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Antônio Carlos Ave, 6627

Belo Horizonte, Brazil
hpcouto@ufmg.br

2University of Padova
Stradella San Nicola 3,

36100
Vicenza, Italy

name.surname@dei.unipd.it

3Norwegian University of
Science and Technology

7034 Trondheim, Norway
elisabetta.tedeschi@ntnu.no

Acknowledgments
The authors are grateful to CAPES, CNPq (grant 420850/2016-3) and the Research Council of Norway
(f261735/H30) for supporting the NB POCCREI project. The first author is a CNPq aid recipient.

Keywords
�Converter control�,�Harmonics�,�Power quality�,�Voltage Source Inverters (VSI)�.

Abstract
This paper proposes a power control loop strategy for Voltage-Source Inverters (VSIs), based on the use
of abc frame PI controllers. Its physical behaviour and mathematical model are presented in detail and
the inverter output impedance is derived to analyze the obtained disturbance rejection performance. The
results show that the proposed scheme is capable of effectively rejecting disturbances originating from
the grid voltage, achieving current THD as low as 2.45% even with a voltage THD of 28.3%.

Introduction
Renewable power sources are usually interfaced with the electrical grid through power converters that
must comply with standards, such as the IEEE Std 1547-2018 [1], that establish requirements for the con-
nection of the distributed generators (DGs) to the grid, also in terms of power quality. The current THD
is an important index which should be kept below specific limits and is affected by both the converter
control and preexisting distortions in the voltage of the Point of Common Coupling (PCC). To ensure
a suitable operation, complying with the standards requirements, a grid-connected converter must be
equipped with a control system that presents an adequate performance even under non-ideal conditions
and is capable of rejecting disturbances coming from the grid voltage.

A number of works discuss and evaluate strategies for current control in grid-connected VSIs. The most
common controllers are the Proportional-Integral (PI), implemented in natural or synchronous reference
frames, the Proportional-Resonant (PR) or Proportional-Integral-Resonant (PI-R) [2, 3], and the Dead-
Beat (DB) [4, 5]. For the natural frame PI, the biggest constraint is its inherent bandwidth limitation,
which causes steady-state error when tracking time-varying references. To overcome this limitation,
the Park transformation is widely used, since it allows to represent the error signals as DC values in
the dq synchronous frame, where PI controllers ensure zero steady-state error. Still, it does not allow
the elimination of oscillations that appear in the dq signals under unbalanced grid conditions, requiring
the use of two controllers to independently regulate the positive and negative sequence components [6].
Similarly, for harmonic compensation, a reference frame has to be used for each frequency. However,
in case of single-phase applications, the Park transformation cannot be directly applied, so a quadrature
voltage signal has to be synthesized, which is typically done by displacing the measured voltage by a



quarter fundamental period. In [7] a simplified method to calculate the dq components is proposed,
improving the system dynamics, but the other aforementioned problems remain unaddressed.

PR and PI-R controllers solve the drawbacks of the natural frame PI. Their high gain at selected fre-
quencies leads to an increase of the Dynamic Stiffness (DS) [8, 9] of the system, which is a measure of
its disturbances rejection capability. Thus, these types of controllers provide good results, even in very
adverse grid conditions, and can be used for selective harmonic compensation [10]. The drawback with
respect to the PI is an increased complexity and implementation difficulty, especially when the control
of multiple harmonic components is required.

Finally, there are several works reporting good results with the use of Dead-Beat controllers. This type
of controller is relatively simple and capable of regulating harmonic components without the need for
several parallel units, which is an advantage over the resonant controllers. However, its optimum per-
formance requires a fairly good knowledge of the controlled system’s parameters, posing an additional
requirement with respect to the PI implementations.

This paper presents a power control method for single-phase grid-connected inverters, whose objective
is to regulate the active and reactive power flow supplied by the DG, while guaranteeing the low current
harmonic distortion. This method is based on a double-loop system in which the outer loop tracks the
disturbance current and changes the inner loop reference signal to eliminate the circulation of harmonics.

System configuration
The system studied in this paper is composed of a single-phase VSI, supplied by a Renewable Energy
Source (RES). As this paper focuses on the connection between the inverter and the grid, for simplicity,
the RES and any conditioning circuits, such as DC-DC or AC-DC converters, are simplified and, thus,
represented as a DC voltage source. The grid is modelled as a Thèvenin equivalent and the inverter is
connected to it through an LC filter. Since DGs are connected mainly in distribution networks, whose
capacitive component is normally negligible, its effects are not considered.

Fig. 1: Circuit of the grid-connected VSI

Current control
The inverter-side current control loop is shown in Fig. 2, where Ci(s) represents the current controller,
Gd(s) = e−sλTs , where Ts is the sampling period, represents the computational delay resulting from the
analog-to-digital conversion and control algorithm calculation.In real applications, λ is typically either
0.5 or 1 [12], but, because of the modulation used, λ is considered equal to 1 herein. Cpk is the PWM
carrier peak-to-peak amplitude, DPWM is the digital PWM model, Gconv(s) = 2VDC is the converter
transfer function (TF) for three-level PWM, Hi is the current transducer gain and vpcc is the voltage at the
Point of Common Coupling (PCC). Given that the filter capacitor value is small, the output impedance,
Z f = sL f +R f , can be approximated by a RL system, except near the resonance between C f and Lg.

The model of the digital PWM is thoroughly discussed in [11] and, thus, its derivation is not presented
herein. In this paper, it is assumed the use of a uniformly sampled PWM with double update and tri-
angular carrier whose amplitude goes from 0 to 1 (Cpk = 1). Its TF and simplification by means of the
Padé approximation are shown in (1). From this analysis, it is possible to see that there are two different
sources of delay in the system, the PWM and the computational time. To simplify the system represen-
tation, it is possible to consider a single delay, whose value is equal to their sum, by increasing the PWM



Fig. 2: Inverter-side current control loop

sampling time by λTs, as shown in (2). Considering all those definitions, the open-loop TF of the current
control loop can be determined as shown in (3):
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Dynamic Stiffness

To evaluate the disturbance rejection capability of the system, the concept of DS, as defined in [8], is used.
This quantity is defined as the capability of a system to reject a determined disturbance and quantified as
the amplitude of the perturbation needed to produce a unit variation in the output. This concept can be
used to analyze any system, but, in this particular case, the system’s DS is equal to the output impedance
of the inverter (Zout) and, thus, has unit of [Ω]. It can be derived from the current control loop block
diagram in Fig. 2 as the inverse of the TF between I f and vpcc. This diagram is redrawn in Fig. 3 to
clearly show its derivation and the resulting expression is shown in (4). It is straightforward that a higher
impedance makes the system less susceptible to perturbations in the grid voltage.

Fig. 3: Block diagram for determination of the output impedance

Zout(s) =
vpcc

I f
(s) =−

(
VDC ·DPWM(s) ·Ci(s)

Hi
+Z f

)
(4)

Equation (4) shows that the magnitude of Zout is directly proportional to the controller TF and, thus,
explains why high-gain controller configurations have better disturbance rejection capability.

It is well known that the Proportional-Resonant has high gain on specific harmonics, which leads to a
high output impedance at those frequencies. The Dead-Beat has a high gain and, thus, yields a very high
output impedance in a wide range of frequencies [5]. As such, the disturbance rejection capability of the
current control loop is very high when these kinds of controllers are used. The traditional PI controllers,
however, have poor disturbance rejection capability due to its low gain in high frequencies. This leads to
a poor performance when the inverter is connected to a grid with highly distorted voltage.



Fig. 4: Zout for the current loop with PI and PR controllers

Table I: Data Points of Fig. 4

Freq [Hz] Mag [Ω] Ph [deg]
60 74.3 -80.6
180 25.9 -62.1
300 16.9 -44.5

Proposed control strategy
In the last section, it was discussed that using a PI as current controller may render the system susceptible
to the circulation of disturbance currents due to its low resulting output impedance. However, this section
demonstrates that this type of controller can achieve better results as long as an outer control loop is
responsible for rejecting disturbances, as is the case of the strategy proposed herein.

Fig. 4 shows the Bode diagram of (4), with Ci(s) being a PI controller. The fundamental grid frequency
(60 Hz) and the third and fifth harmonics are highlighted. It can be seen that the impedance drops
when the frequency increases, following the behaviour of the PI controller gain, yielding a low value in
middle-range frequencies. Since the most significant voltage harmonics are usually located in the range
between 180-900Hz, this deteriorates the system performance when the grid voltage is distorted. In
higher frequencies, however, the impedance magnitude starts to rise again, due to the natural behaviour
of the filter inductors. For comparison, the output impedance for the PR controller is also shown. It can
be seen that, as expected, the output impedance is much higher on the selected frequencies.

Having determined the output impedance frequency response, it is possible to analytically determine the
disturbance currents if the respective voltage harmonic are measured, as shown in (5), where ω0 is the
fundamental frequency in [rad/s]. This suggests that the disturbances can be completely eliminated if
the system imposes an opposite current through the filter. However, to achieve this, it is not sufficient
to use the opposite of Ih as reference for the current control loop. While for low frequencies this may
yield good results, at high frequencies it is necessary to account for the current loop dynamics. Thus,
to completely eliminate the disturbance currents, the reference has to be defined as shown in (6), where
Gi(s) = I f (s)/I∗f (s) represents the closed-loop TF of the current control.

Ih( jhω0) =
VPCC( jhω0)

Zout( jhω0)
(5)

I∗h ( jhω0) =−
Vg( jhω0)

Gi( jhω0) ·Zout( jhω0)
(6)

To test this assumption, a current-controlled grid-connected single-phase inverter is simulated in MAT-
LAB/Simulink. In this simulation, the grid voltage had a fundamental magnitude of 127V RMS and
20% of both third and fifth harmonic components. Even though such a heavy distortion almost never
occurs in real applications due to stringent grid codes, this severe condition is considered to test the con-
troller’s performance in an extreme situation. Additionally, for simplicity, all components are set with
zero phase-shift; however, this assumption does not cause a loss of generality.



First, the current reference is set to zero and I f is measured to determine the disturbance current. Fig. 5
shows the resulting waveform and Table II shows the magnitudes of each harmonic component, deter-
mined with the use of an FFT. It can be seen that these components are equal to the result of (5) if the
impedance values shown in Fig. 4 and the respective voltage amplitudes are considered. In a follow-
ing test, a reference signal composed of the fundamental, third and fifth harmonics, each one calculated
according to (6), is applied as reference to the current control in an open-loop configuration and I f is
measured again. The result of this test is also shown in Table II and Fig. 5. It is evident that the compen-
sation yielded very good results, almost eliminating the disturbance completely. Even better results can
be achieved by considering the grid impedance in the output impedance calculation. However, as this is
a parameter that is not usually known in real situations, it is not considered in this analysis. Nonetheless,
the obtained results are sufficient to validate this equation.

Table II: Disturbance and compensated current components

Signal Harmonic Component
1st 3rd 5th

Grid Voltage (Vpk) 180 36 36
Disturbance Current (Apk) 2.42 1.39 2.11

Compensated Current (Apk) 0.05 0.09 0.27

Fig. 5: Open-loop disturbance compensation

In conclusion, these tests proved that it is possible to reject the disturbance by manipulating the current
loop reference, even if a PI is used as current controller. Nonetheless, as is rather obvious, the open-loop
strategy shown is not feasible for a real application. Thus, it is necessary to develop a more robust system
that behaves in a similar way, but is capable of compensating parameter variations such as deviations
in the measured voltage magnitude and changes in the values of the output filter due to temperature
fluctuations or wear and tear. Hence, the structure shown in Fig. 7 is proposed.

In this structure, a pair of PI controllers, Cp(s) and Cq(s), is responsible for regulating the flow of active
(P) and reactive (Q) power. The output of each one of these controllers is then multiplied by purely
sinusoidal signals, x1 and x̂1, whose frequency is equal to the grid voltage fundamental component,
being the first in-phase with the grid voltage and the second -90 degrees phase-shifted. These signals are
generated by a PLL system, normally used in grid-connected inverters to synchronize the inverter with
the grid voltage. The resulting signals, I∗a and I∗r , are then added, enabling the control of the magnitude
and phase of the fundamental component of the output current. Fig. 6 shows the calculation method
for all quantities and waveforms necessary for the control algorithm. The calculation of the active and
reactive power is done in accordance to (7) [16], where v̂pcc is the integral of the PCC voltage without its
average value, calculated as shown in (8).



Fig. 6: Signal generation algorithm Fig. 7: Proposed control strategy diagram

P =
1
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∫
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∫ t

0
vpcc dτ − ω

Ts

∫
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Besides the active and reactive power control loops, this strategy is composed of N other controller
pairs, being each one responsible for the regulation of one harmonic frequency. The behaviour of these
loops is similar to the fundamental component loop. However, the harmonic distortion associated to
each component is quantified differently. The quantities Dh‖ and Dh⊥ are calculated for each individual
frequency as shown in (9) for the in-phase and quadrature components.

Dh‖ =VRMS ·
Ipk
h‖√
2

Dh⊥ =VRMS ·
Ipk
h⊥√

2
(9)

This topology behaves similarly to what was presented in the test of Fig. 5, in the sense that the current
reference signal is the sum of harmonic currents determined by the grid voltage and output impedance,
corrected by the current loop dynamics. To demonstrate this behaviour, Fig. 8 shows the reference
generated by the analytical calculation of (6) and the power control loop output (I∗f ) of Fig. 7, with all
references set to zero. The box in Fig. 8 details the region around 0.5s. Since all parameters are known,
the analytical derivation is very accurate and the signals are almost identical. If there are parameter
deviations, the power control loop automatically corrects the current reference.

Power controller tuning

To size the power controllers, the open-loop TF of the power loop has to be derived. Even tough the
system is non-linear due to the power calculation algorithm, in which signals are multiplied on the time-
domain, an approximation can be derived. Fig. 6 and Fig. 7 show that the feedback of the power control
loop is done through the PQ calculation algorithm, whose dynamic is slow as the implementation of (7)
is usually done by a Moving-Average Filter (MAF), whose frequency response is complex, but can be
reasonably approximated by a Low-Pass Filter (LPF) [17]. Here, the cutoff frequency of the equivalent
LPF (ωc) is equal to 2π ·15 rad/s.

Fig. 9 illustrates the control loop as a single entity, where Hp = Hv ·Hi is the power base, equal to
the product of the current and voltage sensor gains. In this figure, the regulated quantity is the active
power, however, this structure remains nearly unchanged if a different quantity (Q, Dh‖ or Dh⊥) is to be



Fig. 8: Current references generated by the analytical calculation and proposed strategy

controlled, as only the frequency and phase of signal x1 have to be changed. Hence, the power controller’s
tuning is independent of the frequency and the same Kp and Ki gains can be used for all controllers.

Fig. 9: Active power control loop Fig. 10: Zout considering the power control loop

The instantaneous active power signal, pout , can be calculated as shown in (10). Because of the slow
dynamic of the power control, the current loop, Gi(s), can be approximated as a static gain, Hi. In here,
this approximation is valid for frequencies up to 100Hz. Additionally, because of its low bandwidth, it
is reasonable to assume that the MAF completely rejects the high-frequency component of pout . Thus,
only the average signal value has to be considered for tuning the controller [18]. The open-loop TF is
shown on (11). From this equation, the PI can be tuned by any desired method.

pout = g · xh ·Hi · v = g ·Hi ·Vpk · sin2(hω0t) =
g ·Vpk ·Hi

2
[1− cos(2hω0t)] (10)

GP,Q,D
OL =

Vpk

2Hv

ωc

s+ωc
(11)

Output impedance analysis
The use of the power controller as an external loop increases the inverter’s output impedance at the
selected frequencies. However, since the model derived to tune the PI is simplified, it is necessary to
derive a more complete TF of the system in order to illustrate this behavior.

The PI output is constant in time when in steady-state and I∗f may be either a sine or cosine. The
multiplication by xh can be represented by the division of both signals’ Laplace transforms. Thus:

I∗f ,h‖
g

(s) =
shω0

s2 +(hω0)2

I∗f ,h⊥
g

(s) =
s2

s2 +(hω0)2 (12)

Regarding the second multiplication, because of how the current reference is generated, I f can be con-
sidered a purely sinusoidal signal. However, the PCC voltage may have an undetermined number of



harmonic components. Nonetheless, since the strategy controls the average value of the power quanti-
ties, and the average value of the multiplication between signals of different frequencies is always equal
to zero, these components can be disregarded when analyzing a single harmonic. Treating the power
calculation in the time-domain as a phasor multiplication in the frequency domain and assuming that
the current angle will be either zero or 90◦, the average active power can be defined as shown in (13).
An analogous derivation can be done for all other controlled quantities. Finally, it is necessary to con-
sider the dynamics of the MAF. Hence, it is possible to determine the open-loop transfer function of the
in-phase and quadrature loops, shown on (14).

Pout = |Ia|∠Θa · |vpcc|∠0◦ = |Ia|∠0◦ · |vpcc|∠0◦ =
Ia,pk ·Vpk

2
(13)

G‖OL(s) =
Vpk(hω0)

2Hv

ωc

s+ωc

s
s2 +(hω0)2 G⊥OL(s) =

Vpk

2Hv

ωc

s+ωc

s2

s2 +(hω0)2 (14)

Expanding the current loop on Fig. 9, as shown on Fig. 2, and rearranging the diagram to obtain the TF
between the output current and grid voltage, the system shown on Fig. 10 is obtained. For simplicity,
this diagram is shown with only the P loop, but can easily include as many loops as needed, being all in
parallel with the ones shown. Equation (15), where F(s) = DPWM(s) ·Gconv ·Ci(s), shows the complete
equation for the output impedance of the system. Its Bode diagram is shown on Fig. 11, where it can
be seen that there is a peak at the selected frequencies, like the ones in Fig. 4. However, these peaks
are narrower and their magnitude is bigger, approximating the behaviour of an ideal PR. However, the
proposed topology does not face the same stability issues.

Zout(s) =−
[

Z f (s)+
F(s)
Hi

(
1+∑CP,Q,D(s) ·GP,Q,D

OL (s)
)]

(15)

Fig. 11: Output impedance when applying the power control loops

Simulation Results
To evaluate the proposed strategy, simulations are devised in MATLAB/Simulink. Table III and Table IV
show its parameters. In terms of steady-state performance, it can be seen from Fig. 12 that the system has
a satisfactory behaviour, since the active and reactive power track the reference signals and stabilize in
less than 0.1 seconds. Fig. 13 shows the PCC voltage and filter current waveforms during the steps in the



references. It is evident that the output current has low THD despite the heavily distorted grid voltage.
In fact, an FFT shows that the THD is equal to 3.36% in Fig. 13(a) and 2.43% in Fig. 13(b), being
the present harmonic components associated to the PWM switching. Finally, the figures show that the
current increase is smooth during the transients, avoiding dangerous overcurrents or angle differences.

Table III: System parameters

Parameter Symbol Value
Filter inductance L f 1.0 mH

Filter ESR R f 0.5 Ω

Filter capacitor C f 6.6 µF
Capacitor ESR Rc 1.0 mΩ

Grid inductance Lg 60 µH
Grid resistance Rg 0.12 Ω

DC bus voltage Vdc 400 V
Switching frequency fsw 12 kHz
Sampling frequency fs 24 kHz

Table IV: Controller parameters

Parameter Symbol Value
P Gain - Current Kpi 1.0723 Ω

I Gain - Current Kii 0.1015 F−1

P Gain - Power Kpp 0.8577 V−1

I Gain - Power Kip 0.0066

Fig. 12: Simulation results - Calculated power terms

Fig. 13: Simulation results - PCC voltage and filter current (T HDv = 28.3%, T HDi = 3.36%/2.43%)



Conclusion
This paper presented a scheme to implement the power and current control loops for a grid-connected
inverter. Its physical behaviour was explained in-depth and simulation results were presented to evaluate
its performance. It was shown that low current THD can be achieved even when highly distorted grid
voltage is considered.

The proposed control scheme has the advantage over traditionally used methods such as the Proportional-
Resonant because it is not as complex and can be more easily implemented. Compared to the Dead-Beat
controller, this topology is not as sensitive to parameter variations.
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