept of duality and convex conjugates.
We define the convex conjugate of F to be the function F ∗ : Y → R:

F ∗(y∗) = sup
y∈Y
{〈y∗, y〉Y − F (y)} (4.5)

The convex conjugate of G is similarly defined:

G∗(x∗) = sup
x∈X
{〈x∗, x〉X −G(x)} (4.6)

The operator K∗ : Y → X is defined to be the adjoint of K, defined by the following:

〈Kx, y〉Y = 〈x,K∗y〉X (4.7)

We can now rewrite F ∗ and G∗ as follows, based on the fact that K is linear and bounded
and F and G are continuous and proper convex.

F ∗(y) = maxp∈Y {〈p, y〉Y − F (p)} (4.8)
G∗(x) = maxq∈X{〈x, q〉X −G(q)} (4.9)

From here, it makes sense to introduce Fenchel’s dual problem, which is a reformulation
of (4.4) based on the given definitions of F ∗ and G∗:

maxy∈Y {−F ∗(y)−G∗(−K∗y)} (4.10)

More importantly, we can now write it as a primal-dual problem, where the solution is a
saddle-point:

minx∈X maxy∈Y 〈Kx, y〉Y − F ∗(y) +G(x) (4.11)

This is the formulation that we will use to develop the Chambolle-Pock Algorithm in the
following section.

4.2 Chambolle-Pock Algorithm
The Chambolle-Pock Algorithm as defined in [5] is an algorithm which should converge
to the solution of the min-max problem (4.11) if the proper conditions are satisfied. We
must first define the sub-gradient set ∂G in the following way. Assuming thatG is convex,
the sub-gradient ∂G(x) is the set of all values v in the convex open set of G : X → R
such that:

{v ∈ X : G(y) ≥ G(x) + 〈v, y − x〉X ∀y ∈ X} (4.12)
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4.3 Denoising Applications

In the algorithm however, we will always select one element, and this will also be denoted
∂G(x). If G is a differentiable function, then ∂G(x) will only consist of the one element
∇G(x).

We initialize the algorithm by selecting parameters τ, θ > 0 and θ ∈ [0, 1]. We also pick
starting points x0 ∈ X and y0 ∈ Y , with x̃0 = x0. The operator I is defined to be the
identity operator. For n ≥ 0, we iterate each step as follows:

yn+1 = (I + σ∂F ∗)−1(yn + σKx̃n),

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1),

x̃n+1 = xn+1 + θ(xn+1 − xn)

(4.13)

For additional clarity, we can rewrite the above iterative algorithm as follows:
(I + σ∂F ∗)yn+1 = (yn + σKx̃n),

(I + τ∂G)xn+1 = (xn − τK∗yn+1),

x̃n+1 = xn+1 + θ(xn+1 − xn)

(4.14)

These are not necessarily trivial problems to solve. Now suppose we assume that (4.11)
has a saddle-point solution (x̂, ŷ). As was shown in [5], if we let θ = 1, then we know
that if X and Y are finite-dimensional, the algorithm converges to a saddle-point (x∗, y∗)
such that xn → x∗ and yn → y∗ if the following regularity condition is satisfied:

τσ‖K‖2 < 1 (4.15)

These are indeed very interesting results, and we will use them to develop our denoising
and deconvolution algorithms in the following sections.

4.3 Denoising Applications
The methods we use to denoise an image intend to make an image less noisy by minimizing
the total variation and the residual, with regularization parameter λ. It must therefore
provide a best solution to the problem (4.16), where v is the given data, and u is the
unknown. To do this, we start by defining it as follows:

λ

2
‖u− v‖2L2 +R(u)→ minu (4.16)

where R(u) is the total variation defined in (3.9). This total variation is a regularization
functional which we need in order for the algorithm to function properly. We can ap-
proximate the minimization problem (4.16) by using the discrete divergence operator, and
thereby use a projected dual gradient descent method to solve the problem. From this
construction, we can use our gradient descent method to minimize (4.16)
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Chapter 4. Primal-dual Optimization Methods

We will be using a discrete version of the ROF constrained optimization problem [3]. In
our case, we write the optimization problem in primal form as in (4.4), whereX = RM×N ,
Y = X ×X , K = ∇, and the following definitions are made:

F (q) =
∑
i,j

‖qi,j‖ (4.17)

G(u) =
λ

2
‖u− v‖2 (4.18)

Furthermore, we can see that the following relationship between F and the total variation
R holds:

F (Ku) = R(u) =
∑
i,j

‖(∇u)i,j‖ (4.19)

In order to utilize the algorithms suggested by [5], we write the saddle-point problem
(4.11) in its general form, where the operator A is the gradient operator.

〈∇u, p〉+G(u)− F ∗(p)→ minu∈U maxp∈V (4.20)

We also define F ∗ : V → R to be the convex conjugate or dual of F : V → R. This
means that

F (q) =
∑
i,j

√
(qxi,j)

2 + (qyi,j)
2 (4.21)

F ∗(p) = sup
q∈V

(〈q, p〉 − F (q)) (4.22)

= sup
q∈V

∑
i,j

(
qxi,jp

x
i,j + qyi,jp

y
i,j −

√
(qxi,j)

2 + (qyi,j)
2

)
(4.23)

=
∑
i,j

sup
q∈V

(
qxi,jp

x
i,j + qyi,jp

y
i,j −

√
(qxi,j)

2 + (qyi,j)
2

)
(4.24)

=
∑
i,j

{
0 if ‖pi,j‖2 ≤ 1

+∞ otherwise
(4.25)

= δP (p) (4.26)

where we define δP (p) to be the following indicator function:

δP (p) =

{
0 if p ∈ P,
+∞ otherwise

(4.27)

Here, we have the condition that P is the ball of radius 1 with respect to the ‖·‖∞ norm.
As we have shown in Chapter 3, the adjoint of the divergence is the negative gradient.
Accordingly, we have the primal-dual problem written as follows:

λ

2
‖u− v‖2L2 − 〈u, divp〉U − δP (p)→ maxp∈V minu∈U (4.28)
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The reason that this is equivalent to the previous definition is that this construction restricts
p ∈ P , and also becauseR(u) = F (∇u), and 〈∇u, p〉 = −〈u, div p〉. We could also write
this as a constrained optimization problem in the following way, based on (4.27):

λ

2
‖u− v‖2L2 − 〈u, divp〉U → minu∈U maxp∈V subject to ‖p‖∞ ≤ 1 (4.29)

where we define the ‖·‖∞ norm as follows:

‖p‖2∞ = maxi,j
(
(pxi,j)

2 + (pyi,j)
2
)

(4.30)

where in our case, we have that G(u) is the residual term and F (q) is the total variation of
u, where q = ∇u. Note that U = RM×N and V = U × U . The supremum of the above
equation is obtained when q = p, if p ∈ P .
Since we know that ‖qi,j‖22 − ‖qi,j‖22 > 0 whenever ‖qi,j‖22 > 1, the sum will diverge.

When G is differentiable, then ∂G is simply the unique gradient. The following holds:

G(u) =
λ

2
‖u− b‖2L2 ∂G(u) = λ(u− b) (4.31)

To select v ∈ ∂F ∗(p), consider the following condition, based on the definition of the
subgradient (4.12). If we have ‖p‖∞ = max ‖pij‖ ≤ 1, then

v ∈ ∂F ∗(p) ⇐⇒ 0 ≥ 0 + 〈v, q − p〉 ∀ ‖q‖∞ ≤ 1

⇐⇒ 〈v, q〉 ≤ 〈v, p〉 ∀ ‖q‖∞ ≤ 1

⇐⇒ 〈vij , qij〉 ≤ 〈vij , pij〉 ∀i, j, ‖qi,j‖ ≤ 1

Thus, if at a given point (i, j) we have ‖pij‖ ≤ 1, then we should choose qij = pij and
obtain vij = 0. Otherwise, if we have ‖pij‖ ≥ 1, then we must project it pointwise. To
do that, we must select some λij ≥ 0 and obtain vij = λijpij so that we can then use the
Cauchy-Schwartz inequality to have the following, while restricting ‖qij‖ ≤ 1:

〈vij , qij〉 = λij〈pij , qij〉 ≤ λij ‖pij‖ ‖qij‖ ≤ λij ‖pij‖ = λij〈pij , pij〉 = 〈vij , pij〉

The algorithm (4.13) is then as follows:

Given initial τ, σ > 0, θ ∈ [0, 1], u0 ∈ U , p0 ∈ V , with ũ0 = u0. Iterate with n ≥ 0:

p̃n = (pn + σ · ∇ũn)

pn+1 = (I + σ∂F ∗)−1(p̃n)

un+1 = (I + τ∂G)−1(un + τ · divpn+1)

ũn+1 = (1 + θ)un+1 − θun
The above equations can also be rewritten as follows, by taking the identity and sub-
gradient operators to both sides of the second and third equations above.

(pn + σ · ∇ũn) = p̃n

pn+1 + σ∂F ∗(pn+1) = p̃n

un+1 + τ∂G(un+1) = (un + τ · divpn+1)

ũn+1 = (1 + θ)un+1 − θun
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This can further be written in the following way, substituting ∂G for its well defined func-
tional value

pn+1 + σ∂F ∗(pn+1) = p̃n

(1 + λτ)un+1 = (un + τ · divpn+1 + τλb)

ũn+1 = (1 + θ)un+1 − θun

where b ∈ U is some given data. Based on the previous derivation of ∂F ∗, the operator
(I + σ∂F ∗)−1 ultimately becomes a point-wise projection operator. This means that ele-
ment of pn+1 either remains the same, or is normalized and projected onto a unit ball. and
we have the following implementation of the algorithm, which we can easily implement
on the computer:

p̃n = (pn + σ · ∇ũn)

pn+1
i,j =

p̃ni,j
maxi,j(1, |p̃ni,j |)

un+1 =
un + τ · divpn+1 + λτb

1 + λτ

ũn+1 = (1 + θ)un+1 − θun

The parameter τ determines the step-size. If it is too large, then the method may not con-
verge at all. The parameter θ determines whether this is an implicit or explicit method.
If θ = 0, then no intermediate update or averaging step is performed, and this may also
impact the algorithm’s stability. If θ = − 1

2 , then it will average the last two iterations of
u, and so on. The parameter σ determines the dual-step. It thus plays a role in how the
dual variable p is computed.

In Chapter 5, we will see some examples of this algorithm implemented in MATLAB,
which will converge to a saddle point solution of (4.28) so long as the regularity condition
described in (4.15) is satisfied.

τσ‖∇‖2 < 1 (4.32)

Furthermore, we have an upper bound for the value of ‖∇‖2. Using the definition of the
gradient (3.10) and the operator norm (4.3), we obtain the following result:

‖∇u‖2 =
∑
i,j

∥∥∥∥(ui+1,j − ui,j
ui,j+1 − ui,j

)∥∥∥∥2

≤
(∥∥∥∥uu

∥∥∥∥+

∥∥∥∥uu
∥∥∥∥)2

= 4

∥∥∥∥uu
∥∥∥∥2

= 8 ‖u‖2

and we thus have the operator norm satisfying the following condition

‖∇‖2 = sup
x∈X

{
‖∇x‖
‖x‖

: x ∈ X
}2

≤ 8 (4.33)
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This means that the following is a sufficient condition for convergence of the algorithm:

τσ <
1

8
(4.34)

Furthermore, a lower bound for the operator norm can be found numerically by computing
the norm of the gradient of any chosen image. For example, a very large checkerboard
image with alternating zeros has a squared norm of approximately 4. This means for
example that the following is a necessary condition for regularity:

τσ <
1

4
(4.35)

We will see this in Chapter 5 when we look at how we select the value of τ .

4.4 Applications to General Image Restoration

The methods we use to deconvolute an image seek to provide a best solution to an equation
such asAu = v, whereA is some given operator, v is the given data, and u is the unknown.
In the context of imaging, u and v will be images of some given size, and A will be some
image operation such as blurring or sub-sampling. The function R(u) is still defined as
(3.9). A natural extension to the problem (4.16) is therefore the following:

λ

2
‖Au− v‖22 +R(u)→ minu (4.36)

We can imagineA to be some type of a blurring or down-sampling operator, where v is the
blurred image. The algorithm for solving this problem is similar to the previous algorithm
with the following modifications to the function G:

G(u) =
λ

2
‖Au− b‖2L2 ∂G(u) = λA∗(Au− b)

where F and F ∗ are still defined as they were in the previous section. This then leads to
the following algorithm, which parts of which are taken from the previous algorithm:

pn+1 + σ∂F ∗(pn+1) = p̃n = (pn + σ · ∇ũn)

un+1 + λτ(A∗(Aun+1 − b)) = (un + τ · divpn+1)

ũn+1 = (1 + θ)un+1 − θun

which can further be written as:

pn+1 + σ∂F ∗(pn+1) = p̃n = (pn + σ · ∇ũn)

(I + λτA∗A)un+1 = (un + τ · divpn+1 + λτA∗b)

ũn+1 = (1 + θ)un+1 − θun
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where b ∈ U is some given data. Thus we have:

pn+1
i,j =

p̃ni,j
maxi,j(1, |p̃ni,j |)

un+1 = (I + λτA∗A)−1(un + τ · divpn+1 + λτA∗b)

ũn+1 = (1 + θ)un+1 − θun

The operator (I + λτA∗A)−1 is certainly not a trivial one. Since there is not always a
simple analytical way to resolve it, we will have to solve another separate linear equation,
using the conjugate gradient method. We can apply this conjugate gradient method to
find the value un+1. See the following section for a brief description of this method. For
further information on these and other gradient descent methods, see [7, Chap. 5]

4.4.1 Conjugate Gradient Descent
The conjugate gradient method is iterative in nature and involves solving the equation

Cun+1 = d (4.37)

where C is an operator, and d is a vector. In the image restoration problem that we are
dealing with, these can be defined as the following:

C = (I + λτA∗A) (4.38)
d = (un + τ · divpn+1 + λτA∗b) (4.39)

We start with an initial guess, for instance x0 = un, and proceed with the algorithm as
follows:

Algorithm 1 Conjugate Gradient Method

r0 ← d− Cx0

p0 ← r0
k ← 0
while ‖r0‖ > tol do

αk ← 〈rk, rk〉/〈Cpk,pk〉
xk+1 ← xk + αkpk

rk+1 ← rk − αkCpk

βk ← 〈rk+1, rk+1〉/〈rk, rk〉
pk+1 ← rk+1 + βkpk

k ← k + 1
end while
return xk+1

What this algorithm essentially does is minimizes the residuals r0. For this algorithm, ‖r0‖
does reach zero for finite dimensional vector spaces. With the discrete images however,
these spaces have a lot of dimensions, and thus we set a tolerance that is small but greater
than zero, so that it doesn’t take too long and so that the solution doesn’t become unstable
from numerical rounding errors.
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4.4 Applications to General Image Restoration

4.4.2 Super-resolution
On the other hand, in the case of A = AJ being the down-sampling operator (2.10) with
scaling factor F , we do have an exact solution for (I + λτA∗A)−1. Given that A∗ is the
up-sampling operator, we can describe A∗A as an operator from where some of the pixels
of an image are set to zero, while others remain unchanged. Given this, we can define the
operator (I + λτA∗A) as follows, where p and q are integers:

[(I + λτA∗A)u]ij =

(1 + λτ)ui,j if ∃k,

(
i+ 1

j + 1

)
− J(k) = F

(
p

q

)
uij otherwise

(4.40)
This is a pointwise linear operator that can easily be inverted as follows.

[(I + λτA∗A)−1v]ij =


1

1+λτ vi,j if ∃k,

(
i+ 1

j + 1

)
− J(k) = F

(
p

q

)
vij otherwise

(4.41)
In this case, we would not necessarily need the conjugate gradient method to perform this
inversion operation. We can formulate this pointwise definition more efficiently in the
following way.

(I + λτA∗A)−1 = I − λτ

1 + λτ
A∗A (4.42)

This will ultimately enable faster computations in our numerical implementation.

27



Chapter 4. Primal-dual Optimization Methods

28



Chapter 5
Numerical Results

5.1 Description
In this chapter, we will describe and implement several numerical experiments. We will
visit the use of total variation for solving problems in denoising, deblurring, and image
super-resolution. We will explore several different problems for each of these using differ-
ent parameters and images. We will also try to implement some of these algorithms on real
images that are not intentionally convoluted to see how they function. For the deblurring
problem we will look at some satellite images, and for the super-resolution problem, we
will look at some burst shots and/or videos. Finally we will look at the L-Curve method,
which is a method for selecting the parameter λ based on having both the residual and total
variation terms as small as possible.

5.2 Denoising
In this section, we will implement some TV-denoising problems to solve the minimization
problem in Equation (4.16). We will adopt the algorithm from section 4.3 in the previous
chapter to a MATLAB implementation. We start by performing one of our simplest exam-
ples of image restoration.

Figure 5.1 illustrates an example of this algorithm. See the code (that will be) appended in
Appendix A. Here, we use the algorithm. We see that when applied to uniform noise, the
algorithm works moderately well, but is in fact more optimal for other types of noise, such
as Gaussian noise. We shall also explore additional examples with other types of noise
and different values for the parameters. In this figure, we have an original image of a lake
on the left, with artificial noise added in the middle. The algorithm is then applied and the
result is on the right. This shows that the denoising algorithm is not perfect, but it does
manage to smooth the image somewhat.
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Chapter 5. Numerical Results

Figure 5.1 Minimizing λ
2 ‖u− v‖

2
2 +R(u).

Left: Original Image Center: Noisy image Right: Denoised image, λ = 104

5.3 Deblurring
In this section, we will explore some deblurring problems. Here we will adopt the al-
gorithm for solving the minimization problem (4.36) where the operator A is an image
convolution operator. For our first numerical test, we will look at this natural image of an
Iceland waterfall, as in Figure 5.2. Since the original image was already of a very high
quality, we intentionally applied a blurring operator with convolution kernel B to the im-
age in MATLAB. The convolution kernel in this case was a 9x9 uniform averaging matrix.
This is therefore a test of the algorithm’s functionality. The parameter λ is an important
part of the minimization problem and represents how heavily we will weight the total vari-
ation term against the residual term. We chose this by using the L-curve method, which
will be described later. See Appendix for the MATLAB code.

The results of Figure 5.2 can be thus interpreted. The blurry image is passed into the algo-
rithm and represents the value v given in the problem. The operator A is the convolution
of the image with the matrix B, so we have

Au = B ∗ u

The deconvoluted image (representing u in the equation) gives us a result that more or less
accurately depicts all the features of the original image, including some very fine features
of the rocks and water that are not all that apparent in the blurry image. One noticeable
artifact in the deconvoluted image is a slight kaleidoscope tiling effect. This is likely due
to the fact that we have to average each pixel over a 9x9 area, which is large enough to
see in the picture. This does however demonstrate that the algorithm works as expected.
The colormap image simply shows where the blurred and re-blurred images differ. The
red part of the image is where the residuals are high and thus the total variation needed to
be optimized more. We can see that the waterfall and the rocks is where it is most red, and
that is to be expected because those features had a lot of very fine details that needed to
be restored. The plot on the bottom right indicates the value of the amplification factor at
each iteration. By this we mean that the value Ck is the norm of the new image divided
by the norm of the previous image. Thus we should see that this value approaches 1 as the
algorithm converges to its solution.
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5.3 Deblurring

Figure 5.2 Minimizing λ
2 ‖Au− v‖

2
2 +R(u).

Top-left: Original blurry image Top-right: Deconvoluted image with specified λ
Center-left: Reblurred image Center-right: Difference of blurry images
Bottom-left: Original Image Bottom-right: The ratio of consecutive norms.
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Chapter 5. Numerical Results

We will now explore another example of an actual raw image. This image was taken from
a small digital camera while attached to a stratospheric balloon in connection with a bal-
loon test that was performed here at NTNU. The LCD screen visible from the camera is
displaying an image of a person. Figure 5.3 shows us the results of the algorithm being
executed on this image without any initial blurring being performed. The image was taken
from about 20 km altitude, and thus was subject to considerable freezing temperatures
and condensation, as well as back-lighting from the sun. These images were thus a little
blurry, out of focus, and not well lit. We were interested in seeing if we could deblur it.
Note that for this particular problem, we are much more interested in the foreground than
the background, and have no concern for the background sky.

As we see in the deconvoluted image on the top-right hand corner of Figure 5.3, the edges
of the frame and the arm become sharper. The blurring kernel used was that 5x5 kernel
which was described in (2.3.2). The reason that we use this kernel is because we deter-
mined numerically that kernels don’t sharpen the image quite as well. This removes seems
to remove some of the blur, but not the lighting glare problems. This is not likely to be
solved by these methods, and we might further need to resort to the use of photo-shop in
order to accomplish what we really want to do here. This is therefore beyond the scope of
what experiments we can do here.

Figure 5.3 Minimizing λ
2 ‖Au− v‖

2
2 +R(u).

Top-left: Original greyscale image Top-right: Deconvoluted image
Center-left: Reblurred grey image Center-right: Difference of blurry images
Bottom-left: Original color image Bottom-right: Norm-multiplier plot

5.4 Image super-resolution
One of our overarching goals here was to solve the problem of image super-resolution. To
start, we will show that we can successfully down-sample an image, and then restore those
images even with the accompanying loss of information. We refer back to Chapter 2 for
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5.4 Image super-resolution

the description of down-sampling and up-sampling. We consider the following example
of an image that was sub-sampled along the main diagonal of a 4x4 grid, the scaling factor
being 4. In that case, we have J = {(1, 1), (2, 2), (3, 3), (4, 4)}. It is fairly simple then to
define the operators and implement the algorithm as follows. As we can see, the algorithm
seems to successfully paint in the missing pixels, though we do see some artifacts in the
second-to-last rows and columns of the image. This may be due to the way the outer
boundaries were defined.

Figure 5.4 Minimizing λ
2 ‖Au− v‖

2
2 + R(u), where A is the down-sampler. The left

four images are lower-resolution sub-samples. On the right, we have the up-sampling and
in-painting

Now let us look at a brief example of this algorithm applied to an actual video that was
not previously down-sampled. In the following example, a video was taken of a cathedral
where the camera was moving approximately diagonally in the downward-right facing
direction. We then processed this video into a GIF image, or a 3D array. Additionally, we
convoluted it with an edge-detection kernel that would help us see where the movement
was occuring. Ultimately, we estimated that we could upsample it by a sampling factor of
4 with J = {(4, 4), (3, 3), (2, 2), (1, 1)}. This resulted in the following display. Here we
can see that although this resulted in a higher-resolution image, going from 235x235 to
940x940, it did not in fact result in a clearer image. This is not a perfect solution since it
relies on imprecise camera movement. For details on the edge-detection, see Appendix B.

Figure 5.5 Left: First frame Center: Edge-highlighted frame Right: Result
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Chapter 5. Numerical Results

5.5 Parameter Selection

The primal-dual algorithm we use requires a lot of different parameters, including σ, θ, τ,
and λ. How we select these parameters is dependent on a variety of factors, including how
accurate we want our solution to be and how much time we want it to take. We already
know from the previous chapter that (4.15) is a sufficient condition for convergence given
that θ = 1. That is, we have the following condition:

τσ‖K‖2 < 1 (5.1)

where we know from previously that 4 ≤ ‖K‖2 ≤ 8. We also know that convergence is
required if we wish for our numerical solutions to make any sense. A look at the following
figure results illustrates just how hard this line is. Through further experimentation, we
have found that when σ = 1, the threshold for τ is actually between 0.16 and 0.17. What
this means is that if τ is less than that threshold, then the solution converges perfectly well,
but if not then the deconvolution algorithm fails to provide a reasonable result, as we can
see in the bottom-right image of Figure 5.6.

Figure 5.6 Parameter selection for τ .
Top-left: Original blurred image Top-right: τ = 0.10
Bottom-left: λ = 0.15 Bottom-right: τ = 0.20
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5.5 Parameter Selection

5.5.1 L-Curve Method for selecting λ

A big question we have for these optimization methods is how to select our parameter λ.
The main purpose of this parameter is to control how much weight we give to regulariza-
tion of the optimization problem. Suppose we have the following minimization problem
with given data v, given operator A, and regularization parameter λ. Then we have the
following equation (4.36)

λ

2
‖Au− v‖22 +R(u)→ minu (5.2)

In this case, how would we choose the regularization parameter λ, given that it could lead
to vastly different solutions? This is where we introduce the L-Curve method, which we
can read more about in [4]. The first thing we do is plot a log-log plot of the residual sums
with respect to the total variation (Figure 5.7). Here we will use the image in (5.8), and we
will see why this is important. Here, we have that A is a blurring operator that convolutes
a Gaussian kernel, and we perform the deblurring algorithm for multiple values of λ.

Figure 5.7 L-curve plot

At this stage, we could theoretically compute the curvature at each of these label points in
the figure, as they have done in [4]. The data point in this set with the maximum curvature
is therefore the point we would want to use. We can estimate visually from the plot that the
point with the maximum curvature in this instance occurs when λ = 101. The following
figure is meant to showcase the different possible choices. As we can see in Figure 5.8,
this does give a better, clearer result. On the other hand λ = 100 seems to do nothing,
while λ = 10−1 seems to make the result even more blurry.
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Chapter 5. Numerical Results

Figure 5.8 Parameter selection for λ.
Top-left: Original blurred image Top-right: λ = 101

Bottom-left: λ = 100 Bottom-right: λ = 10−1
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5.5 Parameter Selection

If we look at another example image, we will see that there are not many significant differ-
ences in the outcome of the L-curve method, so the optimal parameter mostly to depend
on the operator that is used. In both of these cases, we used the same blurring kernel, a
9x9 Gaussian matrix. We see that when λ is very small, it puts more weight on minimiz-
ing the total variation, thus making it more blurry. When λ is larger, then it lays greater
weight upon minimizing the residual, but the contrast and border stability can suffer as a
result. Ultimately, the L-curve method provides a good way to regularize the solution of
this problem in a correct way.

Figure 5.9 Minimizing λ
2 ‖Au− v‖

2
2 +R(u). Maximizing curvature

Top-left: Log-log plot Top-right: Original blurry image
Center-left: λ = 10−1 Center-right: λ = 100

Bottom-left: λ = 101 Bottom-right: λ = 102
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Chapter 6
Conclusion

To conclude, we have successfully developed some of the theory and applications behind
the use of total variation in image processing. We have developed the algorithm and have
proven a few theories about it. There are many ways to go about this particular type
of problem, and this is just one of them. We applied the total variational algorithm to
three completely different types of image processing problems, denoising, deblurring, and
super-resolution.

With deblurring, we were able to sharpen both natural images as well as artificially blurred
images. We defined the convolution of a blurring kernel in Chapter 2, and applied this to
our numerical experiments in Chapter 5. With denoising, we never completely get rid of
any noise, but we were able to smooth it by using the total variation. With super-resolution,
we were able to up-sample a set of previously down-sampled images, but had much diffi-
culty in actually applying the super-resolution algorithm to raw videos. An idea for future
work on this is to try and compute the optical flow, and use this to adjust the images and
carefully select the super-resolution grid. Though that is easier said than done, because
there is a lot of guessing to that.

In Chapter 2, we defined and formulated several concepts including what we mean by
images, blurring, noise, down-sampling, and up-sampling. In Chapter 3, we defined diver-
gence, gradient, and total variation. In Chapter 4, we developed the saddle-point algorithm
by using total variation, and also expanded on some additional theory for convex functions.
In Chapter 5, we provided some examples of denoising, deblurring, and super-resolution.
In addition to this we played with different parameter values. As we know, the value of a
good algorithm depends heavily on the parameters used and we took great care to fit them
properly. The figures in this thesis were implemented using code in the appendices.
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Appendix A - Matlab

Primal-dual deblurring algorithm

1 f u n c t i o n [ P , MSE, R] = p r i m a l d u a l c o n v (U, B , N s t eps ,
lambda , sigma , t h e t a , t a u )

2 % I n p u t : N s t e p s = number o f s t e p s
3 % U: Given MxN b l u r r y image
4 % B : B l u r r i n g k e r n e l
5 % N s t e p s : Number o f s t e p s i n t h e i t e r a t i o n
6 % lambda : R e g u l a r i z a t i o n p a r a m e t e r
7 % sigma : Dual−s t e p p a r a m e t e r
8 % t h e t a : Update s t e p p a r a m e t e r
9 % t a u : Step−s i z e p a r a m e t e r

10 % Outpu t :
11 % P : Smoothed image
12 % MSE: Mean−s q u a r e d e r r o r
13 % R : T o t a l v a r i a t i o n
14
15 % Choose some d e f a u l t v a l u e s
16 i f ( n a r g i n < 2)
17 s = 9 ;
18 B = 1 / ( s ˆ 2 ) ∗ ones ( s ) ;
19 end
20 i f ( n a r g i n < 3)
21 N s t e p s = 1000 ;
22 end
23 i f ( n a r g i n < 4)
24 lambda = 10000 ;
25 end
26 i f ( n a r g i n < 5)
27 s igma = 1 ;
28 end
29 i f ( n a r g i n < 6)
30 t h e t a = 1 ;
31 end
32 i f ( n a r g i n < 7)
33 t a u = 1 / 1 0 ;
34 end
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35 % Get s i z e o f o r i g i n a l image
36 M = s i z e (U, 1 ) ;
37 N = s i z e (U, 2 ) ;
38
39 % O p e r a t o r t h a t must be i n v e r t e d i n CG method
40 BB = conv2 (B , B) ;
41 op = @( u ) u + lambda∗ t a u ∗ r e s h a p e ( i m f i l t e r ( r e s h a p e ( u , [M,N] ) ,

BB, ’ conv ’ , ’ symmet r i c ’ ) , [M∗N, 1 ] ) ;
42
43 % G r a d i e n t o p e r a t o r s
44 Dx = s p d i a g s ( [ ones (M−1, 1 ) ; 0 ] , 1 , M, M) − s p d i a g s ( [ ones (M −

1 , 1 ) ; 0 ] , 0 , M, M) ;
45 Dy = s p d i a g s ( [ ones (N−1, 1 ) ; 0 ] , 1 , N, N) − s p d i a g s ( [ ones (N −

1 , 1 ) ; 0 ] , 0 , N, N) ;
46
47 %Algor i t hm I n i t i a l i z a t i o n
48 P1 = z e r o s (M, N) ; P2 = z e r o s (M, N) ;
49 x0 = U;
50 Ax0 = i m f i l t e r ( x0 , B , ’ conv ’ , ’ symmet r i c ’ ) ;
51 x t i l d = x0 ;
52 C = [ ] ; N vec = [ ] ;
53 Nprev = 1 ;
54 e p s u p d a t e = 10ˆ(−5) ;
55
56 %I t e r a t i o n
57 f o r i =1 : N s t e p s
58 % G r a d i e n t o p e r a t i o n on x t i l d
59 Ux = Dx ∗ x t i l d ;
60 Uy = x t i l d ∗ Dy ’ ;
61
62 % P r o j e c t e d d u a l s t e p
63 P 1 t = P1 + sigma ∗Ux ;
64 P 2 t = P2 + sigma ∗Uy ;
65 p norm = s q r t ( P1 . ˆ 2 + P2 . ˆ 2 ) ;
66 p norm = max ( p norm , 1 ) ;
67 P1 = P 1 t . / p norm ;
68 P2 = P 2 t . / p norm ;
69 % D i v e r g e n c e o f P
70 p d i v = Dx’∗ P1 + P2∗Dy ;
71
72 % Update s t e p on x , run pcg method
73 x new = ( x0 − ( t a u ∗ p d i v ) + ( lambda∗ t a u ∗ Ax0 ) ) ;
74 [ x new rs , f l a g ] = pcg ( op , r e s h a p e ( x new , [M∗N, 1 ] )

,10ˆ (−12) , 4 0 , [ ] , [ ] , r e s h a p e ( x new , [M∗N, 1 ] ) ) ;
75 x new = r e s h a p e ( x new rs , [M,N] ) ;
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76
77 % Check s i z e o f upda te , s t o p t h e i t e r a t i o n i f n e c e s s a r y
78 i f ( sum ( sum ( abs ( x new − x0 ) ) ) < e p s u p d a t e )
79 x0 = x new ;
80 N s t e p s = i ;
81 b r e a k ;
82 end
83
84 %Compute norm m u l t i p l i e r s
85 Nnew = norm ( x new − x0 , 2 ) ;
86 C = [C , Nnew / Nprev ] ;
87 N vec = [ N vec , Nnew ] ;
88 Nprev = Nnew ;
89
90 %Update s t e p
91 x t i l d = (1 + t h e t a ) ∗ x new − t h e t a ∗ x0 ;
92 x0 = x new ;
93 end
94
95 % Take c o n s e c u t i v e p r o d u c t s on C
96 CC = C ( 1 : end−1) .∗ C ( 2 : end ) ;
97
98 % P l o t s o f norm v a l u e s and c o m p a r i s o n s
99 f i g u r e ; p l o t ( 3 : N s t eps , C ( 3 : end ) , ’−r ’ ) ;

100 t i t l e ( ’ P l o t o f C k m u l t i p l i e r f o r each t ime s t e p ’ ) ;
101 x l a b e l ( ’ k ’ ) ;
102 y l a b e l ( ’ C k ’ ) ;
103
104 f i g u r e ; p l o t ( 2 : N s t e p s − 1 , CC ( 2 : end ) , ’−r ’ ) ;
105 t i t l e ( ’ P l o t o f CC k m u l t i p l i e r f o r each t ime s t e p ’ ) ;
106 x l a b e l ( ’ k ’ ) ;
107 y l a b e l ( ’ CC k ’ ) ;
108
109 f i g u r e ; s e m i l o g y ( 3 : N s t eps , N vec ( 3 : end ) , ’−r ’ ) ;
110 t i t l e ( ’ P l o t o f Cu k m u l t i p l i e r f o r each t ime s t e p ’ ) ;
111 x l a b e l ( ’ k ’ ) ;
112 y l a b e l ( ’ Cu k ’ ) ;
113
114 % Make x0 d i s p l a y a b l e image
115 x0 = r e a l ( r e s h a p e ( x0 , [M,N] ) ) ;
116 x0 min = min ( x0 ( : ) )
117 x0 max = max ( x0 ( : ) )
118 i f ( x0 max > x0 min )
119 x0 = 255∗ ( x0−x0 min ) / ( x0 max−x0 min ) ;
120 end
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121
122 % Image p l o t s
123 f i g u r e ; imagesc ( u i n t 8 (U) ) ; t i t l e ( ’ B l u r r y Image ’ , ’ F o n t S i z e ’

, 8 ) ; co lormap gray ;
124
125 f i g u r e ; imagesc ( u i n t 8 ( x0 ) ) ; t i t l e ( [ ’ Deconvo lu t ed image , \

s igma = ’ , num2s t r ( s igma ) , ’ , \ t h e t a = ’ , num2s t r ( t h e t a )
, ’ , \ t a u = ’ , num2s t r ( t a u ) , ’ , \ lambda = ’ , num2s t r (
lambda ) , ’ , n = ’ , num2s t r ( N s t e p s ) ] , ’ F o n t S i z e ’ , 8 ) ;
co lormap gray ;

126
127 Ax0 = i m f i l t e r ( x0 , B , ’ conv ’ , ’ symmet r i c ’ ) ;
128 f i g u r e ; imagesc ( u i n t 8 ( Ax0 ) ) ; t i t l e ( [ ’ B l u r r i n g o f

d e c o n v o l u t e d image , \ s igma = ’ , num2s t r ( s igma ) , ’ , \
t h e t a = ’ , num2s t r ( t h e t a ) , ’ , \ t a u = ’ , num2s t r ( t a u ) , ’ ,
\ lambda = ’ , num2s t r ( lambda ) , ’ , n = ’ , num2s t r ( N s t e p s

) ] , ’ F o n t S i z e ’ , 8 ) ; co lormap gray ;
129
130 f i g u r e ; co lormap j e t ; imagesc ( u i n t 8 ( abs ( Ax0 − U) ) ) ; t i t l e ( [

’ D i f f e r e n c e between o r i g i n a l b l u r r y image and r e b l u r r e d
image ’ ] , ’ F o n t S i z e ’ , 8 ) ; c o l o r b a r ;

131
132 % Send o u t p u t
133 MSE = sum ( sum ( ( Ax0 − U) . ˆ 2 ) ) / numel (U)
134 R = sum ( sum ( ( Ux . ˆ 2 + Uy . ˆ 2 ) . ˆ ( 1 / 2 ) ) )
135 P = x0 ;
136
137 end
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Up-sampling tensor array

1 f u n c t i o n I s t a r = I s t a r ( I v a l s , F )
2 % I n p u t :
3 % I v a l s : Nx2 m a t r i x wi th N g r i d p o i n t s
4 % F : S c a l i n g f a c t o r
5 % Outpu t :
6 % I s t a r : 3D a r r a y o f t e n s o r o p e r a n d s
7 I s t a r = z e r o s ( F , F , s i z e ( I v a l s , 1 ) ) ;
8 i n d = 0 ;
9 f o r i j = I v a l s ’

10 i n d = i n d + 1 ;
11 I s t a r ( i j ( 1 ) , i j ( 2 ) , i n d ) = 1 ;
12 end
13 end

Up-sampling operator

1 f u n c t i o n A s t a r u = A s t a r ( g , I s t a r )
2 % I n p u t :
3 % g : 3D a r r a y o f images
4 % I s t a r : 3D a r r a y o u t p u t by I s t a r .m
5 % Both g and I s t a r must be 3D m a t r i c e s
6 % Each l a y e r o f I s t a r i s a Kronecker t e n s o r .
7 % Outpu t :
8 % A s t a r u : R e s u l t i n g sum of t h e s e b l o c k p r o d u c t s
9 n g1 = s i z e ( g , 1 ) ;

10 n g2 = s i z e ( g , 2 ) ;
11 n I 1 = s i z e ( I s t a r , 1 ) ;
12 n I 2 = s i z e ( I s t a r , 2 ) ;
13 n e l = s i z e ( I s t a r , 3 ) ;
14
15 A s t a r u = z e r o s ( n g1 ∗ n I1 , n g2 ∗ n I 2 ) ;
16 f o r i = 1 : n e l
17 A s t a r u = A s t a r u + kron ( g ( : , : , i ) , I s t a r ( : , : , i ) ) ;
18 end
19 end
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Down-sampling operator

1 f u n c t i o n Au = A op ( u , F , I v a l s )
2 % I n p u t :
3 % u : O r i g i n a l image
4 % I v a l s : Nx2 m a t r i x wi th N g r i d p o i n t s
5 % F : I n t e g e r s c a l i n g f a c t o r
6 % Outpu t :
7 % Au : 3D a r r a y o f s m a l l e r images
8 i n d = 0 ;
9 f o r i j = I v a l s ’

10 i n d = i n d + 1 ;
11 Au ( : , : , i n d ) = u ( i j ( 1 ) : F : end , i j ( 2 ) : F : end ) ;
12 end
13 end

Frobenius inner product

1 f u n c t i o n C = f r o (A, B)
2 % I n p u t :
3 % A, B : Two r e a l−v a l u e d a r r a y s o f t h e same s i z e
4 % Outpu t :
5 % C : Real v a l u e i n n e r p r o d u c t o f A and B
6 dA = s i z e ( s i z e (A) , 2 ) ;
7 dB = s i z e ( s i z e (B) , 2 ) ;
8 i f ( da ˜= db )
9 e r r o r ( ’ E r r o r , a r r a y s a r e n o t c o m p a t i b l e ’ )

10 end
11
12 C = A .∗ B ;
13 f o r i = 1 : dA
14 C = sum (C) ;
15 end
16 end
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Super-resolution algorithm

1 f u n c t i o n [ P , MSE, R] = s u p e r r e s (G, F s i z e , I v a l s , I s t a r ,
N s t eps , lambda , sigma , t h e t a , t a u )

2 % I n p u t :
3 % G: Given a r r a y o f images , v ideo , a n i m a t i o n
4 % F s i z e : S c a l i n g f a c t o r
5 % I v a l s : S e t o f i n s e r t i o n p o i n t s
6 % I s t a r : 3D t e n s o r a r r a y o u t p u t o f I s t a r .m
7 % N s t e p s : Number o f i t e r a t i o n s i n t h e a l g o r i t h m
8 % lambda : R e g u l a r i z a t i o n p a r a m e t e r
9 % sigma : Dual−s t e p p a r a m e t e r

10 % t h e t a : P a r a m e t e r which d e t e r m i n e s u p d a t e s t e p
11 % t a u : Step−s i z e p a r a m e t e r
12 %
13 % Outpu t :
14 % P : Super−r e s o l v e d image
15 % MSE: Mean−s q u a r e d e r r o r
16 % R : T o t a l v a r i a t i o n
17
18 i f ( n a r g i n < 2)
19 F s i z e = 4 ;
20 end
21 i f ( n a r g i n < 3)
22 I v a l s = [ 1 , 1 ; 2 , 2 ; 3 , 3 ; 4 , 4 ] ;
23 end
24 i f ( n a r g i n < 4)
25 I s t a r = I s t a r ( I v a l s ) ;
26 end
27 i f ( n a r g i n < 5)
28 N s t e p s = 500 ;
29 end
30 i f ( n a r g i n < 6)
31 lambda = 10000 ;
32 end
33 i f ( n a r g i n < 7)
34 s igma = 1 ;
35 end
36 i f ( n a r g i n < 8)
37 t h e t a = 1 ;
38 end
39 i f ( n a r g i n < 9)
40 t a u = 1 / 2 0 ;
41 end
42
43
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44 % S i z e o f t h e a n i m a t i o n
45 M = F s i z e ∗ s i z e (G, 1 ) ;
46 N = F s i z e ∗ s i z e (G, 2 ) ;
47 N samples = s i z e (G, 3 ) ;
48
49 % G r a d i e n t o p e r a t o r s
50 Dx = s p d i a g s ( [ ones (M−1 ,1) ; 0 ] , 1 ,M,M) − s p d i a g s ( [ ones (M−1 ,1) ;

0 ] , 0 ,M,M) ;
51 Dy = s p d i a g s ( [ ones (N−1 ,1) ; 0 ] , 1 ,N,N) − s p d i a g s ( [ ones (N−1 ,1) ;

0 ] , 0 ,N,N) ;
52
53 % O p e r a t o r s f o r t h e a l g o r i t h m
54 AA = @( u , F s i z e , I v a l s , I s t a r ) A s t a r ( A op ( u , F s i z e ,

I v a l s ) , I s t a r ) ;
55 o p i n v = @( u ) u − ( lambda∗ t a u / ( 1 + lambda∗ t a u ) ) ∗AA( u ,

I v a l s , I s t a r ) ;
56
57 % Algor i t hm I n i t i a l i z a t i o n
58 A s t a r g = A s t a r (G, I s t a r ) ;
59 U = A s t a r g ;
60 U v e c t o r = r e s h a p e (U’ , [ ] , 1 ) ;
61 x0 = U;
62 x t i l d = x0 ;
63 Ax0 = A op ( x0 , F s i z e , I v a l s ) ;
64 e p s u p d a t e = 10ˆ(−5) ;
65 C = [ ] ; N vec = [ ] ;
66 Nprev = 1 ;
67
68 % Dual−v a r i a b l e s
69 P1 = z e r o s (M, N) ;
70 P2 = z e r o s (M, N) ;
71
72 %I t e r a t i o n
73 f o r i =1 : N s t e p s
74 % G r a d i e n t o p e r a t i o n on x t i l d
75 Ux = Dx ∗ x t i l d ;
76 Uy = x t i l d ∗ Dy ’ ;
77
78 % P r o j e c t e d d u a l s t e p
79 P 1 t = P1 + sigma ∗Ux ;
80 P 2 t = P2 + sigma ∗Uy ;
81 p norm = s q r t ( P1 . ˆ 2 + P2 . ˆ 2 ) ;
82 p norm = max ( p norm , 1 ) ;
83 P1 = P 1 t . / p norm ;
84 P2 = P 2 t . / p norm ;
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85 % Compute d i v e r g e n c e o f P
86 p d i v = Dx’∗ P1 + P2∗Dy ;
87
88 % Update s t e p f o r x
89 x new = o p i n v ( x0 − ( t a u ∗ p d i v ) + ( lambda∗ t a u ∗A s t a r g ) ) ;
90
91 % Check s i z e o f upda te , s t o p t h e i t e r a t i o n i f n e c e s s a r y
92 i f ( sum ( sum ( abs ( x new − x0 ) ) ) < e p s u p d a t e )
93 x0 = x new ;
94 N s t e p s = i ;
95 b r e a k ;
96 end
97
98 % Update x t i l d
99 x t i l d = (1 + t h e t a ) ∗ x new − t h e t a ∗ x0 ;

100
101 % Compute m u l t i p l i e r t e r m s f o r t h e f i g u r e s
102 Nnew = norm ( x new − x0 , 2 ) ;
103 C = [C , Nnew / Nprev ] ;
104 N vec = [ N vec , Nnew ] ;
105 Nprev = Nnew ;
106
107 % F i n a l u p d a t e
108 x0 = x new ;
109 end
110
111 % Take c o n s e c u t i v e p r o d u c t s on C
112 CC = C ( 1 : end−1) .∗ C ( 2 : end ) ;
113
114 f i g u r e ; p l o t ( 3 : N s t eps , C ( 3 : end ) , ’−r ’ ) ;
115 t i t l e ( ’ P l o t o f C k m u l t i p l i e r f o r each t ime s t e p ’ ) ;
116 x l a b e l ( ’ k ’ ) ;
117 y l a b e l ( ’ C k ’ ) ;
118
119 f i g u r e ; p l o t ( 2 : N s t e p s − 1 , CC ( 2 : end ) , ’−r ’ ) ;
120 t i t l e ( ’ P l o t o f CC k m u l t i p l i e r f o r each t ime s t e p ’ ) ;
121 x l a b e l ( ’ k ’ ) ;
122 y l a b e l ( ’ CC k ’ ) ;
123
124
125 f i g u r e ; s e m i l o g y ( 3 : N s t eps , N vec ( 3 : end ) , ’−r ’ ) ;
126 t i t l e ( ’ P l o t o f d i f f e r e n c e norm f o r each t ime s t e p ’ ) ;
127 x l a b e l ( ’ k ’ ) ;
128 y l a b e l ( ’ Cu k ’ ) ;
129
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130 % Make x0 d i s p l a y a b l e image
131 x0 = r e a l ( r e s h a p e ( x0 , [M,N] ) ) ;
132 x0 min = min ( x0 ( : ) )
133 x0 max = max ( x0 ( : ) )
134 i f ( x0 max > x0 min )
135 x0 = 255∗ ( x0 − x0 min ) / ( x0 max − x0 min ) ;
136 end
137
138 f i g u r e ; imagesc ( u i n t 8 ( x0 ) ) ; t i t l e ( [ ’ Super−r e s o l v e d image ,

\ t h e t a = ’ , num2s t r ( t h e t a ) , ’ , \ t a u = ’ , num2s t r ( t a u ) , ’
, \ lambda = ’ , num2s t r ( lambda ) , ’ , n = ’ , num2s t r (
N s t e p s ) ] ) ;

139 co lormap gray ;
140
141 Ax0 = A op ( x0 , F s i z e , I v a l s ) ;
142
143 % Send o u t p u t
144 MSE = sum ( sum ( sum ( ( Ax0 − G) . ˆ 2 ) ) ) / numel (G)
145 R = sum ( sum ( ( Ux . ˆ 2 + Uy . ˆ 2 ) . ˆ ( 1 / 2 ) ) )
146 P = x0 ;
147 end
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Appendix B - Test Cases

Blurring test case - L-curve

1 %% L−c u r v e
2
3 % Choose t h e d i m e n s i o n s o f t h e image , and d e f i n e t h e image
4 M = 360 ; N = 480 ;
5 Norge = i m r e s i z e ( do ub l e ( r g b 2 g r a y ( imread ( ’ k a b e l v a g . j p g ’ ) ) ) ,

[M, N] ) ;
6
7 % B l u r r i n g k e r n e l (9 x9 G a u s s i a n )
8 s = 5 ;
9 B = 1 / ( s ˆ 2 ) ∗ ones ( s ) ;

10 BB = conv2 (B , B) ;
11 Norge = conv2 ( Norge , BB, ’ same ’ ) ;
12
13 % I n i t i a l i z e bo th t e r m s of o b j e c t i v e f u n c t i o n
14 MSE = [ ] ;
15 R = [ ] ;
16
17 f o r j = −1:6
18 [ x0 , s , r ] = p r i m a l d u a l c o n v ( Norge , BB, 300 , 10ˆ j , 1 ,

1 , 0 . 1 ) ;
19 MSE = [MSE, s ∗ M ∗ N ] ;
20 R = [R , r ] ;
21 end
22
23 f i g u r e ; l o g l o g (R , MSE, ’−s ’ ) ;
24 t i t l e ( ’ Log−l o g p l o t : \ lambda = 10ˆ j , j = −1, 0 , . . . , 6 ’ ) ;
25 l a b e l s = { ’\ lambda = 10ˆ{−1} ’ , ’\ lambda = 10ˆ0 ’ , ’\ lambda =

10ˆ1 ’ , ’\ lambda = 10ˆ2 ’ , ’\ lambda = 10ˆ3 ’ , ’\ lambda = 10ˆ4 ’
, ’\ lambda = 10ˆ5 ’ , ’\ lambda = 10ˆ6 ’ } ;

26 t e x t (R , MSE , l a b e l s , ’ V e r t i c a l A l i g n m e n t ’ , ’ bo t tom ’ , ’
H o r i z o n t a l A l i g n m e n t ’ , ’ r i g h t ’ ) ;

27 x l a b e l ( ’ T o t a l v a r i a t i o n R( u ) ’ ) ;
28 y l a b e l ( ’Sum of s q u a r e d e r r o r s | |Au − v | | 2 ˆ2 ’ ) ;
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Adjoint test case - Down-sampling

1 %% A d j o i n t D i f f e r e n c e s Check
2 % T e s t t o show t h e o p e r a t o r s A op and A s t a r a r e a d j o i n t
3
4 I v a l s = [ 1 , 2 ; 2 , 1 ; 3 , 3 ; 4 , 4 ] ;
5 I s t a r = I s t a r ( I v a l s ) ;
6
7 AU = A op (U, I v a l s ) ;
8 AAU = AA(U, I v a l s , I s t a r ) ;
9

10 % Should show very s m a l l number c l o s e t o z e r o
11 a d j o i n t d i f f e r e n c e c h e c k = f r o (AU, AU) − f r o (U, AAU)

Super-resolution - Test case

1 % Choose t h e d i m e n s i o n s o f t h e image , and i n i t i a l i z e image
2 M = 360 ; N = 480 ;
3 I s l a n d = i m r e s i z e ( d ou b l e ( r g b 2 g r a y ( imread ( ’ i c e l a n d . j p g ’ ) ) ) ,

[M, N] ) ;
4
5 % S e l e c t a g r i d f o r down−s a m p l i n g
6 I v a l s = [ 1 , 1 ; 2 , 2 ; 3 , 3 ; 4 , 4 ] ;
7 I s t a r = I s t a r ( I v a l s ) ;
8 I s l a n d s a m p l e s = A op ( I s l a n d , I v a l s ) ;
9

10 f o r ( i = 1 : s i z e ( I s l a n d s a m p l e s , 3 ) )
11 f i g u r e ;
12 imagesc ( u i n t 8 ( I s l a n d s a m p l e s ( : , : , i ) ) ) ;
13 t i t l e ( [ ’ Sample Image number ’ , num2s t r ( i ) ] ) ;
14 co lormap gray ;
15 end
16
17 % Find t h e super−r e s o l u t i o n g i v e n a s i m p l e i n s e r t i o n
18 [ x0 , s , r ] = s u p e r r e s ( I s l a n d s a m p l e s , I v a l s , I s t a r ,

500 , 10ˆ j ) ;
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Video resolution - Test case

1 %% TEST CASE : Video / Image Super−r e s o l u t i o n
2
3 % I n i t i a l i z e t h e GIF f i l e i n b l a c k / w h i t e
4 % On l i ne image a c c e s s : h t t p s : / / imgur . com / a / UsZ9ZVE
5 g i f = im2double ( imread ( ’ n i d a r o s . g i f ’ , ’ Frames ’ , 1 : 4 ) ) ;
6
7 %From 4D a r r a y t o 3D a r r a y
8 t s = s i z e ( g i f ) ;
9 g i f = r e s h a p e ( g i f , t s ( 1 ) , t s ( 2 ) , t s ( 4 ) ) ;

10
11 %Edge−d e t e c t i o n
12 B = [−1 , −1, −1; −1, 8 , −1; −1, −1, −1];
13 g i f e d g e s = i m f i l t e r ( g i f , B , ’ conv ’ , ’ symmet r i c ’ ) ;
14 implay ( g i f e d g e s ) ;
15
16 % Based on t h e edge−d e t e c t i o n , choose a p p r o p r i a t e I v a l s
17 F s i z e = 4 ;
18 I v a l s = [ F s i z e , F s i z e ] ;
19 f o r i = 1 : ( F s i z e −1)
20 I v a l s = [ I v a l s ; F s i z e − i , F s i z e − i ] ;
21 end
22 I s t a r = I s t a r ( I v a l s , F s i z e ) ;
23
24 % Run t h e super−r e s o l u t i o n a l g o r i t h m wi th t h e g i v e n

p a r a m e t e r s , and p l o t t h e f i g u r e .
25 [ x0 , s , r ] = s u p e r r e s ( g i f , F s i z e , I v a l s , I s t a r , 500 ,

10) ;
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