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As computational models of the cardiovascular system are applied in modern

personalized medicine, maximizing certainty of model input becomes cru-

cial. A model with a high number of arterial segments results in a more

realistic description of the system, but also requires a high number of par-

ameters with associated uncertainties. In this paper, we present a method

to optimize/reduce the number of arterial segments included in one-dimen-

sional blood flow models, while preserving key features of flow and pressure

waveforms. We quantify the preservation of key flow features for the optimal

network with respect to the baseline networks (a 96-artery and a patient-

specific coronary network) by various metrics and quantities like average

relative error, pulse pressure and augmentation pressure. Furthermore, var-

ious physiological and pathological states are considered. For the aortic

root and larger systemic artery pressure waveforms a network with minimal

description of lower and upper limb arteries and no cerebral arteries, suffi-

ciently captures important features such as pressure augmentation and

pulse pressure. Discrepancies in carotid and middle cerebral artery flow

waveforms that are introduced by describing the arterial system in a minima-

listic manner are small compared with errors related to uncertainties in blood

flow measurements obtained by ultrasound.
1. Introduction
Computational models of the cardiovascular system are commonly separated

into three-dimensional (3D), one-dimensional (1D) and lumped models (0D).

One of the first attempts to model pressure and flow waveforms was through

the classical 0D Windkessel (WK) model [1]. A noteworthy extension to this

was presented in [2] where a resistance element representing the characteristic

impedance was added, and many variations and extensions have been proposed

[3]. The most important drawback of the family of 0D models is inherent in the

assumption of infinite wave velocity and that spatially distributed parameters are

modelled as single point parameters.

Through the years distributed models with various degrees of detail have been

suggested. In [4,5], the systemic circulation was modelled as two asymmetric par-

allel branches, one supplying the head and upper limbs, and one supplying the

rest of the body. In [6], a model consisting of the 33 largest systemic arteries

was tested using an in vitro experiment. In [7], the arterial network was expanded

to include 55 arterial 1D segments. In [8], a complete description of the systemic

arterial tree containing the largest arteries of the head and upper and lower

body was validated using in vivo measurements. The study also includes a

detailed overview of 1D models up until 2009, highlighting their variation in

detail and complexity. More recently, in [9], a model accounting for pulse wave
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Figure 1. Two baseline models were used in this work: a model containing
96 arterial segments in which parameters and topology were adapted from
[9] (a), and a patient-specific coronary network (b). The arrow indicates the
location of invasive pressure measurements, and the section coloured in red is
a significant stenosis.
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propagation in all regions of the circulation including approxi-

mately 400 arteries and 350 veins was presented. Yet others

have modelled the arterial system in a very high level of

detail including more than 2000 arteries [10,11].

We have come a long way in creating realistic and detailed

descriptions of the entire arterial tree and circulatory system.

However, given the near endless number of small arteries and

capillaries in the human body, the network has to be truncated

at a certain level. Since reliable measurements of flow or pressure

at all terminal sites are practically impossible to obtain, outflow

boundary conditions are commonly set through simpler models

representing the peripheral circulation. Indeed the above-men-

tioned family of 0D WK models have been the preferred choice

for providing boundary conditions at terminal branches.

There is little consensus in the scientific community on

the level of detail of the computational domain. Furthermore,

few studies have focused on the errors and limitations associ-

ated with truncating the arterial network at given sites. In [8],

they state that a detailed description of the cerebral circula-

tion is required in order to attain accurate and physiological

flow predictions in the common carotid artery. In [12], they

found that the arterial tree could be truncated after the first

generation of bifurcations without significantly altering

pressure and flow waveforms, if matched three-element

WK outflow models were used. In [13], they presented a

method for lumping 1D arterial segments into three-element

WK models and applied their method on a network of

55 arteries (excluding the circle of Willis).

Here, we present a sound mathematical framework that

enables us to find the necessary arteries to include for a given

clinical application. The framework involves finding the

model with the fewest number of arteries that is still able to

produce pressure and flow waveforms below a certain error

threshold compared with a corresponding detailed (baseline)

model (figure 1). This approach reduces the number of uncer-

tain input parameters, while still assuring that the

simplifications do not limit the model predictions. We illustrate

the framework for different clinically relevant quantities of

interest: central aortic and larger systemic artery pressure wave-

forms, common carotid and middle cerebral artery flow

waveforms and coronary pressure waveforms. We note that

our framework is intended to be used in an early stage as a

tool for model selection that aims at minimizing total

uncertainty.
2. Material and methods
2.1. Framework for balancing topological complexity

with model error
Here, we present a framework for reducing the number of vessel

segments still assuring wanted features of pressure and/or flow

to be within acceptable agreement with the corresponding full

model:

— Define a baseline model.

— Locate the quantity of interest appropriate for the problem

(e.g. aortic pressure and/or carotid flow).

— Define a threshold for pressure and/or flow (e.g. RMS-error,

pulse or mean pressure).

— Create reduced models by applying the methods described in

§2.4.1 or §2.4.2, and solve the 1D networks.

— Find the network with the fewest number of arteries subject to

the constraint of the threshold.

2.2. Arterial baseline models
We applied our new methodology on two arterial models, both

illustrated in figure 1.
2.2.1. Systemic arterial network
The first baseline model considered includes 96 of the largest sys-

temic arteries, in which parameters and geometry were adapted

from Mynard et al. [9]. They compared model-derived pressure/

flow waveforms with published in vivo waveforms from healthy

adults, validating the model’s capability of providing realistic

waveforms throughout the arterial tree.
2.2.2. Coronary network
The second baseline model considered in this work was based on a

series of invasive and non-invasive measurements of a patient (sex:

female, age: 58, height: 162 cm, weight: 78 kg) with positive find-

ings of stable coronary artery disease after clinical inspection and

coronary computed tomography angiography (CCTA) examin-

ation. The data were collected as part of an ongoing clinical trial

at St Olavs Hospital, Trondheim, Norway [14]. Cardiac output

(CO) was measured by transthoracic Doppler echocardiography

using a GE Vivid E95 scanner (GE Vingmed Ultrasound, Horten,

Norway). The patient was further referred to invasive angiography,

and a Verrata Plus (Philips Volcano, San Diego, USA) pressure wire

was used to obtain pressure tracings at the coronary ostium and

distal of an epicardial stenosis. Proximal, Pp and distal, Pd pressure

tracings are shown in figure 8. The last 30% of the cardiac cycle is

highlighted and was used to compute the instantaneous wave-

free ratio (iFR), which is a drug-free index of the significance of

the stenosis [15]. Measurement of fractional flow reserve (FFR) [15],

obtained during drug-induced hyperaemia (maximum coronary

flow) was also available. The coronary geometry was segmented

using the open-source software ITK-SNAP [16], the surface was

then meshed using the open-source library Vascular Modeling

ToolKit [17]. 1D domains were extracted from the 3D volume

mesh by computing equivalent axisymetric cross-sectional areas

along centrelines. Stenotic regions were automatically detected

using a Gaussian filter-based approach [18].
2.3. Numerical formulation
2.3.1. One-dimensional flow solver
The solutions of pressure and flow waveforms presented here were

obtained using the 1D flow solver STARFiSh [19]. The hyperbolic
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Figure 2. An example of a reduced network that has been obtained from the
baseline model in figure 1 by lumping 1D model segments into WK3 models.
Lumped 1D model segments are shown in colour.
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partial differential equations for blood flow in compliant vessels are

written in terms of pressure and flow variables (P, Q):

@A
@P

@P
@t
þ @Q
@x
¼ 0 (2:1a)

and

@Q
@t
þ @Q2=A

@x
¼ �A

r

@P
@x
þ f

r
, (2:1b)

and solved using the explicit MacCormack scheme [20]. Here, t is the

time, x is the axial coordinate, f is the frictional term and is given by

22(z þ 2)mpU, where r is the density (1060 kg m23), m is the vis-

cosity of blood (3.5 mPa s), A is the cross-sectional area and U is

the cross-sectional averaged velocity. The following velocity profile

was prescribed:

u(x, j, t) ¼ U(x, t)
zþ 2

z
1� j

r

� �z
" #

, (2:2)

where r(x, t) is the lumen radius, j is the radial coordinate and z ¼ 9

is the polynomial order. At arterial connections compatibilityof pro-

pagating characteristic variables were enforced [7] in addition to

conservation of mass and a coupling equation for the pressure, i.e.:

XN

i¼1

Qi ¼ 0 (2:3a)

and

P1 þ
r

2
U2

1 ¼ Pi þ
r

2
U2

i þ DP i ¼ 2, . . . , N, (2:3b)

where N is the number of vessels in the connection, and DP is an

additional pressure loss which was set equal to zero for normal con-

nections. At arterial stenoses, the flow regime is 3D and the 1D

assumptions no longer hold. Stenotic regions were thus removed

and treated as junctions with N ¼ 2, however, now with an

additional experimental-based pressure loss term given by Liang

et al. [21]:

DP ¼ KviscQþ KexpQjQj, (2:4)

where the viscous, Kvisc and expansion, Kexp coefficients were calcu-

lated based on geometrical features, as described in [21].

The pressure–area relation assumes thin-walled elastic

vessels and can be derived from Laplace’s Law:

P ¼ Pdia þ
b

Ad
(
ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
Ad

p
), b(x) ¼ 4

3

ffiffiffiffi
p
p

Eh, (2:5)

where Pdia is the diastolic pressure with corresponding cross-

sectional area Ad, E is the elastic modulus and h is the thickness

of the vessel wall. The stiffness parameters E h are related to

the pulse wave velocity c and have been obtained using the

relation [22]:

c2
d ¼

2

3r

Eh
rd
¼ 2

3r
[k1 exp (k2rd)þ k3], (2:6)

where rd is the radius at diastolic pressure, and the values for

k1, k2 and k3 were set to 3 � 106 g s22 cm21, 29 cm21 and 33.7�
104 g s22 cm21 for systemic arteries and 20 � 106 g s22 cm21,

222.5 cm21 and 86.5 � 104 g s22 cm21 for coronary arteries,

respectively [9].
2.3.2. Boundary conditions
For the 96-artery model, inflow boundary conditions (prescribed

flow rate Q) and outflow boundary conditions (three-element

Windkessel models, WK3) and all other parameters were

adapted from Mynard & Smolich [9]. For the coronary network,

the proximal pressure tracing was prescribed at the aortic root. In

contrast to systemic arteries, coronary arteries experience
increased impedance during systole due to the contraction and

increased pressure in the left ventricle. To account for this

effect, a lumped parameter WK model WKcor was used at coron-

ary outlets [23]. A schematic of the model is shown in figure 9 in

appendix A.1 and the a priori computed left ventricle pressure

waveform is shown in figure 8. The left ventricle pressure wave-

form was obtained by coupling a varying elastance (VE) heart

model to a WK3 model [24], and further by parameter optimiz-

ation to minimize the discrepancy between Pp and Pao, where Pao

is the aortic pressure resulting from the VE-WK3 model. The total

arterial resistance, Rtot was estimated from CO, mean arterial

pressure, �Pp and outflow WK pressure, Pout,WK (5 mmHg)

according to Ohm’s Law. Total arterial compliance was esti-

mated from the VE-WK3 model. About 4.5% of CO was

assumed to supply coronary arteries and used to estimate total

coronary resistance and compliance, and was further distributed

among coronary outlets according to Murray’s Law [25]. Simu-

lation of a hyperaemic state is necessary for FFR calculations.

Hyperaemia was modelled by reducing the resting resistance of

the coronary outlets by a factor a. The value of a was based on

the work of Uren et al. [26] who studied myocardial blood flow

and resistance in relation to the severity of coronary stenosis,

and was set to 3 for ‘healthy’ outlets, and to 1.25 for outlets

distal of the coronary stenosis. For details see appendix A.2.1.

2.4. Network reduction
Network reduction involves lumping distributed 1D segments into

0D parameter models, specifically WK models, intended to rep-

resent the same physical problem. Each WK model represents all

arteries situated distal of the point of interest with resistance

elements and capacitors in series and parallel, as visualized in

figure 2.

2.4.1. Method 1, algebraic estimation of lumped parameters
Here, we present a method for network reduction which was

adapted from Epstein et al. [13]. The method was described

and applied on a baseline network only including bifurcations.

In this work, we have used a different way of estimating the

lumped resistance and compliance that can also be applied on

networks containing loops and anastomosis. We have also

expanded the procedure to account for arterial stenoses.
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Figure 3. Illustration of an arterial 1D model segment coupled to a WK3
model that may be lumped into an equivalent compliance Ct according to
equation (2.10). (Online version in colour.)
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2.4.1.1. Estimation of lumped resistance
The linearized version of equations (2.1a) and (2.1b) can be writ-

ten in terms of the steady-state variables �P, �Q and �A:

�Qin ¼ �Qout (2:7a)

and

�Pin ¼ �Pout þ
ðl

0

2(zþ 2)pm

�A2
dx, (2:7b)

where l is the length of the segment, and the subscripts ‘in’ and

‘out’ denote variables at the inlet and outlet of the segment,

respectively. Equations (2.7a) and (2.7b) may then be combined

with equations (2.3a)–(2.3b) and equation (2.5) to form a

system of nonlinear algebraic equations. The system was solved

iteratively by employing Picard linearization. �P and �Q is in

such an estimate of the time average of P(t) and Q(t), and once

solved for, resistance may be estimated anywhere in the network

using Ohm’s Law:

R ¼
�P� Pout,WK

�Q
: (2:8)

2.4.1.2. Estimation of lumped compliance
We can estimate the compliance (Cv) of a vessel by integrating

over the length of the 1D model segment [13]:

Cv ¼
K1

r
, K1 ¼

ðl

0

�A
�c2

dx: (2:9)

Furthermore, we estimated the compliance Ct of a terminal vessel

(figure 3) coupled with a WK3 with proximal resistance, R1, com-

pliance, C and peripheral resistance, R2 [13]:

Ct ¼
CvR2 þ CvR1 þ CR2 þ CvRv

R2 þ R1 þ Rv
: (2:10)

Lumped compliance of terminal vessels coupled to WKcor

models (see figure 9 in appendix A.2.1.) with compliances Ca

and Cm were estimated according to:

Ct ¼ Cv þ Ca þ Cm: (2:11)

The total compliance contribution of vessels distal of a point of

truncation was then obtained using equation (2.9) for non-term-

inal vessels and equation (2.10) or equation (2.11) as appropriate

for terminal vessels, together with summation rules for com-

pliances/capacitors in series and parallel. See appendix A.2.1.

for details.

2.4.1.3. Lumping vessels distal of a site of truncation
With the lumped resistance, (equation (2.8)) and compliance

(equations (2.9)–(2.11)), as defined above we may replace all

vessels distal of a point of interest with a WK model. Systemic

arteries were replaced by WK3 models in which R1 was set

equal to the characteristic impedance, Zc:

Zc ¼
r�c
�A
: (2:12)
Lumped coronary arteries were replaced by WKcor models and

the lumped resistance and compliance were divided among the

resistance and compliance parameters of the WKcor model as

described in appendix A.2.1.
2.4.2. Method 2, optimization of lumped parameters
Method 1 is based solely on the topology and properties of the

baseline model. This means that we can use the method without

solving the baseline model. However, the parameters in the WK

models that replace the removed vessels are not necessarily the

ones that correspond with the least discrepancy between the base-

line and reduced networks. This motivates another method which

is based on parameter optimization. Since the WK models are

lumped models with governing ordinary differential equations

(ODEs), we suggest a procedure that treats every truncated site

independently. The optimization is thus performed by taking

the flow from the 1D solution of the baseline model as given

inflow to the WK models, then solving for the unknown pressure.

Furthermore, we seek to minimize the error between the pressure

obtained by solving the ODE with the corresponding 1D baseline

solution. In the following, we explain the procedure for the WK3

model, though it can be easily expanded to other lumped par-

ameter outflow models. Either one, two or all three of R1, C and

R2 were allowed to vary to minimize the error. If only one of R1

and R2 was optimized, the total resistance R1 þ R2 was found

from (Pavg 2 Pout,WK)/Qavg, where Pavg and Qavg are the time-

averaged pressure and flow from the 1D baseline solutions. The

method may be summarized in the following steps:

(1) Calculate the flow and pressure waveforms of the 1D base-

line model.

(2) Locate the sites where WK3 models will replace distal

vessels.

(3) Calculate values of R1 þ R2 from Pavg, Qavg, and C using

Method 1 (§2.4.1).

(4) Use the flow from the 1D baseline model as given inflow of

the WK3 ODE, with parameters R1, C and R2.

(5) Choose parameters to be optimized and use parameters from

point 3 otherwise and as initial guess.

(6) Solve the WK3 ODE for the unknown pressure, PWK3.

(7) Find the parameters that minimize the discrepancy between

PWK3 and the corresponding pressure waveform from the

solution of the 1D baseline model. We used the average rela-

tive error, calculated by equation (2.13a) as the measure of

discrepancy.

Based on a parameter correlation and identifiability analysis, we

chose to optimize on the subset of parameters ([u1, u2]¼ [R1/R2, C]),

where R1 þ R2 was kept constant. See appendix A.3.2. for details.
2.5. Error metrics
The following error metrics were used to compare pressure and

flow waveforms obtained from the baseline (B) and reduced (R)

models:

eP,avg ¼
1

Nt

XNt

i¼1

PR
i � PB

i

PB
i

����
����, eQ,avg ¼

1

Nt

XNt

i¼1

QR
i �QB

i

maxj(QB
j )

�����
�����, (2:13a)

eP,sys ¼
jPB

sys � PR
sysj

PB
sys

, eP,dia ¼
jPB

dia � PR
diaj

PB
dia

, (2:13b)

ePP ¼
jPPB � PPRj

PPB
, (2:13c)

eP,aug ¼
j{PB

sys � PB
infl}� {PR

sys � PR
infl}j

PPB
(2:13d)
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and

eiFR ¼ jiFRB � iFRRj, (2:13e)

where Nt is the number of time points in a cardiac cycle, i represents

a certain time point with corresponding baseline, PB
i and reduced,

PR
i pressure and flow (QB

i , QR
i ), respectively. eQ,avg was normalized

by the maximum flow of the baseline model over one cardiac cycle,

maxj (QB
j ), to avoid division by numbers close to zero. The maxi-

mum (Psys) and minimum pressure (Pdia) was used to calculate

the systolic (eP,sys), and diastolic (eP,dia) error, respectively. The

pulse pressure, PP is defined as Psys 2 Pdia. ePP is the error in

pulse pressure and eP,aug is the error in augmentation pressure,

both normalized by the pulse pressure. PB
infl is the pressure at the

inflection point in early systole [27]. eiFR is the difference between

predicted iFR from baseline and reduced model.

2.6. Application to different physiological and
pathological states

The parameters for the baseline 96-artery model were based on

data from healthy, young adults [9]. In this part of the study,

however, we re-parametrized a series of optimal networks to rep-

resent (1) normal ageing, (2) a pathological state of aortic

coarctation and (3) states of different heart rate, ejection time

and stroke volume. We note that no information from the base-

line model was used to re-parametrize the reduced models.

2.6.1. Normal ageing
Normal ageing was simulated by increasing total arterial resistance

by a factor of 1.1, and decreasing total arterial compliance by a

factor of 2. Arterial stiffening is most marked in the proximal

aorta and its major branches—brachiocephalic, carotid, subclavian

[28]. The stiffness parameter b for these arterial segments was

increased by a factor of 2.5, whereas it was increased by a factor

of 1.5 for all other segments. Finally, the compliance of the WK3

models were modified so that the total arterial compliance (sum

of WK3 compliance of terminal segments and integrated 1D com-

pliance) was decreased by a factor of 2. The total arterial

resistance was modified by increasing the peripheral resistance in

all outflow WK3 models. See appendix A.5 for details.
2.6.2. Aortic coarctation
Aortic coarctation was simulated by introducing a 1 cm long,

50% diameter stenosis in the thoracic aorta. This corresponds

to segment Id 18 in the electronic supplementary material.
2.6.3. Heart rate, ejection time and stroke volume
Heart rate, ejection time and stroke volume were modified

according to the study by Weissler et al. [29]. They studied

relationships between left ventricular ejection time, ET, stroke

volume, SV and heart rate, HR, in normal individuals. We modi-

fied the original aortic inflow curve for the 96-artery model to

represent the two extreme cases in terms of HR in their study

(HR: 56 bpm, ET: 0.315 s, SV: 106 ml and HR: 120 bpm, ET: 0.2 s,

SV: 44 ml). For the latter, total arterial resistance was increased

by a factor of 1.67 and compliance halved (effecting the distributed

parameters as described for normal ageing), in order to obtain

physiological pressure waveforms.
3. Results
3.1. Comparison of Method 1 and Method 2 for

network reduction
Figure 4 shows the 96-artery model (black) reduced to a 25-

artery model (red). Solution of pressure and flow waveforms

at the inlet of the right internal carotid artery, obtained from

the baseline model and both methods for network reduction,

are also shown. Method 1 overestimated internal carotid

pressure in mid systole (ePP was 6.2% for Method 1 and

0.2% for Method 2). Furthermore, Method 2 captured the

overall shape of pressure and flow waveforms better than

Method 1. Average errors, eP,avg between full and reduced

models were 1.45% for Method 1 and 0.57% for Method 2.

Similarly, eQ,avg was 1.47% and 1.16%, respectively.

Figure 4 also shows the impedance modulus and angle for

the site of interest, calculated in the frequency domain as

explained in [30].



Table 1. Summary of results from applying the framework outlined in §2.1, on the 96-artery baseline model. For cases where there are more than one
quantity of interest, the final error was calculated as the average of the error for the individual quantities. Ref. denotes the reference case, and the threshold
used for the optimization is given in brackets. The errors are also shown for states of normal ageing, aortic coarctation (coarc.) and for the two aortic inflow
curves as defined in §2.6. All errors are in percentage. The associated figure numbers are referenced below the error, where available.

quantity of interest
no. of
arteries

error-
metric ref. ageing coarc.

inflow
1

inflow
2

aortic and brachial pressure 29 eP,sys þ
eP,dia

0.25 (0.3)

5

2.26

5

0.37

—

0.14

—

1.58

—

aortic and brachial pressure 15 eP,sys þ
eP,dia

0.92 (1.0)

5

1.0

5

0.27

—

1.13

—

1.3

—

aortic pressure 31 ePP þ
eP,aug

0.68 (0.7)

5

0.97

5

1.91

—

0.41

—

1.27

—

aortic and brachial and carotid

and femoral pressure

31 eP,avg 0.33 (0.4)

13

0.47

13

0.24

15

0.41

16

0.85

16

carotid flow 25 eQ,avg 0.87 (0.9)
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3.2. Framework for optimizing topological complexity
A summary of the quantities of interest, error metrics and

values for the network reduction framework applied on the

96-artery model is given in table 1. Here, error metrics are

also presented for the cases where parameters were altered

to simulate different physiological and pathological states

(see §2.6). References to associated figures are also given. In

particular, a threshold based on eP,sys þ eP,dia at the aorta

and brachial artery was used in the top two examples in

figure 5. The waveforms for the baseline model and optimal

reduced networks are shown in solid lines, and the dashed

lines represent the case when the models were altered to

represent normal ageing. In the last example, a threshold

based on augmentation and pulse pressure was used

(eP,aug þ ePP , 0:7%). Furthermore, in order to ensure that

interaction between different regions in the network and

that pressure propagation are correctly captured throughout

the larger systemic arteries, a threshold based on pressure

waveforms at four locations was used in figure 13 in appen-

dix A.5. Here, the average eP,avg for the aortic root, common

carotid, brachial and femoral artery pressure waveforms was

required to be less than 0.4%. Additionally, results are shown

for eQ,avg less than 0.9 and 3.4% for the right common carotid

artery and eQ,avg less than 0.6 and 1.6% for the middle cer-

ebral artery in figure 6. Method 2 (§2.4.2) was used to

reduce the networks in all these cases.

In the top part of figure 7, e iFR was set to 0.033, which is

the standard deviation of repeated iFR measurements,

according to the study by Johnson et al. [15]. The results are

visualized through the distal pressure waveform, Pd. All

side branches except those distal of the measured location

can be replaced by lumped WKcor models with no visible

effect and with e iFR , 0.000012. If the threshold is increased
to 0.04 the network can be reduced to its most simplistic

realization, as visualized in the bottom part of the figure.

The predicted velocity and the in vivo pressure waveforms

are also shown. iFR was measured to 0.40, whereas the pre-

dicted value was 0.42 for the baseline network, and 0.42 and

0.38 for the reduced networks, respectively. For FFR, the

measured value was 0.52, whereas the predicted value was

0.48 for the baseline network and both of the reduced networks.

Method 1 (§2.4.1) was used to reduce the coronary networks.

4. Discussion
In this study, we have presented a novel approach which

optimizes the number of arterial segments for 1D blood

flow models. We have illustrated the framework on a

96-artery and a coronary baseline model, and two methods

for network reduction have been incorporated: a purely alge-

braic method (Method 1, §2.4.1) and a novel method based

on optimization (Method 2, §2.4.2).

4.1. Comparison of methods for network reduction
A major difference in the waveforms obtained from Method

1 and Method 2 may be seen in the systolic part of the cycle,

where the pressure obtained using Method 1 was over-

predicted. This was observed as a general distinction

between the two methods, and is exemplified in figure 4.

However, the diastolic phase is very similar, indicating

that the discrepancy is not a result of differences in the

values of compliance in the WK3 models. The diastolic

decay of pressure can be approximated by an exponential

function, with an exponent given by the product of the per-

ipheral resistance (R2) and the compliance (C) [31]. Thus

changes in the compliance directly effect the diastolic



0 0.1 0.2 0.3 0.4 0.5

baseline
reduced

0.6 0.7 0.8
60

80

100

P
(m

m
H

g)

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
60

80

100

P
(m

m
H

g)

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
60

80

100

120

140

160

0 0.1 0.2 0.3 0.4
t (s)

0.5 0.6 0.7 0.8
60

80

100

P
(m

m
H

g)

120

140

160

0 0.1 0.2 0.3 0.4
t (s)

0.5 0.6 0.7 0.8
60

80

100

120

140

160
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shape, whereas changes in R1 only have secondary effect.

On the other hand, R1 has a direct effect on the systolic

part of the cycle. Inspection of the values used for the prox-

imal resistance in the WK3 models revealed that Zc (Method

1) was in general higher than R1,opt (Method 2) for the

larger systemic arteries. The addition of the characteristic

impedance to the original two-element WK model was

based on frequency analysis of modulus and phase of the

input impedance along the aorta. By including the charac-

teristic impedance, the input impedance modulus of the

modified WK matched in vivo measurements at high fre-

quencies [2,31]. We also observed (not shown here) better

matching of the modulus at the aorta for high frequencies,

between baseline and reduced models obtained with

Method 1 than with Method 2; however, the same is not

true for this more distal location (internal carotid). Impe-

dance phase, on the other hand, was captured better by

Method 2 for some frequencies (particularly between 5

and 7 Hz), as can also be seen in the phase of the first

minima of the flow waveform (� 6 Hz). Minimization of

high-frequency oscillations has also been an incentive for

using matched (R1 ¼ Zc) WKs as outflow BC’s in 1D

blood flow models [12]. However, the price to pay is an

overprediction of pressure in systole.
4.2. Optimization of topological complexity
4.2.1. Central and larger systemic artery pressure waveforms

Pressure measured with a cuff and sphygmomanometer in

the brachial artery is used routinely and accepted as an

important predictor of future cardiovascular risk. However,

studies indicate that central blood pressure (CBP) relates

more strongly to cardiovascular events [32]. Systolic and

pulse pressures are amplified as the pulse wave propagates

through the larger systemic arteries. This amplification may

vary significantly among subjects [32], making it difficult to

map measurements of pressure at more peripheral sites

directly to CBP.

Although it is still unclear if routine measurement/

estimation of CBP will provide significantly improved risk

stratification [33], the 1D nonlinear equations for blood flow

can be used to investigate pulse wave amplification

[8,34,35]. In previous studies, the topology of the 1D model

was chosen ad hoc. Our novel framework provides a math-

ematical approach to determine the optimal topology to

study pulse wave amplification from the aortic root to the

brachial artery.

The results presented in the first two rows of figure 5 indi-

cate that inclusion of detailed descriptions of upper and
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lower limbs are not needed in order to study pulse wave

amplification from the aortic root to the brachial artery. More-

over, the entire cerebral circulation can be replaced by WK3

models with negligible effects on aortic and brachial pressure

waveforms. This is reasonable since these are relatively small

and stiff arteries for which the behaviour is well captured by

WK3 models [3]; however, it is important to note that the

proximal part of the aorta, which accounts for about 50% of

total systemic compliance, needs to be kept in the reduced

1D model.

Both pulse pressure and augmentation pressure, and their

relation (augmentation index) is associated with cardiovascu-

lar risk [36]. Even though the aortic pressure waveforms

obtained by the reduced models in the top two examples in

figure 5 captured the pulse pressure very well, some subtle

deviations are visible in the systolic part of the waveforms.

This could have an effect on the calculated augmentation

pressure, and thus also on evaluations of cardiovascular

risk. In the last example in figure 5, an error threshold of

ePP þ eP,aug of 0.7% at the aorta, was used, and results indi-

cate that this 31-artery model captures the most important

features of wave propagation for central aortic pressure.

A similar model was found when a combined threshold of

average eP,avg of 0.4% was set for four arterial sites; midpoint

of ascending aorta, right common carotid artery, right bra-

chial artery and left femoral artery, as illustrated in figure

13 in appendix A.5. This network was also able to capture

waveform features with good qualitative and quantitative

precision when the model was re-parametrized to model

different physiological and pathological states.
4.2.2. Carotid and cerebral circulation
In the study by Reymond et al. they compared carotid flow

predictions with and without description of the cerebral cir-

culation and stated that a detailed description was

necessary in order to produce physiological correct wave-

forms. Our results, on the other hand, indicate that the

entire cerebral circulation can be appropriately lumped into

WK3 models effecting only the diastolic part of the flow

waveforms and with eQ,avg , 0:9%, as shown in figure 6. Fur-

thermore, by increasing the threshold to 3.4% the network is

reduced to a very simplistic model including only five arterial

segments. Though the overall features are represented in this

five-artery model, the arterial tree is truncated close to the

carotid artery and will thus be more influenced by the

WK3 models. High-frequency details are not described well

by the three-element WK [31], which in this case is visible

through the smoothing of the second and third peaks of the

flow waveform. Such errors were magnified when the

model was transformed to represent normal ageing, as

visualized in figure 14.

Figure 6 also shows results with flow rate at the inlet of

the right middle cerebral artery set as the quantity of interest.

This site is located more distal than the other quantities of

interest studied in this work, and as can be seen in the case

where a threshold of eQ,avg , 0:6% was considered, the

circle of Willis can be ‘broken’ and represented by WK3

models without altering the flow waveform significantly.

Furthermore, the arterial tree can be truncated in close proxi-

mity to the middle cerebral artery without introducing

significant constraints on the solution, more so than was

the case for the right common carotid artery. This is
attributed to the fact that the flow in this region is more domi-

nated by frictional forces resulting in pressure and flow

waveforms that are of similar shape and phase and can be

more readily described by the WK3 model. Moreover, by

increasing the threshold to eQ,avg , 1:6% more of the larger

systemic arteries may also be lumped, resulting in very sim-

plistic descriptions of the arterial network that were still

able to capture the main features of the flow waveform in

the middle cerebral artery. For this model, however, errors

were magnified when parameters were altered to represent

different physiological states, indicating that having a reason-

ably complete description of the larger arteries is more

important than including the nearby system of 1D model

arteries.

Blood flow can be measured non-invasively by ultra-

sound in both the carotid and middle cerebral arteries;

however, there are many sources of uncertainty and standard

errors of measurements are normally higher than 10% [37]. In

comparison, the modelling errors introduced by applying

network reduction to obtain simpler descriptions of the arterial

system were smaller.

4.2.3. Coronary pressure waveforms
Figure 7 shows the results from applying our methodology

on the patient-specific coronary network. The model can be

reduced to its most simplistic realization while still keeping

the error for the predicted iFR on a level which is comparable

with the standard deviation of repeated iFR measurements.

The differences in predictions of FFR between baseline and

reduced models were even smaller, and in fact smaller than

the significant figures used in clinical decision-making. This

is attributed to the fact that, unlike iFR, FFR is a cardiac

cycle averaged quantity. Our approach for network reduction

maintained the correct resistance throughout the domain,

and thus also average flow and pressure distributions. The

limited resolution of CCTA imaging contributes a layer of

uncertainty since only features larger than approximately

1.0 mm can be resolved [38]. However, our results indicate

that one should not necessarily strive to segment arteries

down to this limit.
5. Concluding remarks
Our results have shown that to capture important features of

the aortic pressure waveform, such as timing and shape of

reflected waves, pressure augmentation and pulse pressure,

a model with all aortic segments, but close to minimal

description of the head and lower and upper limb arteries

is sufficient. Furthermore, a detailed description of the cer-

ebral circulation is not needed in order to capture

physiologically correct waveforms in the common carotid

and middle cerebral arteries. Even though our framework

for network reduction was performed on a single set of par-

ameters representing a normal physiological state, waveform

features were also captured with good qualitative and quan-

titative precision when the models were re-parametrized to

simulate different physiological and pathological states.

Our approach is targeted at computational models of the

cardiovascular system, however, it should also be useful for

the design of in vitro haemodynamic experiments. Such phys-

ical models are attractive tools for fundamental research on

pulse wave propagation [30,39], and also play a key role in
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validating computational models [6]. Through further work,

one could also imagine the relevance of our approach in

the design of multi-scale models of the cardiovascular

system, e.g. hybrid 3D–1D–0D models.
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Appendix A. Material and methods
A.1. In vivo data: measurement and post-processing
Proximal Pp and distal (of a coronary stenosis) Pd pressure

tracings were available from a patient with positive findings

of coronary artery disease. Pressure tracings were obtained

by insertion of a Volcano pressure wire during invasive

angiography. Pp and Pd together with a computed (see

§A.2.1) left ventricle pressure waveform (grey) are shown in

figure 8. CO was measured using transthoracic Doppler

echocardiography.

A.2. Numerical formulation
A.2.1. Boundary conditions
The arterial 1D model segments were terminated with WK3

models (systemic arteries) and WKcor models (coronary

arteries). In the latter, the influence from the left ventricle

pressure, PLV results in a higher coronary impedance in

systole. A patient-specific PLV was obtained by coupling a

varying elastance (VE) heart model with elastance E(t),
volume V and intersect volume V0:

PLV ¼ E(t)(V � V0), (A 1)

with an aortic pressure Pao described by a WK3 model as in

[24]. The discrepancy between Pao and Pp was then mini-

mized through parameter estimation. The resulting left

ventricle pressure is shown if figure 8. The WK3 and WKcor

models, and their coupling with the 1D domain are depicted
in figure 9. In the baseline 96-artery model, which only

includes systemic arteries, parameters for the outflow WK3

models were adapted from [9]. For the coronary network

model, the total arterial resistance and total coronary resistance

were estimated by:

Rtot ¼
�Pp � Pout,WK

CO
and Rtot,cor ¼

�Pp � Pout,WK

l� CO
, (A 2)

where l is the fraction of CO supplying coronary arteries,

assumed to be 4.5%. The total arterial compliance, Ctot was

estimated from the VE-WK3 model and total coronary com-

pliance calculated as Ctot,cor ¼ lCtot. Rtot,cor and Ctot,cor were

further distributed to coronary outlets using Murray’s Law

[25]. The total resistance for outlet j, Rtot,cor, j was then divided

among Rp, Rm Rd, with fractions 0.01, 0.84, 0.15, respectively,

and Ctot,cor,j between Ca and Cm with fractions 0.025 and

0.975, respectively.

The estimated coronary resistance given by equation (A 2)

assumes zero resistance in the 1D domain. We therefore used

the methods described in §2.4.1.1 to estimate mean flow

values, and updated Rtot, cor until total coronary flow reached

the target flow of 4.5% of CO.
A.3. Network reduction
A.3.1. Method 1, algebraic estimation of lumped parameters
In figure 10, we have separated the circle of Willis from the

rest of the 96-artery model to illustrate how network

reduction was performed. Here, the network was truncated

at two sites. On the left side of the figure, arrows indicate

the direction of the calculated mean flow rate �Q as described

in §2.4.1.1, and defines which arterial segments are distal of a

site of truncation.

Once this is known the lumped compliance contribution

of these vessels may be calculated. We can estimate the com-

pliance (Cv) of a vessel by integrating over the length of the

1D model segment [13]:

Cv ¼
K1

r
and K1 ¼

ðl

0

A
c2

dx, (A 3)

where A and c are evaluated at �P. Furthermore, we can esti-

mate the compliance Ct of a terminal vessel (figure 3)
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coupled with a WK3 with proximal resistance, R1, compliance,

C and peripheral resistance, R2 [13]:

Ct ¼
CvR2 þ CvR1 þ CR2 þ CvRv

R2 þ R1 þ Rv
: (A 4)

Lumped compliance of terminal vessels coupled to WKcor

models with compliances Ca and Cm were estimated according

to:

Ct ¼ Cv þ Ca þ Cm: (A 5)

The compliance contribution of non-terminal vessels was esti-

mated with Cv alone. In order to find the total compliance

contribution of the vessels distal of a site of truncation, we

use the rules for adding capacitors/compliances in series

and parallel. The equivalent compliance (Ceq,b) of two daugh-

ter vessels in a bifurcation and the equivalent compliance

(Ceq,a) of one of the mother vessels and the daughter vessel

in an anastomosis is given by (figure 11):

Ceq,b ¼ Cd,1 þ Cd,2 (A 6a)

and

Ceq,a ¼ Cm,1 þ
1

2
Cd, (A 6b)

where Cd,1 and Cd,2 are the lumped compliances of the two

daughter vessels in the bifurcation, Cd is the lumped compli-

ance of the daughter vessel in the anastomosis and Cm,1 is

the lumped compliance of one of the mother vessels in the ana-

stomosis. The compliance contribution of the daughter vessel in

an anastomosis is thus split equally between the two mothers.

With the lumped compliance, and estimate of total resistance

at a site of truncation as described in §2.4.1.1, the distal arteries

may be lumped into WK models, as illustrated in figure 12.
A.3.2. Method 2, optimization of lumped parameters

A.3.2.1. Parameter sensitivity, correlation and identifiability
We wanted to assure that the parameters were identifiable,

and did so by checking if any of the parameters were highly

correlated. The sensitivity of the model output, y to the model

parameters, u can be calculated by the sensitivity matrix [40]:

S ¼ @y
@u
¼

@y
@u1(t1) � � �

@y
@um(t1)

@y
@u1(t2) � � �

@y
@um(t2)

..

. ..
. ..

.

@y
@u1(tn) � � �

@y
@um(tn)

2
666664

3
777775, (A 7)

in which m is at most 3, [u1, u2, u3] ¼ [R1, C, R2], in our case, y
is the solution of the WK3 ODE, PWK3 and n is the number of

time points in one period. The sensitivity matrix, S, was cal-

culated using forward differences. From the sensitivity

matrix, we may calculate the model Hessian H ¼ C21 ¼

s22STS, where s is the variance and C is the covariance

matrix. The correlation matrix can be calculated as [40]:

ci,j ¼
Ci,jffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci,iC j,j

p : (A 8)

If jci,jj ¼ 1, i = j then parameters ui and uj are perfectly corre-

lated. In other words altering ui or uj has the same effect on y,

and hence both of them cannot be identified in the same

optimization process. In this work, we have treated two par-

ameters as pairwise correlated if jci,jj. 0.86, and with this

criterion we found that in most optimization cases either

two or more of R1, C, R2 were pairwise correlated. By keeping

R1 þ R2 constant and only allowing the relative distribution

R1/R2 to vary, the subset of parameters, ([u1, u2]¼ [R1/R2, C])

was not highly correlated for any of the optimization cases.

We therefore used [R1/R2, C] as the set of parameters to be
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optimized in Method 2. Furthermore, if the optimum value of

R1 was less than 0, R1 was set equal to the characteristic impe-

dance, and only C was optimized.

A.4. Computational aspects
A.4.1. Creation of reduced networks
There are approximately 4.7 million unique networks that can

be reduced from the 96-artery baseline model shown in figure 1.

Solving all of them was infeasible, however, through some

initial tests we managed to reduce the number of possible

combinations down to approximately 30000. This was done

by replacing branches of vessels that had little effect on the
R1

R1 + R2 =

Ceq

C

P
–

– Pout

–
, Q

–

Q

odels.

.5 0.6 0.7 0.8

.5 0.6 0.7 0.8

re at midpoint of ascending aorta (top left), right common carotid artery (top
et as quantities of interest. The average deviation at these four locations was
case when baseline and reduced networks were re-parametrized to simulate
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pressure and flow waveforms in the arteries of interest

(eQ,avg , 0.3 and eP,avg , 0.1).

A.5. Application to different physiological and
pathological states

As described in §2.6, total arterial resistance and compliance

was altered to represent different physiological states. Here,

we describe the details on how this was performed. Depart-

ing from the parameters obtained from performing network

reduction, total arterial compliance, Ctot was calculated as

the sum of compliance contribution of 1D segments, Ctot,1D
and WK3 compliance of terminal vessels, Ctot,0D according to

Ctot ¼ Ctot,1D þ Ctot,0D ¼
XNv

k¼1

Cv,k þ
XNt

k¼1

Ck, (A 9)

where k is the summation index, Nv is the number of 1D-

segments, with compliance Cv,k (see equation (A 3)) and Nt

is the number of terminal vessels with WK3 compliance, Ck.

As mentioned in §2.6, total arterial resistance was modified

by altering the peripheral resistance, R2 in all outflow WK3

models. However, since part of the resistance contribution

is due to resistance in the 1D domain, we used the estimated



70
60
50

P
 (

m
m

H
g)

80

120
110
100
90

130
140

70
60
50

80

120
110
100
90

130
140

70
60
50

P
 (

m
m

H
g)

80

120
110
100
90

130
140

70
60
50

80

120
110
100
90

130
140

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0 0.2 0.4 0.6 0.8
t (s) t (s)

1.0 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

baseline
reduced

Figure 16. Optimal reduced network for ascending aorta (top left), right common carotid artery (top middle), right brachial artery (bottom left) and left femoral
artery (middle bottom). The network is the same as shown in figure 13; however, results are shown for two different inlet waveforms as described in §2.6.

t (s)

baseline
reduced

30

25

20

15

10Q
(m

l s
–1

)

5

0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Q
(m

l s
–1

)

1.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Q
(m

l s
–1

)

1.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
t (s)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

t (s)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

t (s)
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

30

25

20

15

10Q
(m

l s
–1

)

5

0

Figure 17. Optimal reduced networks for flow at the distal end of the right carotid artery (left panel) and proximal end of the right middle cerebral artery (right
panel). The networks are the same as shown in figure 6; however, results are shown for two different inlet waveforms as described in §2.6.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180546

14
mean value at the aortic root, �Pinlet (see §2.4.1) as a surrogate

measure of the total arterial resistance. Next, we defined a

target inlet pressure, �Pinlet,target and updated the peripheral

resistance, R2 in all outflow WK3 models according to the

expression

Rmþ1
2,k þ R1,k ¼

�Pinlet,target

(�Pinlet)
m (Rm

2,k þ R1,k), (A 10)
where k denotes the relevant outflow segment and m is an

iteration index. For the case when normal ageing was simu-

lated, �Pinlet,target was set to 110 mmHg (i.e. total arterial

resistance was increased with a factor of 1.1 since (�Pinlet)
0

was 100 mmHg). For inflow case 2, it was necessary to

increase total arterial resistance to produce physiological

pressure waveforms. Here, �Pinlet,target was set to 90 mmHg

(i.e. total arterial resistance was increased by a factor of 1.67

since (�Pinlet)
0 was 54 mmHg). Four iterations were sufficient
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to reach �Pinlet,target. In order to decrease total arterial

compliance by a factor of 2, we defined a target compliance

Ctot, target ¼ Ctot/2, and increased the stiffness parameter of

proximal arteries by a factor of 2.5 and all others by a factor

of 1.5. The following segment Ids were considered as proximal

segments; 1, 2, 3, 4, 5, 14, 15, 18, 19, 27, 28 (see the electronic

supplementary material). Next, we estimated the compliance

contribution of 1D segments after this modification,

Ctot,1D,mod, and calculated the target WK3 compliance,

Ctot,0D,target according to

Ctot,0D,target ¼ Ctot,target � Ctot,1D,mod: (A 11)

Finally, we updated the individual WK3 compliances accord-

ing to

Ck,mod ¼ Ck
Ctot,0D,target

Ctot,0D
, (A 12)

where Ck,mod is the modified WK3 compliance for terminal

segment k.
Appendix B. Results
B.1. Framework for optimizing topological complexity
In order to ensure that interaction between different

regions in the network and that pressure propagation

was correctly captured throughout the larger systemic

arteries, a threshold based on pressure waveforms at four

locations was used in figure 13. Here, the average eP,avg

for the aortic root, right common carotid, right brachial

and left femoral artery pressure waveforms was required

to be less than 0.4%.

B.2. Application to different physiological and
pathological states

Figures 14–17 show the results from the second part of our

study, where we re-parametrized a series of optimal net-

works to represent (1) normal ageing, (2) a pathological

state of aortic coarctation and (3) states of different heart

rate, ejection time and stroke volume, as described in §2.6.

Corresponding error metrics are given in table 1.
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