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Summary
This thesis is doing exploratory work on a project between two companies, Veidekke and

Acando. On Veidekke’s construction site, there are containers filled with waste. They want

Acando to automate the process of finding out when a container is full, and alert those

responsible for picking up the full container and replacing it with an empty one. This was

decided to be done by monitoring the containers by camera and use a supervised machine

learning method called Convolutional Neural Networks (CNN), to classify the filling of

waste and detect when the container is full.

Implementing a CNN places certain requirements. A large number of images is needed

to train the network, and the images need to be labeled such that the CNN is trained to

correctly classify new images. As this can prove costly, this thesis aims to find a solution

that can bypass labeling, and use less images. This is done by using an unsupervised

learning machine learning method called K-means, which groups data based on proximity.

In order to group images, they need to be translated to a numerical representation. This is

done in this thesis by applying six feature extraction methods on each image, and creating

a feature vector of single number representations of each feature extraction.

Four different tests were conducted in order to measure to which degree the unsupervised

learning method correctly classified the labeled images. A CNN was implemented, trained

on the same dataset of images and tested for success of this method with regards to the

same parameters. The filling rate of the container was divided into 5 classes, namely ”0%”,

”25%”, ”50%”, ”75%” and ”100%” full. The goal of the tests were to see how successful

each method could correctly classify all classes.

It was found that the CNN had a success rate of 49.5% correct classification, whereas the

unsupervised learning method scored 57.4%. The relatively low success rates were found to

be due to too small of a dataset for the CNN and some human error in classification. For

the unsupervised learning solution there were possibly unsuccessful feature representations,

due to environmental noise. However, a way was found to automatically classify images

with a drastically reduced amount of only 25 images, which could prove promising in case

better feature representations or cleaner environment are used.
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Sammendrag
I denne masteroppgaven gjøres eksperimentelt arbeid p̊a et p̊ag̊aende prosjekt mellom to

bedrifter, Veidekke og Acando. P̊a Veidekkes byggeplasser er det mange avfallscontainere.

Veidekke ønsker at Acando skal automatisere prosessen med å tømme fulle containere, hvor

en ekstern bedrift henter en full container og etterlater en tom. Acando bestemte at dette

skulle bli gjort ved å overv̊ake containerne med et kamera, og detektere n̊ar det ble fullt

via en maskinlæringsmetode kalt Convolutional Neural Network (CNN).

Innføringen av et CNN medfører visse krav. En stor mengde bilder m̊a manuelt klas-

sifiseres for at CNN kan trenes opp til å detektere sitt gitte objektiv. Ettersom at dette

kostbart i form av tid og penger, undersøker denne oppgaven muligheten for å finne en

løsning som ikke krever manuell klassifisering og krever færre bilder. Dette er gjort via

en ikke-veiledet maskinlæringsmetode kalt K-means, som grupperer data i henhold til dat-

apunktenes euklidiske nærhet. For å kunne gruppere bildene via K-means, må bildene

kunne representeres numerisk. Dette blir gjort ved å anvende Feature Extraction-metoder

p̊a bildene, for s̊a å danne en vektor best̊aende av numeriske representasjoner av disse

metodene.

Totalt fem forskjellige tester ble gjennomført i denne masteroppgaven. Fire av disse

bestod i å undersøke ikke-veiledet maskinlæringsmetoders mulighet for automatisk klassi-

fisering. Den femte testen bestod i å implementere en åpen kildekodeløsning for et CNN,

for å se hvor godt denne kunne klassifisere dataen gitt for dette prosjektet. Datasettet av

bilder brukt i denne oppgaven ble delt inn i fem klasser. Klassene representerte i hvilken

grad en container var fylt, henholdsvis ”0%”, ”25%”, ”50%”, ”75%” og ”100%”. Målet

med denne oppgaven var å se hvor suksessfull de forskjellige metodene var i å korrekt

klassifisere disse fyllingsgradene.

Det ble funnet at CNN-metoden hadde en suksessrate p̊a 49.5% korrekt klassifisering,

hvorav den beste ikke-veiledete maskinlæringsmetoden oppn̊adde 57.4% korrekt klassifis-

ering. Den relativt lave suksessraten var funnet å grunne i at datasettet var for lite for

CNN-metoden, kombinert med at den manuelle klassifiseringen trolig gjorde visse feil-

klassifiseringer. For ikke-veiledet læringsmetodene var det antatt at Feature Extraction-

metodene ikke var helt suksessfulle til å gi gode numeriske representasjoner grunnet støy

iv



i bildene. Likevel ble det funnet en måte å automatisk klassifisere fyllingsgraden i con-

tainerne, ogs̊a med drastisk færre bilder sammenlignet med CNN, som virker lovende for

videre arbeid dersom man forbedrer muligheten for å utelukke støy.
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1. Introduction

1.1. Introduction and formulation of problem

The purpose of this thesis came about through dialogue with two different Scandinavian

companies, Veidekke and Acando. Veidekke is an entrepeneur- and real estate development

company, and Acando is an IT consultancy company. It was decided that this thesis would

do exploratory work related to one of Veidekke’s and Acando’s newly started projects.

Their project consisted of Veidekke wanting to automate the process of emptying containers

full of waste, specifically containers containing wood. This required that the containers

needed to be monitored, and the agency responsible for emptying the containers were to

be alerted when the containers became full. As this project had already begun before

this thesis’ assignment was formulated, certain decisions from Acando had already been

made. These decisions were that the containers were to be monitored via a camera, and use

machine learning as the tool to detect when the containers were full. More concretely, it

was decided to use one of the currently most popular machine learning implementations for

image classification and object detection, namely a Convolutional Neural Network (CNN).

In discussion with Acando, one problem of the implementation of a CNN arose, namely

the labeling and training problem. A CNN needs to be trained in order to properly detect

what it is programmed to look for. This training consists of using a, preferably large, set of

images which has been labeled according to what the aim is to detect. If, for example, the

aim of a CNN were to detect a cat in an image, it would need a large dataset of different

images of cats for training of the neural network. Then, after training, one could run

a prediction on a new image, and the CNN would output the likelihood that the image

contains a cat. In this case, the labels would be cat or non-cat. When Acando began its

work of training a CNN for Veidekke’s project, they decided that the CNN ought to be

categorized into five different labels/classes. These labels were to represent the state of the
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container, namely to which extent the container was full. Thus, the images taken from the

container were categorized into the labels ”0%”, ”25%”, ”50%”, ”75%” and ”100%”. After

approximately a month of monitoring the containers, 4802 unique images of containers

with varying degree of waste filling had been gathered. The images were manually sorted

into the most fitting class, based on the judgment of the person labeling the image. A

dataset of 4802 labeled images was thus made, based on three cycles of the container from

empty to full.

The incoming rate of new unique images of containers in various states was low, as there

could go days before new waste was added to the container. The manual labeling could

also prove tedious and had a time/cost. This raised the question of whether one could

simplify or work around the labelling process. This problem would not reflect only on

this specific task, but any task where one is interested in building a similar vision-based

detection system with little data to begin with. With these two problems in mind; how

to create a vision-based detection system with little data, and how to improve or avoid

the need for human labeling, the path of this thesis began take shape. Some overarching

questions emerged, and formed the basis of what was to be investigated in this thesis:

• How can the states of the container be detected without the need for human labeling?

• What could a viable non-supervisory labeling process look like?

• Would such an alternative outperform a CNN? How would they compare?

These questions will be kept in mind throughout this thesis and answered in conclusion

of this thesis. To begin to address these questions, it is first looked at research done with

similar problems in focus.

1.2. History and related work

As said by Chester and Ratasby, image classification research aims at finding represen-

tations of images that can be automatically used to categorize images into a finite set

of classes [22]. This problem has been worked on for many decades, dating back to the

1960s, where the earliest applications of pattern recognition systems were implemented for

character recognition in office automation related tasks [23]. Ever since, entire fields of
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research have been immersed with this problem, ranging from the fields of computer vision

with the development of feature extraction and object recognition, to other fields such

as robotics, signal processing, mathematics, statistics, psychology, visualization/graphics

and artificial intelligence via machine learning and the use of neural networks as means of

image classification [24].

With the recent explosion of machine learning and neural network applications in par-

ticular, the different solutions to image classification are typically divided into two camps.

These are called supervised learning, and unsupervised learning, and are two of the main

branches within machine learning. Different types of feature extraction is at the heart of

both methodologies, but their means of classification differ fundamentally. For supervised

learning, classification is the output of the neural network, as a prediction based on how

the trained neural network interprets the input. For unsupervised learning, the dataset to

be analyzed is not labeled, thus not knowing directly what class a data point ought to be

assigned to. The classification is instead decided solely based on the inherent composition

and structure of the data, as a result of how the data is grouped.

However, being that grouping/clustering is the central means of classification in unsu-

pervised learning, visual grouping in computer vision has proved to be a hard problem to

solve. Methods that aim to extract features from images have been heavily researched,

where edge- or contour detection has been a large focus as means to detect shapes and

objects [25]. But with regards to analyzing data such as unlabeled images, do “objects”

fall directly out of the statistics of the environment, or are they a more subjective, human-

specific construct [26]? The idea of leveraging cluster IDs of images as means of learning

representations or for classification has become a popular idea to investigate [27]. Cluster-

ing aims to group data together based on proximity in euclidean space, and one specific

clustering method called K-means has shown dominant appearance in the field of classifi-

cation based on grouping [27]. With the rise of data analysis with a seemingly large set

of variables, clustering is also used to attempt to group data in a meaningful manner in

high-dimensional space [28]. However, high-dimensional cluster analysis can have some

disadvantages. The data is hard to visualize once one surpasses 3 dimensions, and points

in high-dimensional space can become sparse, making it difficult for cluster analyses to

provide good results [28]. This problem has often been worked around by using dimension-
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ality reduction, allowing for high-dimensional data to be visualized if reduced down to 3

or less dimensions. Much used dimensionality reduction techniques are Factor Analysis or

Principal Component Analysis (PCA) [29]. In the case of PCA, hyperplanes are created for

projecting points in high-dimensional space down to the reduced subspace, while retaining

a possibly high degree of variance from the data [29].

In recent years, supervised learning via the method of Convolutional Neural Networks

(CNNs) have gained much attention and shown good results for image classification prob-

lems [30]. A CNN trained in a supervised manner via backpropagation dramatically im-

proved the state of the art performance on a variety of Computer Vision tasks, such as

image classification [30], [31] and detection [32]. Interestingly, it seems features learned by

such networks often generalize to new datasets [33]: for example, the feature representation

of a network trained for classification on a dataset of 14 million images, called ImageNet

[34], also performs well on PASCAL VOC, containing approximately 21.700 images [35].

This paved the way for applications such as Inception V3, which is a CNN where the top

layer of the neural network is retrained by the designer for its own specific task [10].

1.3. Ideas to be investigated

Summarizing the problems for the container project and relevant research in the fields of

image classification can serve as a guide towards what could be interesting to investigate

in this thesis. Veidekke and Acando have provided a dataset of 4802 labeled images. This

is the result of how many unique images/how much valuable data that was possible to

gather within approximately a month. In order to increase the size of the dataset, new

images needs to be added and labeled manually. A convolutional neural network is shown

through research to provide good results for object detection and image classification [34].

The development of feature extraction of images have made it possible for the designer to

process an image in search of an object, and thus provide a descriptor of the image based

on the result of the feature extraction. Unsupervised methods, such as K-means, is used

to group data based on their proximity in euclidean space, and can serve as a classification

mechanism on unlabeled data. Principal component analysis is a means of reducing the

dimensions of a dataset, while retaining a high degree of the variance of the data.
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This thesis thus aims to explore the dichotomy between supervised learning and unsu-

pervised learning for its strengths and weaknesses when applied specifically to the task

of automating recognition of a containers fill rate. This will be done by performing the

following tasks:

• Search for feature extraction methods that fit this specific project.

• Creation of a feature vector for each image in the dataset, where the feature vector

consists of representations of all feature extraction methods used.

• Use of unsupervised learning methods to test if classification/labeling can be per-

formed on the feature vectors with satisfactory results.

• Implement a CNN by training on the dataset and evaluate its utility considering the

size of the provided dataset.

• Comparison of the results of the different solutions.

• Comparison the utility of the different methods applied to this specific project.

1.4. Process of selecting methods and tests chosen

The selection process for the different methods was based on what seemed to fit this spe-

cific project best. Python was chosen as the language of implementation for all the tests

and method implementations, due to its rich libraries and wide user community, as dis-

cussed on chapter 3. Open source projects in Python have made it easy to create a CNN

for custom classification, and there is a wide selection of feature extraction methods and

other image processing tools available. The feature extraction methods used in this thesis

were chosen based on them being the methods that gave the best single numerical repre-

sentations of the container filling problem, compared to other feature extraction methods

found in various Python libraries, while testing by trial and error. One open source so-

lution for creating a CNN, called ”Inception V3”, was chosen due to its relative ease of

implementation and customizability. Regarding the unsupervised learning methods, there

were two main branches to choose between. ”Partitioned clustering” and ”agglomerative

clustering”. Agglomerative clustering was discarded due to the nature of the clustering

being counter-productive with regards to this thesis. With partitioned clustering one has
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more control of how and where the data ought to be clustered. Two methods are pre-

sented in chapter 2, but only one - K-means - is selected for further use. This is due to

the high computational requirements of the other method, ”affinity propagation”. With

K-means, among other clustering methods, it is possible to decide how many clusters one

wants the data to be grouped to. As this thesis both utilizes a labeled dataset and has

pre-determined how many classes/labels there are to be selected, one can simply assign

the number of clusters to equal the number of classes. However, unsupervised learning is

most often used on unlabeled data, with the aim to explore how it is best to group the

data. In this case, it might not be given how many clusters gives the best fit to the data.

Methods used searching for the best fit for clustering go under the term cluster validity.

Even though this will not be directly used in this thesis, theory for some of these methods

are presented in chapter 2, in case future work based on this thesis should use unlabeled

data with possibly undetermined amount of classes.

Six feature extraction methods were selected for testing the possibility of unsupervised

classification. Five of these were methods obtained by different Python libraries, while one

was developed by the author of this thesis. The success of unsupervised classification will

be tested via the use of K-means, and will be judged on the basis of correctness. In this case,

correctness means ”to which degree does the points in a cluster have the same true label

(assigned fill rate) as the cluster ID?”. This is done by assigning each feature vector a new

numerical representation for its true label. Instead of the assigned true label being ”0%”,

”25%”,...”100%”, it is converted to ”0”,”1”,...,”4”. Thus, a feature vector of an image

that is for example labeled as 25% full, would look like [fr1, fr2, fr2, fr3, fr4, fr5, fr6, 1],

where fr1, fr2... would be the feature representation by a single numerical value, for each

respective feature extraction method, and ”1” represents the true label of ”25%” full.

When creating clusters in K-means with the code used in this thesis, the cluster IDs range

from ”0” and upwards til ”k − 1” clusters. Thus, the correctness measures how many of

the points within a given cluster has the same true label representation as the cluster ID.

E.g., how many of the points within cluster 1 contain true label representation ”1”. This

will be explained more in detail in chapter 4 - Tests and results.

Several different tests are run in order to see which gives the highest correctness. Clus-

tering via K-means will tested in 6-dimensional space with all six feature representations,
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and in 2-dimensional space with every combination of two of the six feature representa-

tions. This is done both to see if a high-dimensional cluster analysis would provide better

results due to the use of more features, and in the case of the 2-dimensional cluster analyses

to see if any of the features performed better than others. It will also be tested whether

Principal Component Analysis can find hyperplanes which are better suited to cluster the

projected points, than only clustering in ”untouched” euclidean space. Due to the fact that

clustering on feature extracted images is based on the inherent structure of the image, it

will be tested whether one can get similar or satisfactory results with a drastically reduced

dataset. The method that shows the best results (highest correctness), which is found to

be the PCA-reduced K-means clustering, will be selected to be tested on a small subset

of the complete dataset. In order to test if there is any validity to the claim that such a

small subset can be used to gain similar results to the test with the complete dataset, a

population proportion test is conducted right after.

To give a visual representation of the testing process for the unsupervised classification

tests, figure 1.1 shows a flowchart practically representing the process.

7



Figure 1.1.: Flowchart of process for unsupervised learning tests.

A CNN is trained on the dataset provided, using the open source ”Inception V3” frame-

work. Inception V3 works such that one trains a CNN on a dataset of labeled images, and

afterwards runs predictions on one image at a time. The output of the prediction is the

value of how probable it is that the image belongs to the different classes. For example,

lets say an image of a roughly half full container is predicted by the network. The output

could then be given as:

• 0%: 0.00

• 25%: 0.15

• 50%: 0.60

• 75%: 0.20

• 100%: 0.05
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Due to the fact that the training set only spans 3 cylces from empty to full, a new and

smaller dataset is given from Acando, which contains 250 new labeled images that are to

be used as the test set for the CNN. Where normally a dataset is split in two, with typically

80% being used as training set and 20% is used as test set, images from new cycles are used

as test set to reduce the chance of the neural network just recognizing the approximately

very similar images it was trained on.
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Chapter outline

Chapter 2

Chapter 2 portrays the theoretical foundation for the methods used in this thesis. The

reader is introduced to image processing, various feature extraction methods and machine

learning methods.

Chapter 3

Chapter 3 displays the tools used to implement the various methods used in testing, along

with an account of why the different tools were selected.

Chapter 4

Chapter 4 presents the test setup, all tests conducted and the results from all tests.

Chapter 5

Chapter 5 portrays a discussion of the results, reasons for why and how the tests where

conducted, discussion of the methods used and their underlying assumptions, and a com-

parison between results and the utility of the tests performed.

Chapter 6

Chapter 6 concludes the thesis, summarizes what has been done and presents recommen-

dations for future work.
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2. Theory

This chapter provides the theory for all methods used in this thesis, with the addition of

cluster validity for potential further work. This chapter is roughly divided thematically in

two parts. The first part regarding the image processing methods used in this thesis, and

the second being the theory of the different machine learning and statistical methods used

for the tests conducted.

2.1. Image pre-processing

A number of pre-processing steps can be applied to an image before it is used or manipu-

lated further. For this project however, it was found that little pre-processing was needed,

with additional popular pre-processing techniques providing worse results. Thus, only one

type of filter will be used in pre-processing, namely the 2D convolution filter called Mean

Blur.

2.1.1. Kernel Convolution - Mean Blur

Filtering an image is the process of mapping a new image based on the new values that

are given for each pixel, or batch of pixels, after a kernel has run over it. This is done

by taking a small grid, e.g. an 5 × 5 grid as the ”mean blur kernel” shown beneath, and

running it over the entire image.

K =
1

25



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
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This means that each pixel value in the selected 5 × 5 grid on the original image is

multiplied by the value of the kernel element that is on top of it. When the kernel has

filled up with all the element values, all values are added up and divided by the size of the

kernel. This average value of the kernel is now the new pixel value at the position of the

center of the kernel, on the new transformed image matrix. A visual example, albeit with

a different kernel, shows the way a filtered image is created.

Figure 2.1.: Kernel convolution example [1].

2.2. Obtaining features from images

How to extract features of an image or how one can manipulate data in a matrix, such

that changes to different pixel intensities can make a computer perform judgment whether

something in an image is an object or not are the central questions to the fields of object

detection and image processing. In the following sections, methods aiming to answer these

questions will be investigated. The theory of each method is explained, but their utility

and reasons for implementation are discussed in chapter 4 and 5.

2.2.1. Histogram of Oriented gradients

Histogram of Oriented Gradients (HOG) is a feature descriptor used mainly in computer

vision for object detection and classification. It’s aim is to detect robust features which are

distinct from the background and/or noise. The idea is that the local object’s appearance
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which is investigated can be characterized rather well by the distribution of the local

intensity gradients, or edge directions[36]. This is done by dividing the image window into

small regions, called cells. For each cell, the horizontal and vertical gradients are calculated

by filtering the image with two kernels. These are essentially Sobel operators with kernel

size 1, and are represented as gx = [−1, 0, 1] and gy = [−1, 0, 1]T for the horizontal- and

vertical axes, respectively [37][2]. At every pixel, the gradient has a magnitude and a

direction, found by the use of the Sobel operators. The gradient, g, and direction, Θ, are

calculated as follows:

g =
√
g2x + g2y

Θ = arctan
gy
gx

(2.1)

For each cell, this translates to two matrices. A gradient magnitude matrix and a

gradient direction matrix. From figure 2.2, one can see an example of how this would

look[2].

Figure 2.2.: HOG performed on an 8x8 cell[2].

Next, it is created a histogram of gradients in these cells. A bin is selected based on
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the direction and a vote is made based on the magnitude. The histogram contains 9 bins

corresponding to angles from 0, 20, 40 ... up to 160 degrees. Figure 2.3 shows the histogram

is filled up and sorted based on its angles and magnitudes. In case a direction is between

two possible angles, shown in red, it is evenly distributed between the two. The same

goes for angles between 160 and 180. The histograms are then normalized, and possibly

concatenated with the other cell’s histograms if need be.

Figure 2.3.: Histogram voting/selection [2].

To apply the histograms to the original image for visual representation, each of the 9x1

normalized histograms of all 8x8 cells are added on top of the image, as shown in figure

2.4.

Figure 2.4.: HOG-matrix added on original image [2].
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Applying this to two image test cases of the image dataset provided for this thesis, one

can see the plots of the new HOG-matrices on the right side in figure 2.5.

(a) Almost empty container. (b) HOG on almost empty container.

(c) Partially filled container. (d) HOG on partially filled container.

Figure 2.5.: Showcase of HOG implemented on 2 images.

2.2.2. SIFT and SURF

A popular feature detection algorithm in image processing, is the scale-invariant feature

transform (SIFT)[38]. It is used to recognize local keypoints in an image, invariant of

the scale. This means, if one were to e.g. search for the same objects several images,

this could prove troublesome if the images are not of the same size/scale or rotation. Not

only is the SIFT-algorithm robust to rotation and scale, but it detects points of interest in

an image rather well, and outperforms other methods such as Harris corner detection[39]

when applied to this thesis’ dataset. This algorithm, however, is not to be used as a means

of comparison between pictures in this thesis, but as a tool for identifying keypoints in
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an image. This is due to that the amount of objects/keypoints is what is of interest to

this thesis. It is due to the hypothesis made that the more waste in a container, the more

distinct keypoints are localized. A brief introduction is therefore given to the method as a

whole, before focusing more primarily on the keypoint location.

When an image is scaled up, a corner might stop being registered as a corner if the

filter window size is too small. So to detect larger corners, one needs larger windows. For

SIFT, scale-space filtering is used. For this, a filter kernel which calculates the Laplacian

of Gaussian (LoG) is typically used. The Laplacian of Gaussian is found for the image

with different values of σ, where LoG acts as a BLOB (Binary Large OBjects) detector for

blobs in various sizes due to change in σ. Examples of blobs are shown in figure 2.6.

Figure 2.6.: Blobs of different shapes and sizes [3].

However, due to LoG being a little costly to perform [38], SIFT uses an approximation

called Difference of Gaussians (DoG). Keypoints of the image are found as maxima or

minima of the DoG, given by:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ) (2.2)

Where L(x, y, kσ) is the convolution of the original image I(x, y) with the Gaussian blur

G(x, y, kσ), such that L(x, y, kσ) = G(x, y, kσ)∗I(x, y), with the Gaussian blur represented

as

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (2.3)

Once the DoG is found, the local extrema are searched over scale and space. This

provides potentially too inaccurate results, such that Tayolor series expansion of scale
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space is used to get a more accurate location of extrema.

As explained in the beginning of this section, the purpose of implementing this algorithm

is not for recognition of the same objects in several images. The full scale of SIFT’s utility

is therefore not given here, as the main objective is already reached. Shown in figure 2.7,

two containers of various levels of waste are displayed with applied SIFT on the right.

(a) Almost empty container. (b) SIFT on almost empty container.

(c) Partially filled container. (d) SIFT on partially filled container.

Figure 2.7.: Showcase of SIFT implemented on 2 images.

Speeded-Up Robust Features (SURF)[4] is a similar feature detector to SIFT, im-

plemented slightly different. Instead of approximating the LoG via DoG, like SIFT, it

approximates LoG via different convolutional kernels called box filters [4]. The approxi-

mation is shown in figure 2.8, where on the left side is the LoG and on the right is the box

filter approximation.
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Figure 2.8.: Right side representing box filter approximations [4].

The reason for this is to save computational time, at the cost of a slight decrease in

accuracy compared to SIFT [4]. The use case for this thesis is however the same, and

SURF is being used as another way to represent the amount of waste with the amount of

keypoints located. The similar test images as the previous feature detectors, can be shown

for SURF in figure 2.9.
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(a) Almost empty container. (b) SURF on almost empty container.

(c) Partially filled container. (d) SURF on partially filled container.

Figure 2.9.: Showcase of SURF implemented on 2 images.

2.2.3. Hough Line Transform

The waste in the containers of this thesis is wood, typically in the form of planks. A plank

generally has the shape of a rectangle, with well-defined lines. One common problem of

edge detectors is that some edges along a line might not be detected. This can cause a

noisy interpretation of an image, in cases where a line seems apparent but only a few edges

are detected. The Hough Line Transformation (HLT)[40] is therefore a solution to this

problem, where lines are attributed to a series of certain edges based on a weight. This

weight chooses the best fit line in case several edges are detected in close proximity, with

several possible potential lines.

Let r = xcosΘ + ycosΘ be the radius between the origin and an edge detected point of
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interest, where the origin is any corner of an image, typically bottom left. For each point in

two-dimensional space, the set of all possible straight lines through that point corresponds

to a sinusoidal curve in the (r,Θ) plane which is unique to that point. A set of two or

more points that form a straight line will then produce sinusoids which cross at (r,Θ) for

that line, thus giving a distance and an angle for where the line ought to pass through,

as shown in figure 2.10. The length of the line is then set to span between the two points

with greatest distance between them on the same line.

Figure 2.10.: Finding Hough lines [5].

Implementing this transform on two example images from the dataset, the HLT trans-

form matrix is plotted as an image shown on the right side of figure 2.11.
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(a) Almost empty container. (b) HLT on almost empty container.

(c) Partially filled container. (d) HLT on partially filled container.

Figure 2.11.: Showcase of Hough implemented on 2 images.

2.2.4. Hough-distance

This is an algorithm that has been developed by the author of this thesis, with the purpose

of obtaining a new feature representation based on the Hough Line Transform. When

looking at the HLT-transformed images, some suppositions can be made. It seems that

the more waste in the container, the more lines are created in the transformed image.

The transformed image has 8-bit resolution, meaning each pixel intensity ranges between

[0, 255]. However, due to the nature of the transformed image, and as one can see, the

pixel intensity is only either 0 or 255. Black or white. Thus, a new descriptor was made

for this thesis, where an algorithm runs on the output matrix of the HLT.

As one can see from the transformed images, there are greater regions of black in the

image containing the least waste. An algorithm is created which acts as an accumulator.
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Each row of the matrix is iteratively selected. For each row, a counter counts for how many

pixels (elements in the row) it can travel before registering a white pixel. This count is

given an exponential weight of 2, to reward the algorithm with a higher count the longer

it takes between registering a white pixel (a new Hough Line), and is reset the moment

it registers a white pixel. The amount of black pixels registered before a white pixel is

detected can be though of as a batch. At the end of each row, the value of the batches for

that row are added together and sent to the total accumulator. At last, the total count is

divided by 100,000, a number found by trial and error to downsize the total count to an

integer that ranges approximately between [0,5]. This is done due to the fact that principal

component analysis is performed on all feature representations later in this thesis, and it is

not wanted that this dimension blows up in euclidean space compared to the other features

when performing the dimensionality reduction. In order for ease of reference in later use,

the algorithm was given a name. For the sake of simplicity, the algorithm is named the

”Hough-distance”, and is shown beneath.

1 de f Hough dist ( imageArray ) :

2 tota lCount = 0

3 f o r i in range ( l en ( imageArray ) ) :

4 AccumulatedCount = 0

5 tempCount = 0

6 f o r j in range ( l en ( imageArray ) ) :

7 i f imageArray [ i ] [ j ] == 255 :

8 AccumulatedCount += tempCount ∗∗ 2

9 tempCount = 0

10 e l s e :

11 tempCount += 1

12 tota lCount += AccumulatedCount

13 AccumulatedCount = 0

14 re turn totalCount /100000

This algorithm can approximately be described mathematically as:

C =
rows∑
i

∑
j

b2j (2.4)

Where b2j represents the weighted count for each batch of black pixels counted between

two white pixels.
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2.2.5. Histogram Threshold

A histogram of each pixel intensity ranging from [0,255] for the image is created. A

threshold value, e.g. the value that is the median of the histogram of the image matrix,

divides the image. Every pixel with intensity value lower than the threshold value is

selected to be black (pixel intensity 0), and every pixel intensity which equals or is greater

than the threshold value is set to be white (pixel intensity 255). Implemented on the two

example images, this is shown beneath in figure 2.12.

(a)

(b)

Figure 2.12.: Histogram Threshold implemented on two containers.

2.3. Machine learning branches

Machine learning is a branch within Artificial Intelligence that have grown immensely in the

later years [41]. Within machine learning, it branches further. However, two main branches

commonly divide the field machine learning. The predictive or supervised learning, and
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the descriptive or unsupervised learning.

2.3.1. Supervised learning

The goal of supervised learning is to obtain a mapping from the inputs x to the outputs

y, given a set of input-output pairs. This set is called a training set, typically represented

as D. It is mathematically represented as

D = {(xi, yi)}Ni=1 (2.5)

Where N is the number of training examples.

The inputs x are called features, attributes or covariates, and are D-dimensional vectors

of numbers representing the features one wants to investigate, such as e.g. the height and

weight of a person, the colors of a car, etc. These inputs are often stored in a N x D matrix,

X, called the design matrix.

2.3.2. Unsupervised learning

’Descriptive’ or ’Unsupervised learning’ is the second main type of machine learning after

supervised learning. The goal is to find patterns in the data given. In unsupervised

learning, inputs of the training set are given as

D = {(xi)}Ni=1 (2.6)

where one can see there is no response variable y to classify the results. This branch of

machine learning is also fittingly called ”knowledge discovery”. It is typically a less well-

defined approach as one does not know what types of patterns one is looking for, and there is

no obvious metric to use for determining the error of the approach. Unsupervised learning

is also often referred to as ”Cluster Analysis”, as the purpose of most methods within

unsupervised learning is to group, or cluster, data based on similarity. Cluster analysis has

been applied to a variety of fields, such as medicine, socialogy, psychiatry, anthropology,

criminology, archeology, geology, geography, market research, economics and engineering,

to mention a few [42].
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2.3.3. Reinforcement learning

Reinforcement learning is the third main branch of machine learning and is typically the

least used. Its main approach is learning how to act or behave given reward or punishment

signals. Reinforcement learning will not be used in this paper, so it will therefore not be

discussed any further.

2.4. Supervised learning

There are many methods under the branch of supervised learning. Some of the most

used methods are: Support Vector Machines, linear regression, logistic regression, linear

discriminant analysis, decision trees, k-nearest neighbor algorithm and neural networks

[43]. There are also many different variants of neural networks. However, they are all

based on the foundation of what is called the Artificial Neural Network (ANN), and the

different variants of neural networks have additional features built on top or around the

ANN. Since a neural network variant called Convolutional Neural Network has been used

in this thesis, it is first explained how an ANN works, followed by an explanation of a

CNN.

2.4.1. Artificial Neural Network

An artificial neural network is a computing system which is inspired by the biological neural

networks of the brains of humans and animals. Mimicking the neurons and synapses of

the brain, the ANN is based on the same model. The ANN consists of layers of connected

nodes, where the nodes mimic the neurons of the brain, and the connections between the

nodes, called the weights, mimic the synapses. The neural network consists of an input

and an output layer, with optional ”hidden layers” in between, as shown in figure 2.13.

The goal of this neural network is to serve an estimated value from the output layer, based

on what is given to the input layer and how the weights between the layers are set.
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Figure 2.13.: Example architecture of a neural network [6].

One typical example of an ANN, is to predict housing prices. In this case, the input

layer would consist of perhaps 5 nodes, where each node could present one feature of the

house. E.g., number of bedrooms, square feet of the house, zip code, proximity to schools

and proximity to city center. The neural network then predicts the housing price at the

output layer based on the weights connected between the layers. This is done via forward

propagation, where a linear combination of the nodes is formed based on the size of each

individual weight connected to the node. One can either decide the weights between nodes

in the layers oneself, or use what is called backpropagation. What makes a neural network

a part of machine learning, is namely the use of backpropagation such that the neural

network optimizes the weights between nodes in the different layers. How a neural network

is built and how it works is thus explained more in detail.

Let ŷ be the output of a node and x be the input feature. The output of a node in a

network is thus given by:

ŷ = w × x+ b (2.7)

Where w is the weight assigned to the node and b is a bias value. As the neural network

is in fact a network, there are generally several inputs, several nodes and often several

layers. Lets first focus on how several inputs affect one node. Now let ŷ still be the output

of the node, but let x be an input vector [x1, x2, ..., xn] and w be a vector of the weights

[w1, w2, ..., wn] corresponding respectively to the inputs. Then one has the output ŷ of a

26



single node given as:

ŷ = wTx + b (2.8)

In the case of 3 inputs, this would look like figure 2.14.

Figure 2.14.: One node with 3 inputs

In the brain, a neuron and its synapses get bigger relative to how much they are used,

which also indicates their utility. In a neural network, a node has to achieve a successful

result on an activation function in order to carry to the next layers, or for the ”neuron to

fire”. This activation function outputs a value a, based on the linear combination of inputs

into the activation function. Many different activation functions exist. Two of the most

used are either the sigmoid function or the rectified linear unit (ReLU) function. For these

activation functions, a threshold value is set such that if a > threshold, the node fires to

the next layer. If not, the node stays dormant and outputs 0. Before presenting these two

activation functions, some slight changes are made to reduce the use of symbols.

Let z = wTx + b, such that z = [z1, z2, ..., zn] for nodes [1, 2, ..., n] in the same layer. As

previously stated, two of the most used activation functions are the sigmoid function, or

the ReLU function. They are represented as:

sigmoid : σ(z) =
1

1 + e−z

ReLU : R(z) = max(0, z)

(2.9)

A visual representation is shown in figure 2.15, with the sigmoid function on the left and

the ReLU function on the right. The threshold for the sigmoid function is typically set as

0.5, where the threshold for ReLU is >0.
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Figure 2.15.: Plots of sigmoid and ReLU function.

Let a = σ(z) be the output of the activation function σ(z). Now a is the output of node

z. When a neural network reaches its end, the output layer, ŷ = a. For a input layer with

3 inputs, no hidden layer and a single node in the output layer, this would look much like

figure 2.14, but to give a visual representation of the new symbols it is shown in figure

2.16.

Figure 2.16.: Activation function output [7].

At this point the terminology is almost complete. However, since a neural network has

the capability of being several layers deep, annotations is needed to keep track. Let [l] be

the annotation for the layer in question, starting at the first hidden layer and ending at
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the output layer. The forward propagation of the network is thus described as:

z[1] = w[1]Tx + b[1]

a[1] = σ(z[1]),

z[2] = w[2]Ta[1] + b[2]

a[2] = σ(z[2]),

...

z[l] = w[l]Ta[l−1] + b[l]

ŷ = σ(z[l])

(2.10)

A visual example of this is shown in figure 2.17, with one hidden layer.

Figure 2.17.: A neural network with one hidden layer [7].

Until this point, it has only been shown how to calculate the forward pass of the neural

network. What makes the neural network able to ”learn” and train, is the feat of back-

propagation. First, an error function needs to be introduced in order to evaluate how well

the predicted outcome ŷ scored relative to the true label y. This is also called the loss

function, or the cost function. One of the most common error functions is the logistic loss:

L = (y × log(ŷ) + (1− y)× log(1− ŷ)) (2.11)

The goal of backpropagaton and training of a neural network is to minimize the error

function. This is done by finding the weights and biases which minimize the error function.

Finding this is done by what is called gradient descent. Let E(w, b) denote the error

function with regards to the weights and biases. When minimizing the error function, the

aim is to find the minimum of said function. This is done by finding the steepest gradients
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for w and b through partial derivation of the error function E(w, b) at each layer. The goal

is to update the parameters w and b through iterations, in order to find the best fitting

weights and biases that minimize the error function, thus increasing the correctness of the

prediction of the neural network. This is done by implementing something called learning

rate (LR), which constitutes how large of a step down the direction of the gradients of the

parameters to take. Thus, parameters w and b are updated as:

w
[l]
i = w

[l]
i − LR×

(∂E(w, b)

∂w

)[l]
i

b
[l]
i = b

[l]
i − LR×

(∂E(w, b)

∂b

)[l]
i

(2.12)

This is calculated iteratively backwards through the network, utilizing the chain rule

when calculating towards the beginning of the network. It is important to note that the

learning step should not be designed to be too high, such that it overreaches the minima,

nor too low such that the learning of the neural network is slow and takes too long. When

starting the neural network, the weights and biases needs to be initialized. This is typically

done by the weights being assigned random values, and the biases set to zero.

2.4.2. Convolutional Neural Network

The theory and examples of the ANNs presented in the previous section, were what is

called a ”fully connected neural network”. This means that every node in each layer are all

connected to every node in the next layer. A digital image is a matrix of pixel intensities,

or 3 matrices in the case of a colored image, each matrix corresponding to one of the basic

colors. If a fully connected neural network were to be implemented on a raw image, each

pixel would correspond to one node. Depending on the resolution of the image, the amount

of parameters needed to be calculated quickly become immense. Taking the example of

a small grayscale image with a resolution of only 32 × 32 pixels, the input feature vector

would contain 1024 elements. If the hidden layer were to have e.g. 7200 nodes, one would

end up with 7,372,800 distinct parameters. One could argue that reducing the number of

neurons in the hidden layer would help with reducing the number of distinct parameters.

However, this might adversely affect the performance of classification. Therefore, it is

common to keep the number of neurons in the first hidden layer high [44].
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In order to address the parameters issue, one could hypothetically rearrange the neurons

in the hidden layer into blocks of neurons. Assume, instead of a layer containing 7200× 1

neurons, one could rearrange it into 50 blocks of 12× 12 neurons. One then assumes that

the pixels that are in proximity to one another are highly correlated, and pixels far away are

not. E.g. that pixel (2,2) is more correlated to pixel (0,0) than pixel (32,32). Assume that

neuron (0,0) in each block is intended to extract information around pixel (3,3) Likewise,

neuron (11,11) in all blocks are intended to extract information from pixel (29,29) in the

image. Due to the low correlation between pixels far away from each other, neuron (0,0)

only needs information from pixel (3,3) and its surrounding pixels to gain information from

this region. Thus, one can connect each neuron in each block to a certain region on the

image, and extract information by applying a filter over said region. The filters would be

convolutional filters/kernels explained in section 2.1.1, and operate in the same manner.

However, the filters may change, depending on what feautre the CNN is programmed to

detect. If the filter was set to be 5 × 5, the number of parameters would be reduced to

5×5×50×12×12 = 180, 000, thus obtaining a substantial reduction of parameters needed

compared to the fully connected layer. To further reduce parameters, one could assume

that all neurons in the same block share the same weights, which is called weight sharing.

Thus, one is down to 5× 5× 50 = 1250 weights between the hidden layer and the image,

giving a 99.98% reduction in parameters compared to the fully connected layer, in this

specific example.

The objective of the convolution layer is to extract the high-level features such as edges,

colors, gradient orientation, etc., from the input image. The next layer is the pooling layer,

which is responsible for reducing the spatial size of the convolved features. This also is done

to decrease the computational load for processing the neural network. There are two types

of pooling: Max pooling and average pooling. Max pooling returns the maximum value of

the region that the kernel is covering, where the average pooling returns the average value

of said region. Max pooling acts as a noise suppressant, as it extracts the most extreme

features, and is therefore the most commonly used [9].

A deep CNN can have several convolution and pooling layers in order to accentuate

features and gain accuracy. However, this might come at a cost. ”Overtraining” the neural

network can make it perform better on the training data, but might end up giving poorer
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results on the test data, as the model is overfitting during training. Finally, one or more

fully connected layers is added to learn non-linear combinations of the high-level features

from the previous layers and classify at the end. An example of a CNN can be shown in

figure 2.18, with two convolution and max pooling layers, one fully connected activation

layer and one last fully connected classification layer.

Figure 2.18.: Example of a CNN structure [8].

2.4.3. Inception V3

Inception V3 is a CNN designed by Google Brain Team, which is a machine intelligence

team focused on deep learning [45]. Inception’s purpose was to challenge the idea that just

stacking convolution layers deeper and deeper would improve performance. As previously

explained, just adding convolution layers is prone to overfitting and becomes increasingly

computationally expensive for every layer added. The solution implemented in Inception

was to utilize multiple filters of different sizes at the same level, thus going ”wider” rather

than deeper [9]. As shown in figure 2.19, three different filters and max pooling is performed

on the same layer, concatenating the result at the end of the layer.
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Figure 2.19.: First Inception module [9].

This was the filter configuration for the first version of Inception - Inception V1. When

developing this CNN further, it was decided that factorizing a 5×5 convolution to two 3×3

convolution operations would improve computational speed, as a 5× 5 convolution is 2.78

times more expensive than a 3 × 3 convolution [9]. In fact, a reduction in computational

time is found for any filter of size n× n when reduced to a combination of 1× n and n× 1

convolutions. A combination of a 1 × 3 convolution followed by a 3 × 1 convolution was

found to be 33% cheaper than a 3 × 3 convolution. Thus, a new convolution layer was

implemented for Inception V2 and V3[9], shown in figure 2.20.
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Figure 2.20.: First Inception module [9].

At the end of the network, the classification layer consist of the softmax function. The

softmax function takes the output vector from the previous layer, and normalizes it into

a probability distribution. This is done such that in case some vector elements from the

output vector from the previous layer were negative, these would now become non-negative,

and all elements are normalized to the range between 0 and 1. Thus, the non-normalized

output of the previous layer is transformed to a probability distribution over the predicted

output classes. The softmax function is given for a K-dimensional vector z as:

σ : RK →

{
σ ∈ RK |σi > 0,

K∑
i=1

σi = 1

}
, where

σ(zj) =
ezj∑K
k=1 e

zk
, for j = 1, ..., K.

(2.13)

At last, one can see the 23-layer deep structure of Inception V3’s CNN, shown in figure

2.21.
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Figure 2.21.: Complete structure of Inception V3 [10].

2.5. Unsupervised learning

The purpose of unsupervised learning, or perhaps more suitably called cluster analysis,

is to divide data into groups that form some meaning or utility for the interpreter. The

interpreter could be a person looking at the data, or another program using the clustered

data as classification for further processing or modeling. It has been widely used in many

fields, such as biology, psychology or other social sciences. However, the biggest rise in

usage has been in the later years within the fields of machine learning, pattern recognition,

data mining, and statistics [46].

Cluster analysis is the study of techniques in which the goal is finding the most rep-

resentative cluster prototypes. Data is grouped based only on information found in the

data, which describes the objects and their similarities. The goal is for data to be grouped

up with as much similarity (often proximity) to similar objects, meaning it adheres to the

same group, and as much dissimilarity to other groups/clusters.

In figure 2.22, one is visually introduced to the results of clustering with different amount

of clusters chosen. there are 20 data points more or less scattered on a plot. One can loosely

see that the data points tend to appear in two groups. A good estimation would then be

to assign a clustering algorithm with two clusters. This can be seen in (b) in the figure.

However, when one decides to implement a clustering algorithm, one is often required to
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a priori set the number of clusters one wants. For example in the algorithm ”K-Means”,

which will be addressed later, one is required to specify the number of clusters for the

dataset. One can then see from the figure that (c), with four clusters, or (d), with six

clusters, tend to make small clusters right next to each other. At some point the amount

of clusters will group data with such close proximity to each other that one cannot with

good conscience state that these data belong in different groups. This is addressed by the

use of cluster validity, which is explained later in this chapter.

Figure 2.22.: Varying amounts of clusters [11]

2.5.1. Types of clustering

It is commonly said to be main two branches within clustering applications [28]. These

are called hierarchical (flat/nested) clustering and partitioned (unnested) clustering. A

partitioned clustering is simply the division of data objects into groups (clusters) which

are non-overlapping. Figure 2.22 was an example of this. Thus, it is important that each

data point adheres to one, and only one, cluster. With hierarchical clustering, each

data point is iteratively branched together with its closest, or most similar, data point. It

is typically displayed in what is called a cluster dendrogram, as shown in figure 2.23. Here

one can see sub-clusters and their relation.
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Figure 2.23.: Cluster dendrogram [12]

Exclusive vs Overlapping vs Fuzzy

Data points in clusters are typically defined within one of three states. Exclusive, overlap-

ping or fuzzy. When a data point is exclusively assigned to a cluster, it is only a member

of that cluster. When a cluster is overlapping, or non-exclusive, a data point can belong

to several clusters. An example of this could be that a student belongs to both a cluster

of enrolled students, but also to a cluster of employees, given he for example works as a

student assistant. In a 2D-graph this would typically be displayed as a point somewhere

between the center of the two clusters. Fuzzy clustering is similar to non-exclusive cluster-

ing. However, each data point is given a weight between 0 and 1 of how much it belongs

to each given cluster. A constraint for ensuring that the clustering is coherent, is that the

sum of weights for each data point must equal 1.

2.5.2. Similarity and dissimilarity

In cluster analysis the inputs differ based on what type of analysis is to be done. As

partitioned clustering is a similarity-based clustering one uses what is called a N ×N dis-

similarity matrix, or distance matrix as means of calculating the similarity or dissimilarity

between points. In hierarchical clustering one uses a N ×D feature matrix, or design ma-
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trix. Similarity and dissimilarity with regards to distance measure, are just the opposites

of each other. The closer one point is to another, the more similar they are. The further

they are apart, the more dissimilar. Since this thesis focuses on the use of partitioned

clustering, some dissimilarity measures are introduced.

Measuring similarity/dissimilarity

A dissimilarity matrix D is a matrix where di,i = 0 and di,j ≥ 0 is a measure of the

”distance” between objects i and j.

The mathematical definition of dissimilarity between objects in terms of the dissimilarity

of their attributes are:

∆(Xi,Xi′) =
D∑
j=i

∆j(xij, xi′j) (2.14)

where some common dissimilarity functions are:

Squared (Euclidean) distance

∆j(xij, xi′j) = (xij − xi′j)2 (2.15)

This is the squared distance of the line between two points in euclidean space. Squared

distance strongly emphasizes large differences, due to its exponential nature. One can

also apply cubed distance or bigger exponentials to affect the sensitivity of distance be-

tween points even further. However, squared distance is most often sufficient and is the

dissimilarity measure most often used.

City block distance

∆j(xij, xi′j) = |(xij − xi′j)| (2.16)

City block distance is also called l1 distance or Manhattan distance, and is found by

computing how many rows and columns one have to move in order to get from xi to xi′ ,

like maneuvering from one city block to another.

Correlation coefficient
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if Xi is a vector, typically from a time-series of real-valued data, the correlation coefficient

is commonly used. However, if the data is standardized, one has that

corr[Xi,Xi′ ] =
∑
j

xijxi′j. (2.17)

Through a series of calculation-steps and similarities, as shown in [47], one arrives at

∑
(xij − xi′j)2 = 2(1− corr[Xi,Xi′ ]). (2.18)

Therefore, as one can see, clustering based on correlation of standardized data is equal

to clustering based on the squared distance [47].

Categorical variables

In cases where categorical values are measured, like grouping cars by their color, one can

assign a distance 1 if the features are different, and conversely 0 if not. The sum of all the

categorical then becomes:

∆(Xi,Xi′) =
D∑
j=1

(xij 6= xi′j) (2.19)

This is also known as the Hamming distance.

Other measuring methods worth mentioning could be the Jaccard Similarity or the Co-

sine Correlation, which are widely used in item similarity measurements of recommendation

systems. An example of this could be an online movie- and TV-show provider trying to

best recommend new and/or similar items to any given user. However, the similarity mea-

sures already stated are the ones most used in clustering problems and will thus be used

in this thesis.

2.6. Partitioned clusters

2.6.1. K-Means algorithm

For unsupervised learning, the K-means algorithm is one of the most known and used

clustering algorithms [13]. The K-means algorithm clusters an unlabeled data set into K
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clusters, where K is chosen by the programmer. The idea is to map a series of points into

a group or cluster, based on how effectively the points are assigned to each cluster. The K-

means algorithm operates such that each point is assigned its cluster based on the shortest

path to the closest cluster, using squared distance as the distance measure. The steps of the

algorithm can be explained as follows. Take an unlabeled data set, and randomly assign

the K chosen cluster centroids amongst the data. Then calculate the squared distance of

each data point in the data set and assign membership to the closest cluster for each point.

Then take the mean of all the points in each cluster, and assign that as the new center

point for the cluster centroid. Then repeat the cluster assignment and cluster centroid

alignment until the cluster centroids movement converge, ultimately stopping.

This is represented mathematically as follows. Let

X = {x1, x2, ..., xn} ∈ Rn (2.20)

be a D × n matrix, where D is the number of points in the data set and n is the number

of variables, or dimensions, of the data set to be investigated. Thus, let

C = {ck, k = 1, ..., K} ∈ Rk (2.21)

be the set of indexes for which cluster each example xi is assigned. An example of this

could be that x3 is assigned to cluster k = 2, such that c3 = 2.

Let µk be the mean of cluster ck. The squared error between xi and µk for cluster ck is

found through the objective function J(ck).

J(ck) =
∑
xi∈ck

||xi − µk||2 (2.22)

The goal of K-means is to minimize the sum of the squared error over all K clusters.

The overall objective function thus becomes

J(C) =
K∑
k=1

∑
xi∈ck

||xi − µk||2 (2.23)

And is minimized through

minc1,...,ck,µ1,...,µkJ(C). (2.24)
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Even though the K-means algorithm is now described verbally and mathematically, it

is best accompanied by an example visually. Shown in the same steps as written on

the beginning of this section, figure 2.24 displays an unlabeled data set and the random

initialization of K=2 clusters.

(a) Unlabeled data set (b) K=2 random initialization

Figure 2.24.: K-means initialization [13].

Then the cluster assignment step is performer, where membership to each cluster is

assigned through minimizing distance to each cluster, as shown in 2.25a. Thus, the new

cluster centroid is calculated and assigned, as shown in 2.25b.

(a) Cluster assignment (b) Centroid adjustment

Figure 2.25.: First round of K-means [13].

Now the algorithm is in its iterative state, and 4.3 shows the second step where the same
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action as in 2.25 is performed.

(a) Cluster assignment (b) Centroid adjustment

Figure 2.26.: The two steps of one iteration of K-means [13].

At last one arrives at the end when no new points are assigned to the cluster and thus

the cluster centroid won’t change, as seen in 2.27.

Figure 2.27.: Completed algorithm [13].

As explained in the beginning of this chapter, choosing the right K number of clusters

can be hard. Unlike supervised learning, one has no measure of accuracy of an unlabeled

data set. However, what is being done, is minimizing the squared error between points

and their assigned cluster. Instead of measuring accuracy, the correlation between the

data points and cluster centroids can be measured in various manners. The most used of
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these are either the Elbow method, the Silhouette method or the Gap statistic method

[15], which is presented later in this chapter.

2.6.2. Affinity propagation

Deciding the number of clusters can be a difficult task if one has little knowledge or under-

standing of data to be investigated. As a consequence of this, methods have been proposed

to have the number of clusters figured out autonomously by the computer. Affinity Prop-

agation is one of these proposed solutions. It shares some similarities with K-Means, but

is structured quite differently.

In Affinity Propagation, the data points can be thought of as all being in a network,

where each individual point communicates with each other. The purpose of this commu-

nication is to decide which data point is going to act as an exemplar, the center point of a

cluster. Every data point is therefore collectively determining which data point should act

as exemplar through each iteration of the algorithm [14]. The message passing between

points are stored in two matrices. The responsibility matrix and the availability matrix.

The responsibility matrix R reflects how well-suited a point k is to be an exemplar for

point i through r(i, k). The availability matrix A reflects how appropriate it would be

for a point i to choose point k as its exemplar through a(i, k). The message passing of

availability and responsibility is visually represented in figure 2.28.
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Figure 2.28.: Visual representation of message passing between points[14].

Similarity

The first messages sent per iteration are the responsibilities. These values are based on a

similarity function s. Affinity propagation uses the negative squared distance as similarity

measure. This is then stored in the similarity matrix S.

s(i, k) = −||xi − xk||2 ∈ S (2.25)

Responsibility

The responsibility messages are defined as:

r(i, k)← s(i.k)−maxk′s.t.k′ 6=k{a(i, k′) + s(i, k′)} (2.26)

this can be implemented through a nested for loop where one iterates over every row i

and determines the max(A+ S) for every index not equal to i or k.

Availability

For all points which isn’t on the diagonal of A, that being all messages going from one

data point to all others, the update equals the responsibility that point k assigns to itself
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and the sums of responsibilities that all other data points assign to k.

a(i, k)← min{0, r(k, k) +
∑

i′s.t.i′ /∈{i,k}

max{0, r(i′, k)} (2.27)

For the points on the diagonal of matrix A, which are the availability values a that

a data point sends to themselves, the message values equals to the sum of all positive

responsibility values sent to the current data point.

a(k, k)←
∑
i′ 6=k

max{0, r(i′, k)} (2.28)

Exemplars

The final exemplars are then chosen to be the maximum value of A+B.

exemplar(i, k) = max{a(i′, k) + b(i′, k)} (2.29)

Clustering

In order to commence the clustering of the data, the implementer needs to decide the

number of iterations, a damping factor and the preference. The preference is set to the

diagonal of the matrix S. The preference value indicates how strongly a data point thinks

of itself as a potential exemplar. If this value is initialized at 0 and remains unmodified,

not clustering will occur as every data point believes itself should be an exemplar. One

common solution is to set the preference to the median of S. However, this opens up for

a propensity to split clusters as the iteration continues for long. If this is not wanted,

increasing the preference to a higher negative value than the median(S) will often help.
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Figure 2.29.: Reduction of clusters through iterations [14].

Due to the nested for-loop implementation of the Affinity Propagation, it has a com-

plexity of O(n2), such that the increase of data points greatly affect computational time.

2.7. Cluster validity

When working with unlabeled data and little to no information as to how the data might

best be grouped, testing of cluster validity is performed. If the number of clusters is not

directly relevant to the task at hand, cluster validity methods aims to find the amount of

clusters that describes the best fit for the data investigated. Following are some validity

methods for partitioned clusters.

2.7.1. Elbow method

The goal of the K-means method was to minimize the squared error between points and

their assigned cluster. The elbow method is a means of looking at the total sum of squared

error relative to the number of clusters K. As one can see in 2.30, the sum of squared errors

decreases as the number of clusters increases. What the elbow method aims to describe,

is that when there is a significant bend from vertical to horizontal on the graph (like the

elbow of an arm), this might represent the correct number of clusters for the given data

set. This is because at this point, there has been significant drops in squared errors for the

clusters. But, after this point, it can seem unreasonable that it is a good choice to further

divide data that are already in close proximity to each other in new clusters. An example
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is shown in figure 2.30, where the elbow is thought to be at k = 4 clusters.

Figure 2.30.: Example of Elbow method dictates k=4 clusters [15].

The Elbow method will however not always display an elbow in the graph. If one has a

data set with uniformly dispersed points as in 2.31a, it is more likely for the Elbow method

graph to display itself as in 2.31b. Here one can see that there is no well-defined elbow,

and thus it is hard to justify which, if any, amount of clusters will successfully divide the

data in any sensible manner.

(a) Disperse points (b) Elbow method without an elbow

Figure 2.31.: Bad case for Elbow method [15].

2.7.2. Silhouette method

The Silhouette method is another method to measure the quality of clustering. It deter-

mines how well each data point lies within its own cluster. A good score is indicated by a
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high average silhouette score. A silhouette value is a measure of how similar a data point

is to its own cluster, called cohesion, compared to the other clusters, namely separation.

The value ranges from -1 to +1, where a high value indicates that the data point is a good

fit for its own cluster and a poor fit for any of the other possible clusters. Thus, a high

average silhouette score signifies that all the points are well fitted for their clusters and a

bad fit for other clusters.

Mathematically, the Silhouette method can be described as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(2.30)

Where a(i) is the average distance between point i and all other data within the same

cluster and b(i) is the smallest average distance of point i to all points in any other cluster

which point i do not contain a membership. Written a bit more algorithmicly minded, one

has:

s(i) =


1-a(i)/b(i), a(i) <b(i)

0, a(i)=b(i)

b(i)/a(i)-1, a(i) >b(i)

 , for − 1 ≤ s(i) ≤ 1

Figure 2.32 is an illustration of how one might pick the correct number of clusters based

on the silhouette method.

Figure 2.32.: Silhouette method [15].
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2.7.3. Gap statistic

The idea of the gap statistic is to take the total within intra-cluster variation for different

values of k and compare them with their expected values under a null reference distribution

of the data. The estimate of the optimal clusters will then be the value for which logWk

falls the farthest below the reference curve, thus maximizing the gap statistic [48]. This

means that the variation within clusters is much smaller than the randomly distributed

points of the reference distribution.

Let Dk represents the sum of intra-cluster distances between the points in a given cluster

Ck, containing nk points.

Dk =
∑
xi∈Ck

∑
xj∈Ck

||xi − xj||2

= 2nk
∑
xi∈Ck

||xi − µk||2
(2.31)

Adding up the normalized intra-cluster sum of squares then gives the measure of the

clusters compactness, called Wk.

Wk =
K∑
k=1

1

2nk
Dk (2.32)

Plotting the difference in Wk for a different number of clusters would then give the plot

that is used for the elbow method. However, the gap statistic takes the log of Wk and

compares it with a null reference distribution of the data. In other words, a distribution

with no obvious clustering. The estimate for the optimal number of clusters K is then

the value for which difference between E∗n{logWk}, being the null reference distribution

compactness, and logWk is the largest. This is formalized as

Gapn(k) = E∗n{logWk} − logWk (2.33)

The reference datasets are often generated by sampling uniformly from the original

dataset’s bounding box, as seen in figure 2.33a, top right picture. To obtain the estimate

E∗n{logWk}, one needs to compute the average of B copies logW ∗
k for B = 10. Each

of these are created with a Monte Carlo sample from the reference distribution, with a
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standard deviation sd(k). When accounting for the simulation error, one gets the quantity

sk, represented as:

sk =
√

1 + 1/B × sd(k) (2.34)

Finally, the optimal number of K clusters is the smallest k that fulfills

Gap(k) ≥ Gap(k + 1)− sk+1. (2.35)

As this is quite abstract and not so straight forward to understand through mere reading,

some following figures will hopefully guide the reader towards better understanding. In

figure 2.33a one can see three clusters in the top left plot. The top right plot takes the

boundary around around the dataset, and creates a null reference distribution. In the

middle left one can see the cluster compactness relative to the number of clusters K, which

is the visual aid one uses when determining the elbow method. The middle right takes the

logarithm and average logarithm of the compactness measure relative to clusters K. The

bottom left plot thus shows the gap, Gapn(k) = E∗n{logWk} − logWk for each cluster K.

A high score in this measure indicates probable optimums for the amount of clusters K.

Finally, in the lower right plot the entire gap statistic, Gap(k) ≥ Gap(k + 1) − sk+1., is

measured for amount of clusters K. Here one can see that Gap(3) at K = 3 clusters is the

one to fulfill the equation.

A similar example is seen in figure 2.33b, with 400 data points and 5 clusters. It shows

similar results, and seems to work well.
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(a) N=200, K=3 (b) N=400, K=5

Figure 2.33.: Gap Statistic examples [16].

2.8. Dimensionality reduction

Dimensionality reduction is used in an array of applications, and by almost all scientific

disciplines [29]. Working with data in high-dimensional space can present various problems.

These could be computational power/time, visualization of data or wanting to figure out the

similarity in a large amount of interdepentant variables. A possible solution to this is the

use of dimensionality reduction. Reducing the amount of data to a smaller subspace, while

still containing a big part of the data’s variance can be done through several dimensionality

reduction methods. Some of the most common methods are Decision Trees, Factor Analysis

or Principal Component Analysis [49]. In this thesis, Principal Component Analysis (PCA)

is used to reduce the data to the 2-dimensional plane in order to visualize spread of the
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data being investigated, and to see whether they group up in a meaningful manner. More

of this will be explained later, but first it is explained how principal component analysis is

calculated and used.

2.8.1. Principal Component Analysis

The goal of principal component analysis (PCA) is to maximize the variance of a linear

combination of the variables, such that one can determine which variables represents most

of the variation in a data set. If one has a large set of variables, each representing a

dimension in the data, the PCA maps the projection of the points from the old variables to

a best fit line, called a PCA-dimension. This is one of the main methods for dimensionality

reduction, and can be implemented in various ways. It is usually explained via an eigen-

decomposition of the covariance matrix of the data, but Singular Value Decomposition

(SVD) can also be used. Since this thesis uses an open software application of PCA by

means of SVD, an account of how PCA is obtained via SVD is described as follows.

Let X be the data matrix of size n × p, where n is the number of samples and p is

the number of variables. It is centered by having column means subtracted. The p × p

covariance matrix C is given by

C =
XTX

n− 1
. (2.36)

It is a symmetric matrix and can thus be diagonalized:

C = V LV T (2.37)

where V is a matrix of eigenvectors and L is a diagonal matrix with eigenvalues λi in

decreasing order on the diagonal. These eigenvectors are the principal axes, or principal

directions, of the data. The projections of the data onto the principal axes are the principal

components. The j − th principal component is given by the j − th column of XV , and

the coordinates of the i − th data point in the new principal component-space are given

by the i − th row of XV . Thus singular value decomposition can be performed on X to

obtain the decomposition:

X = UΣV T (2.38)
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where U is the unitary matrix, and Σ is the diagonal matrix of singular values si. From

this, one gets:

C =
V ΣUTUΣV T

n− 1

= V
Σ2

n− 1
V T .

(2.39)

The right singular vectors V are the principal directions, and singular values are related

to the eigenvalues of the covariance matrix via λi =
s2i
n−1 . The principal components are

then given by:

XV = UΣV TV

= UΣ
(2.40)

Where the principal components are given by the columns of UΣ.

2.8.2. The Curse of Dimensionality

When working with high-dimensional data, it is noteworthy to comment the term coined

by Richard E. Bellman [50], ”the curse of dimensionality”. It refers to the fact that when

dimensionality of the data investigated increases, the volume of the space increases so fast

such that the data becomes sparse within this space. This sparsity can be problematic for

any method that requires statistical significance. In order to obtain a statistically reliable

result, the amount of data needed to support the result often grows exponentially with

the dimensionality [50]. Also, organizing data by group adherence can become difficult in

high-dimensional space, as all objects can become sparse and dissimilar [51]. This is to be

taken into account for later chapters when applying the K-means algorithm on the dataset

to cluster into groups, as well as serves the point for using the dimensionality reduction

tool of principal component analysis.
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3. Tools for implementation

As the theory of the different methods used in this thesis was presented in the previous

chapter, this chapter focuses on how these methods can be implemented and used. The

reasoning for which tools were chosen, and why, is presented in this chapter.

3.1. Choosing The Programming language

When deciding what programming language to use when implementing machine learning

methods, there are several factors that need to be taken into account. Pro’s and con’s

of several languages must be weighed. As of 2018, there is quite a selection of suitable

languages for machine learning. Since several languages have well-developed packages and

libraries for machine learning, all of the languages which do not are automatically left out

of the equation. A short-list of the currently most popular languages for machine learning

are [52] [53]:

• Python

• R

• Matlab

• Julia

The first thing to evaluate when considering which language to use, might be which is

the most popular. This is because it is easy to assume that the most popular language

most likely has the largest community, largest support, and perhaps the best tools in the

market for what one might need. In figure 3.1 one can see the Google Trend searches [17],

how popular each term has been on Google’s search engine since 2012. However, even
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though Python sticks out as the most popular of the Google searches, a little deeper dive

into each language will follow, to ensure the correct choice of tools for this thesis.

Figure 3.1.: Popularity of searches on Google [17].

3.1.1. R

R is a free, open source software environment and programming language, used most often

for statistical computing and graphical display of its output [54]. It is popular for its vast

number of machine learning algorithms implemented as third party packages or libraries.

Used in large scale by academics in statistical fields, giving access to some state-of-the-art

methods and community maturity [55]. It is an interpreted language, and not a compiled

language. A compiled language converts the code into machine-code once, and thus the

executable program will run in the same manner until a new program is compiled after

some potential changes in the code. This is not the case with interpreted languages, where

the interpreter executes the program directly, translating each statement in the code into

a sequence of one or more subroutines, and then into machine code. Compiled programs

thus generally run faster than interpreted ones, because interpreted programs must be

reduced to machine instructions at run-time. This could prove to not be beneficial when

working with large sets of data. However, since this thesis will only do a finite amount of

analysis and computations, the speed is not of big importance. If one were to implement an

online machine learning program, this point would be of greater importance. Some other

difficulties of R are that documentation is deemed by the community to be too abstract

and difficult, and the language in general having low scalability [52].

55



3.1.2. Matlab

Matlab is a programming environment also used in large scale by academics, but largely

by industry as well. It’s main strengths are its ease of use for beginners who have little

knowledge of programming, but are in need of computational assistance. This could be ev-

erything from structural engineering and finite element analysis, to advanced mathematics

and analytics. Matlab’s syntax is also known to be quite easy, and attempts to mimic the

manner in which science is done by hand to easily translate to the program.

One of the main downsides for the choice of Matlab, is its cost. It is a commercial

software, which eliminates some subset of the user base. In turn this also makes the

community smaller, and possibly makes it harder to find solutions to given problems when

one gets stuck.

3.1.3. Julia

Julia is a programming language that was created to cater to the needs of high-performance

numerical analysis and computational science. It’s goal is possibly the most optimistic and

far-reaching on the list, and is stated as follows [56]:

”We want a language that’s open source, with a liberal license. We want the

speed of C with the dynamism of Ruby. We want a language that’s homoiconic,

with true macros like Lisp, but with obvious, familiar mathematical notation

like Matlab. We want something as usable for general programming as Python,

as easy for statistics as R, as natural for string processing as Perl, as powerful

for linear algebra as Matlab, as good at gluing programs together as the shell.

Something that is dirt simple to learn, yet keeps the most serious hackers happy.

We want it interactive and we want it compiled.”

With these goals in mind, it almost becomes difficult not to choose Julia for this as-

signment. If all that is promised is given, Julia would conquer the world of analytics and

computational science. However, no matter the promise of a language or environment, the

user base is always of importance. If the language is not used, there is little help to get

when one needs help. Even though it has been under development since 2009, release of

version 1.0 saw the light of day on august 9th, 2018 [57]. It is thus considered a very fresh

language and will take some time to reach maturity.
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3.1.4. Python

As of 2018, Python is one of the fastest growing programming languages. Shown in figure

3.2 [58], queries regarding Python has risen tremendously on the developer community

website Stack Overflow, the world’s largest developer community [59]. There are many

reasons why Python has risen to popularity. It has an easy-to-learn syntax, while still

not sacrificing performance, making it a good trade-off with regards to complexity and

performance [60]. It is open source, and has a large community. This in turn makes for a

rich set of libraries, good documentation and good possibilities for help available.

Figure 3.2.: Python’s popularity on Stack Overflow [18].

There could be numerous reasons why exactly Python seems to be dominating as lan-
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guage of choice for machine learning, but it can be thought that the combination of its

ease-of-use and well-developed machine learning libraries is what has won people over. For

this reason, and its large community, Python was chosen as the language of choice for this

thesis. Its tools and libraries will be further discussed in the following chapters.

3.2. Python’s data science and machine learning tools

Being that Python is an open source language steadily gaining popularity, several useful

libraries for machine learning and other analytic purposes have emerged. Some of the most

popular and well-developed libraries are NumPy, Pandas, and Matplotlib.

NumPy is one of the fundamental packages/extensions to Python for scientific comput-

ing. This is due to its features being:

• A powerful N-dimensional array object.

• Sophisticated broadcasting functions.

• Tools for integrating C/C++ and Fortran code.

• quick computing of linear algebra, Fourier transforms and random number capabili-

ties.

A useful feature of the array object, is the runtime computation time of matrix multipli-

cation. A regular list in Python are arrays of pointers to objects, with per-element dynamic

type checking. A NumPy array is solely of homogeneous type and its operations are imple-

mented in C, avoiding the general cost of loops in Python, making it much quicker. This

can be seen in figure 3.3 [19], where a matrix dot-product is performed a thousand times

in three different manners and has its runtime performance measured.
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Figure 3.3.: Run-time of NumPy compared to normal Python loop [19].

a NumPy array ”na” is used via the NumPy .dot()-function, here called ”Good NumPy”.

The .dot()-function is a dot product of two arrays, which in this case is the same array,

”na”. It can be seen that the runtime of ”Good NumPy” is approximately 35 times faster

than that of ”Normal Python”, using a standard programming implementation of matrix

dot-product. ”Naive NumPy” can be excluded due to not being very relevant for this

point.

Pandas is a package for fast, flexible and expressive data structures, made to work with

relational or labeled data. It is well suited for many different kinds of data, for example:

• Tabular data, like a SQL table or Excel spreadsheet.

• Ordered and unordered time series data.

• Arbitrary matrix data with row and column labels

Pandas is built on top of NumPy and is thus intended to integrate well within Pythons

scientific computing environment. This allows Pandas to work well at data manipulation

of large data sets, be it ordered or unordered data. Pandas is fast, as many of the low-level
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algorithmic bits have been tweaked through Cython, the compiler for C extensions made

for Python [61].

Matplotlib is an open source Python 2D plotting library, available with various printout

formats and interactive environments. It is used to generate plots, histograms, power spec-

tra, bar charts, scatterplots, etc. It is made to seamlessly interact with other Python-based

libraries for numerical analysis, such as those previously mentioned (NumPy, Pandas).

3.2.1. Anaconda

Anaconda is a Python distribution containing the Python run-time environment, several

integrated development environments and over 1,400 popular data science packages. In

figure 3.4 one can see a snippet of what the distribution contains, with mainly its focus on

data science libraries [20]. It also contains, amongst others, Scikit-learn, TensorFlow and

Keras, which are popular packages with data science and machine learning functions and

utilities built on top of the underlying packages mentioned in the previous section, mainly

NumPy and/or SciPy, Pandas and Matplotlib.

Figure 3.4.: Contents of the Anaconda Distribution [20].

Scikit-learn offers a lot of functions and algorithms for machine learning, and is one of
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the packages most used in this thesis. It offers algorithms for classification, such as support

vector machines, nearest neighbors and random forest. Algorithms for regression, such as

ridge regression. Clustering algorithms, such as k-Means, spectral clustering and affinity

propagation, which will be shown in section X. It also offers algorithms for dimensionality

reduction, such as PCA, and utilities for preprocessing of the data.

The advantage of using the Anaconda distribution is its direct integration of all avail-

able libraries and various choice of integrated developing environments (IDE’s), such as

”spyder”, ”jupyterlab”, ”Jupyter notebook” and ”psyplot-gui” [20]. The IDE that is used

in this thesis, is the web-based computing notebook environment Jupyter notebook.

3.2.2. Jupyter notebook

The Jupyter notebook is an open-source web application and IDE that makes it easy to

prototype and develop Python scripts and programs in the web-browser. When installed via

the Anaconda framework, all of Anaconda’s libraries are readily implementable. Figure 3.5

shows the graphical layout of how the Jupyter notebook looks like and work [21]. One can

easily create new modules in the application, which can run dependently or independently

of other modules. The notebook can be posted online and shared with others, for easy

access to whatever one has created and wants to show others.
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Figure 3.5.: Example layout of Jupyter [21].

It is due to the ease of implementation and display that Jupyter notebook has been

chosen as IDE for this thesis. In appendix A one can see code written for this thesis,

written in Python on Jupyter notebook.
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4. Tests and results

With the theory explained, it is time to explain how and what the tests to be done are.

This chapter will first give a short introduction into what tests are to be done, followed by

how they are performed and the results they yield. Interpretation and reflection regarding

the tests and results will mostly be done in the next chapter, with a conclusion drawn in

the last chapter.

4.1. Data receival and test setup

Figure 5.1a illustrates the scenery of how and where the data is obtained. A camera is

attached to a post, providing surveillance over the container beneath it. Images are taken

of the container once a minute, throughout the day. The camera is connected via bluetooth

to a portable field-router, which in turn is connected to the internet via 4G. The images

are sent to Acando, where they manually perform the labeling, and assort the images into

their respective folders, as explained in the introduction. This is done in batches, as no

employee sits in real-time and labels every image coming in once a minute.
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(a) Camera setup. (b) Full picture from camera.

(c) Region of image that is cropped. (d) Cropped and transformed.

Figure 4.1.: Overview of how data gets collected.

As stated in the introduction, labeled images from the first month of surveillance were the

basis of the dataset given for this thesis. The dataset consists of 4802 images, distributed

over the 5 labels ”0%”, ”25%”, “50%”, “75%” and ”100%”, which represent the filling rate

of wood waste in the container. As the dataset was handed over for this thesis, and the

tools for implementation mentioned in the previous chapter were selected, the tests could

begin to be made. Since Jupyter notebook was the selected framework for the work of this

thesis, it serves as the hub and tool for most of the methods and data processing in this

thesis. Everything is written in Python, and executed within the notebook. The complete

code is found in appendix A. The code can be broken down in mainly three sections:

• Import of images and image pre-processing.

• Feature extraction from images.
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• Principal component analysis and K-means clustering of extracted features.

For testing of the convolutional neural network, the training of the CNN is done in

the shell by running the python-file ”retrain.py”, and tested by looping the single image

predictor ”label image.py” over the test set. The code for these two Python-files are found

in appendix B and C, respectively.

4.2. Pre-processing of data

4.2.1. Image pre-processing

Typical image pre-processing techniques are contrast correction and noise reduction. When

an image is displayed with a narrow color or brightness range, it can be visually hard to

see the contents of the image and the image can be in need of contrast correction. This is

typically done either through normalization or histogram equalization. It was experimented

with contrast correction as a means of pre-processing in this thesis, but it was found to be

counter intuitive. Due to the containers and/or the surrounding environment being noisy

(with e.g. rust spots on the container walls), this pre-processing tool made such noise even

more noticeable, as can be shown in figure 4.2.

(a) Original image. (b) Image after histogram equalization.

Figure 4.2.: Difference with or without histogram equalization.
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Feature extraction methods are more successful with the less noise prevalent, so this pre-

processing step was therefore not applied. With regards to noise reduction, a convolutional

2D-filter is applied, which effectively blurs the image. This smooths out spots and soft

corners, making the feature extraction methods react less to noise and have a higher

threshold before e.g. detecting edges.

4.2.2. Feature extraction

The tests in this chapter will be based on the data within the feature vectors analyzed. For

every image in the provided dataset, six feature extraction methods have been performed.

These are the six feature extraction methods described in chapter 2 - Theory. However, the

output of these different feature extraction methods were not uniform, and not necessarily

compatible to be successfully implemented in K-means as is. Why this is, is covered more in

detail in chapter 5 - Discussion. However, each feature extraction needed to be represented

in such a manner that it could be purposefully tested via K-means. In order to do this, it

was decided to make a numerical representation of each feature extraction, such that each

image produced a feature vector containing six single number elements. The following list

explains how and why the respective feature extraction was represented in that specific

manner:

• Histogram of Oriented Gradients : The output of the HOG-function has the same

dimension as the input image. When the output-matrix is plotted, one can see the

histograms of oriented gradients mapped onto a black substrate, as seen in chapter

2 - Theory. The gradients grew large when the change in texture in the region of

the image was high. Thus, the uniform regions of the image, such as the walls of

the container, tended to create little to no gradient histograms in said regions. The

result would be a much greater portion of the image being black. Therefore it was

decided that a numerical representation of the fill rate of the container could be the

mean pixel intensity of the transformed image. The expected outcome would then

be that full containers gave a high mean intensity due to the presence of many large

white gradient histograms, with the opposite being true for empty containers.

• Hough Line Transform: As the output of the Hough Line Transform is similar to

that of the HOG-function, the same assumption and representation is made. Instead
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of creating gradient histograms, the Hough Line Transform maps the discovered lines

onto a black substrate, resulting in a 2D-matrix representing the transformed image.

As seen on the images of the Hough transform (REF), the wood waste is detected

quite successfully and thus allow for the assumption of more wood waste correlat-

ing with higher mean intensity. Thus, mean pixel intensity is also the numerical

representation of the Hough Line Transform.

• Hough-distance: This algorithm takes the HLT-transformed image as input, and

iterates over every row of the transformed image. It counts batches of regions of

black in each row, and gives exponential weight to the size of the batch (batch size to

the power of two), in order to reward long stretches of black. The weighted batch sizes

for all rows are accumulated, and this accumulation is the output of the algorithm.

The algorithm was made under the assumption that containers with a low fill rate

would have longer stretches of black, outputting a larger accumulated count for little

waste in the container. Thus, the numerical representation for fill rate in this method

is the accumulated count made by the algorithm.

• SIFT : The SIFT method detects a number of unique points. These points are stored

in a vector, representing the location of the different points. The assumption for this

method is that the more wood waste in the container, the more unique points are

located. Thus, the numerical representation for this method, is the number of points

located, found via the size of the vector mentioned.

• SURF : Similar to SIFT, but locating the keypoints via approximation of Laplacian of

Gaussian by box filters instead of calculating the Differences og Gaussians. However,

the same numerical representation is used – the number of points located.

• Histogram Threshold : In this case, it is assumed that the color difference between the

container and the waste will set the threshold between the two and thus differentieting

between them. As the output matrix is equal in form to that of HOG and Hough

Line Transform, the mean pixel intensity of the transformed image is used.

Each feature extraction method is now have a numerical representation, such that a fea-

ture vector of six elements/feature representations is obtained, and unsupervised learning

tests can commence.
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4.3. Tests and results

In this section, five different tests are conducted, where one of them is expanded upon.

It has been established that all 4802 images have gone through image pre-processing and

are each allotted a feature vector and its original label. Thus, there are 4802 labeled

feature vectors, where each vector consists of six elements. Each element is a numerical

representation of the feature transformation done on the image. These 4802 feature vectors

are the inputs of each of the three tests. The five tests are:

1. K-means clustering on all six dimensions, using the complete dataset of 4802 feature

vectors.

2. K-means clustering on two dimensions, being the two principal components reduced

from six dimensions via principal component analysis. Also using the complete

dataset of 4802 feature vectors.

3. K-means clustering on two dimensions, being the two principal components reduced

from six dimensions via principal component analysis. However, testing on only

25 images. Following is a population proportion-test to investigate if there is any

statistical validity for the claim of only needing 25 images to get approximately

equal results as with complete dataset.

4. K-means clustering on two dimensions, using the complete dataset of 4802 feature

vectors. The two dimensions are all combinations of selecting two of the six different

dimensions of feature transformation.

5. A convolutional neural network trained on the complete dataset, and tested on a new

and smaller test set.

After all tests are conducted, a table of results for all tests is presented at the end of

this chapter.

4.3.1. 6-dimensional K-means clustering on full dataset

Even though the complete code is presented in appendix A, it was thought useful to share

the algorithm of the K-means. It is after all applied to most of the tests, with minor tweaks

in between. To give a brief explanation of the code, it runs as follows:
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The number of desired clusters, K, is set to be 5. This is to mimic grouping the data

into five labels. If the position of the cluster center does not change more than the given

tolerance, convergence is assumed and algorithm is ended. Max iterations is the amount of

iterations the algorithm runs before ending, meaning if convergence is not reached within

this point. This could mean several equal local minima with a spatial difference larger than

given tolerance. In this case, the cluster centroid of the 500th iteration is chosen. After

the K-means algorithm is complete, each data point (single instance of a feature vector) is

given a cluster adherence. Then the function ”cluster correctness()” runs over the dataset

and measures to which degree the cluster adherence matches the original label. The result

of this is what’s called correctness.

If, e.g. 5 feature vectors out of a dataset with size 10 has the same cluster value as label,

the correctness would equal 5/10 = 0.5. The cluster centroids initial positions are assigned

to equal the position of a given data points/feature vector. These locations are decided to

be distributed evenly, by being placed on 1/k ∗ size(dataset) ∗ i for i = {1, 2, ..., k}. An

example of this would be that for a dataset with size 10, the cluster centroids positions

are initialized at position [dataset[2], dataset[4], dataset[6], dataset[8], dataset[10]]. Here

it is important to point out that the dataset needs to be sorted in order to receive the

correct cluster centroid number. However, this is just important when comparing to labels

in order to measure correctness, and not when performed on an unlabeled dataset. As

explained in the chapter 2 - Theory, the clusters purpose is to minimize the distance of the

points within them. Thus random cluster centroid initialization can work on an unlabeled

dataset, but measuring correctness on a labeled dataset will probably not perform well.

What has now been explained, is shown in python code beneath. The code is influenced

by open source code [? ] and adjusted by the author.

1 c l a s s K Means :

2 de f i n i t ( s e l f , k =5, t o l e r a n c e = 0 .0001 , max i t e r a t i on s = 500) :

3 s e l f . k = k

4 s e l f . t o l e r a n c e = t o l e r a n c e

5 s e l f . max i t e r a t i on s = max i t e r a t i on s

6 s e l f . l a b e l C l a s s e s = {}
7

8 de f f i t ( s e l f , data ) :

9

10 s e l f . c e n t r o i d s = {}
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11 c e n t r o i d I n t e r v a l = len ( data ) /k

12

13 #i n i t i a l i z e the c e n t r o i d s evenly throughout the datase t

14 f o r i in range ( s e l f . k ) :

15 s e l f . c e n t r o i d s [ i ] = data [ c e n t r o i d I n t e r v a l ∗ i ]

16

17 #begin i t e r a t i o n s

18 f o r i in range ( s e l f . max i t e r a t i on s ) :

19 s e l f . c l a s s e s = {}
20 f o r i in range ( s e l f . k ) :

21 s e l f . c l a s s e s [ i ] = [ ]

22

23 #f i n d the d i s t ance between the po int and c l u s t e r ;

24 #choose the nea r e s t c en t r o id

25 f o r f e a t u r e s in data :

26 d i s t a n c e s = [ np . l i n a l g . norm( f e a t u r e s − s e l f . c e n t r o i d s [

c en t r o id ] )

27 f o r c en t r o id in s e l f . c e n t r o i d s ]

28 c l a s s i f i c a t i o n = d i s t a n c e s . index ( min ( d i s t a n c e s ) )

29 s e l f . c l a s s e s [ c l a s s i f i c a t i o n ] . append ( f e a t u r e s )

30

31 prev ious = d i c t ( s e l f . c e n t r o i d s )

32

33 #average the c l u s t e r datapo int s to re−c a l c u l a t e the c e n t r o i d s

34 f o r c l a s s i f i c a t i o n in s e l f . c l a s s e s :

35 s e l f . c e n t r o i d s [ c l a s s i f i c a t i o n ] = np . average (

36 s e l f . c l a s s e s [ c l a s s i f i c a t i o n ] , a x i s = 0)

37

38 i sOptimal = True

39

40 f o r c en t r o id in s e l f . c e n t r o i d s :

41

42 o r i g i n a l c e n t r o i d = prev ious [ c en t r o id ]

43 curr = s e l f . c e n t r o i d s [ c en t r o id ]

44

45 i f np . sum ( ( curr − o r i g i n a l c e n t r o i d ) / o r i g i n a l c e n t r o i d ∗
100 .0 )

46 > s e l f . t o l e r a n c e :

47 i sOptimal = False

48

70



49 #break out o f the main loop i f the r e s u l t s are optimal , i e .

50 #the c e n t r o i d s don ’ t change t h e i r p o s i t i o n s ( more than given t o l e r a n c e )

51 i f i sOptimal :

52 s e l f . l a b e l C l a s s e s = s e l f . c l a s s e s

53 break

54

55

56 de f pred ( s e l f , data ) :

57 d i s t a n c e s = [ np . l i n a l g . norm( data − s e l f . c e n t r o i d s [ c en t r o id ] )

58 f o r c en t r o id in s e l f . c e n t r o i d s ]

59 c l a s s i f i c a t i o n = d i s t a n c e s . index ( min ( d i s t a n c e s ) )

60 re turn c l a s s i f i c a t i o n

61

62 de f g e t c l a s s ( s e l f ) :

63 re turn s e l f . l a b e l C l a s s e s

64

65 de f c l u s t e r c o r r e c t n e s s ( c l u s t e r c l a s s ) :

66 match = 0

67 not match = 0

68 c = c l u s t e r c l a s s

69

70 f o r x in range (0 , 5 ) :

71 tempClusterArr = c [ x ]

72 tempClusterArr = np . array ( tempClusterArr )

73 f o r i in range ( l en ( tempClusterArr ) ) :

74 i f tempClusterArr [ i ] [ 6 ] == x :

75 match += 1

76 e l s e :

77 not match += 1

78

79 re turn match /( match+not match )

80

81

82 de f main ( df ) :

83

84 X = df . va lue s #re tu rn s an array o f f e a t u r e ve c t o r s from a DataFrame ( df )

85 km = K Means (5 )

86 km. f i t (X)

87 c l u s t e r c l a s s = km. g e t c l a s s ( )

88 c l u s t e r c o r r e c t n e s s ( c l u s t e r c l a s s )
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Running this on the complete dataset of 4802 feature vectors yielded correctness =

0.448.

4.3.2. K-means clustering on PCA-reduced set

This test is run with the same K-means algorithm and correctness measure, however the

dataset is reduced to two dimensions, down from six. These two dimensions being the

two principal axes, with a new set of feature vectors, [principal component 1, principal

component 2]. Due to being only two dimensions, the results can be visualized. In figure

4.3 one can see a plot of the PCA-reduced dataset on the two principal axes on the left

side, with colors representing their original label. That means that e.g. the purple points

represents the images that were labeled as 100% full by Acando. On the right is a plot

of the result of K-means ran on the PCA-reduced dataset. Here it is very important to

state that the colors on the K-means plot are chosen at random, and do not correlate with

the label colors of the PCA-plot. It is just a visual aid to see the groupings/clusters of

K-means algorithms result.

(a) Plot of PCA with original labels

(b) K-means clustering of 2-component PCA

Figure 4.3.: Test of K-means applied on PCA-reduced dataset.

The result of this test yielded correctness = 0.572.
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4.3.3. K-means clustering on PCA-reduced set with a small subset of

images

One of the main interests of applying unsupervised learning methods, was not only to see

whether labeled datasets could be dispensed with, but also to see whether approximately

the same results can be obtained with a drastically reduced dataset than what is needed

for supervised learning methods. A small example test of this is conducted and shown

beneath, in figure 4.4. The downsized test was chosen to be done on the PCA-reduced

dataset, as this both yielded a better result when tested on the complete dataset and has

the possibility of being visualized with being two dimensions.

(a) Plot of PCA with original labels

(b) K-means clustering of 2-component PCA

Figure 4.4.: K-means applied on PCA-reduced dataset of size 25.

Here one can see only 25 images that has been feature transformed, PCA-reduced and

clustered via K-means. The distribution of points bare similarity with that of the complete

dataset, with just fewer and more sparse data points. In this particular example, the test

yielded correctness = 17/25 = 0.68.

As this seems like a promising representative for having to use much less images to

obtain approximately the same results, and even scored quite a lot better than the test of

the complete dataset. This could of course be a lucky coincidence, and therefore needs to
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be tested more in order determine if this claim could be valid. A test set of 30 samples were

created, as a compromise between the size of the complete dataset, and the possibility to

obtain inference as to whether this claim carries any statistical significance. Each sample

consists of the same procedure as shown above, in figure 4.4. One sample represents 5

images per label, a total of 25 images per sample. All images in this test was chosen

randomly from the complete dataset.

A population proportion-test is conducted on the following basis: The probability that

the population proportion p̂ resides within two standard deviations of the true population

proportion p equals the probability that the true population proportion resides within two

standard deviations of the estimated proportion population p̂ with 95% confidence. For

this to be true, the following criteria needs to be met:

• The data’s individual observation have to be obtained from a simple random sample

of the population of interest.

• The data’s individual observations have to display normality. This can be verified

mathematically with the following definition: Let n be the sample size of the pop-

ulation and p̂ be its sample proportion. If np̂ ≥ 10 and n(1 − p̂) ≥ 10, the data’s

individual observations portray normality.

• The data’s individual observations need to be independent of each other. This is

verified by letting N be the size of the true population, where one needs N ≥ 10n.

The claim np̂ ≥ 10 and n(1− p̂) ≥ 10 for this test equals 30× 0.624 ≥ 10 and 30× (1−
0.624) ≥ 10, which both hold true. For N ≥ 10n, let N equals the size of the complete

dataset divided by the amount of images needed to make a single sample, N = 4802/25 =

192. This, however, fails the test of independence where N ≥ 10n does not hold true. This

is sadly due to the size of the dataset given for this thesis is not large enough. However,

even though one can not verify the results of this test on this basis, it will still be performed

in order to lay the foundation for further research to be able to test this claim with a larger

dataset, such that the results can be valid. It is therefore assumed that the data displays

independence for this test onwards, in order to complete it.

Let p̂ be the mean of the correctness of the 30 samples, where it was found that p̂ = 0.624.
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Let n = 30 and confidence C = 0.95. Since the test is two-sided, the z*-statistic is found

by:

z∗ =
1− C

2
= 0.025. (4.1)

From a table of standard normal probabilities, it is found that the Z-value at Z(0.025) =

−1.96 and Z(1− 0.025) = 1.96.

The standard error of the sample distribution is given as:

SEp̂ =

√
p̂(1− p̂)

n

=

√
0.624(1− 0.624)

30

= 0.087

(4.2)

Then one can say, with 95% confidence, that the true population proportion p lies within

[p̂− 1.96× SEp̂, p̂+ 1.96× SEp̂]

= [p̂− 1.96

√
p̂(1− p̂)

n
, p̂+ 1.96×

√
p̂(1− p̂)

n
]

= [0.624− 1.96× 0.087, 0.624 + 1.96× 0.087]

= [0.453, 0.794].

(4.3)

This means that real correctness lies in the range between [0.453, 0.794] with 95% confi-

dence, when tested with 30 samples of 25 images per sample with 5 images per label. The

real correctness was measured as 0.574 when using the complete dataset, so the claim of

obtaining similar results with a drastically reduced dataset might be plausible, but will be

discussed further in section 5 - Discussion.

4.3.4. Clustering on variations of two variables

Until this point, the previous tests have all used the full feature vector of six different

elements in their analyses. In this section, a two-dimensional K-means will be performed on

all combinations of two elements. This amounts to 15 different tests, as visualized by table

75



4.1. The ”o”’s represent one single test done between their respective feature transform in

the vertical and horizontal list of feature transformations. The ”x”’s represent either the

case where the vertical and horisontal feature transformations are the same (the diagonal

line), or if that test has already been done.

Hough
Hough-

dist
HOG Hist.thresh. SIFT SURF

Hough x o o o o o

Hough-

dist
x x o o o o

HOG x x x o o o

Hist.thresh. x x x x o o

SIFT x x x x x o

Table 4.1.: Table of elements to be matched and tested.

Following are the plots of all 15 tests. The caption of each plot represents two important

factors. It displays which two elements of the feature vector are tested together, and

their respective X- and Y-axis. Taking the first plot as example: ”Hough Hough-dist”

refers to the two elements of the complete 6-dimensional feature vector that represent the

“Hough Line Transform”, and the author-developed “Hough-distance” algorithm. Since

Hough is written first, it represents the X-axis, and Hough-dist represents the Y-axis. This

convention applies for all of the 15 plots. The results are presented in table 4.2 at the end

of the chapter, sorted by correctness-score from high to low.

These tests are done in order to investigate whether one can get good results with just

two of the feature representations, and/or to see whether some feature representations

seem to give better results than others. It is interesting to see how the formation of the

data points occur, and make any judgment whether this affect the K-means algorithm’s

and its correctness-score. The plots of the K-means for all two-variable combinations is

shown beneath in figure 4.5 and 4.6. However, discussion regarding the plots and their

correctness score is done in chapter 5 - Discussion.
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(a) Hough & Hough-dist (b) Hough & HOG

(c) Histogram threshold & Hough (d) Hough & SIFT

(e) Hough & SURF (f) HOG & Hough-dist

(g) Histogram threshold & Hough-dist (h) SIFT & Hough-dist

Figure 4.5.: First collection of 2-variable K-means-tests.

77



(a) SURF & Hough-dist (b) Histogram threshold & HOG

(c) SIFT & HOG (d) SURF & HOG

(e) Histogram threshold & SIFT (f) Histogram threshold & SURF

(g) SIFT & SURF

Figure 4.6.: Second collection of 2-variable K-means-tests.
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4.3.5. Convolutional Neural Network via Inception V3

Even though most of the work for this thesis has focused on unsupervised learning, one of

the goals of this thesis was to compare the results of the unsupervised learning methods to

one of the most established image recognition methods in machine learning, namely that

of a convolutional neural network (CITE). Since Acando had already chosen a design for

its CNN, the open software solution Inception V3, it was natural to use the same such that

the result comparisons of all methods would be of interest to Veidekke and Acando.

It is common practice, when training and testing a neural network, to split the dataset

in two - a training set and a test set. This is typically split up in 80/20, where 80% of

the original dataset is allocated to the training set, and the remaining 20% is for the test

set. However, a different approach is chosen for this test. The full dataset will be used for

training, and a new dataset is being used for testing. As mentioned in the introduction, this

dataset consists of three cycles of waste for the containers. The new dataset is 250 labeled

images from other, more recent waste cycles. This was done for two reasons. One reason

being that the goal of implementing this technology is to detect each time the container

becomes full. Therefore, there will always be variations in how the waste appears in the

containers, and the containers might also change appearance (e.g. next container may for

example be more rusty than the previous one). Since this is the real life criterion by which

success will be measured, it seemed more reasonable to test this way. The second reason

is that the CNN might be biased against its test set if the training set and test set are

too similar. Given that there are only 3 cycles of waste that has been captured, it can

be assumed that the CNN might be overfitting with regards to these 3 cycles, and give

unlikely high scores for a test set from the same cycles.

The CNN is trained on the original dataset of 4802 images. The code for the open source

Inception V3 training program ”retrain.py” is shown in appendix B. The code for Inception

V3’s prediction program ”label image.py” is shown in appendix C. Following is an example

of how a test/prediction is run, with 4 different images per label. With Inception V3, a

prediction is run on a single image, outputting its estimate of what percentage chance each

label is. The first test set of 4(images) × 5(labels), is just to give a visual representation

of Inception V3 operates and is to be interpreted. This is shown beneath, in figures 4.7,

4.8, 4.9, 4.10 and 4.11.
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Figure 4.7.: 4 empty containers

Figure 4.8.: 4 containers at 25%
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Figure 4.9.: 4 containers at 50%

Figure 4.10.: 4 containers at 75%
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Figure 4.11.: 4 containers at 100%

These individual images’ prediction score is averaged per label with respect to its true

labels. This means e.g. that for the last figure with 4 images, the predictions estimate of

”100%” is added up and averaged on the size of the sample (divided by 4). This way the

correctness is measured, similarly to that of the unsupervised learning methods. For this

small testset, correctness per label is shown in figure 4.12.
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Figure 4.12.: Correctness per label

Averaging each score per label, one gets the total correctness for this test:

0.8107 + 0.0631 + 0.6414 + 0.2319 + 0.6650

5
= 0.482. (4.4)

For the real test set with 250 images, the test is run in the exact same manner as the

example test set shown above. However, a simple for-loop was performed in the shell such

that all 250 images could be run without manually running prediction on each image. The

results of the complete test set with 250 images amounted to correctness = 0.495. Finally,

the following table, table 4.2, displays all the results of all the tests conducted in this

chapter.
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4.3.6. Results

Results

Method Correctness

6-variable K-means 0.448

2-variable K-means on PCA-reduced set 0.574

Population proportion-test 0.624

CNN 0.495

2-variable K-means with Hist.thresh & SIFT 0.547

2-variable K-means with SIFT & SURF 0.488

2-variable K-means with Hough & SIFT 0.455

2-variable K-means with Hough-dist & SIFT 0.451

2-variable K-means with HOG & SIFT 0.441

2-variable K-means with Hough &

Hist.thresh.

0.358

2-variable K-means with Hist.thresh &

SURF

0.347

2-variable K-means with HOG & Hist.thresh. 0.344

2-variable K-means with Hough-dist &

Hist.thresh.

0.344

2-variable K-means with Hough-dist & HOG 0.329

2-variable K-means with HOG & SURF 0.227

2-variable K-means with Hough-dist &

SURF

0.223

2-variable K-means with Hough & SURF 0.221

2-variable K-means with Hough & Hough-

dist

0.151

2-variable K-means with Hough & HOG 0.151

Table 4.2.: Results from all tests
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5. Discussion

This chapter consists of a discussion about the results of the tests conducted in the

previous chapter, methods used in this thesis, and how it was implemented. First, the

results of the tests will be discussed, followed by a discussion about the choice of methods,

which assumptions were made for using the different methods, and its implications on this

thesis. At last, it will be discussed whether the findings of this thesis has any utility outside

of this specific project.

5.1. Discussion of results

Five different tests were conducted in chapter 4 - Tests and results. To reiterate the tests

conducted, the five tests were:

1. Testing of K-means using the full feature vector, clustering in six-dimensional space

with the complete dataset of 4802 images.

2. Testing of K-means on a PCA-reduced set from full feature vector to two principal

component variables with the complete dataset.

3. Testing of K-means on a PCA-reduced set from full feature vector to two princi-

pal component variables with a subset of the dataset, containing 25 images. For

statistical validity, a population proportion test was conducted.

4. Testing of K-means using two of the six variables of the feature vector in every

combination.

5. Testing a CNN which was on trained on the complete dataset, spanning 3 waste

cycles, and using a test set of 250 images from new waste cycles.

Four of the five tests (1-4) were tests with regards to unsupervised learning methods.

The last test was performed with a CNN, a supervised learning method. Following is the

discussion of the results for all of the different tests.
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5.1.1. Using the full feature vector - Test 1 & 2

- Testing of K-means using the full feature vector, clustering in six-dimensional

space with the complete dataset of 4802 images.

- Testing of K-means on a PCA-reduced set from full feature vector to two

principal component variables with the complete dataset.

From the list in the previous section, tests 1 and 2 were only different on the basis of

whether or not the there had been performed a dimensionality reduction via PCA on the

dataset. In test 1, K-means was performed in 6-dimensional space and yielded correctness

= 0.448. With a PCA-reduced dataset in test 2, the K-means analysis yielded correctness

= 0.574. The PCA-reduced test scored highest of the two tests, and even highest of all the

tests using the complete dataset. Why this is the case, might be explained via the curse

of dimensionality. When dimensionality increases, the overall volume increases, making

the points within the space more sparse. As K-means measures distances in euclidean

space, the increase in high-dimensional volume might affect the success of clustering in 6-

dimensional space for that respective test. The PCA-reduced test also scored better than

any of the tests using a combination of two feature vector variables as well. One possible

conclusion to draw from this is that using more feature extraction methods, but reducing

the dimensionality of the feature vector, provides both better feature representation and

the possibility of more successful clustering in 2-dimensional space.

In chapter 1 - Introduction, one of the tasks for this thesis was:

Use of unsupervised learning methods to test if classification/labeling can be

performed on the feature vectors with satisfactory results.

An unsupervised learning method for image classification has been found, but it ought

to be discussed whether these results can be described as ”satisfactory”. The reason for

implementing a monitoring and detection system on the containers, is to automate and

reduce time for alerting the responsible party to pick up a full container in exchange for

an empty one. The results of the test does not directly reflect this goal. If this were the
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goal of the thesis, one could look at figure 4.3a in chapter 4 - Tests and results, showing

the plot of the PCA with original labels. From this plot, one can see overlap of the classes

”50%”, ”75%” and ”100%”. However, there is a clear distinction between, and practically

no overlap of, the class ”100%” and the classes ”25%” and ”0%”. An unsupervised classifi-

cation and distinction between empty and full containers could therefore be assumed to be

successful and could be satisfactory. On the other side, not being able to fully distinguish

between a half-full and a full container might not be thought of as satisfactory, as the cost

of swapping containers every time they are half-full might prove costly.

However, what this thesis is trying to achieve, is to see whether all classes could be

correctly classified without supervision/manual labeling in a satisfactory manner relative

to a CNN. Interestingly, the unsupervised methods seem to classify better than the CNN

at this stage of implementation.

5.1.2. Using a small subset of images - Test 3

- Testing of K-means on a PCA-reduced set from full feature vector to two prin-

cipal component variables with a subset of the dataset, containing 25 images.

For statistical validity, a population proportion test was conducted.

With K-means performed on the dimensionality-reduced complete dataset via PCA pro-

viding the highest score, this method was chosen to experiment with whether one could

obtain a similar correctness score with a drastically reduced number of images from the

dataset. It was first tried on a subset of only 25 images, yielding a correctness score of

0.68. However, since this was only one instance, this could be due to luck. Therefore a

population proportion test was conducted in order to give some statistical validity to the

claim of using few images could yield similar results.

When taking 30 samples of 25 images with 5 images per label, it was found that the

mean correctness of the 30 samples were 0.624. This was higher than the PCA-reduced test

using the complete dataset. But, given it is a small sample, this is assumed to be statistical

deviation. However, the population proportion test stated with 95% confidence that the

real correctness (being 0.574 from the PCA-reduced full dataset) was within the range

[0.453, 0.794]. 0.574 is within this range, so the claim of obtaining similar results with a
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drastically reduced dataset could be correct. However, the size of the dataset restricted the

population proportion test to obtain the criterion of independence, namely that N ≥ 10n.

Since N = 4802/25 = 192 and 10n = 10 × 25 = 250, true independence could not be

stated. However, it is not far from obtaining said criterion. It is therefore believed that if

this test were to be replicated with a larger dataset, approximately similar results would

occur.

5.1.3. Every two-variable combination - Test 4

- Testing of K-means using two of the six variables of the feature vector in every

combination.

These tests provided a series of plots (figure 4.5 and 4.6), namely one for each of the 15

combinations, with its respective results provided in the table of results, table 4.2. With

regards to the plots, one could see an indicator that the more sparsely the points were

distributed in the plots, the harder it was for K-means to create good clusters, resulting

in worse scores. This could be exemplified by figure 4.5f or figure 4.6f. However, this was

not a strong correlation, such that more testing with different datasets is advised.

With regards to the table of results, one could see one important factor. All of the

highest scoring 2-variable combinations contained the SIFT feature representation as one

of its variables. This could make the argument for SIFT being a strong feature extraction

method for this specific project.

5.1.4. Using a CNN - Test 5

- Testing a CNN which was on trained on the complete dataset, spanning 3

waste cycles, and using a test set of 250 images from new waste cycles.

The CNN-test scored a correctness of 0.495 when trained on the complete dataset and

tested on the new dataset of 250 images. Considering it is claimed to be the state of the

art solution to object detection [44], this might seem like a poor result. However, the test

with 250 images showed similar results to that of the test with 20 images that was made

as an example in chapter 4 - Tests and results. From that example, one could see that

88



registering the state ”25%” and ”75%” scored particularly low. One reason for this could

be that the labeling done on the training set and test set were somewhat different. Since

this was labeled by eye sight, it could be the case that what was labeled as ”25%” in the

test set was more similar to what was being labeled as ”50%” in the training set, as can be

seen on the images of the example test in figure ??. One could thus argue that averaging

the correctness of all states is unfair when the correctness of state ”100%” seem to be

higher. This could be seen as unfair due to the reason that this CNN was implemented

primarily to detect when a container is full in order to alert those responsible of picking up

and emptying the container. However, this was not the goal of the thesis. One of the goals

stated in the introduction was to investigate how successful the different methods were in

correctly identifying each class/filling rate. Therefore, the total correctness was seen as a

fitting measure.

Another reason for possibly obtaining comparatively low correctness scores on the CNN,

is due to the size of the dataset. State of the art CNNs with results upwards of 95% correct

identification are typically trained with a much larger dataset, at times surpassing millions

of labeled images [8]. Considering the dataset given for this thesis contained just below

5000 images, it can be assumed the neural network simply didn’t have enough data for

training in order to provide good predictions.

5.2. Discussion of methods

With the results of the tests discussed, this part will focus on the methods used in this

thesis and the assumptions made, justifying their use.

5.2.1. Feature extraction - representations and assumptions.

Identifying filling rate through feature representation from feature extraction methods is

the basis for attempting to classify the containers filling rate through unsupervised learning

methods. One of the tasks presented in chapter 1 - Introduction was:

Search for feature extraction methods that fit this specific project.
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As Python was chosen as the language of implementation due to its rich machine learn-

ing libraries, the search for feature extraction methods that fit this specific method was

conducted on a trial and error basis. Methods were found in publicly available libraries,

like ”openCV ” or as open source on Github. Five of the six feature extractions were

methods found online that seemed to perform well in this specific project, and one was

developed by the author of this thesis. However, how does a feature extraction method

”fit this specific project”? The goal of finding these methods, were to see if some types

of features detected could tell anything about filling rate of the waste in the containers.

After experimentation of different feature methods, some ideas came about as how the fill

rate of a container could be represented. Two key observations laid the foundation for the

search and use of given feature extraction methods. One observation was that the walls of

the container were a lot more prevalent and showing when the container contained little

waste. The other observation was that the walls had much more coherent texture with

regards to color and edges, opposed to the wood waste. This became especially noticeable

through experimentation with the five imported feature extraction methods.

However, finding feature extraction methods that could potentially describe the fill rate

of waste in containers, was rapidly followed by the problem of how this should be described.

As one of the goals were automatically classify the filling rates by cluster analysis of the

features, the features needed to be able to be grouped in euclidean space, in a manner that

was eligible for the use of e.g. K-means. The output of some of the feature extraction

methods, such as Hough Line Transform and Histogram of Oriented Gradients, were a

2-dimensional matrix at the same size of the input image. As an input image was typically

299× 299 = 89, 4901 pixels, using the the output of a Hough Line Transform in K-means

clustering, being a 2D matrix of size 299 × 299, would mean that one would search for

similarity in terms of euclidean distance in 89,401-dimensional space. At this point it is

safe to assume that one would suffer from the curse of dimensionality, and this type of

clustering would likely not bear fruit.

Thus, it was thought of a way that could still represent what the features were showing,

but in a manner that was compatible with the clustering operation in order automatically

classify the data. If the result of each feature extraction method could be represented as

a single number, then one could investigate clustering with comparatively few dimensions.
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However, the assumption that a single numerical representation of a feature extraction

method could be a good descriptor is debatable. E.g. taking the mean pixel intensity of

a feature transformed image, is highly reliant on the correctness of the assumption that

the container wall would register as black and the waste as white. This is the point where

noise and environment greatly affects this assumption. One container could have spotless

walls, not triggering any of the feature detection methods and provide a black substrate

of that region. Another container could be rife with rust or various spots, unintentionally

triggering edge detection. Another problem is weather and time. Shadows might appear

on the containers at various times throughout the day, again triggering certain feature

detection methods and not registering as an empty wall. The differing illumination of the

container by the sun could also affect these methods in a similar manner. These elements

of noise was detected when working with the provided dataset. Thus, a container could

have the same fill rate when looked at by eye sight, but have distinct differences in the

numerical values of the feature vectors for two images taken with different environmental

occurrences. This is exemplified in figure 5.1 shown beneath, where these environmental

factors triggers in the Hough Line Transform. This is thought to be the main reason for

the variance/spread of data points which contains the same true label in the tests, seen

either on the PCA-plots or 2-variable test plots in chapter 4 - Tests and results.
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(a) Shadow on container. (b) Hough Line Transform on shadows.

(c) Very rusty container. (d) Hough Line Transform on rust spots.

Figure 5.1.: Effects of environmental noise.

5.2.2. Unsupervised methods as means of classification

The overarching goal was to see whether clusters formed by unsupervised learning could

work as a labeling mechanism. Would data points containing the same true label/fill rate

also be grouped together in cluster analysis? If so, would cluster adherence be a sufficient

labeling mechanism for data that is unlabeled and thus discard the need for manual la-

beling? At first, different unsupervised learning methods were considered. Agglomerative

clustering was discarded on the basis of how the clustering algorithm worked. The bottom-

up structure of agglomerative clustering made too few assumptions on how the data ought

to be grouped, making it seemingly incompatible with this project. For partitioned clus-

tering, affinity propagation was discarded on the basis of computational cost and K-means

92



was selected as best fit.

K-means works by clustering data based on the data’s similarity. The similarity measure

used in the testing, also being the most commonly used, was the euclidean squared distance

between points. The K-means method was thus selected as the method for classifying based

on cluster adherence. This was found to be quite possible, however highly reliant on the

feature representations it performing cluster analysis on. It is therefore assumed that K-

means as method for unsupervised classification is highly plausible, given good feature

representations, able to distinctly differ in value based on its fill rate, is fed into the cluster

analysis.

5.2.3. Comparison and utility of the different solutions.

Looking at the table of results, many of the tests results were in close proximity of one

another. It is seen that for testing on the complete dataset, both the supervised and the

best unsupervised solutions achieved approximately similar results. The CNN scored a

correctness of 0.495 while the PCA-reduced K-means scored a correctness of 0.574. From a

strictly numerical perspective, two observations and statements can be made. First being

that both solutions seem to achieve approximately equal results from what is measured

from the tests. If one were to choose a solution based on solely this statistic, the unsu-

pervised learning solution would be at a slight advantage. The other observation is that

neither solution would give those whom implements the solution high confidence regarding

correctly classifying filling rate/classes. With a 40-50% error rate, a direct implementation

of this could be assumed to not please a customer.

In order to say anything regarding the utility of the different methods with regards to this

project, one has to distinguish between the utility of the different methods for this specific

project at this specific time in the project, and for the future of this specific project. It has

already been discussed that at this specific time, neither solution could be assumed to be

satisfactory for a customer and readily available for implementation with such a big portion

of the dataset not correctly classified. Finding this provides some key insights. In the case

of supervised learning, there were two potential problems found. One being that the size

of the dataset simply might have been too small to successfully train the CNN. The other

was that one has to be careful during training, being meticulous with correctly labeling the

93



different classes. It was observed that the test set would often mistake a container of being

25% full with being 50%, and so on. For this specific project, it could mean the CNN could

register a 100% full container too early, having the suppliers of the containers pick up and

swap with an empty container unnecessarily often. In case of unsupervised learning, there

also seemed to be two potential main problems. The first one, being perhaps the biggest,

is the problem of feature detection and correct representation. Having to figure out a way

to represent the states using different feature extraction methods proved difficult, and was

assumed to be heavily influenced by environmental factors.

In a world where noise is always present, finding ways to suppress it can be difficult.

In object detection in images, this is particularly difficult. However, this might prove the

utility of using many different feature extraction methods and representations. If one type

of feature extraction method is particularly prone to some type of environmental noise,

another method might not be, thus reducing the potential error.

Another potential problem of unsupervised learning as means of classification, is the

uncertainty of whether or not the data fall into the correct cluster. With noisy images,

the assumptions of feature representation for the different feature extraction methods used

in this thesis can fall short. A noisy empty container might register equal feature repre-

sentation numbers as a container with much higher fill rate. The clustering algorithms do

not take this into consideration, and is assumed to be the main reason for somewhat low

correctness score and the overlap of classes.

What utility will the methods investigated provide for the future of the project of au-

tomating the container pick up process? And can this knowledge be transferred for some-

thing outside this specific project? Based on the knowledge of CNNs, it is safe to assume

that obtaining more labeled images and further training the neural network will improve its

accuracy of correctly detecting classes/filling rates. Even the erroneous labeling of classes

done by the human designer is thought to even out at as the training set and test set

increases. If one assumes that the human that performs the labeling classifies images with

a normal distribution, the correct mean of the given class would eventually become promi-

nent, and the neural network would adjust its weights accordingly. However, it is found

out that implementing such a technology requires time and a sufficient amount of data.

If time and data-requirements are not critical, implementing a CNN for classification and
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detection can provide good results. This allows for a potentially wide range of use with

regards to classification and detection in images, when constraints to time and data are

low. In the opposite case, where constraints to time and data are high, the unsupervised

learning methods provide certain advantages. Time spent on labeling is not needed, and

the amount of data can possibly be drastically lower, opposed to implementing a CNN.

However, this demands highly functioning feature representations, which can be hard to

implement. Implementation of classification and detection via unsupervised learning meth-

ods is therefore advised for domains where noise is not a large factor, or highly prevalent,

where as the neural network seem to obtain the important features through rigorous train-

ing and adjust its parameters to downsize the weights relating to noise. However, the

feature representations made for this thesis can be assumed to work for any process where

a thing with rough texture grows in size relative to a somewhat sterile environment, if the

methods of this thesis is used for another project. However, some feature extraction and

-representation tweaking ought to be expected.
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6. Conclusion

6.1. Conclusion

This thesis is an investigation of whether unsupervised learning methods could be used as

means of classifying filling rate of waste within a waste container by feature extractions

from images of the container, and see how it compared to the use of a supervised machine

learning method, namely a convolutional neural network (CNN). One of the main challenges

of implementing a CNN, are the resources needed to provide a labeled dataset in order

to train the CNN. The dataset needs to be sufficiently large in order for the CNN to be

trained properly for making correct predictions, and the dataset needs to be labeled in

order for the CNN to understand what it is training towards. This can be time-consuming

and tedious work.

In order to bypass the labeling scheme, an unsupervised learning method called K-means

was used to classify waste levels. K-means is a clustering algorithm which groups data based

on their proximity in euclidean space. In order to successfully group images at various

waste levels in euclidean space, a way to translate images into numeric representations was

necessary. This was done by performing various feature extraction methods, and represent

the output of these methods by a single number. For three of the feature extraction

methods used (Histogram of Oriented Gradients, Hough Line Transform and Histogram

Threshold), the mean pixel intensity of the transformed images would represent the amount

of waste in the container. For two of the methods (Scale-Invariant Feature Transform and

Speeded-Up Robust Features), the amount of keypoint localizations made by the feature

extraction methods were the number that would represent the waste level. For the last

method (Hough-distance), an algorithm was created for this thesis, based on the output of

the Hough Line Transform. Put simply, this algorithm was made to search for how long

a counter could travel through each row of the Hough Line-transformed image without
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detecting indicators of waste. The goal for this algorithm was the higher the counter

reached, the less waste was detected, thus also being a numeric representation of waste level.

These six feature extraction methods were used on each image in the dataset provided, and

a feature vector was created for each image. This feature vector consisted of six elements,

which were the six numeric representations of the feature extractions.

Four types of tests were conducted in order to investigate clustering on the feature vectors

as means of classifying waste levels. One test performed a six-dimensional K-means analysis

with the full feature vector on the complete dataset. Another test performed K-means in

two dimensions on all possible variations of two of the six feature vector elements. A

third test performed Principal Component Analysis on the feature vectors, reducing the

dimensionality from six to two, while retaining a large degree of the variance from the set

of complete feature vectors. Then K-means was performed on the projected points within

the principal axes. The fourth test was to see whether drastically reducing the size of the

dataset would provide similar results compared to using the complete dataset. The method

that scored highest of the three previous tests were chosen as the method to test with a

reduced dataset. To assert statistical validity of the claim that using a small dataset yields

similar results, a population proportion test was also conducted. These four tests provided

three main findings.

• Performing PCA on the feature vectors provided the highest score for correct classi-

fication when using K-means. Clustering of projected points on a hyperplane made

by PCA seemed to be the best way to both utilize the effect of using several fea-

ture representations, and group points in euclidean space without suffering from the

effects of the curse of dimensionality.

• When using a small subset of only 25 images out of the 4802 images in the complete

dataset, approximately similar score was achieved when using the small subset of im-

ages compared to the complete dataset. This provides the possibility of implementing

an image classification system with drastically reduced need of images compared to

a CNN.

• When testing all two-variable combinations of the six feature representations, it

showed that SIFT appeared in all of the highest scoring tests, providing the as-

sumption that this is a good feature descriptor to use for this specific project.
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This thesis aimed to compare the unsupervised learning solution to a supervised learning

solution. An open source solution for creating a custom CNN, called Inception V3, was

implemented. It was trained on the dataset of 4802 images, and trained on a new set of 250

images in order to see its success in classifying labels. The test scores of both supervised

and unsupervised solutions in and of themselves were not particularly high. The CNN

correctly classified classes at a success rate of 49.5%, and the best unsupervised learning

method tested on the dataset of 4802 images resulted in a success rate of 57.4%. In order

to achieve better scores, it was assumed that the CNN needed more data to train on, and

the unsupervised learning method needed better feature representation descriptors.

6.2. Further work

Most of the work for this thesis revolved around finding feature representations to success-

fully classify waste levels by the use of K-means. It was shown that the feature extraction

methods were particularly prone to give bad results in the presence of environmental noise

such as shadows and rust spots. It would be interesting to keep working on finding better

feature representations. The amount of keypoints localized from SIFT seemed to correlate

well with true labels, whereas the mean pixel intensity from Hough Line Transform and

HOG were not particularly successful. Another potential feature descriptor based on the

Hough Line Transform has come to mind at the final stages of this thesis. As it is seen

in figure 5.1 in chapter 5, the Hough Line Transform is prone to detecting noise on the

container. However, the noise such as rust spots or shadow spots are mostly a collection of

really small dots on the transformed image. When planks are detected by the Hough Line

Transform, their lines are generally much longer. One potential way of discarding noise

could then be to create an algorithm which only accepts Hough Lines over a certain length,

such that only the planks and the container is detected. A rough estimator could then

potentially be to count the amount these lines, and possibly combine it with the Hough-

distance algorithm to distinguish between many lines in the bottom of the container and

when the container is full.

It is also thought of a way to create an unsupervised learning solution that could apply

for any similar type of image classification problem, where it is created a bank of feature

extraction methods and descriptors, and experiment on the data at hand. When features
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and descriptors that provide a good fit for the data, these are selected as the feature vectors

and are classified through a combination of PCA and K-means.

With regards to further noise reduction, it is advised to experiment with the use of

”autoencoders”. A neural network is made to learn efficient data encodings in an unsuper-

vised manner, meaning one is reducing an input while retaining its features and extracting

the input back to full size while eliminating noise. This could potentially be a good pre-

processing step before implementing feature extractions and feature representations. This

was not experimented with in this thesis due to time constraints.

Potentially, the combination of both unsupervised learning and supervised learning could

make the process of automating container exchange less time consuming. If unsupervised

learning is used to classify images and splitting them into labeled groups, the designer

could go through each labeled and simply remove each image that was incorrectly placed

in that group. Then time spent on labeling could be reduced, and the newly sorted labeled

groups could be fed into a CNN.

Other sources of inputs are also advised to investigate, instead of images. The use of

a distance measure, with infra red or sound waves, could also provide information of the

containers filling rate. This could be combined with K-means for automatic classification,

or a threshold value could be set for when the container was full, if that there were the

only objective. However, these technologies were considered by Acando when they began

their project, and monitoring and classification via camera and supervised learning was

chosen on the basis of cost and their field of expertise. This is the reason why any other

technologies has not been considered in this thesis.

Lastly, it is advised to implement a way of automatically detecting the container walls

from the raw image, and crop it accordingly. Noise such as gravel from the ground sur-

rounding the container was picked up by several feature extraction methods, adding un-

certainty to the numerical feature representations. A cleaner result with regards to the

feature representations is expected with a better crop of the container.
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A. Code by author

1 #Imports

2

3 import numpy as np

4 import cv2

5 import matp lo t l i b

6 from matp lo t l i b import pyplot as p l t

7 from s k l ea rn import c l u s t e r

8 from skimage . f e a t u r e import hog

9 from skimage import data , exposure , io , i m g a s f l o a t , img as ubyte

10 from m p l t o o l k i t s . mplot3d import Axes3D

11 from sc ipy import ndimage as ndi

12 from skimage . f e a t u r e import shape index

13 from skimage . draw import c i r c l e

14 from skimage . f i l t e r s import t h r e s h o l d o t s u

15 import pandas as pd

16 import os

17 import g lob

18 import re

19 from s k l ea rn . p r e p r o c e s s i n g import StandardSca ler

20 from s k l ea rn . decomposit ion import PCA

21 from s k l ea rn . c l u s t e r import KMeans

22 import math

23

24

25

26

27

28

29

30

31
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32 #Feature e x t r a c t i o n methods

33

34 #SIFT method

35

36 de f SIFT( path ) :

37 img = img or path ( path )

38 gray= cv2 . cvtColor ( img , cv2 .COLOR BGR2GRAY)

39

40 s i f t = cv2 . x f ea tur e s2d . SIFT create ( )

41 kp = s i f t . d e t e c t ( gray , None )

42 num = len ( kp )

43

44 re turn num

45

46 #SURF method

47

48 de f SURF( path ) :

49 i f i s i n s t a n c e ( path , s t r ) :

50 img = cv2 . imread ( path , 0 )

51 e l s e :

52 img = path

53 s u r f = cv2 . x f ea tu re s2d . SURF create (2000)

54 kp , des = s u r f . detectAndCompute ( img , None )

55 num = len ( kp )

56 re turn num

57

58 #Hough l i n e trans form

59

60 de f Hough( path ) :

61 img = img or path ( path )

62 gray = cv2 . cvtColor ( img , cv2 .COLOR BGR2GRAY)

63 edges = cv2 . Canny( gray , 75 , 150)

64

65 meanEdges = np . asar ray ( edges )

66 num = np . mean( meanEdges )

67

68 re turn num

69

70

71
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72 de f Hough dist ( path ) :

73 img = img or path ( path )

74 gray = cv2 . cvtColor ( img , cv2 .COLOR BGR2GRAY)

75 edges = cv2 . Canny( gray , 75 , 150)

76 edgy = np . asar ray ( edges )

77 tota lCount = 0

78

79 f o r i in range ( l en ( edgy ) ) :

80 AccumulatedCount = 0

81 tempCount = 0

82 f o r j in range ( l en ( edgy ) ) :

83 i f edgy [ i ] [ j ] == 255 :

84 AccumulatedCount += tempCount ∗∗ 1 .5

85 tempCount = 0

86 e l s e :

87 tempCount += 1

88 tota lCount += AccumulatedCount

89 AccumulatedCount = 0

90 re turn totalCount /100000

91

92 #Histogram t hr e sh o ld i ng

93

94 de f H i s t t h r e s h ( path ) :

95 i f i s i n s t a n c e ( path , s t r ) :

96 image = i o . imread ( path , a s g ray=True )

97 e l s e :

98 img = path

99 image = cv2 . cvtColor ( img , cv2 .COLOR RGB2GRAY)

100 thresh = t h r e s h o l d o t s u ( image )

101 f o r i in range ( l en ( image ) ) :

102 f o r j in range ( l en ( image [ i ] ) ) :

103 i f image [ i ] [ j ] < thresh :

104 image [ i ] [ j ] = 0

105 e l s e :

106 image [ i ] [ j ] = 255

107

108 num = np . mean( image )

109 re turn num

110

111
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112 #HOG func t i on :

113

114 de f HOG( path ) :

115 image = img or path ( path )

116 fd , hog image = hog ( image , o r i e n t a t i o n s =8, p i x e l s p e r c e l l =(16 , 16) ,

c e l l s p e r b l o c k =(1 , 1) , v i s u a l i z e=True , mult ichanne l=True )

117

118 hog image re s ca l ed = exposure . r e s c a l e i n t e n s i t y ( hog image , i n range =(0 ,

10) )

119 num = np . mean( hog image re s ca l ed )

120

121 re turn num

122

123

124 #Help−f unc t i on dec id ing whether input i s image or a path to an image

125

126 de f img or path ( obj ) :

127 i f i s i n s t a n c e ( obj , s t r ) :

128 img = cv2 . imread ( obj )

129 e l s e :

130 img = obj

131 re turn img

132

133

134 #Image cropping & p r e p r o c e s s i n g :

135

136 de f Image crop ( path ) :

137 img = img or path ( path )

138 crop img = img [ 8 0 : 2 9 0 , 2 0 : 2 8 0 ]

139 re turn crop img

140

141 de f Image preproc ( path ) :

142 img = img or path ( path )

143 crop img = Image crop ( img ) #Cropping image

144 ke rne l = np . ones ( ( 5 , 5 ) , np . f l o a t 3 2 ) /25

145 dst = cv2 . f i l t e r 2 D ( crop img ,−1 , k e rne l )

146 re turn dst

147

148

149

109



150 #Perform a l l f e a t u r e t rans f o rmat i ons on an image and return i t s d e s c r i p t i v e

va lue

151

152 de f a r ray func ( path ) :

153 ar r = [ ]

154 thresh = H i s t t h r e s h ( path )

155 ar r . append ( thresh )

156 hough = Hough( path )

157 ar r . append ( hough )

158 s i f t = SIFT( path )

159 ar r . append ( s i f t )

160 s u r f = SURF( path )

161 ar r . append ( s u r f )

162 hog = HOG( path )

163 ar r . append ( hog )

164 houghDist = Hough dist ( path )

165 ar r . append ( houghDist )

166

167 re turn ar r

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188
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189

190 #Cal l i ng p r e p r o c e s s i n g and f e a t u r e t rans f o rmat i ons o f a l l images in a f o l d e r

191

192 de f f o l d e r p r e p r o c ( fo lde rPath ) :

193

194 numbers = re . compi le ( r ’ (\d+) ’ )

195 de f numer ica lSort ( va lue ) :

196 par t s = numbers . s p l i t ( va lue )

197 par t s [ 1 : : 2 ] = map( int , par t s [ 1 : : 2 ] )

198 re turn par t s

199

200 img d i r = fo lderPath

201 data path = os . path . j o i n ( img dir , ’ ∗g ’ )

202 f i l e s = glob . g lob ( data path )

203 ar r = [ ]

204 f o r f 1 in so r t ed ( f i l e s , key=numer ica lSort ) :

205

206 img pre = Image preproc ( f 1 )

207 rows = ar ray func ( img pre )

208 ar r . append ( rows )

209

210 mat = np . matrix ( a r r )

211 df = pd . DataFrame (mat , columns=[ ’ Threshold ’ , ’Hough ’ , ’SIFT ’ , ’SURF ’ , ’HOG’

, ’Hough−d i s t ’ ] )

212 re turn df

213

214 #Getting image preproce s s ed and fea ture−transformed images l a b e l e d and

united in a s i n g l e dataframe

215

216 de f l abe l da ta f r ame ( fo lderPath , l a b e l ) :

217

218 df = f o l d e r p r e p r o c ( fo lde rPath )

219 z = [ ]

220 f o r i in range ( l en ( df ) ) :

221 z . append ( l a b e l )

222 y = pd . DataFrame ( z , columns=[ ’ t a r g e t ’ ] )

223

224 l abe l edDf = pd . concat ( [ df , y ] , a x i s =1)

225

226 re turn labe l edDf
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227

228 #Gathering a l l f e a t u r e ex t rac t ed va lue s and concatenat ing in to s i n g l e

DataFrame

229

230 de f f i n a l D F s s t r L a b e l ( ) :

231 df1 = labe l da ta f r ame ( ”path−to−images−l abe l ed−0%” , ”0%” )

232 df2 = labe l da ta f r ame ( ”path−to−images−l abe l ed−25%” , ”25%” )

233 df3 = labe l da ta f r ame ( ”path−to−images−l abe l ed−50%” , ”50%” )

234 df4 = labe l da ta f r ame ( ”path−to−images−l abe l ed−75%” , ”75%” )

235 df5 = labe l da ta f r ame ( ”path−to−images−l abe l ed −100%” , ”100%” )

236

237 f i n 1 = pd . concat ( [ df1 , df2 ] , i g n o r e i n d e x=True )

238 f i n 2 = pd . concat ( [ f in1 , df3 ] , i g n o r e i n d e x=True )

239 f i n 3 = pd . concat ( [ f in2 , df4 ] , i g n o r e i n d e x=True )

240 f inalDF = pd . concat ( [ f in3 , df5 ] , i g n o r e i n d e x=True )

241 re turn f inalDF

242

243 de f f i n a l D F s i n t L a b e l ( ) :

244 df1 = labe l da ta f r ame ( ”path−to−images−l abe l ed−0%” ,0)

245 df2 = labe l da ta f r ame ( ”path−to−images−l abe l ed−25%” ,1)

246 df3 = labe l da ta f r ame ( ”path−to−images−l abe l ed−50%” ,2)

247 df4 = labe l da ta f r ame ( ”path−to−images−l abe l ed−75%” ,3)

248 df5 = labe l da ta f r ame ( ”path−to−images−l abe l ed −100%” ,4)

249

250 f i n 1 = pd . concat ( [ df1 , df2 ] , i g n o r e i n d e x=True )

251 f i n 2 = pd . concat ( [ f in1 , df3 ] , i g n o r e i n d e x=True )

252 f i n 3 = pd . concat ( [ f in2 , df4 ] , i g n o r e i n d e x=True )

253 f inalDF = pd . concat ( [ f in3 , df5 ] , i g n o r e i n d e x=True )

254 re turn f inalDF

255

256

257

258

259

260

261

262

263

264

265
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266 #Calcu l a t ing P r i n c i p a l Component Ana lys i s and s t o r i n g in a dataframe .

267

268 de f calculate PCA ( intOrStr ) :

269

270 df = intOrStr

271 f e a t u r e s = [ ’ Threshold ’ , ’Hough ’ , ’SIFT ’ , ’SURF ’ , ’HOG’ , ’Hough−d i s t ’ ]

272 # Separat ing out the f e a t u r e s

273 x = df . l o c [ : , f e a t u r e s ] . va lue s

274 # Separat ing out the t a r g e t

275 y = df . l o c [ : , [ ’ t a r g e t ’ ] ] . va lue s

276 # Standard iz ing the f e a t u r e s

277 x = StandardSca ler ( ) . f i t t r a n s f o r m ( x )

278

279 pca = PCA( n components=2)

280 principalComponents = pca . f i t t r a n s f o r m ( x )

281 p r i n c i p a l D f = pd . DataFrame ( data = principalComponents

282 , columns = [ ’ p r i n c i p a l component 1 ’ , ’ p r i n c i p a l component

2 ’ ] )

283

284 f i n a l D f = pd . concat ( [ p r inc ipa lDf , df [ [ ’ t a r g e t ’ ] ] ] , a x i s = 1)

285 pr in t (pd . DataFrame ( pca . components , columns=[ ’ Threshold ’ , ’Hough ’ , ’SIFT ’

, ’SURF ’ , ’HOG’ , ’Hough−d i s t ’ ] , index = [ ’PC−1 ’ , ’PC−2 ’ ] ) )

286 pr in t ( pca . e x p l a i n e d v a r i a n c e r a t i o )

287

288 re turn f i n a l D f

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303
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304 #PCA p l o t t i n g

305

306 de f plot PCA ( dataframe ) :

307

308 f i n a l D f = dataframe

309

310 PCA( copy=True , i t e r a t ed power=’ auto ’ , n components=2, random state=None ,

311 s v d s o l v e r=’ auto ’ , t o l =0.0 , whiten=False )

312

313 f i g = p l t . f i g u r e ( f i g s i z e = (8 , 8 ) )

314 ax = f i g . add subplot ( 1 , 1 , 1 )

315 ax . s e t x l a b e l ( ’ P r i n c i p a l Component 1 ’ , f o n t s i z e = 15)

316 ax . s e t y l a b e l ( ’ P r i n c i p a l Component 2 ’ , f o n t s i z e = 15)

317 ax . s e t t i t l e ( ’ 2 component PCA’ , f o n t s i z e = 20)

318 t a r g e t s = [ ’0% ’ , ’25% ’ , ’50% ’ , ’75% ’ , ’100% ’ ]

319 c o l o r s = [ ’ r ’ , ’ g ’ , ’ b ’ , ’ c ’ , ’m’ ]

320 f o r target , c o l o r in z ip ( ta rge t s , c o l o r s ) :

321 indicesToKeep = f i n a l D f [ ’ t a r g e t ’ ] == t a r g e t

322 ax . s c a t t e r ( f i n a l D f . l o c [ indicesToKeep , ’ p r i n c i p a l component 1 ’ ]

323 , f i n a l D f . l o c [ indicesToKeep , ’ p r i n c i p a l component 2 ’ ]

324 , c = c o l o r

325 , s = 50)

326 ax . l egend ( t a r g e t s )

327 ax . g r id ( )

328

329

330 #K−means c l u s t e r i n g and measuring c o r r e c t n e s s

331

332 c l a s s K Means :

333 de f i n i t ( s e l f , k =5, t o l e r a n c e = 0 .0001 , max i t e r a t i on s = 500) :

334 s e l f . k = k

335 s e l f . t o l e r a n c e = t o l e r a n c e

336 s e l f . max i t e r a t i on s = max i t e r a t i on s

337 s e l f . l a b e l C l a s s e s = {}
338

339 de f f i t ( s e l f , data ) :

340

341 s e l f . c e n t r o i d s = {}
342 c e n t r o i d I n t e r v a l = len ( data ) /k

343
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344 #i n i t i a l i z e the c e n t r o i d s evenly throughout the datase t

345 f o r i in range ( s e l f . k ) :

346 s e l f . c e n t r o i d s [ i ] = data [ c e n t r o i d I n t e r v a l ∗ i ]

347

348 #begin i t e r a t i o n s

349 f o r i in range ( s e l f . max i t e r a t i on s ) :

350 s e l f . c l a s s e s = {}
351 f o r i in range ( s e l f . k ) :

352 s e l f . c l a s s e s [ i ] = [ ]

353

354 #f i n d the d i s t ance between the po int and c l u s t e r ; choose the

nea r e s t c en t r o id

355 f o r f e a t u r e s in data :

356 d i s t a n c e s = [ np . l i n a l g . norm( f e a t u r e s − s e l f . c e n t r o i d s [

c en t r o id ] ) f o r c en t r o id in s e l f . c e n t r o i d s ]

357 c l a s s i f i c a t i o n = d i s t a n c e s . index ( min ( d i s t a n c e s ) )

358 s e l f . c l a s s e s [ c l a s s i f i c a t i o n ] . append ( f e a t u r e s )

359

360 prev ious = d i c t ( s e l f . c e n t r o i d s )

361

362 #average the c l u s t e r datapo int s to re−c a l c u l a t e the c e n t r o i d s

363 f o r c l a s s i f i c a t i o n in s e l f . c l a s s e s :

364 s e l f . c e n t r o i d s [ c l a s s i f i c a t i o n ] = np . average ( s e l f . c l a s s e s [

c l a s s i f i c a t i o n ] , a x i s = 0)

365

366 i sOptimal = True

367

368 f o r c en t r o id in s e l f . c e n t r o i d s :

369

370 o r i g i n a l c e n t r o i d = prev ious [ c en t r o id ]

371 curr = s e l f . c e n t r o i d s [ c en t r o id ]

372

373 i f np . sum ( ( curr − o r i g i n a l c e n t r o i d ) / o r i g i n a l c e n t r o i d ∗
100 .0 ) > s e l f . t o l e r a n c e :

374 i sOptimal = False

375

376 #break out o f the main loop i f the r e s u l t s are optimal , i e . the

c e n t r o i d s don ’ t change t h e i r p o s i t i o n s much( more than our t o l e r a n c e )

377 i f i sOptimal :

378 s e l f . l a b e l C l a s s e s = s e l f . c l a s s e s
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379 break

380

381

382 de f pred ( s e l f , data ) :

383 d i s t a n c e s = [ np . l i n a l g . norm( data − s e l f . c e n t r o i d s [ c en t r o id ] ) f o r

c en t r o id in s e l f . c e n t r o i d s ]

384 c l a s s i f i c a t i o n = d i s t a n c e s . index ( min ( d i s t a n c e s ) )

385 re turn c l a s s i f i c a t i o n

386

387 de f g e t c l a s s ( s e l f ) :

388 re turn s e l f . c l a s s e z

389

390 de f c l u s t e r c o r r e c t n e s s ( c l u s t e r c l a s s ) :

391 match = 0

392 not match = 0

393 c = c l u s t e r c l a s s

394

395 f o r x in range (0 , 5 ) :

396 tempClusterArr = c [ x ]

397 tempClusterArr = np . array ( tempClusterArr )

398 f o r i in range ( l en ( tempClusterArr ) ) :

399 i f tempClusterArr [ i ] [ 6 ] == x :

400 match += 1

401 e l s e :

402 not match += 1

403

404 re turn match /( match+not match )

405

406

407 de f run Kmeans ( df ) :

408

409 X = df . va lue s #re tu rn s a numpy array o f f e a t u r e v e c t o r s

410 km = K Means4 (5 )

411 km. f i t (X)

412 c l u s t e r c l a s s = km. g e t c l a s s ( )

413 c l u s t e r c o r r e c t n e s s ( c l u s t e r c l a s s )

414

415

416

417
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418 #PCA matching compared to l a b e l e d s e t

419

420 de f PCA match( PCA set ) :

421 p = PCA set #Dataframe with columns ” p r i n c i p a l component 1” and ”

p r i n c i p a l component 2”

422 minmax = p . l o c [ : , ’ p r i n c i p a l component 1 ’ ] . va lue s

423 minVal = min (minmax)

424 maxVal = max(minmax)

425 valRange = (max(minmax)−min (minmax) ) /5

426 match = 0

427 not match = 0

428 f o r i in range (0 , 1 ) :

429 subset = p [ p . t a r g e t==i ]

430 subset2 = subset . l o c [ : , ’ p r i n c i p a l component 1 ’ ] . va lue s

431 f o r j in range ( l en ( subset2 ) ) :

432 i f ( ( subset2 [ j ] > ( minVal ) ) & ( subset2 [ j ] < ( minVal+(valRange ) )

) ) :

433 match += 1

434 e l s e :

435 not match += 1

436 f o r i in range (1 , 4 ) :

437 subset = p [ p . t a r g e t==i ]

438 subset2 = subset . l o c [ : , ’ p r i n c i p a l component 1 ’ ] . va lue s

439 f o r j in range ( l en ( subset2 ) ) :

440 i f ( subset2 [ j ] > (maxVal+(valRange∗ i ) ) ) & ( subset2 [ j ] < (maxVal

+(valRange ∗( i +1) ) ) ) :

441 match += 1

442 e l s e :

443 not match += 1

444

445 f o r i in range (4 , 5 ) :

446 subset = p [ p . t a r g e t==i ]

447 subset2 = subset . l o c [ : , ’ p r i n c i p a l component 1 ’ ] . va lue s

448 f o r j in range ( l en ( subset2 ) ) :

449 i f subset2 [ j ]>(minVal+(valRange ∗3) ) :

450 match += 1

451 e l s e :

452 not match += 1

453 re turn match /( match+not match )
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B. retrain.py

1 # Copyright 2015 The TensorFlow Authors . Al l Rights Reserved .

2 #

3 # Licensed under the Apache License , Vers ion 2 .0 ( the ” L icense ”) ;

4 # you may not use t h i s f i l e except in compliance with the L icense .

5 # You may obta in a copy o f the L icense at

6 #

7 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0

8 #

9 # Unless r equ i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware

10 # d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS ” BASIS ,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl i ed .

12 # See the L icense f o r the s p e c i f i c language governing pe rmi s s i ons and

13 # l i m i t a t i o n s under the L icense .

14 #

==============================================================================

15 # NOTICE: This work was der ived from ten so r f l ow / examples / i m a g e r e t r a i n i n g

16 # and modi f i ed to use TensorFlow Hub modules .

17

18 # p y l i n t : d i s a b l e=l i n e−too−long

19 r ””” Simple t r a n s f e r l e a r n i n g with image modules from TensorFlow Hub .

20

21 This example shows how to t r a i n an image c l a s s i f i e r based on any

22 TensorFlow Hub module that computes image f e a t u r e ve c t o r s . By de fau l t ,

23 i t uses the f e a t u r e ve c to r s computed by Incept i on V3 t ra ined on ImageNet .

24 See https : // github . com/ ten so r f l ow /hub/ blob / master / docs /modules/ image .md

25 f o r more opt ions .

26

27 The top l a y e r r e c e i v e s as input a 2048−dimens iona l vec to r ( assuming

28 Incept i on V3) f o r each image . We t r a i n a softmax l a y e r on top o f t h i s

29 r e p r e s e n t a t i o n . I f the softmax l a y e r conta in s N l a b e l s , t h i s cor responds
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30 to l e a r n i n g N + 2048∗N model parameters f o r the b i a s e s and weights .

31

32 Here ’ s an example , which assumes you have a f o l d e r conta in ing c l a s s−named

33 sub fo ld e r s , each f u l l o f images f o r each l a b e l . The example f o l d e r

f l owe r pho to s

34 should have a s t r u c t u r e l i k e t h i s :

35

36 ˜/ f l owe r pho to s / da i sy /photo1 . jpg

37 ˜/ f l owe r pho to s / da i sy /photo2 . jpg

38 . . .

39 ˜/ f l owe r pho to s / ro s e / anotherphoto77 . jpg

40 . . .

41 ˜/ f l owe r pho to s / sun f lower / somepicture . jpg

42

43 The s u b f o l d e r names are important , s i n c e they d e f i n e what l a b e l i s app l i ed

to

44 each image , but the f i l enames themse lves don ’ t matter . ( For a working

example ,

45 download http :// download . t en so r f l ow . org / example images / f l owe r pho to s . tgz

46 and run tar xz f f l owe r pho to s . tgz to unpack i t . )

47

48 Once your images are prepared , and you have pip− i n s t a l l e d tensor f l ow−hub and

49 a s u f f i c i e n t l y r e c ent ve r s i o n o f t ensor f l ow , you can run the t r a i n i n g with a

50 command l i k e t h i s :

51

52 ‘ ‘ ‘ bash

53 python r e t r a i n . py −−image d i r ˜/ f l owe r pho to s

54 ‘ ‘ ‘

55

56 You can r e p l a c e the image d i r argument with any f o l d e r conta in ing s u b f o l d e r s

o f

57 images . The l a b e l f o r each image i s taken from the name o f the s u b f o l d e r i t ’

s

58 in .

59

60 This produces a new model f i l e that can be loaded and run by any TensorFlow

61 program , f o r example the t en so r f l ow / examples / l abe l image sample code .

62

63 By d e f a u l t t h i s s c r i p t w i l l use the h igh ly accurate , but comparat ive ly l a r g e

and
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64 s low Incept i on V3 model a r c h i t e c t u r e . I t ’ s recommended that you s t a r t with

t h i s

65 to v a l i d a t e that you have gathered good t r a i n i n g data , but i f you want to

deploy

66 on resource−l i m i t e d plat forms , you can try the ‘−−tfhub module ‘ f l a g with a

67 Mobilenet model . For more in fo rmat ion on Mobilenet , s e e

68 https : // r e s ea r ch . goog l eb log . com/2017/06/ mobi lenets−open−source−models−f o r .

html

69

70 For example :

71

72 Run f l o a t i n g−po int v e r s i o n o f Mobilenet :

73

74 ‘ ‘ ‘ bash

75 python r e t r a i n . py −−image d i r ˜/ f l owe r pho to s \
76 −−tfhub module https : // tfhub . dev/ goog l e / imagenet / mobi l enet v1 100 224 /

f e a t u r e v e c t o r /1

77 ‘ ‘ ‘

78

79 Run Mobilenet , instrumented f o r quant i za t i on :

80

81 ‘ ‘ ‘ bash

82 python r e t r a i n . py −−image d i r ˜/ f l owe r pho to s / \
83 −−tfhub module https : // tfhub . dev/ goog l e / imagenet / mobi l enet v1 100 224 /

quantops / f e a t u r e v e c t o r /1

84 ‘ ‘ ‘

85

86 These instrumented models can be converted to f u l l y quant ized mobile models

v ia

87 TensorFlow L i t e .

88

89 There are d i f f e r e n t Mobilenet models to choose from , with a v a r i e t y o f f i l e

90 s i z e and la t ency opt ions .

91 − The f i r s t number can be ’100 ’ , ’ 075 ’ , ’ 050 ’ , or ’025 ’ to c o n t r o l the

number

92 o f neurons ( a c t i v a t i o n s o f hidden l a y e r s ) ; the number o f weights ( and

hence

93 to some extent the f i l e s i z e and speed ) sh r i nk s with the square o f that

94 f r a c t i o n .

95 − The second number i s the input image s i z e . You can choose ’224 ’ , ’ 192 ’ ,
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96 ’ 160 ’ , or ’ 128 ’ , with sma l l e r s i z e s g i v i ng f a s t e r speeds .

97

98 To use with TensorBoard :

99

100 By de fau l t , t h i s s c r i p t w i l l l og summaries to /tmp/ r e t r a i n l o g s d i r e c t o r y

101

102 V i s u a l i z e the summaries with t h i s command :

103

104 tensorboard −− l o g d i r /tmp/ r e t r a i n l o g s

105

106 To use with Tensorf low Serving , run t h i s t o o l with −−saved mode l d i r s e t

107 to some i n c r e a s i n g l y numbered export l o c a t i o n under the model base path , e . g

. :

108

109 ‘ ‘ ‘ bash

110 python r e t r a i n . py ( . . . o ther args as be f o r e . . . ) \
111 −−saved mode l d i r=/tmp/ saved models /$ ( date +%s ) /

112 t e n s o r f l o w m o d e l s e r v e r −−port =9000 −−model name=m y i m a g e c l a s s i f i e r \
113 −−model base path=/tmp/ saved models /

114 ‘ ‘ ‘

115 ”””

116 # p y l i n t : enable=l i n e−too−long

117

118 from f u t u r e import abso lu te impor t

119 from f u t u r e import d i v i s i o n

120 from f u t u r e import p r i n t f u n c t i o n

121

122 import argparse

123 import c o l l e c t i o n s

124 from datet ime import datet ime

125 import ha sh l i b

126 import os . path

127 import random

128 import re

129 import sys

130

131 import numpy as np

132 import t en so r f l ow as t f

133 import tensor f l ow hub as hub

134
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135 FLAGS = None

136

137 MAX NUM IMAGES PER CLASS = 2 ∗∗ 27 − 1 # ˜134M

138

139 # The l o c a t i o n where v a r i a b l e checkpo int s w i l l be s to r ed .

140 CHECKPOINT NAME = ’ /tmp/ r e t r a i n c h e c k p o i n t ’

141

142 # A module i s understood as instrumented f o r quant i za t i on with TF−Li t e

143 # i f i t conta in s any o f the se ops .

144 FAKE QUANT OPS = ( ’ FakeQuantWithMinMaxVars ’ ,

145 ’ FakeQuantWithMinMaxVarsPerChannel ’ )

146

147

148 de f c r e a t e i m a g e l i s t s ( image dir , t e s t i n g p e r c e n t a g e , v a l i d a t i o n p e r c e n t a g e )

:

149 ””” Bui lds a l i s t o f t r a i n i n g images from the f i l e system .

150

151 Analyzes the sub f o l d e r s in the image d i r e c to ry , s p l i t s them in to s t a b l e

152 t r a in ing , t e s t i n g , and v a l i d a t i o n se t s , and re tu rn s a data s t r u c t u r e

153 d e s c r i b i n g the l i s t s o f images f o r each l a b e l and t h e i r paths .

154

155 Args :

156 image d i r : S t r ing path to a f o l d e r conta in ing s u b f o l d e r s o f images .

157 t e s t i n g p e r c e n t a g e : I n t e g e r percentage o f the images to r e s e r v e f o r

t e s t s .

158 v a l i d a t i o n p e r c e n t a g e : I n t e g e r percentage o f images r e s e rved f o r

v a l i d a t i o n .

159

160 Returns :

161 An OrderedDict conta in ing an entry f o r each l a b e l sub fo lde r , with images

162 s p l i t i n to t ra in ing , t e s t i n g , and v a l i d a t i o n s e t s with in each l a b e l .

163 The order o f i tems d e f i n e s the c l a s s i n d i c e s .

164 ”””

165 i f not t f . g f i l e . Ex i s t s ( image d i r ) :

166 t f . l o gg ing . e r r o r ( ”Image d i r e c t o r y ’ ” + image d i r + ” ’ not found . ” )

167 re turn None

168 r e s u l t = c o l l e c t i o n s . OrderedDict ( )

169 s u b d i r s = sor t ed ( x [ 0 ] f o r x in t f . g f i l e . Walk( image d i r ) )

170 # The root d i r e c t o r y comes f i r s t , so sk ip i t .

171 i s r o o t d i r = True
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172 f o r su b d i r in s u b d i r s :

173 i f i s r o o t d i r :

174 i s r o o t d i r = Fal se

175 cont inue

176 ex t en s i on s = sor t ed ( s e t ( os . path . normcase ( ext ) # Smash case on Windows .

177 f o r ext in [ ’JPEG ’ , ’JPG ’ , ’ jpeg ’ , ’ jpg ’ ] ) )

178 f i l e l i s t = [ ]

179 dir name = os . path . basename ( s u b d i r )

180 i f dir name == image d i r :

181 cont inue

182 t f . l o gg ing . i n f o ( ” Looking f o r images in ’ ” + dir name + ” ’ ” )

183 f o r ex t ens i on in ex t en s i on s :

184 f i l e g l o b = os . path . j o i n ( image dir , dir name , ’ ∗ . ’ + extens i on )

185 f i l e l i s t . extend ( t f . g f i l e . Glob ( f i l e g l o b ) )

186 i f not f i l e l i s t :

187 t f . l o gg ing . warning ( ’No f i l e s found ’ )

188 cont inue

189 i f l en ( f i l e l i s t ) < 20 :

190 t f . l o gg ing . warning (

191 ’WARNING: Folder has l e s s than 20 images , which may cause i s s u e s . ’

)

192 e l i f l en ( f i l e l i s t ) > MAX NUM IMAGES PER CLASS:

193 t f . l o gg ing . warning (

194 ’WARNING: Folder {} has more than {} images . Some images w i l l ’

195 ’ never be s e l e c t e d . ’ . format ( dir name , MAX NUM IMAGES PER CLASS) )

196 labe l name = re . sub ( r ’ [ ˆ a−z0−9]+ ’ , ’ ’ , dir name . lower ( ) )

197 t r a i n i n g i m a g e s = [ ]

198 t e s t i n g i m a g e s = [ ]

199 v a l i d a t i o n i m a g e s = [ ]

200 f o r f i l e n a m e in f i l e l i s t :

201 base name = os . path . basename ( f i l e n a m e )

202 # We want to i gnore anything a f t e r ’ nohash ’ in the f i l e name when

203 # dec id ing which s e t to put an image in , the data s e t c r e a t o r has a

way o f

204 # grouping photos that are c l o s e v a r i a t i o n s o f each other . For example

205 # t h i s i s used in the p lant d i s e a s e data s e t to group mul t ip l e

p i c t u r e s o f

206 # the same l e a f .

207 hash name = re . sub ( r ’ nohash .∗ $ ’ , ’ ’ , f i l e n a m e )

208 # This l ooks a b i t magical , but we need to dec ide whether t h i s f i l e
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should

209 # go in to the t ra in ing , t e s t i ng , or v a l i d a t i o n se t s , and we want to

keep

210 # e x i s t i n g f i l e s in the same s e t even i f more f i l e s are subsequent ly

211 # added .

212 # To do that , we need a s t a b l e way o f dec id ing based on j u s t the f i l e

name

213 # i t s e l f , so we do a hash o f that and then use that to generate a

214 # p r o b a b i l i t y va lue that we use to a s s i g n i t .

215 hash name hashed = hash l i b . sha1 ( t f . compat . a s by t e s ( hash name ) ) .

hexd ige s t ( )

216 percentage hash = ( ( i n t ( hash name hashed , 16) %

217 (MAX NUM IMAGES PER CLASS + 1) ) ∗
218 (100 . 0 / MAX NUM IMAGES PER CLASS) )

219 i f percentage hash < v a l i d a t i o n p e r c e n t a g e :

220 v a l i d a t i o n i m a g e s . append ( base name )

221 e l i f percentage hash < ( t e s t i n g p e r c e n t a g e + v a l i d a t i o n p e r c e n t a g e ) :

222 t e s t i n g i m a g e s . append ( base name )

223 e l s e :

224 t r a i n i n g i m a g e s . append ( base name )

225 r e s u l t [ labe l name ] = {
226 ’ d i r ’ : dir name ,

227 ’ t r a i n i n g ’ : t r a in ing image s ,

228 ’ t e s t i n g ’ : t e s t ing image s ,

229 ’ v a l i d a t i o n ’ : va l i da t i on image s ,

230 }
231 re turn r e s u l t

232

233

234 de f get image path ( i m a g e l i s t s , label name , index , image dir , category ) :

235 ””” Returns a path to an image f o r a l a b e l at the g iven index .

236

237 Args :

238 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

239 labe l name : Label s t r i n g we want to get an image f o r .

240 index : Int o f f s e t o f the image we want . This w i l l be moduloed by the

241 a v a i l a b l e number o f images f o r the l abe l , so i t can be a r b i t r a r i l y l a r g e

.

242 image d i r : Root f o l d e r s t r i n g o f the s u b f o l d e r s conta in ing the t r a i n i n g

243 images .
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244 category : Name s t r i n g o f s e t to p u l l images from − t r a in ing , t e s t i n g , or

245 v a l i d a t i o n .

246

247 Returns :

248 F i l e system path s t r i n g to an image that meets the reques ted parameters .

249

250 ”””

251 i f labe l name not in i m a g e l i s t s :

252 t f . l o gg ing . f a t a l ( ’ Label does not e x i s t %s . ’ , labe l name )

253 l a b e l l i s t s = i m a g e l i s t s [ labe l name ]

254 i f category not in l a b e l l i s t s :

255 t f . l o gg ing . f a t a l ( ’ Category does not e x i s t %s . ’ , category )

256 c a t e g o r y l i s t = l a b e l l i s t s [ category ]

257 i f not c a t e g o r y l i s t :

258 t f . l o gg ing . f a t a l ( ’ Label %s has no images in the category %s . ’ ,

259 label name , category )

260 mod index = index % len ( c a t e g o r y l i s t )

261 base name = c a t e g o r y l i s t [ mod index ]

262 s ub d i r = l a b e l l i s t s [ ’ d i r ’ ]

263 f u l l p a t h = os . path . j o i n ( image dir , sub d i r , base name )

264 re turn f u l l p a t h

265

266

267 de f g e t b o t t l e n e c k p a t h ( i m a g e l i s t s , label name , index , b o t t l e n e c k d i r ,

268 category , module name ) :

269 ””” Returns a path to a bot t l eneck f i l e f o r a l a b e l at the g iven index .

270

271 Args :

272 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

273 labe l name : Label s t r i n g we want to get an image f o r .

274 index : I n t e g e r o f f s e t o f the image we want . This w i l l be moduloed by the

275 a v a i l a b l e number o f images f o r the l abe l , so i t can be a r b i t r a r i l y l a r g e

.

276 b o t t l e n e c k d i r : Folder s t r i n g ho ld ing cached f i l e s o f bo t t l eneck va lue s .

277 category : Name s t r i n g o f s e t to p u l l images from − t r a in ing , t e s t i n g , or

278 v a l i d a t i o n .

279 module name : The name o f the image module being used .

280

281 Returns :

282 F i l e system path s t r i n g to an image that meets the reques ted parameters .
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283 ”””

284 module name = ( module name . r e p l a c e ( ’ : // ’ , ’ ˜ ’ ) # URL scheme .

285 . r e p l a c e ( ’ / ’ , ’ ˜ ’ ) # URL and Unix paths .

286 . r e p l a c e ( ’ : ’ , ’ ˜ ’ ) . r e p l a c e ( ’ \\ ’ , ’ ˜ ’ ) ) # Windows paths .

287 re turn get image path ( i m a g e l i s t s , label name , index , b o t t l e n e c k d i r ,

288 category ) + ’ ’ + module name + ’ . txt ’

289

290

291 de f create module graph ( module spec ) :

292 ””” Creates a graph and loads Hub Module in to i t .

293

294 Args :

295 module spec : the hub . ModuleSpec f o r the image module being used .

296

297 Returns :

298 graph : the t f . Graph that was c rea ted .

299 b o t t l e n e c k t e n s o r : the bo t t l eneck va lue s output by the module .

300 r e s i z e d i n p u t t e n s o r : the input images , r e s i z e d as expected by the

module .

301 wants quant i zat ion : a boolean , whether the module has been instrumented

302 with fake quant i za t i on ops .

303 ”””

304 height , width = hub . g e t e x p e c t e d i m a g e s i z e ( module spec )

305 with t f . Graph ( ) . a s d e f a u l t ( ) as graph :

306 r e s i z e d i n p u t t e n s o r = t f . p l a c eho ld e r ( t f . f l o a t32 , [ None , height , width ,

3 ] )

307 m = hub . Module ( module spec )

308 b o t t l e n e c k t e n s o r = m( r e s i z e d i n p u t t e n s o r )

309 wants quant i zat ion = any ( node . op in FAKE QUANT OPS

310 f o r node in graph . a s g raph de f ( ) . node )

311 re turn graph , bo t t l e n e c k t e n s o r , r e s i z e d i n p u t t e n s o r , wants quant i zat ion

312

313

314 de f run bot t l eneck on image ( se s s , image data , image data tensor ,

315 decoded image tensor , r e s i z e d i n p u t t e n s o r ,

316 b o t t l e n e c k t e n s o r ) :

317 ”””Runs i n f e r e n c e on an image to e x t r a c t the ’ bo t t l eneck ’ summary l a y e r .

318

319 Args :

320 s e s s : Current a c t i v e TensorFlow Ses s i on .
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321 image data : S t r ing o f raw JPEG data .

322 image data tensor : Input data l a y e r in the graph .

323 decoded image tensor : Output o f i n i t i a l image r e s i z i n g and p r e p r o c e s s i n g

.

324 r e s i z e d i n p u t t e n s o r : The input node o f the r e c o g n i t i o n graph .

325 b o t t l e n e c k t e n s o r : Layer be f o r e the f i n a l softmax .

326

327 Returns :

328 Numpy array o f bo t t l eneck va lue s .

329 ”””

330 # F i r s t decode the JPEG image , r e s i z e i t , and r e s c a l e the p i x e l va lue s .

331 r e s i z e d i n p u t v a l u e s = s e s s . run ( decoded image tensor ,

332 { image data tensor : image data })

333 # Then run i t through the r e c o g n i t i o n network .

334 b o t t l e n e c k v a l u e s = s e s s . run ( bo t t l en e c k t e n s o r ,

335 { r e s i z e d i n p u t t e n s o r : r e s i z e d i n p u t v a l u e s })

336 b o t t l e n e c k v a l u e s = np . squeeze ( b o t t l e n e c k v a l u e s )

337 re turn b o t t l e n e c k v a l u e s

338

339

340 de f e n s u r e d i r e x i s t s ( dir name ) :

341 ”””Makes sure the f o l d e r e x i s t s on d i sk .

342

343 Args :

344 dir name : Path s t r i n g to the f o l d e r we want to c r e a t e .

345 ”””

346 i f not os . path . e x i s t s ( dir name ) :

347 os . makedirs ( dir name )

348

349

350 de f c r e a t e b o t t l e n e c k f i l e ( bot t l eneck path , i m a g e l i s t s , label name , index ,

351 image dir , category , s e s s , j p eg da ta t en so r ,

352 decoded image tensor , r e s i z e d i n p u t t e n s o r ,

353 b o t t l e n e c k t e n s o r ) :

354 ””” Create a s i n g l e bo t t l eneck f i l e . ”””

355 t f . l o gg ing . i n f o ( ’ Creat ing bot t l eneck at ’ + bot t l eneck path )

356 image path = get image path ( i m a g e l i s t s , label name , index ,

357 image dir , category )

358 i f not t f . g f i l e . Ex i s t s ( image path ) :

359 t f . l o gg ing . f a t a l ( ’ F i l e does not e x i s t %s ’ , image path )
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360 image data = t f . g f i l e . FastGFile ( image path , ’ rb ’ ) . read ( )

361 t ry :

362 b o t t l e n e c k v a l u e s = run bot t l eneck on image (

363 s e s s , image data , j p eg da ta t en so r , decoded image tensor ,

364 r e s i z e d i n p u t t e n s o r , b o t t l e n e c k t e n s o r )

365 except Exception as e :

366 r a i s e RuntimeError ( ’ Error during p r o c e s s i n g f i l e %s (%s ) ’ % ( image path ,

367 s t r ( e ) ) )

368 b o t t l e n e c k s t r i n g = ’ , ’ . j o i n ( s t r ( x ) f o r x in b o t t l e n e c k v a l u e s )

369 with open ( bott l eneck path , ’w ’ ) as b o t t l e n e c k f i l e :

370 b o t t l e n e c k f i l e . wr i t e ( b o t t l e n e c k s t r i n g )

371

372

373 de f g e t o r c r e a t e b o t t l e n e c k ( se s s , i m a g e l i s t s , label name , index , image dir

,

374 category , b o t t l e n e c k d i r , j p eg da ta t en so r ,

375 decoded image tensor , r e s i z e d i n p u t t e n s o r ,

376 b o t t l e n e c k t e n s o r , module name ) :

377 ””” Ret r i eve s or c a l c u l a t e s bo t t l eneck va lue s f o r an image .

378

379 I f a cached ve r s i on o f the bo t t l eneck data e x i s t s on−disk , r e turn that ,

380 otherwi s e c a l c u l a t e the data and save i t to d i sk f o r fu tu r e use .

381

382 Args :

383 s e s s : The cur rent a c t i v e TensorFlow Ses s i on .

384 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

385 labe l name : Label s t r i n g we want to get an image f o r .

386 index : I n t e g e r o f f s e t o f the image we want . This w i l l be modulo−ed by

the

387 a v a i l a b l e number o f images f o r the l abe l , so i t can be a r b i t r a r i l y l a r g e

.

388 image d i r : Root f o l d e r s t r i n g o f the s u b f o l d e r s conta in ing the t r a i n i n g

389 images .

390 category : Name s t r i n g o f which s e t to p u l l images from − t r a in ing ,

t e s t i ng ,

391 or v a l i d a t i o n .

392 b o t t l e n e c k d i r : Folder s t r i n g ho ld ing cached f i l e s o f bo t t l eneck va lue s .

393 j p e g d a t a t e n s o r : The tenso r to f e ed loaded jpeg data in to .

394 decoded image tensor : The output o f decoding and r e s i z i n g the image .

395 r e s i z e d i n p u t t e n s o r : The input node o f the r e c o g n i t i o n graph .
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396 b o t t l e n e c k t e n s o r : The output t enso r f o r the bo t t l eneck va lue s .

397 module name : The name o f the image module being used .

398

399 Returns :

400 Numpy array o f va lue s produced by the bot t l eneck l a y e r f o r the image .

401 ”””

402 l a b e l l i s t s = i m a g e l i s t s [ labe l name ]

403 s ub d i r = l a b e l l i s t s [ ’ d i r ’ ]

404 sub d i r pa th = os . path . j o i n ( b o t t l e n e c k d i r , su b d i r )

405 e n s u r e d i r e x i s t s ( sub d i r pa th )

406 bot t l eneck path = g e t b o t t l e n e c k p a t h ( i m a g e l i s t s , label name , index ,

407 b o t t l e n e c k d i r , category ,

module name )

408 i f not os . path . e x i s t s ( bo t t l eneck path ) :

409 c r e a t e b o t t l e n e c k f i l e ( bot t l eneck path , i m a g e l i s t s , label name , index ,

410 image dir , category , s e s s , j p eg da ta t en so r ,

411 decoded image tensor , r e s i z e d i n p u t t e n s o r ,

412 b o t t l e n e c k t e n s o r )

413 with open ( bott l eneck path , ’ r ’ ) as b o t t l e n e c k f i l e :

414 b o t t l e n e c k s t r i n g = b o t t l e n e c k f i l e . read ( )

415 d i d h i t e r r o r = False

416 t ry :

417 b o t t l e n e c k v a l u e s = [ f l o a t ( x ) f o r x in b o t t l e n e c k s t r i n g . s p l i t ( ’ , ’ ) ]

418 except ValueError :

419 t f . l o gg ing . warning ( ’ I n v a l i d f l o a t found , r e c r e a t i n g bot t l eneck ’ )

420 d i d h i t e r r o r = True

421 i f d i d h i t e r r o r :

422 c r e a t e b o t t l e n e c k f i l e ( bot t l eneck path , i m a g e l i s t s , label name , index ,

423 image dir , category , s e s s , j p eg da ta t en so r ,

424 decoded image tensor , r e s i z e d i n p u t t e n s o r ,

425 b o t t l e n e c k t e n s o r )

426 with open ( bott l eneck path , ’ r ’ ) as b o t t l e n e c k f i l e :

427 b o t t l e n e c k s t r i n g = b o t t l e n e c k f i l e . read ( )

428 # Allow except i ons to propagate here , s i n c e they shouldn ’ t happen a f t e r

a

429 # f r e s h c r e a t i o n

430 b o t t l e n e c k v a l u e s = [ f l o a t ( x ) f o r x in b o t t l e n e c k s t r i n g . s p l i t ( ’ , ’ ) ]

431 re turn b o t t l e n e c k v a l u e s

432

433
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434 de f c a c h e b o t t l e n e c k s ( s e s s , i m a g e l i s t s , image dir , b o t t l e n e c k d i r ,

435 j p eg da ta t en so r , decoded image tensor ,

436 r e s i z e d i n p u t t e n s o r , b o t t l e n e ck t e n s o r , module name ) :

437 ””” Ensures a l l the t r a in ing , t e s t i n g , and v a l i d a t i o n b o t t l e n e c k s are

cached .

438

439 Because we ’ re l i k e l y to read the same image mul t ip l e t imes ( i f the re are

no

440 d i s t o r t i o n s app l i ed during t r a i n i n g ) i t can speed th ings up a l o t i f we

441 c a l c u l a t e the bot t l eneck l a y e r va lue s once f o r each image during

442 preproce s s ing , and then j u s t read those cached va lues r epea t ed ly during

443 t r a i n i n g . Here we go through a l l the images we ’ ve found , c a l c u l a t e those

444 values , and save them o f f .

445

446 Args :

447 s e s s : The cur rent a c t i v e TensorFlow Ses s i on .

448 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

449 image d i r : Root f o l d e r s t r i n g o f the s u b f o l d e r s conta in ing the t r a i n i n g

450 images .

451 b o t t l e n e c k d i r : Folder s t r i n g ho ld ing cached f i l e s o f bo t t l eneck va lue s .

452 j p e g d a t a t e n s o r : Input t enso r f o r jpeg data from f i l e .

453 decoded image tensor : The output o f decoding and r e s i z i n g the image .

454 r e s i z e d i n p u t t e n s o r : The input node o f the r e c o g n i t i o n graph .

455 b o t t l e n e c k t e n s o r : The penult imate output l a y e r o f the graph .

456 module name : The name o f the image module being used .

457

458 Returns :

459 Nothing .

460 ”””

461 how many bottlenecks = 0

462 e n s u r e d i r e x i s t s ( b o t t l e n e c k d i r )

463 f o r label name , l a b e l l i s t s in i m a g e l i s t s . i tems ( ) :

464 f o r category in [ ’ t r a i n i n g ’ , ’ t e s t i n g ’ , ’ v a l i d a t i o n ’ ] :

465 c a t e g o r y l i s t = l a b e l l i s t s [ category ]

466 f o r index , unused base name in enumerate ( c a t e g o r y l i s t ) :

467 g e t o r c r e a t e b o t t l e n e c k (

468 s e s s , i m a g e l i s t s , label name , index , image dir , category ,

469 b o t t l e n e c k d i r , j p eg da ta t en so r , decoded image tensor ,

470 r e s i z e d i n p u t t e n s o r , b o t t l e n e c k t e n s o r , module name )

471
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472 how many bottlenecks += 1

473 i f how many bottlenecks % 100 == 0 :

474 t f . l o gg ing . i n f o (

475 s t r ( how many bottlenecks ) + ’ bo t t l eneck f i l e s c r ea ted . ’ )

476

477

478 de f ge t random cached bott l enecks ( s e s s , i m a g e l i s t s , how many , category ,

479 b o t t l e n e c k d i r , image dir ,

j p eg da ta t en so r ,

480 decoded image tensor , r e s i z e d i n p u t t e n s o r

,

481 b o t t l e n e c k t e n s o r , module name ) :

482 ””” Ret r i eve s bo t t l eneck va lue s f o r cached images .

483

484 I f no d i s t o r t i o n s are being appl ied , t h i s func t i on can r e t r i e v e the cached

485 bot t l eneck va lue s d i r e c t l y from di sk f o r images . I t p i ck s a random s e t o f

486 images from the s p e c i f i e d category .

487

488 Args :

489 s e s s : Current TensorFlow Ses s i on .

490 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

491 how many : I f p o s i t i v e , a random sample o f t h i s s i z e w i l l be chosen .

492 I f negat ive , a l l b o t t l e n e c k s w i l l be r e t r i e v e d .

493 category : Name s t r i n g o f which s e t to p u l l from − t r a in ing , t e s t i n g , or

494 v a l i d a t i o n .

495 b o t t l e n e c k d i r : Folder s t r i n g ho ld ing cached f i l e s o f bo t t l eneck va lue s .

496 image d i r : Root f o l d e r s t r i n g o f the s u b f o l d e r s conta in ing the t r a i n i n g

497 images .

498 j p e g d a t a t e n s o r : The l a y e r to f e ed jpeg image data in to .

499 decoded image tensor : The output o f decoding and r e s i z i n g the image .

500 r e s i z e d i n p u t t e n s o r : The input node o f the r e c o g n i t i o n graph .

501 b o t t l e n e c k t e n s o r : The bot t l eneck output l a y e r o f the CNN graph .

502 module name : The name o f the image module being used .

503

504 Returns :

505 L i s t o f bo t t l eneck arrays , t h e i r cor re spond ing ground truths , and the

506 r e l e v a n t f i l enames .

507 ”””

508 c l a s s c o u n t = len ( i m a g e l i s t s . keys ( ) )

509 b o t t l e n e c k s = [ ]
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510 ground truths = [ ]

511 f i l enames = [ ]

512 i f how many >= 0 :

513 # Retr i eve a random sample o f b o t t l e n e c k s .

514 f o r unused i in range (how many) :

515 l a b e l i n d e x = random . randrange ( c l a s s c o u n t )

516 labe l name = l i s t ( i m a g e l i s t s . keys ( ) ) [ l a b e l i n d e x ]

517 image index = random . randrange (MAX NUM IMAGES PER CLASS + 1)

518 image name = get image path ( i m a g e l i s t s , label name , image index ,

519 image dir , category )

520 bot t l eneck = g e t o r c r e a t e b o t t l e n e c k (

521 s e s s , i m a g e l i s t s , label name , image index , image dir , category ,

522 b o t t l e n e c k d i r , j p eg da ta t en so r , decoded image tensor ,

523 r e s i z e d i n p u t t e n s o r , b o t t l e n e ck t e n s o r , module name )

524 b o t t l e n e c k s . append ( bot t l eneck )

525 ground truths . append ( l a b e l i n d e x )

526 f i l enames . append ( image name )

527 e l s e :

528 # Retr i eve a l l b o t t l e n e c k s .

529 f o r l a b e l i n d e x , labe l name in enumerate ( i m a g e l i s t s . keys ( ) ) :

530 f o r image index , image name in enumerate (

531 i m a g e l i s t s [ labe l name ] [ category ] ) :

532 image name = get image path ( i m a g e l i s t s , label name , image index ,

533 image dir , category )

534 bot t l eneck = g e t o r c r e a t e b o t t l e n e c k (

535 s e s s , i m a g e l i s t s , label name , image index , image dir , category ,

536 b o t t l e n e c k d i r , j p eg da ta t en so r , decoded image tensor ,

537 r e s i z e d i n p u t t e n s o r , b o t t l e n e c k t e n s o r , module name )

538 b o t t l e n e c k s . append ( bot t l eneck )

539 ground truths . append ( l a b e l i n d e x )

540 f i l enames . append ( image name )

541 re turn bot t l enecks , ground truths , f i l enames

542

543

544 de f g e t r a n d o m d i s t o r t e d b o t t l e n e c k s (

545 s e s s , i m a g e l i s t s , how many , category , image dir , i n p u t j p e g t e n s o r ,

546 d i s to r t ed image , r e s i z e d i n p u t t e n s o r , b o t t l e n e c k t e n s o r ) :

547 ””” Ret r i eve s bo t t l eneck va lue s f o r t r a i n i n g images , a f t e r d i s t o r t i o n s .

548

549 I f we ’ re t r a i n i n g with d i s t o r t i o n s l i k e crops , s c a l e s , or f l i p s , we have
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to

550 r e c a l c u l a t e the f u l l model f o r every image , and so we can ’ t use cached

551 bot t l eneck va lue s . Ins tead we f i n d random images f o r the reques ted

category ,

552 run them through the d i s t o r t i o n graph , and then the f u l l graph to get the

553 bot t l eneck r e s u l t s f o r each .

554

555 Args :

556 s e s s : Current TensorFlow Ses s i on .

557 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

558 how many : The i n t e g e r number o f bo t t l eneck va lue s to re turn .

559 category : Name s t r i n g o f which s e t o f images to f e t c h − t r a in ing ,

t e s t i ng ,

560 or v a l i d a t i o n .

561 image d i r : Root f o l d e r s t r i n g o f the s u b f o l d e r s conta in ing the t r a i n i n g

562 images .

563 i n p u t j p e g t e n s o r : The input l a y e r we f eed the image data to .

564 d i s t o r t ed image : The output node o f the d i s t o r t i o n graph .

565 r e s i z e d i n p u t t e n s o r : The input node o f the r e c o g n i t i o n graph .

566 b o t t l e n e c k t e n s o r : The bot t l eneck output l a y e r o f the CNN graph .

567

568 Returns :

569 L i s t o f bo t t l eneck ar rays and t h e i r cor re spond ing ground t ruths .

570 ”””

571 c l a s s c o u n t = len ( i m a g e l i s t s . keys ( ) )

572 b o t t l e n e c k s = [ ]

573 ground truths = [ ]

574 f o r unused i in range (how many) :

575 l a b e l i n d e x = random . randrange ( c l a s s c o u n t )

576 labe l name = l i s t ( i m a g e l i s t s . keys ( ) ) [ l a b e l i n d e x ]

577 image index = random . randrange (MAX NUM IMAGES PER CLASS + 1)

578 image path = get image path ( i m a g e l i s t s , label name , image index ,

image dir ,

579 category )

580 i f not t f . g f i l e . Ex i s t s ( image path ) :

581 t f . l o gg ing . f a t a l ( ’ F i l e does not e x i s t %s ’ , image path )

582 jpeg data = t f . g f i l e . FastGFile ( image path , ’ rb ’ ) . read ( )

583 # Note that we m a t e r i a l i z e the d i s t o r t ed image da ta as a numpy array

be f o r e

584 # sending running i n f e r e n c e on the image . This i n v o l v e s 2 memory c o p i e s
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and

585 # might be opt imized in other implementat ions .

586 d i s t o r t ed image da ta = s e s s . run ( d i s to r t ed image ,

587 { i n p u t j p e g t e n s o r : jpeg data })

588 b o t t l e n e c k v a l u e s = s e s s . run ( bo t t l e ne c k t e n s o r ,

589 { r e s i z e d i n p u t t e n s o r : d i s t o r t ed image da ta

})

590 b o t t l e n e c k v a l u e s = np . squeeze ( b o t t l e n e c k v a l u e s )

591 b o t t l e n e c k s . append ( b o t t l e n e c k v a l u e s )

592 ground truths . append ( l a b e l i n d e x )

593 re turn bot t l enecks , ground truths

594

595

596 de f s h o u l d d i s t o r t i m a g e s ( f l i p l e f t r i g h t , random crop , random scale ,

597 random brightness ) :

598 ”””Whether any d i s t o r t i o n s are enabled , from the input f l a g s .

599

600 Args :

601 f l i p l e f t r i g h t : Boolean whether to randomly mirror images h o r i z o n t a l l y .

602 random crop : I n t e g e r percentage s e t t i n g the t o t a l margin used around the

603 crop box .

604 random scale : I n t e g e r percentage o f how much to vary the s c a l e by .

605 random brightness : I n t e g e r range to randomly mult ip ly the p i x e l va lue s

by .

606

607 Returns :

608 Boolean value i n d i c a t i n g whether any d i s t o r t i o n s should be app l i ed .

609 ”””

610 re turn ( f l i p l e f t r i g h t or ( random crop != 0) or ( random scale != 0) or

611 ( random brightness != 0) )

612

613

614 de f a d d i n p u t d i s t o r t i o n s ( f l i p l e f t r i g h t , random crop , random scale ,

615 random brightness , module spec ) :

616 ””” Creates the ope ra t i on s to apply the s p e c i f i e d d i s t o r t i o n s .

617

618 During t r a i n i n g i t can help to improve the r e s u l t s i f we run the images

619 through s imple d i s t o r t i o n s l i k e crops , s c a l e s , and f l i p s . These r e f l e c t

the

620 kind o f v a r i a t i o n s we expect in the r e a l world , and so can help t r a i n the
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621 model to cope with natura l data more e f f e c t i v e l y . Here we take the

supp l i ed

622 parameters and cons t ruc t a network o f ope ra t i on s to apply them to an image

.

623

624 Cropping

625 ˜˜˜˜˜˜˜˜

626

627 Cropping i s done by p la c ing a bounding box at a random p o s i t i o n in the

f u l l

628 image . The cropping parameter c o n t r o l s the s i z e o f that box r e l a t i v e to

the

629 input image . I f i t ’ s zero , then the box i s the same s i z e as the input and

no

630 cropping i s performed . I f the va lue i s 50%, then the crop box w i l l be h a l f

the

631 width and he ight o f the input . In a diagram i t l ooks l i k e t h i s :

632

633 < width >

634 +−−−−−−−−−−−−−−−−−−−−−+

635 | |
636 | width − crop% |
637 | < > |
638 | +−−−−−−+ |
639 | | | |
640 | | | |
641 | | | |
642 | +−−−−−−+ |
643 | |
644 | |
645 +−−−−−−−−−−−−−−−−−−−−−+

646

647 Sca l i ng

648 ˜˜˜˜˜˜˜

649

650 Sca l i ng i s a l o t l i k e cropping , except that the bounding box i s always

651 centered and i t s s i z e v a r i e s randomly with in the g iven range . For example

i f

652 the s c a l e percentage i s zero , then the bounding box i s the same s i z e as

the
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653 input and no s c a l i n g i s app l i ed . I f i t ’ s 50%, then the bounding box w i l l

be in

654 a random range between h a l f the width and he ight and f u l l s i z e .

655

656 Args :

657 f l i p l e f t r i g h t : Boolean whether to randomly mirror images h o r i z o n t a l l y .

658 random crop : I n t e g e r percentage s e t t i n g the t o t a l margin used around the

659 crop box .

660 random scale : I n t e g e r percentage o f how much to vary the s c a l e by .

661 random brightness : I n t e g e r range to randomly mult ip ly the p i x e l va lue s

by .

662 graph .

663 module spec : The hub . ModuleSpec f o r the image module being used .

664

665 Returns :

666 The jpeg input l a y e r and the d i s t o r t e d r e s u l t t enso r .

667 ”””

668 i nput he ight , input width = hub . g e t e x p e c t e d i m a g e s i z e ( module spec )

669 input depth = hub . get num image channels ( module spec )

670 jpeg data = t f . p l a c eho lde r ( t f . s t r i ng , name=’ DistortJPGInput ’ )

671 decoded image = t f . image . decode jpeg ( jpeg data , channe l s=input depth )

672 # Convert from f u l l range o f u int8 to range [ 0 , 1 ] o f f l o a t 3 2 .

673 d e c o d e d i m a g e a s f l o a t = t f . image . convert image dtype ( decoded image ,

674 t f . f l o a t 3 2 )

675 decoded image 4d = t f . expand dims ( decoded image as f l oa t , 0)

676 marg in s ca l e = 1 .0 + ( random crop / 100 .0 )

677 r e s i z e s c a l e = 1 .0 + ( random scale / 100 . 0 )

678 m a r g i n s c a l e v a l u e = t f . constant ( marg in s ca l e )

679 r e s i z e s c a l e v a l u e = t f . random uniform ( shape =[ ] ,

680 minval =1.0 ,

681 maxval=r e s i z e s c a l e )

682 s c a l e v a l u e = t f . mul t ip ly ( marg in s ca l e va lue , r e s i z e s c a l e v a l u e )

683 precrop width = t f . mul t ip ly ( s c a l e v a l u e , input width )

684 pre c rop he i gh t = t f . mul t ip ly ( s c a l e v a l u e , i nput he i gh t )

685 precrop shape = t f . s tack ( [ prec rop he ight , precrop width ] )

686 p r e c r o p s h a p e a s i n t = t f . c a s t ( precrop shape , dtype=t f . i n t32 )

687 precropped image = t f . image . r e s i z e b i l i n e a r ( decoded image 4d ,

688 p r e c r o p s h a p e a s i n t )

689 precropped image 3d = t f . squeeze ( precropped image , a x i s = [0 ] )

690 cropped image = t f . random crop ( precropped image 3d ,
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691 [ i nput he ight , input width , input depth ] )

692 i f f l i p l e f t r i g h t :

693 f l i pped image = t f . image . r a n d o m f l i p l e f t r i g h t ( cropped image )

694 e l s e :

695 f l i pped image = cropped image

696 br ightnes s min = 1 .0 − ( random brightness / 100 . 0 )

697 br ightness max = 1 .0 + ( random brightness / 100 . 0 )

698 b r i g h t n e s s v a l u e = t f . random uniform ( shape =[ ] ,

699 minval=br ightness min ,

700 maxval=br ightness max )

701 br ightened image = t f . mul t ip ly ( f l ipped image , b r i g h t n e s s v a l u e )

702 d i s t o r t r e s u l t = t f . expand dims ( br ightened image , 0 , name=’ D i s t o r tRe su l t ’ )

703 re turn jpeg data , d i s t o r t r e s u l t

704

705

706 de f var iab le summar ie s ( var ) :

707 ””” Attach a l o t o f summaries to a Tensor ( f o r TensorBoard v i s u a l i z a t i o n ) .

”””

708 with t f . name scope ( ’ summaries ’ ) :

709 mean = t f . reduce mean ( var )

710 t f . summary . s c a l a r ( ’mean ’ , mean)

711 with t f . name scope ( ’ stddev ’ ) :

712 stddev = t f . s q r t ( t f . reduce mean ( t f . square ( var − mean) ) )

713 t f . summary . s c a l a r ( ’ stddev ’ , stddev )

714 t f . summary . s c a l a r ( ’max ’ , t f . reduce max ( var ) )

715 t f . summary . s c a l a r ( ’ min ’ , t f . reduce min ( var ) )

716 t f . summary . histogram ( ’ histogram ’ , var )

717

718

719 de f a d d f i n a l r e t r a i n o p s ( c l a s s count , f i na l t en so r name , b o t t l e n e c k t e n s o r ,

720 quant i z e l aye r , i s t r a i n i n g ) :

721 ”””Adds a new softmax and f u l l y−connected l a y e r f o r t r a i n i n g and eva l .

722

723 We need to r e t r a i n the top l a y e r to i d e n t i f y our new c l a s s e s , so t h i s

func t i on

724 adds the r i g h t ope ra t i on s to the graph , a long with some v a r i a b l e s to hold

the

725 weights , and then s e t s up a l l the g r a d i e n t s f o r the backward pass .

726

727 The s e t up f o r the softmax and f u l l y−connected l a y e r s i s based on :
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728 https : //www. t e n so r f l ow . org / t u t o r i a l s / mnist / beg inner s / index . html

729

730 Args :

731 c l a s s c o u n t : I n t e g e r o f how many c a t e g o r i e s o f th ing s we ’ re t ry ing to

732 r e c o g n i z e .

733 f i n a l t e n s o r n a m e : Name s t r i n g f o r the new f i n a l node that produces

r e s u l t s .

734 b o t t l e n e c k t e n s o r : The output o f the main CNN graph .

735 q u a n t i z e l a y e r : Boolean , s p e c i f y i n g whether the newly added l a y e r should

be

736 instrumented f o r quant i za t i on with TF−Li t e .

737 i s t r a i n i n g : Boolean , s p e c i f y i n g whether the newly add l a y e r i s f o r

t r a i n i n g

738 or eva l .

739

740 Returns :

741 The t e n s o r s f o r the t r a i n i n g and c r o s s entropy r e s u l t s , and t e n s o r s f o r

the

742 bot t l eneck input and ground truth input .

743 ”””

744 bat ch s i z e , b o t t l e n e c k t e n s o r s i z e = b o t t l e n e c k t e n s o r . ge t shape ( ) . a s l i s t

( )

745 a s s e r t b a t c h s i z e i s None , ’We want to work with a r b i t r a r y batch s i z e . ’

746 with t f . name scope ( ’ input ’ ) :

747 b o t t l e n e c k i n p u t = t f . p l a c e h o l d e r w i t h d e f a u l t (

748 b o t t l e n e c k t e n s o r ,

749 shape =[ ba t ch s i z e , b o t t l e n e c k t e n s o r s i z e ] ,

750 name=’ Bott l eneckInputPlaceho lder ’ )

751

752 ground truth input = t f . p l a c eho ld e r (

753 t f . int64 , [ b a t c h s i z e ] , name=’ GroundTruthInput ’ )

754

755 # Organiz ing the f o l l o w i n g ops so they are e a s i e r to see in TensorBoard .

756 layer name = ’ f i n a l r e t r a i n o p s ’

757 with t f . name scope ( layer name ) :

758 with t f . name scope ( ’ weights ’ ) :

759 i n i t i a l v a l u e = t f . t runcated normal (

760 [ b o t t l e n e c k t e n s o r s i z e , c l a s s c o u n t ] , stddev =0.001)

761 l a y e r w e i g h t s = t f . Var iab le ( i n i t i a l v a l u e , name=’ f i n a l w e i g h t s ’ )

762 var iab le summar ie s ( l a y e r w e i g h t s )
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763

764 with t f . name scope ( ’ b i a s e s ’ ) :

765 l a y e r b i a s e s = t f . Var iab le ( t f . z e r o s ( [ c l a s s c o u n t ] ) , name=’ f i n a l b i a s e s

’ )

766 var iab le summar ie s ( l a y e r b i a s e s )

767

768 with t f . name scope ( ’ Wx plus b ’ ) :

769 l o g i t s = t f . matmul ( bo t t l eneck input , l a y e r w e i g h t s ) + l a y e r b i a s e s

770 t f . summary . histogram ( ’ p r e a c t i v a t i o n s ’ , l o g i t s )

771

772 f i n a l t e n s o r = t f . nn . softmax ( l o g i t s , name=f i n a l t e n s o r n a m e )

773

774 # The t f . c on t r ib . quant i ze f u n c t i o n s r e w r i t e the graph in p lace f o r

775 # quant i za t i on . The imported model graph has a l r eady been rewr i t t en , so

upon

776 # c a l l i n g these r ewr i t e s , only the newly added f i n a l l a y e r w i l l be

777 # transformed .

778 i f q u a n t i z e l a y e r :

779 i f i s t r a i n i n g :

780 t f . c on t r i b . quant i ze . c r e a t e t r a i n i n g g r a p h ( )

781 e l s e :

782 t f . c on t r i b . quant i ze . c r e a t e e v a l g r a p h ( )

783

784 t f . summary . histogram ( ’ a c t i v a t i o n s ’ , f i n a l t e n s o r )

785

786 # I f t h i s i s an eva l graph , we don ’ t need to add l o s s ops or an opt imize r .

787 i f not i s t r a i n i n g :

788 re turn None , None , bo t t l eneck input , ground truth input , f i n a l t e n s o r

789

790 with t f . name scope ( ’ c r o s s e n t r o p y ’ ) :

791 cross entropy mean = t f . l o s s e s . s p a r s e s o f t m a x c r o s s e n t r o p y (

792 l a b e l s=ground truth input , l o g i t s=l o g i t s )

793

794 t f . summary . s c a l a r ( ’ c r o s s e n t r o p y ’ , c ross entropy mean )

795

796 with t f . name scope ( ’ t r a i n ’ ) :

797 opt imize r = t f . t r a i n . GradientDescentOptimizer (FLAGS. l e a r n i n g r a t e )

798 t r a i n s t e p = opt imize r . minimize ( cross entropy mean )

799

800 re turn ( t r a i n s t e p , cross entropy mean , bot t l eneck input ,

139



ground truth input ,

801 f i n a l t e n s o r )

802

803

804 de f add eva lua t i on s t ep ( r e s u l t t e n s o r , g round t ru th tenso r ) :

805 ””” I n s e r t s the ope ra t i on s we need to eva luate the accuracy o f our r e s u l t s .

806

807 Args :

808 r e s u l t t e n s o r : The new f i n a l node that produces r e s u l t s .

809 ground t ru th tenso r : The node we f eed ground truth data

810 i n t o .

811

812 Returns :

813 Tuple o f ( eva lua t i on step , p r e d i c t i o n ) .

814 ”””

815 with t f . name scope ( ’ accuracy ’ ) :

816 with t f . name scope ( ’ c o r r e c t p r e d i c t i o n ’ ) :

817 p r e d i c t i o n = t f . argmax ( r e s u l t t e n s o r , 1)

818 c o r r e c t p r e d i c t i o n = t f . equal ( p r ed i c t i on , g round t ru th tenso r )

819 with t f . name scope ( ’ accuracy ’ ) :

820 e v a l u a t i o n s t e p = t f . reduce mean ( t f . c a s t ( c o r r e c t p r e d i c t i o n , t f .

f l o a t 3 2 ) )

821 t f . summary . s c a l a r ( ’ accuracy ’ , e v a l u a t i o n s t e p )

822 re turn eva lua t i on s t ep , p r e d i c t i o n

823

824

825 de f r u n f i n a l e v a l ( t r a i n s e s s i o n , module spec , c l a s s count , i m a g e l i s t s ,

826 j p eg da ta t en so r , decoded image tensor ,

827 r e s i z e d i m a g e t e n s o r , b o t t l e n e c k t e n s o r ) :

828 ”””Runs a f i n a l eva lua t i on on an eva l graph us ing the t e s t data s e t .

829

830 Args :

831 t r a i n s e s s i o n : Se s s i on f o r the t r a i n graph with the t e n s o r s below .

832 module spec : The hub . ModuleSpec f o r the image module being used .

833 c l a s s c o u n t : Number o f c l a s s e s

834 i m a g e l i s t s : OrderedDict o f t r a i n i n g images f o r each l a b e l .

835 j p e g d a t a t e n s o r : The l a y e r to f e ed jpeg image data in to .

836 decoded image tensor : The output o f decoding and r e s i z i n g the image .

837 r e s i z e d i m a g e t e n s o r : The input node o f the r e c o g n i t i o n graph .

838 b o t t l e n e c k t e n s o r : The bot t l eneck output l a y e r o f the CNN graph .
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839 ”””

840 t e s t b o t t l e n e c k s , t e s t g round t ru th , t e s t f i l e n a m e s = (

841 get random cached bott l enecks ( t r a i n s e s s i o n , i m a g e l i s t s ,

842 FLAGS. t e s t b a t c h s i z e ,

843 ’ t e s t i n g ’ , FLAGS. b o t t l e n e c k d i r ,

844 FLAGS. image dir , j p eg da ta t en so r ,

845 decoded image tensor ,

r e s i z e d i m a g e t e n s o r ,

846 b o t t l e n e c k t e n s o r , FLAGS. tfhub module ) )

847

848 ( e v a l s e s s i o n , , bo t t l eneck input , ground truth input , eva lua t i on s t ep ,

849 p r e d i c t i o n ) = b u i l d e v a l s e s s i o n ( module spec , c l a s s c o u n t )

850 t e s t a c cu racy , p r e d i c t i o n s = e v a l s e s s i o n . run (

851 [ e va lua t i on s t ep , p r e d i c t i o n ] ,

852 f e e d d i c t={
853 b o t t l e n e c k i n p u t : t e s t b o t t l e n e c k s ,

854 ground truth input : t e s t g r o u n d t r u t h

855 })

856 t f . l o gg ing . i n f o ( ’ F ina l t e s t accuracy = %.1 f%% (N=%d) ’ %

857 ( t e s t a c c u r a c y ∗ 100 , l en ( t e s t b o t t l e n e c k s ) ) )

858

859 i f FLAGS. p r i n t m i s c l a s s i f i e d t e s t i m a g e s :

860 t f . l o gg ing . i n f o ( ’=== MISCLASSIFIED TEST IMAGES ===’ )

861 f o r i , t e s t f i l e n a m e in enumerate ( t e s t f i l e n a m e s ) :

862 i f p r e d i c t i o n s [ i ] != t e s t g r o u n d t r u t h [ i ] :

863 t f . l o gg ing . i n f o ( ’%70s %s ’ % ( t e s t f i l e n a m e ,

864 l i s t ( i m a g e l i s t s . keys ( ) ) [ p r e d i c t i o n s [ i

] ] ) )

865

866

867 de f b u i l d e v a l s e s s i o n ( module spec , c l a s s c o u n t ) :

868 ””” Bui lds an r e s t o r e d eva l s e s s i o n without t r a i n ope ra t i on s f o r expor t ing .

869

870 Args :

871 module spec : The hub . ModuleSpec f o r the image module being used .

872 c l a s s c o u n t : Number o f c l a s s e s

873

874 Returns :

875 Eval s e s s i o n conta in ing the r e s t o r e d eva l graph .

876 The bot t l eneck input , ground truth , eva l step , and p r e d i c t i o n t e n s o r s .
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877 ”””

878 # I f quantized , we need to c r e a t e the c o r r e c t eva l graph f o r export ing .

879 eva l graph , bo t t l en e c k t e n s o r , r e s i z e d i n p u t t e n s o r , wants quant i zat ion =

(

880 create module graph ( module spec ) )

881

882 e v a l s e s s = t f . S e s s i on ( graph=eva l graph )

883 with eva l g raph . a s d e f a u l t ( ) :

884 # Add the new l a y e r f o r expor t ing .

885 ( , , bo t t l eneck input ,

886 ground truth input , f i n a l t e n s o r ) = a d d f i n a l r e t r a i n o p s (

887 c l a s s count , FLAGS. f i na l t en so r name , b o t t l e n e c k t e n s o r ,

888 wants quant izat ion , i s t r a i n i n g=False )

889

890 # Now we need to r e s t o r e the va lue s from the t r a i n i n g graph to the eva l

891 # graph .

892 t f . t r a i n . Saver ( ) . r e s t o r e ( e v a l s e s s , CHECKPOINT NAME)

893

894 eva lua t i on s t ep , p r e d i c t i o n = add eva lua t i on s t ep ( f i n a l t e n s o r ,

895 ground truth input )

896

897 re turn ( e v a l s e s s , r e s i z e d i n p u t t e n s o r , bo t t l eneck input ,

ground truth input ,

898 eva lua t i on s t ep , p r e d i c t i o n )

899

900

901 de f s a v e g r a p h t o f i l e ( g raph f i l e name , module spec , c l a s s c o u n t ) :

902 ””” Saves an graph to f i l e , c r e a t i n g a v a l i d quant ized one i f nece s sa ry . ”””

903 s e s s , , , , , = b u i l d e v a l s e s s i o n ( module spec , c l a s s c o u n t )

904 graph = s e s s . graph

905

906 output graph de f = t f . g r a p h u t i l . c o n v e r t v a r i a b l e s t o c o n s t a n t s (

907 s e s s , graph . a s g raph de f ( ) , [FLAGS. f i n a l t e n s o r n a m e ] )

908

909 with t f . g f i l e . FastGFile ( graph f i l e name , ’wb ’ ) as f :

910 f . wr i t e ( output graph de f . S e r i a l i z e T o S t r i n g ( ) )

911

912

913 de f p r e p a r e f i l e s y s t e m ( ) :

914 # Set up the d i r e c t o r y we ’ l l wr i t e summaries to f o r TensorBoard
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915 i f t f . g f i l e . Ex i s t s (FLAGS. summaries d ir ) :

916 t f . g f i l e . De l e t eRecur s i v e l y (FLAGS. summaries d ir )

917 t f . g f i l e . MakeDirs (FLAGS. summaries d ir )

918 i f FLAGS. i n t e r m e d i a t e s t o r e f r e q u e n c y > 0 :

919 e n s u r e d i r e x i s t s (FLAGS. i n t e r m e d i a t e o u t p u t g r a p h s d i r )

920 re turn

921

922

923 de f add jpeg decod ing ( module spec ) :

924 ”””Adds ope ra t i on s that perform JPEG decoding and r e s i z i n g to the graph . .

925

926 Args :

927 module spec : The hub . ModuleSpec f o r the image module being used .

928

929 Returns :

930 Tensors f o r the node to f e ed JPEG data into , and the output o f the

931 p r e p r o c e s s i n g s t ep s .

932 ”””

933 i nput he ight , input width = hub . g e t e x p e c t e d i m a g e s i z e ( module spec )

934 input depth = hub . get num image channels ( module spec )

935 jpeg data = t f . p l a c eho lde r ( t f . s t r i ng , name=’ DecodeJPGInput ’ )

936 decoded image = t f . image . decode jpeg ( jpeg data , channe l s=input depth )

937 # Convert from f u l l range o f u int8 to range [ 0 , 1 ] o f f l o a t 3 2 .

938 d e c o d e d i m a g e a s f l o a t = t f . image . convert image dtype ( decoded image ,

939 t f . f l o a t 3 2 )

940 decoded image 4d = t f . expand dims ( decoded image as f l oa t , 0)

941 r e s i z e s h a p e = t f . s tack ( [ input he ight , input width ] )

942 r e s i z e s h a p e a s i n t = t f . c a s t ( r e s i z e s h a p e , dtype=t f . in t32 )

943 r e s i z ed image = t f . image . r e s i z e b i l i n e a r ( decoded image 4d ,

944 r e s i z e s h a p e a s i n t )

945 re turn jpeg data , r e s i z ed image

946

947

948 de f export model ( module spec , c l a s s count , saved mode l d i r ) :

949 ””” Exports model f o r s e r v i n g .

950

951 Args :

952 module spec : The hub . ModuleSpec f o r the image module being used .

953 c l a s s c o u n t : The number o f c l a s s e s .

954 saved mode l d i r : D i r ec tory in which to save exported model and v a r i a b l e s
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.

955 ”””

956 # The SavedModel should hold the eva l graph .

957 s e s s , in image , , , , = b u i l d e v a l s e s s i o n ( module spec , c l a s s c o u n t )

958 with s e s s . graph . a s d e f a u l t ( ) as graph :

959 t f . saved model . s imp l e save (

960 s e s s ,

961 saved mode l d i r ,

962 inputs={ ’ image ’ : in image } ,

963 outputs={ ’ p r e d i c t i o n ’ : graph . get tensor by name ( ’ f i n a l r e s u l t : 0 ’ ) } ,

964 l e g a c y i n i t o p=t f . group ( t f . t a b l e s i n i t i a l i z e r ( ) , name=’

l e g a c y i n i t o p ’ )

965 )

966

967

968 de f main ( ) :

969 # Needed to make sure the l ogg ing output i s v i s i b l e .

970 # See https : // github . com/ ten so r f l ow / t en so r f l ow / i s s u e s /3047

971 t f . l o gg ing . s e t v e r b o s i t y ( t f . l o gg ing . INFO)

972

973 i f not FLAGS. image d i r :

974 t f . l o gg ing . e r r o r ( ’Must s e t f l a g −−image d i r . ’ )

975 re turn −1

976

977 # Prepare nece s sa ry d i r e c t o r i e s that can be used during t r a i n i n g

978 p r e p a r e f i l e s y s t e m ( )

979

980 # Look at the f o l d e r s t ruc ture , and c r e a t e l i s t s o f a l l the images .

981 i m a g e l i s t s = c r e a t e i m a g e l i s t s (FLAGS. image dir , FLAGS. t e s t i n g p e r c e n t a g e

,

982 FLAGS. v a l i d a t i o n p e r c e n t a g e )

983 c l a s s c o u n t = len ( i m a g e l i s t s . keys ( ) )

984 i f c l a s s c o u n t == 0 :

985 t f . l o gg ing . e r r o r ( ’No v a l i d f o l d e r s o f images found at ’ + FLAGS.

image d i r )

986 re turn −1

987 i f c l a s s c o u n t == 1 :

988 t f . l o gg ing . e r r o r ( ’ Only one v a l i d f o l d e r o f images found at ’ +

989 FLAGS. image d i r +

990 ’ − mul t ip l e c l a s s e s are needed f o r c l a s s i f i c a t i o n . ’ )
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991 re turn −1

992

993 # See i f the command−l i n e f l a g s mean we ’ re apply ing any d i s t o r t i o n s .

994 d o d i s t o r t i m a g e s = s h o u l d d i s t o r t i m a g e s (

995 FLAGS. f l i p l e f t r i g h t , FLAGS. random crop , FLAGS. random scale ,

996 FLAGS. random brightness )

997

998 # Set up the pre−t r a in ed graph .

999 module spec = hub . load module spec (FLAGS. tfhub module )

1000 graph , b o t t l e n e ck t e n s o r , r e s i z e d i m a g e t e n s o r , wants quant i zat ion = (

1001 create module graph ( module spec ) )

1002

1003 # Add the new l a y e r that we ’ l l be t r a i n i n g .

1004 with graph . a s d e f a u l t ( ) :

1005 ( t r a i n s t e p , c ro s s ent ropy , bo t t l eneck input ,

1006 ground truth input , f i n a l t e n s o r ) = a d d f i n a l r e t r a i n o p s (

1007 c l a s s count , FLAGS. f i na l t en so r name , b o t t l e n e c k t e n s o r ,

1008 wants quant izat ion , i s t r a i n i n g=True )

1009

1010 with t f . S e s s i on ( graph=graph ) as s e s s :

1011 # I n i t i a l i z e a l l weights : f o r the module to t h e i r p r e t ra in ed values ,

1012 # and f o r the newly added r e t r a i n i n g l a y e r to random i n i t i a l va lue s .

1013 i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( )

1014 s e s s . run ( i n i t )

1015

1016 # Set up the image decoding sub−graph .

1017 j p eg da ta t en so r , decoded image tensor = add jpeg decod ing ( module spec )

1018

1019 i f d o d i s t o r t i m a g e s :

1020 # We w i l l be apply ing d i s t o r t i o n s , so s e t up the ope ra t i on s we ’ l l need

.

1021 ( d i s t o r t e d j p e g d a t a t e n s o r ,

1022 d i s t o r t e d i m a g e t e n s o r ) = a d d i n p u t d i s t o r t i o n s (

1023 FLAGS. f l i p l e f t r i g h t , FLAGS. random crop , FLAGS. random scale ,

1024 FLAGS. random brightness , module spec )

1025 e l s e :

1026 # We’ l l make sure we ’ ve c a l c u l a t e d the ’ bo t t l eneck ’ image summaries

and

1027 # cached them on d i sk .

1028 c a c h e b o t t l e n e c k s ( s e s s , i m a g e l i s t s , FLAGS. image dir ,
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1029 FLAGS. b o t t l e n e c k d i r , j p eg da ta t en so r ,

1030 decoded image tensor , r e s i z e d i m a g e t e n s o r ,

1031 b o t t l e n e c k t e n s o r , FLAGS. tfhub module )

1032

1033 # Create the ope ra t i on s we need to eva luate the accuracy o f our new

l a y e r .

1034 eva lua t i on s t ep , = add eva lua t i on s t ep ( f i n a l t e n s o r ,

g round truth input )

1035

1036 # Merge a l l the summaries and wr i t e them out to the summaries d ir

1037 merged = t f . summary . merge a l l ( )

1038 t r a i n w r i t e r = t f . summary . F i l eWr i t e r (FLAGS. summaries d ir + ’ / t r a i n ’ ,

1039 s e s s . graph )

1040

1041 v a l i d a t i o n w r i t e r = t f . summary . F i l eWr i t e r (

1042 FLAGS. summaries dir + ’ / v a l i d a t i o n ’ )

1043

1044 # Create a t r a i n saver that i s used to r e s t o r e va lue s in to an eva l graph

1045 # when export ing models .

1046 t r a i n s a v e r = t f . t r a i n . Saver ( )

1047

1048 # Run the t r a i n i n g f o r as many c y c l e s as reques ted on the command l i n e .

1049 f o r i in range (FLAGS. how many tra in ing steps ) :

1050 # Get a batch o f input bot t l eneck values , e i t h e r c a l c u l a t e d f r e s h

every

1051 # time with d i s t o r t i o n s appl ied , or from the cache s to r ed on d i sk .

1052 i f d o d i s t o r t i m a g e s :

1053 ( t r a i n b o t t l e n e c k s ,

1054 t r a i n g r ound t r u th ) = g e t r a n d o m d i s t o r t e d b o t t l e n e c k s (

1055 s e s s , i m a g e l i s t s , FLAGS. t r a i n b a t c h s i z e , ’ t r a i n i n g ’ ,

1056 FLAGS. image dir , d i s t o r t e d j p e g d a t a t e n s o r ,

1057 d i s t o r t e d i m a g e t e n s o r , r e s i z e d i m a g e t e n s o r , b o t t l e n e c k t e n s o r

)

1058 e l s e :

1059 ( t r a i n b o t t l e n e c k s ,

1060 t ra in g round t ruth , ) = get random cached bott l enecks (

1061 s e s s , i m a g e l i s t s , FLAGS. t r a i n b a t c h s i z e , ’ t r a i n i n g ’ ,

1062 FLAGS. b o t t l e n e c k d i r , FLAGS. image dir , j p eg da ta t en so r ,

1063 decoded image tensor , r e s i z e d i m a g e t e n s o r , b o t t l e n e c k t e n s o r ,

1064 FLAGS. tfhub module )
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1065 # Feed the b o t t l e n e c k s and ground truth in to the graph , and run a

t r a i n i n g

1066 # step . Capture t r a i n i n g summaries f o r TensorBoard with the ‘ merged ‘

op .

1067 train summary , = s e s s . run (

1068 [ merged , t r a i n s t e p ] ,

1069 f e e d d i c t={b o t t l e n e c k i n p u t : t r a i n b o t t l e n e c k s ,

1070 ground truth input : t r a i n g r ound t r u th })

1071 t r a i n w r i t e r . add summary ( train summary , i )

1072

1073 # Every so often , p r i n t out how we l l the graph i s t r a i n i n g .

1074 i s l a s t s t e p = ( i + 1 == FLAGS. how many tra in ing steps )

1075 i f ( i % FLAGS. e v a l s t e p i n t e r v a l ) == 0 or i s l a s t s t e p :

1076 t ra in accuracy , c r o s s e n t r o p y v a l u e = s e s s . run (

1077 [ e va lua t i on s t ep , c r o s s e n t r o p y ] ,

1078 f e e d d i c t={b o t t l e n e c k i n p u t : t r a i n b o t t l e n e c k s ,

1079 ground truth input : t r a i n g ro und t ru th })

1080 t f . l o gg ing . i n f o ( ’%s : Step %d : Train accuracy = %.1 f%%’ %

1081 ( datet ime . now ( ) , i , t r a i n a c c u r a c y ∗ 100) )

1082 t f . l o gg ing . i n f o ( ’%s : Step %d : Cross entropy = %f ’ %

1083 ( datet ime . now ( ) , i , c r o s s e n t r o p y v a l u e ) )

1084 # TODO: Make t h i s use an eva l graph , to avoid quant i za t i on

1085 # moving averages be ing updated by the v a l i d a t i o n set , though in

1086 # p r a c t i c e t h i s makes a n e g l i g a b l e d i f f e r e n c e .

1087 v a l i d a t i o n b o t t l e n e c k s , va l i da t i on g round t ru th , = (

1088 get random cached bott l enecks (

1089 s e s s , i m a g e l i s t s , FLAGS. v a l i d a t i o n b a t c h s i z e , ’ v a l i d a t i o n ’

,

1090 FLAGS. b o t t l e n e c k d i r , FLAGS. image dir , j p eg da ta t en so r ,

1091 decoded image tensor , r e s i z e d i m a g e t e n s o r ,

b o t t l e n e c k t e n s o r ,

1092 FLAGS. tfhub module ) )

1093 # Run a v a l i d a t i o n step and capture t r a i n i n g summaries f o r

TensorBoard

1094 # with the ‘ merged ‘ op .

1095 val idation summary , v a l i d a t i o n a c c u r a c y = s e s s . run (

1096 [ merged , e v a l u a t i o n s t e p ] ,

1097 f e e d d i c t={b o t t l e n e c k i n p u t : v a l i d a t i o n b o t t l e n e c k s ,

1098 ground truth input : v a l i d a t i o n g r o u n d t r u t h })

1099 v a l i d a t i o n w r i t e r . add summary ( val idation summary , i )
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1100 t f . l o gg ing . i n f o ( ’%s : Step %d : Va l idat i on accuracy = %.1 f%% (N=%d) ’ %

1101 ( datet ime . now ( ) , i , v a l i d a t i o n a c c u r a c y ∗ 100 ,

1102 l en ( v a l i d a t i o n b o t t l e n e c k s ) ) )

1103

1104 # Store in t e rmed ia te r e s u l t s

1105 i n t e rmed i a t e f r equency = FLAGS. i n t e r m e d i a t e s t o r e f r e q u e n c y

1106

1107 i f ( i n t e rmed ia t e f r equency > 0 and ( i % in t e rmed ia t e f r equency == 0)

1108 and i > 0) :

1109 # I f we want to do an inte rmed ia te save , save a checkpoint o f the

t r a i n

1110 # graph , to r e s t o r e in to the eva l graph .

1111 t r a i n s a v e r . save ( se s s , CHECKPOINT NAME)

1112 i n t e r m e d i a t e f i l e n a m e = (FLAGS. i n t e r m e d i a t e o u t p u t g r a p h s d i r +

1113 ’ i n t e r med i a t e ’ + s t r ( i ) + ’ . pb ’ )

1114 t f . l o gg ing . i n f o ( ’ Save in t e rmed ia t e r e s u l t to : ’ +

1115 i n t e r m e d i a t e f i l e n a m e )

1116 s a v e g r a p h t o f i l e ( i n t e r m e d i a t e f i l e n a m e , module spec ,

1117 c l a s s c o u n t )

1118

1119 # After t r a i n i n g i s complete , f o r c e one l a s t save o f the t r a i n

checkpo int .

1120 t r a i n s a v e r . save ( s e s s , CHECKPOINT NAME)

1121

1122 # We’ ve completed a l l our t ra in ing , so run a f i n a l t e s t eva lua t i on on

1123 # some new images we haven ’ t used be f o r e .

1124 r u n f i n a l e v a l ( s e s s , module spec , c l a s s count , i m a g e l i s t s ,

1125 j p eg da ta t en so r , decoded image tensor ,

r e s i z e d i m a g e t e n s o r ,

1126 b o t t l e n e c k t e n s o r )

1127

1128 # Write out the t ra in ed graph and l a b e l s with the weights s to r ed as

1129 # constant s .

1130 t f . l o gg ing . i n f o ( ’ Save f i n a l r e s u l t to : ’ + FLAGS. output graph )

1131 i f wants quant i zat ion :

1132 t f . l o gg ing . i n f o ( ’The model i s instrumented f o r quant i za t i on with TF−
Li t e ’ )

1133 s a v e g r a p h t o f i l e (FLAGS. output graph , module spec , c l a s s c o u n t )

1134 with t f . g f i l e . FastGFile (FLAGS. ou tput l abe l s , ’w ’ ) as f :

1135 f . wr i t e ( ’ \n ’ . j o i n ( i m a g e l i s t s . keys ( ) ) + ’ \n ’ )
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1136

1137 i f FLAGS. saved mode l d i r :

1138 export model ( module spec , c l a s s count , FLAGS. saved mode l d i r )

1139

1140

1141 i f name == ’ ma in ’ :

1142 par s e r = argparse . ArgumentParser ( )

1143 par s e r . add argument (

1144 ’−−image d i r ’ ,

1145 type=str ,

1146 d e f a u l t=’ ’ ,

1147 help=’ Path to f o l d e r s o f l a b e l e d images . ’

1148 )

1149 par s e r . add argument (

1150 ’−−output graph ’ ,

1151 type=str ,

1152 d e f a u l t=’ /tmp/ output graph . pb ’ ,

1153 help=’Where to save the t ra in ed graph . ’

1154 )

1155 par s e r . add argument (

1156 ’−−i n t e r m e d i a t e o u t p u t g r a p h s d i r ’ ,

1157 type=str ,

1158 d e f a u l t=’ /tmp/ inte rmed ia te graph / ’ ,

1159 help=’Where to save the in t e rmed ia te graphs . ’

1160 )

1161 par s e r . add argument (

1162 ’−−i n t e r m e d i a t e s t o r e f r e q u e n c y ’ ,

1163 type=int ,

1164 d e f a u l t =0,

1165 help=”””\
1166 How many s t ep s to s t o r e in t e rmed ia t e graph . I f ”0” then w i l l not

1167 s t o r e .\
1168 ”””

1169 )

1170 par s e r . add argument (

1171 ’−−o u t p u t l a b e l s ’ ,

1172 type=str ,

1173 d e f a u l t=’ /tmp/ o u t p u t l a b e l s . txt ’ ,

1174 help=’Where to save the t ra in ed graph \ ’ s l a b e l s . ’

1175 )
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1176 par s e r . add argument (

1177 ’−−summaries d ir ’ ,

1178 type=str ,

1179 d e f a u l t=’ /tmp/ r e t r a i n l o g s ’ ,

1180 help=’Where to save summary l o g s f o r TensorBoard . ’

1181 )

1182 par s e r . add argument (

1183 ’−−how many tra in ing steps ’ ,

1184 type=int ,

1185 d e f a u l t =4000 ,

1186 help=’How many t r a i n i n g s t ep s to run be f o r e ending . ’

1187 )

1188 par s e r . add argument (

1189 ’−− l e a r n i n g r a t e ’ ,

1190 type=f l o a t ,

1191 d e f a u l t =0.01 ,

1192 help=’How l a r g e a l e a r n i n g ra t e to use when t r a i n i n g . ’

1193 )

1194 par s e r . add argument (

1195 ’−−t e s t i n g p e r c e n t a g e ’ ,

1196 type=int ,

1197 d e f a u l t =10,

1198 help=’What percentage o f images to use as a t e s t s e t . ’

1199 )

1200 par s e r . add argument (

1201 ’−−v a l i d a t i o n p e r c e n t a g e ’ ,

1202 type=int ,

1203 d e f a u l t =10,

1204 help=’What percentage o f images to use as a v a l i d a t i o n s e t . ’

1205 )

1206 par s e r . add argument (

1207 ’−−e v a l s t e p i n t e r v a l ’ ,

1208 type=int ,

1209 d e f a u l t =10,

1210 help=’How o f t en to eva luate the t r a i n i n g r e s u l t s . ’

1211 )

1212 par s e r . add argument (

1213 ’−−t r a i n b a t c h s i z e ’ ,

1214 type=int ,

1215 d e f a u l t =100 ,
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1216 help=’How many images to t r a i n on at a time . ’

1217 )

1218 par s e r . add argument (

1219 ’−−t e s t b a t c h s i z e ’ ,

1220 type=int ,

1221 d e f a u l t =−1,

1222 help=”””\
1223 How many images to t e s t on . This t e s t s e t i s only used once , to

eva luate

1224 the f i n a l accuracy o f the model a f t e r t r a i n i n g completes .

1225 A value o f −1 causes the e n t i r e t e s t s e t to be used , which l e ad s to

more

1226 s t a b l e r e s u l t s a c r o s s runs .\
1227 ”””

1228 )

1229 par s e r . add argument (

1230 ’−−v a l i d a t i o n b a t c h s i z e ’ ,

1231 type=int ,

1232 d e f a u l t =100 ,

1233 help=”””\
1234 How many images to use in an eva lua t i on batch . This v a l i d a t i o n s e t i s

1235 used much more o f t en than the t e s t set , and i s an e a r l y i n d i c a t o r o f

how

1236 accurate the model i s during t r a i n i n g .

1237 A value o f −1 causes the e n t i r e v a l i d a t i o n s e t to be used , which l e ad s

to

1238 more s t a b l e r e s u l t s a c r o s s t r a i n i n g i t e r a t i o n s , but may be s lower on

l a r g e

1239 t r a i n i n g s e t s .\
1240 ”””

1241 )

1242 par s e r . add argument (

1243 ’−−p r i n t m i s c l a s s i f i e d t e s t i m a g e s ’ ,

1244 d e f a u l t=False ,

1245 help=”””\
1246 Whether to p r i n t out a l i s t o f a l l m i s c l a s s i f i e d t e s t images .\
1247 ””” ,

1248 ac t i on=’ s t o r e t r u e ’

1249 )

1250 par s e r . add argument (
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1251 ’−−b o t t l e n e c k d i r ’ ,

1252 type=str ,

1253 d e f a u l t=’ /tmp/ bot t l eneck ’ ,

1254 help=’ Path to cache bot t l eneck l a y e r va lue s as f i l e s . ’

1255 )

1256 par s e r . add argument (

1257 ’−−f i n a l t e n s o r n a m e ’ ,

1258 type=str ,

1259 d e f a u l t=’ f i n a l r e s u l t ’ ,

1260 help=”””\
1261 The name o f the output c l a s s i f i c a t i o n l a y e r in the r e t r a i n e d graph .\
1262 ”””

1263 )

1264 par s e r . add argument (

1265 ’−− f l i p l e f t r i g h t ’ ,

1266 d e f a u l t=False ,

1267 help=”””\
1268 Whether to randomly f l i p h a l f o f the t r a i n i n g images h o r i z o n t a l l y .\
1269 ””” ,

1270 ac t i on=’ s t o r e t r u e ’

1271 )

1272 par s e r . add argument (

1273 ’−−random crop ’ ,

1274 type=int ,

1275 d e f a u l t =0,

1276 help=”””\
1277 A percentage determining how much o f a margin to randomly crop o f f the

1278 t r a i n i n g images .\
1279 ”””

1280 )

1281 par s e r . add argument (

1282 ’−−random scale ’ ,

1283 type=int ,

1284 d e f a u l t =0,

1285 help=”””\
1286 A percentage determining how much to randomly s c a l e up the s i z e o f the

1287 t r a i n i n g images by .\
1288 ”””

1289 )

1290 par s e r . add argument (
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1291 ’−−random brightness ’ ,

1292 type=int ,

1293 d e f a u l t =0,

1294 help=”””\
1295 A percentage determining how much to randomly mult ip ly the t r a i n i n g

image

1296 input p i x e l s up or down by .\
1297 ”””

1298 )

1299 par s e r . add argument (

1300 ’−−tfhub module ’ ,

1301 type=str ,

1302 d e f a u l t =(

1303 ’ ht tps : // tfhub . dev/ goog l e / imagenet / i n c e p t i o n v 3 / f e a t u r e v e c t o r /1 ’ )

,

1304 help=”””\
1305 Which TensorFlow Hub module to use .

1306 See https : // github . com/ ten so r f l ow /hub/ blob / master / docs /modules/ image .

md

1307 f o r some p u b l i c l y a v a i l a b l e ones .\
1308 ””” )

1309 par s e r . add argument (

1310 ’−−saved mode l d i r ’ ,

1311 type=str ,

1312 d e f a u l t=’ ’ ,

1313 help=’Where to save the exported graph . ’ )

1314 FLAGS, unparsed = par s e r . parse known args ( )

1315 t f . app . run ( main=main , argv =[ sys . argv [ 0 ] ] + unparsed )
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C. label image.py

1 # Copyright 2017 The TensorFlow Authors . Al l Rights Reserved .

2 #

3 # Licensed under the Apache License , Vers ion 2 .0 ( the ” L icense ”) ;

4 # you may not use t h i s f i l e except in compliance with the L icense .

5 # You may obta in a copy o f the L icense at

6 #

7 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0

8 #

9 # Unless r equ i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware

10 # d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS ” BASIS ,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl i ed .

12 # See the L icense f o r the s p e c i f i c language governing pe rmi s s i ons and

13 # l i m i t a t i o n s under the L icense .

14 #

==============================================================================

15

16 from f u t u r e import abso lu te impor t

17 from f u t u r e import d i v i s i o n

18 from f u t u r e import p r i n t f u n c t i o n

19

20 import argparse

21

22 import numpy as np

23 import t en so r f l ow as t f

24

25

26 de f load graph ( m o d e l f i l e ) :

27 graph = t f . Graph ( )

28 graph de f = t f . GraphDef ( )

29
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30 with open ( m o d e l f i l e , ” rb” ) as f :

31 graph de f . ParseFromString ( f . read ( ) )

32 with graph . a s d e f a u l t ( ) :

33 t f . import graph de f ( graph de f )

34

35 re turn graph

36

37

38 de f r e a d t e n s o r f r o m i m a g e f i l e ( f i l e name ,

39 i npu t he i gh t =299 ,

40 input width =299 ,

41 input mean=0,

42 i npu t s td =255) :

43 input name = ” f i l e r e a d e r ”

44 output name = ” normal ized ”

45 f i l e r e a d e r = t f . r e a d f i l e ( f i l e name , input name )

46 i f f i l e n a m e . endswith ( ” . png” ) :

47 image reader = t f . image . decode png (

48 f i l e r e a d e r , channe l s =3, name=” png reader ” )

49 e l i f f i l e n a m e . endswith ( ” . g i f ” ) :

50 image reader = t f . squeeze (

51 t f . image . d e c o d e g i f ( f i l e r e a d e r , name=” g i f r e a d e r ” ) )

52 e l i f f i l e n a m e . endswith ( ” .bmp” ) :

53 image reader = t f . image . decode bmp ( f i l e r e a d e r , name=”bmp reader” )

54 e l s e :

55 image reader = t f . image . decode jpeg (

56 f i l e r e a d e r , channe l s =3, name=” j p e g r e a d e r ” )

57 f l o a t c a s t e r = t f . c a s t ( image reader , t f . f l o a t 3 2 )

58 dims expander = t f . expand dims ( f l o a t c a s t e r , 0)

59 r e s i z e d = t f . image . r e s i z e b i l i n e a r ( dims expander , [ input he ight ,

input width ] )

60 normal ized = t f . d i v id e ( t f . subt rac t ( r e s i z ed , [ input mean ] ) , [ i npu t s td ] )

61 s e s s = t f . S e s s i on ( )

62 r e s u l t = s e s s . run ( normal ized )

63

64 re turn r e s u l t

65

66

67 de f l o a d l a b e l s ( l a b e l f i l e ) :

68 l a b e l = [ ]
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69 p r o t o a s a s c i i l i n e s = t f . g f i l e . GFile ( l a b e l f i l e ) . r e a d l i n e s ( )

70 f o r l in p r o t o a s a s c i i l i n e s :

71 l a b e l . append ( l . r s t r i p ( ) )

72 re turn l a b e l

73

74

75 i f name == ” main ” :

76 f i l e n a m e = ” ten so r f l ow / examples / l abe l image / data / grace hopper . jpg ”

77 m o d e l f i l e = \
78 ” t en so r f l ow / examples / l abe l image / data / i n c e p t i o n v 3 2 0 1 6 0 8 2 8 f r o z e n . pb”

79 l a b e l f i l e = ” t en s o r f l ow / examples / l abe l image / data / i m a g e n e t s l i m l a b e l s .

txt ”

80 i npu t he i gh t = 299

81 input width = 299

82 input mean = 0

83 i npu t s td = 255

84 i n p u t l a y e r = ” input ”

85 output l aye r = ” InceptionV3 / P r e d i c t i o n s / Reshape 1 ”

86

87 par s e r = argparse . ArgumentParser ( )

88 par s e r . add argument ( ”−−image” , he lp=”image to be proces sed ” )

89 par s e r . add argument ( ”−−graph” , he lp=”graph/model to be executed ” )

90 par s e r . add argument ( ”−− l a b e l s ” , he lp=”name o f f i l e conta in ing l a b e l s ” )

91 par s e r . add argument ( ”−−i npu t he i gh t ” , type=int , he lp=” input he ight ” )

92 par s e r . add argument ( ”−−input width ” , type=int , he lp=” input width” )

93 par s e r . add argument ( ”−−input mean” , type=int , he lp=” input mean” )

94 par s e r . add argument ( ”−−i npu t s td ” , type=int , he lp=” input std ” )

95 par s e r . add argument ( ”−−i n p u t l a y e r ” , he lp=”name o f input l a y e r ” )

96 par s e r . add argument ( ”−−output l aye r ” , he lp=”name o f output l a y e r ” )

97 args = par s e r . p a r s e a r g s ( )

98

99 i f a rgs . graph :

100 m o d e l f i l e = args . graph

101 i f a rgs . image :

102 f i l e n a m e = args . image

103 i f a rgs . l a b e l s :

104 l a b e l f i l e = args . l a b e l s

105 i f a rgs . i nput he i gh t :

106 i npu t he i gh t = args . i nput he i gh t

107 i f a rgs . input width :
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108 input width = args . input width

109 i f a rgs . input mean :

110 input mean = args . input mean

111 i f a rgs . i nput s td :

112 i npu t s td = args . i nput s td

113 i f a rgs . i n p u t l a y e r :

114 i n p u t l a y e r = args . i n p u t l a y e r

115 i f a rgs . ou tput l aye r :

116 output l aye r = args . ou tput l aye r

117

118 graph = load graph ( m o d e l f i l e )

119 t = r e a d t e n s o r f r o m i m a g e f i l e (

120 f i l e name ,

121 i npu t he i gh t=input he ight ,

122 input width=input width ,

123 input mean=input mean ,

124 i npu t s td=input s td )

125

126 input name = ” import /” + i n p u t l a y e r

127 output name = ” import /” + output l aye r

128 i npu t ope ra t i on = graph . get operat ion by name ( input name )

129 output opera t i on = graph . get operat ion by name ( output name )

130

131 with t f . S e s s i on ( graph=graph ) as s e s s :

132 r e s u l t s = s e s s . run ( output opera t i on . outputs [ 0 ] , {
133 i npu t ope ra t i on . outputs [ 0 ] : t

134 })

135 r e s u l t s = np . squeeze ( r e s u l t s )

136

137 top k = r e s u l t s . a r g s o r t ( ) [ −5 : ] [ : : −1 ]

138 l a b e l s = l o a d l a b e l s ( l a b e l f i l e )

139 f o r i in top k :

140 pr in t ( l a b e l s [ i ] , r e s u l t s [ i ] )
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