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Abstract

Spatial deformations in beams subjected to terminal twist and axial compression is a sig-
nificant engineering problem. When compressed more than a limit, the geometry becomes
complex and rods form a loop with itself. This unstable behavior is essential to understand
post-buckling in rods. The mathematical model used for the analysis of nonlinear defor-
mations is a boundary value problem with a system of ordinary differential equations in
space.

In the present work, we use geometric integration schemes to study the deformations
in space–curved beams subjected to twist and vertical compression. We present a numer-
ical setup for the solution of boundary value problem and simulate commonly observed
phenomena such as loop formation, axial shortening, and self–contact. We also study
the conservation properties in space, and numerically compare the preservation perfor-
mance of structure preserving schemes with non–preserving integration schemes, for a
twist–shortening problem. A multi–symplectic formulation for space–curved beams is
also derived and numerically implemented using RATTLE and symplectic Euler method.
The theoretical and numerical setup presented here will be useful to understand relatively
complex dynamic problems.
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Chapter 1
Introduction

In the present work, we consider a three–dimensional elastic rod model formulated in
Reissner (1981). The rod model discusses deformations in space–curved beams and is a
static rod model; however, Simo (1985) presents an extension to the generalized dynamic
rod model. This model has equal principal stiffness and can experience flexure, torsion,
extension, and shear, in contrast to the Kirchhoff–Love model, (Love, 1944) that neglected
extension and shear strain. Strain caused due to extension is an important aspect, when
investigating the formation of knots and Kirchhoff–Love’s model is not feasible to ana-
lyze such phenomenon. However, with Reissner (1981) model, it is possible to set up a
mathematical model that can experience all four strains. The resulting boundary value
formulation can be used for various applications, for instance, twist-shortening problem
or a contact problem (Miyazaki and Kondo, 1997). The former is a relatively simplified
application, with boundary conditions on the start and end point of the rod, whereas the
later has few additional conditions and assumptions which make it a relatively complex
problem.

An analytical solution and possible applications for this model were presented in
Miyazaki and Kondo (1997); however, the solutions are expressed in integral forms and
require appropriate numerical integration techniques. Choice of coordinates for the con-
figuration manifold is a crucial issue for the numerical simulation, and the first numerical
discretization of this model presented by Simo and Vu-Quoc (1986) used rotation matrices
to represent the configuration manifold. Miyazaki and Kondo (1997) choose Euler angles
to represent rotations; however, we have opted to use unit quaternions (Euler parameters).
We use the configuration assumptions on the rod from Miyazaki and Kondo (1997) to write
the equilibrium equations for space–curved beams in a compact form using vectors. The
resulting model is a boundary value problem with a system of ordinary differential equa-
tions in space that can be numerically solved using geometric integrators. The problem
was investigated for a twist–shortening problem discussed in subsection 2.2.4. Due to the
nature of the problem, it is challenging to use integration techniques that preserve geome-
try, and also satisfy boundary conditions. To overcome this problem, we use the shooting
method combined with schemes based on Runge–Kutta methods that treat a boundary

1



Chapter 1. Introduction

value problem as an initial value problem and uses root finding techniques for the solu-
tion. The advantage of the shooting method lies in the usability of time-marching schemes
for initial value problems and will be discussed in detail in section 3.1.

One simple approach to the numerical discretization of Hamiltonian PDEs is to semi–
discretize them in such a way that the resulting ODE is a Hamiltonian system. This enables
the use of symplectic methods or integral preserving methods in time. Another approach
is to rewrite the Hamiltonian PDE into a multi–symplectic form (Bridges, 1997) and then
provide a space–time discretization of the problem satisfying a discrete local conserva-
tion law of multi–symplecticity. As the problem is time–independent, the kinetic energy
is zero, and the resulting Hamiltonian formulation has conjugate variables zeros. There-
fore it is insignificant to investigate a Hamiltonian formulation. We adopt the work of
Celledoni and Säfström (2010), to write the multi–symplectic formulation for Reissner
(1981) static model and discuss the conserved quantities in the problem. The simplified
formulation presented here will be helpful to understand the multi–symplectic formula-
tions for complex dynamical problems. Ringheim (2013) presented a framework for the
multi–symplectic formulation on a static rod model, but no numerical experiments were
considered. We do a successful implementation of the multi–symplectic formulation using
symplectic integration techniques discussed in chapter 3. The goal of this thesis, therefore,
is to numerically simulate deformations in space–curved beams when subjected to torsion
and terminal thrust using geometric integration.

The sections below primarily focuses on the definitions of the mathematical terms and
gives a brief insight into the requisite concepts for this thesis.

1.1 Lie Group and Lie Algebra
Definition 1.1.1 (Lie Group). An r-parameter Lie group is a group G carrying a structure
of an r-dimensional smooth manifold, such that the multiplication map m : G×G→ G,

m(g, h) = g.h, g, h ∈ G,

and the inversion map i : G→ G,

i(g) = g−1, g ∈ G,

are smooth maps between manifolds (Olver, 2012).

Definition 1.1.2 (Lie Bracket or Commutator). Let f : M → R be smooth function, and
v and w vector fields on M , then their Lie Bracket [v,w] (Olver, 2012) is the unique vector
field satisfying

[v,w](f) = v(w(f))− w(v(f)).

Proposition 1. The Lie Bracket has the following properties, (Olver, 2012)

(a) Bilinearity
[cv + c′v′,w] = c[v,w] + c′[v′,w],

where c, c′ are constants.

2



1.2 Multi-Symplectic PDEs

(b) Skew-Symmetry
[v,w] = −[w, v],

(c) Jacobi Identity
[u, [v,w]] + [[w,u], v] + [v, [w,u]] = 0.

Definition 1.1.3 (Lie Algebra). A Lie Algebra (Olver, 2012) over a field K is a vector
space g with a bilinear map, [ , ] : g× g→ g, such that the properties mentioned in Propo-
sition 1 are fulfilled, i.e Lie Bracket is bilinear, skew-symmetric and Jacobi Identity is
satisfied.

1.2 Multi-Symplectic PDEs
Definition 1.2.1 (Multi-Symplectic PDE). If a PDE can be written in the form of a linear
system of ordinary differentiable equations of type,

Mzt +Kzs = ∇zS(z), (1.1)

whereM ∈ Rd×d andK ∈ Rd×d are skew-symmetric matrices, z ∈ Rd and S : Rd → R

is a smooth map, then the PDE is said to be multi-symplectic.

Define two-forms, ω and κ,

ω := dz ∧Mdz, κ := dz ∧Kdz, (1.2)

such that ω is associated with time direction and defines a symplectic structure on Rm

(m = rankM), whereas κ is associated with space direction and defines a symplectic
structure on Rk (k = rankK) (Bridges and Reich, 2001). Any solution of the variational
equation associated with Equation (1.1) satisfies the multi–symplectic conservation law,

∂tω + ∂sκ = 0. (1.3)

Another important property associated with Equation (1.1) is the local conservation of
energy and momentum, i.e

∂te(z) + ∂sf(z) = 0, ∂ti(z) + ∂sg(z) = 0, (1.4)

where,

e(z) = S(z)− 1

2
zTsK

T z, f(z) =
1

2
zTt K

T z,

g(z) = S(z)− 1

2
zTt M

T z, i(z) =
1

2
zTsM

T z.

Global conservation quantities for energy E(z) and momentum I(z) can be obtained by
the integration of f(z) and i(z) over the spatial domain,

E(z) =

∫ L

0

e(z)ds, I(z) =

∫ L

0

i(z)ds, (1.5)

such that both are conserved, i.e (d/dt)E(z) = (d/dt)I(z) = 0.

3



Chapter 1. Introduction

1.3 First Integrals
Given a differential equation, ż = f(z(t)), the solution traces a curve in Rd and for
a given function I(z) : Rd 7→ R the solution can be evaluated as I(z(t)). For some
special functions, I(z(t)) may be constant along the solutions and such special functions
are known as first integrals.

Definition 1.3.1 (First Integral). A non-constant function I(z) is called a first integral, if
for any solution z(t) of a linear system following holds. (Hairer et al., 2006),

I ′(z) f(z(t)) = 0, =⇒ I(z(t)) = Const,

They are also known as invariants, and are crucial in geometric integration. The im-
portance of first integrals varies for mechanical systems. They either help in defining the
problem, with constant values having physical significance, or help in confining the so-
lution on a bounded region. They also serve as a comparable measure for evaluating the
performance of different numerical methods.

For a constant vector d, I(z) = dT z is called linear invariant if dT f(z) = 0 for all z,
and for a symmetric m×m matrix C, I(z) = zTCz is a quadratic invariant.

Theorem 1.3.1. For a system ṁ = A(m) m, If the matrix A is skew-symmetric for all
m, then the quadratic function I(m) = mTm is an invariant (Marsden and Ratiu, 2013).

For example, in Equations (1.4) and (1.5) energy and momentum are invariant quanti-
ties that are preserved either locally or globally. Global conservation (1.5) is a consequence
of local conservation (1.4), therefore, having local conservation is a stronger property. In
case of time-independent problems, the conserved quantities hold locally in space (in fact
point-wise), hence their integrals over the space domain also remain constant. Their im-
portance for our problem, will be discussed in chapter 2.

1.4 Euler Angles
The orientation of a body in space can be specified using three successive rotations with
respect to set of some coordinate axes fixed in the body, provided no two successive axes
of the sequence are same. The specific sequence of rotations (Leimkuhler and Reich, 2004,
page 228) used by Euler is as follows:

1. Counterclockwise rotation α about the z-axis.

2. Counterclockwise rotation β about the x-axis.

3. Counterclockwise rotation γ about the z-axis.

The rotation matrix ∧ can be expressed using the product of the following three planar
rotations, i.e ∧ = ABC where,

A =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 , B =

1 0 0
0 cosβ sinβ
0 −sinβ cosβ

 , C =

 cosα sinα 0
−sinα cosα 0

0 0 1

 ,
4



1.5 Quaternions

Elementary rotations A,B,C do not commute, so there are 6 possible conventions for the
representation of rotation matrix and the choice of axes for rotations is not unique.

Euler angles used for solving equations of motion of a rigid body do not cover all pos-
sible orientations, and singularities in the equations complicate the numerical integration
of the resulting equations of motion, not only at the singularity but also in the neighbor-
hood. One way to counter this problem is choosing a different sequence of axes (with
new angle variables) whenever integration proceeds in the vicinity of a singular point, but
this procedure will make the algorithm cumbersome. Because of this problem with the
Euler angle, an alternative set of parameters based on Hamilton’s quaternions is often used
(Leimkuhler and Reich, 2004).

1.5 Quaternions

A quaternion is quadruple of Euler parameters q = (q0, q) where q0 is a scalar and q =
(q1, q2, q3) is a vector in three dimensional space. Quaternions (with unit length) are points
on the unit three dimensional, S3 described by the constraint, {q ∈ R4 : ||q|| = 1}. In
other words, q ∈ R × R3 is equipped with a certain Lie group structure and the product
(non–commutative) “⊗” is defined as

(p0, p)⊗ (q0, q) := (p0q0 − pT q , p0q + q0p + p× q). (1.6)

Product of quaternions can also be expressed as a matrix–vector product, i.e for p,q ∈ R4,
p ⊗ q = R(q)p = L(p)q, where L(p) and R(q) are orthogonal commutative matrices
defined as

L(q) =

[
q0 −qT
q (q01+ q̂)

]
and R(q) =

[
q0 −qT
q (q01− q̂)

]
,

where 1 ∈ R3 is an identity matrix. Their sum is defined as

q+ p = (q0 + p0, q + p).

For q 6= (0,0), there exists an inverse, q−1,

q−1 = q̄ / ||q||, ||q|| =
√
q20 + ||q||22,

where the conjugate of quaternion is q̄ = (q0,−q) and the identity element is qid =
(1,0). A unit quaternion with scalar as zero, i.e q = (0, q), is called a pure quaternion.
Quaternions are often used to find rotation matrices to avoid dealing with singularities.
A unit quaternion q = (q0, q) can be transformed to rotation matrices using an Euler–
Rodrigues map E : S3 → SO(3) defined as

E(q) = I3 + 2q0q̂ + 2q̂2, (1.7)

where, “ ̂ ” is the hat-map.

5



Chapter 1. Introduction

Definition 1.5.1 (Hat-map). A map ̂ : R3 → so(3) is called hat-map, if for v ∈ R3,

v =

 v1
v2
v3

→ v̂ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ,
and it satisfies, v̂u = v × u.

E(q) is surjective submersion, i.e its differential is surjective everywhere for a differen-
tial map between differential manifolds. However, it is not injective as E(q) = E(−q) that
implies each rotation matrix will have two pre-images. For this reason, it is insignificant
to consider either of one. E(q) is also a group homomorphism, since E(pq) = E(p)E(q).
Explicitly writing the Equation (1.7) gives the structure for the rotation matrix

E(q) =

 1− 2(q22 + q23) −2q0q3 + 2q1q2 2q0q2 + 2q1q3
2q0q3 + 2q1q2 1− 2(q21 + q23) −2q0q1 + 2q2q3
−2q0q2 + 2q1q3 2q0q1 + 2q2q3 1− 2(q21 + q22)

 .
Euler parameters are defined in terms of angle-axis parameter. If φ is the angle of rotation
around the axis k ∈ R3 such that, ||k|| = 1, then q = (cos(φ2 ), k sin(φ2 )) (Schwab, 2002;
Coutsias and Romero, 2004; Leimkuhler and Reich, 2004).

It is also possible to obtain Euler–parameters from the rotation matrix. This is done
using the method presented by Shepperd (1978). As the map (1.7) is not injective, hence
for each rotation matrix there are two possible choices of quaternions. The appropriate
choice is decided using criterion such as continuity or q0 > 0. For the ease of evaluation
we assume

z =


z0
z1
z2
z3

 := 2


q0
q1
q2
q3

 , and T := q11 + q22 + q33 = Tr(E(q)),

where {qij}i,j=1,2,3 represents the (i, j) entry of the rotation matrix and q00 := T . On
comparison with Euler–Rodrigues map we can write following symmetric equations for
the diagonal entries of E(q),

z20 = 1 + 2q00 − T, z22 = 1 + 2q22 − T,
z21 = 1 + 2q11 − T, z23 = 1 + 2q33 − T,

(1.8)

Similarly the off–diagonal entries gives the following equations

z0z1 = q32 − q23, z2z3 = q32 + q23,

z0z2 = q13 − q31, z3z1 = q13 + q31,

z0z3 = q21 − q12, z1z2 = q21 + q12.

(1.9)

The above information can be summarized into the following algorithm, that will be used
to find Euler-parameters from a rotation matrix. (Shepperd, 1978; Egeland and Gravdahl,
2002).
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1.5 Quaternions

Algorithm

1. Compute pii := max{qii}

2. Compute |zi| =
√

1 + 2pii − T

3. Find the sign of zi using some criteria, like continuity, or q0 > 0.

4. Find remaining zj from the system of equations (1.8) and (1.9).

5. Compute q := (q0, q) from qi = zi/2 for i ∈ I.

7
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Chapter 2
Space–Curved Beams

To understand a mechanical system that involves deformations in rods, an easy example
to start with is a rigid body problem. Rigid body models, such as in Celledoni et al.
(2018, 2008); Celledoni and Säfström (2010), were used to investigate applications like
offshore pipe-lay operations, free rigid body and molecular dynamics, and they can serve
as a good starting point to understand the mechanics of related problems. For conve-
nience, we start with a free rigid body problem. We discuss the possible invariants and
their importance and then write the Hamiltonian formulation using unit quaternions. We
then write the mathematical model for the equilibrium equations of space–curved beams
(Reissner, 1981; Miyazaki and Kondo, 1997) in a compact form using vectorial notation,
and discuss the spatially conserved quantities. Using the mathematical model, we de-
rive the multi–symplectic formulation of the rod model and then explain the idea behind
twist–shortening. Time derivatives in this thesis will be represented by dot (u̇) and spatial
derivatives with prime (u′).

2.1 Free Rigid Body

2.1.1 Equations of Motion
Consider a rigid body (as shown in Figure 2.1) with center of mass fixed at origin in a con-
vected coordinate system, with {ni(s, τ)}i∈I (I = {1, 2, 3}) representing the orthonormal
basis of the body frame, and {ei(τ)}i∈I the orthonormal basis of a stationary frame. Pa-
rameters s and τ stands for space and time respectively. The configuration of the rigid
body can then be determined using a rotation matrix Q ∈ SO(3), which transforms coor-
dinate vectors from stationary frame to the body coordinates, in particular using ni = Qei
for i = 1, 2, 3. As is conventional, we denote stationary coordinate vectors by lower case
letters, whereas body coordinate vectors by upper case letters.

If M = (M1,M2,M3) represents the angular momenta and I = diag(Ixx, Iyy, Izz)
the inertia tensor in body coordinates, where (Ixx, Iyy, Izz) are principal moments of in-
ertia, then in the absence of any external force the equations of motion can be written as

9



Chapter 2. Space–Curved Beams

followed:

Ṁ = Î−1M M, (2.1)

Q̇ = Q Î−1M. (2.2)

Equation (2.1) is written for the angular momenta rather than angular velocity Ω = I−1M

x-axis

y-axis

z-axis

x-axis

y-axis

z-axis

x’-axis

y’-axis

z’-axis

Static Frame Body Frame

x(t)

O
O

Figure 2.1: Coordinate system representation for a Free Rigid Body

and is known as the Euler equation whereas Equation (2.2) is known as the Arnold equa-
tion. (Marsden and Ratiu, 2013; Hairer et al., 2006; Celledoni et al., 2008; Leimkuhler
and Reich, 2004) provides more details on rigid bodies. In the next section, we formulate
the equations of motion using unit quaternions.

2.1.2 Quaternionic representation of Equations of Motion
In this section, we will write the Equations (2.1) and (2.2) using quaternions, following
(Egeland and Gravdahl, 2002). Before finding the quaternionic representation, we will
write some helpful results for quaternions. Consider an arbitrary q ∈ S3. Differentiating
q⊗ q̄ = qid with respect to t, we get

q̇⊗ q̄+ q⊗ ˙̄q = 0, =⇒ ˙̄q = −q̄⊗ q̇⊗ q̄. (2.3)

Now consider q̇⊗ q̄,(
q̇0
q̇

)
⊗
(
q0
−q

)
=

(
q̇0q0 + q̇T q

−q̇0q + q0q̇ + q× q̇

)
=

(
0
v

)
. (2.4)

where v = −q̇0q + q0q̇ + q× q̇, and we have used the following identity.

1

2

d

dt
(q20 + qT q) = 0.

Now we have gathered the results and we can write a proposition that will give quaternionic
representation for Equation (2.2).
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2.1 Free Rigid Body

Proposition 2. The quaternionic representation for Equation (2.2) is given by,

q̇ =
1

2
ω̃ ⊗ q =

1

2
q⊗ Ω̃, (2.5)

where ω̃ = (0, ω) and Ω̃ = (0, Ω), are unit quaternions representing angular velocity in
stationary and body frame, respectively.

Proof. Consider an arbitrary vector u = (0,u) ∈ s3 then the coordinate transformation
using quaternion product is, (

0
Qu

)
= q⊗

(
0
u

)
⊗ q̄, (2.6)

where Q ∈ SO(3) is the rotation matrix. Differentiating with respect to time,(
0

Q̇u

)
+

(
0
Qu̇

)
= q̇⊗

(
0
u

)
⊗ q̄+ q⊗

(
0
u̇

)
⊗ q̄+ q⊗

(
0
u

)
⊗ ˙̄q,(

0

Q̇u

)
= q̇⊗

(
0
u

)
⊗ q̄+ q⊗

(
0
u

)
⊗ ˙̄q,

(
Using(2.6) for u̇

)
(

0

Q̇u

)
= q̇⊗ q̄⊗ q⊗

(
0
u

)
⊗ q̄− q⊗

(
0
u

)
⊗ q̄⊗ q̇⊗ q̄,

(
using (2.3)

)
(

0

Q̇u

)
= (q̇⊗ q̄)⊗

(
0
Qu

)
−
(

0
Qu

)
⊗ (q̇⊗ q̄),(

0

Q̇u

)
=

(
0
v

)
⊗
(

0
Qu

)
−
(

0
Qu

)
⊗
(

0
v

)
,
(

using (2.4)
)
,(

0

Q̇u

)
= 2

(
0

v×Qu

)
,

Comparing it with (2.2) gives, 2v = ω. Using this we can write the quaternionic represen-
tation as followed

q̇⊗ q̄ =
1

2
ω̃, =⇒ q̇ =

1

2
ω̃ ⊗ q, (2.7)

where ω̃ = (0, ω). Using (2.7), we can write the following proposition.

Equation (2.5) can also be written using matrix–vector multiplication as following,

q̇ =
1

2
R(q)ω̃ =

1

2
L(q)Ω̃. (2.8)

At each time-step, Equation (2.5) or (2.8) gives quaternion q ∈ S3, and using Euler–
Rodrigues map (1.7), we can find the rotation matrix. For a general overview of quaternion
representation for kinematics equations see Egeland and Gravdahl (2002); Celledoni et al.
(2008); Schwab (2002); Coutsias and Romero (2004).
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Chapter 2. Space–Curved Beams

2.1.3 Quadratic Invariants
The two quadratic invariants for a free rigid body problem are as following, (Hairer et al.,
2006; Marsden and Ratiu, 2013)

MTM = M2
1 +M2

2 +M2
3 , (2.9)

H(M) =
1

2
〈M, I−1M〉 =

1

2

(
M2

1

I1
+
M2

2

I2
+
M2

3

I3

)
, (2.10)

The first quadratic invariant (2.9) confines the solution to a sphere, whereas the second
quadratic invariant (2.10) confines it to the ellipsoid; therefore the solution is constrained
to the intersection of sphere and ellipsoid. Preservation of either of these will guarantee
the boundedness of solution as t → ∞. These two quadratic invariants will later be used
to distinguish the performance of different integrators in chapter 4.

2.1.4 Hamiltonian Formulation
Free rigid body problem can also be solved by writing the problem in terms of canonical
coordinates r = (p,q), using the Hamiltonian formulation. In this section we present
a Hamiltonian formulation for the free rigid body problem in unit quaternions, using the
idea presented in Maciejewski (1985). For angular velocity ω̃ = (0, ω) ∈ s3, the kinetic
energy (2.11) can be written as

L =
1

2
〈ω, I ω〉 =

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
, (2.11)

L =
1

2
〈ω̃, Ĩ ω̃〉 =

1

2
〈Ω̃, Ĩ Ω̃〉 = 2〈q̇, L(q) Ĩ L(qc)q̇〉,

where

Ĩ =

[
α 0T

0 I

]
,

whereα 6= 0 is of no physical importance, but is chosen to ensure the regularity of solution.
Using Legendre transformation, the expression for the conjugate momenta can be written
as,

p =
∂L
∂q̇

= 4L(q) Ĩ L(qc)q̇ =⇒ q̇ =
1

4
L(q) Ĩ−1 L(qc)p.

Therefore, the Hamiltonian formulation for a free rigid body can be written as,

ṗ = −1

4
L(p) Ĩ−1 L(pc)q, (2.12)

q̇ =
1

4
L(q) Ĩ−1 L(qc)p. (2.13)

In the next section, we will derive the equilibrium equations for space–curved beams and
their multi–symplectic formulation in quaternions, and discuss the important conserved
quantities, as we did for the free rigid body.
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2.2 Space–Curved Beam

2.2 Space–Curved Beam
Spatial elastica is the mathematical model used to analyze deformations in space–curved
beams. The static rod model under consideration was formulated by Reissner (1981),
where the rod can experience flexure, torsion, shear, and extension and has equal principal
stiffness. The model, however, was a static problem, and a generalized dynamic problem
was later presented by Simo (1985). In this section, we write the equilibrium equations
from Miyazaki and Kondo (1997) in a more compact form using vectors and state them as
a boundary value problem. We then present a multi–symplectic formulation and discuss
the conserved quantities for the model.

2.2.1 Equilibrium Equations in compact form using vectors
Consider a rod of length L, vertically clamped from both ends with the following features,
(Miyazaki and Kondo, 1997)

• Equal principle stiffness and uniform cross-section.

• Direct proportionality of stress resultants and stress couples (irrespective of large
displacements) on the force and moment strains, respectively.

• No deformations within the cross-section.

• No distributed load along the rod, and only terminal load.

The rod is made of a hyperelastic material, and there are no deformations within the cross-
section, therefore its configuration can be fully described by position of its line of centroids
by means of map x : [0, L] 7→ R3, and the orientation of cross-section at s ∈ [0, L] (Simo,
1985). Suppose {ni(s, τ)}i∈I (I = {1, 2, 3}) and {ei(τ)}i∈I represents the orthogonal
basis vector for the body frame and the stationary frame, respectively where s denotes
space and τ time parameter. The origin of the axis is fixed at the centroid of the cross-
section, and the equation for the centroid of rod is given by,

x′ = γb1n1 + γb2n2 + (1 + γb3)n3, (2.14)

where {γbi }i∈I represents force strains with γb1 and γb2 measuring shear about n1 and n2,
while γb3 measures extension. For convenience, “b” and “r” in superscript will denote
corresponding terms in body frame and stationary frame, respectively. If {Pi(s)}i∈I is
the stress resultant and {Mi(s)}i∈I stress couple in body coordinates, then the equilibrium
equations can be written as (Reissner, 1981)

P ′1 − P2κ
b
3 + P3κ

b
2 = 0, M ′1 −M2κ

b
2 +M3κ

b
2 − P2(1 + γb3) + P3γ

b
2 = 0,

P ′2 − P3κ
b
1 + P1κ

b
3 = 0, M ′2 −M3κ

b
1 +M1κ

b
3 − P3γ

b
1 + P1(1 + γb3) = 0,

P ′3 − P1κ
b
2 + P2κ

b
1 = 0, M ′3 −M1κ

b
2 +M2κ

b
1 − P1γ

b
2 + P2γ

b
1 = 0,

(2.15)

where {κbi}i∈I are the moment strains, for torsion and bending. Using the assumption of
linear dependence of stress and strain i.e Pi ∝ γbi and Mi ∝ κbi , expressions for κb, γb can
be calculated.
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Chapter 2. Space–Curved Beams

P1 = Kγb1, P2 = Kγb2, P3 = K3γ
b
3, =⇒

γb1γb2
γb3

 =

 1
K 0 0
0 1

K 0
0 0 1

K3

P1

P2

P3



M1 = Aκb1, M2 = Aκb2, M3 = A3κ
b
3, =⇒

κb1κb2
κb3

 =

 1
A 0 0
0 1

A 0
0 0 1

A3

M1

M2

M3


(2.16)

where A,A3,K,K3 are constants representing flexural, torsional, shear, and extensional
rigidity respectively. If P = [P1, P2, P3]T and M = [M1,M2,M3]T , then (2.15) can be
written in compact form as

P′ = −Ĉ−1M MP,

M′ = −Ĉ−1M MM− Ĉ−1P PP− ê3 P,
(2.17)

where
CM = diag[A,A,A3], CP = diag[K,K,K3].

Following Simo (1985), we take the derivative of the body frame with respect to space, to
find the equation for the rotation matrix.

n′i = k × ni, where k = κb1n1 + κb2n2 + κb3n3 = Qκb = QC−1M M,

where Q = [n1, n2, n3] ∈ SO(3) is the orthogonal rotation matrix, that will specify the
orientation of rod. Similarly, we can write the Equation (2.14) as followed

Q′ = QĈ−1M M. (2.18)

Similarly, the equation for the position vector can be re-written in compact form as follows,

x′ = QC−1P P +Qe3 = QC−1P P + n3. (2.19)

Combining Equations (2.17), (2.18) and (2.19), results in a boundary value problem that
can be used to study deformations in space–curved beams. Now we will discuss the Hamil-
tonian structure and associated energy for the space–curved beams that will be helpful in
the derivation of multi–symplectic formulation in subsection 2.2.3.

Following Simo et al. (1995, 1988), Equations (2.17) can also be calculated by differ-
entiating the free-energy function with respect to the strain measures. If the free-energy
is a quadratic function given by the strain measures, then we can write the expression for
energy density in space–curved beams as

J (γr, κr) :=
1

2

(
〈γr, DP γ

r〉+ 〈κr, DMκ
r〉
)
, (2.20)

where,
DP = QCPQ

T , DM = QCMQ
T , γr = x′ −Qe3,
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2.2 Space–Curved Beam

and,

γr = Qγb, κr = Qκb, p = QP, m = QM. (2.21)

Differentiating potential energy (2.20) with respect to γr and κr, we get

p =
∂

∂γr
J = DP γ

r =⇒ γr = D−1P p,

m =
∂

∂κr
J = DMκ

r.

Using (2.21), the above expressions can be written in body coordinates as followed

P = QTDP (Qγb) = CP γ
b, where γb = QT x′ − e3,

M = QTDM (Qκb) = CMκ
b.

The general form for the balance of linear and angular momentum in space are given by
(Reissner, 1981)

∂s p + p̃ = 0, (2.22)
∂s m + (∂sx)×p + m̃ = 0, (2.23)

where p̃, m̃, are the external forces and x is the position vector for line of centroid. For
derivations of (2.22) and (2.23), see Green and Zerna (1992). The Hamiltonian, i.e the
total energy of the system, is given by the sum of kinetic energy and the potential energy,
but since the kinetic energy is zero, therefore its Hamiltonian is

U =
1

2

∫ L

0

〈γr, DP γ
r〉+ 〈κr, DMκ

r〉ds. (2.24)

Proposition 3. With no external forces acting on the system equilibrium equations (2.22)
and (2.23) gives a system equivalent to system (2.17).

Proof. Consider Equations (2.22) and (2.23) in body frame with p̃ = m̃ = 0,

(2.22) =⇒ p′ = (QP)′ = Q′P +QP′,

QP′ = −QĈ−1M MP, =⇒ P′ = −Ĉ−1M MP.
(2.23) =⇒ m′ = −x′ × p,

(QM)′ = −(QC−1P P +Qe3)×QP,

Q′M +QM′ = −QC−1P P×QP−Qe3 ×QP,

QM′ = −QĈ−1M MM− (QC−1P P)× (QP)−Qe3 ×QP,

QM′ = −QĈ−1M MM + (QP)× (QC−1P P)−Qe3 ×QP,

M′ = −Ĉ−1M MM + P× (C−1P P)− e3 × P,

M′ = −Ĉ−1M MM− Ĉ−1P PP− ê3P.

Hence, we conclude that both systems give identical equations.
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Chapter 2. Space–Curved Beams

2.2.2 Conserved Quantities
As seen in the time–dependent problem, described in subsection 2.1.3, preservation of
quadratic first integrals such as energy, momentum, over time is important. Likewise,
we consider here scalar functions of solution which are invariant with respect to space
variables, i.e the derivative with respect to space s is zero. We refer to them as conserved
quantities. The first conserved quantity for the problem, as remarked in Miyazaki and
Kondo (1997) is

κb1P1 + κb2P2 +
A3

A
κb3P3 = Const,

1

A
M1P1 +

1

A
M2P2 +

A3

A3A
M3P3 = Const,

(
using Equation (2.16)

)
=⇒ 1

A
(M1P1 +M2P2 +M3P3) = Const.

Similarly, the other conserved quantities are the applied terminal force (defined as the
integral of stress resultants over spatial domain) and curvature κ3. Using compact vector
notation the conserved quantities are proved in the propositions below.

Proposition 4. PTP and PTM are the two conserved quantities for the boundary value
problem of space–curved beams.

Proof. Consider the first conserved PTP, and differentiate with respect to s,

P′TP + PTP′ = (−Ĉ−1M MP)TP + PT (−Ĉ−1M MP),

= (P× C−1M M)TP + PT (P× C−1M M).

Using property of scalar triple product uT (v × w) = vT (w × u) = wT (u × v) and com-
mutative property uT v = vTu,

P′TP + PTP′ = C−1M M(P× P) + C−1M M(P× P) = 0,

=⇒ PTP = Const.

Now, consider the second conserved quantity, PTM and differentiate again with respect to
s

P′TM + PTM′ = (−Ĉ−1M MP)TM + PT (−Ĉ−1M MM − Ĉ−1P PP− ê3P),

= (P× C−1M M)TM + PT (M × C−1M M + P× C−1P P− e3 × P),

= (P× C−1M M)TM + PT (M × C−1M M) + PT (P× C−1P P)︸ ︷︷ ︸
=0

−PT (e3 × P)︸ ︷︷ ︸
=0

,

= MT (P× C−1M M) + PT (M × C−1M M),

Using property of scalar triple product we can write, MT (P × C−1M M) = −PT (M ×
C−1M M),

P′TM + PTM′ = −PT (M × C−1M M) + PT (M × C−1M M) = 0,

=⇒ PTM = Const.
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2.2 Space–Curved Beam

To verify local the conservation of energy (1.4) over the spatial domain, we re-write
equations (2.17) in the form y′ = B(y)∇yJ (y),(

P′

M′
)

=

(
0 P̂
P̂ M̂

)(
C−1P P + e3
C−1M M

)
, (2.25)

where B(y) is a skew-symmetric matrix and J (y) energy (2.20) in body coordinates. i.e,

J =
1

2
〈P, C−1P P + 2e3〉+

1

2
〈M, C−1M M〉. (2.26)

Proposition 5. Energy density (2.26) is constant over the spatial domain.

Proof. Differentiating Equation (2.26) with respect to space “s”.

J ′(y) = (C−1P P)TP′ + eT3 P′ + (C−1M M)TM′,

= (C−1P P)T (P× C−1M M) + eT3 (P× C−1M M)

+ (C−1M M)T (M× C−1M M + P× C−1P P + P× e3),

= (C−1P P)T (P× C−1M M) + eT3 (P× C−1M M)

+ (C−1M M)T (P× C−1P P) + (C−1M M)T (P× e3),

= −(C−1M M)T (P× C−1P P) + eT3 (P× C−1M M)

+ (C−1M M)T (P× C−1P P)− eT3 (P× C−1M M),

= 0.

From J ′(y) = 0, we conclude (2.26) is constant over spatial domain.

The idea of conservation of energy is followed from local conservation laws (1.4) and
(1.5) for multi–symplectic PDEs discussed in section 1.2. However, since the problem
is time–independent, the energy density differentiated with respect to time in (1.4) disap-
pears. We are then left with a derivative of energy density due to strain, i.e J with respect
to s, and in Proposition 5 we have shown it is equal to zero, therefore we say energy is
locally (in fact point-wise) conserved. Since having local conservation is a stronger prop-
erty and global conservation is its consequence, therefore we say J is conserved globally
as well, i.e (1.5) is satisfied.

2.2.3 Multi–Symplectic Formulation
Using the idea presented in subsection 2.1.2, the equilibrium equation (2.18) for the posi-
tion matrix can also be written in unit quaternions as followed

q′ = q⊗ κ̃r = κ̃b ⊗ q,

for κ̃r = (0, κr) ∈ s3 and κ̃b = (0, κb) ∈ s3. Or using matrix–vector multiplication,

q′ =
1

2
L(q)κ̃b =

1

2
R(q)κ̃r.
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Chapter 2. Space–Curved Beams

Similarly, Equation (2.19) in unit quaternions is as followed

x′ = E(q)C−1P P + n3,

where E(q) is the rotation matrix calculated using Euler–Rodrigues map (1.7). As dis-
cussed in chapter 1, it is insignificant to consider Hamiltonian formulation, because of
zero conjugate variables. We therefore derive a multi–symplectic formulation for space–
curved beams, that will be applied to twist–shortening problem in chapter 4.

Following Celledoni and Säfström (2010), consider a smooth map S defined on u =
(x,q) for conjugate variables v = (vx,v) defined as

S(u, v) := 〈v,us(v)〉 − L(u,us), (2.27)

where L is the Lagrangian. For convenience, CM ∈ R3×3 is extended to invertible C̃M ∈
R4×4 so that the new Lagrangian becomes regular on the cotangent bundle.

D̃M = L(q)R(qc)C̃ML(qc)R(q), where C̃M =

[
α 0T

0 CM

]
, α 6= 0.

The Lagrangian in general is given by the difference of the potential energy and the kinetic
energy, but since the kinetic energy is zero, we can use the potential energy (2.20) to write
the Lagrangian in quaternions with a holonomic constraint g(q) := ||q||2 − 1 = 0.

L(u,us) = −1

2

[
〈γr, DP γ

r〉+ 4〈q′, R(q)D̃MR(qc)q′〉
]
− λ

(
||q||2 − 1

)
, (2.28)

where γr = x′ − n3. Analogous to the canonical system written for a free rigid body,
we can write a similar system for conjugate variables by taking partial derivatives of the
Lagrangian with respect to the space derivatives

vx :=
∂L
∂x′

= −DP γ
r, =⇒ x′(q, vx) = −D−1P vx + ε(q)e3, (2.29)

v :=
∂L
∂q′

= −4R(q)D̃MR(qc)q′ ∈ T ∗S3, =⇒ q′(q,v) = −1

4
R(q)D̃−1M R(qc)v,

(2.30)

Using these conjugate variables, we rewrite the Equations (2.28) and (2.27),

(2.28) =⇒ L(u,us) = −1

2

[
〈γr, DP γ

r〉+ 4〈q′, R(q)D̃MR(qc)q′〉
]
− λ
(
||q||2 − 1

)
,

L(u,us) = −1

2

[
〈−D−1P vx, DP (−D−1P vx)〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

]
− λ
(
||q||2 − 1

)
,

L(u,us) = −1

2

[
〈vx, D

−1
P vx〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

]
− λ
(
||q||2 − 1

)
.

Calculating 〈v,us(v)〉 in (2.27),

〈v,us(v)〉 = 〈vx, x′〉+ 〈v,q′〉,

= 〈vx,−D−1P vx + ε(q)e3〉+
1

4
〈v, R(q)D̃−1M R(qc)v〉,

= −〈vx, D
−1
P vx − ε(q)e3〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉.

18



2.2 Space–Curved Beam

(2.27) =⇒ S(u, v) = 〈v,us(v)〉 − L(u,us),

= −〈vx, D
−1
P vx − ε(q)e3〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

+
1

2

[
〈vx, D

−1
P vx)〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

]
+ λ

(
||q||2 − 1

)
,

= −1

2

[
〈vx, D

−1
P vx − 2ε(q)e3〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

]
+ λ

(
||q||2 − 1

)
.

Summarizing (2.27) as

S(u, v) = −1

2

[
〈vx, D

−1
P vx − 2ε(q)e3〉+

1

4
〈v, R(q)D̃−1M R(qc)v〉

]
+ λ
(
||q||2 − 1

)
.

(2.31)
The partial derivatives of S with respect to x and q are given as

∂S

∂x
= 0, (2.32)

and

∂S

∂q
=

1

4
R(q)L(v)L(qc)D̃−1M R(qc)v +R(q)

[
L(vx)−R(vx)

] [ 0
D−1P vx − ε(q)e3

]
+ 2〈(ε(q)− 1)vx, D

−1
P vx − ε(q)e3〉+ 2λq. (2.33)

We can then write equations for the multi–symplectic system (1.1) as follows (Celledoni
and Säfström, 2010):

∂S
∂u

= −∂sv, (2.34)

∂S
∂v

= ∂su, (2.35)

0 = ||q||2 − 1, (2.36)

Or in matrix–vector notation,0 −1 0
1 0 0
0 0 0

u′
v′
λ′

 =

∂uS
∂vS
∂λS

 (2.37)

Hence, for z = (u, v, λ), and a skew-symmetric matrix K, the multi–symplectic formula-
tion can be written as

Kzs = ∇zS, (2.38)

The multi–symplectic formulation calculated in this section corresponds to the formulation
for a dynamic problem presented in Celledoni and Säfström (2010) with time variables
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Chapter 2. Space–Curved Beams

zero. Constraint g(q) = 0 ensures the solution stays on the surface of sphere, but since
v ∈ T ∗S3 we need another constraint to ensure v stays on the co-tangent bundle. To find
the hidden constraint, differentiating g(q) = 0 once, we get

g′(q) = 2〈q,q′〉 = 2〈q,−1

4
R(q)D̃−1M R(qc)v〉 = −α

2
〈qid, R(qc)v〉 = −α

2
〈q,v〉,

=⇒ g′(q) = 〈q,v〉 = 0.

For G(q) = ∂g/∂q, this can be re-written as

g′(q) = G(q)v = 0, (2.39)

The second constraint will ensure v stays on the co-tangent bundle. We can find the
expression for the Lagrange multiplier, by differentiating it again

g′′(q) = G′(q)v +G(q)v′

= 〈q′,v〉+ 〈q,v′〉
= λ+ 〈(ε(q)− 1)vx, D

−1
P vx − ε(q)e3〉 = 0,

=⇒ λ = −〈(ε(q)− 1)vx, D
−1
P vx − ε(q)e3〉. (2.40)

2.2.4 Twist–Shortening Problem

ɸ

m

l

e

e
e

3

1

ξl

Figure 2.2: Twist–Shortening Explained (Miyazaki and Kondo, 1997)

As discussed in the chapter 1, when a vertically clamped rod is subjected to axial and
moment stresses, it can experience deformation in its shape, depending on the configura-
tion of the rod. Suppose such a rod of length l is twisted from one end by an angle φ in
the positive z-direction and then vertically compressed down by an amount ξl, then it will
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2.2 Space–Curved Beam

experience deformation in its shape, as shown in Figure 2.2. The boundary conditions for
this problem will then be

Q0 =

1 0 0
0 1 0
0 0 1

 , Ql =

cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 ,

x0 =

0
0
0

 , xl =

 0
0

(1− ξ)l

 .
(2.41)

The conditions have been represented using Euler angles but we will use algorithm (1.5)
with condition q0 > 0, to find the corresponding Euler parameters in the numerical imple-
mentations chapter 4.
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Chapter 3
Structure Preserving Geometric
Schemes

In the previous chapter, we derived explained the mechanical systems that are considered
for the present study. In this chapter, we highlight the essential properties of geometric
integrators that are suitable for initial value problems and posses additional geometric
structures, e.g preservation of first integrals, energy, and symplecticity. We will later use
these methods in combination with shooting techniques (see chapter 4) to solve boundary
value problems. Consider a non-autonomous differential equation,

ż(t) = f(t, z(t)), z(t0) = z0. (3.1)

The solution is approximated at equally spaced specified points using numerical scheme,
suitable for the differential equation. For the present work, we investigate structure pre-
serving geometric integrators based on the class of Runge–Kutta methods. They are used
widely for the integration of equations of type (3.1), however many of them do not ex-
hibit properties necessary for the solution. In the next section, we present the numerical
schemes for initial value problems that were used in the numerical experiments.

3.1 Initial Value Problem

3.1.1 Runge–Kutta Methods
For an ordinary differential equation (3.1), Runge–Kutta methods take the form

Ki = f(tn + cih, zn + h

i−1∑
j=1

aijKj), for i = 1, 2, . . . , s

=⇒ zn+1 = zn + h

s∑
i=1

biKi,
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Chapter 3. Structure Preserving Geometric Schemes

where s represents the stages and the coefficients are selected from Butcher tableau shown
in Table 3.1.

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table 3.1: Butcher tableau

For this thesis, an order 4 Runge–Kutta (RK4) with coefficients shown in Table 3.2
and an order 4 collocation method based on Gauss–Legendre quadrature (GL4) with co-
efficients shown in Table 3.3 are considered. Both methods are higher order, but the col-
location methods have better structure preserving properties in comparison with the RK4.
Section 1.3 gives an introduction to first integrals, and their preservation for Runge–Kutta
methods is proved in Theorem 3.1.1 and 3.1.2.

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Table 3.2: Butcher tableau RK4

1
2 -
√
3
6

1
4

1
4 -
√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

Table 3.3: Butcher tableau GL4

Theorem 3.1.1. All explicit and implicit Runge–Kutta methods conserve linear invariants
(Marsden and Ratiu, 2013).

Proof. Suppose a general linear invariant I(z) := dT z, and a general Runge–Kutta method
given by

zn+1 = zn + h

s∑
i=1

biKi, where Ki = f(zn + h

i−1∑
j=1

aijKj).

Using definition of an invariant, ∇I(z)T = dT =⇒ dT f(z) = 0 and also dTKi = 0.
Multiplying the Runge–Kutta method by dT from the right hand side

dT zn+1 = dT zn + h

s∑
i=1

bid
TKi = dT zn,

=⇒ dT zn+1 = dT zn.
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3.1 Initial Value Problem

Theorem 3.1.2. Runge–Kutta methods with coeffecients {ci}i=1,...,s, {bi}i=1,...,s and
{aij}i,j=1,...,s satisfying

biaij + bjaji = bibj , for all i, j (3.2)

preserve quadratic invariants.

Proof. Suppose a quadratic invariant of the form Q(z) := zTAz, written with a general
Runge–Kutta scheme as,

zTn+1Az
T
n+1 = (zn + h

s∑
j=1

bjKj)
TA(zn + h

s∑
i=1

biKi),

zTn+1Az
T
n+1 = zTnAzn + h

s∑
i=1

biz
T
nAKi + h

s∑
j=1

bjK
T
j Azn + h2

s∑
i,j=1

bibjK
T
j AKi.

From the definition of quadratic invariant we have

∇Q(zn+1)TAf(zn+1) = 0 =⇒ (zn + h
∑
j

aijKj)
TAf(zn + h

∑
j

aijKj) = 0.

Using the identity, zn = zn+h
∑
j aijKj−h

∑
j aijKj and result of quadratic invariant,

we simplify,

zTn+1Az
T
n+1 = zTnAzn − h2

s∑
i,j=1

biaijK
T
j AKi − h2

s∑
i,j=1

bjajiK
T
j AKi

+ h2
s∑

i,j=1

bibjK
T
j AKi,

zTn+1Az
T
n+1 = zTnAzn + h2

( s∑
i,j=1

(−biaij − bjaji + bibj)K
T
j AKi

)
.

From this, it follows that quadratic invariant is satisfied only if Equation (3.2) holds.

Theorem 3.1.3. If the coeffcients of Runge–Kutta methods satisfy Equation (3.2), then the
Runge–Kutta method is symplectic (Hairer et al., 2006).

From the above two theorems, it is deduced that all Runge–Kutta methods preserve
linear invariants but only a subclass of Runge–Kutta methods preserves quadratic invari-
ants. However, invariants greater than or equal to degree 3 are not preserved. (Leimkuhler
and Reich, 2004; Hairer et al., 2006; Marsden and Ratiu, 2013; Burden and Faires, 2010)

3.1.2 Midpoint Method
The midpoint method is a second–order Runge–Kutta method used for solving ODEs
of type (3.1). The explicit midpoint method (EM) is also known as the modified Euler
method, whereas the implicit midpoint method (IM) is the most simple form of collocation
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Chapter 3. Structure Preserving Geometric Schemes

method. Coefficients for the EM and IM are shown in Table (3.4) and (3.5), respectively.
Using these coefficients, we can write the numerical scheme for the Equation (3.1).

0 0 0
1/2 1/2 0

0 1

Table 3.4: Butcher tableau EM

1/2 1/2
1

Table 3.5: Butcher tableau IM

Let f be a vector field defined on an open subset of a vector space; then the IM can be
defined as a mapping from zn 7→ zn+1,

zn+1 − zn
h

= f(zn+1/2), where zn+1/2 =
zn+1 + zn

2
. (3.3)

Rearranging the above equation,

zn+1 = zn + hf(zn+1/2), where zn+1/2 =
zn+1 + zn

2
.

Similarly, EM can be defined as a mapping from zn 7→ zn+1 such that,

zn+1 − zn
h

= f(zn +
h

2
f(zn)). (3.4)

IM is symmetric, unconditionally stable, and symplectic for constant symplectic struc-
tures. If the symplectic structures are not constant, such as in spin systems, then IM is not
symplectic (Hairer et al., 2006; McLachlan et al., 2014). Preservation of linear invariants
for EM and IM is followed from Theorem 3.1.1, however quadratic invariants are only
preserved by the later.

Proposition 6. The implicit midpoint method preserves quadratic invariants.

Proof. Consider the differential equation (3.1), with first integral of the form

I(z) =
1

2
zTAz + bT z, such that

d

dt
I = (Az + b)T f(z) = 0.

Multiply (3.3) by (Azn+1/2 + b)T from the left, and using (Az + b)T f(z) = 0 we get

(Azn+1/2 + b)T zn+1 = (Azn+1/2 + b)T zn + h(Azn+1/2 + b)T f(zn+1/2),

= (Azn+1/2 + b)T zn.

Since, (Azn)
T zn+1

2 = (Azn+1)
T zn

2 therefore we can write the above equation as

(zn+1)TAzn+1

2
+ bT zn+1 =

(zn)TAzn
2

+ bT zn.

This implies that implicit midpoint method preserves quadratic invariants (Leimkuhler and
Reich, 2004, page 90).
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3.1 Initial Value Problem

3.1.3 Spherical Midpoint Method

The idea behind spherical midpoint method (SM) comes from the implicit midpoint method.
Implicit midpoint method is extensively used in computational physics due to its striking
properties as explained earlier, however, the method is not symplectic when applied to spin
systems (McLachlan et al., 2014). Despite this, it still has been used in many cases due to
many other properties, such as spin length preservation, linear stability for all h, etc. The
spherical midpoint method coincides with the implicit midpoint method, when applied to
the following vector field

ρ(z) = f

(
z1
||z1||

, ...,
zn
||zn||

)
.

Spherical midpoint method also proves to have several useful properties. It is second-order
accurate, self-adjoint, symplectic and preserves linear first integral and symmetries. If the
Hamiltonian is of the form (2.10), then it conserves the quadratic invarian (McLachlan
et al., 2014).

3.1.4 Kahan Method

Consider a system of differential equations with initial condition z(0) = z0, arising from
quadratic vector fields

ż = f(z) := Q(z) +B(z) + b, for z ∈ Rn, (3.5)

where Q ∈ Rn is real-valued quadratic form, B ∈ Rn×n and c ∈ Rn. This scheme was
introduced by Kahan (1993) for Lotka Volterra system and Riccati equation and written in
the general form as (Kahan and Li, 1997)

zn+1 + zn
h

= Q(zn, zn+1) +
1

2
B(zn + zn+1) + b, (3.6)

where,

Q(zn, zn+1) =
1

2
(Q(zn + zn+1)−Q(zn)−Q(zn+1)) . (3.7)

The method is symmetric and linearly implicit. It is called an “unconventional method” as
each term is treated differently. As noted by Kahan and Li (1997), Kahan method has the
following property :

Proposition 7. The Kahan method (3.5) coincides with the Runge–Kutta method,

zn+1 − zn
h

= −1

2
f(zn) + 2f

(
zn+1 + zn

2

)
− 1

2
f(zn+1),

restricted to the quadratic vector field (Celledoni et al., 2012).
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Chapter 3. Structure Preserving Geometric Schemes

Proof. Consider discretization for Kahan method (3.6),

zn+1 + zn
h

=
1

2
(Q(zn + zn+1)−Q(zn)−Q(zn+1)) +

1

2
B(zn + zn+1) + b,

=
1

2

(
4Q(

zn + zn+1

2
)−Q(zn)−Q(zn+1)

)
− 1

2
B(zn)− 1

2
B(zn+1) +

1

2
B(

zn + zn+1

2
) + b,

= −1

2
f(zn) + 2f

(
zn+1 + zn

2

)
− 1

2
f(zn+1).

Since all Runge–Kutta methods preserve linear first integrals (Theorem 3.1.1), as a
consequence Kahan method also preserves linear first integrals. However, the method
is not sympelctic. It is second order accurate for general quadratic fields and does not
preserve quadaratic invariants. See Celledoni et al. (2012) for geometric properties of
Kahan method.

3.1.5 Symplectic Euler
Given a constrained Hamiltonian system (Hairer et al., 2006, Chap. VII)

u̇ = Hv(u, v),

v̇ = −Hu(u, v)−G(u)Tλ,

0 = g(u)

(3.8)

where H is the Hamiltonian of the system and G(u) = ∂g/∂u. Differentiating the con-
straint g(u) = 0 with respect to time, we find the second constraint G(u)Hu(u, v) = 0
(Hairer et al., 2006) that ensures v stays on the cotangent bundle T ∗Q where Q = {u :
g(u) = 0} is the configuration manifoldM and the manifold is given byM = {(u, v) :
g(u) = 0, G(u)Hu(u, v) = 0}. A first order symplectic Euler (SE) scheme can be formu-
lated as follows

v̂n+1 = vn − h
(
Hu(un, vn+1) +G(vn)Tλn+1

)
, (3.9)

un+1 = un + hHv(un, v̂n+1), (3.10)
0 = g(un+1) (3.11)

It is observed that (v̂n+1, un+1) satisfies the constraint g(u) = 0, however the second
constraintG(u)Hu(u, v) = 0 is not satisfied, which means the solution is not the manifold
M. In order to bring the solution back to the manifold, a projection technique (shown in
Figure 3.1) is incorporated into the solution that ensures the solution stays on the manifold.

vn+1 = v̂n+1 − hG(vn+1)Tµn+1, (3.12)
0 = G(vn+1)Hv(un+1, vn+1), (3.13)
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3.1 Initial Value Problem

The parameters λn+1 is chosen such that Equation (3.11) is satisfied, i.e

g(qn+1) = g(qn + hHv(un, v̂n+1)) = 0

On the other, the parameter µn+1 is chosen at time step tn, such that Equation (3.13) is
satisfied. It can be proved that the method is order 1, is symplectic however the method is
not symmetric (Hairer et al., 2006).

Figure 3.1: Projection Explained

3.1.6 RATTLE Method

A second order symplectic method for (3.8), which is also symmetric known as the RAT-
TLE method (Hairer et al., 2006; Leimkuhler and Reich, 2004) is presented here. It is an
extension of a similar algorithm SHAKE, and is used for the integration of equations of
motion in molecular dynamics, that are subjected to some constraints. It is advantageous
over the SHAKE algorithm, as it satisfies the constraints at each time-step (Andersen,
1983).

vn+1/2 = vn −
h

2

(
Hu(un, vn+1/2) +G(un)Tλn

)
,

un+1 = un +
h

2

(
Hv(un, vn+1/2) +Hv(un+1, vn+1/2)

)
,

0 = g(un+1),

vn+1 = vn+1/2 −
h

2

(
Hu(un+1, vn+1/2) +G(un+1)Tµn

)
,

0 = G(un+1)Hv(un+1, vn+1).

(3.14)

The first three equations of (3.14) are similar to Equations (3.9), (3.10), (3.11), and the
last two are similar to the projection used in symplectic Euler, therefore the Lagrangian
multipliers λn and µn are selected using the same procedure discussed above.
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3.2 Boundary Value Problem
Boundary value problems can be numerically solved using finite differences, finite ele-
ment, or a method that we will be using called the shooting method. Shooting method
treats a boundary value problem as an initial value problem and uses integrators discussed
in section 3.1 and root finding techniques to find the solution. In this section, we present
the fundamental idea behind the shooting method and its extension to time-independent
problems such as deformations in space curved beams (subsection 2.2.1).

3.2.1 Shooting Method
Consider a nonlinear second-order ordinary differential equation

z̈ = f(x, z, ż), a ≤ x ≤ b, z(a) = α, z(b) = β, (3.15)

where f(x, z) is continuous, differentiable and,

∂f

∂z
(x, z, ż) ≥ 0, a ≤ x ≤ b.

The first step involves writing second order differential equation into two first order ordi-
nary differentiable equations and varying the angle of inclination (tk) till the solution at
the end point equals the boundary value, i.e

ż = z1, z(a) = α,

ż1 = f(x, z, z1), z1(a) = t0.
(3.16)

Suppose z(x, t0) is the solution the problem (3.16) at k = 0, then tk is varied using either a
secant method or Newton–Raphson method. The stopping criteria for the shooting method
is as followed,

E(tk) = y(b, tk)− β ≤ ε, (3.17)

where ε is the desired tolerance. See Endre and Mayers (2003); Burden and Faires (2010)
for details.
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Chapter 4
Experiments and Results

In this chapter we implement the problems discussed in chapter 2 using integration tech-
niques from chapter 3, and analyze the results. The results presented here were produced
using MATLAB 2019a.

4.1 Free Rigid Body
As discussed in chapter 2, a free rigid body is a good starting point for complicated prob-
lems, therefore we start by implementing schemes discussed in chapter 3 on a free rigid
body problem.

4.1.1 Numerical Setup
A free rigid body problem, with Equations (2.1) and (2.2), is an initial value problem that
can be solved using the techniques presented in section 3.1. The implicit and collocation
methods have been solved using fixed point iteration at each step with a tolerance of 10−10.
We choose the inertia tensor I = diag(2, 1, 2/3) with following initial values.

M0 =
[
cos(1.1), 0, sin(1.1)

]T
, q0 =

[
cos( θ2 ), e1sin( θ2 )

]T
, (4.1)

for θ = π/4 and e1 = [1, 0, 0].

4.1.2 Results and Discussion
Using the initial values (4.1) and implicit midpoint method, the solution for the free rigid
body in terms of angular momentum can be seen in Figure 4.1, while Figure 4.2 shows
the convergence plots for the considered integrators and Table 4.1 shows the convergence
rates calculated using polynomial curve fitting tool polyfit. The reference solution has
been calculated for a small grid-size, i.e N = 1500 grid points and the convergence rate
achieved matches the theoretical convergence mentioned in chapter 3. In subsection 2.1.3,
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Chapter 4. Experiments and Results

the importance of two quadratic invariant quantities was discussed. We have tested the
performance of selected geometric integrators on the basis of preservation of invariants.
For example, the error in preservation of invariant MTM has been calculated by subtracting
the value at each time step from the value at t0, i.e

Ei = MT
i Mi −MT

0 M0, for i = 1, 2, . . . , N (4.2)

where Ei is the error. As can be seen in Figure 4.3 (a) and Figure 4.3 (b), optimal preserva-
tion has been observed for spherical midpoint method, 4th order Gauss–Legendre method,
and implicit midpoint method with an accuracy of 10−10 to 10−14 in contrast to 4th-order
Runge–Kutta and Kahan method, that did not give optimal preservation. The accuracy
achieved for IM, SM and GL4 is close to the tolerance used for the fixed point iteration,
and GL4 being a higher order method has showed the best preservation among all. How-
ever, when the tolerance was further reduced to 10−13 (see Appendix (A.1) for Figures),
IM and GL4 preserved both invariants within the accuracy of 10−13 to 10−15 (close to the
tolerance), but SM outperformed them with an accuracy of 10−15 to 10−16. Although, SM
showed best preservation among all, but more fluctuations have been observed in compar-
ison to IM and GL4.
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Figure 4.2: Convergence Free Rigid Body

Numerical Convergence
Scheme Rate

IM 1.98
KM 1.98
SM 2.00
RK4 3.94
GL4 4.00

Table 4.1: Convergence Rates

Figure 4.1: Angular momentum calculated using IM. Tol = 10−10, h = T/213 and T = 1000.
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Figure 4.3: Error in the preservation of invariants. Tol = 10−10, h = T/213 and T = 1000.

In the next section, we numerically simulate the deformations in space–curved beams
using similar techniques as in the free rigid body problem combined with shooting method.

4.2 Twist-Shortening using Equilibrium Equations

4.2.1 Numerical Setup
Suppose the line of centroid is discretized into N equally spaced grid points with step-size
h = l/N , as shown in Figure 4.4. Each grid point can be thought of as a particle that is free
to roam in 3-dimensional space and using time integrating schemes it is possible to predict
the trajectory made by the particle. Since boundary conditions need to be imposed at the
end point of the grid, we have used the shooting method as described in subsection 3.2.1
to counter this problem. We do this by setting up an error function

E(v0) = [xN − xl, qN − ql]T , (4.3)

with an initial vector v0 = [P0, M0]T that uses MATLAB’s built–in root finding solver
fsolve to solve the problem. The implicit/collocation methods have been solved using
fixed–point iteration and the tolerance used for fsolve and fixed–point iteration is 10−10.

h

e

e
e

3

1

2

Line of Centroid

Figure 4.4: Discretization of rod
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Chapter 4. Experiments and Results

Cross-sectional properties such as torsional, flexural, shear and extensional rigidity de-
termine how deformations look like after twisting and shortening. For the experiments,
cross-sectional properties of a catenary riser (Neto et al., 2014) have been used and are
shown in Table 4.2.

Property Value
Flexural Rigidity (EI) 110.8 MNm2

Torsional Rigidity (GJ) 85.2 MNm2

Shear Rigidity (GA) 2,338.6 MN
Extensional Rigidity (EA) 6,080.5 MN

Length (L) 10 m
Diameter (D) 0.4 m

Table 4.2: Cross-sectional properties of rod

4.2.2 Results and Discussion
The rod considered has a cross-sectional area and due to the assumptions mentioned in sub-
section 2.2.1, and we can examine the deformations by looking at the line of the centroid.
The problem has been tested for a twist-shortening problem discussed in subsection 2.2.4.
We have tested the accuracy of algorithms by comparing it to a reference solution calcu-
lated for the small grid (N = 2048) where the error for the schemes is the deviation from
the reference solution and has been calculated by its max–norm in the interval [0, l]. This
is different from the convergence of free rigid body, where 2–norm was used to find the
error at the end of the time interval. Figure 4.5 shows the convergence plots and Table 4.3
shows the convergence rates for the selected numerical schemes. Convergence rates have
been calculated using the same technique described for the free rigid body problem.

10
-3

10
-2

10
-1

10
0

Step-Size

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

G
lo

b
al

 E
rr

o
r

Convergence Plots

EM

IM

KM

RK4

GL4

Figure 4.5: Convergence for {φ, ξ} = {π, 0.5}.

Numerical Convergence
Scheme Rate

EM 1.99
IM 2.00
KM 2.00
RK4 4.00
GL4 4.00

Table 4.3: Convergence Rates

We have performed two experiments for the twist-shortening problem. In the first ex-
periment we have varied the angle of twist φ and kept ξ constant, while for the second
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4.2 Twist-Shortening using Equilibrium Equations

experiment we only performed axial shortening on the rod, i.e varying ξ and keeping φ
zero. Results for both experiments can be seen in Figure 4.6 and Figure 4.7, where blue
rod is the undeformed rod plotted for reference. When ξ was kept constant, and φ varied,
the rod started to form a planar loop. With increments in φ, the loop showed an increase in
the moment strains κ, that matches our assumption (2.16), i.e Mi ∝ κbi . This can be seen
in Figure 4.8 (a), that plots moment strain κb3 versus angle φ varying from 0 to 6π/4. As φ
is increased, moment strain is also seen increasing, which gives assurance for the quality
of the solution.

(a) View 1 (b) View 2

Figure 4.6: Deformations in line of centroid for varying φ and ξ = 0.4.

When the rod is subjected to axial shortening with zero twist, a uni-axial compression
is observed. In Figure 4.7 (a) we have compressed the rod till ξ = 0.7, and when the
compression was increased beyond ξ = 0.8 a shift of strain energy from bending mode to
torsion mode resulted in an instability in the rod, as seen in the Figure 4.7 (b). The reason
for this instability is the lack of ability of the rod to further withstand the compression and
thus the formation of a kink or a loop with itself. This behavior is justified for a real–life
problem, however in the present experiment (only vertical compression) with boundary
conditions (2.41), the model has failed to comply with the assumptions (2.16). To test this
result, we tested the assumption Pi ∝ γbi by varying ξ. This can be seen in Figure 4.8
(b), where increase in ξ showed an increase in γb3 till ξ = 0.8 and on further increase it
started to decrease. As a result of this behavior, we call ξ = 0.8 as the bifurcation point
for this axial compression. This type of behavior is important to study the post–buckling
phenomenon in rods. The qualitative structure of our results was validated with the paper
Miyazaki and Kondo (1997). Results discussed above were calculated using the implicit
midpoint method for N = 500 grid points.

We now compare the performance of our selected geometric integrators on the basis
of preservation of quantities discussed in subsection 2.2.2. There are three quantities that
must be conserved by the integrators, namelyJ , PTP and PTM. Using the idea from (4.2),
we have similarly checked the error in the preservation of these quantities. As discussed
earlier, the solution can either give stable deformations or unstable ones and both cases are
important for the study, therefore we test the performance of our integrators in both.
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(a) Axial shortening till 0.7 (b) Instability for ξ > 0.8

Figure 4.7: Deformations in line of centroid for varying ξ and φ = 0 .
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Figure 4.8: Effect of varying ξ and φ on strains.

Case 1

With the parameters ({φ, ξ} = {π, 0.4}) that ensures stable deformations in the rod, 4th
order Gauss–Legendre have outperformed all other methods with an accuracy ranging
from of 10−9 to 10−12, followed by the implicit midpoint method with an accuracy ranging
from of 10−8 to 10−11. On the other hand, 4th-order Runge–Kutta have shown better
performance in comparison to Figure 4.3 with accuracy ranging from 10−3 to 10−5. Kahan
method and explicit midpoint method are expected to not preserve the conserved quantities
and they gave the least accurate preservation with an accuracy ranging from of 10−1 to
10−2 for stable parameters. These results can be seen in Figure 4.9 (a), Figure 4.10 (a) and
Figure 4.11 (a) and the max–norm of the error for each quantity can be seen in Table 4.4.

Remark. The dropping of the error values (in Figure 4.9, Figure 4.10 and Figure 4.11) to
10−15, is due to the integrators giving values close to the machine accuracy.
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4.2 Twist-Shortening using Equilibrium Equations

Case 2

With parameters ({φ, ξ} = {0, 0.8}) close to the bifurcation point, GL4 and IM have still
performed better than the other integrators with an accuracy ranging from 10−8 to 10−12,
however, their performance was less optimal with more fluctuations when compared to
the previous case. This can be seen in Figure 4.9 (b), Figure 4.10 (b) and Figure 4.11
(b). As we see in the Table 4.4, the performance of RK4, KM and EM is affected by the
instability. Their performance has significantly reduced for the quantity PTP, whereas the
performance for quantities PTM and J have improved greatly and is close to the perfor-
mance of GL4 and IM. The reason for this is related to the physical meaning of quantities
P and M. As discussed in the section 2.2, P represents the stress resultants responsible for
the force strains γbi and M the stress couple responsible for the moment strains κbi , there-
fore with no twist and only vertical compression, stress resultants are expected to dominate
the stress couples when close to the bifurcation point, hence the preservation for PTP is
less optimal for EM, KM and RK4. However, at ξ = 0.8, the only strain observed is due
to stress resultants and not the stress couple, and PTM is closer to zero, therefore error
in that proximity seen was optimal. This can be seen in Figure 4.10 (b) where almost all
methods have dropped close to the machine accuracy. Similarly, since the energy J is a
combination of moment strains and force strains, therefore one observes more fluctuations
as shown in Figure 4.11 (b).

Remark. In either of the cases, we have observed that KM, EM and RK4 faced problem
in the preservation at the mid interval of the grid points. This is due to the increase in
geometrical complexity, however, with a smaller step–size this problem was reduced.

Methods PTP PTM J
Stable Unstable Stable Unstable Stable Unstable

Parameters Parameters Parameters Parameters Parameters Parameters
GL4 1.7× 0−9 1.4× 10−10 1.4× 10−10 3.6× 10−13 7.6× 10−12 5.3× 10−12

IM 4.2× 10−8 3.1× 10−8 7.3× 10−9 6.8× 10−13 9.8× 10−11 5.9× 10−11

RK4 3.5× 10−5 2.1× 10−2 5.5× 10−6 5.4× 10−13 4.6× 10−7 7.4× 10−6

EM 5.6× 10−1 1.1× 101 2.5× 10−1 1.6× 10−9 4.0× 10−2 2.0× 10−2

KM 5.8× 10−1 6.7× 100 2.4× 10−1 1.4× 10−9 3.6× 10−2 1.2× 10−2

Table 4.4: Max–norm of the error in the preservation of conserved quantities for stable parameters
{φ, ξ} = {π, 0.4} and unstable parameters {φ, ξ} = {0, 0.8}.
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(a) {φ, ξ} = {π, 0.4}
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(b) {φ, ξ} = {0, 0.8}

Figure 4.9: Error in preservation of PT P. N = 200, Tol = 10−10
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(a) {φ, ξ} = {π, 0.4}
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(b) {φ, ξ} = {0, 0.8}

Figure 4.10: Error in preservation of PT M. N = 200, Tol = 10−10
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(a) {φ, ξ} = {π, 0.4}
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(b) {φ, ξ} = {0, 0.8}

Figure 4.11: Error in preservation of J . N = 200, Tol = 10−10
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4.2 Twist-Shortening using Equilibrium Equations

To further understand the effect φ and ξ on the preservation of J , PTP and PTM, we
analyze by computing the error in the preservation for varying φ and ξ. For any invariant
and parameter {φ, ξ} we find the max–norm of the error and plot them using bar–graphs
(heights of the bar gives an indication of large/small errors) and charts (containing nu-
meric values of the error). With no axial shortening and only terminal twist, all methods
performed optimally due to less complexity in the deformation. However, when only ξ
was increased with φ = 0, a degradation in the performance was observed.

It is not expected from KM and EM to preserve the quantities for the cases with both ξ
and φ not equal to zero, and we see in Figure 4.12 and Figure 4.13 and Figure 4.14, that the
error values are substantially large. However, the performance of RK4 is seen better for
PTM and J but not for PTP. On the contrary, GL4 and IM showed the best preservation
properties among all. Figure 4.15, Figure 4.16 and Figure 4.17 gives the values for the
max–norm of error and the remaining bar–plots can be found in Appendix (A.2).
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Figure 4.17: Values of max(abs(Ji − J0)) for varying ξ and φ.
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Figure 4.15: Values of max(abs(PT
i Pi − PT

0 P0)) for varying ξ and φ.
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Figure 4.16: Values of max(abs(PT
i Mi − PT

0 M0)) for varying ξ and φ.
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Balance of Linear Momentum

In the previous part, we have investigated the preservation properties of our numerical
schemes for the conserved quantities and the results showed optimal performance for
higher–order GL4 and second–order IM for both stable and unstable deformations. KM
method even though does not preserve any invariants, but it is well known to give com-
pletely integrable discretizations when applied to certain completely integrable rigid body
systems (Celledoni et al., 2014). Though KM and EM performed closely in the preserva-
tion of invariants, but in this experiment we will numerically show that KM is preferable
over EM. We will now look at the performance of our numerical schemes for the balance
equation of linear momentum (2.22). We rewrite it as follows:

∂s p = 0, =⇒ p = QTP = Const

And using the expression for quantity PTP = pT p = Const, we say that the solution for p
will be confined on the surface of sphere as shown in Figure 4.18. We test the performance
for the twist–shortening problem using different step–sizes. Figure 4.19 shows the values
of E(qi)

TPi for i = 1, 2, ...N calculated on a coarser grid with step–size h = 1. We
observe that EM did not give a closed orbit, in comparison to the other methods as shown
in Figure 4.19 (a), however; when the step–size was reduced to h = 0.5, the trajectory
made for EM started to improve as shown in Figure 4.20 (a). On further refinement of
mesh to step–size h = 0.05, we observed a smoother trajectory as shown in Figure 4.21
(a).

With parameters ensuring stable deformations, it was difficult to distinguish between
the numerical schemes, however, a clear difference was observed for unstable deforma-
tions. For coarser grid with step–size h = 0.5, a degradation in performance for EM was
observed in comparison to the case of stable deformations. Similarly, the performance
of IM and KM were also affected as shown in Figure 4.22 (c) and (b), but the trajectories
made by higher order methods such as RK4 and GL4 were optimal. On further refinement,
a circular ring like trajectory was made for all the methods as shown in Figure 4.23.

Figure 4.18: E(qi)
T Pi plotted on sphere for h = 0.01 and {φ, ξ} = {π, 0.4}.
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(a) EM (b) KM

(c) IM (d) RK4

(e) GL4

Figure 4.19: E(qi)
T Pi for h = 1 and {φ, ξ} = {π, 0.4}.
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4.2 Twist-Shortening using Equilibrium Equations

(a) EM (b) KM

(c) IM (d) RK4

(e) GL4

Figure 4.20: E(qi)
T Pi for h = 0.5 and {φ, ξ} = {π, 0.4}.
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(a) EM (b) KM

(c) IM (d) RK4

(e) GL4

Figure 4.21: E(qi)
T Pi for h = 0.1 and {φ, ξ} = {π, 0.4}.
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4.2 Twist-Shortening using Equilibrium Equations

(a) EM (b) KM

(c) IM (d) RK4

(e) GL4

Figure 4.22: E(qi)
T Pi for h = 0.5 and {φ, ξ} = {0, 0.8}.
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(a) EM (b) KM

(c) IM (d) RK4

(e) GL4

Figure 4.23: E(qi)
T Pi for h = 0.05 and {φ, ξ} = {0, 0.8}.
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4.2 Twist-Shortening using Equilibrium Equations

Center of Mass

IM and GL4 methods ensure the length of the quaternions is preserved automatically to
machine accuracy, however EM, KM and RK4 do not preserve this invariant. It is possible
to normalize quaternion at each step, but then the algorithm will be called projected RK4,
KM and EM. Doing this will increase the performance, but there is a possibility of ruining
other properties of the method. We will now test grid–size dependence on the trajectory
made for the center of mass (QT e3). The results are shown in Figure 4.24.

(a) h = 1 (b) h = 0.5

(c) h = 0.1

Figure 4.24: Center of mass (E(qi)
T e3) for {φ, ξ} = {π, 0.4}.
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4.3 Twist-Shortening using Multi-Symplectic Formulation
In the previous section, we performed simulations using the equilibrium equations from
subsection 2.2.1 and now we will simulate similar deformations in rods using multi–
symplectic formulations. The challenge and aim of this part were to understand and pro-
vide an easy explanation for the implementation of symplectic integration techniques for
constrained mechanical systems, such as space–curved beams with holonomic constraint.

4.3.1 Numerical Setup
In this section, we present the numerical setup for the implementation of Equations (2.38)
using techniques from subsection 3.1.5 and subsection 3.1.6. It is possible to write (2.31)
in a way similar to (3.8) as follows:

u′ = S̃v(u, v), (4.4)

v′ = −S̃u(u, v)−G(q)Tλ, (4.5)

0 = ||q||2 − 1, (4.6)

where S̃(u, v) comes from rewriting (2.31) as, S(u, v) = S̃(u, v) + λ(||q||2 − 1) and
G(q) = 2q. There are two techniques possible for the implementations of the multi–
symplectic formulation. The first technique called index reduction (Hairer et al., 2006)
and uses the expression for λ (2.40) to remove the Lagrangian multiplier from the sys-
tem (2.38). However, the technique is not feasible as the solution is seen to drift away
from the manifold (Hairer et al., 2006; Leimkuhler and Reich, 2004). The use of pro-
jection can help the solution to get back to the manifold, but the quality of the solution
is then compromised. The second technique is the use of symplectic methods combined
with a projection step, where the Lagrangian multipliers λ and µ are selected to impose
constraints g(q) = 0 and 〈q,v〉 = 0, as discussed in subsection 3.1.5. This approach
is preferable over the former one but is more complicated to implement. The Lagrangian
multiplier µn (for the RATTLE method) is calculated, by ensuring the grid points n + 1
(for n = 1, 2, . . . , N.) satisfies (2.39). A detailed calculation for µn is as follows:

〈qn+1,vn+1〉 = 0,

Using Equation (3.12),

qTn+1

(
vn+1/2 −

h

2
(S̃u(un+1, vn+1/2) + 2qn+1µn)

)
= 0,

=⇒ µn =
1

h

(
qTn+1vn+1/2 −

h

2
S̃u(un+1, vn+1/2)

)
. (4.7)

Similarly, the Lagrangian multiplier λ can be calculated by ensuring following condition
is satisfied,

g(qn+1) = 0 =⇒ g(qn +
h

2
S̃v(un, vn+1/2)) = 0, (4.8)

The numerical setup for the shooting method uses the same error function (4.3) from the
previous section, however the vector v0 = [P0 M0]T is replaced by v0 = [vx0 v0]T .
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4.3 Twist-Shortening using Multi-Symplectic Formulation

4.3.2 Results and Discussion
As discussed in section 3.1, integrators like as implicit midpoint or higher order Gauss-
collocation methods are stable, symplectic and preserve invariants but they can only be
exploited in the multi–symplectic setting if position constraints such as (2.36) and (2.39)
are satisfied. For ease, we implemented the first-order symplectic Euler implemented us-
ing index-reduction and RATTLE method by using Lagrangian multipliers calculated from
Equation (4.7) and (4.8). We tested the algorithm against the reference solution calcu-
lated using RM for N = 2048 grid points. Figure 4.25 shows the convergence plots and
Table 4.5 the numeric values for convergence rates calculated using the same technique
mentioned in the previous section.

The solution is calculated using RM and SE with multi–symplectic formulation and
a reference solution using implicit midpoint on the equilibrium equations from previous
section. It is shown in Figure 4.26 (a). It was observed that RM did give a similar solution
to the IM but they were not completely identical. To investigate this behavior we checked
on how well they preserved constraints. RM ensured the solution to stay on the manifold
but the accuracy for constraint (2.39) was 10−3 and a drift from the manifold was observed
for SE. This explains the large error for SE in Figure 4.25 for large step-sizes.
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Figure 4.25: Convergence {φ, ξ} = {π, 0.5}

Numerical Scheme Rate
Symplectic Euler (SE) 0.93
Rattle Method (RM) 2.02

Table 4.5: Convergence Rates

(a) Twist–Shortening for {φ, ξ} = {π/2, 0.25}

0 100 200 300 400 500 600

x-axis

-14

-12

-10

-8

-6

-4

-2

0

2
10

-3

SE

RM

(b) Error in constraint 〈q,v〉

Figure 4.26: Solution for twist–shortening using multi–symplectic formulation.
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We will now perform the axial shortening on the rod using the equations of multi–
symplectic formulation. Figure 4.27 (a) shows the deformations for vertical compression
till ξ = 0.8 and Figure 4.27 (b) shows the deformations when we try to compress rod
completely, i.e ξ = 1. When the rod is compressed completely, a loop is formed with
both ends joined. This behavior is similar to the results in Miyazaki and Kondo (1997)
and provides validation of our results. The axial shortening results calculated using multi–
symplectic are also similar to the ones produced in the previous section with an instability
for ξ ≥ 0.8.

Remark. fsolve for SE required smaller step–sizes for the convergence.

(a) Axial shortening using multi–symplectic (b) Complete Axial Shortening

Figure 4.27: Solution for twist–shortening using multi–symplectic formulation.

The resulting equations from multi–symplectic formulation does not explicitly contain
equations for stress resultants P and stress couple M, and quantities that are conserved in
the previous formulation might no longer hold in this new setting. Therefore we have not
investigated the preservation of conserved quantities and we set them as future work. We
however test the RM and SE by plotting the trajectories for the center of mass QT e3 with
different step–sizes. This can be seen in Figure 4.28. We observe that, when step–size is
decreased to h = 0.001, trajectory followed by SE is closer to the trajectory followed by
RM but it is not exactly equal. In order for the SE to give trajectories identical to RM, one
needs a very fine grid.
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4.3 Twist-Shortening using Multi-Symplectic Formulation

(a) h = 0.5 (b) h = 0.1

(c) h = 0.001

Figure 4.28: Center of mass (E(qi)
T e3) for {φ, ξ} = {π, 0.4} using multi–symplectic for RM and

SE.
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Chapter 5
Conclusion and Future Work

The goal of this master thesis was to use geometric integration for the simulation of defor-
mations in rods. We had two problems under consideration, a time–dependent free rigid
body problem and a time–independent for space–curved beams. We rewrote the equi-
librium equations for space–curved beams in compact form using vectors, and then pre-
sented a multi–symplectic formulation in chapter 2. Both formulations were applied to a
twist–shortening problem and were numerically implemented using geometric integrators
presented in chapter 3.

Numerical results for both problems gave convergence rates close to the ones stated
in section 3.1 and solutions as anticipated, with some exceptions for the multi–symplectic
case. We performed two different experiments on the equilibrium equations. In the first
experiment, we looked at the effect of torsion on the moment strains by varying the twist
angle and keeping vertical compression constant, whereas in the second experiment, we
only performed axial shortening of the rod by applying vertical compression till the bifur-
cation point. The solutions obeyed assumptions (2.16), for the first experiment, however,
it became unstable when the rod was compressed beyond the bifurcation point and failed
to satisfy the assumptions for ξ ≥ 0.8. We also performed a thorough investigation of the
performance of structure–preserving schemes for the preservation of conserved quantities
and compared them to the non–preserving schemes. GL4 and IM method showed the best
preservation of geometric properties among all. However, GL4 being a high order method
took more computational time. We also tested all methods for the preservation of balance
equation of linear momentum and studied the grid–size dependence on the confinement
of solution to the sphere. KM, IM, GL4 and RK4 showed optimal performance for large
step–sizes, except for EM.

The limitations associated with the multi–symplectic formulation was only the time
taken by the shooting method to converge to the solution, and when tried in the vicinity of
unstable points it required very small step-sizes to converge to the solution. Nevertheless,
the work presented here can serve as a starting point for understanding multi–symplectic
formulations and extensions to the time–dependent problem. The other limitation faced
during the implementation was the use of spherical midpoint method on the space–curved
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beams. Spherical midpoint showed the best preservation properties among other methods
in the free rigid body case. However, it could not be applied on the space–curved beams,
because the equation for stress couple in (2.17) is not on the surface of the sphere even
though the equation the stress resultant is. A coordinate transformation for transforming
the system from Cartesian to a spherical coordinate system could have helped, but that
would have complicated the problem. Another limitation in the model is the failure to
satisfy assumptions near the post-buckling point. This limitation can be removed by in-
troducing rather an additional boundary condition on the point where the rod forms a loop
with itself. The model will then be called a contact problem.

A suggested extension of this work can be to merge the contact problem with the twist–
shortening problem, such that whenever rod tries to form a loop with itself, the solution
satisfies the assumptions due to the additional conditions. Since stress resultants is on
sphere, one could try to formulate a spherical midpoint for P. An extension to space–time
rod problems is also suggested.
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Appendix A
Error in Preservation of Invariants

A.1 Free Rigid Body
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Figure A.1: Error in the preservation of invariants. Tol = 10−13, h = T/213 and T = 1000.
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A.2 Space–Curved Beams

(a) PT P (b) PT M (c) J

Figure A.2: Maximum of Error in preservation for varying ξ and φ using IM.

(a) PT P (b) PT M (c) J

Figure A.3: Maximum of Error in preservation for varying ξ and φ using KM.

(a) PT P (b) PT M (c) J

Figure A.4: Maximum of Error in preservation for varying ξ and φ using RK4.
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(a) PT P (b) PT M (c) J

Figure A.5: Maximum of Error in preservation for varying ξ and φ using GL4.
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