
M
arius M

aaland, A
nders K

lever K
irkeby

D
ecentralized A

utonom
ous D

riving

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marius Maaland
Anders Klever Kirkeby

Decentralized Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Pinar Öztürk, Hai Thanh Nguyen

January 2019

Marius Maaland
Anders Klever Kirkeby

Decentralized Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Pinar Öztürk, Hai Thanh Nguyen
January 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

NTNU

Abstract

Faculty of Information Technology and Electrical Engineering

Department of Computer Science

Master of Science

by Marius Maaland &

Anders Klever Kirkeby

Autonomous vehicles are improving at a rapid pace, caused by numerous technology

companies joining the race. However, current approaches rely on centrally trained mod-

els, which have some limitations. Gathering diverse data from areas like urban cities

or rural towns, ideally from different countries, is expensive and difficult, even for large

tech companies like Google and Tesla. This results in large amounts of training data for

self-driving cars being recorded primarily in sunny climates on the United States’ west

coast, on wide, multi-lane roads, with a specific sign scheme.

Following advances in the field of Internet of Things, an increasing rate of diverse,

distributed data is gathered. Paired with the implementation of the European Union’s

General Data Protection Regulation granting people ownership of their own data, and

the right to share it as they like, a decentralized approach opens up for more diverse

training data available to improve autonomous vehicles. This thesis proposes a new

paradigm for how data is gathered, and how it can be distributed and applied in self-

driving cars. It describes a decentralized network where the edges of the network are used

to gather data from individual participants, and train the models locally. The models

will be biased based on the context they were trained with, like urban or rural areas.

Autonomous vehicles on the network can use one of two different techniques proposed

in this thesis to combine the models in the network: a context-agnostic approach and a

context-sensitive approach. The former, the Ensemble Detector, is an ensemble learning

method performing weighted majority voting using an ensemble of models. The latter,

the Context-Sensitive Detector, is a reinforcement learning method that allows for rapid

switching between models in a constantly changing environment. The methods have been

tested on images from the Berkeley DeepDrive dataset. Experiments show promising

results for the Context-Sensitive approach. However, to make the ensemble detector

viable for object detection, additional tuning is needed.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

NTNU

Abstrakt

Fakultet for informasjonsteknologi og elektroteknikk

Institutt for datateknologi og informatikk

Mastergrad i Teknologi

av Marius Maaland &

Anders Klever Kirkeby

Teknologien rundt selvkjørende biler har sett en oppblomstring de siste årene, som følge

av at flere og flere teknologi-giganter tar del i kappløpet. Dagens teknikker benytter

seg av sentralt opptrente maskinlæringsmodeller. Innsamling av data fra forskjellige

omr̊ader som byer og landeveier, ideelt sett ogs̊a fra forskjellige land, er b̊ade vanske-

lig og dyrt, selv for store selskaper som Google og Tesla. Dette resulterer i at store

mengder data tiltenkt selvkjørende biler i hovedsak kommer fra solfyllte stater langs

USAs vestkyst, med sine brede veier og særegne skilt.

De siste års forbedringer av tingenes internett (IoT), samt EUs innføring av person-

vernforordningen (GDPR) gjør at privatpersoner n̊a har eierskap over egen data. Dette

muligjør desentraliserte tilnærminger og danner grunnlaget for mer divers datainnhent-

ing til bruk i forbedringen av selvkjørende biler. Denne avhandlingen foresl̊ar et nytt

paradigme for hvordan data samles, og hvordan de kan distribueres og brukes i selvkjørende

kjøretøy. Oppgaven beskriver et desentralisert nettverk hvor nodene i nettverket brukes

for å samle data fra deltakerene, og modellene trenes lokalt. Modellene vil ha en naturlig

bias, avhengig av konteksten de er trent med, for eksempel landsbygda eller byen. De

selvkjørende bilene i nettverket kan benytte seg av én av to foresl̊atte metoder for å

kombinere de forskjellige modellene i nettverket: en kontekst-uvitende, og en kontekst-

bevisst metode. Den første metoden, ensemble detektoren, er en metode som bruker

vektet majoritetsavstemning p̊a en samling modeller for å kombinere deres ekspertise.

Den andre metoden er en kontekst-bevisst detektor som bruker forsterkende læring for

å kjapt kunne bytte modeller, basert p̊a hvilke modeller som gjør det bra i n̊aværende

kontekst. Metodene har blitt testet p̊a bilder fra Berkley DeepDrive datasettet, og viser

lovende resultater for bruken av kontekst-bevisste detektorer, men ikke fullt s̊a gode

resultater for ensemble-metoden.

Acknowledgements

We would like to thank and acknowledge our Master’s project advisers Hai Thanh

Nguyen and Pinar Öztürk for their help, guidance and wisdom. Their insights and

feedback have been invaluable to this project.

We would also like to thank our friends and family for showing incredible support and

understanding throughout the research and writing of the thesis.

iii

Contents

Abstract i

Abstract - Norwegian ii

Acknowledgements iii

List of Figures viii

List of Tables x

Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Decentralization . 2

1.2 Research questions . 4

1.2.1 RQ1 - Decentralized Artificial Intelligence 4

1.2.2 RQ2 - Ensemble Detector . 5

1.2.3 RQ3 - Context-Sensitive Detector 5

1.2.4 Thesis outline . 5

2 Background and related work 7

2.1 Deep Learning . 7

2.1.1 Convolutional Neural Networks . 7

2.1.2 You Only Look Once . 8

2.1.3 Transfer Learning . 9

2.2 Decentralized Artificial Intelligence . 10

2.2.1 Definition and variations . 10

2.2.2 Advantages and disadvantages . 11

2.3 Related work . 12

2.4 Market research . 13

2.4.1 Questions . 13

2.4.2 Results . 14

3 Data and evaluation 17

3.1 Dataset . 17

3.1.1 Berkeley DeepDrive . 17

3.1.2 Annotation tooling . 18

iv

Contents v

3.1.3 Dataset statistics and distributions 19

3.1.4 Data allocation with enabled classes 19

3.1.5 Baseline for comparison . 21

3.2 Prediction evaluation . 21

3.2.1 Prediction definition . 21

3.2.2 Intersection over Union . 22

3.2.3 Duplicate detection avoidance . 24

3.3 Performance evaluation . 25

3.3.1 Mean Average Precision . 25

3.3.2 F1-score . 27

4 Decentralized Artificial Intelligence for autonomous driving 28

4.1 Ensemble Learning . 29

4.1.1 Weighted Majority Voting and the Weighted Majority Algorithm . 29

4.1.2 Ensemble Detector definition . 30

4.1.3 Ensemble Detector implementation 31

4.1.4 Ensemble Detector predictions . 32

4.2 Online Learning . 33

4.2.1 Context-Sensitive Detector . 34

4.2.2 Multi-Armed Bandit . 34

4.2.3 Upper Condfidence Bound . 35

4.2.4 Sliding Window Upper Confidence Bound 36

5 Ensemble Detector experiments and results 38

5.1 Main purpose and metrics . 38

5.2 Experiment test set . 38

5.3 Experiment setup . 39

5.4 Experiments . 40

5.4.1 Experiment 1: 5-10 models, all classes 40

Setup . 40

Hypothesis . 40

Results . 40

5.4.2 Experiment 2: 5-10 models, low quality training 44

Setup . 44

Hypothesis . 44

Results . 44

5.4.3 Experiment 3: 5-20 models, high quality training 48

Setup . 48

Hypothesis . 48

Results . 48

5.4.4 Experiment 4: 5-50 models, high quality training 52

Setup . 52

Hypothesis . 52

Results . 52

5.5 Wrap-up . 55

6 Context-Sensitive Detector experiments and results 56

Contents vi

6.1 Main purpose and metrics . 56

6.2 Experiment setup . 57

6.3 Experiment plots . 57

6.4 Experiments . 58

6.4.1 Experiment 1: 2 models, easily discoverable context 58

Setup . 58

Hypothesis . 58

Results . 58

6.4.2 Experiment 2: 8 models, challenging class selection 59

Setup . 59

Hypothesis . 60

Results . 61

6.4.3 Experiment 3: 4 models, additional models available 63

Setup . 63

Hypothesis . 64

Results . 64

6.4.4 Experiment 4: 2 models, changing the window size 65

Setup . 65

Hypothesis . 66

Results . 66

6.4.5 Experiment 5: 2 models, changing the discounting factor 68

Setup . 68

Hypothesis . 68

Results . 68

6.5 Wrap-up . 69

7 Discussion and future work 72

7.1 Answers to the research questions . 72

7.1.1 RQ1 - Decentralized Artificial Intelligence 72

7.1.2 RQ2 - Ensemble Detector . 73

7.1.3 RQ3 - Context-Sensitive Detector 74

7.2 Challenges . 75

7.3 Future work . 76

7.3.1 Complete network training . 77

7.3.2 Reinforcement Learning . 77

7.3.3 Distribution selection . 77

7.3.4 A combined approach . 78

7.3.5 Alternative ensemble learning methods 78

7.4 Article . 79

A Survey 80

A.1 Survey questions . 80

A.2 Survey results . 81

B Berkeley DeepDrive 85

B.1 Label format . 85

Contents vii

C Article 87

Bibliography 95

List of Figures

2.1 CNN Architecture and Structure . 8

2.2 YOLO Architecture . 9

2.3 YOLOv2 Improvements . 9

2.4 Centralized AI . 10

2.5 Decentralized AI . 10

2.6 Survey question 2 . 15

2.7 Survey question 3 . 15

2.8 Survey question 4 . 16

3.1 Example labeled image . 19

3.2 Preparing a training data distribution containing images with more than
5 cars, less than 3 persons and at least 1 traffic light. 20

3.3 Distribution of classes over the dataset . 21

3.4 Predicted bounding box versus ground truth bounding box 22

3.5 IoU mathematical formula . 23

3.6 Comparison of poor, good and excellent IoU scores 23

3.7 IoU threshold of 0.5 . 25

3.8 IoU threshold of 0.3 . 25

3.9 Precision-Recall example plot . 26

4.1 Markov Decision Process for object detection during driving 34

4.2 Upper confidence for 4 machines. Machine 3 will not be selected as one
of the next machines . 36

5.1 Experiment 1 mAP plot . 42

5.2 Experiment 1 ground truth. 42

5.3 Experiment 1 drawn predictions. 43

5.4 Experiment 2 mAP plot . 45

5.5 Experiment 2 ground truth. 46

5.6 Experiment 2 drawn predictions. 47

5.7 Experiment 3 mAP plot . 50

5.8 Experiment 3 ground truth. 50

5.9 Experiment 3 drawn predictions. 51

5.10 Experiment 4 mAP plot . 53

5.11 Experiment 4 ground truth. 53

5.12 Experiment 4 drawn predictions. 54

6.1 Experiment 1 Policy & Reward . 60

6.2 Experiment 2 Policy & Reward . 62

viii

List of Figures ix

6.3 2bike1k observation, as selected by the CSD 63

6.4 1motorcycle1k observation, as selected by the CSD 63

6.5 Experiment 3 Policy & Reward . 65

6.6 Experiment 4 Policy & Reward - tau 5 . 67

6.7 Experiment 4 Policy & Reward - tau 200 67

6.8 Experiment 5 Policy & Reward - epsilon 0.05 70

6.9 Experiment 5 Policy & Reward - epsilon 5 70

7.1 Ground truth for an image from the BDD dataset 76

A.1 Question 1. 81

A.2 Question 2. 81

A.3 Question 3. 82

A.4 Question 4. 82

A.5 Question 5. 83

A.6 Question 6. 83

A.7 Question 7. 84

A.8 Question 8. 84

List of Tables

6.1 mAP results for experiment 1 . 59

6.2 mAP results for experiment 2 . 61

6.3 mAP results for experiment 3 . 64

6.4 mAP results for experiment 4 . 66

6.5 mAP results for experiment 5 . 69

x

Acronyms

AI Artificial Intelligence. 1, 4, 10–12, 39, 73

BDD Berkeley DeepDrive. 3, 9, 17, 20, 24, 60, 68, 75, 77

CNN Convolutional Neural Network. 7, 12, 76, 77

CSD Context-Sensitive Detector. ix, 6, 12, 13, 27, 28, 34, 35, 56–66, 68, 69, 71, 75,

77–79

CV Computer Vision. 7, 74, 79

DAI Distributed Artificial Intelligence. 10

DL Deep Learning. 1–3, 5, 7, 9, 10, 19, 38, 71–74

DRL Deep Reinforcement Learning. 77

DzAD Decentralized Autonomous Driving. 2, 3, 14, 19, 21, 28, 48, 52, 72–74

DzAI Decentralized Artificial Intelligence. 1, 5, 6, 10–13, 20, 28, 72, 73

ED Ensemble Detector. 6, 13, 28, 29, 31, 38–41, 44, 45, 48, 49, 52, 69, 73, 74, 78

EU European Union. 1

FP False Positive. 26, 31, 49, 55

FPS Frames Per Second. 8, 75

GDPR General Data Protection Regulation. 1

GPS Global Positioning System. 2, 18

xi

Acronyms xii

GPU Graphics Processing Unit. 8, 75

IMU Inertial Measurement Unit. 2, 18

IoT Internet of Things. 1

IoU Intersection over Union. 22–24, 26, 32, 49

JSON JavaScript Object Notation. 18

MAB Multi-Armed Bandit. 33, 35

mAP mean Average Precision. 26, 27, 39–41, 45, 48, 49, 52, 55, 59, 64, 66, 69, 73, 76,

77

MDP Markov Decision Process. 33, 34

ML Machine Learning. 1–3, 7, 9, 12, 13, 27, 29, 33, 75

NLP Natural Language Processing. 7

NMS Non-maxmimum suppression. 24

NN Neural Network. 7, 33

NTNU Norwegian University of Science and Technology. 13

RL Reinforcement Learning. 33, 34, 69

RQ Research Question. 4, 5, 38, 56, 72

SW-UCB Sliding-Window UCB. 37, 56, 57, 65

TP True Positive. 26, 31, 49, 55

UCB Upper Confidence Bound. 35, 36, 64

US United States. 17, 74

USA United States of America. 2

WMA Weighted Majority Algorithm. 29, 30, 78

Acronyms xiii

WMV Weighted Majority Voting. 29–32, 49, 55, 73, 78

YOLO You Only Look Once. 8, 9, 61, 75

YOLOv2 You Only Look Once version 2. 8, 31, 41

Chapter 1

Introduction

1.1 Motivation

Data availability is one of the driving factors of Artificial Intelligence (AI) research.

Progress and breakthroughs in the field of Machine Learning (ML), especially within

Deep Learning (DL), are largely dependent on the availability of quality data. The

commercial field is dominated by a few large companies resourceful enough to gather

the necessary data [1]. With the increasing popularity of Internet of Things (IoT)-devices

[2], paired with the introduction of the General Data Protection Regulation (GDPR) [3]

in the European Union (EU), individuals are gaining more access to, and power over,

their own data. Emphasizing individual users’ ownership and right to their own data

can help form a new paradigm for the AI field. This proposed paradigm is described

as Decentralized Artificial Intelligence (DzAI) in this thesis, and describes how data

is collected, how models are trained on this data, and how they are used in a DzAI

network.

One of the areas of AI that might benefit from such a decentralization, is the field of

self-driving vehicles. Vehicles interacting autonomously are claimed to be more efficient

and less prone to unnecessary stops and delays, which will ultimately result in less

traffic congestion [4] - a growing problem in metropolitan cities worldwide [5]. Most

importantly, the introduction of self-driving cars is anticipated to drastically reduce the

number of accidents caused by motor vehicles [6][7]. Numbers from the Autonomous

Vehicle Disengagement Reports submitted to the State of California’s Department of

1

Chapter 1. Introduction 2

Motor Vehicles show a decreasing number of disengagements - times humans had to

take control over the vehicle - year over year: Google’s subsidiary company Waymo

decreased their yearly number of disengagements from 272 in 2015, to 124 in 2016 and

63 in 2017 [8][9][10]. Even though this signals that self-driving cars are improving, most

of the data they are trained on comes from the western states of the United States of

America (USA) [11]. Furthermore, large portions of this data have been recorded on

spacious highways with multiple lanes and uniform sign schemes, not the most diverse

driving conditions.

Diversifying the data gathering for, training, and testing of, self-driving cars is difficult

for several reasons. It is natural for the companies working on autonomous driving

technology to conduct training and testing close to their headquarters. Deploying au-

tonomous vehicles with safety drivers to more diverse locations is a resource intensive

task, but it is also an important one. In any Machine Learning (ML) task, both the

quantity and the quality of the data matters. Google’s Waymo has been notable at

gathering huge amounts of sensor data with its self-driving cars, having driven more

than 9 million miles since the fleet started operating in 2009 [11]. Nevertheless, more

data is still required for the continued improvement of autonomous vehicles. Diverse

data from cities in different countries, of different sizes, with different sign schemes etc.

is especially important. The hypothesis of this thesis is that this can be achieved with a

Decentralized Autonomous Driving (DzAD) network where participants gather driving

data using their personal vehicle during their daily commute. The data can be of many

shapes and forms, depending on the equipment available, such as Global Positioning Sys-

tem (GPS) data, Inertial Measurement Unit (IMU) data or imagery (photos or videos).

The latter will be used as an example in this thesis, focusing on the task of performing

object detection on images containing cars, pedestrians, traffic lights and other objects

relevant for the training of self-driving cars.

1.1.1 Decentralization

A DzAD network will rely on numerous participants to gather images during driving.

This data can be used to train Deep Learning (DL) object detection models locally on

the participants’ devices. The models in the network will be biased based on the context

they were trained with. A model trained on data primarily from urban areas could have

Chapter 1. Introduction 3

a stronger bias towards pedestrians, while another model trained in a rural context could

have a stronger bias towards trucks. These object detectors can then be shared on the

DzAD network with other parties in need of training data, making data available that

would not otherwise be shared or even gathered in the first place. However, since the raw

data is not shared directly, but models that are trained on the data are shared instead,

techniques for combining these models and utilizing their biases need to be developed.

In general Machine Learning (ML) sees a high correlation between increasing the amount

of data, and achieving higher accuracy, especially within the sub-field of DL. The mod-

els making up the DzAD network are unfortunately trained on relatively small datasets.

Even though the participants in the network can easily gather large amounts of data

by simply driving around with a camera and sensors, gathering the data is only half

of the equation. To be useful for supervised DL the data also needs to be labeled and

annotated. Class labels and bounding boxes are needed for every detectable object, at a

minimum. Metadata like weather, scene and time of day can also be added. This label-

ing and annotation task demands tedious and meticulous work, and participants cannot

be expected to label and annotate thousands of images, even with the help of tools. A

survey prepared by the authors, exploring people’s willingness to perform this task, is

described in section 2.4, and shows that most participants require a high compensation

to label images. Thus, for a DzAD network to be useful, it needs to be able to combine

and utilize multiple DL models trained on small datasets. Autonomous vehicles on the

network can use one of two different techniques proposed in this thesis that combine

the models in the network: a context-agnostic approach, and a context-aware approach.

The former, the Ensemble Detector described in section 4.1.2, is an ensemble learning

approach performing weighted majority voting using a collection of models. The latter,

the Context-Sensitive Detector described in section 4.2.1, is a reinforcement learning

approach that allows for rapid switching between models in a constantly changing envi-

ronment. The methods have been tested on images from the Berkeley DeepDrive (BDD)

dataset described in section 3.1, with experiments and their results shown in chapters 5

and 6.

The proposed paradigm brings many hypothetical advantages and disadvantages, a se-

lection of which will be explored in this thesis. They are described in more detail in

section 2.2.2, and are summarized below.

Chapter 1. Introduction 4

Advantages that will be explored in this thesis:

• Improved preservation of privacy. Not transmitting raw data greatly reduces the

risk of exposing sensitive information, which in turn will increase the likelihood of

data owners being willing to share their models.

• Greater data diversity. With improved preservation of privacy leading to more

sharing of data, this data will likely come from more diverse locations and envi-

ronments as well, increasing both the quantity and the quality.

Disadvantages that will be explored in this thesis:

• Lower accuracy. Object detectors trained on small datasets generally perform

worse than detectors trained on larger datasets.

• Labeling. If the data for the locally trained models is to be sourced from individual

users, the task of annotating and labeling the images for training needs to be

simple.

1.2 Research questions

1.2.1 RQ1 - Decentralized Artificial Intelligence

What advantages and disadvantages does Decentralized Artificial Intelligence

(DzAI) bring to autonomous driving?

A centralized AI model trained on a large dataset will in most cases perform better

than a decentralized network consisting of weaker models trained on smaller datasets,

in terms of raw accuracy. However, the decentralized approach proposed in this thesis

introduces potential advantages in other areas such as privacy, and data diversity, that

may compensate for the loss of accuracy. For autonomous vehicles, a high accuracy in

object detection is of utmost importance, as it is integral to the safety of the vehicles.

It is therefore crucial to reduce the loss of accuracy using techniques like Ensemble

Learning or Online Learning, discussed in RQ2 and RQ3.

Chapter 1. Introduction 5

1.2.2 RQ2 - Ensemble Detector

Can a collection of weak Deep Learning (DL) object detectors be combined

to perform as well as, or better than, a strong DL object detector?

In the DzAI network proposed in [12], ensemble learning showed promising results in

the task of classification. Multi-class object detection is a more challenging task, and

combining the predictions of multiple models is less trivial than classification. Section

4.1 describes a way to use Ensemble Learning to combine multiple object detectors

trained on small datasets to increase their collective accuracy. Experiments 1 through 4

in chapter 5 look at the predictive performance of a DzAI network using this technique,

and the summarized, concluding answer to RQ2 can be found in section 7.1.2.

1.2.3 RQ3 - Context-Sensitive Detector

Can detection and exploitation of bias in weak Deep Learning (DL) object

detectors, in a context-dependent environment, outperform strong context-

agnostic DL object detectors?

Rather than combining models ahead of time, section 4.2 describes a technique that

looks at the current context, like driving in a city or out on the countryside, in order

to retrieve predictions from models specialized in that context. Experiments 1 through

5 in chapter 6 look at the feasibility of a DzAI network utilizing such an approach. A

summary of this, along with a concluding answer to RQ3 can be found in section 7.1.3.

1.2.4 Thesis outline

Chapter 2 introduces background theory on the choice of Deep Learning (DL) architec-

ture, and defines Decentralized Artificial Intelligence (DzAI). The chapter also presents

market research, and discusses related work.

Chapter 3 presents the dataset, and how it is used in the thesis. It explains the format

of predictions made on the dataset, and introduces metrics and concepts that are crucial

to understanding the experiments.

Chapter 1. Introduction 6

Chapter 4 provides detailed explanations of the 2 proposed DzAI methods: the Ensemble

Detector (ED) and the Context-Sensitive Detector (CSD). Next, chapters 5 and 6 cover

the experiments performed to evaluate the ED and the CSD, respectively.

Finally chapter 7 summarizes the results of the experiments, and answers the research

questions posed in the introduction chapter. The chapter also discusses challenges en-

countered in the thesis, and presents future work.

Chapter 2

Background and related work

2.1 Deep Learning

Deep Learning (DL) and traditional Machine Learning (ML) both offer ways to train

models to make predictions on data. Their difference lies in the number of layers com-

prising their Neural Network (NN) structure. The increased layer count allows for more

complex abstractions and composite representations than possible in shallower networks.

DL is heavily used in areas such as Computer Vision (CV) and Natural Language Pro-

cessing (NLP), and made feasible by recent increases in computing power, and availabil-

ity of labeled data [13]. During the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) of 2015, multiple DL methods surpassed the human recognition rate of 95%

[14].

2.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a class of deep neural networks, commonly

used for visual data analysis [15]. CNNs are trained end-to-end, meaning the task of

learning features, detecting objects and predicting labels are considered one big task.

As such, the CNN consists of one input layer and one output layer. In between is a

number of hidden layers that typically consist of convolution layers, activation layers,

and polling layers, as depicted in figure 2.1 [16].

7

Chapter 2. Background and Related Work 8

Figure 2.1: CNN Architecture and Structure

The classification portion of the network often consists of a couple of fully connected

layers, where every neuron in one layer is connected to every neuron of the next layer.

Finally a softmax layer is used to output the labels or a classification for a given input.

2.1.2 You Only Look Once

The object detection system used in the experiments, found in chapter 5 and 6, is an

adaptation of the You Only Look Once version 2 (YOLOv2) architecture [17] written in

TensorFlow [18] and Keras [19]. The main reason for selecting YOLO as the foundation

architecture for this thesis is its speed. Its ability to perform real-time predictions at 30

Frames Per Second (FPS) (running on a Pascal Titan X GPU) [17] makes it a realistic

architecture for time-sensitive tasks, such as object detection whilst driving.

The architecture for the original YOLO network can be seen in figure 2.2 [17]. A natural

effect of reducing the spatial dimensions gradually is that it makes it harder to predict

smaller objects. Because of this, YOLOv2 makes some important changes in the two

final layers: Using a pass-through method, depicted in figure 2.3 [17], it uses information

from earlier convolutions in order to retain more information and increase its ability to

perform predictions on smaller objects. Even with these improvements it is important

to state that the YOLO network still suffers a significant performance loss on smaller

objects, which will be evident in the experiment chapters.

Chapter 2. Background and Related Work 9

Figure 2.2: YOLO Architecture

Figure 2.3: YOLOv2 Improvements

2.1.3 Transfer Learning

Transfer learning is an ML technique where a model trained for one task is adapted

and used for a different task [20], allowing for rapid prototyping. It is not uncommon

for DL models to take days or weeks to train from scratch, even on modern hardware.

To save time, freezing all but the last few layers of a pre-trained model, putting the

model in a headless state, makes it possible to only train the last few layers for a specific

task. This method is commonly used in relation to image-based tasks due to their large

feature spaces, where transfer learning is performed on pre-trained Deep Learning (DL)

models that have already been trained on large datasets, like the ImageNet dataset [21].

Transfer learning is used in the thesis to drastically reduce the training time of the

YOLO models used in the the experiments. The models use the weights provided by the

creators of the YOLO network [22], pre-trained on the COCO [23] and ImageNet [21]

datasets. By freezing all the network layers except for the last 2, models can quickly be

trained on the Berkeley DeepDrive (BDD) dataset and learn the classes specific to this

dataset.

Chapter 2. Background and Related Work 10

2.2 Decentralized Artificial Intelligence

This thesis introduces a new paradigm for how data is gathered, how Deep Learning (DL)

models are trained on this data, and how they can be used in a decentralized network.

Before delving into implementations and experiments, it is important to explain how

such a network would work, its advantages, disadvantages, and variations.

2.2.1 Definition and variations

Figure 2.4: Centralized AI Figure 2.5: Decentralized AI

Centralized Artificial Intelligence (AI), illustrated by figure 2.4 [12], works by first ag-

gregating large amounts of data at a single location, before training one or multiple

models, with the goal of solving complex learning, planning and decision making prob-

lems. In contrast, Decentralized Artificial Intelligence (DzAI), illustrated by figure 2.5,

does not require all of the training data to be aggregated at a single location. DzAI has

several different definitions, names and variations, and there are slight but important

differences between Decentralized Artificial Intelligence (DzAI) and Distributed Arti-

ficial Intelligence (DAI). They are both sub-fields of AI separate from the centralized

approach, but differing in the way the participants work together in the network.

In a DzAI network every participant is autonomous and exists independently. The

participants make up a network and cooperate with each other to perform a global or

individual task [24]. This is the AI method that will be the focus of this thesis.

DAI however, involves a distributed group of participants working towards a collabora-

tive solution to global problems. It is collaborative in the way that sharing of information

between the participants is crucial for the group to produce a solution as a whole.

Chapter 2. Background and Related Work 11

An example illustrates this slight but important difference more effectively. Consider

a network whose goal is to be able to detect cars and pedestrians in an image. A

distributed network would have two participants A and B, where A knows how to detect

cars only, and B knows how to detect pedestrians only. Collaboration and sharing of

information is critical for the network to accomplish its goal. If A is shown an image of

a pedestrian, it would not be able to accomplish the goal individually. In a decentralized

network on the other hand, both agents A and B would know how to detect both cars

and pedestrians, and can thus operate independently, but by collaborating they can

improve their collective accuracy.

2.2.2 Advantages and disadvantages

Like any other AI method, DzAI has both advantages and disadvantages. A large part

of this thesis is concerned with examining and assessing whether the advantages of a

decentralized network outweigh the disadvantages. All possible advantages and disad-

vantages are too numerous to feasibly explore in a single thesis. Based on importance

and relevance, a few have been chosen, described below.

Possible advantages

• Improved preservation of privacy. Transmitting trained models encrypted and

anonymously, rather than raw data, could reduce the ramifications of theft and

unauthorized eavesdropping. Not transmitting raw data greatly reduces the risk

of exposing sensitive information, which in turn could increase participants’ will-

ingness to share their models.

• Greater data diversity. Improved preservation of privacy may lead to increased

sharing of data from diverse locations and environments, raising both the quantity

and the quality.

Possible disadvantages

• Lower accuracy. Depending on the method of combination, the accuracy of the

combined models might be worse than that of a single model trained on a larger

dataset. A major part of this thesis is concerned with exploring different ways of

Chapter 2. Background and Related Work 12

combining models and experimenting with how to choose the most optimal model

in any given situation.

• Labeling. If data for the locally trained models is to be sourced from participants,

someone needs to do the labeling. The process of labeling must be simple, efficient

and user-friendly, and the individual models should require small amounts of data.

2.3 Related work

Existing approaches to Decentralized Artificial Intelligence (DzAI) tackle different as-

pects of the decentralization process. Projects like Ocean [25] and Datum [26][27] are

trying to create a marketplace for sharing raw data in a decentralized fashion. Sin-

gularityNET [28], on the other hand, is a decentralized AI network, currently under

development, that aims to let anyone create, share and monetize AI services.

A different approach, proposed by Google’s AI division, is a learning method called

federated learning, able to perform collaborative Machine Learning (ML) without cen-

tralized data [29]. Google uses federated learning to enable smart phones to keep all

their training data on the device, and simultaneously share the prediction models to

collaboratively learn and improve the model. After downloading the latest model, the

devices on the network learn using their own local data and improve the model, before

sharing the summarized changes with the rest of the network. This type of learning

allows for smarter models, lower latency and less power consumption, while ensuring

privacy, according to Google [30]. In comparison, the CSD approach proposed in this

thesis gathers models trained on the edges, and uses context to switch between them in

a rapidly changing environment.

The open-source OpenMined project [31] wants to decentralize AI by bringing models to

each participant in a network, allowing them to train the models locally, using federated

learning, while keeping the data on the device. Homomorphic encryption [32] of the

models allows users of OpenMined’s network to share their models with no risk of theft.

Recently, a centralized end-to-end approach for autonomous driving, proposed by Bo-

jarski et al of Nvidia [33], has received a lot of attention. They present a CNN consisting

of 9 layers, supported by Nvidia’s Drive Px 2 platform [34]. The system uses 3 front

Chapter 2. Background and Related Work 13

facing cameras as input signals, and learns how to steer a vehicle by observing a human

pilot. One of the benefits of this approach is that it optimizes all of processing steps

simultaneously, where most other approaches aggregate methods, like lane marking de-

tection, path planning, and control, causing slower computations. An approach like this

requires a continuous stream of data, along with recorded steering wheel angles.

This thesis presents a new paradigm where privacy is an inherent attribute of the collab-

oration process. Similar to OpenMined, this thesis describes an approach where training

is performed locally - on the edges of the network - without the data ever leaving the

source. Rather than federating existing models, the proposed approach creates individ-

ual models at the data sources and combines them using an Ensemble Detector (ED)

or a Context-Sensitive Detector (CSD), explained in detail in section 4.1.2 and section

4.2.1, respectively.

2.4 Market research

To get an idea to which extent people are interested in participating in a Decentralized

Artificial Intelligence (DzAI) network to improve self-driving cars, a short survey was

created. The purpose was to gauge people‘s interest in participating in such a network,

and to determine the compensation they would expect for the service. Both a Norwegian

and an English version of the survey were created. The Norwegian version was adver-

tised using posters on the Norwegian University of Science and Technology (NTNU)’s

Gløshaugen campus in Trondheim, Norway. It was also shared with the friends and

family of the authors. The English version was posted on the social news aggregation

and discussion website Reddit [35], on sub-forums related to Machine Learning (ML)

and data gathering. In other words, the majority of the participants were either active

in technical web forums, or attend a technical university, indicating a certain degree

of technical interest. The two surveys gathered a total of 791 responses, 371 of which

coming from the Norwegian version, and 420 from the English version.

2.4.1 Questions

The questions asked in the English version of the survey are listed in appendix A.1.

The responses to the Norwegian version were translated and counted together with their

Chapter 2. Background and Related Work 14

English counter-parts. The questions were designed to gain an understanding of people’s

willingness to participate in a Decentralized Autonomous Driving (DzAD) network. In

summary, the survey inquired about what kind of compensation people would require

to capture images and then annotate and label them, for the purpose of improving self-

driving cars. People were also asked whether they would be worried about their privacy,

even if promised that the data shared would be anonymous.

2.4.2 Results

The results from the survey can be seen in appendix A.2. The ages of the participants

skewed towards the younger end, with 75% being between 18 and 30 years old. Close to

all of the participants (98%) were already familiar with the concept of self-driving cars,

adding more legitimacy to the subsequent answers. 88% of participants were willing to

collect and share images from their personal driving, as seen in figure 2.6, but the com-

pensation they required to do so varied significantly: 123 people said they would collect

raw images (without labeling them) for less than $1 per hour of driving. Approximately

the same amount of people would not do the same task for less than $7 per hour (fig.

2.7). The majority of the respondents were in the lower half of the compensation range,

i.e. $5 per hour or less, a reasonable compensation for such a service.

When it came to labeling and annotating the images however, the respondents wanted

much higher compensation, seen in figure 2.8. The most expensive option of receiving

$0.5 or more per picture annotated, corresponding to approximately $20 per hour of

work, was preferred by the most participants (268). Compensation of this size is not

likely to be feasible for gathering thousands of annotated images.

Lastly, 60% of the participants were worried that the data could be linked to them

personally, even if the data was claimed to be anonymous. However, this question was

only presented to people who first indicated that they were willing to share their data.

In other words, people being worried about their privacy does not mean that they are

not willing to participate.

Chapter 2. Background and Related Work 15

Figure 2.6: Survey question 2

Figure 2.7: Survey question 3

Chapter 2. Background and Related Work 16

Figure 2.8: Survey question 4

Chapter 3

Data and evaluation

3.1 Dataset

The dataset used in the experiments in this paper is the BDD100K dataset provided

by the Berkeley DeepDrive (BDD) project [36]. Facilitated by the researchers’ own

annotation tooling [37], the dataset consists of 100 000 videos with diverse annotations

including image level tagging, object bounding boxes, driveable areas, lane markings,

and weather data. The creators claim the dataset to be ”the largest available dataset

of annotated driving scenes” [36]. Compared to existing datasets used for driving image

recognition benchmarks, it allegedly covers more realistic driving scenarios and captures

more variation in appearance and pose configuration of categories of interest. The

dataset is therefore considered more challenging than other sets.

3.1.1 Berkeley DeepDrive

The foundation of the dataset is a collection of 100 000 video clips captured by the front

facing camera of cars driving around the US in diverse conditions. Extracted from the

video clips are:

• 100 000 labeled key frame images, extracted from the videos at the 10th second.

• 10 000 key frames extracted for full-frame semantic segmentation. Semantic seg-

mentation is the process of making dense predictions inferring labels for every

17

Chapter 3. Data and evaluation 18

pixel, so that each pixel is labeled with the class of its enclosing region or object,

e.g. every pixel that make up the object car, or the sky region.

• Full-frame semantic segmentation maps corresponding to the 10 000 images above.

• Segmentation maps of driveable areas in the images.

• Annotations of road objects, lanes and driveable areas in a JavaScript Object

Notation (JSON) format.

• Global Positioning System (GPS) and Inertial Measurement Unit (IMU) informa-

tion recorded along with the videos.

This thesis will use the 100 000 labeled key frame images extracted from the videos and

their corresponding labeled annotations, with the fields shown in appendix B.1. Not

all fields are available for every image, and not all fields are used in the experiments

performed in this thesis. The most important pieces of information are the category and

box2d fields, describing the objects in the images, and their bounding boxes, respectively.

The category field describes the different classes of the objects in the images, and can

take any of the following values: Bus, traffic light, traffic sign, person, bike, truck, motor,

car, train, rider.

Figure 3.1 shows an example of a labeled image, with ground truth bounding boxes

drawn around two cars, a traffic light and two signs. It also shows lane markings,

drivable area and metadata like the weather, but only the object bounding boxes and

classes are of interest in the thesis.

3.1.2 Annotation tooling

The team behind the BDD100K dataset has also created a versatile and scalable anno-

tation tooling system [37], for creating annotations needed in a driving database, like

bounding boxes and lane detection. The tool is designed to be user-friendly and effi-

cient, and can be used by researchers and other people in need of labeled video frames

or images of driving data.

Chapter 3. Data and evaluation 19

Figure 3.1: Example labeled image

3.1.3 Dataset statistics and distributions

A dataset of this size allows for interesting partitioning based on class distributions,

enabling experiments with pre-determined biases towards certain classes. The authors

of this thesis have developed tools to specify and extract such distributions.

A distribution describes the count of each class in a training set, and can be used to

create training sets with a specific bias. For example, a distribution can be specified to

contain only images with at least 1 person in them. They can also be as specific as: ”All

images with more than 7 cars, less than 3 persons and no traffic lights”. The purpose

of this is to create biased training sets making models trained on these images better

at detecting certain classes than others. The goal is to simulate a real-world scenario

of combining models generated by participants driving in certain locations, like rural or

urban areas.

3.1.4 Data allocation with enabled classes

Each of the Deep Learning (DL) models in the two different Decentralized Autonomous

Driving (DzAD) methods is allocated a training set of a certain size, with a specific

distribution, as described in section 3.1.3. Then, two unique random sample sets are

Chapter 3. Data and evaluation 20

drawn from the subset, and used as training (90%) and validation (10%) data, illustrated

in figure 3.2.

To better emphasize the effects of Decentralized Artificial Intelligence (DzAI), noise

is removed from the experiments by using models with different enabled classes. An

enabled class is a class that a model has been trained to predict, by including the class’

label in the training set. Different experiments may have different enabled classes, which

will be indicated in the experiment setup description. For instance, one experiment is

performed on models with all 10 classes enabled, while others are performed on models

with only specific classes enabled, like car, truck and person.

Figure 3.2: Preparing a training data distribution containing images with more than
5 cars, less than 3 persons and at least 1 traffic light.

The reason for removing noise from the experiments is that the images in the dataset

contain high counts (18.4 on average) of different objects at varying distances and sizes.

Compared to the COCO dataset, often used as a object recognition benchmark, images

in the BDD dataset contain, on average, 3 times the number of objects per image [23].

Shown in figure 3.3 are the number of objects of each type. In addition, roughly 50%

of the objects in the dataset are occluded (overlapping) and 45% are truncated (cut

off by the image frame). There is also a large disparity between the counts of different

classes: there are over 1 million instances of car objects in the entire dataset, but only

179 instances of trains [36]. Combined these factors make the task at hand, to detect

and locate all objects in a given image, a challenging one.

Chapter 3. Data and evaluation 21

Figure 3.3: Distribution of classes over the dataset

3.1.5 Baseline for comparison

Serving as a baseline model for comparison in the experiments in chapters 5 and 6, is

a strong model trained on 20 000 images, for 15 epochs. The 20 000 images are drawn

randomly from the same distribution as the weak models, with the same enabled classes.

The purpose of the baseline model is to simulate the centralized approach, trained on

20 000 images at a central location.

3.2 Prediction evaluation

3.2.1 Prediction definition

The object detectors trained in the Decentralized Autonomous Driving (DzAD) net-

work will make object detections or predictions given an input image. These terms are

used interchangeably throughout the thesis, and refer to the output from the models.

Predictions have 3 components:

• The classes of the objects detected.

• Bounding boxes bounding the objects detected.

Chapter 3. Data and evaluation 22

• A confidence score for each object, indicating how certain the model is of the

detected object’s class and bounding box.

3.2.2 Intersection over Union

To evaluate the accuracy of the predicted objects, doing an exact match comparison

between the ground truth bounding boxes and the predicted bounding boxes is not

a good approach. Such a comparison would indicate a failed match if a single pixel

has been predicted incorrectly, which does not mean that the predicted bounding box

does not accurately bound the detected object. An exact match is unlikely. Figure 3.4

[38] illustrates the comparison of a ground truth bounding box on a stop sign, with a

hypothetical predicted bounding box. Even though the predicted bounding box does not

exactly match the ground truth bounding box, it does arguably correctly communicate

the location and dimension of the object, and should not be considered an incorrect

prediction.

Figure 3.4: Predicted bounding box versus ground truth bounding box

A popular (and simple) method used to evaluate predicted bounding boxes is to use a

technique called Intersection over Union (IoU), formally known as the Jaccard index. As

shown in figure 3.5 [39], the technique involves computing the ratio between the area of

overlap between the predicted bounding box and the ground truth bounding box, and

Chapter 3. Data and evaluation 23

the area of union i.e. the area encompassed by the predicted bounding box and the

ground truth bounding box combined.

The IoU score will be used as a metric to reward predicted bounding boxes heavily

overlapping with the ground truth. Figure 3.6 [40] shows good and bad examples of

bounding boxes with different IoU scores. It also demonstrates that a closer match

between prediction and ground truth yields a higher score, while an exact match is not

required for the prediction to be considered accurate.

Figure 3.5: IoU mathematical formula

Figure 3.6: Comparison of poor, good and excellent IoU scores

Chapter 3. Data and evaluation 24

3.2.3 Duplicate detection avoidance

In addition to using IoU to evaluate and score predicted bounding boxes, an IoU thresh-

old can be used to avoid multiple predictions of the same object. Figure 3.7 shows the

result of object detection run on an image from the BDD dataset. The model does a de-

cent job at detecting the traffic lights and the 3 closest cars in the image. An important

observation is the fact that the closest car straight ahead is predicted twice. One bound-

ing box encloses the car pretty well. Unfortunately the model predicts a second car in

the same area, shown by the second bounding box that is smaller and shifted slightly to

the left. This is undoubtedly the same car, and there should only be one bounding box.

This problem can in many cases be solved by performing Non-maxmimum suppression

(NMS) [41]. A greedy version of NMS solves the problem of multiple predictions of the

same object by:

1. Finding the confidence score, i.e. the probability of the box containing the object,

for each detection.

2. Identifying the bounding box with the highest confidence score.

3. Suppressing (removing) all the bounding boxes which have IoU scores greater than

a certain threshold with the bounding box with the highest confidence score.

Figure 3.7 shows a model run with an IoU threshold of 0.5, which is a high enough

threshold to allow the duplicate bounding boxes to avoid being suppressed by NMS.

Reducing the IoU threshold will increase the likelihood of a bounding box being removed

for referring to the same object as another box, and might help in a situation such as

this. Figure 3.8 shows the same image with the IoU threshold lowered to 0.3, where it is

evident that the duplicate detection of the car has been removed. It is thus important

to keep the IoU threshold in mind when working with object detectors, to avoid such

issues. Based on preliminary tests, a threshold of 0.5 is used throughout this thesis.

Chapter 3. Data and evaluation 25

Figure 3.7: IoU threshold of 0.5

Figure 3.8: IoU threshold of 0.3

3.3 Performance evaluation

3.3.1 Mean Average Precision

Once a model’s predictions have been determined on an image, they can be compared

with the ground truth predictions to determine the accuracy of the model. Performance

Chapter 3. Data and evaluation 26

is measured using mean Average Precision (mAP), a metric commonly used to measure

the accuracy of object detectors [42]. mAP refers to the mean of the maximum precision

values at different recall values. Precision measures how accurate predictions are, i.e.

the percentage of positive predictions that are correct. Recall measures how good the

model is at finding all the positive predictions. The mathematical definitions can be

seen in equation 3.1 and 3.2.

Precision =
True Positives

True Positives+ False Positives
(3.1)

Recall =
True Positives

True Positives+ False Negatives
(3.2)

The definition of a True Positive (TP) is a prediction’s bounding box with an Intersection

over Union (IoU) score with the ground truth prediction above a certain threshold. An

IoU score threshold of 0.5 is used in this thesis’ experiments. Precision can be plotted

against recall to get a plot similar to figure 3.9 [43]. The average precision (AP) can be

found by calculating the area under this plot, and the mean Average Precision (mAP)

is simply the average precision over all of the available classes.

The mAP metric is rewarded by TPs and punished by False Positive (FP)s, and will

prefer few correct predictions, over many both correct and incorrect predictions.

Figure 3.9: Precision-Recall example plot

Chapter 3. Data and evaluation 27

3.3.2 F1-score

The mAP score is useful to assert the overall performance of a model over a set of images.

However, to assess the performance of a model’s predictions on a single image, the F1-

score yields more useful information. Using the precision and recall metrics introduced

in equation 3.1 and 3.2, the F1-score can be defined as [44]:

F1 =
2 · precision · recall
precision+ recall

(3.3)

The F1-score represents the harmonic mean between the precision and recall of the

model’s predictions. Commonly used as a performance metric in ML [45], this metric

puts equal importance on the models’ precision and recall values. Doing so ensures

a balance between models making many, poor predictions, and models making few,

good predictions. The F1-score is used by the CSD, introduced in section 4.2.1, in its

underlying policy to select the best performing models in any given context.

Chapter 4

Decentralized Artificial

Intelligence for autonomous

driving

An autonomous vehicle in a Decentralized Artificial Intelligence (DzAI) network needs to

be able to utilize and take advantage of the collective wisdom of the network’s multiple

participants. In the Decentralized Autonomous Driving (DzAD) network proposed in

this paper, the participating models are trained on diverse small data distributions.

Some have been trained in more urban contexts and are naturally better at predicting

pedestrians and cars clustered together, while others might be trained in contexts where

there are more trucks, like highways. Even though these weak models are unlikely to

perform optimally on their own, their strengths can be combined. This thesis explores

two ways of creating a DzAD system. The first of which is to utilize ensemble learning

to combine the object detecting capability of each diverse model in the network into

a more accurate Ensemble Detector (ED). The second approach involves using online

learning to quickly switch between models with different biases using a Context-Sensitive

Detector (CSD).

28

Chapter 4. Decentralized AI for autonomous driving 29

4.1 Ensemble Learning

The concept of combining the strengths of multiple weak learners into a collective wisdom

is called Ensemble learning [46]. Weak learners, a term commonly used for these types of

models, are common in areas where Big Data and Machine Learning (ML) are involved.

They are also referred to as experts, detectors or simply models. These terms are treated

as interchangeable, and models will be used consistently throughout the thesis.

There are several different methods within the space of Ensemble learning, two of which

were used as inspiration for the Ensemble Detector (ED) implemented in this thesis:

• Bootstrap aggregating (also called bagging), where each model in the ensemble

votes with an equal weight. In bagging, each model in the ensemble is trained on

a randomly drawn subset of the training set [47].

• Stacking with Weighted Majority Voting (WMV) [48], where each model votes

on the prediction, and the votes are weighted. The weights can all be equal, in

which case they have no effect and the algorithm is equal to bagging. Alternatively

unequal weights can be used, and tuned based on the models’ performances on a

training set. This is known as the Weighted Majority Algorithm (WMA) [49].

4.1.1 Weighted Majority Voting and the Weighted Majority Algo-

rithm

The Weighted Majority Algorithm (WMA) is a meta-learning algorithm used to lift the

performance of weak models trained on small datasets closer to that of a model trained

on a larger dataset [49]. The algorithm performs Weighted Majority Voting (WMV)

and is used to construct a compound model containing a pool of models, each with

their own positive weight. The compound model collects votes from all of the models

in the pool (line 3 in algorithm 1), and outputs a prediction by performing WMV (line

4 in algorithm 1). If the majority vote is incorrect compared to the ground truth, the

models in the pool that voted for the wrong prediction are punished by having their

weights reduced by a certain ratio ε, where 0 < ε < 1 (line 6 in algorithm 1). Algorithm

1 is designed for binary classification, but the method can be extended to work with

multi-class classification as well.

Chapter 4. Decentralized AI for autonomous driving 30

Algorithm 1: Weighted Majority Algorithm pseudocode

Input: N models predicting the outcomes, a parameter ε > 0
1 w1

i ←− 1 for all i = 1,...,N (weights initialized to 1 for all models) ;
2 for rounds t=1,2... do
3 f ti ∈ 0, 1 (obtain prediction of model i, i = 1,...,N ;

4 ŷt ←− round
(∑

i w
t
if

t
i∑

i w
t
i

)
(this is the WMV step) ;

5 Outcome yt is revealed ;

6 wt+1
i ←− wti(1− ε)1[f ti 6=yt] (this is the weight tuning step) ;

7 end

4.1.2 Ensemble Detector definition

The paper in [12] describes an implementation of an Ensemble Classifier using the

Weighted Majority Algorithm (WMA) with a few alterations to work with multiple

classes. The method used in the paper is reported to achieve good results when combin-

ing up to 100 classifiers trained on small partitions of the MNIST [50] and 20 newsgroups

[51] datasets. However, the accuracy of the WMV result was more or less the same be-

fore and after the weight tuning step (line 6 in algorithm 1), indicating little effect of

the weight tuning process. Regardless of weight tuning, the results in [12] are promising.

However the simple classification task in [12] is different from the multi-object detec-

tion task described in this thesis. First of all, this means that the Ensemble Classifier

implementation must be altered to perform object detection instead. Secondly, when

there are multiple objects to both classify and detect in each image, weight tuning in

the WMA becomes more complicated. Therefore the models are not assigned tunable

weights, instead a prediction’s confidence score is used as the weight in the WMV.

Summarized, the algorithm asks all the models in the ensemble for their predictions, and

performs WMV on every object predicted, using the confidence scores as the weights.

Thus a more certain model will vote with a larger weight than a less certain model.

Primarily this is to reduce the complexity of the task. Consider an ensemble of models

A and B. A makes a number of predictions, some are correct and some are not. Model

B makes no predictions, neither correct nor incorrect. Even in this simple case it is non-

trivial to determine how much these two models’ weights should be punished relative to

each other.

Chapter 4. Decentralized AI for autonomous driving 31

4.1.3 Ensemble Detector implementation

The Ensemble Detector (ED) contains a collection of trained You Only Look Once

version 2 (YOLOv2) models, and produces predictions in the following way.

1. The ED is initialized with a certain number of models already trained on a small,

biased, dataset.

2. The models in the ensemble are all weighted equally.

3. Given the data at hand, each model is asked for its prediction, which will be com-

prised of class labels, confidence scores, and boxes bounding the detected objects.

4. For each image, every model’s prediction referring to the same object is determined.

This is referred to as an overlap or a conflicting prediction.

5. Weighted Majority Voting (WMV) is performed on each of the overlapping pre-

dictions to determine the class. The confidence scores are used as the weights in

the WMV. Choosing the object’s resulting bounding box can be done in multiple

ways, and choosing the box with the highest score is used in this implementation.

6. Any prediction that does not overlap with other predictions is kept unchanged and

carried through to the ensemble prediction. These predictions are called standalone

predictions and are important as they often represent objects that only 1 model

managed to detect, and that was not found by the others. Sometimes these are

False Positive (FP)s, but in most cases they are True Positive (TP)s and important

to include.

7. Finally all the predictions are combined.

The biggest difference between the Ensemble Classifier described in [12], and the En-

semble Detector described in this thesis is the way voting is performed, and how the

weights are used. In a classification task, a prediction can be deemed correct or false

by simply comparing the predicted classification with the ground truth classification.

In the case of the MNIST dataset, if the ground truth label of an image is ’9’, and

the prediction is also ’9’, the prediction is correct, and the model(s) that voted for this

prediction should not be punished. In the object detection task that this thesis is con-

cerned with, the comparison between prediction and ground truth label is not so simple.

Chapter 4. Decentralized AI for autonomous driving 32

Figure 3.4 in section 3.2.2, showing two boxes bounding a detected sign, demonstrates

this fact. A model not only has to classify the predicted objects, it also needs to locate

and draw bounding boxes around them. The difference between the classified type of

object (sign, car, pedestrian etc.) and the ground truth label can be done by a simple

string comparison, but determining the degree of which a predicted bounding box is

correct or not requires more sophisticated methods. This challenge is complicated even

further when there are multiple objects of different classes in a single image. If a model

detects all the cars and draws bounding boxes around them, but misses a number of

pedestrians, it is difficult to say whether the model is good or bad.

4.1.4 Ensemble Detector predictions

The process of creating a single ensemble prediction based on multiple models’ pre-

dictions is described at a high level in section 4.1.3. Point 4 needs a more thorough

explanation, however. After all the models in the ensemble have been asked for their

predictions, the ensemble algorithm needs to determine which model’s prediction corre-

sponds to the same object as another model’s prediction, to be able to perform majority

voting. In other words, if model A and B both predict 10 objects, the algorithm needs

to know which, if any, are the same objects. It’s not safe to simply iterate from left to

right in the image, and assume that prediction X in model A corresponds to the same

object as prediction X in model B. This approach will easily be offset by a mistake in

one or more models.

Hence, corresponding predictions are determined by an Intersection over Union (IoU)

threshold, a concept described in section 3.2.2. If two or more predicted bounding boxes

from different models have an IoU value over a certain threshold, the predictions are

assumed to refer to the same object, and an overlap is identified.

After all of the overlapping predictions have been determined, Weighted Majority Voting

(WMV) can be performed to reduce the number of predictions to 1 per object. The

predicted object’s class is decided by a weighted majority vote, with the confidence

score of each prediction used as the weights. The resulting bounding box is the one with

the highest confidence score, with the same class as the voted class.

Chapter 4. Decentralized AI for autonomous driving 33

4.2 Online Learning

Online learning is a Machine Learning (ML) technique where models are adjusted as

data becomes available, as opposed to offline learning where the best model is prepared

ahead of time. Techniques from online learning are commonly used in Reinforcement

Learning (RL) where actions are chosen based on prior rewards in order to maximize

the overall reward.

One of the major challenges in RL is the balance between exploration (search for new

knowledge) and exploitation (use of current knowledge). RL techniques utilized in ap-

proaches like DeepMind’s Alpha Go program [52] use two separate Neural Network (NN)s

to balance this exploration-exploitation trade-off, and avoid excessive search depths slow-

ing down the decision process. Object detection during driving is a challenging task that

needs to be performed in real-time. In order to provide a proof of concept and assess

the feasibility of this approach the experiments in chapter 6 explore a faster, stochastic

scheduling approach, known as the Multi-Armed Bandit (MAB).

The process of selecting models to do object detection whilst driving is reminiscent of a

single-state Markov Decision Process (MDP) [53], consisting of:

• S, a set of environments.

• A, a set of agent actions.

• Pa(s, s
′), the probability of transitioning from state s to state s’ from action a.

• Ra(s, s
′), the reward after transitioning from state s to state s’ from action a.

The goal is to find a policy π maximizing the cumulative reward over an infinite horizon.

In the context of driving the goal is to select the models that best perform object

detection in different contexts encountered while driving from A to B. The contexts are

modelled as:

SI = {I0, I1, ..., In} (4.1)

Where I is the set of images encountered in an area, like the city or the countryside. A

drive from location A, through location B, ending in location C can be modelled as:

Chapter 4. Decentralized AI for autonomous driving 34

SA → SB → SC (4.2)

The decision process for object detection during driving is illustrated in fig. 4.1.

Figure 4.1: Markov Decision Process for object detection during driving

4.2.1 Context-Sensitive Detector

In order to utilize online learning to perform real-time predictions, the concept of using

a Context-Sensitive Detector (CSD) is presented in this thesis. The detector consists of

multiple weak models, trained on small datasets, similar to those introduced in section

4.1. Using a stochastic scheduling approach, explained in depth in section 4.2.2, the

CSD attempts to pick the current best performing model based on historical knowledge.

The idea is that the performance of each model is contextually dependent on the context

they were trained in. The goal of this thesis is to assess whether finding and exploiting

models trained on small, biased datasets can achieve similar performance to a model

trained on a larger dataset.

4.2.2 Multi-Armed Bandit

The multi-armed bandit problem is a classic Reinforcement Learning (RL) problem and

is often formalized as a single-state Markov Decision Process (MDP) [54]. Given n slot

machines (sometimes referred to as one-armed bandits) the goal is to maximize the over-

all profits without knowing the different reward distributions for each slot machine. In

order to maximize their profits, a gambler needs to find a balance between exploring (and

Chapter 4. Decentralized AI for autonomous driving 35

increasing their confidence in the distribution for a given slot machine), and exploiting

the most rewarding machine.

The periodical change in object distributions observed while driving introduces another

challenge to the CSD. Where the classic MAB problem is an example of a stationary

time-series, with the goal of finding the global maximum reward, the object detection

example presents an ever-changing environment, and needs to be treated as a non-

stationary time-series. Following is a brief introduction to the standard stationary Upper

Confidence Bound (UCB) approach, and building on that, a non-stationary approach,

using a sliding window.

4.2.3 Upper Condfidence Bound

From the introductory example in section 4.2.2 each slot machine has their own distri-

bution, and as such there should be a single distribution that maximizes the potential

reward from a sequence of plays. With each play, the confidence in the distribution for

the played machine increases and given an infinite number of plays it would be possi-

ble to identify the optimal machine. The Upper Confidence Bound (UCB) policy tries

to balance the exploration-exploitation trade-off by only playing machines whose up-

per confidence is above the lower confidence of the currently best performing machine,

illustrated in figure 4.2.

The UCB policy tries to exploit the machine that maximizes the policy reward found in

equation 4.3 [55]. If no machines are outperforming the others, the machine is selected

randomly. Mathematically the UCB policy can be expressed as:

x̄j +

√
2 ∗ lnn

nj
(4.3)

where x̄j is the average reward obtained from machine j, nj is the number of times

machine j has been played, and n is the overall number of plays so far.

Chapter 4. Decentralized AI for autonomous driving 36

Figure 4.2: Upper confidence for 4 machines. Machine 3 will not be selected as one
of the next machines

4.2.4 Sliding Window Upper Confidence Bound

While the standard UCB policy works great in a non-changing environment, it fails

when the underlying distributions start to change. As such the confidence of the algo-

rithm needs to be adjusted in real-time by looking at the distributions through a sliding

window. By using a sliding window the goal is to find a balance between exploiting his-

torical knowledge (memory), and punishing suddenly poorly performing models. This is

especially important if the car is moving from location A, through location B and back

to location A again:

SA → SB → SA (4.4)

In the above example the policy should observe a sudden performance drop when moving

into SB, and explore the other models until it finds one with better performance. When

moving back into SA again, the same thing happens, but it is important that it is able

to pick up the same model that it used during the first pass through SA. If that model is

being punished too harshly transitioning into SB, it could affect performance negatively

in the long run. In order to retain recently well-performing models, and punish suddenly

poorly performing ones, the policy is modeled as [56]:

Chapter 4. Decentralized AI for autonomous driving 37

x̄τ +B

√
ε lnmin(t, τ)

nτ
(4.5)

The experiments in chapter 6 explore how the different hyper-parameters, the discount-

ing factor (ε) and the window size (τ), affect the performance of the SW-UCB policy.

Chapter 5

Ensemble Detector experiments

and results

5.1 Main purpose and metrics

The purpose of this experiment chapter is to answer the second Research Question (RQ),

described in section 1.2. To answer the RQ, multiple experiments with the Ensemble

Detector (ED) described in section 4.1.2 are run, varying the hyper-parameters:

• Training quality, i.e. the size of the training set and the number of epochs. In Deep

Learning (DL), increasing the size of the training set and the number of epochs

generally results in better predictive accuracy (disregarding overfitting).

• Number of models in the ensemble. For the ED to be able to utilize the strengths

of the weak models, it likely needs more than just a few models in its ensemble.

• Enabled classes. Excluding certain classes from the experiments helps to simplify

the task, and make the effect of the ensemble learning more apparent.

5.2 Experiment test set

The models in the experiments were all tested on the same dataset. Preliminary experi-

ments were conducted with a dataset created by drawing a set of images from all of the

38

Chapter 5. Ensemble Detector experiments and results 39

validation sets of the models in the ensemble. One benefit of this approach is that the

dataset is drawn from the same distribution the models are validated on. However, one

or more models are guaranteed to be tested on images from their own validation set,

violating the best practice requirement of independence between the test and validation

sets.

Another problem discovered using this approach was the varying difficulty of images in

the test set, as they contain objects of different sizes, at varying distances, and with

challenging lighting. Additionally, many images are captured in motion and the objects

are blurry, occluded, or truncated. This problem became evident after testing the same

Ensemble Detector (ED) multiple times on different samples from the test set, resulting

in wildly different performance scores.

To combat this, the experiments described below were performed with a predefined,

hand-picked test set consisting of 100 images. The test set was created using a combina-

tion of distribution analysis and visual inspection, to determine a set of images without

factors that make the objects unnecessarily difficult to detect. Half of the set consists

of images taken in daylight, and half are taken in the dark.

5.3 Experiment setup

The experiments have 3 components:

• A strong model trained on 20 000 images with the intention of serving as a base-

line for comparison, as described in section 3.1.5, representing the centralized AI

approach.

• A group of weak models trained on either 500 or 1000 training images, over a

certain number of epochs.

• An Ensemble Detector (ED) consisting of all of the weak models, representing the

decentralized approach.

All of the components described above are tested on the same set of images. Their

predictions are compared with the ground truth predictions and the mean Average

Precision (mAP) (sec. 3.3.1) is computed and plotted. For each of the the groups the

Chapter 5. Ensemble Detector experiments and results 40

average mAP and standard deviation is plotted. The purpose of this is to assess whether

the ED performs better than the average weak model.

5.4 Experiments

5.4.1 Experiment 1: 5-10 models, all classes

Enabled classes: Bus, traffic light, traffic sign, person, bike, truck, motor, car, train,

rider (all).

Setup Experiment 1 is set up as an initial experiment with all 10 classes enabled

to assess how each of the different model components perform compared to each other,

setting the course for the subsequent experiments. The ensemble consists of 5-10 models,

each trained on 1000 images for 15 epochs.

Hypothesis The baseline model is expected to perform the best, and the weak models

are expected to perform poorly based on the small training set. As the number of weak

models increases, the performance of the ED is expected to follow, but stay below the

strong baseline model trained on 20 000 images.

Results A plot of each component’s performance can be seen in figure 5.1. The x-axis

shows the number of models used, and the y-axis shows the mean Average Precision

(mAP) in percentage points. The red dotted line indicates the mAP of the baseline

model, which will be independent of the number of models used (x-axis). The orange

solid line plot represents the ED’s performance, ranging from an ensemble of 5 models

up to 10 models, with a 5 model step size. The blue dotted line shows the average mAP

of the models used in the ensemble, and the shaded area shows their standard deviation.

The observed standard deviation is quite large, ranging from ∼2% mAP up to 10.5%

with a mean of 7.2% for 5 models. This is likely caused by certain objects being more

difficult to predict than others: The models have previously demonstrated difficulty

detecting smaller objects, like traffic lights or traffic signs, or objects that are far away,

like cars in the distance. Reducing the number of classes might help reduce the impact

Chapter 5. Ensemble Detector experiments and results 41

of this issue. The 20k baseline model sits just below 11% mAP which is better than

any of the individual models are able to perform on their own, but a lot worse than the

base YOLOv2 model on the COCO [23] dataset (44%) [17]. The ED is able to perform

nearly as well as the baseline and indicates a slight increase in mAP as the number of

models increases. An example of the ED’s predictions can be seen in figure 5.3a. The

detector accurately predicts the cars, and two of the lights in the image, but most of the

other predictions are not precise enough, negatively affecting its mAP.

In comparison, figure 5.3b shows the predictions of a model trained on images with at

least 1 instance of traffic lights. This model also correctly predicts some lights, and a

couple of cars, but not much else. No sign predictions are made. Lastly, figure 5.3c

shows the predictions of the baseline model which also fails at predicting traffic lights

and signs, but is more accurate than the aforementioned models on almost all other

objects.

Figure 5.2 shows the same image with the ground truth predictions drawn onto it,

showcasing how difficult the task at hand really is. Cars far away look a lot like traffic

lights, and multiple objects are so close to each other that they get occluded. To try

and reduce the complexity of the task, the subsequent experiments are performed with

fewer classes enabled.

Chapter 5. Ensemble Detector experiments and results 42

Figure 5.1: Experiment 1 mAP plot

Figure 5.2: Experiment 1 ground truth.

Chapter 5. Ensemble Detector experiments and results 43

(a) Ensemble Detector.

(b) Model trained on images with at least 1 instance of traffic lights.

(c) 20k baseline.

Figure 5.3: Experiment 1 drawn predictions.

Chapter 5. Ensemble Detector experiments and results 44

5.4.2 Experiment 2: 5-10 models, low quality training

Enabled classes: Car, truck, person.

Setup Experiment 2 is set up to evaluate models trained on a small training set

of 500 images, for only 5 epochs. The number of enabled classes has been reduced

from experiment 1, to reduce the complexity of the task and to emphasize the effects of

the ED. The classes were selected based on preliminary experiments: Traffic lights and

traffic signs were removed because the models had trouble predicting them regardless

of the size of the training set. The train class was removed merely because of its rarity:

there are only 179 instances in the entire dataset of 100 000 images [36]. The bus class

was excluded for the same reason. Motor, rider and bike were also excluded for having a

sparse presence, in addition to appearing as small objects in most occurrences, causing

the same problem as traffic lights and traffic signs.

Of the remaining 3 classes, car was kept because of its prevalence in the training set:

the class is present in ∼70% of all the images [36]. Preliminary experiments showed that

excluding it caused the models to generalize too much from similar classes like truck, and

not properly distinguish the two. The truck class was kept for the same reason. Keeping

one but excluding the other resulted in cars being predicted as trucks and the other way

around, because of their similarities. Lastly, the person class was kept because it’s the

second most common class (excluding lights and signs) and its lack of similarity with

the other classes.

Hypothesis With 3 classes instead of all 10, the performances of the baseline, the

ensemble and the weak models are all expected to increase. Simultaneously the small

training set and low number of epochs will likely decrease the performance of the weak

models. The net result is expected to be a slightly improved performance from the weak

models from experiment 1. The ED is hypothesized to be able to take advantage of

the weak models’ strengths and perform better than them, but not quite as well as the

baseline.

Results Shown in figure 5.4, the performance of the baseline model increased by

nearly 60%. The weak models, however, dropped in performance, but so did the standard

Chapter 5. Ensemble Detector experiments and results 45

deviation, confirming the hypothesis that the high standard deviation in experiment 1

was caused by certain classes being more difficult to predict than others. Surprisingly

the ED performed worst of all, at a poor 2.2% mAP for 5 models, below the average

mAP of the weak models at 4.5%. When the number of models increased to 10, the

performance of the ED increased approximately to the same value as the weak models.

To determine whether the decentralized approach (represented by the ED) is a useful

alternative to the centralized approach (represented by the baseline), experiments with

a higher number of models need to be performed, to confirm or deny that the trend

demonstrated by the ED in figure 5.4 continues. The predictions made by the models

in experiment 2 can be seen in figure 5.6.

Figure 5.4: Experiment 2 mAP plot

Chapter 5. Ensemble Detector experiments and results 46

Figure 5.5: Experiment 2 ground truth.

Chapter 5. Ensemble Detector experiments and results 47

(a) Ensemble Detector (10 models).

(b) Model trained on images with more than 3 instances of trucks and more than 3 instances

of cars.

(c) 20k baseline.

Figure 5.6: Experiment 2 drawn predictions.

Chapter 5. Ensemble Detector experiments and results 48

5.4.3 Experiment 3: 5-20 models, high quality training

Enabled classes: Car, truck, person

Setup Experiment 3 is set up with the same classes as in experiment 2, with a range

of 5 to 20 models, with a 5 model step size. EDs are constructed of the models at each

step size. The quality of the training has also been improved: Each of the models is

trained on 1000 images for 15 epochs in order to improve the performance shown in the

previous experiment. The baseline remains unchanged.

Hypothesis This experiment’s purpose is to answer the following two questions,

raised by the previous experiment:

• How does the quality of the training affect the performance of the weak models

after reducing the number of enabled classes?

• Does the mAP of the ED increase as the number of models increases?

The answer to the first question is presumed to be affirmative: Even though the number

of classes were decreased from experiment 1 to experiment 2, the performance of the

weak models dropped, presumably because of the reduced training quality. Improving

the training conditions again is expected to raise the performance beyond the results

seen in experiment 1.

More important is question 2, integral in determining whether Decentralized Autonomous

Driving (DzAD) with ensemble learning can achieve results on par with the centralized

approach. The ED’s mAP is expected to increase together with the number of models,

and approach the performance of the baseline model.

Results Figure 5.7 confirms the hypothesized answer to question 1: The mAP values

of both the weak models and the ED are higher than in both experiment 1 and 2.

Shown in figure 5.7, the mAP of the ED is not strictly monotonically increasing, but

decreases from 5 to 10 models before rising again. The explanation of this lies in how

the mean Average Precision (mAP) metric works. As explained in section 3.3.1, the

Chapter 5. Ensemble Detector experiments and results 49

mAP metric rewards True Positive (TP)s, i.e. predictions of the correct class, with

bounding boxes that overlap with the ground truth predictions’ bounding boxes with

an Intersection over Union (IoU) over 0.5. Simultaneously it punishes False Positive

(FP)s, i.e. predictions whose bounding boxes do not overlap with any of the ground

truth bounding boxes with a sufficiently high IoU value. When combining an increasing

number of weak models in an ensemble, the chance of at least one of those models

contributing with FP predictions, increases. If the prediction in question is not contested,

i.e. it has no overlapping predictions from other models, it is kept as is and not involved

in the Weighted Majority Voting (WMV). A trivial solution would be to simply remove

these standalone predictions, as in many cases they represent obvious FPs. However,

more often than not, they are correct predictions that none of the other models were

able to predict, and are important to keep in the final prediction. After all, the whole

point of the Ensemble Detector (ED) is to utilize the strengths of weak models.

This is evident when looking at the drawn predictions, for instance when comparing

figure 5.9a, showing the predictions of an ensemble of 20 models, with figure 5.9b,

showing the predictions of an ensemble of 5 models. The 5-model ED in figure 5.9b is

unable to predict the leftmost person in the image, but the 20-model ED gets it right.

At the same time figure 5.9a clearly includes more FPs for the reasons mentioned above,

like the person erroneously being predicted on the street corner between the white car

and the person in the middle.

Nonetheless, observing the performance trend of the ED with a further increase of the

number of models is of interest and the topic of the next experiment.

Chapter 5. Ensemble Detector experiments and results 50

Figure 5.7: Experiment 3 mAP plot

Figure 5.8: Experiment 3 ground truth.

Chapter 5. Ensemble Detector experiments and results 51

(a) Ensemble Detector (ensemble of 20 models).

(b) Ensemble Detector (ensemble of 5 models).

(c) 20k baseline.

Figure 5.9: Experiment 3 drawn predictions.

Chapter 5. Ensemble Detector experiments and results 52

5.4.4 Experiment 4: 5-50 models, high quality training

Enabled classes: Car, truck, person

Setup Experiment 4 is identical to experiment 3, except that the model ensembles

range from 5 all the way up to 50 models, again with a step size of 5 models.

Hypothesis The purpose of this experiment is to observe the effect of increasing the

number of models even further, and assess whether a trend can be identified, warranting

further experiments. Based on the results in, and for the reasons described in experiment

3, increasing the number of models further is not expected to provide more than a slight

increase in mAP.

Results Figure 5.10 shows the development of the mAP as the number of models

increases from 5 to 50. Similar to experiment 3, the performance of the ED does not

monotonically increase, but fluctuates between ∼11% and ∼13.5%. It does not rise any

closer to the baseline model’s performance as the ensemble grows bigger, and shows no

clear correlation with the ensemble size.

However, the ED’s mAP values stay above the average mAP (the blue line in fig. 5.10)

of the individual models for every datapoint except for one. In addition, the ED’s per-

formance sticks close to the top line of the shaded blue field indicating the standard

deviation of the weak models. This is important when considering its use in Decen-

tralized Autonomous Driving (DzAD): rather than using an ED, one could simply pick

a random model and trust its predictions. However, since the ED stays closer to the

best case scenario (top line of the shaded blue area) than the worst case (bottom line),

statistically it will perform better.

Nevertheless, the experiments do not show promising results for the performance of the

ED compared to the baseline model. The final section of this chapter summarizes the

results.

Chapter 5. Ensemble Detector experiments and results 53

Figure 5.10: Experiment 4 mAP plot

Figure 5.11: Experiment 4 ground truth.

Chapter 5. Ensemble Detector experiments and results 54

(a) Ensemble Detector.

(b) Model trained on images with more than 3 instances of trucks and more than 3 instances

of cars.

(c) 20k baseline.

Figure 5.12: Experiment 4 drawn predictions.

Chapter 5. Ensemble Detector experiments and results 55

5.5 Wrap-up

Experiments 1 through 4 show that the number, and size, of enabled classes in the

predictions matter. Certain classes are harder to get right than others, an observation

supported by section 2.1.2. Using a lower number of enabled classes, and excluding

certain objects known to be challenging, like traffic lights and signs, helps improve the

performance. The experiments show that the quality of the training of the weak models

greatly affects their performance, as well as the performance of the ensemble. Doubling

the training set size from 500 to 1000 images, and increasing the number of epochs from

5 to 15, resulted in an average mAP value nearly 3 times as high, demonstrating the

importance of data in these models. Alas, increasing the number of weak models did not

improve the mAP considerably, nor was the trend monotonically increasing. Described

in detail in experiment 3, this is primarily caused by standalone predictions becoming

more abundant as the number of models in the ensemble increases. The standalone

predictions do not overlap with any other predictions, and are therefore not involved in

the WMV. They cannot be removed altogether, because many of them are True Positive

(TP) predictions. Unfortunately some are False Positive (FP)s, with a negative effect on

the mAP score of the ensemble. Sections 7.1.2 and 7.3 in chapter 7 suggest improvements

that can be made to alleviate some of these problems.

Chapter 6

Context-Sensitive Detector

experiments and results

6.1 Main purpose and metrics

Structured similarly to chapter 5, the purpose of this experiment chapter is to answer

the third Research Question (RQ), described in section 1.2. To answer the RQ the

Context-Sensitive Detector (CSD) is run, varying the hyper-parameters:

• Training quality, as explained in section 5.1.

• Class distribution. In order to simulate driving between different locations, multi-

ple distributions of different classes are chosen, described within each experiment.

• Window Size, τ. Shown in figure 4.5, the windows size provides a leading edge

in which the rewards are considered more important than in the trailing edge.

Increasing the window size will increase the memory of the Sliding-Window UCB

(SW-UCB) policy whilst decreasing the rate at which it switches to a new model.

• Discounting Factor, ε. Shown in figure 4.5, the discounting factor is used by the

SW-UCB as a mechanism for punishing poorly performing models. Increasing the

discounting factor should ensure faster switching between models, increasing the

rate of exploration, while decreasing the rate of exploitation.

56

Chapter 6. Context-Sensitive Detector experiments and results 57

6.2 Experiment setup

The experiments consist of 4 components:

• A group of models trained on images from different distributions, for a set number

of epochs. These weak models form the foundation for the CSD’s decision process.

For each experiment the values for each parameter is mentioned in the setup. In

the resulting plots the different models are named based on their bias and the size

of the training size. For example, the model 4truck1k is trained on 1000 images

with 4 (or more) trucks in them.

• A dataset S, containing N sequences of k images (Sk1, Sk2, ..., SkN).

• A CSD policy metric (SW-UCB) with hyper-parameters, explained in section 4.2.1.

This is used to determine the currently best performing model, based on prior

performance.

• A baseline model trained on 20 000 images from the same distribution as the

models in the CSD.

6.3 Experiment plots

In order to make it easier to differentiate between the policy metrics and the performance

of the CSD, the plots in the following experiments are split in two: one plot for the policy

reward, and one for the F1-score, explained in section 4.2.1 and 3.3.2, respectively.

The x-axis shows the image number in the distribution sequence, and functions as a

time indicator. If a person drives from the city (location A), through the countryside

(location B), and back to the city again, the x-axis presents their progress throughout

that drive.

For each model, the F1-score is plotted, and the overall performance of the CSD can

be found by looking at the uppermost plot for any given x-value. Plotting the models

in this way yields a better understanding of what is going on behind the scenes, and

illustrates the selection process of the CSD.

Chapter 6. Context-Sensitive Detector experiments and results 58

Along with the models, the baseline plot for the 20k model is plotted. This illustrates

how the CSD, consisting of multiple weak models, performs, compared to a strong model.

6.4 Experiments

6.4.1 Experiment 1: 2 models, easily discoverable context

Enabled classes: Car, truck, person.

Setup Experiment 1 is set up as a baseline comparison experiment, using the best

hyper-parameters found in preliminary experiments. This is done to provide an intuition

for how the CSD approach works, and how the other experiments differ.

The distributed dataset is defined as:

S500truck → S1000person → S500truck (6.1)

Furthermore, the 2 models used in this experiment are trained on 1000 images over 15

epochs with a bias of 4 or more trucks, and 8 or more pedestrians. A window size (τ)

of 20, and a discounting factor (ε) of 0.5 was used.

Hypothesis The baseline model was expected to be superior to the CSD, simply due

to the different training set sizes (20 000 images compared to 2×1000 images). However,

the CSD was expected to detect the switching between the different contexts and select

the best performing model accordingly. As such the hypothesis was that the 4truck1k

model would be used for predictions on the first 500 images, the 8person1k model would

be used for the following 1000 images, and the 4truck1k model would again be used for

the last 500 images.

Results A plot of the resulting performance can be seen in figure 6.1. It demon-

strates an ideal scenario where the detector is able to easily differentiate between the

performance of the truck biased model, and the person biased model. This is shown in

Chapter 6. Context-Sensitive Detector experiments and results 59

the rapid detection (and subsequent switching of models) of the underlying context seen

around both the 500 and the 1500 mark.

A thing to note (which is also apparent in all the following experiments) is the cold start

problem observed in the CSD. Seen in the first 20-30 points along the x-axis, the CSD

struggles to determine the best performer in the beginning, due to the lack of historical

data. This causes a small drop in performance, compared to the baseline model.

Around the 250 mark there is a sudden dip in the performance of the 4truck1k model,

and after using the 8person1k model for a number of images it becomes evident that the

first classifier is still the best performer, and the CSD switches back to this. This can

be seen in both the policy reward and the following F1-score.

Also evident is the slight delay in the switching around both the 500 and the 1500

mark. The switching seems to occur about 20 units after the introduction of the new

distribution, which could stem from using a window size (τ) of 20. The effect of changing

the window size is explored more in experiment 4.

Perhaps the most surprising discovery is the difference between the CSD performance

and the 20k baseline. Table 6.1 shows the overall mAP score for experiment 1. Com-

paratively the score for the 20k baseline on the same dataset is 20.54%. The majority

of the performance difference stems from the switching between the models, shown in

figure 6.1.

mAP [%]
τ
20

ε 0.5 18.94

Table 6.1: mAP results for experiment 1

6.4.2 Experiment 2: 8 models, challenging class selection

Enabled classes: Bus, traffic light, traffic sign, person, bike, truck, motor, car, train,

rider (all).

Setup After seeing the performance of the CSD on two clearly distinguishable models,

this experiment attempts to introduce a more challenging scenario. Separate models are

trained on datasets biased towards each class. No models trained solely on cars were

Chapter 6. Context-Sensitive Detector experiments and results 60

Figure 6.1: Experiment 1 Policy & Reward

included, to avoid any one model trying to overpower the others. This is due to the fact

that most images in the BDD dataset contain one or more cars [36].

The dataset, now containing all classes, consists of:

S500bike → S500bus → S500motorcycle → S500sign →

S500light → S100train → S500truck → S500person

(6.2)

Hypothesis With the introduction of more classes, some of them being inherently

difficult to detect by the models, as explained in section 2.1, it is reasonable to assume

that the CSD will have a harder time discovering the bias of each model. Using the

F1 score as the performance metric exposes the danger of models like the 12sign1k or

12light1k overpowering other models based on the number of objects they are able to

predict.

Compared to the 20k baseline, the CSD in this experiment is expected to perform rather

poorly due to the increased complexity in the distribution.

Chapter 6. Context-Sensitive Detector experiments and results 61

Results With the introduction of smaller objects like traffic lights and traffic signs,

it is evident that both the 20k baseline model and the CSD show significant drops in

performance. The F1-scores, on average, range from 25 to 35, compared to 40 to 50 in

the previous experiment. As explained in section 2.1 this is partly caused by the YOLO

network’s poor performance when it comes to detecting small objects. As such, part

of the overall performance drop might stem from this. This becomes apparent when

comparing the CSD performance, shown in table 6.2, to the baseline performance of

∼ 7.5%.

mAP [%]
τ
20

ε 0.5 5.32

Table 6.2: mAP results for experiment 2

Looking at the first 500 images there are some interesting observations to be made. The

distribution here contains images with more than 2 bicycles. These objects are often

small and difficult to identify, and are usually accompanied by people, traffic lights, etc.

It is therefore not surprising that the CSD is having a hard time determining the best

performing model. However, the first two spikes seen in figure 6.2 stem from selecting

the 2bike1k model, and the third spike from the 1motorcycle1k model. The last spike

observed on the bicycle distribution comes from the 12person1k model, which again

stands to reason, as most bicycles are accompanied by a person, as seen in figure 6.3.

From the 500 to the 1500 mark, there are three spikes, stemming from the predictions

from 3 different models: 12light1k, 2bus1k, and 1motorcycle1k. The underlying distri-

butions are shown in equation 6.3. Interestingly, the CSD discovers the correct models

for the sequence of images, but in the wrong order. A plausible explanation for this is

that the content of the distributions and the images the 3 models have been trained on,

contain many similar objects. Figure 6.4 shows this to some extent, where the model is

able to predict the motorcycle and rider (two objects), and 4 lights (where two of them

are probable correct predictions).

S500bus → S500motorcycle → S500sign (6.3)

Chapter 6. Context-Sensitive Detector experiments and results 62

A notable concern with this experiment is that the 12sign1k model seems to become

dominant in the latter half of the distribution, even though the underlying distributions

here, consist of:

S500sign → S500light → S100train → S500truck → S500person (6.4)

A likely cause of this is that most of the above distributions contain multiple objects, and

that the F1-score does not separate between classes, but simply uses the true and false

positives as its underlying metrics. From the distributions it is also true that images

containing signs, lights and people (in particular) often contain multiple instances of

that type (eg. 5 signs or 10 people).

However, the predictions throughout the experiment seem to follow the baseline dataset

decently, only lagging 4− 8% behind. This is surprising, based on the complexity of the

distribution. One important takeaway from this experiment is that the different objects

often appear in clusters (riders, motorcycles, lights, etc.), making it difficult for the CSD

to accurately discover the underlying object distribution.

Figure 6.2: Experiment 2 Policy & Reward

Chapter 6. Context-Sensitive Detector experiments and results 63

Figure 6.3: 2bike1k observation, as selected by the CSD

Figure 6.4: 1motorcycle1k observation, as selected by the CSD

6.4.3 Experiment 3: 4 models, additional models available

Enabled classes: Car, truck, person.

Setup Following the results of experiment 2 this experiment reduces the number of

enabled classes, back to the same distribution found in experiment 1. This is done

in order to assess the CSD’s ability to achieve similar predictions to those found in

experiment 1, using a wider selection of models.

The dataset distribution is equal to that of experiment 1, found in equation 6.1. In

order to maintain the same number of available images for the underlying models, and

Chapter 6. Context-Sensitive Detector experiments and results 64

assert the Upper Confidence Bound (UCB)’s accuracy when the individual models’ per-

formance decreases, the models are trained on 500 images. The available models are:

4truck500, 3truck500, 10person500, and 6person500.

Hypothesis By increasing the number of available models, the CSD should be able

to rapidly detect the best performing model, similar to what was seen in experiment 1.

However, by introducing more models as a fallback, the CSD should be able to avoid the

unfortunate switching that occurs if the model experiences a brief dip in performance.

The goal is to avoid the effects of these events, like the one appearing around the 250

mark in experiment 1.

Results From the results seen in figure 6.5 it is evident that increasing the number

of available models achieves a performance similar to that of experiment 1. When

comparing the mAP in table 6.3 to the mAP from experiment 1 (table 6.1) and the

mAP of the 20k model of 20.54%, it is apparent that the increase in the number of

available models introduces a bit of noise. Most notable is the noise in the beginning of

the predictions where the CSD has to establish a base performance for multiple models.

mAP [%]
τ
20

ε 0.5 14.95

Table 6.3: mAP results for experiment 3

The switching phases visible around both the 500 and the 1500 mark in figure 6.5, do

not seem to cause any notable performance hits. This showcases the CSD’s ability to

accurately select well performing models. However, as the 10person500 and 6person500

models both perform quite well on pedestrian predictions, the CSD incidentally selects

the 6person500 model and sticks with it. This is unfortunate as it is likely that the

performance of the 10person500 model would be superior due to its heavier bias.

Having two truck classifiers in the model pool of the CSD causes switching in both of

the truck distributions (the 500 images at the beginning and the 500 images at the end).

As both models perform rather well on truck images, the sudden drop in performance

from one causes the CSD to switch to the other truck classifier, and the noise at both

the 250 and the 1700 mark causes some performance loss in the overall mAP.

Chapter 6. Context-Sensitive Detector experiments and results 65

Lastly, part of the performance drop stems from the reduced performance of the indi-

vidual models, simply due to the fact that they are trained on smaller datasets (500

images, compared to 1000 images in experiment 1). However, by halving the training

sets, the CSD sees a drop in performance of only 21%, emphasizing the CSDs ability to

utilize the strengths of individually weak models.

Figure 6.5: Experiment 3 Policy & Reward

6.4.4 Experiment 4: 2 models, changing the window size

Enabled classes: Car, truck, person.

Setup After testing different CSD configurations, the following 2 experiments look

at the effect of changing the hyper-parameters (τ and ε). Using the same models and

dataset distribution found in experiment 1, experiment 4 looks at both increasing and

decreasing the window size of the Sliding-Window UCB (SW-UCB) policy. By doing so

the goal is to establish how the change in window size affects the CSD’s performance.

Chapter 6. Context-Sensitive Detector experiments and results 66

In order to assess how both widening and narrowing the window size affects performance,

the experiment is run with a window size of 200 (10x baseline) and 5 (1/4th of the

baseline).

Hypothesis By increasing the window size, the CSD is expected to retain perfor-

mance scores longer, leading to slower switching between different models, and perhaps

a more stable model selection.

Contrarily, the narrower window should cause faster switching and potentially more

noisy performance. The narrower window should also increase the frequency at which

the CSD explores new models and picks up previously under-performing models.

Results Table 6.4 shows the mAP for the two experiments. There is a rather steep

drop in performance, compared to both experiment 1 and experiment 3, which were run

on the same image distributions.

mAP [%]
τ

5 200

ε 0.5 4.84 8.44

Table 6.4: mAP results for experiment 4

Reducing the window size, the resulting plot seen in figure 6.6, causes the CSD’s memory

to vanish quicker, causing abrupt switching when consecutive performance drops occur.

This results in noisy performance on the first 500 images, but most importantly, it causes

a drop in the policy score of the 4truck1k model, preventing the model from being picked

up in the last 500 images. Evident around the 1500 mark, the 8person1k model sees a

drop in performance, but due to the narrow window the drop is not enough to cause the

CSD to explore other models.

On the other hand increasing the window size causes a significant performance boost,

with a 75% higher mAP score compared to the window size reduction, shown in table

6.4. However, compared to the results in experiment 1 this is again rather low. Evident

in the resulting plot, shown in figure 6.7, the wider window causes very noisy switching

conditions, seen around the 500 mark. This stems from the CSD attempting to exploit

the 4truck1k model. The poor performance can be observed in the F1 score of the

4truck1k model around the 650, 750 and the 1000 marks.

Chapter 6. Context-Sensitive Detector experiments and results 67

Interestingly the switching around the 1500 mark causes little noise, largely due to the

8person1k model’s terrible performance detecting trucks.

Figure 6.6: Experiment 4 Policy & Reward - tau 5

Figure 6.7: Experiment 4 Policy & Reward - tau 200

Chapter 6. Context-Sensitive Detector experiments and results 68

6.4.5 Experiment 5: 2 models, changing the discounting factor

Enabled classes: Car, truck, person.

Setup Similar to the test setup in experiment 4, this experiment explores how the

change in the discounting factor (ε) affects the decisions made by the CSD. The dataset

distribution and models remain the same as in experiment 1, 3, and 4.

In order to test both positive and negative changes in discounting factors, the experiment

is tested on ε values of 5 (10x baseline) and 0.05 (1/10th of the baseline).

Hypothesis By changing the discounting factor the rate at which the CSD punishes

suddenly poor performing models, should change. Decreasing the discounting factor (to

0.05) should lead to the CSD picking up a new model after less of a decline in the policy

reward, and increasing the discounting factor (to 5) should lead to a more stable model

selection.

Extending on that, using a discounting factor that is too low encourages more exploration

and could cause a performance loss as it discards models too quickly after observing only

a few poor predictions. Subsequently, using a too high discounting factor encourages

more exploitation and could similarly cause performance loss by allowing previously

good performers to continue to make their best effort predictions.

Results Shown in figure 6.8, the increased discounting factor causes a drop in the

policy reward from the 500 mark, to around 1100. The slightly lower policy reward makes

it evident that the CSD allows the 4truck1k to perform poorly due to its previously good

performance. It is not until another performance dip that the 8person1k model is picked

up again. Apparent from the policy reward is the 8person1k model’s ability to perform

truck predictions, as the switch around the 1500 mark happens almost immediately.

This is due to the fact that the 4truck1k model is decent at predicting pedestrians, but

the 8person1k is struggling when it comes to predicting trucks. This is not surprising as

there are more images containing pedestrians than trucks in the BDD dataset, making

it easier to train a model on images with pedestrians and without trucks, but difficult

to train a model on trucks without any pedestrians.

Chapter 6. Context-Sensitive Detector experiments and results 69

The resulting mAP scores can be seen in table 6.5, reaching a similar performance to

the one seen in experiment 3. Comparing this to the results from experiment 4, shown

in table 6.4, emphasizes the importance of selecting the appropriate window size, in

accordance with the underlying dataset.

mAP [%]
τ
20

ε
0.05 14.25

5 13.08

Table 6.5: mAP results for experiment 5

Figure 6.9 demonstrates a lower discounting factor, and the overall performance of the

CSD. An interesting point to be made here is the drawn out switching happening around

the 500 mark. This could be due to the combination of the low discounting factor, and

the narrow window, making it difficult for the CSD to decisively pick up the 8person1k

model.

There is also a second performance anomaly around the 800 mark stemming from a

couple of bad predictions made by the 8person1k model. However, the performance of

the 4truck1k model is not as good as previously observed, and the CSD switches back

after about 100 iterations.

6.5 Wrap-up

Experiments 1 through 5 show how the training quality, class distributions, window

size, and discounting factor affect the Context-Sensitive Detector (CSD). Similar to the

results from the Ensemble Detector (ED) experiments, and supported by section 2.3, it

is evident that excluding certain classes has a positive effect on the performance of the

CSD.

The presented methodology displays robustness to the changing quality of the under-

lying models, with only a small performance drop observed between experiment 1 and

3. Experiments 4 and 5 showcase the importance of proper hyper-parameter tuning,

and how the balancing of exploration and exploitation remains an integral problem in

Reinforcement Learning (RL).

Chapter 6. Context-Sensitive Detector experiments and results 70

Figure 6.8: Experiment 5 Policy & Reward - epsilon 0.05

Figure 6.9: Experiment 5 Policy & Reward - epsilon 5

Chapter 6. Context-Sensitive Detector experiments and results 71

However, observations from experiment 1 present promising results regarding the ap-

plicability of context-sensitive decision-making in Deep Learning (DL). The findings in

this chapter also laid the foundation for an article written by the authors of the thesis,

further discussed in section 7.4, and presented in full in appendix C.

Challenges and ideas for improvement related to the CSD-approach are further explored

in section 7.3.

Chapter 7

Discussion and future work

Chapter 7 provides answers to the Research Question (RQ)s posed in section 1.2, and

presents afterthoughts on what could have been done differently, before suggesting ideas

for future work.

7.1 Answers to the research questions

7.1.1 RQ1 - Decentralized Artificial Intelligence

Question: What advantages and disadvantages does Decentralized Artificial Intelli-

gence (DzAI) bring to autonomous driving?

Described in chapter 4, there are multiple approaches to Decentralized Artificial Intelli-

gence (DzAI). The applicability and viability of these approaches are discussed in depth

in their respective sections (sec. 7.1.2 and 7.1.3).

The ongoing race towards fully autonomous vehicles is driven by large technology com-

panies like Tesla, and Waymo. At the core of their dominance is their access to large

amounts of image and sensor data, having driven millions of miles. In the Deep Learn-

ing (DL) field, the more data companies are able to gather, the more likely they are

to prevail. The methods proposed in this thesis present alternative approaches to the

acquisition and treatment of image data related to autonomous driving, through the use

of a Decentralized Autonomous Driving (DzAD) network. The presented DzAD network

makes more models, and by extension data, available. Not only does the amount of data

72

Chapter 7. Discussion and future work 73

available increase, a decentralized network also makes it possible for drivers all over the

world to participate, resulting in more diverse data. Finally, the increased availabil-

ity of data can help smaller companies, researchers and other participants with limited

resources join the race.

Privacy is one of the other major benefits achieved through the DzAD network. When

training is performed locally (on the edge), without the data leaving the source, and

only the models are transmitted over the network, little to no residual information can

be traced back to the source. By not being asked to directly share private information

related to their driving habits, the willingness of the public to participate increases,

supported by the results of the survey presented in section 2.4.

However, a drawback of training models on small, distributed datasets is the loss of

accuracy. Due to the potential implications of an AI making bad decisions while con-

trolling a vehicle, this is of the utmost importance. The benefits of increased privacy are

easily negated by the potential loss of lives, injuries and harm to infrastructure. Section

7.3 proposes solutions to some of these problems, and how to make DzAI viable in real

world applications.

7.1.2 RQ2 - Ensemble Detector

Question: Can a collection of weak Deep Learning (DL) object detectors be combined

to perform as well as, or better than, a strong DL object detector?

Weak models can be combined in many ways to increase their collective performance.

Chapter 4.1.2 describes an Ensemble Detector (ED) as one possible technique for com-

bining a collection of models. The ED fuses the strengths of multiple models by per-

forming Weighted Majority Voting (WMV) on a per-object basis. Chapter 5 describes 4

experiments that explore the performance of such a technique in different scenarios, and

whether parameters can be tuned to achieve performance similar to that of a centralized

approach.

The results show that the centralized approach still outperforms the decentralized ap-

proach in terms of mean Average Precision (mAP). The ED fails to achieve the same

level of accuracy as the baseline model. Additionally it was evident that the quality of

the training of the weak models had a great effect on their, and by extension the ED’s,

Chapter 7. Discussion and future work 74

performance. Decentralized Autonomous Driving (DzAD) revolves around using small

amounts of data from many different sources, which limits the training of the models.

Based on the results from the survey described in section 2.4, the average person is

hesitant to spend a lot of time to annotate and label images captured while driving.

Experiment 3 in section 5.4.3 indicates that a model needs to be trained on at least

1000 images to be able to perform decently. Based on the payment expected by the

participants (sec. 2.4), it is unlikely that enough participants will be willing to annotate

enough training images for a feasible price. The price is important because there are

several existing, centralized solutions for collecting annotated data for Computer Vision

(CV), like Mighty AI [57] or Amazon Mechanical Turk [58]. Both of these services use

real people to annotate images for use in CV.

The experiments show that the ED is unable to compete with the baseline model on

performance, and the price people are willing to accept for annotating images is rather

high, based on the survey. Thus the conclusion is that a DzAD solution using the ED is

not suitable to compete with centralized solutions currently available, at least without

additional experimentation and tuning.

However, a decentralized approach brings other advantages, and could be utilized in a

hybrid approach with the current centralized solutions. While the datasets that par-

ticipants in the DzAD network are expected to provide are too small to be able to

train accurate models, they can be used in order to create more diverse models. The

vast amount of training data gathered for self-driving cars today is gathered in the

United States (US) [36]. Traffic in a country like Norway is very different, in terms of

landscape, road design, lane structure, sign layouts etc. A hybrid approach could be

developed where diverse data is gathered from cars all over the world, annotated and

labeled by services like Mighty AI and Amazon Mechanical Turk, and used to train

centralized models.

7.1.3 RQ3 - Context-Sensitive Detector

Question: Can detection and exploitation of bias in weak Deep Learning (DL) object

detectors, in a context-dependent environment, outperform strong context-agnostic DL

object detectors?

Chapter 7. Discussion and future work 75

The results from the experiments in chapter 6 show the usefulness of being able to select

the best performing Machine Learning (ML) models, based on context. However, as

demonstrated by the experiments, the degree of usefulness in terms of performance, is

highly dependent on the underlying context and hyper-parameter tuning.

The results from experiment 1, which shows the CSD functioning optimally, show how

weaker models can be combined in order to reach performance on-par with, and some-

times even better than, the 20k baseline model. However, the overall performance loss

experienced in the switching phases makes the overall performance slightly worse than

that of the baseline model. This is even more evident when the underlying context is

hard to distinguish, as seen in experiment 2.

Context is very important in human decision-making. Subconscious decisions are con-

stantly made, based on the context the decision is made in. The CSD-approach mixes

computers’ and humans’ decision making processes. The method displays potential in

making context dependent decisions using local experts, rather than striving for a global

expert.

The CSD-approach shows potential, and ideas for improvements are introduced and

discussed in section 7.3. Even with little effort in optimizing for performance, the CSD-

approach achieves speed comparable to that of the You Only Look Once (YOLO) net-

work, running at about 15 FPS on a Pascal GTX 1080 GPU. However, there are some

caveats, such as the importance of selecting sufficiently distinguishable features in order

to make the different distributions discoverable.

7.2 Challenges

A repeated topic throughout the thesis is the YOLO network’s struggle to detect smaller

objects. Many of the images in the Berkeley DeepDrive (BDD) dataset contain complex

collections of objects, as depicted in figure 7.1. Some of the objects are inherently

small and difficult to detect, like signs and traffic lights. Other objects are far away,

appearing small, making abstractions very hard for the model. For instance, the car in

the far distance in the middle of the image in figure 7.1 is rather similar to a traffic light.

Chapter 7. Discussion and future work 76

Figure 7.1: Ground truth for an image from the BDD dataset

The true ramifications of this fact were first discovered at the experimentation stage, at

which point adjustments were made, as explained in the experiment chapters. Ideally

this would have been caught earlier, allowing for the selection of a different, simpler

dataset, or a more appropriate CNN architecture. This would likely yield better overall

mAP scores throughout the experiments.

A different approach to this could be to rate or filter the objects based on a distance met-

ric. By removing, or reducing the importance of, objects more than a set distance away

(perhaps based on the current speed of the car), the mAP of the models is hypothesized

to improve significantly.

At the same time, the challenges accurately depict the complexity of the task. Real-time

object detection remains the focal point for a lot of large tech companies, signifying its

intricacies.

7.3 Future work

Following the answers to the research questions and the subsequent challenges, it is evi-

dent that the methodologies show promise, however there is room for improvement. The

following sections examine different ideas for the continued exploration of the approaches

proposed in this thesis.

Chapter 7. Discussion and future work 77

7.3.1 Complete network training

The Convolutional Neural Network (CNN)s used in this thesis use pre-trained weights

and transfer learning to only tune the weights of the last 2 layers of the network. This

reduces the training time significantly, enabling training of a large number of models

with different parameters and configurations, facilitating rapid prototyping. The models

served their purpose perfectly by allowing many experiments to be performed, revealing

trends and guiding future experiments. Training the entire network from scratch could

have increased the performance of the models, but requires more time and resources

allocated to the training process.

7.3.2 Reinforcement Learning

Building on the promising results from the CSD experiments, a more dynamic approach

to hyper-parameter tuning could be a promising step forward. Building a Deep Rein-

forcement Learning (DRL) network [59] can provide additional flexibility to the CSD.

Using a modern approach to Q-learning, Deep Double Q-learning [60] can enable a more

dynamic rate of adaptation, by allowing the network to learn a new model selection

policy, rather than using a hyper-parameter tuned, pre-defined policy.

7.3.3 Distribution selection

The experiments run in chapter 6 make it clear that there is a significant performance

difference between the easily distinguishable objects (experiment 1), and the not so

easily distinguishable ones (experiment 2). Not only does the mAP score overall take a

solid hit, but the model selection performed by the CSD becomes poorer. As such the

use of sufficiently distinguishable contextual identifiers cannot be understated.

Because of this, the exploration of different labels as the distinguishable factor is pro-

posed as future research. Rather than using the classes directly as the deciding contex-

tual metric, a proposed solution would be the use of meta-information, also present in

the BDD dataset: weather, scene, and time of day. This could prove to be a better fac-

tor for determining the contextual performance of the underlying models. They would

then be trained with this in mind, with models specialized for snowy, windy, and foggy

conditions, to name a few.

Chapter 7. Discussion and future work 78

All the dataset’s available attributes can be seen in appendix B.

7.3.4 A combined approach

The experiments in chapter 5 show the potential in combining multiple models in order

to improve their collective performance. Chapter 6 on the other hand, shows the poten-

tial in using multiple, specialized models in order to improve performance by allowing

context-aware overfitting, and selecting models accordingly.

By combining the two approaches, creating one model that is able to generalize well

over most driving scenarios, and using a CSD-approach to perform context-based model

selection, the performance loss experienced while switching between models could be

reduced. An approach like this could allow even more specialized models, potentially

increasing performance.

7.3.5 Alternative ensemble learning methods

The Ensemble Detector (ED) used in the thesis uses Weighted Majority Voting (WMV)

to combine the predictions of the models in the ensemble. Described in more detail in

section 4.1.3, the detector performs WMV on each predicted object in the image, using

the confidence scores as the weights. To alleviate some of the issues discovered in the

experiments, alternative approaches can be explored. In their paper on R-FCN Object

Detection Ensemble based on Object Resolution and Image Quality, Rasmussen, Nasrol-

lahi and Moeslund describe a way to perform weighted averaging where the weights are

distributed evenly across 5 different types of factors [61]. Examples of factors used in

Rasmussen’s paper include object color, texture, shape and size. For the task at hand

in this thesis, factors could include object shape and size to potentially mitigate some

of the problems involved with detecting distant and/or small objects.

Another technique to try is the regular Weighted Majority Algorithm (WMA), where

each model is given an initial weight (or 1 per class), and the ensemble is trained on

a training set where the models’ weights are decreased when they contribute to an

incorrect ensemble prediction. A challenge with this approach is that it is not trivial to

design a metric for deciding how much one model’s weight should be reduced compared

Chapter 7. Discussion and future work 79

to another’s, when the task is object detection rather than classification. Additionally,

experiments in [12] show little benefit of this approach.

Finally, performing complete network training as described in section 7.3.1 is another

option that is likely to boost the performance of any ensemble approach.

7.4 Article

Based on the promising results from the experiments in chapter 6, an article was writ-

ten. It presents the usage of a Context-Sensitive Detector (CSD)-approach to perform

contextual model selection in Computer Vision (CV), and can be found in its entirety

in appendix C.

The article was submitted to the ICoIAS 2019 conference [62] on January 5th, and was

accepted for publication.

Appendix A

Survey

A.1 Survey questions

1. Are you familiar with the concept of self-driving cars?

2. For the right compensation, would you be open to mounting a (free) camera on

your car, that takes pictures at regular intervals and anonymously shares them

with self-driving car companies?

3. For which price, per hour of driving, would you be willing to perform this service?

4. These pictures are more valuable if they are labeled. For which price, per picture,

would you be willing to label the pictures taken by the camera on your car? Assume

that labeling one picture takes between 1 and 2 minutes.

5. In light of your answers to the questions above, how much time a week would

you be willing to spend labeling the pictures? Assume that you have access to an

easy-to-use labeling tool.

6. Even though we claim that the data will be anonymous, would you be worried

that it can be linked to you personally?

7. Would you be worried that by sharing your data, you could risk getting punished

for driving too fast, driving illegal routes etc.?

8. How old are you?

80

Chapter 7. Discussion and future work 81

A.2 Survey results

Figure A.1: Question 1.

Figure A.2: Question 2.

Chapter 7. Discussion and future work 82

Figure A.3: Question 3.

Figure A.4: Question 4.

Chapter 7. Discussion and future work 83

Figure A.5: Question 5.

Figure A.6: Question 6.

Chapter 7. Discussion and future work 84

Figure A.7: Question 7.

Figure A.8: Question 8.

Appendix B

Berkeley DeepDrive

B.1 Label format

- name: string

- url: string

- videoName: string (optional)

- attributes:

- weather: "rainy|snowy|clear|overcast|undefined|partly cloudy|foggy"

- scene: "tunnel|residential|parking lot|undefined|city street|gas stations

|highway|"

- timeofday: "daytime|night|dawn/dusk|undefined"

- intrinsics

- focal: [x, y]

- center: [x, y]

- nearClip:

- extrinsics

- location

- rotation

- timestamp: int64 (epoch time ms)

- index: int (optional, frame index in this video)

- labels []:

- id: int32

- category: string (classification)

85

Chapter 7. Discussion and future work 86

- manualShape: boolean (whether the shape of the label is

created or modified manually)

- manualAttributes: boolean (whether the attribute of the label is

created or modified manually)

- attributes:

- occluded: boolean

- truncated: boolean

- trafficLightColor: "red|green|yellow|none"

- areaType: "direct | alternative" (for driving area)

- laneDirection: "parallel|vertical" (for lanes)

- laneStyle: "solid | dashed" (for lanes)

- laneTypes: (for lanes)

- box2d:

- x1: float

- y1: float

- x2: float

- y2: float

- box3d:

- alpha: (observation angle if there is a 2D view)

- orientation: (3D orientation of the bounding box, used for 3D point

cloud annotation)

- location: (3D point, x, y, z, center of the box)

- dimension: (3D point, height, width, length)

- poly2d: an array of objects, with the structure

- vertices: [][]float (list of 2-tuples [x, y])

- types: string (each character corresponds to the type of the

vertex with the same index in vertices. ‘L’ for vertex and ‘C’

for control point of a bezier curve.

- closed: boolean (closed for polygon and otherwise for path)

Appendix C

Article

The following article was submitted to the ICoIAS 2019 conference [62] on January 5th,

and was accepted for publication.

87

A Novel Decentralized Approach to Autonomous Driving

Marius Maaland
Department of Computer Science

Norwegian University of
Technology and Science (NTNU)

Trondheim, Norway
mariuama@stud.ntnu.no

Hai Thanh Nguyen
Department of Computer Science

Norwegian University of
Technology and Science (NTNU)

Trondheim, Norway
hai.nguyen@ntnu.no

Anders K. Kirkeby
Department of Computer Science

Norwegian University of
Technology and Science (NTNU)

Trondheim, Norway
andeki@stud.ntnu.no

Pinar Öztürk
Department of Computer Science

Norwegian University of
Technology and Science (NTNU)

Trondheim, Norway
pinar@ntnu.no

Abstract— Autonomous vehicles are improving at a rapid
pace, caused by numerous technology companies joining the
race. However, current approaches rely on centrally trained
models, which has some limitations. Gathering diverse data
from different areas like urban cities or rural towns, ideally
from different countries, is expensive and difficult, even for
large tech companies like Google and Tesla. This results in
large amounts of training data for self-driving cars being
recorded primarily in sunny climates on the United States’ west
coast, on wide, multi-lane roads, with a specific sign scheme.
However, with advances in the field of Internet of Things, an
increasing rate of diverse, distributed data is available. Paired
with the implementation of the European Union’s General Data
Protection Regulation granting people ownership of their own
data, and the right to share it as they like, a decentralized
approach can make more diverse training data available to
train models for autonomous vehicles. This paper proposes a
new paradigm for how data is gathered for object detectors,
and how they are distributed and applied in self-driving cars.
We describe a decentralized network where the edges of the
network are used to gather data from individual participants,
and also to train the models locally. The models will be biased
based on the context they were trained with, like urban areas
with many pedestrians, or rural areas with many truck. An
autonomous vehicle on the network can choose the best detector
for the current context it find itself in, using a context-aware
reinforcement learning approach named a Context-Sensitive
Detector. The method allows for rapid switching between
models, in a constantly changing environment, and has been
tested on images from the Berkeley DeepDrive dataset, showing
promising results.

Keywords; decentralized artificial intelligence, autonomous
driving, convolutional neural networks.

I. INTRODUCTION

Conventional Artificial Intelligence (AI) follows a central-
ized distribution pattern where one organization is in charge
of all the steps of the Machine Learning (ML) process.
Contrasting that is Decentralized AI (DzAI), where learning
is a collaborative solution solved by a distributed group of

participants. It is important to distinguish DzAI to distributed
AI (DAI). In DAI agents work together to accomplish a
global task, whereas in DzAI they collaborate in order to
achieve their own task.

The notion of DzAI is nothing new [1], but has regained
traction in the last couple of years. Centralized AI, especially
in the context of autonomous driving, suffers from multiple
problems in its current state:

• Most large companies working on autonomous driving
technology gather their data close to their own head-
quarters, usually on the west coast of the U.S. This
does not result in diverse data.

• Lack of trust as seen in the recent uproar concerning the
political influence of tech giants like Facebook, Google,
and Amazon. This is largely related to the lack of
transparency regarding the nature, quantity and security
of data that these companies gather.

• Also suffering is the price/availability ratio of AI. With
great potential benefits for businesses, the demand for
good datasets, and engineers to work with them, is
in high demand. Unfortunately this demand outstrips
the supply [2], and as such state-of-the-art AI is only
available to larger, resourceful companies with rich
datasets.

The implementation of the European Union (EU)’s General
Data Protection Regulation (GDPR) [3] granted people ac-
cess to their own data. However, there are currently no viable
options for utilizing these small individual datasets without
sacrificing privacy, and as such the power of information
still lies with the big companies, rather than the consumers.
Combined with advances in the field of Internet of Things
(IoT) the amount of distributed data is growing at an in-
creasing rate, but lacking of any mechanisms to protect the
interests of the owners of this information. In order to assess

people’s willingness to participate in a decentralized network
sharing such data we ran a survey. The survey was published
on the campus of the Norwegian University of Science and
Technology (NTNU) and online on forums related to ML
and data gathering. It received a total of 791 responses, the
majority of which were from people between the ages of 18
and 30 years old. Just under 90% of the participants said that
they would be willing to gather and share images from their
driving to improve self-driving cars, for the right price. Of
these 90%, about 60% indicated that would be worried about
their privacy when sharing such data, even though they were
still willing to share it.

This paper proposes a new paradigm for the data gathering
for AI models, and how they can be used by autonomous
vehicles in a decentralized network. Not only is data gathered
at the edge of the network, the models are trained there
as well. The agents in the network proposed in this paper
are Deep Learning (DL) models trained to perform object
detection in images, for use in autonomous driving. The
images might include multiple objects of different classes,
like car, person or traffic light.

The object detectors in the network are trained by in-
dividual users, and will be biased based on the context
they are trained in. In other words, an agent who gathers
data in an urban environment will train a model that is
better at detecting persons than trucks. Autonomous vehi-
cles in the network can choose the best detector available
for its current environment, e.g. a city centre, or a rural
highway. To make this choice we propose an approach
based on context-awareness, using reinforcement learning.
The approach is called a Context-Sensitive Detector (CSD),
and allows rapid switching between models, in a constantly
changing environment. By understanding the performance of
the models comprising the CSD, the model with the current
best performance can be selected and exploited. Section
V shows experiments run with the CSD on the Berkeley
DeepDrive (BDD) dataset [4], with promising results.

II. DECENTRALIZED AUTONOMOUS DRIVING

A. Advantages and disadvantages

Like any other AI method, DzAI in autonomous vehicles
has both advantages and disadvantages. It is important to
assemble a list of these pros and cons, and map how they
might influence the practical viability of such a system. The
possible advantages and disadvantages are too numerous to
feasibly explore in a single paper. Based on importance, a
select few have thus been chosen, described below.

Possible advantages of DzAI in autonomous vehicles:
• Improved preservation of privacy. With the intro-

duction of GDPR, people will have stronger rights to
their data, and can be encouraged or incentivized to
share it. Transmitting encrypted and anonymous trained
models instead of raw data will reduce the risk of
theft and unauthorized eavesdropping. Not transmitting
raw data greatly reduces the risk of exposing sensitive
information, which in turn will increase the likelihood
of data owners being willing to share their data.

• Greater data diversity. With improved preservation
of privacy leading to more sharing of data, this data
will likely come from more diverse locations and envi-
ronments as well, increasing both the quantity and the
quality. This is important for any AI problem, but even
more so for self-driving car models. As can be seen in
section IV, the context that models are trained with has
a great say in how they perform in different scenarios.
Gathering data, and by extension models, from diverse
areas will allow a DzAI network to perform well in a
range of different scenarios.

Possible disadvantages of DzAI in autonomous vehicles:
• Worse accuracy. Depending on the model of assembly,

the accuracy of the combined model might be worse
than that of a single model trained on all of the
training data at once. Section IV shows the results from
experiments on how to choose the most optimal model
in a given situation.

• Labeling. Object detectors are usually used in super-
vised learning. If the data for the locally trained models
is to be sourced from individual users, someone needs
to do the labeling. If this responsibility is to be put on
the users, the process of labeling must be really simple,
efficient and user friendly, and the individual models
must require rather small amounts of data.

B. Architecture

The DzAI network proposed in this paper is envisioned to
connect participants directly, with no need for a middleman,
as indicated by figure 1. The network relies on individual
users contributing by:

• Gathering driving data by mounting a camera or similar
to their car.

• Training models locally using the gathered data. This
step is explained more thoroughly in section II-C.

• Distributing these trained models to the rest of the
network.

Once models are available on the network, autonomous
vehicles also connected to the network can use our proposed
approach for combining the models and choose the best
performing one in each scenario. This process is described
briefly in section II-D and more thoroughly in section IV-C.

C. Training

Every participant in the network trains their object de-
tectors locally, with no data leaving their devices. Since
object detection is a type of supervised learning, the data
needs to be labelled after it has been gathered. This involves
annotating the different objects in the images: drawing
bounding boxes around the objects, and indicating their class.
Since the raw data is only to be kept locally, the user needs
to able to perform this task on their own. A simple tool
like www.scalabel.ai [5], developed by the creators of the
Berkeley DeepDrive dataset, is suitable for such a task. The
survey described in section I found that many people were

willing to gather and share raw images from their driving
for a low fee (from $3 / hour to below $1 / hour of driving).
However, the survey respondents demanded much higher
compensation for the task of annotating the images gathered,
but that participants were willing to spend up to an hour or
more per week on the task. The conclusion is that the size of
the model training sets needs to be kept as small as possible,
to avoid being too time consuming (and therefore expensive)
to annotate.

D. Utilization

Finally, when the DzAI network contains multiple models
trained on diverse, biased data, they are available to be uti-
lized by autonomous vehicles on the network. We present an
approach for combining trained models in order to increase
their collective accuracy, using Context-Sensitive Detectors
(CSD). The CSD-approach is a reinforcement learning (RL)
technique, known as the Multi-Armed Bandit (MAB)[6]. Its
goal is to discover the best performing model and exploit that
model while it’s performing well. This way a self-driving
car is able to rapidly switch between models in the network,
based on the environment it is driving in. When switching
environments, e.g. driving out of the city into a rural area, the
CSD will discover a change in the environment, and switch
to a more suitable detetor. A more detailed explanation of
the CSD can be found in section IV-C.

III. RELATED WORK

Existing approaches to DzAI tackle different aspects of
the decentralization process. Projects like Ocean [7] and
Datum [8] are trying to create a marketplace for sharing
data in a decentralized fashion. OpenMined [9] wants wants
to decentralize AI by bringing the models to each participant
in a network, allowing them to train the models locally while
keeping the data on the device. Homomorphic encryption
[10] of the models allows users of OpenMined’s network to
share their models with no risk of theft. SingularityNET [11]
is a decentralized AI network currently under development
that aims to let anyone create, share and monetize AI
services.

This paper presents a different paradigm, where privacy is
an inherent attribute of the collaboration process. Similar to
OpenMined, this paper describes an approach where training

Fig. 1. Decentralized AI; models are traded on the network

is performed locally at the edges of the network, without
the training data ever leaving the source. But instead of
further training a previously created model, our proposed
solution creates individual models at the data sources, that are
then combined into Context-Sensitive Detectors, explained in
more detail in section IV-C.

Google’s subsidiary company Waymo, representing the
centralized approach, has been exceptional at gathering huge
amounts of sensor data with its self-driving cars, having
driven more than 9 million miles since the fleet started
operating in 2009 [12]. However, large portions of the data
gathered by Waymo and other large technology companies
have been recorded in sunny climates, on spacious highways
with multiple lanes, often unidirectional, i.e. not the most
challenging driving conditions. More data is still required for
further training and improvement of autonomous vehicles,
especially diverse data from cities in different countries, of
different sizes, with different sign schemes etc.

The most relevant related work is likely Google’s AI
division’s learning method federated learning, which is able
to perform collaborative ML without centralized training
data [13]. Google uses federated learning to enable smart
phones to keep all their training data on the device, and
simultaneously share the prediction models to collaboratively
learn and improve the model. After downloading the most
current model, the devices on the network learn using their
own local data and improve the model, before sharing the
summarized changes with the rest of the network. [14]. The
CSD proposed in this paper, however, gathers models trained
on the edges, and uses context to switch between them in
a rapidly changing environment. Google’s approach is more
suitable for a more constant environment.

IV. EXPERIMENT SETUP

In the following section we discuss the setup for the
experiments as they relate to our proposed approach. First
we’ll provide more details on the dataset utilized. Second
we present the underlying neural network architecture, and
lastly we look at the details on the proposed methodology
for combining networks.

A. Dataset

The dataset used in the experiments in this paper is
the BDD100k dataset provided by the Berkeley DeepDrive
project. Facilitated by the researchers’ own annotation tool-
ing, the dataset is comprised of over 100 000 videos with
diverse kinds of annotations including image level tagging,
object bounding boxes, driveable areas and lane markings.
The creators claim the dataset to be ”the largest available
dataset of annotated driving scenes”. Compared to existing
datasets used for driving image recognition benchmarks, it
allegedly covers more realistic driving scenarios and captures
more variation in appearance and pose configuration of
categories of interest. The dataset is thus considered more
challenging than existing sets.

The foundation of the dataset is a collection of 100
000 video clips (1.8 Terabyte (TB)) captured by the front

Fig. 2. One of the 100k images in the BDD dataset

facing camera of a car driving around the U.S. in diverse
conditions. From the video clips, 100 000 labeled key frame
images have been extracted from the videos at the 10th
second. From these key frame images, many attributes are
available, like segmentation maps of driveable areas, and
Global Positioning System (GPS) information. An example
image can be seen in figure 2. The experiments in this article
use the 100 000 labeled key frame images extracted from the
videos and their annotation fields, which describe the classes
of the objects detected in the image and their bounding
boxes, respectively. There are 10 different classes: Bus, traffic
light, traffic sign, person, bike, truck, motor, car, train, rider.

B. Computer Vision and Object Detection

Object detection is an important part of many autonomous
systems, like facial recognition, camera surveillance, and
self-driving cars. Recent years have seen an increase in the
utilization of deep neural networks for computer vision tasks,
mostly through the use of convolutional neural networks
(CNNs).

All of the models used in the experiments presented
in this paper were constructed based on the YOLOv9000
architecture [15]. With that in mind the methodology pre-
sented maintains the real-time object detection offered by
said architecture, which is essential for time sensitive tasks
like driving.

As this paper conveys a proof-of-concept, the YOLO
models were initialized with a pre-trained set of weights, and
only the last two layers were trained on the BDD dataset,
using transfer learning. As such the accuracy presented in
this paper is not comparable with state-of-the-art approaches,
but only used for comparison against a baseline model
trained on 20.000 images over 15 epochs.

C. Combining neural networks

Next we present an approach for combining trained models
in order to increase accuracy.

Context-Sensitive Detector (CSD): The CSD-approach
is a reinforcement learning (RL) technique, known as the
Multi-Armed Bandit (MAB). Its goal is to discover the
best performing model and exploit that model while it’s
performing well. To model the environment we use the
notation SA to indicate the types of objects observed in

location A. As such a drive from location A (eg. the city),
through location B (eg. the countryside), and back to A again,
can be modelled as:

Scity → Scountryside → Scity (1)

The goal of the CSD is to balance exploration and ex-
ploitation. To do so the best performing model is chosen
using a policy. For the changing environment in eq. 1
the Sliding-Window Upper Confidence Bound (SW-UCB)
algorithm was used (eq. 2)[16]. This approach works for
an infinite horizon time series as it only retains the reward
metric for a set number of predictions using a sliding
window.

x̄τ +B

√
ε ln (t ∧ τ)

nτ
(2)

Here x̄τ is the average score over the last τ observations.
B is the expected maximum score. The discounting factor
ε is used for punishing suddenly poorly performing models,
and τ is the window size. The term t ∧ τ is the minimum
of the two. Lastly nτ is the number of times the model was
used during the last τ observations.

The CSD experiments in the experiments section (sec.
V) explores how the two hyper parameters; the discounting
factor (ε) and the window size (τ) affects the performance
of the policy.

As the purpose of the experiments is to compare the SW-
UCB performance to the baseline model, we use an F1-score
(eq. 3) as the scoring measure. There exists scoring mech-
anisms that only rely on the models’ own perceived score
which would be more suitable for a production scenario.
However, this falls outside the scope of the experiments and
would require additional tuning.

F1 = 2 · precision · recall
precision+ recall

(3)

V. EXPERIMENT RESULTS

The CSD experiments present the mAP performance for
different approaches, but more importantly present the under-
lying decision process, which is important for the conclusion
and future work section.

To assess the viability of doing context-dependent selec-
tion of deep learning models in real time, the experiments
in the following section were run with varying parameters,
as described below:

• Training quality, number of available models and num-
ber of object types needing to be predicted (eg. cars,
trucks, and pedestrians).

• Discounting factor (ε). The rate of which the CSD
discards suddenly poorly performing models. Higher
values should increase the rate of exploitation, and
lower values should increase the rate of exploration.

• Window size(τ). The window of historical knowledge
the CSD retains about the previous performance of the
models. Increasing the window size should allow the

mAP [%] τ
5 20 200

ε
0.05 0.98 14.25 5.08
0.5 8.44 18.94 4.84
5 8.38 13.08 4.62

Fig. 3. mAP results for varying hyper parameters

CSD to use a larger portion of previous performance in
order to make decisions. However, using a too large
window will prevent the CSD from discovering the
changing context.

A. Distinguishable Context

In order to test the CSD’s ability to accurately select the
appropriate models based on context, the majority of the
experiments were tested on a distribution of images where
the context is clearly distinguishable. Almost every image
in the BDD-dataset contains cars and all the models trained
on images from this dataset all perform adequately when it
comes to car detections. By using images with pedestrians
and trucks we discovered there was a smaller overlap in
the selected images, and such these two labels were used
to simulate an easily distinguishable context

The experiments were run on a distribution of images
simulating a drive by varying the type of objects appearing
at different time steps. In order to test the detector’s ability
to both detect new contexts, and re-discover previously de-
tected contexts, the experiments are run on the environment
described in eq. 4.

S4truck500 → S8pedestrian1k → S4truck500 (4)

Here the numbers (500 and 1000 respectively) refer to the
number of images, and the types (4truck and 8pedestrian)
refers to the bias of the images. In other words the environ-
ment consist of 500 images with four or more trucks, 1000
images with 8 or more pedestrians, and lastly 500 images
(different from the first 500) with four or more trucks.

The underlying models are trained on similarly biased
images. The first model is trained on a dataset consisting
on 1000 images containing 3 or more trucks, trained for 15
epochs. The second model is trained on a different dataset
containing 1000 images containing 10 or more pedestrians,
again trained for 15 epochs.

In table 3 the result of varying the hyper parameters
ε and τ , can be seen. Comparatively the 20k baseline
model (trained on 20k images containing cars, trucks and
pedestrians for 15 epochs) achieves an mAP of about 21%
on the same dataset.

Figure 6 shows the score and policy reward plotted against
the distribution of images. Along with the F1-score the
performance of the 20k baseline model is plotted as the
dotted line. There are a couple of performance drops in the
CSD around both the 500 and the 1500 marks. These drops
stem from the switching between the two distributions and
the CSD quickly picks up the other model. Also interesting
is the drop around the 250-mark. This is likely due to a

Fig. 4. Predictions for the 4truck1k model

couple consecutive images with challenging objects, making
the CSD uncertain about the performance of the truck-model.
After a couple of predictions using the pedestrian-model the
CSD quickly corrects the reward (seen in the topmost plot)
and switches back to the truck-model.

The predictions for an image done by the CSD can be seen
in figure 4. It accurately uses the 4truck1k model to perform
the prediction, as there are 3 trucks in the image (two of
which are correctly classified). The image also showcase the
complexity of performing good predictions on a given image,
given the number of trucks, cars, and pedestrians.

B. Indistinguishable Context

In order to test the CSD’s performance when the context
is not easily distinguishable, the detector were also run
on a distribution containing 500 images of each label in
succession.

Table 5 showcases the mAP performance of the CSD
where all classes in the BDD dataset are used. Comparatively
the 20k baseline model on said dataset achieves a score
of roughly 8%, also implying that the detection of some
of the objects are harder than others. It is apparent from
the results that the CSD struggles when the underlying
context is insufficiently distinguishable. This is also one of
the shortcomings of using the F1 score as the underlying
performance metric, as the number of predicted objects plays
an important role in the calculation. The score is oblivious
to whether the model predicts 5/5 cars and 0/10 traffic lights
even in an environment where traffic lights are the contextual
differing factor.

C. Performance

Essential to the YOLO-architecture approach is its real-
time performance. The methodology presented manages to
maintain about 15 Frames-Per-Second on a Pascal GTX 1080
Graphics Processing Unit (GPU). With its pre-tuning the
overhead of the CSD-policy itself is minuscule, and most

mAP [%] τ
20

ε 0.05 4.85

Fig. 5. mAP results for an insufficiently distinguishable scan area

of the added time comes from the F1-score calculations. It
is therefore to be expected that a different scoring metric
could see a significant drop in processing time.

VI. CONCLUSION AND FUTURE WORK

The CSD approach shows promise when the underlying
contexts are easily distinguishable from one another. How-
ever, the experiment presented in table 5 showcases one of
the shortcomings of the CSD-approach, as it takes a big
performance hit when the contexts are harder to detect and
exploit.

When using the approach proposed in this paper it is
evident, even from the relatively few number of experiments,
that the hyper parameters need to be tuned in accordance
to the underlying context. With basis in this, we propose
a different approach to the policy determination, proposed
below. Nonetheless, with adequate tuning of the parameters,
the CSD containing two models trained on 1.000 images
each, almost reaches the same mAP as the model trained on
20.000 images.

In order to improve the adaptability of the CSD, a Deep
Reinforcement Learning Network[17] could prove to be a
viable approach. Rather than using a pre-defined policy, a
policy could be learned using Q-learning. This could allow
for more flexibility and rate of adaptation compared to the
hyper parameter tuning explored in this paper.

However to fully take advantage of the presented method-
ology we propose an approach more similar to federated
learning. By combining a static model with the dynamic
models from the CSD, we expect to see less of a performance
drop in the switching phases, and allow the dynamic models
to do regional overfitting on the static model. By doing
contextual overfitting we expect to see a performance boost
even in challenging environments, where the most common
approach in Deep Learning is to throw more and more data
at the problem, in order to teach the model about special
edge cases.

REFERENCES

[1] Y. D. Miiller, “Decentralized artificial intelligence,” Decentralised AI,
pp. 3–13, 1990.

[2] C. Metz, “Tech Giants Are Paying Huge
Salaries for Scarce A.I. Talent.” https://www.
nytimes.com/2017/10/22/technology/
artificial-intelligence-experts-salaries.html,
2019. [Online; accessed 01-January-2019].

[3] O. J. of the European Union, “GDPR full text.” https:
//eur-lex.europa.eu/legal-content/EN/TXT/HTML/
?uri=CELEX:32016R0679&qid=1501071426222&from=
en, 2019. [Online; accessed 01-January-2019].

[4] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Dar-
rell, “BDD100K: A Diverse Driving Video Database with Scalable
Annotation Tooling,” NASA Ads, pp. 1–16, 2018.

[5] “Scalabel.ai.” https://www.scalabel.ai/, 2017.
[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of

the multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-
3, pp. 235–256, 2002.

[7] “Ocean Protocol.” https://oceanprotocol.com/#papers,
2018.

[8] “Datum - Blockchain Data Storage and Monetization.” https://
datum.org/, 2018.

[9] “OpenMined.” https://www.openmined.org/, 2018.

[10] C. Gentry, A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[11] “SingularityNET.” https://blog.singularitynet.io/
research/home, 2018.

[12] “On the Road – Waymo.” https://waymo.com/ontheroad/,
2018.

[13] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communi-
cation Efficiency,” pp. 1–10, 2016.

[14] B. McMahan and D. Ramage, “Google AI Blog: Federated
Learning: Collaborative Machine Learning without Centralized
Training Data.” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html, 2017.

[15] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” dec
2016.

[16] A. Garivier and E. Moulines, “On upper-confidence bound policies
for switching bandit problems,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), vol. 6925 LNAI, pp. 174–188, Springer,
Berlin, Heidelberg, 2011.

[17] S. S. Mousavi, M. Schukat, and E. Howley, “Deep Reinforcement
Learning: An Overview,” jun 2018.

Fig. 6. Plotting the reward and policy metrics for the two models comprising the CSD

Bibliography

[1] Google leads in the race to dominate artificial intelligence - Battle of

the brains, 2017. URL https://www.economist.com/business/2017/12/07/

google-leads-in-the-race-to-dominate-artificial-intelligence.

[2] Andrew Meola. How IoT & smart home automation will change

the way we live, 2016. URL https://www.businessinsider.com/

internet-of-things-smart-home-automation-2016-8.

[3] M Schulz and J.A. Hennis-Plasschaert. GDPR full text, 2016. URL

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

32016R0679&qid=1501071426222&from=en.

[4] Yuki Sugiyamal, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro

Nakayama, Katsuhiro Nishinari, Shin Ichi Tadaki, and Satoshi Yukawa. Traffic

jams without bottlenecks-experimental evidence for the physical mechanism of the

formation of a jam. New Journal of Physics, 10(3):033001, 3 2008. ISSN 13672630.

doi: 10.1088/1367-2630/10/3/033001. URL http://stacks.iop.org/1367-2630/

10/i=3/a=033001?key=crossref.d9c6328c540467e5d2beaf6961d03278.

[5] Benjamin Schneider. New Study of Global Traffic Reveals That Traffic Is Bad

- CityLab, 2018. URL https://www.citylab.com/transportation/2018/02/

traffics-mind-boggling-economic-toll/552488/.

[6] Benjamin Zhang. Morgan Stanley: Autonomous Cars May Save US A Trillion

Dollars - Business Insider, 2014. URL https://www.businessinsider.com/

morgan-stanley-autonomous-cars-trillion-dollars-2014-9?r=US&IR=T&IR=

T.

95

https://www.economist.com/business/2017/12/07/google-leads-in-the-race-to-dominate-artificial-intelligence
https://www.economist.com/business/2017/12/07/google-leads-in-the-race-to-dominate-artificial-intelligence
https://www.businessinsider.com/internet-of-things-smart-home-automation-2016-8
https://www.businessinsider.com/internet-of-things-smart-home-automation-2016-8
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&qid=1501071426222&from=en
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&qid=1501071426222&from=en
http://stacks.iop.org/1367-2630/10/i=3/a=033001?key=crossref.d9c6328c540467e5d2beaf6961d03278
http://stacks.iop.org/1367-2630/10/i=3/a=033001?key=crossref.d9c6328c540467e5d2beaf6961d03278
https://www.citylab.com/transportation/2018/02/traffics-mind-boggling-economic-toll/552488/
https://www.citylab.com/transportation/2018/02/traffics-mind-boggling-economic-toll/552488/
https://www.businessinsider.com/morgan-stanley-autonomous-cars-trillion-dollars-2014-9?r=US&IR=T&IR=T
https://www.businessinsider.com/morgan-stanley-autonomous-cars-trillion-dollars-2014-9?r=US&IR=T&IR=T
https://www.businessinsider.com/morgan-stanley-autonomous-cars-trillion-dollars-2014-9?r=US&IR=T&IR=T

Bibliography 96

[7] Umar Zakir, Abdul Hamid, Konstantin Pushkin, Hairi Zamzuri, Djahid Gueraiche,

Mohd Azizi, and Abdul Rahman. Current Collision Mitigation Technologies for

Advanced Driver Assistance Systems – A Survey. PERINTIS eJournal, 6(2):78–90,

2016. ISSN 2232-0725. doi: 10.1105/tpc.15.01050.

[8] Ron Medford. Autonomous Vehicle Disengagement Reports 2015. Technical

report, Google Auto LLC, 2015. URL https://www.dmv.ca.gov/portal/wcm/

connect/dff67186-70dd-4042-bc8c-d7b2a9904665/google_disengagement_

report.pdf?MOD=AJPERES&CVID=.

[9] Ron Medford. Autonomous Vehicle Disengagement Reports 2016. Technical

report, Waymo, 2017. URL https://www.dmv.ca.gov/portal/wcm/connect/

946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_

report_2016.pdf?MOD=AJPERES&CVID=.

[10] Ron Medford. Autonomous Vehicle Disengagement Reports 2017. Technical

report, Waymo, Sacramento, 2017. URL https://www.dmv.ca.gov/portal/

wcm/connect/42aff875-7ab1-4115-a72a-97f6f24b23cc/Waymofull.pdf?MOD=

AJPERES&CVID=.

[11] On the Road – Waymo. URL https://waymo.com/ontheroad/.

[12] Marius Maaland and Anders Klever Kirkeby. Decentralized Artificial Intelligence

utilizing Blockchain technology. 2018.

[13] Gustav von Zitzewitz. Survey of Neural Networks in Autonomous Driving. (April):

0–8, 2017. URL https://www.researchgate.net/publication/324476862_

Survey_of_neural_networks_in_autonomous_driving.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, 115(3):211–252, 12 2015. ISSN 0920-

5691. doi: 10.1007/s11263-015-0816-y. URL http://link.springer.com/10.

1007/s11263-015-0816-y.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 5 2015. ISSN 0028-0836. doi: 10.1038/nature14539. URL http:

//www.nature.com/articles/nature14539.

https://www.dmv.ca.gov/portal/wcm/connect/dff67186-70dd-4042-bc8c-d7b2a9904665/google_disengagement_report.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/dff67186-70dd-4042-bc8c-d7b2a9904665/google_disengagement_report.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/dff67186-70dd-4042-bc8c-d7b2a9904665/google_disengagement_report.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/42aff875-7ab1-4115-a72a-97f6f24b23cc/Waymofull.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/42aff875-7ab1-4115-a72a-97f6f24b23cc/Waymofull.pdf?MOD=AJPERES&CVID=
https://www.dmv.ca.gov/portal/wcm/connect/42aff875-7ab1-4115-a72a-97f6f24b23cc/Waymofull.pdf?MOD=AJPERES&CVID=
https://waymo.com/ontheroad/
https://www.researchgate.net/publication/324476862_Survey_of_neural_networks_in_autonomous_driving
https://www.researchgate.net/publication/324476862_Survey_of_neural_networks_in_autonomous_driving
http://link.springer.com/10.1007/s11263-015-0816-y
http://link.springer.com/10.1007/s11263-015-0816-y
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539

Bibliography 97

[16] Shyamal Patel and Johanna Pingel. CNN Archi-

tecture. URL https://www.mathworks.com/videos/

introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.

html.

[17] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 12 2016.

URL https://arxiv.org/abs/1612.08242.

[18] TensorFlow. URL https://www.tensorflow.org/.

[19] Keras Documentation. URL https://keras.io/.

[20] Lisa Torrey, Lisa Torrey, and Jude Shavlik. Transfer Learning. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.1515.

[21] ImageNet. URL http://www.image-net.org/.

[22] Joseph Redmon. YOLO: Real-Time Object Detection, 2016. URL https://

pjreddie.com/darknet/yolov2/.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.

Microsoft COCO: Common Objects in Context. 5 2014. URL http://arxiv.org/

abs/1405.0312.

[24] Yves Demazeau and Jean-Pierre Muller, editors. Decentralized A.I.: Proceedings of

the European Workshop on Modelling Autonomous Agents in a Multi-Agent World.

Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands,

1990. ISBN 0444887059.

[25] Ocean Protocol — A Decentralized Data Exchange Protocol to Unlock Data for AI

— Ocean Protocol. URL https://oceanprotocol.com/#papers.

[26] Datum - Blockchain Data Storage and Monetization. URL https://datum.org/.

[27] Roger Haenni. Datum - White Paper. 2017. URL https://datum.org/.

[28] SingularityNET. URL https://singularitynet.io/.

[29] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated Learning: Strategies for

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://arxiv.org/abs/1612.08242
https://www.tensorflow.org/
https://keras.io/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.1515
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.1515
http://www.image-net.org/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://oceanprotocol.com/#papers
https://datum.org/
https://datum.org/
https://singularitynet.io/

Bibliography 98

Improving Communication Efficiency. pages 1–10, 2016. ISSN 2162-7843. URL

http://arxiv.org/abs/1610.05492.

[30] Brendan McMahan and Daniel Ramage. Google AI Blog: Federated Learning:

Collaborative Machine Learning without Centralized Training Data. URL https:

//ai.googleblog.com/2017/04/federated-learning-collaborative.html.

[31] OpenMined. URL https://www.openmined.org/.

[32] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, 2009.

URL http://portal.acm.org/citation.cfm?doid=1536414.1536440%5Cnhttp:

//crypto.stanford.edu/craig/craig-thesis.pdf.

[33] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to End Learning for Self-

Driving Cars. 4 2016. URL http://arxiv.org/abs/1604.07316.

[34] Autonomous Car Development Platform from NVIDIA DRIVE PX2. URL https:

//www.nvidia.com/en-gb/self-driving-cars/drive-platform/.

[35] Reddit. URL https://www.redditinc.com/.

[36] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Mad-

havan, and Trevor Darrell. BDD100K: A Diverse Driving Video Database with

Scalable Annotation Tooling. pages 1–16, 2018. URL http://arxiv.org/abs/

1805.04687.

[37] Scalabel.ai. URL https://www.scalabel.ai/.

[38] Adrian Rosebrock. Intersection over union sign example, . URL

https://upload.wikimedia.org/wikipedia/commons/2/2d/Intersection_

over_Union_-_object_detection_bounding_boxes.jpg.

[39] Adrian Rosebrock. Intersection over union formula, . URL https:

//upload.wikimedia.org/wikipedia/commons/c/c7/Intersection_over_

Union_-_visual_equation.png.

[40] Adrian Rosebrock. Intersection over union comparison, . URL https:

//upload.wikimedia.org/wikipedia/commons/e/e6/Intersection_over_

Union_-_poor%2C_good_and_excellent_score.png.

http://arxiv.org/abs/1610.05492
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.openmined.org/
http://portal.acm.org/citation.cfm?doid=1536414.1536440%5Cnhttp://crypto.stanford.edu/craig/craig-thesis.pdf
http://portal.acm.org/citation.cfm?doid=1536414.1536440%5Cnhttp://crypto.stanford.edu/craig/craig-thesis.pdf
http://arxiv.org/abs/1604.07316
https://www.nvidia.com/en-gb/self-driving-cars/drive-platform/
https://www.nvidia.com/en-gb/self-driving-cars/drive-platform/
https://www.redditinc.com/
http://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
https://www.scalabel.ai/
https://upload.wikimedia.org/wikipedia/commons/2/2d/Intersection_over_Union_-_object_detection_bounding_boxes.jpg
https://upload.wikimedia.org/wikipedia/commons/2/2d/Intersection_over_Union_-_object_detection_bounding_boxes.jpg
https://upload.wikimedia.org/wikipedia/commons/c/c7/Intersection_over_Union_-_visual_equation.png
https://upload.wikimedia.org/wikipedia/commons/c/c7/Intersection_over_Union_-_visual_equation.png
https://upload.wikimedia.org/wikipedia/commons/c/c7/Intersection_over_Union_-_visual_equation.png
https://upload.wikimedia.org/wikipedia/commons/e/e6/Intersection_over_Union_-_poor%2C_good_and_excellent_score.png
https://upload.wikimedia.org/wikipedia/commons/e/e6/Intersection_over_Union_-_poor%2C_good_and_excellent_score.png
https://upload.wikimedia.org/wikipedia/commons/e/e6/Intersection_over_Union_-_poor%2C_good_and_excellent_score.png

Bibliography 99

[41] Jan Hosang and C V May. Learning non-maximum suppression.

[42] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Chapter 8:

Evaluation in information retrieval. Introduction to Information Retrieval, (c):1–

18, 2009. ISSN 13864564. doi: 10.1109/LPT.2009.2020494. URL http://nlp.

stanford.edu/IR-book/pdf/08eval.pdf.

[43] Jonathan Hui. Precision-recall plot. URL https://cdn-images-1.medium.com/

max/1600/1*VenTq4IgxjmIpOXWdFb-jg.png.

[44] Yutaka Sasaki. The truth of the F-measure. (March):1–6, 2007. URL

https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/

F-measure-YS-26Oct07.pdf.

[45] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003

shared task. In Proceedings of the seventh conference on Natural language learning

at HLT-NAACL 2003 -, volume 4, pages 142–147, Morristown, NJ, USA, 2003.

Association for Computational Linguistics. doi: 10.3115/1119176.1119195. URL

http://portal.acm.org/citation.cfm?doid=1119176.1119195.

[46] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman &

Hall/CRC ©2012, 1st edition, 2012. ISBN 1439830037 9781439830031.

[47] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996. ISSN

0885-6125. doi: 10.1007/BF00058655. URL http://link.springer.com/10.

1007/BF00058655.

[48] Louisa Lam and Ching Y. Suen. Application of Majority Voting to Pattern Recogni-

tion: An Analysis of Its Behavior and Performance. IEEE Transactions on Systems,

Man, and Cybernetics Part A:Systems and Humans, 27(5):553–568, 1997. URL

http://machine-learning.martinsewell.com/ensembles/LamSuen1997.pdf.

[49] N. Littlestone and M.K. Warmuth. The Weighted Majority Algorithm. Informa-

tion and Computation, 108(2):212–261, 2 1994. ISSN 0890-5401. doi: 10.1006/

INCO.1994.1009. URL https://www.sciencedirect.com/science/article/

pii/S0890540184710091?via%3Dihub.

http://nlp.stanford.edu/IR-book/pdf/08eval.pdf
http://nlp.stanford.edu/IR-book/pdf/08eval.pdf
https://cdn-images-1.medium.com/max/1600/1*VenTq4IgxjmIpOXWdFb-jg.png
https://cdn-images-1.medium.com/max/1600/1*VenTq4IgxjmIpOXWdFb-jg.png
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf
http://portal.acm.org/citation.cfm?doid=1119176.1119195
http://link.springer.com/10.1007/BF00058655
http://link.springer.com/10.1007/BF00058655
http://machine-learning.martinsewell.com/ensembles/LamSuen1997.pdf
https://www.sciencedirect.com/science/article/pii/S0890540184710091?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0890540184710091?via%3Dihub

Bibliography 100

[50] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST handwritten

digit database, Yann LeCun, Corinna Cortes and Chris Burges. URL http://yann.

lecun.com/exdb/mnist/.

[51] 20 Newsgroups Data Set. URL http://qwone.com/~jason/20Newsgroups/.

[52] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforce-

ment learning algorithm that masters chess, shogi, and Go through self-play. Science

(New York, N.Y.), 362(6419):1140–1144, 12 2018. ISSN 1095-9203. doi: 10.1126/

science.aar6404. URL http://www.ncbi.nlm.nih.gov/pubmed/30523106.

[53] Ronald A. Howard and Ronald Arthur Howard. Dynamic programming and

Markov processes. The M.I.T. Press, 1960. ISBN 0262080095. doi: 10.1107/

S1600536806011159. URL http://web.mit.edu/dimitrib/www/dpchapter.pdf.

[54] Michael N. Katehakis and Arthur F. Veinott. The Multi-Armed Bandit Prob-

lem: Decomposition and Computation. Mathematics of Operations Research,

12(2):262–268, 5 1987. ISSN 0364-765X. doi: 10.1287/moor.12.2.262. URL

http://pubsonline.informs.org/doi/abs/10.1287/moor.12.2.262.

[55] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the mul-

tiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002. ISSN 08856125.

doi: 10.1023/A:1013689704352. URL http://link.springer.com/10.1023/A:

1013689704352.

[56] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for

switching bandit problems. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), volume 6925 LNAI, pages 174–188. Springer, Berlin, Heidelberg, 2011.

ISBN 9783642244117. doi: 10.1007/978-3-642-24412-4{\ }16. URL http://link.

springer.com/10.1007/978-3-642-24412-4_16.

[57] Mighty AI — Training Data for Computer Vision Models. URL https://mighty.

ai/.

[58] Amazon Mechanical Turk. URL https://www.mturk.com/.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://qwone.com/~jason/20Newsgroups/
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://web.mit.edu/dimitrib/www/dpchapter.pdf
http://pubsonline.informs.org/doi/abs/10.1287/moor.12.2.262
http://link.springer.com/10.1023/A:1013689704352
http://link.springer.com/10.1023/A:1013689704352
http://link.springer.com/10.1007/978-3-642-24412-4_16
http://link.springer.com/10.1007/978-3-642-24412-4_16
https://mighty.ai/
https://mighty.ai/
https://www.mturk.com/

Bibliography 101

[59] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Deep Reinforce-

ment Learning: An Overview. 6 2018. doi: 10.1007/978-3-319-56991-8{\
}32. URL http://arxiv.org/abs/1806.08894http://dx.doi.org/10.1007/

978-3-319-56991-8_32.

[60] Zhi Xiong Xu, Lei Cao, Xi Liang Chen, Chen Xi Li, Yong Liang Zhang, and Jun

Lai. Deep reinforcement learning with sarsa and Q-learning: A hybrid approach.

IEICE Transactions on Information and Systems, E101D(9):2315–2322, 9 2018.

ISSN 17451361. doi: 10.1587/transinf.2017EDP7278. URL http://arxiv.org/

abs/1509.06461.

[61] Moeslund Thomas B. Rasmussen Christoffer Bøgelund, Nasrollahi Kamal. Aalborg

Universitet R-FCN Object Detection Ensemble based on Object Resolution and

Image Quality R-FCN Object Detection Ensemble based on Object Resolution and

Image Quality. 1(Ijcci):110–120, 2017. doi: 10.5220/0006511301100120. URL http:

//vbn.aau.dk/ws/files/261392484/quality.pdf.

[62] 2nd International Conference on Intelligent Autonomous Systems. volume 7, pages

83–248, 1991. ISBN 09218890 (ISSN). URL http://www.icias.org/submission.

htmlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0026203464&

partnerID=40&md5=1bf41fa612dd5194906eb7d50541c61e.

http://arxiv.org/abs/1806.08894 http://dx.doi.org/10.1007/978-3-319-56991-8_32
http://arxiv.org/abs/1806.08894 http://dx.doi.org/10.1007/978-3-319-56991-8_32
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://vbn.aau.dk/ws/files/261392484/quality.pdf
http://vbn.aau.dk/ws/files/261392484/quality.pdf
http://www.icias.org/submission.html https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026203464&partnerID=40&md5=1bf41fa612dd5194906eb7d50541c61e
http://www.icias.org/submission.html https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026203464&partnerID=40&md5=1bf41fa612dd5194906eb7d50541c61e
http://www.icias.org/submission.html https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026203464&partnerID=40&md5=1bf41fa612dd5194906eb7d50541c61e

M
arius M

aaland, A
nders K

lever K
irkeby

D
ecentralized A

utonom
ous D

riving

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marius Maaland
Anders Klever Kirkeby

Decentralized Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Pinar Öztürk, Hai Thanh Nguyen

January 2019

	Abstract
	Abstract - Norwegian
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 Decentralization

	1.2 Research questions
	1.2.1 RQ1 - Decentralized Artificial Intelligence
	1.2.2 RQ2 - Ensemble Detector
	1.2.3 RQ3 - Context-Sensitive Detector
	1.2.4 Thesis outline

	2 Background and related work
	2.1 Deep Learning
	2.1.1 Convolutional Neural Networks
	2.1.2 You Only Look Once
	2.1.3 Transfer Learning

	2.2 Decentralized Artificial Intelligence
	2.2.1 Definition and variations
	2.2.2 Advantages and disadvantages

	2.3 Related work
	2.4 Market research
	2.4.1 Questions
	2.4.2 Results

	3 Data and evaluation
	3.1 Dataset
	3.1.1 Berkeley DeepDrive
	3.1.2 Annotation tooling
	3.1.3 Dataset statistics and distributions
	3.1.4 Data allocation with enabled classes
	3.1.5 Baseline for comparison

	3.2 Prediction evaluation
	3.2.1 Prediction definition
	3.2.2 Intersection over Union
	3.2.3 Duplicate detection avoidance

	3.3 Performance evaluation
	3.3.1 Mean Average Precision
	3.3.2 F1-score

	4 Decentralized Artificial Intelligence for autonomous driving
	4.1 Ensemble Learning
	4.1.1 Weighted Majority Voting and the Weighted Majority Algorithm
	4.1.2 Ensemble Detector definition
	4.1.3 Ensemble Detector implementation
	4.1.4 Ensemble Detector predictions

	4.2 Online Learning
	4.2.1 Context-Sensitive Detector
	4.2.2 Multi-Armed Bandit
	4.2.3 Upper Condfidence Bound
	4.2.4 Sliding Window Upper Confidence Bound

	5 Ensemble Detector experiments and results
	5.1 Main purpose and metrics
	5.2 Experiment test set
	5.3 Experiment setup
	5.4 Experiments
	5.4.1 Experiment 1: 5-10 models, all classes
	Setup
	Hypothesis
	Results

	5.4.2 Experiment 2: 5-10 models, low quality training
	Setup
	Hypothesis
	Results

	5.4.3 Experiment 3: 5-20 models, high quality training
	Setup
	Hypothesis
	Results

	5.4.4 Experiment 4: 5-50 models, high quality training
	Setup
	Hypothesis
	Results

	5.5 Wrap-up

	6 Context-Sensitive Detector experiments and results
	6.1 Main purpose and metrics
	6.2 Experiment setup
	6.3 Experiment plots
	6.4 Experiments
	6.4.1 Experiment 1: 2 models, easily discoverable context
	Setup
	Hypothesis
	Results

	6.4.2 Experiment 2: 8 models, challenging class selection
	Setup
	Hypothesis
	Results

	6.4.3 Experiment 3: 4 models, additional models available
	Setup
	Hypothesis
	Results

	6.4.4 Experiment 4: 2 models, changing the window size
	Setup
	Hypothesis
	Results

	6.4.5 Experiment 5: 2 models, changing the discounting factor
	Setup
	Hypothesis
	Results

	6.5 Wrap-up

	7 Discussion and future work
	7.1 Answers to the research questions
	7.1.1 RQ1 - Decentralized Artificial Intelligence
	7.1.2 RQ2 - Ensemble Detector
	7.1.3 RQ3 - Context-Sensitive Detector

	7.2 Challenges
	7.3 Future work
	7.3.1 Complete network training
	7.3.2 Reinforcement Learning
	7.3.3 Distribution selection
	7.3.4 A combined approach
	7.3.5 Alternative ensemble learning methods

	7.4 Article

	A Survey
	A.1 Survey questions
	A.2 Survey results

	B Berkeley DeepDrive
	B.1 Label format

	C Article
	Bibliography

