
Master in Security and Mobile Computing
June 2010
Peter Herrmann, ITEM
Simon Han, ITEM

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Model Driven Development of Web
Application with SPACE Method and
Tool-suit

Jinat Rehana

Problem Description
AJAX technology is a very hot client-side technology for building interactive web
applications. With Ajax, web applications can retrieve data from the server
asynchronously in the background without interfering with the display and behavior of
the existing page. Right now, there are already many matured AJAX frameworks. Among them
Google Web Toolkit (GWT for short, http://code.google.com/webtoolkit/) is developed by google.
GWT is pure open source and handy for use in eclipse environment. As google technology are
getting more and more popular, many software companies are also taking GWT as their
framework for developing their software product. We want to explore into the possibility of
providing building blocks for web application (AJAX application) development integrating GWT with
SPACE method. SPACE is a model driven method for rapid creation of services from reusable
building blocks, developed at NTNU. Arctis is a tool, also developed at NTNU to support SPACE
method. Several solutions have been developed on Arctis tools covering several domains like
mobile services, embedded systems, home automation, trust management and web services.

Our contribution in this thesis will be to do a case study on web application domain with Arctis,
where the underlying technology will be AJAX and GWT (Google Web Toolkit). In order to do that,
we will try to build up some reusable building blocks with arctis tool. We will describe a use case
scenario to use those building blocks. We will try to implement our specified system and evaluate
our design specification based on reusability factor.

Assignment given: 15. January 2010
Supervisor: Peter Herrmann, ITEM

Abstract

Enterprise level software development using traditional software engineering
approaches with third-generation programming languages is becoming more
challenging and cumbersome task with the increased complexity of products,
shortened development cycles and heightened expectations of quality. MDD
(Model Driven Development) has been counting as an exciting and magical
development approach in the software industry from several years. The idea
behind MDD is the separation of business logic of a system from its implemen-
tation details expressing problem domain using models. This separation and
modeling of problem domain simplify the process of system design as well as
increase the longevity of products as new technologies can be adopted easily.
With appropriate tool support, MDD shortens the software development life
cycle drastically by automating a significant portion of development steps.
MDA (Model Driven Architecture) is a framework launched by OMG (Ob-
ject Management Group) to support MDD. SPACE is an engineering method
for rapid creation of services, developed at NTNU (Norwegian University of
Science and Technology) which follows MDA framework. Arctis and Ramses
are tool suits, also developed at NTNU to support SPACE method. Several
solutions have been developed on Arctis tool suit covering several domains
like mobile services, embedded systems, home automation, trust manage-
ment and web services.
This thesis presents a case study on the web application domain with Arc-
tis, where the underlying technologies are AJAX (asynchronous JavaScript
and XML), GWT (Google Web Toolkit) framework and Java Servlet. In
order to do that, this thesis contributes building up some reusable building
blocks with Arctis tool suit. This thesis also describes a use case scenario to
use those building blocks. This thesis work tries to implement the specified
system and evaluates the resulting work.

i

Acknowledgements

At first, I would like to express my gratitude to the Almighty for giving me
enough strenght to carry out this work.
I would like to thank Prof. Peter Herrmann from NTNU and Prof. Tuomas
Aura from AYY for supervising me with their proper guidance. Their helpful
feedback has forwarded me to the right direction.
I would like to give my special thanks to Fenglin Han, my co-supervisor of
this thesis work. His continuous help, support and suggestions have shaped
this work.
I would also like to thank my family and my beloved husband Kashif Nizam
Khan for their continuous support and inspiration to complete this work.
Finally, thanks to my friends and near ones for inspiring me during this
journey.

Trondheim June 30th, 2010.

Jinat Rehana

iii

Abbreviations and Acronyms

MDD Model Driven Development
MDA Model Driven Architecture
PIM Platform Independent Model
PSM Platform Specific Model
OMG Object Management Group
UML Unified Modeling Language
TLA Temporal Logic of Actions
cTLA compositional Temporal Logic of Actions
AJAX Asynchronous JavaScript And XML
GWT GoogleWeb Toolkit
3GL Third Generation Programming Language
OO-H Method Object- Oriented Hypermedia Method
NAD Navigation Access Diagram
APD Abstract Presentation Diagram
CLD Composition Layout Diagram
MOF MetaObject Facility
UWE UML based Web Engineering
QVT Query/View/Transformation
OCL Object Constraint Language
XMI XML Metadata Interchange
PIM Process Information Model
MDE Model Driven Engineering
CIM Computation-Independent Model
ESM External State Machine
XHTML eXtensible HyperText Markup Language
CSS Cascading Style Sheet
DOM Document Object Model
XML Extensible Markup Language
XSLT eXtensible Style Sheet Language Transformations
HTML Hyper Text Markup Language
RIA Rich Internet Application

v

JRE Java Runtime Environment
UI User Interface
RPC Remote Procedure Call
ER diagram Entity Relationship diagram

vi

Contents

Abstract i

Abbreviations and Acronyms v

List of Figures xiii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Related Works . 3
1.4 Objective . 6
1.5 Contribution . 7
1.6 Thesis Outline . 7

2 Background 9
2.1 MDD (Model Driven Development) 9
2.2 MDA (Model Driven Architecture MDA) 10
2.3 SPACE Method . 11

2.3.1 System Specification or Service Composition 11
2.3.2 Formal Analysis and Automated model Checking . . . 20
2.3.3 Model Transformation 21
2.3.4 Code Generation . 22

2.4 Arctis and Ramses Tool-Suits to Support SPACE method . . . 22
2.5 AJAX (Asynchronous JavaScript and XML) 24

viii

2.5.1 Working Princinple of AJAX 25
2.5.2 What actually AJAX is 26

2.6 Java Servlet . 29
2.7 Google Web Toolkit (GWT) 30

2.7.1 GWT Components . 31
2.7.2 GWT Modes of Running 32

3 AJAX Integration in Arctis 34
3.1 Client-Server Communication with GWT Framework 35

3.1.1 GWT RPC . 36
3.1.2 How GWT RPC Works 41

3.2 Development of the Client-Server Communication Model in
Arctis . 42

3.3 GWT Code Generator . 44
3.3.1 GWT application layout Generation 45
3.3.2 Automatic Generation of the Server Methods’ Signatures 46

4 Scenario Description 48
4.1 General Scenario . 48
4.2 Online Shopping System as a Scenario 48

4.2.1 Scope of the Example Scenario 49
4.2.2 Use Case Diagram of the Example Scenario 50
4.2.3 Example UI Representing the Example Scenario 50
4.2.4 Example Database . 52

5 Development of Building Blocks 56
5.1 System Block of the Online Shopping System 56
5.2 MySQL Building Block . 61

5.2.1 ESM of the MySQL Building Block 62
5.3 LogInGUI_Proxy Building Block 63

5.3.1 ESM of the LogInGUI_Proxy Building Block 64

ix

5.4 LogIn Building Block . 64
5.4.1 ESM of the LogIn Building Block 66

5.5 ServiceQuery_Proxy Building Block 66
5.5.1 ESM of the ServiceQuery_Proxy Building Block 67

5.6 ServiceQuery Building Block 68
5.6.1 ESM of the ServiceQuery Building Block 69

5.7 AddtoCartGUI_Proxy Building Block 70
5.7.1 ESM of the AddtoCartGUI_Proxy Building Block . . . 71

5.8 AddtoCart Building Block . 72
5.8.1 ESM of the AddtoCart Building Block 74

5.9 OrderInfoEnabler_Proxy Building Block 75
5.9.1 ESM of the OrderInfoEnabler_Proxy Building Block . 75

5.10 PlacingOrderEnabler Building Block 76
5.10.1 ESM of the PlacingOrderEnabler Building Block 77

5.11 OrderingUI_Proxy Building Block 78
5.11.1 ESM of the OrderingUI_Proxy Building Block 79

5.12 PlacingOrder Building Block 80
5.12.1 ESM of the PlacingOrder Building Block 81

5.13 Our Service Specification in the Perspective of the SPACE
Method . 82

6 Implementation 85
6.1 Model Checking . 85

6.1.1 Analysis on Building Blocks 85
6.1.2 Analysis on the Specified System 89

6.2 Implementation of the Client-Server Communication Model . . 91
6.3 Implementation of the ServiceQuery Building Block 94
6.4 Implementation of a Test System 96
6.5 Multisession Issue . 100

7 Discussion 103

x

7.1 Evaluation of the Resulting Work 103
7.2 Limitations . 105
7.3 Future Work . 105

Bibliography 107

xi

List of Figures

2.1 Software Development Lifecycle with MDA 10
2.2 System Development Cycle in SPACE method (adopted from

[43]) . 12
2.3 Services as Collaborations among Several Components. C de-

picts system components, S depicts services and dotted rect-
angle comprises the whole system. 13

2.4 Collaboration of the Mobile Alarm System [43] 14
2.5 System as Hierarcy of Building Blocks 15
2.6 Behavior of the MobileAlarmSystem Collaboration 16
2.7 Internal Behavior of the TerminalStatus Collaboration 17
2.8 Common UML Semantics Used in Arctis 18
2.9 ESM of the Terminal Status Activity 20
2.10 Model Transformation . 21
2.11 SPACE Method and Tool Support[41] 23
2.12 Pre AJAX Web Model . 25
2.13 Post AJAX Web Model . 26
2.14 DOM Tree . 28
2.15 An Example XML Document 28
2.16 A Servlet’s Life Cycle . 30
2.17 An AJAX Web Application Development with the GWT Frame-

work . 32

3.1 AJAX Integrition in Arctis . 35
3.2 Interface Definition . 36

xiii

3.3 Definition of the Task Class 37
3.4 An Implementation of the MyService Interface 38
3.5 Asynchronous Interface Definition 39
3.6 Generation of a Service Proxy Object 39
3.7 Remote Service Call . 40
3.8 Implementation of the Call Back Methods 40
3.9 Relationship between the Interfaces and Classes of the GWT

RPC mechanism . 41
3.10 Working Procedure of the GWT RPC Mechanism 42
3.11 Example Server System Presenting Our Client-Server Com-

munication Model . 44
3.12 Role of GWT Code Generator in Arctis 45
3.13 Sample Locations of Different Parts of a Typical GWT Appli-

cation Layout . 47

4.1 General Scenario of a Web System 49
4.2 Use Case Diagram of the Example Scenario 50
4.3 Example UI of the Example Online Shopping System 51
4.4 Status of the Example UI While Placing an Order 52
4.5 Status of the Example UI While Confirming an Order 53
4.6 Table Summary of the Example Database 54
4.7 Entity Realtionship Diagram of the Example Database 55

5.1 Server System Model of the Example Online Shopping System 58
5.2 Animation of the Token Flow between the MySQL and the

LogIn Activity Block . 59
5.3 Behavior of the MySQL Building Block 62
5.4 ESM of the MySQL Building Block 63
5.5 Behavior of the LogInGUI_Proxy Building Block 63
5.6 ESM of the LogInGUI_Proxy Building Block 64
5.7 Behavior of the LogIn Building Block 65
5.8 ESM of the LogIn Building Block 66

xiv

5.9 Behavior of the ServiceQuery_Proxy Building Block 67
5.10 ESM of the ServiceQuery_Proxy building block 68
5.11 Behavior of the ServiceQuery Building Block 69
5.12 ESM of the ServiceQuery Building Block 70
5.13 Behavior of the AddtoCartGUI_Proxy Building Block 70
5.14 ESM of the AddtoCartGUI_Proxy Building Block 71
5.15 Behavior of the AddtoCart Building Block 73
5.16 ESM of the AddtoCart Building Block 74
5.17 Behavior of the OrderInfoEnabler_Proxy Building Block . . . 75
5.18 ESM of the OrderInfoEnabler_Proxy Building Block 76
5.19 Behavior of the PlacingOrderEnabler Building Block 77
5.20 ESM of the PlacingOrderEnabler Building Block 78
5.21 Behavior of the OrderingUI_Proxy Building Block 78
5.22 ESM of the OrderingUI_Proxy Building Block 79
5.23 Behavior of the PlacingOrder Building Block 80
5.24 ESM of the PlacingOrder Building Block 82
5.25 (a)Service Specification as a Collaboration among the Par-

ticipating System Components, (b)Service Specification as a
Hierarchy of Building Blocks 84

6.1 Error Situation in the LogIn Activity Block 86
6.2 Simulation of the LogIn Activity Block 87
6.3 Error Situation in the PlacingOrder Activity Block 88
6.4 Two Token Flows arrive at the Join Node in One Activity Step 89
6.5 Error Situation in the Online Shopping System 90
6.6 Error Situation is Removed Placing a Timer 91
6.7 Example Server System Containing the Client-Server Commu-

nication Model . 92
6.8 Automatically Generated Methods from the Input/Output Pins

of the GWTGUITesting_Proxy Building Block 93
6.9 Implementation of the Client-Server Communication Model . 94

xv

6.10 Automatically Generated Methods from the Input/Output Pins
of the ServiceQuery_Proxy Building Block 95

6.11 Implementation of the ServiceQuery Building Block 95
6.12 Test System Model . 96
6.13 Activity and ESM of the Service1 Building Block 97
6.14 Activity and ESM of the Service1_Proxy Building Block . . . 98
6.15 Activity and ESM of the Service2 Building Block 99
6.16 Activity and ESM of the Service2_Proxy Building Block . . . 99
6.17 Reply from Service1 Building Block 100
6.18 Reply from Service2 Building Block 100
6.19 Current Session ID of the Client with the Firefox Browser . . 101
6.20 Current Session ID of the Client with the Google Crhome

Browser . 101

xvi

Chapter 1

Introduction

1.1 Context

After 3GL (Third Generation Programming Language), MDD (Model Driven
Development) [64, 65] adds the next step of abstraction in writing software
applications. In the history of computing, each higher level of abstraction has
enhanced the productivity and simplified the writing of applications. MDD
has enabled the creation of far more complex applications without increasing
the project management workloads. It has made the building of applications
faster, cheaper, and with higher quality compared with lower-level techniques
[65]. MDD abstracts away the technology details from the models. So, the
developer specifies the problems on a platform independent model, targets a
platform and the tool automatically generates the code, thereby raising the
productivity.
Let’s cast an eye on the prospect of MDD in the web domain. The World
Wide Web is now treated as a platform for delivering sophisticated and com-
plex enterprise applications in several domains. However, web application
developments continued to be performed in an ad hoc and technology specific
ways. Underlying technologies and platforms in the web domain are changing
and replacing with new ones making the problems of usability, maintainabil-
ity, quality, reliability and adaptability of already developed web softwares.
To solve these issues, web engineering [66] is an emerging multidisciplinary
arena for systematic development of web applications. The applicability of
MDD has been realized in the web engineering domain in order to address
the adaptability problem of web softwares to technological changes. Follow-
ing MDD approach in web engineering allows developing of web applications
using separate models to describe the different concerns that constitute web

1

CHAPTER 1. INTRODUCTION 2

systems. Web software development covers the development of several con-
cerns like business logic development, content management, navigational and
presentation architectures development. MDD approach in the web domain
allows the use of separate models to describe these different concerns. This
allows performing of web applications development in a systematic format
as well as adding of all the advantages to the web development those MDD
provides.
In our thesis work, we have considered the model driven development of
Asynchronous JavaScript and XML (AJAX) based web applications. AJAX
[17, 1] is probably one of the most important hypes in the web applica-
tion domain that has appeared in the last few years. With AJAX, web
applications can behave like a desktop application. AJAX facilitates higher
responsiveness in web applications providing asynchronous communication
with server and partial updates of a web page without reloading the whole
page. Gmail, Google Suggest, and Google Maps are using AJAX [17]. How-
ever, the problem with AJAX is that the developers tend to integrate the
important business logic in the client side using Javascript, whereas, the web
application development requires the separation of business logic from the
view of a web application. GWT (Google Web Toolkit) Framework comes at
this point giving a solution to this problem of AJAX based web applications.
GWT enables the separation of business logic from the client side by allowing
the development of client side programming in Java and creating separate
packages for the client and the server. So, the server logic or business logic
can now be put into the server package to run on the server system.
From the above study we have found that, in the context of model driven web
application development and AJAX based web application development, we
can develop the business logic in model driven way to raise the productivity of
AJAX based web applications. For modeling the server or business logic we
have used SPACE method. SPACE method enables the service creation from
distributed systems. It models services as collaborations among participating
system components. Web system is an example of distributed system, where
the participating system components are the client and the server. With
SPACE method, the business logic or the service provided by the server to
the client can be modeled as collaborations among the client and the server.
Keeping this in our mind we have started our work.

CHAPTER 1. INTRODUCTION 3

1.2 Problem Statement

Our motivation is to integrate the model driven business logic development
in AJAX based web applications and at the same time to integrate the AJAX
based web application development in Arctis (a tool suite of SPACE method).
In order to do so, we need to perform a case study on web application domain
with Arctis, where the underlying technology is AJAX and GWT framework.
With GWT framework a web application uses AJAX in its client side to
communicate with the server and can use Java Servlet [35] in its server side
for implementing the server side logic . As a part of this case study, we
will try to build up some reusable building blocks for an AJAX based web
application with Arctis. We will describe a use case scenario to use those
building blocks. We will try to implement our specified system and evaluate
our resulting work.

1.3 Related Works

Let’s have a look into what has been done so far for integrating MDD in web
domain. During the last years, the web engineering community worked on
methods for modeling web systems, such as, Hera [32], OOHDM [63], OO-
H [25], OOWS [67], UWE [38], WebML [16], W2000 [45] and WebSA [55].
In the following sections we demonstrate the brief detail of some of these
methods.
WebML [16] is a web modeling language with graphic notation and textual
XML syntax produced in order to perform model driven development of com-
plex data intensive web sites. WebML gives the facility to design the core
features of a website at higher abstraction level omitting the architecture
details from it. With WebML, specification of a website is devised under
its four orthogonal perspectives, such as, its data content (with a structural
model), the pages that compose it (with a composition model), the topology
of links between pages (with a navigation model), the layout and graphic
requirements for page rendering (with a presentation model), and the cus-
tomization features for one-to-one content delivery (with a personalization
model) [15]. Construction of website with WebML is supported with a CASE
tool named WebRatio [2].
Gómez et al. developed Object- Oriented Hypermedia (OO-H) Method that
provides a set of new views that extend UML to provide a Web interface
model [23]. The OO-H method defines a way of migrating legacy systems

CHAPTER 1. INTRODUCTION 4

to web systems where the legacy systems’ logic modules are expressed in
UML class diagrams. For modeling web interface departing from the UML
compliant business logic, OO-H method introduces three diagrams which
are the NAD (Navigation Access Diagram), that defines the navigation and
interaction view, the APD (Abstract Presentation Diagram) and the CLD
(Composition Layout Diagram) that together gather the concepts related in-
terface architecture and presentation [14]. Gómez et al. also developed a
CASE environment named as VisualWADE [24] to support the methodolog-
ical aspects of the OO-H method. Baresi et al. in [54] presented W2000 as a
complete notation for modeling complex Web applications. W2000 acts as a
homogeneous solution integrating several concepts like HDM (Hypertext De-
sign Model, [21]), UML (Unified Modeling Language) and the model driven
approach [22] in order to model all the aspects of Web applications, from Web
pages to business transactions. With W2000, web application development
is organized following four steps: Requirements analysis, Hypermedia design,
service design and customization activities with designing four models: infor-
mation, navigation, services, and presentation. Requirement analysis covers
the analysis of main information and business processes requirements needed
by the different users of the web application. Hypermedia design first pro-
duces the draft of information, navigation, and presentation models focusing
on the essential properties of web applications which are later refined intro-
ducing all the necessary details of the web application. Running in parallel
with Hypermedia design step, service design specifies the business logic of
the application. Customization activities give the opportunity to special-
ize the web application’s features like content, navigation, presentation, and
services with respect to special purpose contexts. W2000 is supported by a
toolset: graphical editor for designing models, MOF (MetaObject Facility)
[26] repository for storing models, constraint validator for ensuring consistent
model design and Rule Engine for applying model transformation rules. This
toolset is implemented as an add-in to Eclipse.
UWE (UML based Web Engineering) [29, 38, 37, 9, 19, 69, 56, 57] is an
approach to systematic web application development with the ultimate goal
of fully automatic generation of web systems. The UWE process reflects the
MDD process following MDA principals. It covers the whole development life
cycle of web systems from the requirements specification to code generation.
UWE is also based on several OMG standards such as UML, MOF , QVT
(Query/View/Transformation) [27], OCL (Object Constraint Language) [58]
for the specifications of models, description of meta models, definition of
model transformations and checking the consistency of UWE models. Like
other web engineering methods, UWE process separates different concerns of

CHAPTER 1. INTRODUCTION 5

the Web applications and advocates for designing separate models for each
concern. The concerns addressed by UWE are the requirements, content,
navigation structure, presentation, and business processes.
UWE suggests modeling the functional requirements with use cases and the
business processes related to a specific use case with activity diagrams [33].
Content, navigational structures and presentation modeling is done with
UML class diagrams. UWE defines a UML profile reflecting web specific
notation for modeling navigational and presentation models. In the develop-
ment process of UWE these functional models (models of content, navigation
structure, presentation, and business processes concerns) are integrated into
a big picture for the purpose of verification. In order to act as MDA, archi-
tectural aspects are integrated into this big picture resulting in an integrated
PIM (Platform Independent Model) from which PSMs (Platform Specific
Model) are derived. Finally, from PSMs programming codes are generated.
Tool support for developing web applications with the UWE approach is
provided in openUWE model driven development environment. So far, this
development environment comprises two CASE-tools - ArgoUWE [36] and
UWEXML [50, 36]. ArgoUWE comes as a plug-in module of the open source
ArgoUML [3] modeling tool to aid the design phase of UWE method. Ar-
goUWE acts as a graphical editor for modeling web applications with UWE
notation. In addition it supports consistency checking of the composed mod-
els and systematic model transformation techniques of UWE method. Ar-
goUWE delivers the design models in XMI (XML Metadata Interchange) for-
mat. UWEXML performs semi-automatic generation of web systems through
transforming the XMI formatted design models into XML documents and
publishing those with the help of an XML publishing framework.
The above discussed methodologies for web systems’ design are basically
for modeling information system covering the relationship between the un-
derlying contents and the user perceived views of those contents; navigation
patterns reflecting the interactions with those views and presentational views
reflecting the presentation of information to users. However, these method-
ologies are still basic in treating business processes which describe the struc-
ture and behavior of an organizational activity. Nowadays, many modern
organizations such as banks, government, utilities and, generally service or-
ganizations exploit the web to provide their services. This trend requires
a reciprocal relationship among the organization’s business process design
and the web system design. Mario et al. in [59] tried to solve this problem
proposing a conceptual framework named UWA+. UWA+ extends UWA
[18] framework to mitigate UWA’s lack about the modeling of business pro-

CHAPTER 1. INTRODUCTION 6

cesses. UWA is a conceptual framework for modeling web system using UML
based notation and W2000 methodology [51]. UWA+ introduces an integra-
tion design named π diagram which supports the coupling of the business
process view from PIM (Process Information Model) methodology [60] and
web system view from UWA framework. Their contribution aims to give the
organizations to have the opportunity of developing complex web systems
integrating the business process properly.
From our study on the methods of the systematic web system development,
we can say that, many methods have been proposed so far for modeling
web systems in the web engineering domain. Some methods like WebML
worked on only the content navigation and presentation concerns. Methods
like OO-H and UWA+ proposed the integration of two separate frameworks
(business process framework and web interface framework) for covering the
whole web system modeling. On the other hand, methods like W2000 and
UWE themselves cover the modeling of the whole development life cycle of
web systems.
In our thesis work, we have focused on modeling business process of web
applications. We have tried to model the business process using an already
established method and its tool suits. Our concern is only the modeling of
the business process not the modeling of navigation or presentation concerns.
For web interface designing or more specifically user interface designing, we
are not applying any modeling framework, rather it is a framework named
GWT that supports AJAX. In our thesis work, we have used SPACE method
[49] for business process modeling of web applications. It has already proven
its success with its tool-suits giving solutions on several domains like mobile
services, embedded systems, home automation and trust management. In the
perspective of the web application development, clients and servers reside on
different systems. Service creation for distributed systems is one of the goals
of SPACE method. So, web application is a good example for SPACE method
and its tool suits (Arctis and Ramses) to study on.

1.4 Objective

Our main goal is to study the modeling of the server side business process
of a web application in Arctis where the client side technology is AJAX. In
order to do so, we have to do a comprehensive study on SPACE method and
its tool suit Arctis. For fulfilling our main goal, our subordinate goals are
pointed here

CHAPTER 1. INTRODUCTION 7

• To describe a web application scenario.

• To model some reusable building blocks specifying the server logic of
the web application scenario.

• To try to implement the system model that we will design

• To evaluate our resulting work in discussion.

1.5 Contribution

In order to accomplish the goals set in the preceding section, we have first
designed a model in Arctis that specifies the communication between the
client and the server. Then we have presented a scenario that describes how
the web application, whose business process we want to model will work. We
have modeled some reusable building blocks those describe the server side
business process of the presented scenario.
For the implementation of the system model that we have designed, we have
proposed the functionalities that a code generator should perform during
the automatic code generation from the state machines of our model. We
have implemented our client server communication model to verify that our
model works successfully performing the client server communication. We
have implemented one of our reusable building blocks that can retrieve the
available service names from an existing Online Shopping Store that sells
services as products. Because of our time limitation, we have not been able
to implement our whole system model. However, we have implemented a
simple test system model that proves that, the implementation of our system
model is possible with the implemented code generator.

1.6 Thesis Outline

Our thesis structure tries to align closely with the objective and contributions
described previously. We present a coarse-grained overview of our thesis
structure as following.
Chapter 2: Background
In this chapter, we have described the necessary details of all the methods
and technologies those we have used in this thesis. We have described the
theory of MDD and MDA. We have presented our comprehensive study on

CHAPTER 1. INTRODUCTION 8

SPACE method and its tool suits. We also have given a brief detail of AJAX
technology, Java Servlet and GWT framework as underlying technologies of
our work.

Chapter 3: AJAX integration in Arctis
The aim of this chapter is to show the idea that we have developed for
modeling the client-server communication of AJAX based web applications
in Arcits. Before showing that, we have given an idea of how AJAX based web
application with GWT framwork communicates to the server. For executable
code generation from the service models, a code generator is required. For
implementing the communication model we have developed as well as for
implementing the server logic model or more specifically the server system
model, a GWT code generator is needed. In this chapter, we also have
proposed the functionalities those the GWT code generator should include.
Chapter 4: Scenario Description
First of all, in this chapter we have presented the common scenario that any
web application holds. In this chapter, we have described an online shopping
system as our AJAX based web application scenario. We have described the
services, those the shopping system will provide.
Chapter 5 Development of Reusable Building Blocks
For modeling the business process or service provided by the described on-
line shopping system, we have modeled some building blocks with reusable
functionalities in Arctis. Moreover, we have described the Online Shopping
System model designed with our reusable building blocks .We also have de-
scribed the behavior of those building blocks in this chapter.
Chapter 6 Implementation
We have first implemented our client-server communication model. Then
we have tried to implement one of our designed building blocks. Finally,
we have implemented a simple test system model whose activity resembles
our specified Online Shopping System model. This chapter describes our
implementation attempts and shows our success results.
Chapter 7 Discussion
In this chapter, we have tried to evaluate our resulting work. This chapter
also describes the limitations of our work and the future research works that
can be carried out.

Chapter 2

Background

2.1 MDD (Model Driven Development)

MDD (Model Driven Development) or MDE (Model Driven Engineering) is
a software development methodology that designs complex systems based on
formal models from which in a series of model transformations, executable
software can be generated. With the increase of the complexity of today’s
software systems, the usability of MDD approach is increasing among the
software engineering community.
Complex software system developing in traditional software engineering ap-
proaches with 3GL requires lots of technical skills. These traditional ap-
proaches are highly technology oriented. Writing and understanding pro-
grams comprising even hundred lines of code is a difficult task let alone,
million lines of code. Also, 3GLs are defect intolerant meaning that even a
trivial defect can cause the most expensive failure. For example, because of
a single break statement missing in a C program, the AT&T long distance
network in the northeastern United States crashed in 1990 costing hundreds
of millions dollars [65].
MDD specifies systems in a higher level of abstraction to avoid those above
mentioned problems. This abstraction promotes simpler models with a greater
focus on problem space furthering away the implementation details. This al-
lows the domain experts only to focus on business logic. From these abstract
models, then through a series of automated transformations and refinements
some intermediate models with platform specific details and finally the de-
ployable code is generated. The specifying system properties are kept consis-
tent all along the path of model transformation and code generation. MDD

9

CHAPTER 2. BACKGROUND 10

also provides the possibility of verifying and testing models enabling to cor-
rect the errors before fundamental design decisions are made [65]. Thus,
raising the level of abstraction of system specification to be closer to the
problem domain and raising the level of automation of code generation from
models, MDD maximizes the productivity of software with quality of service.

2.2 MDA (Model Driven Architecture MDA)

MDA (Model Driven Architecture MDA) is a framework launched by OMG
(Object Management Group) to provide standard guidelines in engineering
software systems with MDD approach. MDA does not explicitly specify a
detailed development process, rather it gives only generic method guidelines
defining the system models and facilitating transformations between differ-
ent model types. MDA specifies system in three layered models: system re-
quirements are specified in the CIM (Computation-Independent Model); the
Platform-Independent Model (PIM) is the model that describes the system
design independent of the implementation platform; the Platform-Specific
Model (PSM), on the other hand, describes the system design in the form
of a platform-dependent model [8]. From PIM following an OMG standard
mapping, PSMs are generated from where application code is generated.
Figure 2.1 illustrates the software development lifecycle according to MDA.

Figure 2.1: Software Development Lifecycle with MDA

MDA is actually a consolidation of several OMG standards for using models

CHAPTER 2. BACKGROUND 11

extensively in software development. PIMs are defined using platform inde-
pendent modeling languages like UML (Unified modeling language). UML
Profile which is a standardized set of extensions for UML models to define
PIMs with a specific domain details. For performing automated mapping
between different models a model based transformation language QVT [27]
is a standard. Meta Object Facility [26] is a standard for defining metamod-
els for other languages like UML. These and several other standards define
the core infrastructure of the MDA and provide the architecture for modern
system modeling.

2.3 SPACE Method

SPACE [49] is an engineering method for rapid creation of services, developed
at NTNU (Norwegian University of Science and Technology) which follows
MDA as a technical framework. With this method, system is specified us-
ing collaborations as specification units. The meaning of collaboration is
explained in subsection 2.3.1. From that collaborative models through au-
tomated model transformations executable state machines and system com-
ponents are generated which are then used as input for the code generation.
These model transformation and code generation are automated processes
in SPACE. Figure:2.2 illustrates the system development cycle in SPACE
method.
With compositional Temporal Logic of Actions [31], SPACE provides auto-
mated model checking, verification of system specification and correctness of
model transformation. The main focus of SPACE method is on composition
of services using reusable building blocks. In a word, SPACE is an engi-
neering method that facilitates the rapid creation of services specifying the
services as collaborations and generating the executable code from collabo-
rative service models through automation with necessary tool support. We
describe the whole development process with SPACE method in more detail
in the following subsections. As our aim in this thesis work is to develop some
building blocks for a web application, we describe the service specification
part more elaborately than the automated processes in SPACE method.

2.3.1 System Specification or Service Composition

According to [43], a service is an identified functionality comprising a behav-
ior performed by participating components or entities. From this definition,

CHAPTER 2. BACKGROUND 12

Figure 2.2: System Development Cycle in SPACE method (adopted from
[43])

it is clear that, services can be specified as collaborations among several com-
ponents those interact to do specific tasks. However, a service performs a
specific task and requires to be combined with other services to specify the
complete system. Figure 2.3 illustrates the definition of service and system.
In order to reuse a previously specified service in composing a whole system,
SPACE method specifies services in a self contained way. So, services are
specified as collaborations among participating components. Collaboration
is actually a specification of contextual relationship among instances those
interact within a context in implementing desired functionality [34]. This
collaboration acting as a subservice can be used to specify another service.
Thus the reusability of services is implemented.
For implementing the above mentioned conceptual theory, SPACE method
specifies services using the combination of UML 2.0 collaborations [28] and
UML 2.0 activities [10]. UML 2.0 collaborations describe the structure view
of composed services, whereas UML 2.0 activities describe their detailed be-
havior.
To explain the related models at different abstraction levels in SPACE method,
we took an example system specification from [43]which is a mobile alarm

CHAPTER 2. BACKGROUND 13

Figure 2.3: Services as Collaborations among Several Components. C depicts
system components, S depicts services and dotted rectangle comprises the
whole system.

system shown in Figure 2.4. When an alarm activates in a house, this system
informs that to the house owner through his mobile phone. In this system,
a sensor (for example, Fire detector) works to sense an abnormal situation,
a camera is installed to provide the visual coverage of the sensor area and
a residential gateway maintains the communication between these compo-
nents and the application server of the telecom operator. To inform the
house owner about the critical situation with traditional call-based features
the application server of the telecom operator interacts with the call control
server.

2.3.1.1 UML Collaborations Illustrating Service Structure

Figure 2.4 represents the UML collaboration of the mobile alarm system
which we have described in the previous section. A collaboration specifying
a system gives the structural representation of the system with collaboration
roles, connectors, collaboration uses and role bindings. In Figure:2.4 the rect-
angular elements are collaboration roles (sensor, camera, residential gateway,
application server and call control) which are the descriptions of the partici-
pating components in the example mobile alarm system. We have provided
the description of these roles in this Mobile Alarm System in the previous
section. The connector between two collaboration roles (for example, sensor
and residential gateway) describes the relationship between them. As we said
earlier, a whole system is composed of several sub services, these subservices

CHAPTER 2. BACKGROUND 14

are referenced in the collaboration model using collaboration uses. More
clearly, a collaboration use is a reference of a specific collaboration. In Fig-
ure 2.4, the elliptical curves are collaboration uses. Here, the collaboration
use s1: Sensor Alarm notifies the residential gateway about the occurrence of
a critical situation. t: Terminal Status finds out the availability of the house
owner’s mobile phone. a: Alarm dialog acting as an interactive voice service
informs the situation to the house owner and asks for necessary tasks to do.
s2: Send SMS collaboration use sends a SMS to house owner’s mobile phone
if his mobile phone is not available and s3: Security Dialog is for calling help
from a security company on demand. Role bindings are dashed lines in the
same figure describing the role of the participant in the system to specific
subservices.

Figure 2.4: Collaboration of the Mobile Alarm System [43]

2.3.1.2 UML Activity for Illustrating Service Behavior

In SPACE method, associated with each collaboration, a behavior is at-
tached. With UML 2.0 activities SPACE method describes this behavior
which is actually a detailed local behavior of the participating components

CHAPTER 2. BACKGROUND 15

as well as their interactions among themselves. We can think of UML 2.0
activities as a flow graph which contains logic nodes and connected edges.
With this flow graph, UML 2.0 activities expresses the sequence, conditions,
inputs and outputs to invoke or interact with other behavior or system en-
vironment [11]. UML 2.0 activities utilize token flow semantics like Petri
nets [28]. Tokens traverse along the directed edges and are operated on the
nodes according to the logic established by the activity. Moreover, activities
express the fine grained logic of a specific task in so detailed level which is
close to the implementation in a programming language [20]. An activity
model is also identified as a building block.
An activity as a subordinate activity can be referred in another activity with
call behavior actions. An activity containing a subordinate activity interacts
with it by its input and output parameter nodes. The new activity has also
additional behavioral logic and uses sub activities to describe some part of
its behavior. So, this new activity forms a new level of abstraction. That is,
UML activities can be used on several levels of decomposition for the speci-
fication of systems [20]. At the topmost level of abstraction UML activities
focus on the overall behavior of the system with coarse business functionali-
ties and on the lowermost level UML activities specifies the detailed behavior
with fine grained logic. So, we can think of a complex system as a hierarchy
of UML activities or building blocks as shown in Figure 2.5. Depending on
the complexity of the system and its functionality the composition levels may
increase to simplify the specification of the system.

Figure 2.5: System as Hierarcy of Building Blocks

Figure 2.6 shows behavior of Mobile Alarm System collaboration shown in
Figure 2.4. This activity represents the highest level of abstraction where the
behavior of collaboration uses are referred with corresponding call behavior
actions. Also, this activity shows the coordination of sub collaborations in
a collaboration with input and output parameter nodes. We can see in the
Behavior of MobileAlarmSystem Collaboration, the activity is started by a

CHAPTER 2. BACKGROUND 16

Figure 2.6: Behavior of the MobileAlarmSystem Collaboration

token arriving at the start node from the initial node at the upper left corner.
This token activates the Sensor Alarm sub service. If an alarm occurs, the
t:Terminal Status subservice is activated as a token is emitted via output
pin alarm of the s1: Sensor Alarm sub activity. Sub activity t:Terminal
Status finds out the availability of the house owners mobile phone giving
three possible outputs. If the mobile owner’s phone is reachable, a:Alarm
Dialog sub activity is activated as token flows via pin reachable to a:Alarm
Dialog. Sub activity a:Alarm Dialog according to phone users command can
either start the reset logic of s1:Sensor Alarm sub activity with output pin
reset or activate s3:Security Dialog with output event call help. If the phone
is busy or unreachable the s2: Send SMS sub activity is started to sent SMS
about the incident and the s3: Security Dialog sub activity is activated with
output pin confirm. s3: Security Dialog can also reset the sensor alarm.
Through resetting the alarm the entire activity is terminated.
Figure 2.7 shows the internal detailed behavior of the t: Terminal Status col-

CHAPTER 2. BACKGROUND 17

Figure 2.7: Internal Behavior of the TerminalStatus Collaboration

laboration in Figure 2.4. From Figure:2.4 we can see the t:Terminal Status
collaboration is bounded to collaboration roles app server and call control by
the role bindings client and server. The collaboration roles are represented
as activity partitions in the internal behavior of the collaboration. In Figure
2.7 we can recognize the collaboration role client and server as activity par-
titions. Activity t:Terminal Status is started via input pin get and Mobile
Subscriber ID (MSID) of client is passed to the server. Getting the MSID
getStatus operation finds out the availability status of the mobile phone and
shows result with status object. Depending on the content of status object,
the token flows towards any one of the three alternative output pins busy,
unreachable or reachable and the activity terminates.

2.3.1.3 UML Profile and Semantics of UML activities used in
SPACE method

SPACE method defines a UML profile [28, 40, 39] for extending standard
UML for service specifications based on collaborations and activities and
component oriented specifications based on state machines. This profile also
defines the constraints on UML models (collaborations, activities and state
machines) used in SPACE method to ensure their semantics and executable
code generation from them.
We summarize the common semantics used in activity diagram in SPACE
method in Figure 2.8.

CHAPTER 2. BACKGROUND 18

Figure 2.8: Common UML Semantics Used in Arctis

2.3.1.4 Types of UML activities Used in SPACE method

System Activity
System activity has no parameter nodes. It has at least one initial node and
may have several flow final nodes. It comes with the «System» stereotype in
its title. It has no ESM (External State Machine). We explain ESM in sub
section 2.3.1.5.
Sub-activity
Sub-activity must have parameter nodes. It cannot have any flow final node.
Unlike system activity, it must have an ESM. Sub activities are instantiated

CHAPTER 2. BACKGROUND 19

in other activities by call behavior actions.
Shallow Building Block
It is a reusable piece of activity which has no internal behavior specified. It
is specified by only its external behavior (ESM). In our thesis work, we have
not used any shallow building block.
Proxy Building Block
Proxy building block or Proxy activity is a newly implemented building block
in Arctis. In a local system, it represents the behavior of an outside system.
This building block is specified by only its parameter nodes and ESM. It has
no internal behavior details. The building blocks we have developed in this
thesis work are specially based on this Proxy block. We explain the Proxy
block in detail in section 3.2 in chapter 3, so that, its functionality can be
understood more clearly.
In Arctis, the general term building block indicates all the above mentioned
activities.

2.3.1.5 External State Machine Illustrating External Behavior of
Activity

For composing systems with reusable building blocks, SPACE method en-
capsulates each sub activity or reusable building block with External State
Machines (ESMs). ESMs are a variant of UML state machines. An ESM acts
like an interface that hides the inner details of an activity and expresses the
externally visible behavior of it. Encapsulation of activity with ESM allows
an engineer who did not build an activity to use that activity as a reusable
building without looking into the inner details of it. An ESM describes the
order in which tokens can pass the various parameter nodes of an activity
[20]. This information is necessary to correctly build a system from reusable
building blocks. Figure 2.9 shows the ESM of the t:Terminal Status activity
shown in Figure 2.7
The labels on the arrows correspond to parameter nodes of the activity.
A token passing these parameter nodes causes transitions of the ESM. A
separator "/" distinguishes the parameter nodes as triggers or effects. Triggers
are invoked by a token from the outside of the building block, whereas effects
are invoked by a token by the internals of the building block. From Figure
2.7 we can see that, MSID arriving at pin get from outside of the activity
activates the activity. So, In Figure 2.9 the transition is specified as get/
indicating pin get as a trigger. Then the activity goes into the retrieving

CHAPTER 2. BACKGROUND 20

Figure 2.9: ESM of the Terminal Status Activity

state for finding out the availability of the phone. From the retrieving phase
the termination of the activity is happened when a token passes one of the
three pins reachable, busy and unreachable. This termination transitions
are labeled as /reachable, /busy and /unreachable in the ESM indicating
reachable, busy and unreachable pins as effects.
The services specified as collaborations and encapsulated as UM 2.0 activi-
ties and ESM interface descriptions can be stored in the library of different
domains. Later, these services can be used as reusable building blocks from
the domain specific libraries for the system specification in a particular ap-
plication domain. In order to do so, the required service or more specifically,
subservice is picked up from the library and instantiated and enclosed in a
collaboration to compose a new collaboration or system specification.

2.3.2 Formal Analysis and Automated model Checking

To verify the behavioral properties of the service specifications, the semantics
of UML collaborations and activities are formalized automatically in the
form of cTLA [31, 44] specifically cTLA/c, which is based on the linear-
time temporal logic TLA [52]. This formalization helps the building blocks
and their compositions to be analyzed thoroughly with an automatic model
checker. With automatic model checking, all possible states in a specification
are searched and analyzed. This analysis is based on properties that must
be fulfilled by any service specification to be consistent [43]. This formal
analysis is hidden from the developer who is working on service specification.

CHAPTER 2. BACKGROUND 21

If any property is violated error trace of states and transitions that lead to
the violating state is reported in the form of states and steps of the UML
activity with a tool support.

2.3.3 Model Transformation

After specifying the system or services with collaborative specifications in
combination with UML 2.0 activities and describing their external behavior
with ESMs, the subsequent implementation steps are automatic.
After completing the service specification, the activities are transformed au-
tomatically into intermediate models, which are UML 2.0 state machines of
participating components. Each activity partition in activity model corre-
sponds to a participating component in the service specification. So, each
activity partition expresses a part of collaborations which are bounded to
that activity partition or component. In the automatic model transforma-
tion step, each activity partition is transformed into a separate state machine
representing the behavior of the corresponding component implied by the be-
havior in that activity partition [43, 45]. Figure 2.10 gives a visualization of
the model transformation. These intermediate state machines for executable
components are fed into the next step as input for the code generation of ex-
ecution platforms. Similar to activity models, the behavior of state machines
are formalized using cTLA/e [46]. With this formalism, in SPACE method,
it is ensured that the transformation from UML activities to state machines
is correctness-preserving.

Figure 2.10: Model Transformation

CHAPTER 2. BACKGROUND 22

2.3.4 Code Generation

The state machines can be directly used as input for generating executable
implementations for several platforms. These state machines have such a
form that can be easily implemented with a run time support system [13].
In SPACE method, executable code can be generated from state machines
automatically with appropriate tool support. We describe the tool-suits of
SPACE method in the following section.

2.4 Arctis and Ramses Tool-Suits to Support
SPACE method

Arctis and Rameses are tool-suits to help the developers developing and im-
plementing application systems or services using SPACE method. These tool-
suits are implemented as a set of eclipse plug-ins. Figure 2.11 illustrates these
tool-suits and their functionality to support the system development with
SPACE method. Arctis aids with service specifications and compositions
using UML 2.0 collaborations, activities and ESMs; model transformations
from UML activities to executable state machines; and formal analysis for
verifying the consistency of service specifications and model transformations.
On the other hand, Ramses supports code generators for the implementation
of executable state machines on several platforms.
The library of building blocks of different application domains and the editor
for specifying service from scratch or using the building blocks from libraries
are the components of Arctis exposed to the developers to interact with.
UML standard has not its own action language, so here, Java is integrated
with UML to express operations within UML activities. In order to do so,
a java class is associated with each building block or each activity partition
of a building block. Also, each UML operation in the activity corresponds
to a java method of that dedicated java class of the activity partition. For
this Java and UML integration, features like automatic code completion and
correction of Eclipse Java Development Tools get available in Arctis.
There is an inspector framework integrated in Arctis providing the facility of
adding numerous inspectors as plug-ins to Arctis. These inspectors perform
lightweight model checking like syntactic error checking. Inspectors do this
error checking directly working on the UML model. These inspectors also
can check the validity of the models against the constraints of UML profile,
thereby aiding the developers with application domain specific constraints

CHAPTER 2. BACKGROUND 23

Figure 2.11: SPACE Method and Tool Support[41]

checking. Developers are notified with the diagnosis result of inspectors as
error messages and optional solutions.
To make sure whether the specifications are consistent or have their intended
meaning, so that, they can be converted into executable components, se-
mantic analysis is required. Semantic analysis can be done by doing model
checking on the state spaces of the specifications. As the model checkers
need formal specifications of the models as their input, Arctis has a formu-
lator named TLA Generator to do so. It has been mentioned earlier that in
SPACE method activity models are formalized with cTLA formula for doing
semantic analysis or more specifically formal analysis. The TLA generator
performs this formalism and automatically transforms an activity into TLA+
[53] which is a temporal logic language. The properties those should be hold
by the specifications are also formalized with this TLA generator. Once a
specification is free from syntactic errors with the help of inspectors, the
activity models are formalized with the help of TLA generator. Then TLC
[68], a model checker takes the formal specifications of the activity model and
the properties and performs thorough analysis on all possible state space of
the specification. If any violation of property occurs the trace of the state
towards the violation of theorem is projected to the Arctis editor. Arctis also
supports the simulation of activities with animations, so that, the user can
analyze the errour situations.
For running the service or system on the service execution platform, the be-

CHAPTER 2. BACKGROUND 24

havior description of each and every individual participating component is
essential. We have described earlier that, SPACE method gives the way of
behavioral description of each participating components in a system through
model transformation. In Arctis, model transformation module creates a
state machine by reachability analysis on the states modeled by a single ac-
tivity partition [18]. Thus, from each activity partition in the activity model
the behavior is mapped to each corresponding UML 2.0 state machine with
Arctis’s model transformer. The model transformer performs this transfor-
mation as refinement step from activities to state machines, so that, the
property and behavior of activities are preserved correctly in state machines.
Formalization of state machines in cTLA/e descriptions gives the way to
perform these correctness-preserving refinement steps.
In order to implement the sate machines on execution platforms, Ramses
contributes code generators to create executable systems [13]. Everyone can
develop a code generator for a execution platform and integrate this with
Ramses defining extension points in Eclipse for that code generator. Code
generators of specific execution platforms take UML state machines of system
specifications as input and generate codes to be executed. In our thesis
work, the execution platform is AJAX with GWT framework. We need a
GWT code generator to generate the code from the state machines of our
service specifications and to implement an AJAX web application with GWT
framework.
In order to develop an AJAX web application with Arctis, we have studied
AJAX. We also have studied JavaServlet and GWT Framwork, as we use
those technologies in the server side and the client side respectively. The
detail of AJAX, JavaServlet and GWT technology are described in the fol-
lowing sections.

2.5 AJAX (Asynchronous JavaScript and XML)

In 1990’s user interaction in web applications was request-wait-response based,
which slowed down the user interaction considerably. The concept of AJAX
was first coined by Jesse James Garrett in 2005 in his article "Ajax: A New
Approach to Web Applications" [17, 1] . AJAX came as a boon to the web
with providing desktop application like user experience. We describe in the
following sub sections the magic behind AJAX and its basic technical details.

CHAPTER 2. BACKGROUND 25

2.5.1 Working Princinple of AJAX

The classic web application model, addressed as pre AJAX web model is
not good for considering web as software applications. In a pre AJAX web
model, user interaction triggers a HTTP request to the web server. The
server performs necessary processing for example, retrieving data or doing
some calculations etc. When the processing is completed the server returns an
HTML page to the client. The problem is that, during the server processing
time, the user has nothing to do, but waiting for a page to be loaded or
refreshed from the server.

Figure 2.12: Pre AJAX Web Model

AJAX increases the web page’s interactivity, speed, and usability in order
to provide richer user experience. AJAX places an AJAX engine between
the client and server. This engine is written in JavaScript and behaves like
a hidden frame. AJAX engine renders the user interface and handles the
communication between client and server. The client-server communication
with AJAX is asynchronous. Asynchronous communication means the client
does not need to wait for the server response. After sending the request
to the server the execution in the client program does not halt, rather the
execution is continued. The response is notified to the client when it is
available. The AJAX engine sends requests to the server on behalf of the
client and receives data or responses from the server. In a web model with
AJAX, server sends small data instead of the HTML page. AJAX engine
shows that data or response by updating the page partially. Thus user is free

CHAPTER 2. BACKGROUND 26

Figure 2.13: Post AJAX Web Model

to do other interaction after sending a request to the server. Figure 2.12 and
2.13 show the model of Pre AJAX and Post AJAX web models to clarify the
above described idea.

2.5.2 What actually AJAX is

Ajax is not a technology in itself, but rather an umbrella term used to describe
how several existing technologies such as JavaScript, the Document Object
Model (DOM), and Extensible Markup Language (XML) can be used to-
gether to create Web applications that are more interactive and that remove
the need for entire web pages to be refreshed when only part of the page is
changing [17, 1].
AJAX incorporates the following techniques to enhance the user interaction
on web.

• XHTML (eXtensible HyperText Markup Language) and CSS (Cascad-
ing Style Sheet) for providing standard-based presentation.

CHAPTER 2. BACKGROUND 27

• DOM (Document Object Model) for facilitating dynamic display and
interaction.

• XML (Extensible Markup Language) and XSLT (eXtensible Style Sheet
Language Transformations) for interchanging and manipulating data.

• XMLHttpRequest for retrieving data asynchronously.

• JavaScript for binding everything together.

In the following subsections we describe a brief overview of these standards
and their usability in AJAX.

2.5.2.1 XHTML and CSS

XHTML is HTML’s (Hyper Text Markup Language) successor. It is a cleaner
and stricter version of HTML. XHTML is actually HTML defined as an XML
document. With XHTML standard HTML page should follow the strict syn-
tax of XML. This ensures the correctness of an HTML page, whereas, with
HTML there is the possibility of missing enclosing tags, breaking nested
sequence like bad HTML. For AJAX, XHTML is a requirement for the pre-
sentation of the web page, as if the page is not correctly formed, AJAX
cannot access different part of the web page to perform partial updates.
CSS are the templates behind HTML pages that describe the presentation
and layout of the text and data contained within an HTML page [17, 1]. For
partial presentational update of page CSS are useful, as its properties can
be accessible via DOM to reflect the presentational change on the web page
dynamically.

2.5.2.2 DOM

DOM represents the web page as a hierarchy or tree structure for accessing
and manipulating HTML documents. Figure 2.14 shows the tree structure
of an HTML page. DOM is a standard way for all browsers to represent
the page. With DOM, it is now possible to make changes on the existing
elements in HTML page or add new elements to it dynamically using scripting
languages (JavaScript, VBScript) , as a result, the browser can update the
page or sections of it instantly. Ajax depends on these capabilities greatly to
provide the rich user experience.

CHAPTER 2. BACKGROUND 28

Figure 2.14: DOM Tree

2.5.2.3 XML and XSLT

XML is a markup language much like HTML, but XML was designed to
structure data. The focus of HTML is on displaying the data, however, the
focus of XML is on the data itself. XML was created to structure, store,
and transport information. Figure 2.15 shows an example of XML which
is a message sent from Tove to Jani. AS XML data is stored in plain text
format, this provides a software- and hardware-independent way of storing
and sharing data. In AJAX, usually servers transfer data in XML format.
However, XML is not the only way to transfer data from server in AJAX,
text can also be transferred.

Figure 2.15: An Example XML Document

XSLT is a language for transforming XML documents into other XML or

CHAPTER 2. BACKGROUND 29

HTML documents or pure text. For conducting the transformation XSLT
document contains a set of rules. XSLT uses another language, XPath, to
query the XML document when applying its transformations [17, 1]. XSLT
and XPath then help to display the section of data dynamically from XML
using the browser.

2.5.2.4 XMLHttpRequest Object

XMLHttpRequest object provides the asynchronous part of AJAX. It allows
requesting and receiving new data from a server in the background without
any page reloading. It provides the functionality to send request for a data
and notify later when the data is available. XMLHttpRequest Object does
the magic part of AJAX facilitating a higher responsiveness of web pages
than ever before.

2.5.2.5 JavaScript

JavaScript is a client side scripting language. It allows the creation of dy-
namic web pages providing a new level of interactivity. However, JavaScript
is not useful to request for everything that it might eventually need from the
server, because this would cause a very long loading time. XMLHttpRequest
and DOM are used in JavaScript to provide the asynchronous and partial
page update functionalities which AJAX offers. So, JavaScript is an essen-
tial piece of the Ajax package gluing the other technologies of AJAX together
and making them functional for providing a rich user interactivity.

2.6 Java Servlet

A Servlet is a Java class which conforms to the Java Servlet API and runs in a
server application (Apache Tomcat, Jetty etc) to answer client requests [35].
The Java servlet API provides a framework for building applications on web
servers. Java servlet interacts with the application server. When a request
comes to a servlet, the application server loads the servlet class and runs
the servlet. Then, it calls the service method (implementation of application
logic) of the servlet in a new thread. So, the application server handles each
client request to a Servlet creating a new thread. The application server also
implements the interfaces provided by the Java Servlet API to handle the
session tracking and state management.

CHAPTER 2. BACKGROUND 30

Figure 2.16: A Servlet’s Life Cycle

Figure 2.16 shows a Servlet’s life cycle. The init() method for initializing
the Servlet is called only once in the whole life cycle of the Servlet. Its
service() method is called for every request to the Servlet. The method is
called concurrently i.e. multiple threads may call this method at the same
time. When the Servlet needs to be unloaded the destroy() method is called.
This method is also called only once during the Servlet’s lifecycle.

2.7 Google Web Toolkit (GWT)

In May 2006, Google released GWT, an open source framework for web
developers to develop Ajax application (client side code) in java instead of
JavaScript.
Today’s RIAs (Rich Internet Applications, i.e. desktop like web applica-
tions) are getting complex and large in size. Writing AJAX applications
in JavaScript is error prone. Managing large applications in JavaScript is
complex, difficult and directs to an entirely new discipline. Also, JavaScript
behaves differently on different browsers. Developers spend a lot of valuable
time having to code for browser differences instead of focusing on real appli-
cation logic. Also, Developers tend to mix the business logic in the view of
web applications using Javascript.
RIA application development with GWT gives Java developers to reuse their
existing expertise and best practices. GWT gives ease of developing large
applications, as Java was designed to make large applications manageable in
object oriented fashion. With GWT, besides, having all the advantages of
Java as a programming language, developers can use a gazillion of Java de-

CHAPTER 2. BACKGROUND 31

velopment tools that already exist. They can use their favorite IDE, perform
compile time checking, unit testing and even continuous integration. GWT
also handles all browser-specific quirks meaning that compiled GWT appli-
cation runs inside any modern browser (assuming JavaScript is turned on),
so that developers can focus on the application logic [12]. GWT basically
translates all the Java UI code to JavaScript. However, it does not mean that
the old JavaScript code or application will become useless. GWT still allows
interacting with existing JavaScript code as well as integrating with existing
server side services. Another important functionality GWT provides is that,
it separates server side logic from client side creating separate packages for
the client and the server.
Google provides a plugin for Eclipse which handles most GWT related tasks
in the IDE including creating projects, invoking the GWT compiler, creating
GWT launch configurations, validations, syntax highlighting, etc [12]. In
our thesis work, we have used a GWT SDK of version 2.0 plugin to work in
Eclipse environment.

2.7.1 GWT Components

GWT provides a comprehensive set of tools including UI components to
configuration tools to server communication techniques and this help web
applications look, act, and feel like full-featured desktop applications. Major
GWT components are as follows.

• GWT Java-to-JavaScript Compiler
This is the core part of GWT. This compiler converts Java code into
JavaScript code in such a way, that the compiled JavaScript can run on
the major internet browsers. The supported browsers include Internet
Explorer, Firefox, Mozilla, Opera, and Safari.

• JRE emulation library
To provide developer to use some classes of core Java, GWT includes
JRE (Java Runtime Environment) emulation library. This library sup-
ports some classes from java.lang and java.util packages.

• GWT Web UI class library
GWT ships with a large set of custom interfaces and classes for creating
widgets and panels. Widget is some sort of control used by a user, and
a panel is a container into which controls can be placed [12].

CHAPTER 2. BACKGROUND 32

Figure 2.17 illustrates an AJAX web application development with GWT
framework.

Figure 2.17: An AJAX Web Application Development with the GWT Frame-
work

2.7.2 GWT Modes of Running

GWT applications can run on two following modes.

• Development Mode (Hosted Mode)
This mode can be addressed as debug mode also. With this mode,
GWT allows developers to debug their application as in any Java ap-
plication. In this mode, Java code is executed and widgets are displayed
in a host window that emulates a web browser [12].

• Web Mode
This mode executes the JavaScript code generated from the compilation
of client side Java code. The Web mode is actually the deployment of
Ajax web application with GWT framework on a genuine application
server.

CHAPTER 2. BACKGROUND 33

In the following chapter we describe elaborately our idea on developing AJAX
web applications in Arctis. In the next chapter, we also describe our related
study that has been assisted us for developing our idea.

Chapter 3

AJAX Integration in Arctis

We have wanted that we will develop an AJAX web application with the
GWT framework in Arctis in such a way that the developer will have the
flexibility to design the user interface using the GWT UI (User Interface)
elements. GWT provides a rich set of UI elements and we have wanted to
utilize that in our developed web application. Currently, it is not possible
to add the web UI element directly in Arctis. So, for client side modeling,
we had thought of integration of a GWT UI element designer into Arctis.
However, it is a time consuming research which was not possible within our
assigned time limitation. Then we have decided only to model the server
side logic of an AJAX web application in Arctis. As in GWT, the client side
code and the server side code reside in separate packages, it is possible to
put the generated code from our model into the server package by a code
generator, and then execute and implement the web application accordingly.
Figure 3.1 shows the proposed way of integrating the modeling with Arctis
in the development of an AJAX web application.
So, according to our idea, we have developed the server side logic in the
model driven way using Arctis tool, whereas we have done the client side
programming manually.
In order to model the server logic in Arctis, we have found the most difficulty
point is to model the communication between the client and the server. In
this regard, we have studied the client-server communication mechanism in
an AJAX web application with GWT framework. We describe our study
briefly in the following sub sections. We also think that, it is important to
know the GWT client-server communication mechanism to understand the
communication model that we have designed.

34

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 35

Figure 3.1: AJAX Integrition in Arctis

3.1 Client-Server Communication with GWT
Framework

In section 2.5.2.4, we have mentioned that, the XMLHttpRequest JavaScript
object allows an asynchronous communication between the browser client and
server without forcing page refresh. GWT provides two tools those sitting
on top of this XMLHttpRequest object facilitate asynchronous communica-
tion between the browser client and the server. One is Basic AJAX [12]
and another is GWT RPC (Remote Procedure Call) [12, 61]. Though both
mechanisms provide abstractions over protocol details of communication of
a message between the client and the server, GWT RPC provides more ab-
straction between the two. GWT RPC allows the developer to communicate
with the server by only calling methods from the client side and invoking
those methods on the server side. In our thesis, our AJAX web application
that we have developed is based on RPC (Remote Procedure Call) or more
specifically, GWT RPC for the client-server communication. So, in the fol-

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 36

lowing section we present a brief detail of the working functionality of the
GWT RPC .

3.1.1 GWT RPC

RPC is the mechanism that allows a program to execute a program on an-
other computer and return the results of the calculation [61]. With GWT
RPC, this task is accomplished by providing the developer with an interface
of methods that can be called on the server similarly to regular method calls.
For enabling the client-server communication in an AJAX web application
with GWT framework requires the following vital 4 steps to be performed.

• Defining the Interface

• Implementing the Server Side

• Defining the Asynchronous Interface

• Deferred Binding and Remote Service Calling

We describe a brief overview of these steps in the following sub sections.

3.1.1.1 Defining the Interface

In the client side, a Java interface is defined to formulate the contract of
the communication between client and server. The Java interface actually
defines the signature of the methods that must be implemented in the server
side. With this technique, the client and the server both know which method
can be called and what is expected in return. Defining the interface is very
straightforward and shown in Figure 3.2 .

Figure 3.2: Interface Definition

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 37

MyService is an interface that defines the method getTasks(), which the client
application need to call remotely. To make GWT RPC communication pos-
sible, some requirements are needed to be fulfilled. First of all, we should
place the interface inside the client package of the GWT application in order
to make it available for the client side application. Secondly, it should extend
the interface com.google.gwt.user.client.rpc.RemoteService that comes with
the GWT RPC library. This will make the GWT compiler understood that
an RPC interface has been defined. Finally, the methods in the interface
can only use classes as arguments or return types that GWT knows how to
send over a wire [61]. That is, the classes should be serializable. In Figure
3.2 the getTasks() method’s return type is a list of Task objects. Task is a
user defined class and it implements a Serializable interface [4] to conform
the GWT RPC requirement. In Figure 3.3 the definition of the Task class is
given.

Figure 3.3: Definition of the Task Class

3.1.1.2 Implementing the Server Side

GWT RPC implementation connects to a Java Servlet. So, the service in-
terface defined in the client side needs to be implemented in a Servlet in the
server side. GWT RPC requires the Servlet to extend com.google.gwt.user.
server.rpc.RemoteServiceServlet class provided by the GWT RPC library.
Extending RemoteServiceServlet by the Servlet allows the GWT RPC to ab-
stract away the request receiving and response processing details. It even
determines the method that needs to be invoked and invokes it [12]. So, the
only task left to the developer is to implement the methods of the service
interface in the servlet. Figure 3.4 shows a simple implementation of our

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 38

MyService interface. The server-side code that gets invoked from the client

Figure 3.4: An Implementation of the MyService Interface

is often referred to as a service. So, in the rest of our writing, we will address
the implemented methods in the Servlet as services.

3.1.1.3 Defining the Asynchronous Interface

To use the GWT RPC asynchronous communication mechanism the client
application needs to define an asynchronous version of the service interface,
which should also be included in the client package. As in asynchronous
communication the client side execution will not be blocked after calling the
remote service, the asynchronous interface places a callback hook that gets
executed when the called method running in the server returns a value. Ac-
cording to the GWT RPC requirement the asynchronous interface will have
the same name as the original service interface name with "Async" appended
to it. The methods in the interface must match all of the method names
in the original service interface. However, the signature of those methods is
needed to be changed. The return type of each method will be void and an
extra parameter com.google.gwt.user.client.rpc.AsyncCallback will be added
to the method. Figure 3.5 shows the definition of the asynchronous interface.

3.1.1.4 Deferred Binding and Remote Service Calling

The GWT RPC abstracted away the remote service calling (calling services
running on servers) by the local method calling in the client side. However,

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 39

Figure 3.5: Asynchronous Interface Definition

the remote service calling is performed by a service proxy object whose class
definition is generated automatically by the GWT compiler. This service
proxy object actually performs the required processes of converting the local
method call into a remote method call. Figure 3.6 shows the generation of
a service proxy object. The general explanation of the code snippet in Fig-

Figure 3.6: Generation of a Service Proxy Object

ure 3.6 is that, the proxy object service is generated having the MyService
interface definition and casted to the MyServiceAsync interface to be able to
call the asynchronous versions of MyService interface’s methods. The proxy
object is casted to the ServiceDefTarget interface (resides in the GWT li-
brary) for setting up the Servlet URL to perform the remote service call.
Now, the turn of calling the remote service comes. It is done by just call-
ing the asynchronous versions of the original methods by the proxy object.
Figure 3.7 shows how the getTasks() service is obtained in the client side.
The explanation of the code snippet in Figure 3.7 is that, the proxy ob-
ject service created in Figure 3.6 calls the asynchronous getTasks() method
defined in the MyServiceAsync interface in Figure 3.5. The TasksCallback
instance in Figure 3.7 implements an AsyncCallback interface to handle the
result of the asynchronous method call. Figure 3.8 shows an example of such
implementation. The AsyncCallback interface has two methods that must

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 40

Figure 3.7: Remote Service Call

Figure 3.8: Implementation of the Call Back Methods

be implemented which are onSuccess() and onFailure().If the call is success-
ful, then the onSuccess() method is called, and it receives the return value
of the remote method call. If some error occurs the onFailure() method is
called. Developers actually implement these two methods according to the
application requirement to do some processing with the returned value from
the server. Figure 3.9 illustrates the relationships between the interfaces
and classes involved in the GWT RPC mechanism. Figure 3.9 shows that
on the client-side, the generated proxy object implements both the MySer-
viceAsync interface and the GWT’s ServiceDefTarget interface. MyService
interface extends the GWT’s RemoteService interface. On the server-side,
the MyServiceImpl instances implement the MyService interface and extend
GWT’s RemoteServiceServlet.

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 41

Figure 3.9: Relationship between the Interfaces and Classes of the GWT
RPC mechanism

3.1.2 How GWT RPC Works

The GWT-RPC implementation works by automatically providing a proxy
object for a server interface [62]. We have discussed in the previous section
how this proxy object is generated in the client application. The client ap-
plication uses the proxy object to communicate with the server by calling
methods on the server. In section 3.1.1.4 we have illustrated how the re-
mote calling is done. The server handles calls from the proxy and dispatches
them to the corresponding Java method implementations. Return values are
sent from the server back to the client’s proxy. We have shown in section
3.1.1.4 that, the client application provides the proxy with a callback object.
This callback object receives the return value or the failure message from the
server. Figure 3.10 illustrates how the GWT RPC works.
In Figure 3.10 the MyServiceClientImpl is a client application instance that
makes RPC method calls to the server and handles the results in a callback
method. That is, MyServiceClientImpl performs the tasks of deferred bind-
ing and remote calling as explained in section 3.1.1.4. The Service proxy
(explained in section 3.1.1.4) processes the call and send it to the server. On

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 42

Figure 3.10: Working Procedure of the GWT RPC Mechanism

the server, an instance of the GWT’s RemoteServiceServlet class handles the
request sent from the service proxy and invokes the requested method on the
MyServiceImpl instance.
Having understood the client-server communication procedure using the GWT
RPC, we have developed the idea of modeling the client-server communica-
tion of the server side model that we want to design in Arctis for an AJAX
web application. In the following sub section we explore our developed idea.

3.2 Development of the Client-Server Com-
munication Model in Arctis

In the client-server communication process the participating system compo-
nents are the client and the server. As we only have considered the modeling
of server side logic, the local system on which we are working on represents
the server. In our communication model the Proxy building block of Arctis
represents the client behavior. We elaborate the reason behind of represent-
ing the Proxy building block as a client in the next text.
The Proxy building block is a local building block in Arctis. It gives the
facility to a system to interact with the system outside of it. This block
works as a proxy of the outside system. For developing a system with the
proxy building block, we just need to know what we want to send to the proxy

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 43

of the outside system and what we want to receive from the outside system
through the proxy. This sending and receiving is modeled by adding a input
and a output pin to the proxy. Another thing we need to do is of building
the external state machine to define its external behavior. The magic point
is that, we do not need to know the internal behavior of the Proxy building
block.
We have used the Proxy building block in our work to model the client-server
communication. From the study of client-server communication in the pre-
vious sub sections, we have found that, in AJAX web applications which are
based on the RPC communication mechanism, remote method calling from
the client to the service of the server is the crucial point for the client-server
communication. We have developed the idea that, if the method calling
from the client on the server can be modeled by the Proxy building block’s
input/output pin or parameter node, we can overcome the difficulty part of
modeling the client-server communication. The basic idea is that, what the
client will send to the server and what the client will receive from the server
will be passed by the input and output pin of the Proxy block. Depending
on the type of the pin (input/output) the method signature for calling on the
server will be realized in the client side. From the GWT RPC mechanism
we have discussed that, at first in the client side the methods’ signatures are
defined, then in the Server, those methods are implemented. However, with
our idea, the methods’ signatures will be automatically generated from the
input/output pins of the Proxy building blocks to use in the client program-
ming.
Figure 3.11 shows an example server system that we have modeled, where
we used the Proxy block for representing the client behavior.
In the system block, we can see the output pin input_SevMsdIn of the GWT-
GUITesting_Proxy Proxy block passes the string in the system that the user
sends to the server to make it change. This string is passed to the changeText
operation action that performs the required change on the received string.
The changed string is then passed to the client via the response_SevMsdOut
input pin of the Proxy block. The corresponding method signature of the in-
put_SevMsdIn output pin will be generated as input_SevMsdIn(String str)
and will be realized in the client side after the implementation of this system.
We can notice that, the string that the output pin passes into the server sys-
tem becomes the parameter of the generated method signature to pass the
user given string to the server system. The corresponding method signature
of the response_SevMsdOut input pin of the Procy block will be generated
as String response_SevMsdOut (), where the received string from the server

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 44

Figure 3.11: Example Server System Presenting Our Client-Server Commu-
nication Model

system becomes the return value of the method to pass it to the client. The
client will call these two methods on the server to invoke the change text
service of it.
To implement this model a GWT code generator is needed. So, we also have
proposed the functionalities that a GWT code generator should contain in
the following sub section.

3.3 GWT Code Generator

GWT code generator will perform the necessary tasks to implement an AJAX
web application with GWT framework in Arctis. Figure 3.12 illustrates the
role of the GWT code generator in Arctis for implementing the web applica-
tion. It will create the whole GWT execution environment in Arctis to imple-
ment the AJAX web application with GWT framework. For implementing
our designed model as well as for implementing the whole web application,
the code generator should provide the two main functionalities. One is the
GWT application layout Generation and the other is the automatic genera-

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 45

Figure 3.12: Role of GWT Code Generator in Arctis

tion of Servlet methods’ signatures. In the following sub sections we describe
elaborately the required functionality for a GWT code generator.

3.3.1 GWT application layout Generation

GWT relies on a specific package structure. Correctly generation of the pack-
age structure is very important for the implementation of an web application
with GWT framework, as GWT relies heavily upon this package structure to
infer many things about the application. The code generator should create
four mandatory parts of the GWT package layout which are briefly discussed
in the following subsections.

3.3.1.1 Module Descriptor

Module descriptor is an XML file which holds configuration information
about the web application. In this file we can configure the information
of the inherited GWT libraries used in the application, set the path of the
client side code, set the path of the public resources set the entry point class,
and do other advanced level configuration. The GWT code generator should

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 46

have the ability to generate this file’s template creating the required specific
package.

3.3.1.2 Public Resources

In this part of the package layout, the application holds the resources that
will be served publicly[12]. For example, a host html page (that appears after
starting the application), a CSS file, images go in this package. The GWT
code generator should generate a host html templet file and a CSS template
file, so that, the developers can add the necessary functionality in this file
manually according to the application requirement.

3.3.1.3 Client Side Code

A specific package structure is required to hold the client side codes. It is
the task of the GWT code generator to generate this structure. All the client
side program files should be placed in this client package.

3.3.1.4 Server Side Code

The GWT code generator should create the specific package structure for
including the server side code. The implantable code that the GWT code
generator will generate from our model’s state machine should also be placed
as the code in this package by the code generator. Actually, the code should
be placed in a servlet program in the servier side package, as we mentioned
earlier that in RPC the underlying server technology is Java Servlet. Figure
3.13 shows the package layout, which should be generated by the GWT code
generator.

3.3.2 Automatic Generation of the Server Methods’
Signatures

For implementing our designed models the GWT code generator has to do
an important task, which is the automatic generation of server methods’
signatures based on our models. From the description of our client-server
communication in section3.2 we can say that, the Proxy building blocks’
input/output pins act as a bridge between the client and the server, as they
passes data between the client and the server. Also, we have described that,
the input/output pins of the Proxy building blocks will be converted into

CHAPTER 3. AJAX INTEGRATION IN ARCTIS 47

Figure 3.13: Sample Locations of Different Parts of a Typical GWT Appli-
cation Layout

methods’ signatures for calling on the server in the client side. So, this
conversion part should be done by the GWT code generator. Based on the
type of the pins of the Proxy building blocks used in our model, the GWT
code generator should automatically generate the methods’ signatures that
the client will call to invoke the service of the server or more specifically
the Servlet. The GWT code generator should also automatically define the
asynchronous versions of those methods. Both signatures should be placed in
separate files as interfaces in the client side package by the code generator.
The developer is free to perform his client side programming but should
use the methods generated by the code generator to communicate with the
server.

Chapter 4

Scenario Description

4.1 General Scenario

We can divide the tasks of developing web applications or web based sys-
tems into two parts- client side programming and server side programming.
GWT gives the flexibility to develop the thin client meaning that most of the
working functionality in web based systems will be done in the server side.
This has been possible because of asynchronous communication provided by
AJAX. So, in our work we have focused on the asynchronous client-server
communication and server side logic modeling.
To exemplify the use case of our developed server system model the general
scenario is of a web system, where the client with the help of the user interface
will ask some services from the server. The server will do some processing
and will provide the service to the client. Figure 4.1 shows a use case diagram
of a general web system scenario.
For using all our designed building blocks, we have chosen online shopping
system as a use case. In the following sections we describe our chosen sce-
nario.

4.2 Online Shopping System as a Scenario

An Online Shopping System is a software application system that runs on
a web server and provides the facilities online to customers that a real shop
does. It allows the customers to search for a product in the store catalog,
add a selected product to a shopping cart, place an order for the chosen

48

CHAPTER 4. SCENARIO DESCRIPTION 49

Figure 4.1: General Scenario of a Web System

products and pay online for buying the ordered products. Online Shopping
System is a good example for our AJAX web application development. In an
Online Shopping System, a lot of small changes in the web page are required
during the shopping process of a customer. For example, before placing an
order a customer may want to add several quantities of the same product in
which case only the update of the price in the cart is needed in the page. In
this case, a whole page refresh is not necessary. AJAX can fit here finely by
providing the facility of updating only the content of the cart UI in the page.

4.2.1 Scope of the Example Scenario

The complete Online Shopping System is a complex web system and includes
a storefront and administrating functionalities. The storefront provides the
services for the customers that we have mentioned earlier. On the other
hand, administrating functionalities allow the store administrator to man-
age the store for example, to add products, to set up shipping and payment
options, to process orders, etc. For using our developed building blocks, we
have chosen a simple Online Shopping System. Our example Online Shop-
ping System only provides the storefront functionality and it is limited up to
providing the facility for the customers to place an order for the chosen prod-
ucts. The services that our developed building blocks can provide through
our Online Shopping System model to the customers are shown in the use
case diagram in Figure 4.2.

CHAPTER 4. SCENARIO DESCRIPTION 50

4.2.2 Use Case Diagram of the Example Scenario

Figure 4.2: Use Case Diagram of the Example Scenario

From Figure 4.2 we can see users can log in to the Online Shopping System
interacting with the LogIn service. After logging in to the system, users can
find the available products in the Online Shop by clicking on the Query Prod-
uct service. Having the details of available products in the shop, users can
choose the products to buy from the Add to Cart service. After adding the
products to the shopping cart, users can place an order for the chosen prod-
ucts by the Place Order service. We have modeled corresponding building
blocks to provide all those services to the customer.
For the convience of understanding the user interaction with the services in
the scenario more clearly, we present an example UI in the following sub
section.

4.2.3 Example UI Representing the Example Scenario

Figure 4.3 shows an example UI of our example Online Shopping System.
Users can log in to the system with the help of a LogIn UI element placed
in the left side of the UI. As we are using AJAX for developing the Online
Shopping System, we can provide all the services that we have mentioned in

CHAPTER 4. SCENARIO DESCRIPTION 51

Figure 4.3: Example UI of the Example Online Shopping System

the previous section without waiting for a page refresh. The idea is that, all
the services from finding the available products to placing an order can be
provided by using a tab panel. Tab panel is a web UI element provided by
the GWT framework, where with each tab, a corresponding panel appears.
In Figure 4.3 we can see, when users click on the View Products tab, the
corresponding panel appears containing the available products details. When
the user wants to buy a product he can choose it by clicking the Add to Cart
button as shown in Figure 4.3. The product details containing the price and
the quantity in the users shopping cart can be shown in the Mini Cart panel
placed at the right side of the UI. When the user wants to check out and
place an order he can click on the Check Out button.
Figure 4.4 shows what happens when the user clicks on the check out but-
ton. The Ordering Info tab becomes enabled and a form appears in the
corresponding panel requiring the user’s shipping information, payment in-
formation and payment method choice. After filling the required information,
a user can click Place Order button for placing an order for the products he
had added previously in his shopping cart.
Figure 4.5 shows the status of the example UI when the user clicks on the
Place Order button. Ordered Item tab becomes activated and the ordered
items with the corresponding information of the order appears on the cor-
responding panel. The user can confirm the order that he has placed by

CHAPTER 4. SCENARIO DESCRIPTION 52

Figure 4.4: Status of the Example UI While Placing an Order

clicking the Confirm button. Departing from here the user can be directed
to another service for paying online, but this is out of our scope.

4.2.4 Example Database

Every Online Shopping System maintains a relational database to store the
necessary information. For our example Online Shopping System, we have
designed a quite simple database. Figure 4.6 shows the summary of the
database tables that we have designed for the example Online Shopping Sys-
tem.
Figure 4.7 shows the ER (Entity Relationship) diagram of our designed
database. PK denotes the Primary Key and FK denotes the Foreign Key
of the tables. The arrow represents a relationship between corresponding ta-
bles. With the help of the Primary Key, we can identify an entity in a table
uniquely. The Foreign Key in a table is actually is the Primary Key of an
another table. It sets a child-parent relationship between the corresponding
tables and keeps the reference of the parent table in the child table. For
example, if we need to know the price information of the product that is in
the the child table tbl_cart, we can retrieve that price information from the

CHAPTER 4. SCENARIO DESCRIPTION 53

Figure 4.5: Status of the Example UI While Confirming an Order

parent table tbl_product as the pd_id is the column (Primary Key in the
tbl_product and Foreign Key in the tbl_cart) that matches from the two
tables.
Now, in the following subsections we give a brief description of each table we
have designed.

4.2.4.1 tbl_product

In this table, we store the products’ name, description, price and available
quantity in the store. Here, we identify each product uniquely by giving each
product a unique id.

4.2.4.2 tbl_cart

In this table, we store the items that a customer wants to buy in the current
session. In order to do so, we have set the current session id of the customer
as the Primary Key of this table. Whenever a customer adds a product in
his shopping cart, we save the product id and the quantity of the product
against the current session id of that customer, so that, we can retrieve later

CHAPTER 4. SCENARIO DESCRIPTION 54

Figure 4.6: Table Summary of the Example Database

the product and price information of the products those a customer wants
to buy in the current session.

4.2.4.3 tbl_order

When the customer places the order, we add a new order in this table.
The shipping and payment information that the customer provided after
the checkout are also saved in this table. The databases have the facility to
auto increment a number when a new entity will be added in a table. We can
use this facility for creating order id of each order that we save in the table.
We can set the starting number for the auto incrimination for example, we
can set that the order id will be auto incremented starting from 1001.

4.2.4.4 tbl_orderedItem

We put all the ordered items here. We simply copy the items from the
tbl_cart when the customer places the order and save it against the specific
order id generated for the order of that specific customer.

CHAPTER 4. SCENARIO DESCRIPTION 55

Figure 4.7: Entity Realtionship Diagram of the Example Database

4.2.4.5 tbl_user

In this table, we save the users’ id, name and password when the user creates
an account in the system. We use this information to authentic the users
who tries to log in to the system.
In the next chapter, we describe the building blocks along with their ESMs
that we have modeled for our example web system. For the convenience of
understanding we first describe the Online Shopping System, that we have
modeled using our designed building blocks.

Chapter 5

Development of Building
Blocks

5.1 System Block of the Online Shopping Sys-
tem

The Online Shopping System we have modeled is actually the server system
of our example Online Shopping System. Figure 5.1 shows the system block
of the server system that we have modeled for the example Online Shopping
System.
The initial node emits a control token to start the activity of the system.
In the Online Shopping System, we have described earlier that, first the
customer needs to log in to the system to be able to get other services. In
order to provide the log in service, the LogIn activity block that we have
modeled is needed to be activated. Another thing is that, every building
block we have developed does some transactions on the database or read data
from the database. So, at the starting of the system, the availability of the
database connection is also necessary. So, the control flow is forked into two
control flows. One control flow activates the instance of the LogIn activity
block by passed through its start pin. The other control flow activates the
instance of the MySQL activity block through its start pin.
The MySQL activity block tries to establish a connection with the database.
If the connection establishment is not successful, the control flow termi-
nates via one of the alternative output pin failed. If the connection with
the database is established successfully, a connection object is emitted as a
data token via the other alternative output pin success. This connection ob-

56

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 57

ject is set in a universal variable DbConnection using the set variable control
named as set DbConnection for later use.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 58

Figure 5.1: Server System Model of the Example Online Shopping System

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 59

Now, after setting the connection object, the control flow goes to a timer
control. When the timer expires, the control flow goes to a read variable
control named as get DbConnection. This control reads the value set in the
DbConnection universal variable and passes the value as a data token via its
output pin result. Then, the data token containing the database connection
object enters the LogIn activity block via its DbCon streaming pin.
We have put a timer before getting the database connection object into the
LogIn activity block, because we needed to let the LogIn activity block get
activated before the database connection object gets available at the DbCon
streaming input pin. The reason is that, the streaming pin of an activity
block cannot pass any token via it, unless the activity block is in the active
phase. In the timer, we have not set any time delay. Because of the timer,
the database connection object reaches at the LogIn activity block getting
out from the MySqL activity block in two action steps and this lets the
LogIn activity block become activated first. Figure 5.2 clears this idea with
an animation of the token flow between the MySQL and the LogIn activity
block.

Figure 5.2: Animation of the Token Flow between the MySQL and the LogIn
Activity Block

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 60

After having the database connection object, the LogIn activity block au-
thenticates the user who tries to log in to the system. If the authentication
is unsuccessful, a control token is emitted via the alternative output pin de-
nied, otherwise the successful authentication emits a control token via the
alternative output pin accepted.
If the user is denied to log in, he/she should be given the opportunity for
trying to log in again. In order to make that possible, the LogIn service
block should be in active phase again. So, the control token getting out from
the output pin denied is forked to start the LogIn activity block and get the
database connection object from the MySQL activity block.
The control flow that comes out via the accepted output pin activates the in-
stance of the ServiceQuery activity block via its start pin. The ServiceQuery
retrieves the names of all the available services in an existing third party
Online Shopping Store named the ISIS Project Store [7] that sells services as
products. We discuss more about this Online Shopping Store in chapter 6.
Notice that, the available products in the existing Online Shopping Store are
services, so we have named the activity block as ServiceQuery instead of Pro-
ductQuery. If any error occurs during the retrieval process, a control token is
emitted via the streaming output pin error. At the end of the retrieval pro-
cess, a string object containing the success information of the retrieval emits
out via the output pin Success and terminates the ServiceQuery activity.
If the ServiceQuery activity block cannot retrieve the service names success-
fully, the string object contains null otherwise it contains a success message.
If the string object contains null, the token flow goes to start the Service-
Query activity block again. This lets the user to try for query services again.
If the string object contains a success message, the token flow is forked in or-
der to activate the AddtoCart activity block and get the database connection
object successively.
The AddtoCart activity block provides the service of adding the desired items
into the customer’s shopping cart as many times as he wants. When the
customer checks out, a control flow is passed via the checkOut output pin
terminating the AddtoCart activity block.
Now let’s think of a situation, where it is possible that, for the first time the
customer tried to add an item into his shopping cart and that item cannot be
added into his shopping cart, as the item is not available in the stock. Now,
if the user clicks the CheckOut button, then during this time, actually his
shopping cart is empty. At this stage, he should not be asked for providing his
shipping and payment information, as he actually is not buying any product.
We have mentioned in section 4.2.3 in the description of the example UI that,

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 61

when the CheckOut button is clicked, the OrderInfo tab is enabled to get the
shipping and payment information from the user. In this case, it should not
be done, as the customer’s shopping cart is empty. The ViewProducts tab
panel should remain enabled in this situation. Before enabling the OrderInfo
tab, it should be checked whether the shopping cart of the customer is empty
or not. So, in order to do that in our server system model, we have added
an PlacingOrderEnabler activity block.
The control flow from the checkout output pin of the AddtoCart activ-
ity block is forked and one flow activates the PlacingOrderEnabler activity
block. The other flow makes available the database connection object in the
PlacingOrderEnabler activity block . The PlacingOrderEnabler block checks
whether the shopping cart of the customer is empty or not. The correspond-
ing checked result is passed as a boolean data token via the placingOrderEn-
able output pin of this block. If the data token contains a false value meaning
the shopping cart of the customer is empty, the token flow goes to activate
the AddtoCart activity block again. If the data token contains a true value,
the token flow is forked in order to activate the instance of the PlacingOrder
activity block and make available the database connection to that block.
The PlacingOrder activity block saves the order and creates the list of the
ordered items of that order. It passes the payment method information as a
data token via its PaymentMethod output pin. Using the payment method
information passed by the PlacingOrder activity block, the payment activity
blocks for specific payment methods can be added in the system. But, this
is out of our scope, so we have terminated the token flow.
In the following sections we describe the behavior of our modeled building
blocks one by one.

5.2 MySQL Building Block

Figure 5.3 shows the behavior of the MySQL building block. This building
Block tries to connect with a SQL database located in the server.
This building block is activated by a control flow via its start input pin. Then
the block tries to connect with a SQL database located in the server by the
connect operation action. The successful connection is notified as a success
event and the success receive signal control emits the connection object. This
connection object is then passed via the alternative output pin success.
If any exception occurs during the connection establishment process, it is

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 62

Figure 5.3: Behavior of the MySQL Building Block

notified by exception events. The corresponding receive signal control emits
a control token for the specific exception event and the token is passed to
the outside environment via the failure alternative output pin.

5.2.1 ESM of the MySQL Building Block

Figure 5.4 shows the ESM of the MySQL building block.
We have explained in section 2.3.1.5 about the purpose and semantics of
ESM in details. So, here we briefly describe the ESM of the MySQL building
block. The ESM describes that, after getting activated via the start input
pin, the activity goes in a connect phase. From that phase the activity gets
terminated by passing a token flow via either the success output pin or the
faileure output pin.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 63

Figure 5.4: ESM of the MySQL Building Block

5.3 LogInGUI_Proxy Building Block

Figure 5.5 shows the behavior of the LogInGUI_Proxy building block.

Figure 5.5: Behavior of the LogInGUI_Proxy Building Block

The LogIn GUI_Proxy building block represents the client behavior during
the time period when the user tries to log in to the Online Shopping System.
The activity of this building block is started by passing a control flow via its
start_SevMsdOut pin. When the user provides the log in information, it is
passed via its login_SevMsdIn streaming output pin to the outside environ-
ment of this building block. The outside environment of this building block
will be nothing but the server system. The success or failure information of
the user authentication is passed from the server to the client side via its Sta-
tus_SevMsdOut input pin. After having the success or failure information,

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 64

a control flow is passed via its success_SevMsdIn terminating output pin to
the surrounding server environment.

5.3.1 ESM of the LogInGUI_Proxy Building Block

Figure 5.6 shows the ESM of the LogInGUI_Proxy building block.

Figure 5.6: ESM of the LogInGUI_Proxy Building Block

After being activated by its start_SevMsdOut input pin the activity of the
LogInGUI_Proxy Building Block goes in an active phase. When a token
flow is passed via the output pin login_SevMsdIn, a transition from the active
phase to an active1 phase occurs. From the active1 phase the activity goes in
an active2 phase, when a token enters the activity via the Status_SevMsdOut
pin. Finally, the activity is terminated from the active2 phase by passing a
token via the success_SevMsdIn pin.

5.4 LogIn Building Block

Figure 5.7 shows the behavior of the LogIn building block. This building
block authenticates the user who wants to log in to the Online Shopping
System.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 65

The LogIn Building Block contains the instance of the LogInGUI_Proxy
building block as its inner block. The activity of the LogIn block is started,
when a control flow enters via its start input pin. This control flow starts the
activity of the LogInGUI_Proxy via its start_SevMsdOut input pin. Now,
the LogIn activity waits for the setting up of the database connection object
and the log in information of the user. The database connection object enters
the LogIn activity via the streaming pin DbCon. When the user enters the log
in information, the LogInGUI_Proxy passes that information to the LogIn
activity block. When the database connection object and the user’s log in
information are set up in the corresponding universal variables, the activity
verifies the user information against the information stored in the database
in the tbl_user table by the verify operation action.

Figure 5.7: Behavior of the LogIn Building Block

The verify operation action passes a string object containing a true or a false
value depending on the success or failure of the user authentication. This
message is passed to the client side via the Status_SevMsdOut pin of the
LogInGUI_Proxy. When this status message is successfully received in the

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 66

client side, a control flow is passed via the accepted or denied output pin of
the LogIn activity depending on the user authentication success or failure
and the activity terminates.

5.4.1 ESM of the LogIn Building Block

Figure 5.8 shows the ESM of the LogIn building block.

Figure 5.8: ESM of the LogIn Building Block

The activity of the LogIn building block is started by a control flow passed
via the start input pin and the activity goes in an active phase. When the
database connection object is passed into the activity via the DbCon input
pin the activity goes into a verifying phase from the active phase. From the
verifying phase the activity can be terminated by passing a token via either
the accepted output pin or the denied output pin.

5.5 ServiceQuery_Proxy Building Block

Figure 5.9 shows the behavior of the ServiceQuery_Proxy building block.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 67

Figure 5.9: Behavior of the ServiceQuery_Proxy Building Block

The ServiceQuery_Proxy building block represents the client behavior when
the user wants to know the name of the available services in the Online
Shopping Store from the server. The ServiceQuery_Proxy is started via the
start_SevMsdOut input pin. When the client requests the server for the
available services a control flow is passed via the serviceRequest_SevMsdIn
output pin of the ServiceQuery_Proxy building block. When the server
returns the available service names, it is passed to the client as a string via the
getservice_SevMsdOut pin of the ServiceQuery_Proxy. After the reception
of this information, the client sends a message to the server containing a
success message or a null depending on the successful reception of the service
names or not via the success_SevMsdIn pin of the ServiceQuery_Proxy.

5.5.1 ESM of the ServiceQuery_Proxy Building Block

Figure 5.10 shows the ESM of the ServiceQuery_Proxy building block.
After getting started via the sart_SevMsdOut pin, the activity of the Ser-
viceQuery_Proxy goes in an active phase. When a control flow is passed
via the servicRequest_SevMsdIn output pin to the outside of the Service-
Query_Proxy, a transition of the activity from the active phase to an ac-
tive1 phase happens. When the service names are passed as a string from
the server environment to the client via the getservice_SevMsdOut pin, the
activity goes in an active2 phase from the active1 phase. Finally, a control
flow passing via the success_SevMsdIn pin terminates the activity of the
ServiceQuery_Proxy.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 68

Figure 5.10: ESM of the ServiceQuery_Proxy building block

5.6 ServiceQuery Building Block

Figure 5.11 shows the behavior of the ServiceQuery building block.
The activity of the ServiceQuery is started by a control flow passed via
the Start pin. This control flow also starts the activity of the Service-
Query_Proxy building block. Then the activity of the ServiceQuery waits
for the request for the service names from the client. When the client re-
quests to the server asking the service names stored in the Online Shopping
Store, the activity of the ServiceQuery tries to connect with the data storage
of the Online Shopping Store by the connect operation action. The suc-
cessful connection is notified as a connection_successful event. Then the
activity tries to fetch the available service names from the data storage of
the Online Shopping Store by the getService operation action. If the ser-
vice names are fetched successfully, it is notified as a get_successful event
in the activity and the activity pass the service names to the client via the
getservice_SevMsdOut pin of the ServiceQuery_Proxy.
Exceptions may occur during the connection establishment with the data
storage of the Online Shopping Store. Also, exceptions may occur when the
service names are being fetched from the data storage. These exceptions are
notified as corresponding exception events and a control flow is passed to the
outside environment of the activity via the error streaming output pin. When
any exception occurs, the service names cannot be fetched from the data

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 69

storage of the Online Shopping Store. In this situation, the client will receive
a null value via the getservice_SevMsdOut pin of the ServiceQuery_Proxy.
After receiving the information of the service names, the client will send the
success or failure message to the server via the success_SevMsdIn pin of the
ServiceQuery_Proxy. The token flow getting out from the success_SevMsdIn
pin of the ServiceQuery_Proxy terminates the activity of the ServiceQuery
block passing via its Success pin.

Figure 5.11: Behavior of the ServiceQuery Building Block

5.6.1 ESM of the ServiceQuery Building Block

Figure 5.12 shows the ESM of the ServiceQuery building block.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 70

Figure 5.12: ESM of the ServiceQuery Building Block

After being started via the Start pin, the activity of the ServiceQuery goes
in a s0 phase. When any exception occurs, a control flow is passed via the
error output pin and the activity goes again in the s0 phase. The activity
gets terminated when a token flow is passed via the Success output pin of it.

5.7 AddtoCartGUI_Proxy Building Block

Figure 5.13 shows the behavior of the AddtoCartGUI_Proxy building block.

Figure 5.13: Behavior of the AddtoCartGUI_Proxy Building Block

The AddtoCartGUI_Proxy represents the client behavior when the customer
wants to add the desired product item into his shopping cart. The activity
of the AddtoCartGUI_Proxy is started when a control flow is passed via the
start_SevMsdOut pin. The product id number is passed to the server by the

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 71

client via the PID_SevMsdIn output pin of the AddtoCartGUI_Proxy. The
product information that has been added in the customer’s shopping cart is
returned by the server to the client via the getProductCartInfo_SevMsdOut
pin of the AddtoCart_Proxy. When the product information is received
successfully by the client, a control flow is passed via the success_SevMsdIn
output pin of this block to its outside environment. When the customer
checks out of adding products into his shopping cart, a control flow is passed
via the checkOut_SevMsdIn output pin of the AddtoCart_Proxy and it gets
terminated.

5.7.1 ESM of the AddtoCartGUI_Proxy Building Block

Figure 5.14 shows the ESM of the AddtoCartGUI_Proxy building block.

Figure 5.14: ESM of the AddtoCartGUI_Proxy Building Block

The AddtoCartGUI_Proxy is started by a control flow passing via its start_S
evMsdOut pin and the activity goes in an active phase. From this state the
activity of the AddtoCartGUI_Proxy goes in an active1 phase, when a prod-
uct id number is passed via its PID_SevMsdIn output pin. The activity then
goes in an active2 phase, when the product information added to the shop-
ping cart is passed via the getProductCartInfo_SevMsdOut input pin. After
the successful reception of the product information by the client, a control

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 72

flow is passed via the success_SevMsdIn output pin of the AddtoCart_Proxy
and the activity goes in the active phase again to let the customer add more
products if he wants. The activity of the AddtoCartGUI_Proxy can be ter-
minated by passing a control flow via its checkOut_SevMsdIn output pin.

5.8 AddtoCart Building Block

Figure 5.15 shows the behavior of the AddtoCart building block.
The activity of the AddtoCart building block is started when a control flow
is passed via its start pin. When the database connection object is obtained
from the surrounding environment via the DbConInfo pin, it is set in a uni-
versal variable DbConInfo. After that, a control flow activates the instance of
the AddtoCartGUI_Proxy. When the product id from the client is obtained
in the activity of the AddtoCart block via the PID_SevMsdIn pin of the Ad-
dtoCartGUI_Proxy, the activity checks the quantity of the product by the
checkInStock operation action. The checkInStock operation action checks the
quantity of the product searching in the tbl_product table of the database
against the given product id. The quantity of the product is returned as a
data token by the checkInStock operation action in the activity.
If there is any product in the stock, the activity then checks whether the
product item already exists in the shopping cart of that customer for that
session by the allreadyInCart operation action. The allreadyInCart operation
action checks the existence of the product item in the tbl_cart table of the
database searching against the current session id of the customer and the
given product id. If there is no such product item already in the shopping
cart of that customer, the product item is added against the current session
id of the customer in the tbl_cart table of the database by the insertIntoCart
operation action. If the product item already exists in the shopping cart of
the customer, it means the customer wants to buy one more product of the
same item. So, the quantity is updated in the tbl_cart table of that product
item for that customer by the udpdateQty operation action.
If the product is not available in the stock, a zero value is set in a universal
variable qtyInStock by a set variable control named set qtyInStock. Now,
the activity of the AddtoCart building block passes the product information
added in the shopping cart of the customer to the client side by the getPro-
ductInfo operation action via the getProductCartInfo_SevMsdOut pin of the
AddtoCartGUI_Proxy.
The getProductInfo operation action reads the quantity of the given product

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 73

item from the tbl_cart table in the database searching against the current
session id of the customer. Getting the price information for that product
item from the tbl_product table in the database, the getProductInfo opera-
tion action calculates the subtotal price of that product item. A data token
containing the product id, its unit price, quantity and the subtotal price is
returned by the getProductInfo operation action.

Figure 5.15: Behavior of the AddtoCart Building Block

After the successful reception of this product information by the client side, a

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 74

control flow is passed in the activity of the AddtoCart via the success_SevMsdIn
output pin of the AddtoCartGUI_Proxy building block. This control flow
brings the activity of the AddtoCart building block in a previous state, from
where the activity of the AddtoCart block can perform the activities again
for adding a new product item. This lets the customer to add in his shopping
cart as many products as he wants until he checks out. When the customer
checks out, a control is passed via the checkOut_SevMsdIn output pin of the
AddtoCartGUI_Proxy and this control flow terminates the activity of the
AddtoCart passing via its checkOut output pin.

5.8.1 ESM of the AddtoCart Building Block

Figure 5.16 shows the ESM of the AddtoCart building block.

Figure 5.16: ESM of the AddtoCart Building Block

The activity of the AddtoCart building block is started via its start pin.
Then the activity goes in an active phase and waits for a token flow to be
passed via the DbConInfo input pin. When a token flow is passed via the
DbConInfo input pin, the activity goes in an active1 phase. In this state, the
activity performs the adding of the product items in a customer’s shopping
cart as many times as he wants. The activity goes into the termination by a
control flow passed via its checkOut output pin.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 75

5.9 OrderInfoEnabler_Proxy Building Block

Figure 5.17 shows the behavior of the OrderInfoEnabler_Proxy building
block.

Figure 5.17: Behavior of the OrderInfoEnabler_Proxy Building Block

The OrderInfoEnabler_Proxy building block represents the client side be-
havior when the customer clicks the CheckOut button in order to place an
order for the products he wants to buy. The activity of the OrderInfoEn-
abler_Proxy gets started by a control flow passed via the start_SevMsdOut
pin of this block. When the client side sends a request to the server to
know whether the OrderInfo tab will be enabled for collecting the shipping
and the payment information from the user or not, a control flow is passed
via the request_SevMsdIn output pin of the OrderInfoEnabler_Proxy to the
server. When the server provides a reply with a true or false value, a data
token is passed via the orderInfoEnable_SevMsdOut pin of the OrderInfoEn-
abler_Proxy to the client. When the client receives this information success-
fully, a control flow is passed to the server via the success_SevMsdIn pin of
the OrderInfoEnabler_Proxy.

5.9.1 ESM of the OrderInfoEnabler_Proxy Building
Block

Figure 5.18 shows the ESM of the OrderInfoEnabler_Proxy building block.
The activity of the OrderInfoEnabler_Proxy is started via its start_SevMsdOut
input pin. Then the activity goes in an active phase. When a token flows via
the request_SevMsdIn input pin of the OrderInfoEnabler_Proxy, it goes in
an active1 phase from the active phase. From this phase the activity goes in
an active2 phase when a data token flows via its orderInfoEnable_SevMsdOut

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 76

Figure 5.18: ESM of the OrderInfoEnabler_Proxy Building Block

input pin. Finally, the activity can be terminated by passing a token flow
via its success_SevMsdIn output pin.

5.10 PlacingOrderEnabler Building Block

Figure 5.19 shows the behavior of the PlacingOrderEnabler building block.
The PlacingOrderEnabler building block is activated when a control flows
via its start pin. This control flow activates the instance of the OrderIn-
foEnabler_Proxy building block. When the database connection object is
obtained and the client sends a request by passing a control flow via the
request_SevMsdIn pin of the OrderInfoEnabler_Proxy, the activity of the
PlacingOrderEnabler checks in the database whether the customer’s shop-
ping cart is empty or not by the EmptyTablCart operation action.
The EmptyTablCart operation action checks in the tbl_cart table in the
database whether there is any entry with the customer’s current session id
or not. Depending on that checking a true or a false value is returned by
the EmptyTablCart operation action. This information is sent to the client
side by the activity via the orderInfoEnable_SevMsdOut pin of the OrderIn-
foEnabler_Proxy. When a control flow is passed via the success_SevMsdIn

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 77

Figure 5.19: Behavior of the PlacingOrderEnabler Building Block

pin of the OrderInfoEnabler, the activity of the PlacingOrderEnabler gets
terminated by passing a data token via its placingOrderEnable output pin
containing a true or a false value returned from the EmptyTablCart operation
action.

5.10.1 ESM of the PlacingOrderEnabler Building Block

Figure 5.20 shows the ESM of the PlacingOrderEnabler building block.
After getting activated via the start input pin the activity of the Placin-
gOrderEnabler goes in an active phase. In this phase, the activity waits for

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 78

Figure 5.20: ESM of the PlacingOrderEnabler Building Block

a database connection object to be passed via the DbConInfo pin in order to
go in an active1 phase. From the active1 phase, the activity gets terminated
when a data token is passed via its placingOrderEnable output pin.

5.11 OrderingUI_Proxy Building Block

Figure 5.21 shows the behavior of the OrderingUI_Proxy building block.

Figure 5.21: Behavior of the OrderingUI_Proxy Building Block

The OrderingUI_Proxy building block represents the client side behavior

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 79

when the customer fills up the shipping and payment information and con-
firms the order he has placed. The activity of the OrderingUI_Proxy building
block is started via its start_SevMsdOut pin. When the customer fills up the
shipping and payment information, the information is sent out to the server
via the OrderInfo_SevMsdIn pin of the OrderingUI_Proxy. When the server
returns the created list of the ordered items along with other order informa-
tion to the client side, a data token containing the corresponding information
is passed via the OrderedItem_SevMsdOut pin of the OrderingUI_Proxy to
the client side. When the customer confirms the placed order, a control flow
is passed via the Confirmed_SevMsdIn output pin of the OrderingUI_Proxy
to the server.

5.11.1 ESM of the OrderingUI_Proxy Building Block

Figure 5.22 shows the ESM of the OrderingUI_Proxy building block.

Figure 5.22: ESM of the OrderingUI_Proxy Building Block

The activity of the OrderingUI_Proxy goes in an active phase after getting
started via the start_SevMsdOut pin. When a token flow is passed via the
OrderInfo_SevMsdIn output pin of the OrderingUI_Proxy, its activity goes
in an active2 phase from the active phase. A transition of the activity from
the active2 phase to an active3 phase happens when a token flows via the
OrderedItem_SevMsdOut pin. The activity is terminated by a token flow
passing via its Confirmed_SevMsdIn output pin.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 80

5.12 PlacingOrder Building Block

Figure 5.23 shows the behavior of the PlacingOrder building block.

Figure 5.23: Behavior of the PlacingOrder Building Block

A control flow passing via the Start pin of the PlacingOrder building block ac-
tivates this block. This control flow then activates the OrderingUI_Proxy be-
ing passed via its start_SevMsdOut pin. When the database connection ob-
ject is obtained from the outside environment and the shipping and payment

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 81

information is obtained from the client side via the OrderInfo_SevMsdIn pin
of the OrderingUI_Proxy, the activity of the PlacingOrder building block
saves the order by the SaveOrder operation action.
The SaveOrder operation action saves the shipping information and the pay-
ment information as an order entry in the tbl_order table in the database.
The database automatically generates a unique order id for a new order in
its tbl_order table. After saving the order in the database, the SaveOrder
operation action returns the order id in the activity. Using this order id
the activity saves the ordered items in the database in the tbl_orderedItem
table and creates a list of the ordered items by the createOrderedItemList
operation action.
ThecreateOrderedItemList operation action creates an entry against the given
order id in the tbl_orderedItem table in the database for each product item
in the shopping cart of the customer for the current session. The create-
OrderedItemList creates the ordered item’s list where each ordered item data
object contains the ordered product id and its subtotal price. The create-
OrderedItemList operation action also calculates the total price of the or-
dered items. The createOrderedItemList operation action returns all these
information along with the order id encapsulating in a data object. The
createOrderedItemList operation action performs all these tasks getting the
necessary information from the tbl_cart , tbl_product, tbl_order and the
tbl_orderedItem tables in the database.
The data object returned by the createOrderedItemList operation action is
passed to the client side via the OrderedItem_SevMsdOut pin of the Or-
deringUI_Proxy. At the same time the products from the shopping cart of
the customer for the current session are removed via the removeFromCart
operation action. The removeFromCart operation action removes the entries
from the tbl_cart table in the database those match the current session id
of the customer.
Now, when a control flow is passed via the Confirmed_SevMsdIn output pin
of the OrderingUI_Proxy, and the payment method information is obtained
from the customer provided payment information, the payment method in-
formation is passed as a data token via the paymentMethod output pin of
the PlacingOrder activity. This causes the termination of this activity.

5.12.1 ESM of the PlacingOrder Building Block

Figure 5.24 shows the ESM of the PlacingOrder building block.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 82

Figure 5.24: ESM of the PlacingOrder Building Block

The activity of the PlacingOrder building block is started via the Start input
pin and goes in an active phase. When the database connection object is
entered via the DbCon input pin, the activity goes in an active2 phase from
the active phase. Finally, the activity gets terminated, when a token is passed
via its PaymentMethod output pin.

5.13 Our Service Specification in the Perspec-
tive of the SPACE Method

SPACE method specifies services as collaborations among the participating
system components. However, collaborative models are not the only feature
provided by the SPACE method. According to SPACE method, systems
can be specified as a hierarchy of building blocks. We have not designed
collaborative models for the specification of our services. Rather, we have
designed our services as a hierarchy of building blocks. Figure 5.25 shows
the difference between these two specification methods. In the perspective
of a web system, the participating system components are the client and
the server. If we want to specify the services provided by the server as
collaborations among the client and the server, the design would have been
like Figure 5.25 (a).
However, our service model is a building block that contains the client be-

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 83

havior as its inner block. The reason behind such modeling is that, we are
using the Proxy building block to represent the client behavior and the Proxy
block itself represents the proxy of an outside system. In our model we have
counted the local system as the server system and the Proxy represents the
proxy of a client system.

CHAPTER 5. DEVELOPMENT OF BUILDING BLOCKS 84

Figure 5.25: (a)Service Specification as a Collaboration among the Partici-
pating System Components, (b)Service Specification as a Hierarchy of Build-
ing Blocks

Chapter 6

Implementation

6.1 Model Checking

Formal analysis based on automatic model checking is an essential step to en-
sure the soundness of the designed model. This analysis on the system speci-
fication allows removing of the erroneous situations that may create problems
during the implementation of the modeled system. So, before approaching
towards automatic model transformation and implementation step, we have
performed the analysis on our specified system model.
With SPACE method and its tool suit Arctis, we can verify a system incre-
mentally, since encapsulating the activity blocks with ESMs allows analyzing
the activities separately [20]. we have discussed earlier in section 2.3.2 and
2.4 that, Arctis supports formal analysis on specifications or models pro-
viding an automated model checker. With this advanced automated model
checker supported by Arctis, we have performed analysis on each of our activ-
ity block separately. After making sure the soundness of each of our building
block through model checking, we have analyzed our specified system. With
the help of the model checker, we have also ensured the soundness of our
specified system.
In the following sub sections we present a brief view of our analysis.

6.1.1 Analysis on Building Blocks

You can notice in LogIn activity block in section 5.4 in Figure 5.7 that, we
have put a timer in the activity after having the log in information from the
client via the login_SevMsdIn output pin of the LogInGUI_Proxy. Previ-

85

CHAPTER 6. IMPLEMENTATION 86

ously, we had not put any timer and during the analysis of the LogIn building
block we have been notified with an error situation. The model checker noti-
fied us that, the ESM of the inner block has been harmed. The error situation
is shown in Figure 6.1.
The ESM of the LogInGUI_Proxy in section 5.3.1 in Figure 5.6 shows that,
when the activity of the LogInGUI_Proxy is in an active phase, a token flow
can only traverse the login_SevMsdIn pin of this activity. However, without
the timer in the LogIn activity block which we have put, the token flow
also traverses the Status_SevMsdIn input pin of the LogInGUI_Proxy. This
situation harms the ESM of the LogInGUI_Proxy activity block.

Figure 6.1: Error Situation in the LogIn Activity Block

CHAPTER 6. IMPLEMENTATION 87

Figure 6.2: Simulation of the LogIn Activity Block

The timer we have put in the LogIn activity block prohibits the token flow
to traverse the login_SevMsdIn and Status_SevMsdIn pin of the LogIn-
GUI_Proxy in one activity step. The simulation in Figure 6.2 shows the
situation. With the timer placed in the LogIn activity block, the token flow
traverses the login_SevMsdIn pin of the LogInGUI_Proxy activity in an ac-
tivity step and in the following activity step the token flow traverses the
Status_SevMsdIn pin. The LogInGUI_Proxy goes in a transition from an
active phase to an active1 phase in between these two activity steps. This
allows the token in the Login acitivity to traverse the Status_SevMsdIn pin,
when the LogInGUI_Proxy is in an active1 phase. So, now the activity of
the LogIn block conforms with the ESM of its inner block LogInGUI_Proxy.

CHAPTER 6. IMPLEMENTATION 88

Figure 6.3: Error Situation in the PlacingOrder Activity Block

This removes the error situation. We have not set any time delay in the
timer, so there will be no performance problem.
The same error situation described above happens in the ServiceQuery, Ad-
dtoCart, PlacingOrderEnabler and in the PlacingOrder building blocks. We
have removed the error situation in those building blocks in the same way
we have described above.
Notice, we have put one more timer with a zero delay in the PlacingOrder
building block after having set the payment method information in a variable.
Without this timer we have been notified with three warnings- deadlock in
block, ESM transition never used and join never fires. Figure 6.3 shows this
error situation.

CHAPTER 6. IMPLEMENTATION 89

Figure 6.4: Two Token Flows arrive at the Join Node in One Activity Step

Without this timer, two token flows arrive at the join node (placed at just be-
fore the terminating output pin PaymentMethod) in one activity step. Figure
6.4 shows the corresponding simulation of this activity step. This creates a
deadlock situation in the activity of the PlacingOrder building block. Putting
a timer on the way of one of the token flow allows the two token flows to
arrive at the join node in two activity steps. This removes the introduced
error situations.

6.1.2 Analysis on the Specified System

During the analysis of our Online Shopping System, we have been notified
an error situation as shown in Figure 6.5. The error situation shows that
the activity of the system block has harmed the ESM of the LogIn building

CHAPTER 6. IMPLEMENTATION 90

block. According to the ESM of the LogIn building block shown in Figure
5.8 in section 5.4.1, when the activity of the Login building block is in an
verifying state, a token flow can traverse either the accepted pin or the denied
pin. But, with the error situation we have been notified, the activity step
traverses both the denied and start pin of the LogIn activity block. This
harms the ESM of the LogIn building block.

Figure 6.5: Error Situation in the Online Shopping System

To remove this error situation we have put a timer with a zero delay on the
way of the token flow that gets out from the denied pin of the LogIn block
and traverses the start pin of the LogIn activity block. Because of this timer,
the token flow getting out from the denied pin of the LogIn activity block
can traverse the start pin of the LogIn block in two activity steps. Figure
6.6 shows the simulation of such situation. The timer lets the LogIn activity
block to go in a transition from a verifying phase to the final phase before
the token flow traverses the start pin of the LogIn building block. This allows
the activity of the system to conform with the ESM of the LogIn building
block.
The same error situation that we have mentioned above occurs, when the
activity step of the system traverses the Success and the Start pin of the

CHAPTER 6. IMPLEMENTATION 91

Figure 6.6: Error Situation is Removed Placing a Timer

ServiceQuery block while it is in a s0 state. The ESM of the ServiceQuery
building block shown in Figure 5.12 in section 5.6.1 says that, while the
activity of the ServiceQuery building block is in an s0 phase, the token flow
can traverse either the error pin or the Success pin. We have removed the
error situation by putting a timer with a zero delay on the way of the token
flow that gets out from the Succes pin of the ServiceQuery block and traverses
the Start pin of that block.

6.2 Implementation of the Client-Server Com-
munication Model

With our proposed functionalities that we have discussed in section 3.3, the
GWT code generator has been implemented at the Telematics department of
NTNU. With the implemented GWT code generator, we have implemented
our client-server communication model that we have presented in section 3.2.
We show the server system containing the client-server communication model
GWTGUITesting_Proxy along with the ESM of the GWTGUITesting_Proxy
Building block in Figure 6.7.

CHAPTER 6. IMPLEMENTATION 92

Figure 6.7: Example Server System Containing the Client-Server Communi-
cation Model

When we have implemented this server system with the GWT code gener-
ator, we have found that, the GWT code generator has created the GWT
application project structure as we have proposed. We also have found that,
the generated code from our server system model has been placed in a Java
Servlet in the generated server side package. Moreover, we have found that,
three method signatures with their asynchronous version corresponding to
the input/output pins of the GWTGUITesting_Proxy building block have

CHAPTER 6. IMPLEMENTATION 93

been automatically generated and placed in the generated client side package.
Figure 6.8 shows the automatically generated method signatures.

Figure 6.8: Automatically Generated Methods from the Input/Output Pins
of the GWTGUITesting_Proxy Building Block

We have developed the client side programming manually in order to com-
plete the development of the AJAX web application. In the client side pro-
gram, we have used the methods those have been generated automatically
by the GWT code generator. We have called these methods in the client
program, in order to get services from the server.
In the client side programming, firstly, we have developed a simple user
interface containing a text box and a Send button UI element. In the text
box, user can input a text. When the user will click the button the text will
be sent to the server and the server’s reply will be shown in a pop up panel
UI element.
In order to make possible the above mentioned functionality, we have done
some client side programming. In the Send button’s click action, we have
first called the start_SevMsdOut() method. In the onSuccess() method of
the Callback instance of the start_SevMsdOut() method, we have called the
input_SevMsdIn(String text) method. This method passes the user given
text to the server. When this method returns successfully, we have called the
String response_SevMsdOut() method. The server passes the reply as this
method’s return value. So, when this method returns successfully, we have
the reply of the server and we have shown that reply in a pop up UI element.
Figure 6.9 shows the result of our successful implementation.

CHAPTER 6. IMPLEMENTATION 94

Figure 6.9: Implementation of the Client-Server Communication Model

6.3 Implementation of the ServiceQuery Build-
ing Block

We have implemented the ServiceQuery building block putting it in a Sys-
tem block in order to get the available service names in an existing Online
Shopping Store that sells services as products. The existing Online Shop-
ping Store, which is the ISIS Project Store [7] is a project carried out under
the applied research project Infrastructure for Integrated Services (ISIS) in
Telenor, Trondheim of Norway. In order to get the available service names
from the ISIS Project Store, we have first studied the data storage structure
of the Store.
The ISIS Project Store uses a freebXML [5] registry for storing services. Free-
bXML is an open source implementation of the ebXML repository/registry.
In the ebXML repository any type of digital content can be stored as a
repository item. The registry manages the metadata describing the reposi-
tory items. We can explain the ebXML repository/registry as a digital library
where the repository is analogous to shelves containing digital contents and
the registry is analogous to card catalog having the facility to locate the
digital content.
For accessing or using the ebXML registry Java provides an API named
JAXR API [6]. Using the JAXR API and providing the registry location ad-
dress of the ISIS Project Store, we can establish a connection with the ISIS

CHAPTER 6. IMPLEMENTATION 95

Project Store. We have put the corresponding code in the connect operation
action of our ServiceQuery building block. Using a SQL query we can search
the information about the digital content in the registry as well as the con-
tent itself in the repository. So, we have put a SQL query for searching the
names of the stored services in the ISIS Project Store registry. We have put
this query in the getService operation action of our ServiceQuery building
block. When we have implemented the system containing the ServiceQuery

Figure 6.10: Automatically Generated Methods from the Input/Output Pins
of the ServiceQuery_Proxy Building Block

Figure 6.11: Implementation of the ServiceQuery Building Block

building block with the GWT code generator, the methods corresponding to

CHAPTER 6. IMPLEMENTATION 96

the input/output pin of the ServiceQuery_Proxy have been generated auto-
matically. Figure 6.10 shows the generated methods. Also, the asynchronous
version of the generated methods and the server side code has been generated
automatically from our system model. We have used these methods in the
client side programming to call on the server. Figure 6.11 shows the result of
our implementation. When a user sends a request by clicking the send button,
the request is sent to the server by calling the serviceRequest_SevMsdIn()
method. The server replies with the available service names in the ISIS
Project Store as a return value of the getservice_SevMsdIn() method. We
have shown the service names in the pop up UI element.

6.4 Implementation of a Test System

Figure 6.12: Test System Model

We have not been able to implement the whole system that we have mod-
eled because of the time limitation. Rather, we have modeled a simple test
system whose activity resembles our specified Online Shopping System. This
implementation proves that, it is possible to implement our specified Online
Shopping System. In the following sub sections, we describe the test system
and the activity blocks we modeled for the test system.

CHAPTER 6. IMPLEMENTATION 97

Figure 6.12 shows the test system we have modeled. From the initial node
the activity is started and the instance of Service1 building block is activated
by the token flow passed via its start pin. After providing the service to
the client, the Service1 activity is terminated by a token flow passed via its
success pin. This token flow starts the activity of the Service2 block. Service2
block goes in a termination, when a token flow is passed via its exit pin and
the token flow is terminated by a flow final node.

Figure 6.13: Activity and ESM of the Service1 Building Block

Figure 6.13 shows the activity of the Service1 building block along with
its ESM. Service1 building block changes the text sent by the user via

CHAPTER 6. IMPLEMENTATION 98

the sendText_SevMsdIn pin of its inner block Service1_Proxy block. Fig-
ure 6.14 shows the Service1_Proxy activity block with its ESM. Service1
building block sends the changed text back to the client via the change-
Text_SevMsdOut pin of the Service1_Proxy activity block.

Figure 6.14: Activity and ESM of the Service1_Proxy Building Block

Figure6.15 shows the activity of the Service2 building block along with its
ESM. This building block sends a text to the client upon the request of the
user. The request is sent to the activity of this block via the request_SevMsdIn
output pin of its inner block Service2_Proxy. Service2_Proxy represents the
client behavior. Figure 6.16 shows the activity of the Service2_Proxy block
and its ESM. The activity of the Service2 building block sends the reply to
the client via the getService_SevMsdOut input pin of the Service2_Proxy
block.
We have done a client side programming using the automatically gener-
ated methods from the input/output pins of the Service1_Proxy and Ser-
vice2_Proxy building block. When the user inputs a text in the text box
and clicks the service1 button, the text is sent to the server by the send-
Text_SevMsdIn() method and the server sends the reply as a return value of
the sendText_SevMsdIn() method. Figure 6.17 shows the implementation
result.

CHAPTER 6. IMPLEMENTATION 99

Figure 6.15: Activity and ESM of the Service2 Building Block

Figure 6.16: Activity and ESM of the Service2_Proxy Building Block

CHAPTER 6. IMPLEMENTATION 100

Figure 6.17: Reply from Service1 Building Block

When the reply comes from the server (Service1 block), the service2 button
is enabled. When the user clicks the service2 button, a request is sent to the
server (Service2 block) with request_SevMsdIn(). The server returns a reply
as a return value of the getService_SevMsdOut() method to the client. The
reply is shown in a pop up panel as shown in Figure 6.18.

Figure 6.18: Reply from Service2 Building Block

6.5 Multisession Issue

Every web application has the ability to handle multisession. It is a common
scenario for web applications that several users may access the same web

CHAPTER 6. IMPLEMENTATION 101

application at the same time. So, the server of the web application creates
a session for each user who is accessing the web application. The Server
performs the session tracking maintaining a unique session id of the user.

Figure 6.19: Current Session ID of the Client with the Firefox Browser

Figure 6.20: Current Session ID of the Client with the Google Crhome
Browser

In the server system of the Online Shopping System that we have modeled,
we have not reflected the multisession handling activity in the model as de-
scribed in [42]. However, the implemented web application with our modeled
server system can handle multiple session. The code generator with which
we have implemented our server system model, places the generated code
from our model in a Java Servlet. We have described in section 2.6 that, the
application server where the Servlet is loaded handles the session tracking
and multiple session handling. So, though we have not reflected the multiple

CHAPTER 6. IMPLEMENTATION 102

session handling functionality in our server system model, the application
server where it is deployed handles it.
In order to prove what we have described above, we have performed a small
test. In our test system model we have put a line of code that gets current
session id of the accessed user. We have also put a line of code to print
that session id. After implementing the system, we have accessed the web
application with two different web browsers (Firefox and Google Chrome).
In the console, we have found that for the two different browser clients two
different session ids have been created as shown in Figure 6.19 and Figure6.20.
So, it proves that multiple session handling is not a problem for our deployed
web application.

Chapter 7

Discussion

The engineering method SPACE and its tool suits (Arctis and Ramses) pave
the way of model driven development process by specifying systems as hier-
archies of activities encapsulated by ESMs. Reusing self contained building
blocks (activities encapsulated with their ESMs) makes the task of specify-
ing systems easier for the developers, as they do not need to look into the
internal details of the building blocks. Works of several domains like em-
bedded sensor systems [48], trust management [30], and web service-based
telecom services [47] have been done on Arctis. Our work has added an-
other working domain on Arctis platform. We have studied the model driven
web application development on Arctis. The achievement from this thesis is
twofold: model driven web application development and inclusion of the web
application development domain to Arctis platform.
We have integrated the AJAX web application development partially in
Arcits as we have been able to model only the server logic of AJAX based web
applications. We have done the client side programming manually. In the
following sections, we present an evaluation of our resulting work, limitations
of our work and future plans of our work.

7.1 Evaluation of the Resulting Work

For modeling the client-server communication we have used Proxy local block
of Arctis. In our model the Proxy building block represents the client side
behavior. According to our model, the client invokes the service of the
server through the input/output pins of the Proxy building block. The in-
put/output pins of the Proxy building blocks ultimately become the function

103

CHAPTER 7. DISCUSSION 104

calls on the server. We have designed this model studying the GWT RPC
communication mechanism provided by the GWT framework. With this
model, we have also developed and implemented an AJAX web application
with GWT framework. However, our model will work for all the AJAX
web applications whose client server communication is based on RPC. Only
the code generator should be modified according to the requirement of the
implementation.
We have specified an Online Shopping System designing some reusable build-
ing blocks. We have designed a MySQL building block that provides a con-
nection to a SQL database. This building block can be reused in any appli-
cations, where the system needs to be connected with a SQL database. The
other building blocks (LogIn, ServiceQuery, AddtoCart, PlacingOrderEn-
abler and PlacingOrder) we have designed use our client-server communica-
tion model. So, their reusability is limited to those AJAX web applications
whose client-server communication is based on RPC. We have designed a
LogIn building block that authenticates a user verifying his/her user infor-
mation. Most of the web applications require user authentication services.
So, our LogIn building block has a high reusability property.
We have designed the ServiceQuery building block to get service names from
an existing Online Shopping Store (the ISIS Project Store). For the im-
plementation purpose, we have designed the exception event notifications
specific to the connection exceptions of the ISIS Project Store. So, we can-
not say that this building is totally reusable for getting service names or
information from any Online Shopping Store. However, the activity of this
building block shows in general the modeling of connecting to a third party
server and fetching some information from them. So, it helps the developers
who want to model such functionalities.
The AddtoCart building block provides the service of adding desired items
into one’s shopping cart as many times as he wants before checking out. The
PlacingOrder building block places an order for the user. These two build-
ing blocks contain the core functionalities that an Online Shopping System
requires for providing AddtoCart and PlacingOrder services. So these two
building blocks can be reused in any Online Shopping System.
We have attempted to implement our specified system model. For the time
limitation we have not been able to implement the whole system model. We
have implemented first our client-server communication model successfully.
Then we have implemented one of our designed building blocks (the Service-
Query block). Finally, we have implemented a simple test system resembling
our specified system model. Our implementenation success proves that our

CHAPTER 7. DISCUSSION 105

system model is implmentable.
We have actually modeled the server side logic of AJAX web applications.
We have also proposed the functionalities of a code generator to generate the
code from our model and implement an AJAX web application with GWT
framework with that server side code. So, in general we can say that, our
work can raise the productivity of the AJAX web application development, as
the code generator automatically generates server side code from our server
model. Also, we think that our server model of Online Shopping System
has a high business prospect. Many software vendors develop online shop-
ping softwares and sell them as e-commerce softwares. Many organizations
use those online shopping softwares in their web sites. In this perspective,
our work can provide some sort of automation in the development of online
shopping softwares.

7.2 Limitations

The web application we have developed is done partially in the model driven
way. We have modeled only the server side or business logic. Our web
application development lacks the client side modeling.
With our model, it is not possible to store information across multiple ses-
sions. For example, a messenger application may store the information of
the users online in a runtime memory. Modeling of such applications is not
possible with our model. This is because, the generated code from our model
is placed in a Java Servlet class. From section 2.6 we know that the Servlet
instance is loaded only once in the server. When each client requests for
a service in the server, a new thread in the Servlet instance is created for
executing our model generated code. Our model is not actually generated as
a Servlet class. So, if we store the data about the accessed users in a runtime
universal variable in our server system model, the variable can hold only the
last user’s data as that runtime variable is not treated as a universal variable
instance in the Servlet class.

7.3 Future Work

Currently we have done only the modeling of the server side logic of AJAX
web applications in Arctis. Client side development also should be done in
the model driven way. Modeling client side development requires a web UI

CHAPTER 7. DISCUSSION 106

element editor to be integrated in Arctis. Integrating Web UI element editor
in Arctis can be a future research work.
For storing information across multiple sessions requires the server system
model to be generated as a Servlet class after the implementation. Currently
our server system model is treated as a service of a Servlet Class that the
Servlet Class provides to the client, as the model generated code is placed in
a Servlet class generated by the code generator. To generate a Servlet class
itself from our server system model, it requires reflecting of the multiple ses-
sions handling functionality in the model, as a Servlet Class does by creating
a new thread for each request. So, modeling multiple sessions handling in
our server system model can be a future work.

Bibliography

[1] WWW page of the articale on AJAX: http://adaptivepath.com/ publi-
cations/essays/archives/000385.php.

[2] WWW page of WebRatio: http://www.webratio.com.

[3] WWW page of Argouml: http://argouml.tigris.org.

[4] WWW page of serializable Javadoc:
http://java.sun.com/j2se/1.3/docs/api/java/io/Serializable.html.

[5] FreebXML . WWW page of freebXML: http://ebxmlrr.sourceforge.net/.

[6] Java API for XML Registries (JAXR). WWW page of JAXR API:
http://java.sun.com/webservices/jaxr/index.jsp.

[7] The ISIS Project Store . WWW page of ISIS Project Store:
http://shop.isisproject.org:8180/isisStore/.

[8] Asadi, M., and Ramsin, R. Mda-based methodologies: An analytical
survey. 2008, pp. 419–431.

[9] Baumeister, H., Koch, N., and Zhang, G. Modelling adaptivity
with aspects. In International Conference on Web Engineering (ICWE
2005.

[10] Bock, C. UML 2 Activity and Action Models. Tech. rep., July-August
2003.

[11] Bock, C. UML 2 Activity and Action Models, Part 2: Actions. Tech.
rep., September-October 2003.

[12] Bram Smeets, Uri Boness and Roald Bankras. Beginning
Google Web Toolkit: From Novice to Professional. APress, September
2008.

107

BIBLIOGRAPHY 108

[13] Bræk, R, Haugen, Ø. Engineering Real Time Systems : An Object-
Oriented Methodology Using SDL. The BCS Practitioner Series. Prentice
Hall, 1993.

[14] Cachero, C., Gómez, J., and Párraga, A. Lecture notes in com-
puter science 1 extending uml for the migration of legacy systems to the
web, 2002.

[15] Ceri, S., Fraternali, P., and Bongio, A. Web modeling language
(webml): a modeling language for designing web sites. pp. 137–157.

[16] Ceri S., F. P. M. M. Conceptual modeling of data-intensive web
applications. Internet Computing, IEEE 6 (2002), 20 – 30.

[17] Chris Ullman and Lucinda Dykes. Beginning Ajax. Wiley Pub-
lishing, Inc, 2007.

[18] consortium, U. Ubiquitous web applications. In In Proceedings of the
eBusiness and eWork Conference (October 2002).

[19] Escalona, M. J., and Koch, N. Metamodeling the requirements of
web systems.

[20] Frank Alexander Kraemer and Peter Herrmann. Automated
Encapsulation of UML Activities for Incremental Development and Ver-
ification. In Proceedings of the 12th Int. Conference on Model Driven
Engineering, Languages and Systems (Models), Denver, Colorado, USA,
October 4-9, 2009 (2009), Andy Schürr and Bran Selic, Ed., vol. 5795 of
Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg,
pp. 571–585.

[21] Garzotto, F., Paolini, P., and Schwabe, D. Hdm - a model-
based approach to hypertext application design. ACM Trans. Inf. Syst.
11, 1 (1993), 1–26.

[22] Gerber, A., Michael Lawley, Kerry Raymond, J. S., and
Wood, A. Transformation: The missing link of mda. In In: Pro-
ceedings of the 1st International Conference on Graph Transformation
(2002), Springer, pp. 90–105.

[23] Gómez, J., and Cachero, C. Oo-h method: extending uml to model
web interfaces. 144–173.

[24] Gómez, J., and Cachero, C. Model-driven web development with
visualwade. 144–173.

BIBLIOGRAPHY 109

[25] Gomez, J., Cachero, C., Pastor, O., and Spain, V. Extending
a conceptual modelling approach to web application design. In In 12 th
International Conference on Advanced Information Systems (CAiSEŠ00.

[26] Group, O. M. Meta Object Facility (MOF) Core Specification Version
2.0. Tech. rep., January 2006.

[27] Group, O. M. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Tech. rep., July 2007.

[28] Group, O. M. Unified Modeling Language: Superstructure, version
2.1.2. Tech. rep., November 2007.

[29] Hennicker, R., and Koch, N. A uml-based methodology for hy-
permedia design. In Proc. of UML 2000 Conference (2001), Springer
Verlag, pp. 410–424.

[30] Herrmann, P., and Kraemer, F. A. Design of Trusted Systems
with Reusable Collaboration Models. In Trust Management (2007),
S. Etalle and S. Marsh, Eds., vol. 238, IFIP International Federation
for Information Processing, Springer, pp. 317–332.

[31] Herrmann, P., and Krumm, H. A framework for modeling transfer
protocols. Computer Networks 34, 2 (2000), 317 – 337.

[32] Houben, F. F. G. J., and Vdovjak, R. An rmm-methodology
for hypermedia presentation design. In IN PROC. ADVANCES IN
DATABASES AND INFORMATION SYSTMES, LNCS 2151 (2001),
Springer, pp. 323–337.

[33] Jakob Frydensberg. Generation of Web applications from UWE
models. Bachelor of Engineering, IT Thesis, Technical University of
Denmark, May 2008.

[34] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni-
fied Modeling Language, second edition ed. Addison-Wesley, 2005.

[35] Jason Hunter and William Crawford. Java Servlet Programming
, second edition ed. O’Reilly Media, 2001.

[36] Knapp A., Koch N., M. F., and G., Z. Argouwe: A case tool for web
applications. In In Proc. of 1st Int. Workshop on Engineering Methods to
Support Information Systems Evolution (EMSISE03) (September 2003).

BIBLIOGRAPHY 110

[37] Koch, N., and Kraus, A. Towards a common metamodel for the
development of web applications. In Proc. of the 3 rd Int. Conf. on Web
Engineering (ICWE.

[38] Koch, N., and Kraus, A. The expressive power of uml-based web
engineering, 2002.

[39] Kraemer, F. A. Profile for Service Engineering: Executable State
Machines. AVANTEL Technical Report (2/2006), NTNU , Department
of Telematics, NTNU.

[40] Kraemer, F. A. UML Profile and Semantics for Service Specifica-
tions. AVANTEL Technical Report (1/2007) NTNU, Department of
Telematics, NTNU.

[41] Kraemer, F. A. Arctis and Ramses: Tool Suites for Rapid Service
Engineering. In Proceedings of NIK 2007 (Norsk informatikkonferanse),
Oslo, Norway (November 2007), Tapir Akademisk Forlag.

[42] Kraemer, F. A., Bræk, R., and Herrmann, P. Synthesizing
Components with Sessions from Collaboration-Oriented Service Speci-
fications. In SDL 2007 (September 2007), E. Gaudin, E. Najm, and
R. Reed, Eds., vol. 4745 of Lecture Notes in Computer Science, Springer–
Verlag Berlin Heidelberg, pp. 166–185.

[43] Kraemer, F. A., Bræk, R., and Herrmann, P. Compositional
Service Engineering with Arctis. Telektronikk 105, 2009.1 (2009).

[44] Kraemer, F. A., and Herrmann, P. Formalizing Collaboration-
Oriented Service Specifications using Temporal Logic. In Network-
ing and Electronic Commerce Research Conference 2007 (NAEC 2007)
(USA, October 2007), ATSMA Inc., pp. 194–220.

[45] Kraemer, F. A., and Herrmann, P. Transforming Collaborative
Service Specifications into Efficiently Executable State Machines. In
Proceedings of the 6th International Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2007) (2007), K. Ehring
and H. Giese, Eds., vol. 7 of Electronic Communications of the EASST,
EASST.

[46] Kraemer, F. A., Herrmann, P., and Bræk, R. Aligning UML 2.0
State Machines and Temporal Logic for the Efficient Execution of Ser-
vices. In Proceedings of the 8th International Symposium on Distributed
Objects and Applications (DOA), 2006, Montpellier, France (2006),

BIBLIOGRAPHY 111

R. Meersmann and Z. Tari, Eds., vol. 4276 of Lecture Notes in Computer
Science, Springer–Verlag Heidelberg, pp. 1613–1632.

[47] Kraemer, F. A., Samset, H., and Bræk, R. An Automated
Method for Web Service Orchestration based on Reusable Building
Blocks. In Proceedings of the 7th International IEEE Conference on
Web Services (ICWS) (July 2009), IEEE Computer Society, pp. 262–
270.

[48] Kraemer, F. A., Slåtten, V., and Herrmann, P. Model-Driven
Construction of Embedded Applications based on Reusable Building
Blocks – An Example. In SDL 2009 (2009), A. Bilgic, R. Gotzhein,
and R. Reed, Eds., vol. 5719 of Lecture Notes in Computer Science,
Springer-Verlag Berlin Heidelberg, pp. 1–18.

[49] Kraemer, F A. Engineering Reactive Systems. A Compositional and
Model-Driven Method Based on Collaborative Building Blocks. PhD The-
sis, Norwegian University of Science and Technology, August 2008.

[50] Kraus, A., and Koch, N. Generation of web applications from uml
models using an xml publishing framework, 2002.

[51] L., B., and L., M. Beyond Modeling Notations: Consistency and
Adaptability of W2000 Models. In In Proc. of SAC’05, ACM Sympo-
sium on Applied Computing (Santa Fe, USA, 2005), Electronic Commu-
nications of the EASST.

[52] Lamport, L. The temporal logic of actions. ACM Trans. Program.
Lang. Syst. 16, 3 (1994), 872–923.

[53] Lamport, L. Specifying Systems. Addison-Wesley, 2002.

[54] Luciano Baresi, Sebastiano Colazzo, L. M., and Morasca,
S. W2000: A modelling notation for complex web applications.

[55] Meliá, S., and Gómez, J. The websa approach: Applying model
driven engineering to web applications. J. Web Eng. 5, 2 (2006), 121–
149.

[56] Nora Koch, G. Z., and Escalona, M. J. Model transformations
from requirements to web system design. In ICWE ’06: Proceedings of
the 6th international coneference on Web engineering (2006), Springer
Verlag, pp. 281–288.

BIBLIOGRAPHY 112

[57] Nora Koch, Alexander Knapp, Gefei Zhang, and Hubert
Baumeister. Uml-based web engineering.

[58] (OMG), O. M. G. UML 2 Object Constraint Language (OCL). Tech.
rep.

[59] Prof. Mario A. Bochicchio, E. A. L. Integrating web systems
design and business process modeling. In ICWE 2005: Proceedings of
the 5th international coneference on Web engineering (2005), Springer,
pp. 60–69.

[60] R. Vidgen, D. Avison, B. Wood and T. Wood-Harper. Devel-
oping Web Information Systems. Elsevier Science, 2002.

[61] Robert Hanson and Adam Tacy. GWT in Action. Manning, June
2007.

[62] Ryan Dewsbury. Google Web Toolkit Applications. Prentice Hall,
2008.

[63] Schwabe, D., and Rossi, G. Developing hypermedia applications us-
ing oohdm. In In Proceedings of Workshop on Hypermedia Development
Process, Methods and Models, Hypertextť98 (1998), ACM.

[64] Selic, B. The pragmatics of model-driven development. IEEE Softw.
20, 5 (2003), 19–25.

[65] Selic, B. Model-driven development: Its essence and opportunities.
Object-Oriented Real-Time Distributed Computing, IEEE International
Symposium on 0 (2006), 313–319.

[66] Semia Sonia Selmi, N. K., and Ghezala, H. B. Toward a compre-
hension view of web engineering. LECTURE NOTES IN COMPUTER
SCIENCE (2005), 19–29.

[67] Valderas P., F. J., and V., P. From web requirements to navi-
gational design - a transformational approach. LECTURE NOTES IN
COMPUTER SCIENCE, 3579 (2005), 506–511.

[68] Yu, Y., Manolios, P., and Lamport, L. Model checking tla+
specifications. In CHARME ’99: Proceedings of the 10th IFIP WG 10.5
Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (London, UK, 1999), Springer-Verlag, pp. 54–
66.

BIBLIOGRAPHY 113

[69] Zhang, G., and maximilians-universität München, L. Model
transformations for integrating and validating web application models.
In In Proc. Modellierung (2006).

	Title Page
	Problem Description
	Abstract
	Abbreviations and Acronyms
	List of Figures
	Introduction
	Context
	Problem Statement
	Related Works
	Objective
	Contribution
	Thesis Outline

	Background
	MDD (Model Driven Development)
	MDA (Model Driven Architecture MDA)
	SPACE Method
	System Specification or Service Composition
	Formal Analysis and Automated model Checking
	Model Transformation
	Code Generation

	Arctis and Ramses Tool-Suits to Support SPACE method
	AJAX (Asynchronous JavaScript and XML)
	Working Princinple of AJAX
	What actually AJAX is

	Java Servlet
	Google Web Toolkit (GWT)
	GWT Components
	GWT Modes of Running

	AJAX Integration in Arctis
	Client-Server Communication with GWT Framework
	GWT RPC
	How GWT RPC Works

	Development of the Client-Server Communication Model in Arctis
	GWT Code Generator
	GWT application layout Generation
	Automatic Generation of the Server Methods' Signatures

	Scenario Description
	General Scenario
	Online Shopping System as a Scenario
	Scope of the Example Scenario
	Use Case Diagram of the Example Scenario
	Example UI Representing the Example Scenario
	Example Database

	Development of Building Blocks
	System Block of the Online Shopping System
	MySQL Building Block
	ESM of the MySQL Building Block

	LogInGUI_Proxy Building Block
	ESM of the LogInGUI_Proxy Building Block

	LogIn Building Block
	ESM of the LogIn Building Block

	ServiceQuery_Proxy Building Block
	ESM of the ServiceQuery_Proxy Building Block

	ServiceQuery Building Block
	ESM of the ServiceQuery Building Block

	AddtoCartGUI_Proxy Building Block
	ESM of the AddtoCartGUI_Proxy Building Block

	AddtoCart Building Block
	ESM of the AddtoCart Building Block

	OrderInfoEnabler_Proxy Building Block
	ESM of the OrderInfoEnabler_Proxy Building Block

	PlacingOrderEnabler Building Block
	ESM of the PlacingOrderEnabler Building Block

	OrderingUI_Proxy Building Block
	ESM of the OrderingUI_Proxy Building Block

	PlacingOrder Building Block
	ESM of the PlacingOrder Building Block

	Our Service Specification in the Perspective of the SPACE Method

	Implementation
	Model Checking
	Analysis on Building Blocks
	Analysis on the Specified System

	Implementation of the Client-Server Communication Model
	Implementation of the ServiceQuery Building Block
	Implementation of a Test System
	Multisession Issue

	Discussion
	Evaluation of the Resulting Work
	Limitations
	Future Work

	Bibliography

