
Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2012, Article ID 494232, 10 pages
doi:10.1155/2012/494232

Research Article

Comparison of Learning Software Architecture by Developing
Social Applications versus Games on the Android Platform

Bian Wu and Alf Inge Wang

Department of Computer Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Correspondence should be addressed to Bian Wu, bian@idi.ntnu.no

Received 15 April 2012; Accepted 16 July 2012

Academic Editor: Daniel Thalmann

Copyright © 2012 B. Wu and A. I. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper describes an empirical study where the focus was on discovering differences and similarities in students working
on development of social applications versus students working on development of games using the same Android development
platform. In 2010-2011, students attending the software architecture course at the Norwegian University of Science and Technology
(NTNU) could choose between four types of projects. Independently of the chosen type of project, all students had to go through
the same phases, produce the same documents based on the same templates, and follow exactly the same process. This study
focuses on one of projects—Android project, to see how much the application domain affects the course project independently
of the chosen technology. Our results revealed some positive effects for the students doing game development compared to social
application development to learn software architecture, like motivated to work with games, a better focus on quality attributes
such as modifiability and testability during the development, production of software architectures of higher complexity, and more
productive coding working for the project. However, we did not find significant differences in awarded grade between students
choosing the two different domains.

1. Introduction

Computer games and video games have become very popular
for children and youths and play a prominent role in the
culture of young people [1]. Games can now be played
everywhere in technology-rich environments equipped with
laptops, smart phones, game consoles (mobile and station-
ary), set-top boxes, and other digital devices. From this
phenomenon, it is believed that the intrinsic motivation that
young people show towards games could be combined with
educational content and objectives into what Prensky calls
“digital game based learning” [2].

Besides an abundant appearance of games in young
students life, game development technology has matured and
become more advanced [3]. Based on various existing game
development environments, the whole duty of game devel-
opment process can be divided into several expert domains
and roles such as game programmer, 3D model creator, game
designer, musician, animator, and play writer, and so forth.
The process of integrating game content with technology

can be simplified through the usage of game engines and
available information on the web from various user and
expert communities. For instance, Microsoft’s XNA game
development kit provides the game loop function to draw
and update the game contents, and it also provides conve-
nient game development components to load the different
format of graphics, audio, and videos. This makes it possible
for game fans such as students with or without programming
background to modify existing games or develop new games.
They can design and implement their own game concepts
with these game creation tools, learn the developing skills
and relevant knowledge, and accumulate related practical
experience.

In this context, not only can games be used for learning
but also the game development tools can be used for studying
relevant topics within computer science (CS), software engi-
neering (SE), and game programming through motivating
assignments. Generally, games can be integrated in education
in three ways [4, 5]. First, games can be used instead of tradi-
tional exercises motivating students to put extra effort in

2 International Journal of Computer Games Technology

doing the exercises and giving the teacher and/or teaching
assistants an opportunity to monitor how the students work
with the exercises in real time, for example [6, 7]. Second,
games can be played as a part of a lecture to improve the
participation and motivation of students, for example [8, 9].
Third, the students are asked to modify or develop a game
as a part of a course using a Game Development Framework
(GDF) to learn skills within CS and SE, for example [10].
We label the latter learning approach Game Development-
Based Learning (GDBL). And the GDF denotes the toolkits
that can be used to develop or modify games, for example,
game engine, game editors, or game (simulation) platforms,
or even any Integrated Development Environment (IDE),
like Visual C++, Eclipse, J2ME, and Android SDK since all
of them can be used to develop games.

This paper focuses on an evaluation where we wanted
to discover similarities and differences between making
students learn software architecture through game develop-
ment versus social application development (e.g., weather
Forecast, chatting software) using the Android platform. The
motivation for bringing game development into a CS or
SE course is to exploit the students’ fascination for games
and game development to stimulate them to work more and
better with course material through the project.

2. Related Works

This section describes the research context and previous
results about using GDBL method in software engineering
field.

2.1. Research Contexts. The earliest similar application of
learning by programming in a game-like environment was
in early 1970s. The Logo [11], the turtle graphics, is one of
the oldest libraries that was used to introduce computing
concepts to beginners. The concept was based on a “turtle”
that could be moved across a 2D screen with a pen, which
could be positioned on or off the screen, and, thus, may leave
a trace of the turtle’s movements. Programming the turtle to
draw different patterns could be used to introduce general
computing skill, such as procedural operations, iteration,
and recursion. Further, in 1987, Micco presented the usage
of writing a tic-tac-toe game for learning [12]. Afterwards,
other studies have been conducted using specialist game
programming toolkits such as Stage Cast Creator [13],
Gamemaker [14], Alice [15], and Neverwinter Nights [16].
Besides, article [17] presents an investigation for using
mobile game development as a motivational tool and a
learning context in computing curriculum. From their sur-
vey, it shows the relation between game programming and
other computer science fields—Game development can be
used in study of Artificial intelligence (AI), database, com-
puter networks, SE, human-computer interaction, computer
graphics, algorithms, programming, computer architecture,
and operating system.

These studies indicate that making games is motivating
and develops storytelling as well as technical programming
skills. The nature of the task of making games is slightly
different in purpose-built environments and the balance of

the roles assumed by the learner shifts accordingly. More
recent game programming toolkits tend to have a stronger
visual aspect than Logo, either in the sense that they enable
designers to easily create graphical games or because they
have a visual programming language, or both. This shifts the
emphasis away from low-level programming, enabling learn-
ers to focus on the other roles as designers or writers. Thus,
we investigate how GDFs are used in education through an
experiment study and explore the evolution of the traditional
lecture to be dynamic, collaborative, and attractive to
the students under current technology-rich environment.
However, this assertion needs to be further supported by
relevant theory, application experiences, evaluation results,
and empirical evidence. This is one motivation for sharing
our experiences and empirical results in field of GDBL on
using Android in a software architecture course.

2.2. Course and Project Setting. The software architecture
course at Norwegian University of Science and Technology
(NTNU) (course code TDT4240) is taught in a different way
than at most other universities, as the students also have
to implement their designed architecture in a project. The
motivation for doing so is to make the students understand
the relationship between the architecture and the implemen-
tation and to be able to perform a real evaluation of
whether the architecture and the resulting implementation
fulfill the quality requirements specified for the application.
The architecture project in the course has similarities with
projects in other software engineering courses, but every-
thing in the project is carried out from a software architecture
perspective. Throughout the project, the students have to
use software architecture techniques, methods, and tools to
succeed according to the specified project.

The software architecture project consists of the follow-
ing phases.

(i) COTS (Commercial Off-the-Shelf) exercise: learn the
technology to be used through developing a simple
game.

(ii) Design pattern: learn how to use and apply design
pattern by making changes in an existing system.

(iii) Requirements and architecture: list functional and
quality requirements and design the software archi-
tecture for a game.

(iv) Architecture evaluation: use the Architecture Trade-
off Analysis Method (ATAM) [18–20] evaluation
method to evaluate the software architecture of pro-
ject in regards to the quality requirements.

(v) Implementation: do a detailed design and implement
the game based on the created architecture and on the
changes from the evaluation.

(vi) Project evaluation: evaluate the project as a whole
using a Postmortem Analysis (PMA) method [21].

In the first two phases of the project, the students work
on their own or in pairs. For phases 3–6, the students work in
self-selected teams of 4-5 students. Meantime, students have

International Journal of Computer Games Technology 3

one fixed primary assigned quality attribute to focus on
during the project. For the secondary quality attribute, stu-
dents can choose the quality attribute they like. The students
spend most time in the implementation phase (six weeks),
and they are also encouraged to start the implementation
in earlier phases to test their architectural choices (incre-
mental development). During the implementation phase, the
students continually extend, refine, and evolve the software
architecture through several iterations.

2.3. Previous Results. Previously, the goal of the project has
been to develop a robot controller for the WSU Khepera
robot simulator (Robot) in Java [22] with emphasis on an
assigned quality attribute such as availability, performance,
modifiability, or testability. The students were asked to pro-
gram the robot controller to move a robot around in a maze,
collect four balls, and bring them to a light source in the
maze. In 2008, the students were allowed to choose between
a robot controller project and a game development project.
The process, the deliverables, and the evaluation of the
project were the same for both types of projects—only the
domain was different. In the Game project, the students were
asked to develop a game using the Microsoft XNA framework
and C#. Finally, an evaluation about software architecture
course is conducted [23, 24]. The evaluation is based on
data from a project survey, the project deliverables from the
students, and other accessible course information. The main
conclusion from study was that game development projects
can successfully be used to teach software architecture if we
consider Robot as an evaluation benchmark.

Integrating our experiences on running of game project
in software architecture course in 2008, we conducted a
new option to add one more COTS-Android in software
architecture course project during 2010-2011. The students
could now in addition to the Java Robot project and the
XNA Game project choose to develop a social application or
a game in Android. Independently of the COTS and the
domain chosen, the students had to focus on the same
software architecture issues during the project and follow
the same templates. The introduction of game and social
Android projects allowed us to compare how the domain the
students work on in the project affects the learning and the
project experiences independently of the COTS. A detailed
description was in following sections.

3. Method

This section describes the research method to get the relevant
data for our experiment of using Android development in
software architecture projects.

3.1. Aim. This paper focuses on using the same COTS but
with different development domains to investigate whether
the different domains produce different output. In our pre-
vious research, the effectiveness of GDBL conclusion was
based on the different COTS-Robot and XNA. This paper
excludes game developed in XNA and robot controller
developed in Java and only focuses on the Android plat-
form and development of social application versus game

application. Our evaluation covers five topics: distribution of
chosen domain, students’ perception of the project, project
deliveries and code quality and complexity, students’ effort,
and awarded project grades.

3.2. GQM Approach. The comparison of the social and game
project should help to discover the differences and reveal the
effects of introducing a project on the Android platform. This
evaluation is a quasiexperiment, not a controlled experiment.
The research method used is based on the Goal, Question
Metrics (GQM) approach [25] where we first define a
research goal (conceptual level), then define a set of research
questions (operational level), and finally describe a set of
metrics to answer the defined research questions (quanti-
tative level). In our case, the metrics used to give answers
to the research questions are a mixture of quantitative and
qualitative data. Table 1 shows the GQM approach used to
analyze game development project in software architecture
course.

3.3. Procedures. When students start the project and follow
the projects phases, they should report the time they spend
on each phase of the project. The first two phases allow
the students individually or in pairs to get familiar with the
COTS and architectural and design patterns. The main work
of the project is carried out in the phases 3–5 and includes
requirement specification, architectural design, architectural
evaluation, implementation, and testing. The students pro-
duce a delivery for each phase, which is evaluated by the
course staff, and feedback is given to improve before the final
delivery. At the end of phase 5, the students will produce a
final delivery, which is evaluated and graded by the course
staff. After completing phase 5, the students have to answer
a questionnaire that focuses on how the students perceive
the project. In phases 6, the students must carry out a
postmortem analysis of their project as a whole to reflect on
their successes and their challenges.

4. Results

In 2010 and 2011, the students could choose to do the project
using three COTS: Robot (Java), XNA (C#), and Android
(Java). The students’ selection of COTS is shown in Figure 1,
where 36 students chose Khepera robot (19%), 55 students
chose XNA (27%), and 102 students (54%) chose Android.
Of the students that chose Android, 58 students (57%) chose
social application versus 44 students (43%) game. If we look
at the domains the students chose we see that 51% chose
game development, 30% chose social applications, and 19%
chose robot controller.

The statistics of Figure 1 clearly reveal that the majority
of students prefer game development compared to other
domains. And Android is the most popular COTS by far,
and we believe this is due to its openness for developers,
development in Java, attractive devices, innovative features
and development, and a new way of sharing developed appli-
cations through Android marked.

In the first phase of the project, the students were asked to
fill in a questionnaire on the reasons to choose the COTS and

4 International Journal of Computer Games Technology

Distribution of domains

Social app.
30%

Khepera
robot
19%

Game
51%

(a)

Distribution of COTS

Khepera
robot
19%

XNA
28%

Android
53%

(b)

Figure 1: Distribution of selection of type of software architecture projects.

Table 1: GQM table.

Analyze Software development project

For the purpose of Comparing social application versus game application domain on same COTS

Goal With respect to Difference and effectiveness of two domains of the projects

From the point of view of Researcher and educator

In context of Students in software architecture course

Questions

Q1: Are there any dif-
ferences in how the stu-
dents perceive the project
for students choosing an
Android game project ver-
sus students choosing an
Android social project?

Q2: Are there any differences
in the software architectures
designed by students doing an
Android game project versus
students doing an Android
social project?

Q3: Are there any differ-
ences in the implemen-
tation effort in the pro-
ject by students doing
an Android game project
versus students doing an
Android social project?

Q4: Are there any dif-
ferences in the perfor-
mance of students doing
an Android game project
versus students doing an
Android social project?

Metric

M1: Number of students
choosing game project
versus social project.

M3: Project reports M4: Source code files M6: Project score

M2: Questionnaire survey
with 5-Level Likert Scale:
Strong disagree (1), Dis-
agree (2), Neutral (3),
Agree (4), Strong Agree
(5)

M5: Time spent

domain. The top reasons list was: (1) programming reason
(familiar with Java or C#) (70.7%), (2) to learn about the
COTS (Robot, XNA, Android) (59.5%), (3) games motiva-
tion or amusement reasons (40.1%), (4) social application
motivation (39.5%), (5) to learn about the domain (robot,
game, social) (34.2%), (6) hardware motivation, running
games on Android phone, Zuneplayer (33%), and (7) make
games for Android Market or XNA club (24.5%). From
above data, we found that the game domain has advantages
in drawing students’ attention and its attractive peripherals,
like hardware or software markets, and so does android social
domain. This was not the case for the Robot domain.

The following subsections focus on the analysis of
whether the domain game versus social causes any significant
different output in the following four aspects: (1) students
perception of the project, (2) the design complexity of
software architectures, (3) students’ implementation effort in
the project, and (4) students’ score in projects.

4.1. Differences in How Students Perceived the Project. A pro-
ject survey was conducted one week after the students com-
pleted their software architecture project. The goal of this
survey was to reveal possible differences in the students’
perception of the project between teams working with social
projects versus teams working with game projects on the
same COTS—the Android platform. Statements in the sur-
vey made the students reflect on how the project helped them
to learn software architecture.

The hypothesis defined for this survey was the following.

H0: There is no difference in how students doing game
project and social project on the same COTS-
Android perceive the software architecture project.

To test hypothesis we used Kruskal-Wallis Test [26]
since it is a nonparametric method for testing equality of
population medians among groups [24]. This test is usually
for (1) users cannot assume a normal population and (2) the

International Journal of Computer Games Technology 5

Table 2: Wilcoxon Test of the statements PS1-PS11.

Statement COTS Average Median Standard deviation P

PS1: I found it difficult to evaluate the
other group’s architecture in the ATAM?

Game 3.45 4 1.06
0.178

Social 3.77 4 0.91

PS2: I found it difficult to focus on our
assigned quality attributes

Game 3.05 3 1.09
0.024

Social 3.57 4 0.85

PS3: I found it easy to integrate known
architectural or design patterns

Game 3.21 3 0.93
0.332

Social 2.94 3 1.03

PS4: I spent more time on technical
matters than on architectural matters

Game 3.71 4 1.20
0.175

Social 4.06 4 1.03

PS5: I have learned a lot about software
architecture during the project

Game 3.50 4 0.86
0.552

Social 3.31 4 0.99

PS6: I would have chosen another project
if I could go back in time

Game 1.13 1 0.34
0.289

Social 1.20 1 0.41

sample sizes of the two groups are different. Table 2 shows the
results of Kruskal-Wallis Test on the statements PS1–PS6. 38
of 44 game project students replied while 35 out of 58 social
project students replied the questionnaire. Each item in the
questionnaire is responded to by assigning a scale value from
1 to 5, where 1 indicates strong disagreement and 5 indicates
strong agreement.

From the test results, the lowest significant difference
(P ≤ 0.05) in questionnaire’s response is PS2 (P = 0.024).
We conclude that the Android game and Android social have
significant difference on the students perceiving the difficulty
to focus on the assigned quality attributes in the project.
The median of Likert scale score is 3 for android game, but
4 for android social. It indicates that android game project
students were neutral on this PS5, but social project students
have a tendency on the agreement of PS5. One possible
explanation is that quality attribute, like termsmodifiability
or testability linked to a game concept, is easier to imagine
and catch the students’ attention to look into it. But social
applications may have more fixed impression in students’ life
and cause less deep effect than games to motivate students to
think. Others statement have no significant difference from
students perception.

Further, even there is no significant difference for the
two other low P values, the average value of PS1 and PS4
still indicates that students from game project found it less
difficult to evaluate the other group’s architecture in the
ATAM and spent less time on technical matters than the
students from social projects. In addition, PS6: the students
had to answer whether they would have chosen another
project if they could go back in time. Figure 2 shows more
detailed statistics for it.

Figure 2 shows that there is a higher percentage of the
social project students that would have chosen another
project (20%) compared to the game project students (13%).

As an overall, the survey reveals one significant difference
that students from game projects have a better focus on
quality attributes. Statements got low P values (P1, P2,
P4) that revealed the tendency that game teams receive
more positive feedback than the social teams on how they
perceived the project.

120

100

80

60

40

20

0

(%
)

13%

87%

20%

80%

Other projects
Same project

Android game Android social

Figure 2: Reponses to PS6: would you have chosen the same project
if you could go back in time.

4.2. Differences in the Design of Software Architecture. It is
difficult to evaluate software architectures empirically, but
we have chosen to do so by comparing the number of
design patterns the students used, the number of main
modules/classes identified in the logical view of the software
architecture, and the number of hierarchical levels in the
architecture. We admit that that there are many sources
of errors in this comparison, as the two domains are so
different. However, the emphasis in this course is on using
software design patterns and presenting the different views
of the software architecture in sufficient detail with emphasis
on the logical view. The empirical data should highlight the
differences between the two types of projects if any. The
empirical data has been collected by reading through and
analyzing the final project reports from 12 game project
teams and 16 social project teams.

6 International Journal of Computer Games Technology

Template 4%

Mock object
4%

State 24%

Abstract factory
24%

Singleton
8%

Observer
28%

Wrapper
4%

Design pattern percentage for game project

Façade 4%

(a)

State 5%

Template
11%

Singleton
32%

5%

Observer
42%

Factory
5%

Design pattern percentage for social project

Façade

(b)

Figure 3: Distribution of usage of design patterns for game and social projects.

Table 3: Number of design patterns used.

Average Standard deviation Max Min

Design Patterns
Game 2.67 1.92 7 1

Social 1.56 0.73 3 1

4.2.1. Use of Design Patterns. Table 3 presents the descriptive
statistics of the number of architectural and design patterns
used in the Social and the Game projects. The results in
Table 3 indicate that there are some differences in how
patterns are used in the two types of projects.

Table 4 presents Kruskal-Wallis Test results and shows
that there are no statistically significant differences in the
number of design patterns produced by the two different
project types.

Table 4 indicates no statistically significant difference for
the number of design pattern used for the two types of
projects. From reading through the projects reports, Figure 3
presents the distribution of design patterns used by social
teams and by game teams. The charts show that the Observer
was the most popular for both types of project. Further, the
Abstract Factory and State pattern was among the top three
for Game teams, singleton and template pattern was among
the top three for social teams. The Game projects had more
diversity in applying architecture and design patterns than
social project. For instance, game projects used eight design
patterns compared to six design patterns in social projects as
shown in Figure 3.

Even there is no significant difference, but the low P value
is close to 0.1. The median in Table 4 implies that game teams
used more design patterns in their projects, it may cause
that game projects used more types of patterns than social
projects in an overall statistics shown in Figure 3.

4.2.2. Software Architecture Complexity. Two metrics were
chosen to indicate the complexity of the software architecture
[24]: (1) the number of main modules or main classes
described in the logical view of the software architecture and

(2) the number of hierarchical levels in the model presented
in the logical view of the software architecture. The reason
the logical view was chosen for computing complexity is that
the logical view is the main one that gives the best overview
of the designed architecture. Table 5 lists the measurements
of the number of main modules/classes and the number
of hierarchical levels in the logical view of the software
architecture for social and game projects.

Table 5 shows that the game project teams on average
have almost four more main modules/classes (28%) than the
social teams, and the standard deviation is lower. Further, the
number of levels in the architecture in game projects can be
decomposed into almost twice as many levels compared to
social projects.

Table 6 gives the results from Kruskal-Wallis Test on a
number of main modules/classes and numbers of levels in the
architecture. Both of the tests give low P values (P < 0.05).
Specifically, the tests show that there is statistically significant
difference on the number of main classes and levels in
architecture. From this result, it implies game project has
more complexity in architecture levels than social projects;
it may be due to the fact that they used more patterns to
implement their game projects that cause this difference.

4.3. Differences in the Effort Put into the Project. To evaluate
the effort of each project that students put into it, two
indicators are used as the measurement criteria: (1) time
spent on the project and (2) structure and size of project files
and number of lines of code.

4.3.1. Time Spent. We have asked students to estimate on
how many hours the project teams worked in the software

International Journal of Computer Games Technology 7

Table 4: Hypothesis tests on number of design patterns used.

Hypothesis COTS N Median P

No difference in number of used design patterns
Game 12 2

0.111
Social 16 1

Table 5: Measurement of software architecture complexity.

Numbers of main modules/classes Number of levels in architecture

Game Social Game Social

Average 14 9.7 3 1.75

Standard deviation 4.9 6.6 0.6 0.77

Max 21 28 4 3

Min 7 3 2 1

Table 6: Hypothesis tests on architectural complexity.

Hypothesis COTS N Median P

No difference in number of main modules/classes
Game 12 14

0.021
Social 16 7

No difference in number of levels in architecture
Game 12 3

0.000
Social 16 2

Table 7: Time spent on the project for each team.

Time per team (hours) Game Social

Average 334 338

Standard deviation 133.7 114.7

Max 520 535

Min 110 183

architecture project during the phases 3–5 (core phases of the
project). Table 7 shows the estimated number of hours given
by each team.

Based on each team’s time effort, we ran the Kruskal-
Wallis Test on the difference on hours spending in the project
for each team.

From previous results, there is no statistically significant
difference on time spent on the project for game teams and
social teams. On contrary, the time spending distribution in
both projects is quite similar.

4.3.2. Project Analysis. Further, we chose to look at metrics
from the implementation to give an estimate on how
much was produced during the project. It can give a good
indication of the complexity of the software architecture
and the resulting implementation of the application [24].
Since both types of teams used Android and the domains
are comparable in terms of complexity, we expected to find
difference in productivity. During the development process,
they were free to use online resource or other open source
libraries for Android to save coding time for the software
architecture design.

The following metrics were chosen to compute the effort
of the student teams: (1) number of source Files (NoF); (2)

number of comments in code (NoC); (3) lines of source code
not counting empty lines or comments (LoC).

Table 9 presents a comparison of the implementation
metrics for the game projects and social projects, only java
code files to be counted in the table, and the external library
code files and resource files are excluded.

Table 10 shows the results from Kruskal-Wallis Test on
the difference in the number of files and the number of lines
of code produced by the two different types of project.

The results from the Kruskal-Wallis Test indicate that
there is no statistically significant difference in LoC between
the two types of project. But the low P value is close to
0.1. The average value from Table 9 indicates game teams
put more effort on the implementation, like coding, making
comments, structure codes into more files during the project.

From the Tables 7, 8, 9, and 10, we can find the game
project teams have produced on average almost one third
as much code (133% more) in similar time spending (334
versus 338). It implies that game project teams are more
productive to put effort in coding, comments to construct a
complex game software architecture in similar time spending
than social project teams.

4.4. Difference in the Project Grades. The project score is
between 0 and 30 points and takes 30% of the final grade.
The project grades intervals are classified as: A: score ≥90%;
B: score ≥80% and score <90%; C: score ≥60% and score
<80%; D: score ≥50% and score <60%; E: score ≥40% and
score <50%; F: score <40% (fail).

In order to investigate if there were any differences in how
the group scored (0–30 points) on the project for students
that has chosen game and social projects on Android, the
Kruskal-Wallis Test was used to test this hypothesis, as we
cannot assume a normal population and the sample size of

8 International Journal of Computer Games Technology

Table 8: Hypothesis on hours spending.

Hypothesis COTS N Median P

No difference in time spending for each team
Game 12 362

0.889
Social 16 334

Table 9: Implementation metrics from the architecture projects.

NoF NoC LoC

Game Social Game Social Game Social

Average 37 24 1016 536 2585 1949

Standard deviation 13 13 807 755 1172 1368

Max 54 45 2571 2886 4173 5082

Min 15 5 206 37 844 390

Table 10: Hypothesis tests on project implementation codes.

Hypothesis N Median P

No difference in number of lines of code
Game 12 2672

0.114
Social 16 1523

the two groups is different. Table 11 presents the results of
the Kruskal-Wallis Test on the difference in project grades for
each game and social student.

There is no significant difference in the project score
using same COTS for development. We run the social project
in 2010 and game project in 2011 separately. The project
implementation requirements and templates are keeping the
same from phase 3 to 6 in two years, and evaluation process
and persons are the same; we can identify that students
accomplished both projects under the same conditions. It
reflects the difficulty could be similar. So, we only make a
conclusion on the project score has no significant difference.
In order to get an overview of the scores, Figure 4 gives the
distribution of grades on the project for the two types of
projects (game versus social).

5. Validity Threats

We now turn to what are considered to be the most impor-
tant threats to the validity of this evaluation.

5.1. Internal Validity. The internal validity of an experiment
concerns “the validity of inferences about whether observed
covariation between A (the presumed treatment) and B (the
presumed outcome) reflects a causal relationship from A to
B as those variables were manipulated or measured” [27]. If
changes in B have causes other than the manipulation of A,
there is a threat to internal validity.

There are two main internal validity threats to this eval-
uation. The first internal threat is that the sample of two
groups used in the evaluation is not randomized. The
students were allowed to choose either an Android game
or an Android social project. We do not believe that one
specific type of student chose one project over the other,
thus harming the evaluation results. The second internal

60

50

40

30

20

10

0

(%
) 32%

22%

43%

55%

18%
19%

7%

2% 0 2% 0 0

Game
Social

A B C D E F

Distribution of project score

Figure 4: Grades distribution on project.

threat is if there were any differences, how the students
had to perform the project independently of the domain
chosen. Independently of doing a social or a game project,
the students had to go through exactly the same phases in the
project and deliver exactly the same documents based on the
same document templates in both 2010 and 2011. We have
identified one difference in how the two types of projects
were carried out. The 1-2 phases of the project phase were
different for the game and social projects students. These two
phases are not a part of inclusive data and material used to
evaluate the project. We do not believe that these differences
have had any major impact in the way the students did or
performed in their projects since it is the preparation phases,
that we noticed and excluded of them.

International Journal of Computer Games Technology 9

Table 11: Kruskal-Wallis Test on different in project score.

Hypothesis COTS N Median P

No difference in project score groups get from doing
Game versus Social project

Game 44 26
0.997

Social 58 26

5.2. Construct Validity. Construct validity concerns the
degree to which inferences are warranted, from (1) the
observed persons, settings, and cause- and effect-operations
included in a study to (2) the constructs that these instances
might represent. The question, therefore, is whether the
sampling particulars of a study can be defended as measures
of general constructs [27].

In the evaluation of using Android project in a software
architecture course our research goal was to investigate the
difference and similarity of game project and social project
on Android platform. The GQM approach was chosen to
detail this goal into four research questions with supporting
metrics. In order to give answers to these four research
questions the data sources and metrics available from our
software architecture course were chosen. It cannot be
claimed that the selected data sources and metrics in our
evaluation give evidence for all the conclusions, but they are
all strong indicators contributing to a picture that describes
the differences between the two project types. Through the
evaluation we have used various methods for comparing the
results. The choice of methods is based on the best way of
describing and visualizing the differences between the two
groups using the available data.

5.3. External Validity . The issue of external validity concerns
whether a causal relationship holds (1) for variations in
persons, settings, treatments, and outcomes that were in the
experiment and (2) for persons, settings, treatments, and
outcomes that were not in the experiment [27].

The results reported in this paper are most relevant for
other teachers thinking of introducing game projects as a
part of their software architecture course. Further, the results
are also relevant for teachers that want to introduce game
projects in SE and CS courses, as many of these courses have
similar characteristics. A limitation of this study is that the
subjects in the evaluation are CS or SE students who have
completed their first three years. It is not evident that the
results are valid for students without any or less than three-
year background in CS or SE.

6. Conclusions

Based on our previous experiment of using XNA and current
experiment of using Android in software architecture, we
found game motivation and surrounding interesting periph-
erals are one of the most attractive factors. Besides the intro-
duction of a new COTS-Android in a software architecture
course, the goal of this paper is to identify the difference
output of same COTS and get evaluation result to answer the
four research questions.

The first research question asked is if there are any
differences in how students choosing Android game versus

Android social projects perceived the software architecture
project (RQ1). The statistically significant finding is that
social project students found it more difficult to focus on the
assigned quality attributes than game project (P = 0.024).
Other data from lower P value also reflect that game teams
have more positive attitudes towards project requirements
than the social team. In addition, the results show that 20%
of the students doing an Android social project would have
chosen the other projects if they had to do the project again,
which is more than the android game project students.

The second research question asked is if there are any
differences in how students choosing Android game versus
social projects designed their software architectures (RQ2).
Even the analysis of the project reports concludes that no
significant difference on the used design patterns, but the
low P value close to 0.1 reveals that game teams applied
more diverse patterns in their projects than social team.
Further, the statistically significant difference shows that the
software architectures produced in game projects were on
average more complex than the architectures produced in
social projects (P < 0.05).

The third research question asked is if there were any
differences in the effort the students put into the project
when they worked with an Android game or an Android
social project (RQ3). The results show that in similar time
spending, teams working with game projects produced on
average almost 133% as much code as teams working with
Android social projects, and game project students had
customs to make twice detailed comments on the codes and
organized codes into more files than social projects students.

The fourth and final research question asked is if there are
any differences in the performance of students doing a Game
project versus students doing a Social project (RQ4). The
comparison of the two types of projects showed that there
was no statistically significant difference in the project.

According to the previous conclusion and compared
with previous research on XNA and Robot project used
in software architecture course [24], we found that there
exist quite similar conclusions for both game domain (XNA
and Android game) in respect to (1) stable popularity of
game domain; (2) better perception of project from students
aspect (3) more design patterns used and high complexity
of software architecture (4) same output in project score as
social project.

Referring to Android COTS specifically, the main differ-
ences from Android game projects could be used as an inter-
esting and effective tool in software architecture teaching
aspect to motivate students on design of complex architec-
ture with applying more patterns and more productive cod-
ing work than Android social projects. Further, compared to
XNA and Robot simulator, Android is an attractive platform
to the students from the students’ survey, that encourages us

10 International Journal of Computer Games Technology

to conduct more practices on improvement of using Android
as a development tool in software engineering practices and
inspires us the possibility to bring more choices, like iPhone
SDK into COTS domains.

References

[1] S. M. Dorman, “Video and computer games: effect on children
and implications for health education,” Journal of School
Health, vol. 67, no. 4, pp. 133–138, 1997.

[2] M. Prensky, “Digital game-based learning,” Computers in
Entertainment, vol. 1, pp. 21–24, 2003.

[3] J. Blow, “Game development: harder than you think,” Queue,
vol. 1, pp. 28–37, 2004.

[4] K. Sung, C. Hillyard, R. L. Angotti, M. W. Panitz, D. S.
Goldstein, and J. Nordlinger, “Game-Themed Programming
Assignment Modules: a pathway for gradual integration of
gaming context into existing introductory Programming
Courses,” IEEE Transactions on Education, vol. 54, no. 3, pp.
416–427, 2010.

[5] A. I. Wang and B. Wu, “An application of a game development
framework in higher education,” International Journal of Com-
puter Games Technology, vol. 2009, no. 1, Article ID 693267, 12
pages, 2009.

[6] B. A. Foss and T. I. Eikaas, “Game play in engineering educ-
ation—concept and experimental results,” International Jour-
nal of Engineering Education, vol. 22, no. 5, pp. 1043–1052,
2006.

[7] G. Sindre, L. Natvig, and M. Jahre, “Experimental validation of
the learning effect for a pedagogical game on computer fund-
amentals,” IEEE Transactions on Education, vol. 52, no. 1, pp.
10–18, 2009.

[8] A. I. Wang, “An evaluation of a mobile game concept for lect-
ures,” in Proceedings of the IEEE 21st Conference on Software
Engineering Education and Training, 2008.

[9] A. I. Wang, T. Øfsdahl, and O. K. Mørch-Storstein, “LECTURE
QUIZ—a mobile game concept for lectures,” in Proceedings of
the 11th IASTED International Conference on Software Engi-
neering and Application (SEA ’07), 2007.

[10] M. S. El-Nasr and B. K. Smith, “Learning through game mod-
ding,” Computers in Entertainment, vol. 4, no. 1, pp. 45–64,
2006.

[11] G. Lukas, “Uses of the LOGO programming language in
undergraduate instruction,” in Proceedings of the ACM Annual
Conference, vol. 2, Boston, Mass, USA, 1972.

[12] M. Micco, “An undergraduate curriculum in expert systems
design or knowledge engineering,” in Proceedings of the 15th
Annual Conference on Computer Science, St. Louis, Mo, USA,
1987.

[13] M. Habgood, S. Ainsworth, and S. Benford, “The educational
and motivational content of digital games made by children,”
in Proceedings of the Virtual Learning (CAL ’05), Bristol, UK,
2005.

[14] Yulia and R. Adipranata, “Teaching object oriented program-
ming course using cooperative learning method based on
game design and visual object oriented environment,” in Pro-
ceedings of the 2nd International Conference on Education Tech-
nology and Computer (ICETC ’10), pp. V2355–V2359, June
2010.

[15] L. Werner, J. Denner, M. Bliesner, and P. Rex, “Can middle-
schoolers use Storytelling Alice to make games? Results of a
pilot study,” in Proceedings of the 4th International Conference

on the Foundations of Digital Games (ICFDG ’09), pp. 207–214,
Orlando, Fla, USA, April 2009.

[16] J. Robertson and C. Howells, “Computer game design: oppor-
tunities for successful learning,” Computers and Education, vol.
50, no. 2, pp. 559–578, 2008.

[17] S. Kurkovsky, “Can mobile game development foster student
interest in computer science?” in Proceedings of the 1st Inter-
national IEEE Consumer Electronic Society’s Games Innovation
Conference (ICE-GiC ’09), pp. 92–100, August 2009.

[18] B. Ahmed and M. Steve, “Using ATAM to evaluate a game-
based architecture,” in Proceedings of the 20th European Con-
ference on Object-Oriented Programming ECOOP, Workshop on
Architecture-Centric Evolution (ACE ’06), Nantes, France,
2006.

[19] L. Bass, P. Clements, R. Kazman et al., Software Architecture in
Practice, Addison-Wesley Professional, 2nd edition, 2003.

[20] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere et al., “The architecture tradeoff analysis method,” in
Proceedings of the 4th IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS ’98), pp. 68–
78, 1998.

[21] A. I. Wang and T. Stålhane, “Using post mortem analysis to
evaluate software architecture student projects,” in Proceedings
of the 18th Conference on Software Engineering Education and
Training (CSEE & T ’05), pp. 43–50, April 2005.

[22] WSU, Download WSU KSuite 1.1.2., 2009.
[23] B. Wu, A. I. Wang, J. E. Strøm, and T. B. Kvamme, “An evalu-

ation of using a Game Development Framework in higher
education,” in Proceedings of the 22nd Conference on Software
Engineering Education and Training (CSEET ’09), pp. 41–44,
February 2009.

[24] A. I. Wang, “Extensive evaluation of using a game project in a
software architecture course,” ACM Transactions on Comput-
ing Education, vol. 11, no. 1, article 5, 2011.

[25] V. Basili, “Software modeling and measurement: the Goal/
Question/Metric paradigm,” 1992.

[26] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-
criterion variance analysis,” Journal of the American Statistical
Association, vol. 47, pp. 583–621, 1952.

[27] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental
and Quasi-Experimental Designs for Generalized Causal Infer-
ence, Houghton, Mifflin and Company, Boston, Mass, USA,
2002.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

