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Abstract—Improving the training programs for maritime oper-
ations is beneficial to enhance maritime safety in practice. In this
paper, we propose a novel approach to the assessment of visual
attention in a maritime operation so as to support an expert-
in-the-loop training program. Experts’ knowledge of maritime
operation and experiences in the simulator are incorporated
into the training program in three ways. First, through a
questionnaire, information about task division, identification of
critical operation, and definitions of areas of interest (AOIs) is
incorporated as prior knowledge for modeling visual attention.
Second, a weight scale factor that emphasizes the high importance
of visual focus in critical operations is utilized to generate an
operations-dependent attention map. Third, based on an expert’s
attention map and visual switch between AOIs, a similarity metric
is designed as a comprehensive evaluation between saliency and
visual transition. A case study of heavy lifting operation is
performed by two groups of trainees who have received different
briefings about “critical operation”. The assessment result shows
the group with more detailed briefing obtains a 6% similarity
score higher than the other group, which is consistent with the
debriefing result of a superior performance of that group. The
proposed approach is thus verified effective in assessing visual
attention for the expert-in-the-loop training program.

Index Terms—Area of interest, Eye tracking, Saliency map,
Visual attention, Maritime operation.

I. I NTRODUCTION

RECENT years have seen an increase in maritime ac-
tivities in challenging oceanic regions [1]. Undertaking

demanding maritime operations, such as offshore petroleum
extraction, wind turbine installation, and subsea pipeline de-
ployment in the complicated environment, requires substantial
experience and skills. The increasing complexity of maritime
operations has led to a growing risk of maritime accidents.
Human error is reported the prevailing factor that accountsfor
80% of those occurring worldwide [2]. Significant investments
in training have been made for maritime safety [3]. It is
expected that effective training in a simulated scenario, such
as in a simulator, could provide experience and reduce human
error. Identifying the problems that lead to human error via
visual attention in a training program is vital to accident

The research is supported partially by a grant from the Knowledge-Building
Project for Industry “Digital Twins for Vessel Life Cycle Service” (Project nr:
280703), and partially by a grant from the Research-based Innovation “SFI
Marine Operation in Virtual Environment (SFI-MOVE)” (Project nr: 237929)
in Norway.

The authors are with the Department of Ocean Operations and Civil En-
gineering, Norwegian University of Science and Technology, Ålesund, 6025,
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prevention. Thus understanding trainees’ visual focus with
greater accuracy in a simulator is necessary.

With the development of sensing technology, eye tracking
has been applied as a training tool in various domains,
including surgery,sports, driving, and aircraft inspection [4]–
[8]. Gaze points are tracked by means of high-speed cam-
eras either integrated into wearable glasses or mounted on
desktop systems. These tools generally identify two primary
eye movements: fixation and saccades [9]. Based on the two
types of eye movements, various eye-tracking metrics such as
fixation frequency and dwell time, hit count in AOIs, attention
map, and scanpath can be calculated to build meaningful
representations for visual attention analysis [10]. Considering
these features, it seems likely that applying eye trackers to
maritime operation training will not only offer a means of
perceiving operator’s situation awareness, but also provide a
possible solution to improve the training program in terms of
maritime safety.

Two trends have emerged in research on visual attention.
On the one hand, researchers from psychology have focused
on investigating the correlation between behavior and visual
attention, such as analyzing search patterns of workers for
hazard identification[11] and comparing visual focus in flight
simulators and in-flight [12]. Researchers who study computer
vision, on the other hand, have made efforts to model visual
attention, such as saliency maps and scanpath [13], [14], as
well as visualization [15].

Both steams of research are crucial to training using a
maritime operation simulator. We can improve the training
program from two aspects. First, experts and novices use
different search strategies during operations [11], [16].The
training program should focus on incorporating expertise so
that trainees can learn what to focus on during demanding op-
erations and gain hazard awareness. Second, modeling experts’
visual focus in a simulator could facilitate the assessment
of trainees’ visual attention. However, given the different
operating habits among experts in operation, especially when
performing a critical operation, it is difficult to use ready-made
models (see [13] and references therein) directly.

In this paper, we propose a novel approach that leverages
both experts’ expertise and experiences in maritime operation
to assess trainees’ visual attention in a simulator. The contri-
butions of this paper include:

• A novel framework that brings experts into the loop in
the whole process of creating the training procedure, from
briefing, to training, to debriefing;

• Design of a weight scale factor to prioritize importance
of visual focus in critical operations;
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• A similarity metric based on the generation of experts’
attention models to assess trainee’s visual attention.

II. RELATED WORK

A. Visual Attention Comparison between Expert and Novice

Experience and expertise are considered the main factors
that separate experts’ and novices’ visual attention. Attempts
have been made to investigate the visual focus in simulators
among operators with different level of skills, as well as
different operating abilities [11], [16], [17]. In most of the
comparative studies, visual attention is assessed by comparing
fixation related data, such as fixation location, number, dura-
tion and percentage in specific AOIs. Thereis also research
work that makes use of scanpath patterns to distinguish experts
from novices [18]. These studies suggest that experienced
operators can perform more efficient fixation in operation.
For example, increased expertise requires less fixation to
identify pathology in a surgical assessment [4]; experienced
drivers perform a wider horizontal scan for safety [17]; and
experienced workers exhibit fewer fixations when identifying
hazards [11]. Based on this, the project outlined here prior-
itizes experts’ experience and expertise to design a training
program for maritime operation.

B. Saliency-Based Similarity Metrics

Assessment of visual attention by means of saliency-based
metrics has been a hot topic in the past few decades [13],
[14], [19]. Dozens of similarity metrics have been developed
to evaluate saliency-based attention. Receiver operatingchar-
acteristic (ROC) analysis is one of the most popular methods
[20]. A constant threshold for the salient level of the ground
truth map and a variable threshold for the predicted map are
used. The ROC method compares each pixel’s saliency value
in the map with the variable threshold and classifies it as
either fixated or non-fixated. An ROC curve depicting the
relationship between the false positive rate and true positive
rate of the pixels can be drawn; the area under the curve
represents the similarity between the two saliency maps.
The linear correlation coefficient (CC) is another metric for
comparison between the two saliency maps [21]. It is defined
as the ratio between the covariance of the two saliency maps
and the product of their standard deviations. An absolute value
of CC close to 1 indicates a perfect correlation.

It is possible to use a probability distribution function
to compare saliency similarity. In general, the two saliency
maps need to be normalized as two corresponding probability
distribution functions.Judd et al. designed a similarity metric
that sums the minimum value of the two functions at each
pixel of the map [22]. The similarity score has an upper bound
of 1, which corresponds to identical distribution of the two
saliency maps.In addition, some other similarity metrics using
the probability distribution function like the Kullback-Leibler
divergence metric and the earth movers distance metric have
been applied to compare saliency maps [23], [24].

Instead of directly comparing two saliency maps, there
are methods that evaluate eye fixation by comparing their
corresponding saliency values on a benchmark saliency map.
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Fig. 1. Layout of training center for maritime operations.
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Fig. 2. Integration of experts’ knowledge and their experiences in simulator
into maritime operation training.

For example, the normalized scanpath saliency (NSS) method
standardizes the saliency map with a zero mean and unit
standard deviation and averages the saliency values of all
the tested fixation locations [25]. An NSS value close to 1
represents a good correspondence between the fixation and
the saliency map, whereas a negative NSS value indicates an
opposite correspondence. Peters and Itti proposed a percentile
metric to assess eye fixation on a saliency map [26]. For each
fixation, it counts the number of pixels that have saliency
values smaller than that of the fixation location and normalized
the number by dividing the total number of pixels. The final
score is the average of the normalized values of all the
fixations.

The aforementioned similarity metrics are more focused
on spatial comparison of visual attention. Considering the
importance of temporal information in a critical maritime
operation, a metric that accounts for spatial-temporal similarity
is needed. We will present such a metric in Section IV.
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III. D ESIGN OFEXPERT-IN-THE-LOOP TRAINING

PROGRAM FORMARITIME OPERATIONS

Accurate understanding of trainees’ behavior in maritime
operations especially in terms of situational awareness, is the
most important design criteria for the training program. How-
ever, illustrative techniques to visualize situational awareness
in simulators are lacking until the advent of a new generation
of eye trackers. Taking into account the ability of real-time
tracking of visual focus, as well as the ability for post-analysis
on an attention map, eye trackers are considered a suitable
instrument to be integrated into the simulator.

Fig. 1 illustrates the arrangement of facilities that are used
in our maritime operation training program. An open meeting
mode is established that all related personnel can sit aside
the simulators for briefing and debriefing. The behavior of
the trainee who wears the eye tracker and operates in the
simulator can be visualized on the video wall and replayed if
necessary. The instruction platform plays a role in governing
the training process, from which the instructor is able to adjust
the simulation situation and record critical events.

Inspired by the work in [27], an improved brief-training-
debriefing paradigm that integrates experience and expertise
is proposed, as shown in Fig. 2. The following introduces
the three phases with emphasis on how to apply experts’
experience and their visual attentions to this procedure.

• Briefing: In this phase, trainees are provided with instruc-
tions, goals and rules about the maritime operation. Apart
from these information, some of experts’ assessments,
such as the difficulty of the operation and where the visual
focus should be, are summarized via questionnaire. The
assessment may be based on either past work experience
or from experience in simulators. The added information
will enable the trainees to engage in the operation actively
and effectively.

• Training: The training takes place in theleft spherical
dome, as shown in Fig. 1. A wearable eye tracker is
utilized together with an overhead camera to monitor
the user’s behavior.The type of maritime operations and
the simulation environment including wind, wave and sea
current, are set through the instruction platform. In addi-
tion, operational expertise such as how to identify critical
operations is applied to record corresponding events for
analysis in the debriefing phase.Operational samples
performed by experts in the simulator are collected prior
to the training for comparison.

• Debriefing: As the core element of simulation-based
training, debriefing aims to help trainees to explore and
understand relationships among actions and events, and
grasp operating insights. To better comprehend trainees’
behavior in the course of operation, a comparison of vi-
sual attention between experts and trainees is conducted,
and the result is used as one of the evaluation indicator
for the operation.

Fig. 3 depicts the roles of experts and trainees, respectively,
in assessment of visual attention. For each specific operation,
a questionnaire is given to experts. They are asked to split
the task into different stages based on operational inherent
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Fig. 3. Diagram of modeling and assessment of visual attention for the
training program.

sequence [28]. The purpose is to simplify the comparison of
visual attention stage by stage. The time period of critical
operations in each sub-task is annotated, indicating more effort
should be taken when entering or exiting it. This is closely
related to the trigger of events during training, and thus can be
used as a measurement in the time domain for the generation
of an operations-dependent attention map. AOIs are another
concern in the questionnaire. The unified AOIs will be used
to extract the temporal characteristics of an expert’s fixations,
i.e., the transitional pattern.

When a trainee finishes the operation, his/her eye-tracking
data is divided into segments that correspond to the stages
defined by experts. Each segment of data will be used to
evaluated the trainee’s visual attention from two aspects.The
first one is AOI hit, that is, the number of fixations within
the AOIs. Here we neglect the visit time, length and angle
among AOIs but focus on hit rate, as it is intuitive that a
higher hit rate implies a potential good practice. The second
evaluation target, on the premise of high hit rate, is saliency
similarity. A similarity metric considering both temporaland
spatial characteristics of the trainee and the expert is proposed.
More details are introduced in Section IV.

IV. OPERATIONS-DEPENDENTV ISUAL ATTENTION

ASSESSMENT

In this section, a pair-wise method is proposed to compare
visual attention between experts and trainees. We use a ship
maneuvering example to illustrate how to use a weight scale
factor to generate attention map, and how to evaluate saliency
similarity from both spatial and temporal perspectives.

A. Eye-tracking Data Modeling

The collected eye-tracking data contains various informa-
tion, such as timestamp, eye movement type, and gaze posi-
tion. For each type of maritime operation, an operational scene
imageI with dimensionsm×n is applied to post analysis as
a static visual stimulus used for uniformed comparison model
establishment. Saccade and unknown type of eye movement
data are filtered out as there are no corresponding gaze points
mapped on the image. Only fixation data is remained and
mapped to the local coordinate system ofI.

A maritime operation due to its inherent sequence can
be expressed in stages asO := (o1, o2..., oK), whereK is
the stage number. Instead of evaluating the entire operation
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Fig. 4. An example of attention map generation. Green region: critical
operation for approaching the rig. Red region: critical operation for orientation
keeping in DP mode.

directly, the following assessment is designed for each stage
of operationok. It is a kind of pair-wise comparison that the
eye-tracking data from an expertej will be taken as a reference
to evaluate the eye-tracking data from the trainee. Once the
degree of saliency similarityss(ej , ok) in ok based onej is
computed, the overall evaluation can be obtained by:

ss =
1

K

K
∑

k=1

max
ej∈E

ss(ej , ok) (1)

whereE is the expert set. Higher value ofss indicates more
similarity of visual attention compared to that of experts and
thus a better operational performance by the trainee.

B. Operations-dependent Attention Map

For the reference expertej in the stage of operationok,
the eye movement is modeled as a sequence of gaze points
P := (p1, p2..., pN ) along the time lineT := (t1, t2..., tN ),
where N is the number of gaze samples. Each gaze point
pi is within the image dimensionsm × n. Because the eye
tracker has a dynamic sampling rate up to 50 HZ, the interval
∆T := (∆t1,∆t2, ...∆tN−1) is not a constant vector.

As mentioned in Section III, critical operation accounts for
higher attention during the stage of operation. Here we propose
a weight metric that classifies the temporal ordering of gaze
points into two different levels. Given the event trigger time
tin andtout, representing the operating time when starting and
ending the critical operation, respectively, an event stimulus
function h(·) is introduced:

h(ti) =

{

1 if tin ≤ ti ≤ tout

0 otherwise
(2)

To avoid abrupt change on the weights of the gaze points, a
leaky integrator is utilized [29]:

∆ω(ti) = {−
ω(ti−1)

τ
+ rh(ti−1)}∆ti−1 (3)

where τ is the leaky rate andr denotes the scale factor of
weight.

A spatial attention density for the reference expert is de-
signed as the weighted mean of an overlay of his/her gaze
positions on the static stimuliI:

ρ =

∑N

i=1
ω(ti)g(pi)

∑N

j=1
ω(tj)

(4)

Hereg(·) is the bidimensional Gaussian function:

g(pi) =
1

2πσ2
e−

‖p−pi‖
2

2σ2 (5)

wherep is the spatial coordinates of imageI; σ is the Gaussian
standard deviation, representing how wide the gaze points
are affected over the image. In eye tracking community,σ

is commonly accepted to be set in pixels corresponding to
1◦ of visual angle [14]. Therefore,σ is determined by the
experimental setup, such as the viewing distance and the
screen size.

An example of how to generate the operations-dependent
attention map is shown in Fig. 4. It is a ship maneuvering
task. The operator is asked to first steer the ship toward
the rig and then start dynamic positioning (DP) when the
ship is close enough to the rig. Since there is another vessel
which is also approaching the rig during the operation, two
critical operations are identified. The first one is the close-
range maneuver to avoid collision; the other one is the ship
orientation in DP mode. They are represented in the timeline
in Fig. 4 as a green region and a red region, respectively. There
is a clear shift of attention at the time of the completion of
the two critical operations. This is consistent with Eq. (4), as
the gaze points in these two time periods have more effect in
generating the attention map.

C. Saliency Similarity Assessment

The proposed saliency comparison method is akin to the
hybrid method in [14] but attempts to make a comprehensive
evaluation regarding how similar the transitional patterns and
the saliency in AOIs between the expert and the trainee.
Suppose there areR AOIs defined by experts in the stage
of operation,A := (A1, A2, ..., AR). The AOIs are treated
as polygons and thus it is simple to extract an AOIs mask.
The combination of the AOIs and the generated attention map
enables a visualization of AOI hit with its attention density
in time domain. On the other hand, the attention density in
AOIs can be processed with different thresholds, forming a
different density level of salient areas (SAs). As a result,the
degree of saliency similarity can be evaluated in each spatial-
temporal block. Fig. 5 is an example of the evaluation process
for a trainee in the ship maneuvering task. Note the trainee
has his/her own weight profile. The degree of similarity varies
with AOI hit number, switch between AOIs, and distribution
in SAs. The following describes the similarity metric for the
whole stage of operation. The similarity computation in each
spatial-temporal block can be deduced accordingly.

The switch between AOIs is a valid indicator used for scan-
path comparison [30]. Therefore, it is used here as a part of the
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Fig. 5. An example of assessing saliency similarity by considering both temporal and spatial characteristics.

comparison metric. The transitional modelβ for the reference
expert has a(R + 1)× (R + 1) tabular representation. The
extra dimension is due to the gaze points falling outside the
AOIs. Each elementβ(i, j) is computed by accumulating the
number of transitions fromAi to Aj and then regularized by
dividing by the total number of visits. Assume the subscripts
a andb denote the expert and the trainee, respectively. Given
the transitional modelβa and ρa from the reference expert,
and the gaze point sequenceQ :=(q0, q1, q2..., qN ′) (q0 is the
duplication ofq1) and weight profileωb from the trainee, the
similarity score for the trainee is designed as the weighted
mean of convolution ofβa andρa:

fb =

∑i=N ′

i=1
ωb(ti)βa(γ(qi−1), γ(qi)) ρa(qi)

∑j=N ′

j=1
ωb(tj)

(6)

whereγ(·) is the function to convert the coordinate point into
the index of AOI where it falls. The metric can be interpreted
from two aspects. First, from a spatial viewpoint, it evaluates
how close the trainee’s gaze points are compared to those
of the expert by projecting them onto the expert’s attention
model, i.e.,βa andρa. Second, from a temporal perspective,
ωb is closely coupled with the time period of completion of
critical operations by the trainee, which results in a time-
dependent metric. In order to eliminate the dependency, the
metric is divided by an accumulated weight which corresponds
to the operation time by the trainee.

Consideringfb is an absolute measurement of gaze points
of the trainee applied to the expert’s attention model, it has
no explicit upper bound [14]. A feasible improvement is to
make another measurementfa to evaluate the expert’s gaze
points on his/her own attention model. This can be achieved
by substituting gaze pointsQ with P , andωb with ωa in Eq. 6.
In this way, we can provide the saliency similarity metric as
a relative measurement for the stage of operation (recall the
denotation of the expertej and the stage of operationok in
Section IV-A):

ss(ej , ok) =
fb

fa
(7)

The metric has a theoretical upper bound of 1. Anss value
close to 1 would indicate a good performance of visual
attention by the trainee in the maritime operation.

V. EXPERIMENT

A. Heavy Lifting Operation Test

A case study of a heavy lifting operation was conducted
in our maritime operation simulator (see the deployment in
Fig. 1). Fig. 6a shows the operation scene for a crane driver
in the simulation dome. The task, as illustrated in Fig. 6b,
is to use a 250 tons knuckle boom crane to lift a 80 tons
suction anchor with a height of 20 m and a diameter of 5.3
m from the deck of an offshore construction vessel to a 100
m deep seabed, and reverse the operation until the anchor is
placed and secured in the fastening structure on the deck. We
changed the environmental disturbance by gradually increasing
the significant wave height from 0.5 m to 2 m during the
operation. The operating challenge lies in the considerable
swing of the anchor and the difficulty for the operator to set
it back on deck.

There were two expertswith about ten years of operational
experience,and ten trainee participantswho have four to six
years of operational experiencein the experiment.The trainees
are considered having the same level of ability to accept,
understand and utilize the information for training.They were
divided into three groups: expert groupE = {e1, e2}, group
oneG1 = {s1, s2, ...s5} and group twoG2 = {s6, s7, ...s10}.
The difference betweenG1 andG2 is that in the briefing phase,
trainees inG1 obtained detailed information about “critical
operations”, such as the AOIs in Fig. 7, the risks in operation,
and the visual focus to ensure safety; whereas for trainees in
G2, they were only verbally told the potential risks for the
operation. The purpose is to test how the information would
affect their visual attention.

Based on experts’ survey responses, the task is divided into
four stagesO = {o1, o2, o3, o4}, as shown in Fig. 6c. In stage
1, the anchor is lifted and swung out over the side of the ship.
Stage 2 includes descending the anchor until it is completely
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Fig. 6. Operation scene in dome (a), overview of the operation(b), and task
division (c) for the heavy lifting operation experiment.

TABLE I
AOIS AND CRITICAL OPERATIONS IN THE HEAVY LIFTING OPERATION.

Stage AOIs Critical operation
o1 A1 ∼ A4, A6 Initial lift of the anchor
o2 A1, A3, A5 Stabilizing swing when descending
o3 A1 ∼ A3 Slow speed when landing to seabed
o4 A1 ∼ A4, A6 Stabilizing to place on deck

sunk. In stage 3, the anchor continues to descend to the seabed
and then is lifted up to water surface, where it is followed
by stage 4, i.e., stabilizing the anchor and placing it on the
deck. In addition, Fig. 7 illustrates the AOIs defined by the
experts. The AOIs in different stages, in conjunction with the
corresponding critical operation, are depicted in Table I.

Data was collected by our developed software [31] and the
gaze points were mapped to the image shown in Fig. 7 with a
pixel size of1210×1047. Table II lists the operating result for
the three groups. Note that here “AOI hit rate” is the ratio of
AOI hit between the critical operation and the entire operation.
There is no significant difference for the entire operation time
of trainees inG1 and G2. This reflects that the operation
time is not an efficient indicator for the assessment. Trainees
in G2 used more time to cope with the critical operation;
however, longer operation time does not increase their AOI
hit rates.This implies that inG2 there are a few improper
visual focuses appeared in the critical operation.The following
sections will analyze the visual attention of participantsfrom
the three groups for the heavy lifting operation.

Fig. 7. Defined AOIs by experts.

r = 7
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ss
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o
1
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Fig. 8. Selection of weight scale factor fore1 in o1.

B. Generation of Experts’ Attention Maps

From Section IV-B, experts’ attention maps are associated
with the leaky rateτ , the Gaussian standard deviationρ and
the scale factor of weightr. In this case study,τ is set to 1
and ρ is set to 20 pixels according to the visual angle at a
distance of 1.5 m. Setting ofr has a great influence onss.
A smaller weighting factor does not reflect the importance
of visual attention of critical operations; but an excessive
weighting factor leads to the convergence ofss, indicating
an over-reliance on the visual attention of critical operations.

Here an empirical method is applied to determiner for
each stage of operation. For trainees inok, the variation of
ss(ej , ok) with the growth of r is observed. Two records
with the largest difference of convergence value are selected.
Suppose the difference of convergence value isL. We increase
r until the similarity difference of the two records equals half
of L. Fig. 8 is an example of selectingr for e1 in o1. Note
if there exists an intersection between the two records, the
selectedr should be after the intersection; otherwise,r should
be chosen to make the difference of the two records equal to
or close to 50%.

Fig. 9 illustrates the snapshots of the heavy lifting operation
from the experts and the trainees.According to Eq. (2)-(5),
experts’ attention maps are generated, as shown in Fig. 10,
together with the scale factors for the four stages of the
operation. Ino1, both experts paid attention to the crane tip, the
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TABLE II
STATISTICS OF OPERATIONAL RESULT FOR EXPERTS AND TRAINEES(M ± SD).

Stage
E G1 G2

Total op.
time [s]

Critical
op. time [s]

AOI hit
rate [%]

Total op.
time [s]

Critical
op. time [s]

AOI hit
rate [%]

Total op.
time [s]

Critical
op. time [s]

AOI hit
rate [%]

o1 70.0± 14.1 21.5± 4.9 37.3± 6.6 76.6± 10.1 24.8± 7.8 36.5± 6.8 84.0± 12.1 29.6± 11.8 32.2± 7.4

o2 108.0± 17.3 22.0± 2.8 25.2± 2.4 129.0± 26.2 26.4± 6.7 19.0± 3.2 117.4± 33.5 31.1± 8.5 16.6± 3.9
o3 968.0± 135.8 19.5± 0.7 2.8± 0.3 1142.8± 55.0 20.8± 3.0 2.1± 0.6 1070.4± 83.3 21.7± 5.2 2.0± 1.1

o4 429.5± 70.0 178.0± 9.9 53.6± 11.9 501.2± 86.7 188.0± 16.6 46.1± 7.3 522.4± 63.5 212.1± 19.5 44.5± 12.7

�

�
�

�
�

�� �� �� ��

Fig. 9. Snapshots of the four stages of operation from participantsin the three groups.

monitor in the lower left corner and the swing of the anchor.
There is a small visual attention difference ino2 in that one
expert cared more about the crane tip while the other focused
more on the immersion of the anchor. The monitor in the lower
left corner was the main concern for both experts ino3. Only
a few fixations were put on the crane tip by one of the experts.
Due to environmental disturbance, visual attention was more
focused on placing the anchor in the fastening structure on
deck ino4. The result reveals that experts’ attention maps are
almost consistent with the AOIs they defined in Fig. 7.

C. Saliency Similarity Comparison

We compared saliency similarity ofG1 and G2 in e1’s
and e2’s attention model for the four stages of operation
respectively, and averaged the degree of similarity by Eq. (1).
The mean and the standard derivation (SD) ofss for G1 and
G2 are illustrated in Fig. 11.

It is noted that for bothG1 and G2, the mean ofss in
e2’s model is higher than that ofss in e1’s model ino1. The
difference is due to the similarity score collected inA6. In
particular, when the AOI hits are located near the fastening
structure on deck, fewer similarity scores will be collected
in e1’s model by comparing the attention maps ofo1 shown
in Fig. 10. The same situation occurred toA5 in o2, which
indicates trainees preferred to focus on the swinging anchor
in A5, paying less attention toA3, i.e., the crane tip.

In o3, both G1 and G2 obtained the highest mean ofss
among the four stages of operation. This is because this stage

of operation is relative simple, even though it accounts for60%
of the entire operation time. The visual focus has no apparent
difference between critical and noncritical operation, asthe
lower left monitor is the most noteworthy area for receiving
underwater sensor information. Nevertheless, note that higher
mean ofss is obtained ine1’s model. The difference stems
from the difference of attention maps inA3 between the two
experts.

The most difficult part of the task is ino4, in which up
to 40% of the time was used for critical operation. A higher
mean ofss in e2’s model, which is similar to the case ino1
and o2, is observed. This is attributed to higher AOI hits in
A6 than inA1 or A3, as shown in Fig. 10.

In addition, the difference ofss betweenG1 and G2 is
obvious in Fig. 11. Trainees inG1 obtained a higher mean of
ss in each stage of operation and therefore achieved a better
result. By contrast, trainees inG2 obtained a higher SD ofss,
which implies they did not know what to focus on and hence
more free viewing was performed during operation. In fact,
Table II already roughly reveals the inferior performance of
visual focus, i.e., they obtained a lower AOI hit rate although
they used more time in critical operation. Nevertheless, the
quantified saliency similarity metricss in Fig. 11 provides a
more comprehensive comparison rather than AOI hit rate.

Besides the overall comparison in Fig. 11, it is also interest-
ing to gain insight into individual visual attention if necessary,
e.g., to investigate why the trainee inG2 obtained the lowestss
in e1’s model ino2. Fig. 12 depicts the AOI hit with attention
value for this record. The trainee used about 29s for critical
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Fig. 10. Experts’ attention maps in the four stages of operation.
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Fig. 11. Statistical result of saliency similarity ForG1 andG2.

operation. There are plenty of AOI hits inA5 but sparse AOI
hits in A1 andA3. From Fig. 7 ande1’s attention map ino2
shown in Fig. 10,A5 is full of low attention density, andA3

contains a relatively high attention density. This indicates AOI
hits in A5 have limited contribution toss. Table III sums up
the AOI hit rate andss values of critical/noncritical operation
in five different SAs for this record. It is observed that 78% of
AOI hits are located in 0∼20% of SAs in noncritical operation
but they contributes only about 30% ofss. Due to the weight
scale factor, AOI hits in this SA in critical operation (mostare
located inA5) contributes almost all of the rest ofss. The key
reason of lowss for this record is the lack of AOI hits in high
value of SAs in critical operation, e.g., as Fig. 12 suggests,
the trainee did not pay attention toA3 at all during the critical
operation.

D. Discussion

Although performing free viewing in the operation may
obtain a highss (e.g., the trainee inG2 with the highest overall
ss of 0.78), the case study reveals that emphasizing “critical
operation” in a briefing phase can attract more visual focus
into the proper AOIs and thus increase the overallss value
(e.g., trainees inG1 andG2 with an overallss of 0.77 and
0.71, respectively). This is consistent with the conclusion in

Fig. 12. AIO hit of the record with the lowestss betweenG2–e1 in o2.

TABLE III
DISTRIBUTION OF AOI HIT RATE AND ss FOR THE SAMPLE WITH LOWEST

ss BETWEENG2–e1 IN o2 .

SAs AOI hit rate ss
Critical op. Noncritical op. Critical op. Noncritical op.

0 ∼ 20% 0.175 0.780 0.260 0.129
20% ∼ 40% 0.002 0.018 0.008 0.009
40% ∼ 60% 0.000 0.003 0.000 0.002
60% ∼ 80% 0.000 0.001 0.000 0.001
80% ∼ 100% 0.000 0.021 0.000 0.012

debriefing that trainees inG1 performed better than trainees
in G2. Note the visual attention assessment here is not the
final result for the operation. As illustrated in Fig 2, it could
be used in the debriefing phase as one of the indicators for
comprehensive evaluation.

The case study verifies the effectiveness of the visual atten-
tion assessment in the expert-in-the-loop training framework.
However, there are some subjective factors in the assessment
procedure that may affect the results. For example, deter-
mining the trigger time of critical operation (tin and tout in
Eq. (2)) is crucial toss but difficult to identify precisely.Ef-
forts can be made towards the refinement of the questionnaire,
as well as a further confirmation of the trigger time in a specific
operation with the help of experts, to minimize the impact on
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the generation of the attention map.Another factor is the AOIs
defined by experts. Their importance may be not fully reflected
in experts’ attention models, e.g., Fig. 10 shows both experts
focused little attention onA2 in o3.

In addition, the assessment procedure will be time consum-
ing if the number of experts increases, as it is a pair-wise
comparison method. To avoid this situation, it is possible to
establish a mixed attention model by combining the attention
model from each expert and optimizing the mixed model via
evaluation by the experts themselves.

To sum up, if a well-tuned mixed attention model is
created and the subjective factors are thoroughly considered,
the expert-in-the-loop framework for training personnel for
maritime operation can be highly effective.

VI. CONCLUSION

In this paper, we make use of expertise and experience
of maritime operations to model and assess visual attention
in an expert-in-the-loop training program. As a fundamen-
tal of the training program, expertise is utilized to divide
the task, identify critical operation, and define AOIs. Each
expert’s visual attention is modeled from both spatial and
temporal perspectives, forming a weighted attention map and
a transitional pattern between AOIs. A saliency similarity
metric is designed that accounts for trainees’ fixation under
the transitional pattern and its attention density in the weighted
attention map. Assessment of visual attention in a heavy lifting
operation is carried out. From the results using two groups of
trainees, we conclude the proposed method is valid to assist
the training program of maritime operations. Future work
will be focused on the optimization of weight scale factor
using more objective criteria, as well as the development ofa
mixed attention model according to experts’ experience in the
simulator.
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