
NTNU
Department of Mathematical Sciences

Master thesis - TMA4900

A multiple-try
Metropolis-Hastings

algorithm with a tailored
number of proposals

Hilde Steinbru Heggstad

2019

Preface

This report is the result of the Master thesis related to the course TMA4900, which is the last
course of the master’s degree in Industrial Mathematics at the Norwegian University of Science
and Technology. The master thesis is meant as an opportunity for the student to investigate a
specific topic and do independent research, discuss theory and develop methods related to this
topic. It accounts for one semester’s work and is written with supervision by a professor at the
Department of Mathematical Sciences at NTNU. This thesis investigates the topic of a specific
multiple-try Metropolis–Hasting algorithm, which goal is to tailor its number of proposals. I would
like to thank professor H̊akon Tjelmeland for guidance throughout the semester.

Hilde Steinbru Heggstad
Trondheim, January 2019

Abstract

A multiple-try Metropolis–Hastings(M–H) algorithm is a special case of the M–H algorithm which,
instead of proposing one proposal, proposes multiple values in every iteration of the algorithm.
The motivation for generating multiple proposals is to make the sampled values from the M–H
simulation less correlated. Luo and Tjelmeland (2018) present a multiple-try M–H algorithm
which uses an undirected acyclic graph to generate multiple proposals, by first sampling one of
the nodes in the graph as a root in a new directed version of the graph. The root node has a
value associated with it, which is assumed to be distributed according to a target distribution. The
multiple proposals are proposed by using a proposal distribution q(xn|xpred(n)), and propose values
in direction of the directed edges, by first conditioning on the value associated with the root node.
When all nodes in the directed graph are associated to a value generated through q(xn|xpred(n)),
a new node is sampled as the root node, and the value associated with it is accepted as a sample
from the target distribution. The new proposals are then generated in a new iteration of the
algorithm, with the order determined by the structure of the graph with the sampled node as
root.

We present a new version of the algorithm from Luo and Tjelmeland (2018), which instead
of using a fixed undirected graph to generate multiple proposals, grows a directed acyclic graph
(DAG) in every iteration of the algorithm. The idea is to tailor the number of proposals by making
the DAG grow in directions of high density values. Every node in the DAG is associated with a
value, and these values are generated through a proposal distribution q(xn|xpred(n)), like in Luo
and Tjelmeland (2018). The difference is that when we grow the DAG stochastically, the edges
and nodes of the DAG are generated as the proposals are made, making it possible for the DAG
to stop growing in directions of bad proposals and expand in the directions of high density values.
The derivation of the algorithm is based on the derivations from Luo and Tjelmeland (2018), and
are similar in all ways except for that we include the growth of the DAG in the joint distribution
used as the target distribution. We demonstrate that the new algorithm does not converge to the
specific target distribution of interest, but has a variance dependent on the parameters used in the
M–H setup. We try to locate the error through simulating the algorithm for different parameters,
and conclude that there must be something wrong in how the probability for a specific DAG being
generated is calculated. We also investigate whether the algorithm succeeds in proposing high
density values compared to the algorithm from Luo and Tjelmeland, and also compare different
strategies for growing the DAG based on their ability to generate high density values and jump
between levels when sampling a new node as root.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are widely used to generate samples from distri-
butions which are difficult or impossible to sample from directly. The algorithms are powerful, in
the sense that it is not necessary to know the normalization constant of the target distribution to
be able to sample from it. The target distribution only needs to be evaluated up to a normalization
constant. This makes the algorithm ideal for Bayesian inference, which because of the conditional
distributions often have normalization constants that are difficult to calculate.

Popular MCMC methods include Metropolis–Hastings (M–H) algorithm (Metropolis et al.
1953; Hastings 1970) and Gibb’s sampling (Geman and Geman 1984), where Gibb’s sampling is
a special case of the Metropolis–Hastings algorithm. The algorithm is built upon the theory of
Markov chains and limiting distributions of reversible Markov chains. For proposing a new state
for the Markov chain, a proposal distribution is used. To sample from a target distribution p(x),
by using a proposal distribution q(x′|x) the probability of accepting a proposed value x′ as the
new state, given the chain’s current state x is

α(x′|x) = min

{
1,
p(x′)q(x|x′)
p(x)q(x′|x)

}
. (1)

In the special case of Gibb’s sampling, the full conditional distribution for x is used as the proposal
distribution q(x′|x), and the M–H acceptance probability reduces to one, because the terms in the
M–H acceptance probability will cancel. Liu et al. (2000) present a Multiple-Try Metropolis
algorithm, which is a generalization of the M–H algorithm which instead of proposing one value,
proposes multiple values as potential new states in every iteration of the algorithm. The motivation
of this generalization is to improve the mixing properties of the algorithm.

Luo and Tjelmeland (2018) present a multiple proposal algorithm, which expands the target
distribution to sample a directed acyclic graph (DAG) which is based on a sample x from the
original target distribution p(x). The joint distribution for the DAG includes both a sample
x from the original target distribution p(x), and the joint distribution for proposing all values
associated with the nodes in the DAG. By using the full conditional distributions as proposal
distributions in the M–H setup, the proposals are defined and accepted with a probability of one.
The multiple proposals are proposed by sampling one of the nodes in the undirected acyclic graph
as a root node in a directed version of the undirected graph, which has all edges pointing away
from the sampled root node. The root node has the value corresponding to the sample from
p(x) associated with it, and the multiple proposals are generated through a proposal distribution
q(xn|xpred(n)), in direction of the directed edges, by first conditioning on the value associated with
the root node. Here the value xn is associated to a node n, and is proposed conditioned on the
value xpred(n), which is the value associated with the predecessor of n in the DAG. When all nodes
are associated to a proposed value, one of the nodes in the DAG is sampled as a new root, and
the node’s associated value is accepted as a sample from p(x). This corresponds to an iteration of
the algorithm. In the next iteration, the values are proposed in the order of the directed edges,
corresponding to the new node being the root of the DAG.

In every generation of a new DAG, each of the nodes are potential new values to be accepted
as a sample from the original target distribution p(x). In Luo et Tjelmeland (2018), the structure
of the undirected acyclic graph is fixed and defined in the M–H setup, and what is stochastic is
the order the proposed values associated with the nodes, and this order is defined by the sampled
root node which determines the structure of the DAG. The values associated with each node is
sampled through a tailored proposal distribution, which is a proposal distribution constructed to
resemble the original target distribution p(x), and is therefore likely to generate better proposals
than for example a Gaussian proposal distribution.

In the M–H setup in Luo et Tjelmeland (2018), the set of values proposed for each DAG
is dependent on the fixed structure of the undirected acyclic graph, defined in the M–H setup.
This means that if one of the nodes n located at a low level in a DAG, has a low density value
p(x) associated with it, the structure of the DAG makes the algorithm likely to propose several
low density values, as the nodes at higher levels will condition on the low density point x. In
other words, the algorithm does not have the ability to separate between proposing values based

1

on low- or high density points. This motivates for a new version of the algorithm, which makes
low density points less likely to be proposed within the DAG.

In this article we present a new version of the algorithm from Luo and Tjelmeland (2018),
where the structure of the DAG is stochastic and not given in the M–H setup. The idea is to let
the DAG grow dependent on the values associated with its nodes, so that the DAG can expand in
the nodes which have high density values associated with them, and avoid expanding in the nodes
which are located in the tail of the target distribution. This is done by assigning a probability of
a node n having children. If a node n gets children, it means that there will be generated nodes
in the DAG with associated values conditioning on the value associated with n. The values are
generated by a proposal distribution q(xn|xpred(n)), in a similar manner as in Luo and Tjelmeland
(2018). The acceptance probabilities are a natural extension of the acceptance probabilities from
Luo and Tjelmeland (2018), which uses the full conditional distributions as proposal distributions,
and updates the Markov chain by Gibb’s sampling. The target distribution and the full conditional
distributions differ in the sense that in our new algorithm, the stochastic process of growing the
DAG is included. We demonstrate that this intuitive expansion does not converge, meaning that
the expressions for the full conditional distributions must be wrong. In our examples, the limiting
distributions’ variance is dependent on the parameters used in the proposal distribution in the
M–H setup.

In the algorithm presented in this work, a Gaussian distribution is used as the proposal
distribution q(xn|xpred(n)) instead of the tailored distribution used in Luo and Tjelmeland (2018).
When the structure of the DAG is stochastic and dependent of the values associated with the nodes,
the proposals generated by the Gaussian distribution will not correspond to a random walk, in
the same way it would if a Gaussian distribution was used in Luo and Tjelmeland (2018). This is
because in our setup, the DAG should ideally stop expanding in nodes associated to low density
values, whilst in the setup in Luo and Tjelmeland (2018) the expansion happens independently
of the densities associated with the nodes, leading to proposals corresponding to a random walk.
Still, a tailored proposal is also suitable in the M–H presented here, and is likely to increase the
probability of generating high density values, but this is not a focus in this work.

Although our algorithm does not converge to the specific target distribution, we expect
that a small adjustment to the acceptance probabilities could make the algorithm correct. This
is because the algorithm converges to distributions close to the target distribution, making it
likely that the acceptance probabilities are close to correct. In Section 7 we demonstrate that the
algorithm in general does not converge to the correct target distribution, and try to locate the error
by running different simulations with different parameters in the proposal distribution. We also
investigate the algorithm’s ability to generate high density values, and its ability to jump between
levels when sampling a new root. In the closing remarks of this report we present a hypothesis
about where in the M–H setup the error is located, based on the simulation experiments from
Section 5, and suggest how one could approach the problem of making the acceptance probabilities
correct.

2 The Metropolis–Hastings algorithm

The Metropolis–Hastings (M–H) algorithm is used to draw samples from distributions which are
difficult to sample from directly. The method is widely used in modern statistics, and is a powerful
in the sense that it theoretically can be used to sample from any target distribution p(x), which
can the be evaluated up to a proportionality constant. That is, one does not need to know the
normalization constant to be able to use the M–H algorithm. These situations typically arise in
Bayesian settings, where the normalization constants are difficult or impossible to calculate.

The algorithm is built upon the theory of Markov chains, and is called a Markov chain Monte
Carlo method. In principle, the method defines a Markov chain whose limiting distribution is the
target distribution p(x). When the Markov chain has converged to its limiting distribution, each
state of the Markov chain can be regarded as a sample from the target distribution p(x).

2

2.1 Constructing a Markov chain with a given limiting distribution

A Markov chain is defined as a stochastic process where each step or decision only depends on the
chain’s previous step. This is called the Markov property, and any stochastic process which fulfills
this property is thereby a Markov chain. By using theory based on Markov chains, it is possible
to define a chain which has the target distribution as its limiting distribution.

We want to draw samples from a target distribution p(x) with sample space S by using the
M–H algorithm. This is done by using a proposal distribution

q(x′|x), (2)

together with the M–H acceptance probability

α(x′|x) = min

{
1,
p(x′)q(x|x′)
p(x)q(x′|x)

}
(3)

Here (3) is the acceptance probability for accepting the proposed state x′ from the current state
x, when x′ is proposed by (2). By using the acceptance probability in (3), a Markov chain with a
limiting distribution equal to p(x) is defined.

If we choose to use a symmetric proposal distribution, meaning that

q(x′|x) = q(x|x′), (4)

the M-H acceptance probability in (3) reduces to

α(x′|x) = min

{
1,
p(x′)

p(x)

}
, (5)

which is now on the form of a Metropolis algorithm, which is a Metropolis–Hastings algorithm
that uses a symmetric proposal distribution.

The step by step procedure for using the M–H algorithm, is first to assume that we have
a value x distributed according to the target distribution p(x). From here, a value x′ is proposed
by the proposal distribution in (2). The value x′ is either accepted with the probability in (3), or
rejected. If x′ is accepted, then the Markov chain’s state is updated and the current state is x′. If
the value is rejected, the chain’s state will remain at x. This process is repeated until the chain has
converged. When the chain has converged, each state of the Markov chain can be regarded as a
sample from the target distribution. It is possible to use the M–H algorithm to draw samples from
any target distribution, which is known up to a normalization constant, but in many cases the
chain will take too long to converge to the target distribution, making the algorithm impracticable
to use.

It is the form of the acceptance probability in (3) that ensures the chain to converge, the
proposal distribution does not effect the limiting distribution of the Markov chain. The chain will
converge for any choice of proposal distribution q(x′|x), but the proposal distribution has a large
impact on how fast the Markov chain converges. For example, a Markov chain with a proposal
distribution which resembles the original target distribution is expected to converge faster than
a Markov chain with an arbitrary proposal distribution. This is because a proposal distribution
which is similar to the target distribution is more likely to propose states that will be accepted by
the acceptance probability in (3).

When the shape of the target distribution is relatively unknown, a common choice for the
proposal distribution is a Gaussian distribution with mean equal to the Markov chain’s current
state. The variance of the Gaussian distribution is often referred to as the tuning parameter,
meaning that it tunes how the Markov chain jumps. For example, if the tuning parameter is
large, the proposal distribution q(x′|x) is likely to propose values that are far away from the
chain’s current state x in the sample space S. If on the other hand, the tuning parameter is
low, the proposal distribution is likely to propose values close to the chain’s current state. The

3

tuning parameter effects the ratio between accepted and rejected proposals, and how fast the
chain converges. Typically, a too low tuning parameter results in a high acceptance ratio, but
slow convergence, whilst a larger tuning parameter has lower acceptance ratio, but may make
chain converge faster. This is because a Markov chain which takes ”large steps” is more likely to
explore larger parts of the state space in a smaller amount of iterations. Nevertheless, if the tuning
parameter gets too large, many of the proposals will end up in the tail of the target distribution,
and this will also lead to slow convergence, since almost all proposals gets rejected.

2.2 Gibb’s sampling

Recall from the previous section that a Gaussian distribution is a common choice for the proposal
distribution when little is known about the target distribution. A special case is when we know
the full conditional distributions for the values we wish to sample from a joint target distribution.
Then it is possible to use Gibb’s sampling (Geman and Geman 1984) for updating the Markov
chain. This involves using the full conditional distributions as proposal distributions, and the M–H
acceptance probabilities for updating the Markov chain reduces to one. Intuitively this means that
the proposal distribution resembles the target distribution up to a normalization constant, which
makes the terms in the M–H ratio from (3) cancel, and we are left with an acceptance probability
equal to one.

Imagine that we want to sample x from a joint distribution p(x, y), so that this is our target
distribution. The full conditional distribution for x is defined as the distribution for x when y
is given, and is denoted by p(x|y). The relationship between the joint distribution and the full
conditional distribution for x is

p(x, y) = p(x|y) · f(y). (6)

We wish to update x while keeping y fixed. Inserting for the target distribution p(x, y) and using
the full conditional distribution for x as the proposal distribution p(x′|y), the M–H acceptance
probability becomes

α(x′|x) = min

{
1,
p(x′, y)p(x|y)

p(x, y)p(x′|y)

}
= min

{
1,
p(x′|y) · f(y)p(x|y)

p(x|y) · f(y)p(x′|y)

}
= 1. (7)

We then update the chain’s state for y, keeping the new state x′ fixed, and using the full conditional
distribution p(y′|x′) in a similar manner as was done to propose the new value x′. The Markov
chain is updated in turn for x and y in every iteration. Using the full conditional distribution
as the proposal distribution is efficient, since none of the proposed values are rejected. Gibb’s
sampling is therefore preferred when the full conditional distribution is known, and we are able to
draw samples from it.

2.3 Requirements for convergence

A Markov chain is uniquely defined by its transition probabilities, so that if two Markov chains have
the same transition probabilities, they are identical. This means that if the transition probabilities
described above fulfills the requirements for convergence, it can be used to draw samples from the
desired target distribution.

The constructed Markov chain needs to fulfill two requirements for the M–H algorithm to
converge to the target distribution. The first requirement is that there must exist a stationary
distribution for the Markov chain, and the second requirement is that this stationary distribution
is unique. A sufficient condition for a stationary distribution to exist is that the chain is reversible,
meaning that the probability for being in a state x and moving to a new state x′ is equal to the
probability of being in the state x′ and moving to the state x. That is, for every pair of states x
and x′

Pr(x|x′)Pr(x′) = Pr(x′|x)Pr(x). (8)

4

For the stationary distribution to be unique it is required that each state of the Markov chain is er-
godic, which means that it is aperiodic and positive recurrent (Gamerman and Lopes, 2006).

The Markov chain has converged when it has reached its unique stationary distribution,
which in this case is equal to the target distribution. Given an initial state x, the chain will
converge after a certain amount of iterations. The number of iterations before the chain converges
is referred to as the burn-in period. When the chain has converged, the probability of the Markov
chain being in a state x equals the density of the target distribution p(x).

To show that a Markov chain with transition probabilities as discussed above converges,
it is necessary to show that it is reversible, as expressed in (8). When x′ = x, the expression in
(8) is obviously correct. If x 6= x′, the process of moving to a new state involves two steps. The
first step is the probability for the new state being proposed, which is given by the density of the
proposal distribution in (2). The second step is for the proposed value to be accepted according to
the acceptance probability in (3). The probability for moving to a new state x′ given the chain’s
current state x becomes

Pr(x′|x) = q(x′|x)α(x′|x), (9)

which inserted into the right hand side of the equation for the chain to be reversible from (8)
becomes

q(x′|x)α(x′|x)p(x) = q(x′|x) min

{
1,
p(x′)q(x|x′)
p(x)q(x′|x)

}
p(x) (10)

= min{p(x)q(x′|x), p(x′)q(x|x′)}, (11)

and the left hand side becomes

q(x|x′)α(x|x′)p(x′) = q(x|x′) min

{
1,
p(x)q(x′|x)

p(x′)q(x|x′)

}
p(x′) (12)

= min{p(x′)q(x|x′), p(x)q(x′|x)}. (13)

The values of (11) and (13) are equal for every pair x and x′, which proves that the Markov
chain is reversible, and will have its limiting distribution equal to the desired target distribution
p(x).

3 A Multiple-try Metropolis algorithm

Luo and Tjelmeland (2018) present a Multiple-try Metropolis algorithm which proposes several
new state values in every iteration of the algorithm, by using an undirected acyclic graph G. In
every iteration of the algorithm, one of the nodes in G is sampled as a root node, leading to a
directed version of the graph, with edges pointing away from the sampled root node. Every node
in the graph is associated to a value, and the value associated with the root node is assumed to be
distributed according to a target distribution p(x) of interest. When a node is sampled as a root,
its associated value is accepted as a sample from the target distribution. In the next iteration,
new proposals to be associated with the nodes are generated in direction of the directed edges of
the graph through a proposal distribution, by first conditioning on the value associated with the
root.

3.1 An undirected acyclic graph to generate multiple proposals

In the M–H setup in Luo and Tjelmeland (2018), the undirected acyclic graph G consists of a set
of undirected edges E , and a set of nodes S is used to generate multiple proposals. The graph

5

(a) The undirected acyclic graph G (b) The directed acyclic graph G7

Figure 1: An example of a undirected graph G to be used in the M–H setup, and the graph G7
formed by sampling the node indexed by 7 as root. The nodes are indexed by a number to explain
the order in which the values are proposed in this example.

generates the new potential state values from the target distribution p(x), by sampling one of the
nodes n in S as a root r, which results in a directed version of the graph G, that has directed edges
pointing away from the root node r. An example of an undirected graph G and a directed acyclic
graph (DAG) resulting from sampling a node in S is shown in Figure 1. Since the method generates
multiple proposals in each iteration, it is called a multiple-try Metropolis algorithm.

The DAG resulting from sampling a node r from S is denoted Gr, and includes the same
set of nodes as G, but a different set of directed edges, denoted Er. Let each node n in Sr have
a value xn associated with it. In the directed graph Gr, the values are proposed in direction of
the directed edges. For each node n in S, except for the root node r, denote the predecessor of
n by pre(n). In the graph Gr, there will be a directed edge for every node n 6= r, directed from
n’s predecessor pre(n) to the node n. The value associated with n is proposed by a proposal
distribution

q(xn|xpre(n)), (14)

where xpre(n) is the value associated with the predecessor pre(n). For the DAG in Figure 1, denote
the nodes n in G by 1, 2, 3, .., 11, and their associated values by respectively x1, x2, x3, .., x11. When
node 7 is the root, the values will be proposed in the order

q(x4|x7)q(x11|x7)q(x8|x4)q(x1|x4)q(x2|x1)q(x3|x1)q(x5|x2)q(x6|x2)q(x9|x6)q(x10|x6).

Let the set of values associated with each of the nodes in the DAG Gr be denoted by Xr.
Previous to the values in Xr being generated, each node n in the undirected graph has an equal
probability of being the root node of a potential DAG. That is, the probability for a node n in the
graph being the root is uniformly distributed.

The idea is to let each of the nodes n in S be potential root nodes in a directed acyclic
graph, corresponding to the graph G with edges directed away from the root node n of the graph.
The structure of G is deterministic and given in the M–H setup, so its structure will not effect the
probability for a node n being the root of the graph previous to a set Xr being proposed.

3.2 An expansion of the target distribution

Assume that we have a value x sampled from the target distribution p(x), and that x is the value
associated with the root node r of a DAG on the form as described above. The values of the other
nodes in the DAG are proposed through the proposal distribution in (14), with the proposed values
conditioned on the values associated with the predecessor of the different nodes. The distribution
of the values Xr, which is the set of values associated with every node in the DAG including the
root node, is conditionally dependent on the root node r, and the joint distribution for the set Xr

and the node r being the root equals

f(r,Xr) = f(Xr|r) · f(r), (15)

6

where

f(Xr|r) = p(x) ·
∏

n∈S\{r}

(xn|xpre(n)), (16)

is the joint probability of all values in Xr. Note that the value x associated with r is independent
of r, but the rest of the set Xr is dependent on the value x and the node’s position in the DAG,
as this determines the order of the proposals generated through (14). Using that the probability
of a node r being the root previous to the set Xr being proposed is uniformly distributed between
the nodes in S, the joint probability of Xr and f(r) becomes

f(Xr, r) = p(x) ·
∏

n∈S\{r}

(xn|xpred(n)) ·
1

|S|
∝ p(x) ·

∏
n∈Sr\{r}

(xn|xpred(n)). (17)

3.3 Sampling from the expanded target distribution

Luo and Tjelmeland (2018) uses the distribution in (17) as the target distribution in the M–H
setup. In each iteration of the algorithm, a DAG is proposed as a new state for the Markov chain,
and the proposed value x in the first term of (17) is the value which is accepted as a value from the
original target distribution p(x). Updating the Markov chain consists of two steps. Consider first
that we have a value x which is distributed according to the target distribution, as a starting point
for the simulation. This value is associated with a root node r in a DAG resulting from r’s position
in the undirected graph in the M–H setup. The first step is to propose values for all nodes other
than the root node, conditioned on the value x associated with r, using the proposal distribution
in (14). This is a Gibb’s update for the set Xr with the full conditional distribution

f(Xr|r, x) =
∏

n∈S\{r}

(xn|xpred(n)), (18)

given the root node r with the associated value x. Note that even though x is included in the set
Xr, p(x) is not a part of the full conditional in (18), since x is given and conditioned on.

The second step is to sample a new root by assuming that given the structure of the
undirected graph G, each of the nodes have a probability of being the root. For sampling a new
root, we define the sample space as all possible nodes in S being the root in the DAG. That is,
the sample space is as large as the number of nodes in S. Given a DAG with root node r and the
values in Xr associated to every node in S, the full conditional distribution for a node r′ being
the root equals

f(r′|Xr) =
p(xr′) ·

∏
n∈S\{r′} q(xn|xpred(n))∑

n∗∈S p(xn∗)
∏

n∈S\{n∗} q(xn|xpred(n))
. (19)

The expression in (19) can be explained as the density of the joint distribution of the DAG
with root node r′, divided by the sum of the densities of the joint distributions of all possible
choices of root nodes in S. A new root node is chosen by assigning the probability in (19) to each
node in G, and applying the standard algorithm for sampling from a discrete distribution, see for
example Gamerman and Lopes (2006). This is one of two Gibb’s updates for updating the Markov
chain, where the full conditional distribution in (19) is used as the proposal distribution.

After a new root r′ is sampled, new potential values are generated in the next iteration
of the algorithm. This is done by using the structure of the DAG resulting from the sampled
node r′’s position in the undirected acyclic graph given in the M–H setup, and using the proposal
distribution in (14), conditioning on the value xr′ in the same manner as in the previous iteration
of the algorithm. Since the full conditional distributions are used as proposal distributions for Xr

and r′, the M–H acceptance probabilities for accepting the proposed values are equal to one.

4 Growing the DAG stochastically

In this section a new version of the algorithm discussed above is presented. In Luo and Tjelmeland
(2018) a undirected graph G is defined in the M–H setup, and its structure determines the order

7

(a) The full grown DAG Gr, with r indicating
the root node.

(b) The new DAG Gr′ resulting from sampling
r′ as the new root. The value associated with
r′ is accepted as a sample from p(x).

(c) The node r′ with its associated value is the
starting point for growing a new DAG in the
next iteration

(d) The full grown DAG G′r′ . Here, the next
step would be to sample one of the nodes in
G′r′ , as in (b).

Figure 2: The step by step procedure of growing a DAG and sampling a new root node. This
procedure is repeated in every iteration of the algorithm. The value associated with the sampled
node r′ is accepted as a sample from the original target distribution p(x).

in which the multiple values are proposed when a root node is sampled. We present a version
of the algorithm that instead of using the structure of a fixed undirected graph, grows a DAG
stochastically conditioned on the densities of the values proposed as the DAG is growing. This is
motivated by the favourable effect of increasing the number of high density values, by letting the
DAG grow stochastically in directions of high density points.

In each iteration of the algorithm, a DAG is grown conditioned on a root node r with a
associated value x, which is assumed to be distributed according to the target distribution p(x).
The DAG is denoted by Gr, and has a set of nodes Sr and a set of directed edges, Er. The DAG
grows stochastically by assigning a probability for every node n in Sr having a number of children,
leading the DAG to expand in n. When a node n samples a number of children, the size of the
set Sr increases accordingly, and the values associated with the children conditions on the value
associated with n. The set of values associated with the nodes in Sr is denoted Xr, as in the setup
which uses a fixed graph as presented above. When the DAG is fully grown, a node r′ in Sr is
sampled, and its associated value is accepted as a sample from original target distribution p(x),
in the same manner as in Luo and Tjelmeland (2018). In the next iteration, a new DAG is grown
conditioned on the value associated with the node r′ i a similar manner as the DAG Gr was grown.
The procedure of growing a DAG and sampling a new root node is illustrated in Figure 2.

4.1 A target distribution which includes the growth of a DAG

By growing the DAG stochastically depending on the densities of the proposed values, a new target
distribution is defined. The new distribution will include the density of the target distribution

8

p(x), the probability for the specific DAG being grown, and the joint distribution of the set Xr.
The multiple proposals will be proposed in the direction of the directed edges of the DAG, in the
same way as in Luo and Tjelmeland (2018). The algorithm can be used to generate samples from
the original target distribution p(x), by disregarding the parts of the expanded target distribution
which are not a part of the factor p(x) when sampling a whole DAG with associated values.

Assume x to be distributed according to the target distribution p(x). Let r be the root
node of a DAG, associated with the value x, which will be the starting point for growing the
DAG. To grow a full DAG, let the number of children, c(r), for the root node r be stochastic and
distributed according to some discrete distribution

P (c(r)). (20)

We let the number of children, c(n) for all other nodes n 6= r in Sr be distributed according to
another discrete distribution

P (c(n)|G∗r ,X ∗r), (21)

where G∗r denotes the part of the graph Gr grown so far, since the DAG might still be growing
when n samples its number of children. The set X ∗r denotes the set of proposed values associated
with the nodes in G∗r .

Each node n in Sr is associated with a value xn. For all nodes n in Sr, except for the root
node r, the value xn is dependent on the value xpred(n), in the same way as in Luo and Tjelmeland
(2018). After the graph is fully grown, the joint distribution for the DAG Gr and the set Xr

becomes

f(Gr,Xr) = p(x)P (c(r))
∏

n∈Sr\{r}

P (c(r)|G∗r ,X ∗r)q(xn|xpred(n)), (22)

which is different from the target distribution in (17), in the sense that in addition to include the
set of proposed values Xr, it contains the probability of growing the specific DAG Gr.

4.2 Sampling from the expanded target distribution

The procedure for updating the state of the Markov chain with a target distribution equal to
(22), consists of two steps, equivalent to updating the Markov chain in the setup from Luo and
Tjelmeland (2018). The first step is to grow a DAG and propose multiple values to be associated
with it, by conditioning on a root node r with associated value x. The proposal distribution for
the set of values Xr and the DAG Gr is set to be

f(Xr,Gr|r, xr) = P (c(r))
∏

n∈Sr\{r}

P (c(n)|G∗r ,X ∗r)q(xn|xpred(n)), (23)

which intuitively seems to be the full conditional distribution, and is used to update the Markov
chain. Note that this expressions for the full conditional distributions is likely to be wrong, as
they do not lead to correct acceptance probabilities, since the Markov chain does not converge to
the correct target distribution as will be demonstrated in Section 7.1.

The second step is to propose one of the nodes r′ in the grown DAG Sr as a root in a
new DAG, with edges pointing away from the sampled node r′. The value associated with r′ is
accepted as a value from the original target distribution p(x), and will used as a starting point for
growing a new DAG in the next iteration.

The new root node is sampled by calculating the probability of every node n in Sr being
the original root of another DAG, whose structure now is determined by Gr. When a node r′ is
sampled, the new DAG will have edges pointing away from r′, as shown in the process in Figure
2, when the new DAG in (b) is proposed conditioned on the DAG in (a). As a natural exstension
of the full conditional distribution from (19), the probability for a node r′ in Sr being the new
root, given the set Xr and the structure of the DAG Gr, is set to be

f(r′|Gr,Xr) =
p(xr′)P (c(r′))

∏
n∈Sr\{r′} P (c(n)|G∗r′ ,X ∗r′)q(xn|xpred(n))∑

n∗∈Sr p(xn∗)P (c(n∗))
∏

n∈Sr\{n∗} P (c(n)|G∗n∗ ,X ∗n∗)q(xn|xpred(n))
. (24)

9

The expression in (24) resembles the probabilitiy used in Luo and Tjelmeland (2018) from (19),
but differs in the sense that it contains the probability for growing the specific DAG resulting
from r′ being the root of the graph. The numerator represents the density of the joint distribution
corresponding to the graph Gr′ , which has the same set of nodes Sr with associated values Xr,
but a different root node n′ leading to the graph having a different set of edges. The denominator
represents the sum of the densities of the joint distributions corresponding to every node n∗ in Sr
being the root of the graph. Note that the expression in (24) seems like a intuitive extension of
the full conditional from Luo and Tjelmeland (2018), but since the algorithm does not converge
when using this as the full conditional distribution, this expression is likely to be incorrect.

The expression in (24) is meant to be the full conditional distribution for the new root
r′, given the structure of the grown DAG Gr with the belonging set of values Xr, and is used
as the proposal distribution in the Gibb’s update for the Markov chain. When a new root r′ is
sampled, the associated value x′r is accepted as a value from the original target distribution, and
the value will be used as a starting point for growing a new graph, according to an equivalent
procedure as the graph Gr was grown. In this step the algorithm differs from the algorithm in
Luo and Tjelmeland (2018), in the sense that the new DAG Gr′ will grow independently of the
structure of the previous DAG Gr. It will only depend on the value x′r associated with the new
root node.

The procedure for growing a DAG and sampling a new root as described in this section
is repeated for every iteration of the algorithm. The acceptance probabilities should be equal to
one, because we are using the what seems to be the full conditional distributions as a proposal
distributions. The acceptance probabilities based on the full conditional distributions presented
above will be derived in the next section.

4.3 The acceptance probabilities

The M–H acceptance probability for accepting a proposed value, given the Markov chain’s current
state is in general expressed as in (3). In this section the acceptance probabilities for this algorithm
are presented. Note that the derivations are based on the full conditional distributions presented
in the previous section, and that these distributions are likely to be incorrect, since the algorithm
does not converge correctly.

Updating the Markov chain in this setup consists of two steps. In the first step, we assume
that the Markov chain’s current state is a DAG Gr, with associated values Xr, and a root node
r associated to the value x, which is distributed according to the target distribution p(x). We
wish to update the DAG and associated values, given the current root node r and associated value
x. The full conditional distribution for a new DAG with new associated values, given r and x is
expressed in (23) and is used as the proposal distribution. Using the target distribution in (22) and
the full conditional distribution from (23), the expression for the M–H probability becomes

α(G′r,X ′r|Gr,Xr) = min

{
1,
f(G′r,X ′r)f(Gr,Xr|r, x)

f(Gr,Xr)f(G′r,X ′r|r, x)

}
, (25)

which when inserting the full conditional and the target distribution, gives a M–H probability
equal to

α(G′r,X ′r|Gr,Xr) = min

{
1,

p(x)P (c(r)G′r)
∏

n∈S′r\{r}
P (c(n)|G′r∗,X ′r∗)q(xn|xpred(n))

p(x)P (c(r)Gr))
∏

n∈Sr\{r}
(
P (c(n)|G∗r ,X ∗r)q(xn|xpred(n))

)

·
P (c(r)Gr)

∏
n∈Sr\{r} P (c(n)|G∗r ,X ∗r)q(xn|xpred(n))

P (c(r)G′r)
∏

n∈S′r\{r}
P (c(n)|G′r∗′,X ′r∗)q(xn|xpred(n))

}
, (26)

where c(r)Gr and c(r)G′r is the number of children for the root node r in the DAGs Gr and G′r,
respectively. These two differ because they belong to two different graphs, but condition on the
same root node r associated to the same value x. The terms in the M–H ratio in (26) will cancel,
and we are left with an acceptance probability equal to one. This is expected since since the full

10

conditional distribution is used as the proposal distribution, meaning that it is a Gibbs update of
the Markov chain.

In the second update, the root node is updated in a grown DAG, conditioned on the current
DAG’s structure and associated values. The expression for the M–H acceptance probability when
using the full conditional for r′ becomes

α(r′|r) = min

{
1,
f(Gr′ ,Xr)f(r|Gr′ ,Xr)

f(Gr,Xr)f(r′|Gr,Xr)

}
. (27)

Notice that the set of proposed values Xr is fixed in this step, and that the graphs Gr and Gr′ have
the same set of nodes. In this step, only the root node changes, and its associated value is accepted
as a value from the original target distribution p(x). Inserting the target distribution from (22) and
the full conditional distribution from (24) into the expression for the M–H acceptance probability,
the expression becomes

α(r′|r) = min

{
1,
p(x′)P (c(r′))

∏
n∈Sr\{r′} P (c(n)|G∗r′ ,X ∗r′)q(xn|xpred(n))

p(x)P (c(r))
∏

n∈Sr\{r} P (c(n)|G∗r ,X ∗r)q(xn|xpred(n))
(28)

·
p(x)P (c(r))

∏
n∈Sr\{r} P (c(n)|G∗r ,X ∗r)q(xn|xpred(n))∑

n∗∈Sr p(xn∗)P (c(n∗))
∏

n∈Sr\{n∗} P (c(n)|G∗n∗ ,X
∗
n∗)q(xn|xpred(n))

p(x′)P (c(r′))
∏

n∈Sr\{r′} P (c(n)|G∗
r′ ,X

∗
r′)q(xn|xpred(n))∑

n∗∈Sr p(xn∗)P (c(n∗))
∏

n∈Sr\{n∗} P (c(n)|G∗n∗ ,X
∗
n∗)q(xn|xpred(n))

 .

The term including the sum over all nodes n∗ in Sr is present in both the numerator and the
denominator in the acceptance probability, since the set of nodes Sr is fixed in this step. The
other terms include the expanded target distribution with r and r′ as roots in both the numerator
and denominator, so this will also cancel. We are left with an acceptance probability equal to
one.

5 Methods for growing the DAG

When growing a DAG stochastically it is important to make sure that it does not grow infinitely
large. The size of a DAG can be measured by its number of levels and nodes, so it is natural
to use at least one of these quantities in the probability function P (c(n)|G∗r ,X ∗r) from (21), for
sampling a number of children c(n) for a node n. If we do not include the size of the DAG, we
can not prevent the DAG from growing infinitely large, so it is necessary to make the probability
function dependent on either the number of nodes or the number of levels. The level of a node n
in a DAG is defined as the number of edges between the root node r and the node n. The root
itself is always located at level 0, and the level of the node located furthest away from the root is
defined as the height of the DAG. Nodes that do not not have any children are referred to as leaf
nodes. For example the DAG in Figure 3 (a) has a height of three, while the DAG in Figure 3 (b)
has a height of four, since seven of its leaf nodes are located four edges away from the root. Recall
that the motivation for growing the DAG stochastically is to increase the probability of proposing
high density values. It is therefore also essential to make the probability function dependent on
the density of the values X ∗r associated with the growing DAG G∗r .

5.1 Growing the DAG dependent on levels

A naive approach for growing the DAG is to make the probability of a node n having children,
dependent on the levels in the DAG. By continuously decreasing the probability for sampling
children as the levels in the DAG increase, the DAG will eventually stop growing with a probability
of one. As an example, let the number of children for a node n be distributed according to a Poisson
distribution

P (c(n)|G∗r ,X ∗r) = exp{−λ} · λ
c(n)

c(n)!
, (29)

11

(a) An illustration of a balanced DAG, mean-
ing that the level of each leaf node is the same.
Here the height of the DAG is equal to three

(b) A version of the DAG in (a) which has the
originally grown DAG’s root’s right child as
the new root. This makes the height of the
DAG equal to four, and sets the probability of
this node being sampled equal to zero.

Figure 3: An illustration of a balanced DAG of height three grown by Method 1. If the function
for the intensity parameter λ is as in (30), all nodes except the original root node has a zero
probability of being sampled.

where the intensity parameter λ is a function of the level level(n) of the node n, its associated
value xn, and the value associated with the predecessor, xpred(n). We set the function for the
intensity parameter λn equal to

λn(n|xn, xpred(n), level(n)) = max

{
0, (4− level(n)) ·min

{
2,

p(xn)

p(xpred(n))

}}
. (30)

The method for growing the DAG by using the function for the intensity parameter in (30) will
be denoted by Method 1 from here on. A problem with making λn a function of the level of a
node as in (30), is that most of the nodes in a fully grown DAG might have a probability of zero
of being sampled as the new root. This is because if a grown DAG Gr has three levels, most of
the nodes in Sr will have a probability of zero of being sampled as the new root, since many of
the variations of the DAG will have more than three levels. If a DAG has more than three levels,
the intensity parameter (30) will be set to zero, which makes the probability of the node having
children equal to zero. This leads to the whole numerator in the full conditional distribution in
(24) becoming zero. The situation is illustrated in Figure 3.

To prevent the situation discussed above, it seems reasonable to avoid situations in which
the DAG will either grow or stop growing with zero or one probabilities, as this has a high risk
of making other variations of the DAG impossible. The probability for a node n having children
should thus never be set to zero, but continuously decrease as the DAG grows larger. Another
approach is to replace the first factor in (30) and get

λn(n|xn, xpred(n), level(n)) =
8

2level(n)
·min

{
2,

p(xn)

p(xpred(n))

}
, (31)

which will eliminate the zero probability situations discussed above. The method for growing the
DAG by using the function for the intensity parameter in (31) will from now on be denoted by
Method 2. Even if the adjusted function for the intensity parameter eliminates the zero probability
situations, the probability function in Method 2 still favours well balanced DAGs. Variations of
the DAGs which have former leaf nodes as roots in a new DAG, are likely to have significantly
more levels than the originally grown DAG. For example, a DAG resulting from one of the former
leaf nodes in the DAG from Figure 3 (a) being the new root, will have a height equal to six,
which makes the probability for this variation of the DAG very small. The computational cost of
proposing values associated to the leaf nodes will be useless, if these nodes are likely never to be
sampled as new roots. Growing the DAG by Method 2 and Method 3 will make the algorithm
likely to resample its old root, or to sample one of the root node’s neighbours in most of the
iterations.

12

5.2 Growing the DAG independent on levels

As discussed above, growing the DAG dependent on levels makes leaf nodes unlikely to be sampled
as new roots. This motivates for constructing a new probability function independent of the levels,
which is more tolerant for different structures. We wish to assign a high probability for nodes
having children when the nodes are associated to high density values, at the same time as the
DAG needs to stop expanding when it becomes too large. A different approach is to make the
probability of a node n having children dependent on the value xn compared to the densities
associated to the other nodes in the growing DAG G∗r . Let

λn(Xr) = | { xn∗ ∈ X ∗r \ {p(xn∗) > p(xn)}}|, (32)

where X ∗r is the set of associated values for all nodes in G∗r at lower levels than n. That is, λn is
the number of proposals in X ∗r which is of higher density than p(xn). Using (32) as a function for
the intensity parameter, another suggestion for the probability function in (21) is

P (c(n)|G∗r ,X ∗r) = exp{−λn · α− β}, (33)

where α and β are parameters to be set in the M–H setup. The expected value for a node having
children is not Poisson distributed like it is for Method 1 and Method 2, but gives a probability
for a node a having specific number children, given in the M–H setup. We have in our simulation
experiments in Section 7 set the number of children equal to three. That is, the probability for a
node n having three children is equal to the expression in (33). Consequently, the probability for
a node n not having children is equal to the compliment of the probability in (33).

The expression in (33) will be a decreasing function of the size of the DAG. As the number
of nodes increases, λn will also increase. This is because the target density has its global maxima
at the expected value of the target distribution, which means that the density associated to the
nodes have an upper bound equal to the expected value of the target distribution. This will ensure
that the DAG does not become infinitely large, at the same time as it appears that the probability
function does not favour any particular structure. All variations of the grown DAG will have the
same number of nodes, so intuitively this method will make DAGs that were not originally grown
more likely to be accepted as new states, compared to Method 1 and Method 2. Note that the
parameter β is added to avoid zero or one probabilities. This could happen if for example a node
n has the temporary largest value in X ∗r associated with it, which makes the first factor in the
exponent of (33) equal to zero. If the constant was not added, this would make the probability for
node n having children equal to one, which is not optimal, because other variations of the DAG
could have nodes that are assigned a probability of one for having children, but yet does not have
any. This happens if the nodes were not the temporary largest nodes when the originally grown
DAG was grown.

A weakness with the method discussed above is that high density values are likely to
generate few proposals. For example, if the root node is associated with the mean value, the
global maxima, the root node is likely to sample children, but the children of the root node will
almost certainly have values of lower density than the root node. This will decrease the probability
of sampling more nodes in the DAG, which means that a DAG with a high density value as a
starting point is likely to consist of few nodes. On the other hand, if a DAG has a low density
value as the starting point for growing the graph, the DAG is likely to grow large as the proposed
values may be of higher and higher density. These high density points are on the other hand very
unlikely to be accepted as new states, since a DAG with a high density point associated with the
root node is likely to produce few nodes, making this variation of the DAG unlikely to be accepted
when the originally grown DAG is large. An example of this is illustrated in Figure 4, where the
subset of two DAG’s are indexed by the order of the density associated with each node, ordered
from highest to lowest. Figure 4 (a) shows a root node associated with the lowest density of the
five indexed nodes. If we compare the probability of proposing values from the root node indexed
by 5 to the node associated with the highest density point indexed by 1 in (a), with the proposals
being generated in the opposite order as in (b), proposing the values in an increasing order using
(33) will add the factor

exp{−β4} (34)

13

(a) The sub graph of a DAG with root node in-
dexed by 5. The proposed values are proposed
in the order of the directed edges, here the
proposed values are proposed in an increasing
order.

(b) A version of the sub graph from (a). Here
the root node is indexed by 1, indicating that
it has the largest density value of the five in-
dexed nodes associated with it. The proposals
are proposed in a decreasing order.

Figure 4: An illustration of the conflict of generating high density values and sampling nodes of
high density values as new roots. The two sub graphs show the effect of favouring nodes associated
with low density points. The nodes that are not indexed can be disregarded, as these are not a
part of the subset which creates this effect.

to the joint distribution in (22). On the other hand, proposing the values in the opposite order
will add the factor

exp{−α(1 + 2 + 3 + 4)− β4} = exp{−10α− β4}, (35)

making the structure of the DAG with the lowest value associated with the root exp{α10} times
more likely to be accepted as the new state. As we do not want the target distribution to favour
nodes of low density, this is a very undesirable effect. Still the factor p(x) of the expanded
target distribution in (22) will still favour high density values, but growing the DAG by using
the probability function in (33) is not likely to reinforce the probability of sampling high density
values as a new state.

In general it is preferable to grow the DAGs in a way that makes the density associated with
the root node dominate the density of the joint distribution in (22), instead of the specific structure
of a grown DAG. It will be impossible to make the joint distribution of the DAG independent
of its structure, since the growth is stochastic and therefore included in the joint distribution.
In most cases, the DAG that was originally grown will be the version of the DAG that has the
highest density, since typically the DAG with the highest probability is the DAG that is grown.
This is a weakness compared to the algorithm presented in Luo and Tjelmeland (2018), where
the structure of the DAG is independent of the expanded target distribution, since the structure
is fixed. This makes the proposed values dominate the expanded target distribution to a larger
extent. Some strategies have been discussed in this section, but they all have weaknesses. A more
optimal strategy is likely to exist, and a combination of the strategies above may also yield better
results. Some of the methods are implemented and results are shown in Section 7.

6 Implementation of the algorithm

The algorithm is a Markov Chain Monte Carlo algorithm (MCMC), which is broadly used in
Bayesian inference to generate samples from distributions which are difficult sample from directly.
As mentioned in the previous section, the algorithm is a multiple proposal algorithm, since it
proposes multiple values in every iteration. By using the DAG, the algorithm has the potential to
explore larger parts of the original target distribution in each iteration. The DAG should ideally
be grown in the direction of high density points, which in practice means that nodes which are
associated to high density points have a larger probability of sampling children.

14

The values associated with each node in the DAG are dependent on the value associated
with the predecessor of the node, and the values associated with nodes on lower levels in the DAG.
This means that the nodes on each level are independent of each other, which makes the algorithm
possible to paralleize. To implement the algorithm the program language C++ was used, which
is an object oriented program ideal for making own data structures. Calculations were made on
the logarithmic scale to prevent numerical errors.

6.1 Classes and data structures

The data structure is meant to be easy to modify, because calculating the probability for the
nodes in the DAG being sampled as the new root includes changing the root node to every node
in the grown DAG. This motivates for creating a data structure which is easy to modify and
avoids unnecessary copying of objects and values included in the DAG structure. Therefore the
relations in the DAG are implemented by pointers (Savitch, 2013, p 448.), so that when the root
node changes, we simply change the pointers in a DAG corresponding to a change of root node. A
DAG is implemented by using two different classes, one representing a node, and one representing
a DAG. A Node object holds the information of the node stored as attributes and is connected
to a DAG through pointers to the other nodes. An illustration of how the nodes are connected
through pointers is shown in Figure 5. Here an arrow from one node n to another node represents
a pointer attribute in n which points to the other node. All nodes in the DAG structure are
unique, the nodes are never copied. Only the pointers referring to the allocated memory for a
node is copied, meaning that two arrows pointing to the same node in Figure 5, are two copies of
the same pointer, referring to the same node, but are stored as attributes in two different Node
objects.

The class representing the nodes in the DAG has a large set of attributes. It contains
the proposed position and density generated from (14), and the density of the target distribution
p(x) at the proposed value. For a Node object n, both the density q(xn|xpred(n)) and the density
q(xpred(n)|xn) is stored. For a node which is the root node, both these attributes are set to zero.
The nodes also contain pointers, representing the edges in the graph as shown in Figure 5. Each
node except for the root node in a DAG contains a pointer to its predecessor. If a node has
children, it will have a pointer to its first child, and this child will have a pointer to the node’s
next child, so the children of a node are connected through a singly linked list. This also means
that if a node has siblings, it will have a pointer pointing to the next child in the singly linked list,
unless it is the last child that was added. Then this pointer is set to the null pointer

Memory locations for each node is dynamically allocated (Savitch 2013, p. 467) when a
Node object gets its number of children sampled, and the children are stored in an array which is
kept as an attribute in the parent node. Note that this array is the only place the Node objects
are actually stored. All other references to a Node object are pointers referring to the address of
the node. Since the structure of the DAG is modified several times through each iteration when
the root is changed, it is important to keep track of the allocated memory so it can be freed in a
destructor (Savitch 2013, p. 487). A Graph object consisting of nodes needs to be destructed in a
top down manner, meaning that the leaf nodes need to be deleted first and the root node last. This
is because if nodes at low levels are deleted before the nodes at higher levels, the pointers to the
leaf nodes are also deleted, making the memory for the leaf nodes unreachable and impossible to
release. This motivates for storing the nodes in the array which is static through the life time of a
Graph object, and this is the array stored in every parent node when a node samples its number of
children, when the DAG is originally grown at the beginning of an iteration. The pointer relations
in Figure 5 are created in addition to these static arrays, to be able to modify the relations within
the DAG, without changing the references needed in the destructor at the end of an iteration. The
pointers to each Node object is copied in a two dimensional array belonging to a Graph object,
and this array is filled when the DAG is originally grown, at the beginning of an iteration of the
algorithm. The first index in the array represents the level of the Node object its pointing to in
the originally grown DAG. This two dimensional array is what is used in the destructor, by using
the indexes representing the levels in the originally grown DAG, and deleting the Node object’s
allocated array of children in a top down manner.

The Node objects also have some special attributes related to each method for growing

15

Figure 5: The implemented DAG data structure. The arrows represent the pointers in the DAG.
Every arrow pointing out from a node n represents a pointer attribute in n, pointing to the node
it is pointing to. A blue arrow represents the pointer from a node to its predecessor. For the root
node, the predecessor is set to the null pointer. The solid red arrow represents a pointer from a
node to its first child, and a dashed red arrow represents the singly linked list between the children
of a node. The indexes are the ID’s of every node, which is assigned when a DAG is originally
grown at the beginning of an iteration. Starting with assigning the ID of the root node to 0, the
children of each node will have its ID’s first part identical to its predecessor’s ID, followed by the
number in which the child was added to its predecessor. For example the node 031’s first child
will have the ID ”031” + ”1”, which becomes 0311.

16

the DAG from section 5. For example the methods for growing the DAG based on the density
associated with nodes at lower levels than the current node sampling its number of children, uses
a linked list ordering the nodes in an increasing order. The list is reconstructed for every change
of root in an iteration, with the first element inserted corresponding to the value associated with
the new root node. Each node also has a boolean value indicating whether a node is a root node,
and an ID representing its position in the originally grown DAG as shown in Figure 5. The target
distribution p(x) and proposal distribution q(xn|xpred(n)) for proposing values within the DAG,
are objects declared as attributes to every node. These attributes are pointers to specific target-
and proposal distributions, which are declared as abstract classes (Savitch 2013, p. 699) to make
the code more applicable for different target- and proposal distributions.

6.2 Implementing the growth of the DAG

In each iteration of the algorithm, a DAG is grown based on the current state’s root node and
associated value. The graph is grown by a method similar to a breadth first search (BFS) (Cormen
et al. 2009, pp.594-602), by using the probability function in (21) on all nodes at the current level,
before using the probability function on the nodes at the next level. The pseudo code for growing
a DAG by BFS is shown in Figure 6. For example to grow the DAG in Figure 5, the root node
”0” is the first node to sample its number of children. Since this is the starting point for the DAG,
it already has its value from the target distribution associated with it. The children of the node
”0” are added to a vector representing the current level of the DAG. For example for the DAG in
Figure 5, the nodes labeled ”01”, ”02” and ”03” are added to the vector representing the current
level. Then values for the nodes at the current level are proposed, based on their predecessor’s
value through (14). After this, the number of children for each node at the current level is sampled
through (21), and memory for these children are allocated. The children sampled for the nodes at
the current level are added to a ”queue”, which is a vector to keep track of all nodes at the next
level of the DAG. When ”01”, ”02” and ”03” are at the current level, the nodes which are added
to the queue becomes ”011”, ”012”, ”031” and ”032”. When the values associated with the nodes
at the current level have been proposed and each node’s number of children has been sampled, the
nodes at the current levels are ”finished” and we move on to the next level. The procedure repeats
itself for the nodes at the next level, by setting the vector representing the current level equal to
the queue vector, and emptying the queue. This continues until all nodes at the current level have
sampled a number of children equal to zero, meaning that the DAG has stopped growing.

The computational cost of proposing values to be associated with the nodes in the for-loop
in Figure 6 and calculating the density corresponding to these values is expensive. Since the DAG
is grown by a BFS-strategy, all nodes at a specific level are independent. This means it is possible
to propose values and calculate densities for nodes at the same level by parallel programming,
which will make the algorithm run faster, although this has not been a focus in this work.

6.3 Changing root node and calculating the acceptance probabilities

Calculating the probabilities for every node in a DAG becoming the new root according to the
probability in (24) involves changing the root node to every possible node in the originally grown
DAG. To do this, we simply turn the pointers in the DAG corresponding to a change of root
node. The pseudo code for changing the root in shown in Figure 7. What is important when
changing the pointers in a DAG with relations as in Figure 5, is not to accidentally delete any of
the pointers permanently, and not to add a pointer to a node too many times or in wrong relations.
For example adding a node as child to more than one node at the time will cause the DAG to
be inconsistent, and would result in infinite loops when searching in the DAG. To avoid this,
exception handling has been added to reassure that nothing unexpected happens when changing
the root of a DAG.

A pseudo code for changing the root of the DAG in 5 from node ”0” to node ”03122” is
shown in Figure 7. Note that the operations for delete child and add child only deletes and adds
one pointer at the time. For example the operation delete child for deleting the node ”02” as child
of node ”0” in Figure 5 will only remove ”02” from the linked list representing the children of

17

Grow DAG by BFS

Initialize root node = n, empty vector currentLevel, empty vector queue
Sample the number of children for the root node and allocate memory
Add children of the root to currentLevel
while currentLevel not empty {

for node in currentLevel {
propose value for node
sample the number of children for node and allocate memory
for children of node {

Add child to queue
}

}
set currentLevel = queue
clear queue

}

Figure 6: Pseudo code for the generalized RAM algorithm.

node ”0”. That is, the dotted red line from node ”01” to ”02” will be deleted, but node ”0” will
still be the predecessor of node 02. When adding a child to a node, the child gets added to the
linked list of children for the node, but the predecessor of the child is not changed. Changing the
nodes’ predcessors are independent operations.

A root change for the DAG in 5 with old root ”0” to a new root ”03122” according to the
pseudo code in Figure 7 is shown in Figure 8. Notice that we need temp1 and temp2 to store
pointers to two nodes at the time, since temporarily changing the edges in the DAG results in a
disjointed graph. Also note that a node n has to be deleted as a child from its current predecessor
before being added as a child to its new parent. This is because of the linked list structure of
the children. If a node n is added as child to another node, before being deleted as child from its
predecessor pred(n), the linked structure following n from the linked list belonging to pred(n) will
be added to the new parent, causing the old siblings connected to n from pred(n) being added as
children to the new parent node.

Calculating the probability of a specific node n being the root node in a DAG from (19) is done
by a BFS search through a DAG which has its root node changed by the pseudo code in Figure
7. While searching the DAG, some values are updated and recalculated, and some values remain
constant. For example it is not necessary to recalculate the density p(x) in any of the nodes,
since this does not change when the root node changes. Recall that for a node n both the value
q(xn|xpred(n)) and the value q(xpred(n)|xn) is stored in the node n. When the root node changes,
the nodes with turned edges get these two attributes pushed forward to its new children which
used to be their predecessors, and then the values are swapped. This process is shown in Figure 9.
This will result in these two attributes being pushed one level forward at the time, starting from
the new root node and ending in the old root node. The nodes which are not involved in the change
of root node will have these two values unmodified. The result of this process is that the new root
node will have these two attributes set to zero. Note that if q(xn|xpred(n)) is symmetric, the same
values are pushed one level forward, and the sum of all attributes generated by q(xn|xpred(n)) is
constant for every change of root within an iteration, so these values will cancel in the acceptance
probability in (28). Other values that need to be recalculated is the probability for every node
n∗ in the DAG having its new number of children. This is because the number of children might
be changed, and the parameters for calculating the probability changes when the root is changed.
It is important to use BFS to calculate the probabilities for all the nodes being the root, since
the originally grown DAG was grown through BFS. To minimize the risk of bugs in the code, we
have implemented the change of root node and recalculations of the probabilities within the nodes
inside the BFS-search that was used to grow the DAG. This is so that the code lines which sets

18

Change root node

Set temp1 = newRoot’s predecessor’s predecessor
Set temp2 = temp1’s predecessor
Delete newRoot’s predecessor as child of temp1 node
Add newRoot’s predecessor as child of newRoot node
Delete newRoot as child for newRoot’s predecessor node
Set iterator = newRoot’s predecessor
Set newRoot’s predecessor’s predecessor = newRoot
Set newRoot’s predecessor to NULL
while iterator is not the old root{

Set temp1’predecessor to iterator
Set iteraor = temp1
if temp2 is not NULL {

Delete temp1 as child of temp2 node
Set temp1 = temp2
Set temp2 = temp1’s predecessor

}
Add iterator as child to iterator’s predecessor node

}

Figure 7: Pseudo for changing the root node of a DAG. The variables newRoot, newRoot’s pre-
decessor, temp1, temp2 are pointers to node objects, while newRoot node, newRoot’s predecessor
node etc are Node objects. The operations delete- and add child only deletes and adds one pointer
at the time, and are independent of the predecessor pointer of the involved nodes.

the probabilities in a growing DAG and the probabilities in the BFS for modified DAGs uses the
same lines of code.

7 Simulation experiments

In this section we investigate the convergence properties of the algorithm presented in this work.
We demonstrate that it in general does not converge to the given target distribution. Instead,
it converges to distributions with the same mean as the target distribution, but with a variance
dependent on the parameters used in the proposal distribution. We investigate how the algorithm
converges for the different parameters by using it to sample from a bivariate Gaussian distribution

p(x) =
exp

{
− 1

2 (x− µ)TΣ−1(x− µ)
}√

(2π)2|Σ|
, (36)

with mean vector,

µ =

[
1
2

]
and covariance matrix

Σ =

[
1.0 0.5
0.5 4.0

]
.

Since all simulations seem to converge to the correct mean vector, we choose to focus on the

19

(a) The DAG with one edge turned. This is the DAG’s state just
before the while loop in Figure 7.

(b) The DAG’s state after the first while loop is executed. Here two
edges have been turned.

(c) The DAG’s state after the second iteration of the while-loop. After
this iteration, temp2 is set to NULL

(d) The DAG’s state after the third and last iteration of the while
loop. Here the change of root node is complete.

Figure 8: The procedure of changing the root node of the DAG in 5 according to the pseudo code
in Figure 7.

20

(a) A DAG with arrows indicating the stored attributes for the density of the
proposal distribution to be used in the acceptance probabilities. Here the density
q(xn|xpred(n)) is the probability of being proposed in the current DAG, and will
be included in the calculation of the acceptance probability for the DAG with
”0” as root. The density of ”going backwards”, q(xpred(n)|xn), is also stored and
shown in paranthesis.

(b) The DAG from (a) with a new root node, leading to three edges being turned.
When an edge is turned, the attributes that represent the densities of the pro-
posed values are swapped, so that the old value for ”moving forward” is shown
in the paranthesis. The attributes are then pushed one level forward, in the
direction of the old root ”0”.

Figure 9: How the attributes representing the density of the proposal distribution is re-used and
moved around when the root node changes. If the proposal distribution is symmetric, the sum of
the density of the proposed values will be constant for every change of root node.

21

estimated covariance matrix for the different simulations. We try to locate the error in the M–
H setup by systematically varying the different parameters and investigate how this effects the
estimated covariance matrix of the simulations. The target distribution in (36) is used throughout
the different simulation experiments, except for one experiment where the target distribution is
changed to verify the convergence of simulations with a specific choice of parameters used in the
proposal distribution.

We also investigate whether the algorithm succeeds in proposing higher density values
within the DAG compared to the algorithm from Luo and Tjelmeland (2018), which is the main
motivation for growing the DAG stochastically. The different methods for growing a DAG from
Section 5 are tested on their ability to propose high density values within the DAG and their
ability to jump between levels when sampling a new root at the end of each iteration.

7.1 A variance dependent on parameters in the proposal distribution

In this section we investigate the estimated covariance matrix for running the algorithm for differ-
ent sets of parameters. By systematically changing the parameters involved in the M–H setup, we
hope to get an understanding for where the error is located. To grow the DAG in this experiment,
the strategy independent of levels from Section 5.2 is used. The probability for a node having a
certain amount of neighbours is given in a probability function, and each node either has four or
one neighbour. The probability for a root node having four neighbours, corresponding to the root
node having four children, is set to 0.75. This implies that the probability for the root node having
only one neighbour, corresponding to having one child, is set to 1 − 0.75 = 0.25. For the other
nodes, the probability of having three children, corresponding to four neighbours, is equal to the
probability in expression (33). To propose values within the DAG by the proposal distribution in
(14), a Gaussian distribution with the tuning parameter equal to one is used.

The algorithm was run for different values of the parameters α and β from the probability
function in (33). By keeping one of the parameters fixed while varying the other, we try to get
an impression of how the different parameters effect the result. Five separate runs where made
for each pair of α, β, and the results are shown in Tables 1 to 3 with the standard deviations
shown in the paranthesis. Some of the simulations showed particularly interesting results, and five
new runs were made with a larger number of iterations, to get a more accurate estimate of the
covariance matrix for these special cases. The simulations considered to be of extra interest are
the simulations for α = 10.0 and α = 20.0, and simulations with β > 10.

The simulations all seem to converge to distributions with the mean equal to the mean of the
target distribution in (36), with a standard deviation of 0.02 at most, so this is not included in the
tables below. Plots for 20000 iterations of the algorithm for α = 20.0, β = 0.2 and α = 0.0, β = 30.0
is shown in Figure 10. Looking at the plots, it seems like the simulations converge to a Gaussian
distribution with the same mean, but the variances seem to be different for the two simulations,
as the plot in Figure 10 (a) shows a larger spread between the simulated values.

Most of the estimated covariance matrices from the simulations shown in Tables 1 to 3 are
significantly different from the covariance matrix of the target distribution, and it is clear that
the algorithm in general does not converge correctly, but converges to distributions close to the
target distribution. Some pairs of parameters, in particular when the parameter β is large, seem
to have the estimated covariance matrix equal to the covariance matrix of the target distribution,
so these simulations stand out. Other than that, it seems like the variance is too high when α is
large and too low when α is small, and is correct when β > 10. Although it is difficult to find an
exact pattern in the estimated covariance matrices, finding one might indicate where in the M–H
setup the error is located.

In Table 1 the parameter β is fixed while α varies. Varying α will effect how large the
DAG grows, with high values of α causing smaller DAGs. It also effects how dramatically the
probability of having children differs at different levels, since this is likely to increase the exponent
in the probability function in (33). The trend for the variance of the limiting distributions in Table
1 is that the variance in general is too large compared to the target distribution. The variance
increases as the parameter α increases, but seems to stop growing as α becomes greater than 10,
and the estimated covariance matrices seem to stabilize. This is likely because the DAGs grown

22

Table 1: The estimated covariance matrix for simulations with different values for α while keeping
β fixed. Simulations with large values for α it seem to converge to similar target distributions,
since the estimated covariance matrices do not differ significantly.

iterations α β Σ̂1,1 Σ̂1,2 Σ̂2,1 Σ̂2,2

100 000 0.5 0.2 1.13 (0.03) 0.62 (0.10) 0.62 (0.10) 4.57 (0.11)
100 000 1.0 0.2 1.26 (0.01) 0.67 (0.05) 0.67 5.14 (0.08)
200 000 5.0 0.2 2.06 (0.02) 1.13(0.05) 1.13 (0.05) 8.87 (0.05)
200 000 10.0 0.2 2.64 (0.03) 1.59 (0.13) 1.59 (0.13) 11.68 (0.12)
200 000 20.0 0.2 2.63 (0.00) 1.62 (0.07) 1.62 (0.07) 11.83 (0.31)

Table 2: The estimated covariance matrix for simulations with different values for β while keeping
α fixed. The estimated covariance matrices for simulations with β > 10 seem to converge to the
covariance matrix of the target distribution.

iterations α β Σ̂1,1 Σ̂1,2 Σ̂2,1 Σ̂2,2

100 000 0.2 0.2 1.02 (0.02) 0.53 (0.02) 0.53 (0.02) 4.13 (0.05)
100 000 0.2 0.5 0.95 (0.03) 0.46 (0.03) 0.46 (0.03) 3.83 (0.04)
100 000 0.2 1.0 0.92 (0.01) 0.46 (0.01) 0.46 (0.01) 3.67 (0.03)
100 000 0.2 5.0 0.95 (0.04) 0.48 (0.01) 0.48 (0.01) 3.80 (0.12)
400 000 0.2 10.0 1.00 (0.01) 0.48 (0.02) 0.48 (0.02) 3.93 (0.04)
400 000 0.2 20.0 1.01 (0.01) 0.51 (0.02) 0.51 (0.02) 3.92 (0.10)
400 000 0.2 30.0 1.00 (0.01) 0.51 (0.01) 0.51 (0.01) 4.06 (0.08)

Table 3: The estimated covariance matrix for simulations with α = 0, making the growth of
the DAGs independent of the densities of the proposals. The estimated covariance matrices for
simulations with β > 10 seem to converge to the covariance matrix of the target distribution.

iterations α β Σ̂1,1 Σ̂1,2 Σ̂2,1 Σ̂2,2

100 000 0.0 2.0 0.85 (0.01) 0.41 (0.02) 0.41 (0.02) 3.46 (0.12)
100 000 0.0 5.0 0.93 (0.06) 0.45 (0.03) 0.45 (0.03) 3.64 (0.07)
200 000 0.0 10.0 1.01 (0.01) 0.49 (0.02) 0.49 (0.02) 4.08 (0.04)
400 000 0.0 20.0 1.00 (0.01) 0.51 (0.03) 0.51 (0.03) 4.03 (0.05)
400 000 0.0 30.0 1.00 (0.00) 0.49 (0.01) 0.49 (0.01) 3.98 (0.07)

for α = 10 and α = 20 have similar structures, since they are likely to stop growing in the same
situations. To illustrate this, imagine that a node n in a growing DAG G∗r at level two has three
nodes with associated to densities greater than p(xn) associated with n. This sets the probability
in (33), for the node n having children equal to

P (c(n)|G∗r ,X ∗r) = exp{−10 · 3− 0.2}, (37)

of having children with α = 10, β = 0.2, and exp{−20 · 3− 0.2} if α = 20, which both essentially
are equal to zero and the DAG will stop growing in both cases. That the DAGs stops growing in
similar situations will make structures of the generated DAGs similar, and this could explain why
the limiting distributions seem to stabilize for large values of α.

Table 2 shows the variance when α is fixed and β varies. Here the limiting distributions
converge closer to the target distribution than the simulations in Table 1, but it is difficult to say
whether the resemblance is random, or if the algorithm is closer to correct when the estimates
resembles the target distribution. An argument for the convergence being a coincidence is that
the estimates go from being to low when β = 0.2 and too high when β = 0.5, which might indicate
that there exists a parameter, 0.2 < β < 0.5, which makes the algorithm converge. These values
for β are not extreme values which make the acceptance probabilities structurally different than
for other small choices of β, so it is difficult to argue that the convergence is not coincidental, but
a special case in which the algorithm is correct. Another special case is when β is greater than ten,

23

(a) Plot of 20 000 iterations of the algorithm
run for α = 20.0 and β = 0.2. The plot shows
that the limiting distribution of this simula-
tion has a large variance compared to the tar-
get distribution in (36).

(b) Plot of 20 000 iterations of the algorithm
run for α = 0.0 and β = 30.0. This simulation
shows simulated values with a variance equal
to the one of the target distribution.

Figure 10: Two plots from different simulations for different pairs of α and β. Both simulations
have limiting distributions converging to the same mean, located at x1 = 1.0 and x2 = 2.0, but
the variances are different. This is seen by the spread of the two plots. The plot in (a) shows
a distribution of higher variance than the target distribution. By the shape of the two plots, it
seems like the values are sampled from Gaussian distributions.

which seem to make the estimated covariance matrix very similar to the covariance matrix of the
target distribution. This convergence seems less random, because these choices of β will lead to a
specific set of possible DAGs being generated. Extreme values for β will dominate the probability
function in (33), making the DAG stop growing at level one in almost all iterations.

The estimates in Table 3 show the estimated covariance matrix when α is fixed and equal to
zero, and β varies in a similar manner as in Table 2. Note that when α = 0, the probability function
in (33) becomes independent of the density of the proposed values associated with the DAG.
Although making the growth of the DAG independent of the densities discards the motivation
for creating this algorithm, it might give an insight to where the error in the M–H setup is
located. That the estimated covariance matrices are wrong, also when the growth is independent
of the densities of the proposed values, indicate that the error is related to how we calculate
the probability for growing the structure of a DAG. This can be seen in the expression for the
acceptance probability in (28). When the growth of the DAG is independent of the density of the
proposed values, and the proposal distribution q(xn|xpred(n)) is symmetric as in this experiment,
the only factors that do not cancel in the joint distributions for the different DAGs included
in the acceptance probability in (28), is the density of the target distribution associated with
the potential root, and the stochastic growth of the DAG. The stochastic growth of the DAGs
is the only difference between the acceptance probabilities from Section 4.3 and the acceptance
probabilities used Luo and Tjelmeland (2018). Since the algorithm is wrong also when the growth
is independent of the proposed values, the error is likely to be related to some structural properties
of a DAG. This gives a strong indication that there is something about the stochastic process of
growing a DAG that is not accounted for in the derivations presented in this work.

To investigate further the simulations which shows correct convergence properties, we look
at the probability function for the parameters used in these simulations. When α = 0 and β = 10,
the probability function in (33) for every node n in the DAG, except for the root node, is constant
and equal to

P (c(n)|G∗r ,X ∗r) = exp{−10} = 4.53 · 10−5. (38)

The expression in (38) is essentially zero, and is even lower when β is greater than ten. This means
that there in practice only will be generated the two types of DAGs shown in Figure 11 in almost

24

(a) The DAG which will be grown in 1
4

of the iterations
(b) The DAG which will be grown in 3

4
of the iterations

Figure 11: Illustration of the two DAGs which will be generated in the simulations with the
parameter β larger than ten. This will make the probability of having children for the nodes at
level 1 close to zero.

Table 4: Convergence properties for one simulation with β = 30 and α = 0, with a new target
distribution. This simulation verifies that the estimated covariance matrix is correct for simulations
with large values for β.

µ̂new
1 µ̂new

2 Σ̂new
1,1 Σ̂new

1,2 Σ̂new
2,1 Σ̂new

2,2

8.00 5.01 0.70 0.47 0.47 12.73

all iterations of the algorithm. These two variations are the result from the root node sampling
its number of children, which is either one with a probability of 0.25 or four with a probability
0.75. These two structures will dominate the DAGs generated throughout all simulations with
high values for β. In this special case, the state of the Markov chain is essentially only updated
when the DAG in Figure 11 (a) is grown. This is because changing the root node for the DAG in
Figure 11 (b) changes the graph to a DAG with three levels, which has a probability close to zero
of being grown, and the result is that the old root will be re-sampled in these iterations.

As a verification of the convergence properties for simulations with β larger than ten, we
run a new simulation using a new bivariate Gaussian distribution with mean vector

µnew =

[
8
5

]
and a covariance matrix

Σnew =

[
0.7 0.5
0.5 13.0

]
as the target distribution. The simulation was run one time for α = 0 and β = 30 for 400000
iterations. The result is shown in Table 4. Looking at the estimated values, it seems like the
algorithm has the correct convergence properties. to the desired target distribution also for this
choice of target distribution, and we conclude that the algorithm converges to the correct target
distribution when β is greater than ten.

The tuning parameter used in q(xn|xpred(n)) is also a parameter which might influence the
structures of the DAGs generated. A small tuning parameter will make less of the proposed values
located in the tail, since ”small jumps” is more likely to have high density if it conditions on a high
density value, which often will be the case for the value associated with the root node. Tuning
this parameter does not effect the acceptance probabilities explicitly, since all terms involving
q(xn|xpred(n)) cancels in the acceptance probability when a symmetric distribution is used. To
investigate how this tuning parameter effects the convergence, four pairs of α and β showing the
most interesting results from the earlier simulations were chosen. The new tuning parameter is

25

Table 5: The estimated covariance matrix for simulations with the tuning parameter in
q(xn|xpred(n)) set to 0.3.

iterations α β Σ̂1,1 Σ̂1,2 Σ̂2,1 Σ̂2,2

100 000 0.5 0.2 1.28 0.76 0.76 5.78
400 000 0.0 30.0 1.04 (0.07) 0.51 (0.03) 0.51 (0.03) 4.09 (0.71)
200 000 10.0 0.2 5.57 5.87 5.87 38.51
200 000 20.0 0.2 5.45 5.95 5.95 39.47

set to 0.3. One separate run was done for three of the pairs, but the simulation for β = 30 was
repeated five times to get a more accurate impression to reassure that tuning this parameter does
not effect the simulations which seem to converge. The results for the five different pairs are shown
in Table 5. It is clear from the results in Table 5 that the tuning parameter involved in the proposal
distribution q(xn|xpred(n)) effects the results for the simulations with small values for β, since the
estimated convergence probabilities differ significantly from the convergence properties in Table 1.
Even if the tuning parameter does not effect the M–H acceptance probabilities directly, it is likely
to effect the structures of the DAGs being generated throughout the simulations, and thereby also
effect the acceptance probabilities. The trend in Table 5 is that the estimated covariance matrices
are even larger than the previous simulations with the same values for α and β, except for the
simulation with β = 30 which still shows the correct convergence properties. That the variance in
general has increased in most of the simulations could be because the size of the generated DAGs
have increased. The simulation with α greater or equal to ten, has an estimate for Σ̂2,2 which
is four times as large as in the previous simulations. The DAGs grown with large values for α
should result in small DAGs, and that this parameter effects the estimated covariance this much
is a bit surprising. To investigate what happens for simulations with large values for α, we do two
more runs of 100 000 iterations to estimate the expected number of nodes for a DAG grown with
these parameters. The estimate for the simulation with α = 20.0, β = 0.2, is 20.4 nodes, with the
tuning parameter equal to 0.3. Running the simulation with the same set of values for α and β,
but with the tuning parameter set to 1.0, gives an estimate of expected nodes equal to 12.11. By
these estimates it is clear that this parameter effects the growth of the DAGs for small values of
β.

7.2 Comparing the algorithms ability to propose high density values

Recall that the motivation for a new version of the algorithm presented in Luo and Tjelmeland
(2018) was to increase the number of high density values proposed within a DAG. In this section
we compare the mean density of the values proposed within a DAG for the different methods for
growing the DAG from Section 5. We also compare our algorithm to the algorithm presented in
Luo and Tjelmeland (2018).

To get an accurate impression of how the different methods perform, it is important that
the algorithms compared have roughly the same number of nodes in the DAGs that are used in
the simulations. This is because as a DAG grows larger, the values proposed are located further
and further away from the root node which has the value distributed according to the target
distribution associated with it. Increasing the size of the DAGs is therefore likely to decrease the
mean density of the proposed values within each DAG. We try to make the size of the DAGs in
each method compared as equal as possible, measured by its expected number of nodes, given the
parameters used for growing the DAG. The fixed graph used in each simulation of the algorithm
from Luo and Tjelmeland (2018) are initially grown stochastically based on these estimates, and
we choose a structure which has approximately the same number of nodes as the expected number
of nodes for simulation we wish to compare it to. The graph structure is then kept fixed as
described in Section 3.

the Tables 6 and 7 show the expected mean of the logarithm of the densities proposed within
one iteration for different methods. This is estimated by calculating the mean of the logarithm of
the values proposed within one iteration, and then calculate the mean of these estimates, based

26

Table 6: The expected mean of the logarithm of the densities proposed within one iteration,
together with the expected size of the DAGs measured by its number of nodes. The results are
based on 300 iterations. Fixed indicates that the graph is fixed throughout the simulations, while
stochastic indicates the method presented in this work.

α β fixed/stochastic mean number of nodes E[log(p(xn))]
0.0 30.0 stochastic 4.24 (0.07) -3.98 (0.07)
0.0 30.0 fixed 5 -4.32 (0.09)
0.2 0.1 stochastic 61.88 (1.90) -4.46 (0.06)
0.2 0.1 fixed 65 -7.07 (0.21)
0.5 0.2 stochastic 22.03 (0.84) -4.28 (0.07)
0.5 0.2 fixed 20 -5.66 (0.13)
0.4 0.1 stochastic 32.61 (1.15) -4.33 (0.07)
0.4 0.1 fixed 26 -5.65 (0.13)

30.0 0.2 stochastic 12.34 (0.58) -5.63 (0.14)
30.0 0.2 fixed 14 -5.25 (0.13)

on all iterations. Table 6 shows the results for the simulations where the DAGs are grown by
the method independent of levels from Section 5.2, and Table 7 shows the results for growing
the DAG by Method 1 and Method 2 from Section 5.1. Standard deviations are shown in the
paranthesis. Note that the ”average number of nodes” for the simulations with fixed graphs is
constant, because only one graph structure is used corresponding to the undirected acyclic graph
presented in Section 3. The simulations marked as ”fixed” are simulations of the algorithm from
Luo and Tjelmeland (2018), and the initial graph is grown with the method indicated by the
other columns of the same row, and kept fixed throughout the iterations. Note that the limiting
distributions of the different methods could effect the results, so the estimates presented here are
not completely reliable. Simulations with a variance that is very different from the one of the
target distribution, will also have proposals of higher variance, which is related to the estimates
shown in Table 6 and Table 7.

From the results in Table 6 it seems like the version of the algorithm presented in this article
propose values of higher density than the algorithm from Luo and Tjelmeland (2018). When α
is set to zero, there should not be any difference, because then the growth is independent of the
density of the proposed values. Looking at the results for α = 0 on the other hand, the difference
seems significant. This could be explained by that the size of the simulations with stochastic
graphs has many DAGs of only two nodes, as explained in Section 7.1 and shown in Figure 11,
and that it is not accurate to compare the results to a simulation with a graph of five nodes. The
results for this experiment are more interesting for larger DAGs, since this will make the proposals
in the algorithm of Luo and Tjelmeland (2018) move towards the tail of the distribution, whilst the
algorithm presented in this article should be able to stop expanding in direction of bad proposals.
Looking at the results for simulations which have its expected number of nodes larger than 20, it
seems like our algorithm performs better. The difference in Table 6 is largest for the graphs with
average nodes greater than 60 and α = 0.2, β = 0.1, which is expected since these are the largest
DAGs, and we expect the difference to be more significant for large graphs.

When α = 30 and β = 0.2 the densities proposed within the DAG have about the same
density on average for both algorithms. In the previous simulation experiment from Section 7.1,
we demonstrated that the simulation with α = 30 has a very high variance compared to the other
simulations, shown in Table 1, and this is likely to effect the result in Table 6. Comparing the
simulation for α = 30 to the other simulations with stochastic DAGs, we observe that the mean
density is significantly lower, even when the expected size of the DAGs is larger in the other
simulations. It is very likely that this is because of the high variance of the limiting distribution
for these choices of parameters.

That the variances are different is an error in the M–H setup which makes the analysis of
the densities of the proposed values for the different parameters unreliable. When the densities are
dependent on the limiting distributions of the different simulations, and these limiting distributions

27

Table 7: The expected mean of the logarithm of the densities proposed within one iteration,
together with the expected size of the DAGs measured by its number of nodes. The results are
based on 100 000 iterations. Fixed indicates that the graph is fixed throughout the simulations,
while stochastic indicates the method presented in this work.

Method 1/2,fixed/stochastic mean number of nodes E[log(p(xn))] Σ̂1,1 Σ̂1,2 Σ̂2,1 Σ̂2,2

Method 1, stochastic 55.84 (2.47) -4.53 (0.00) 1.25 0.65 0.65 5.39
Method 1, fixed 50 -6.76(0.01) 1.00 0.49 0.49 3.93

Method 2, stochastic 72.02 (3.05) -4.56 (0.00) 2.06 0.83 0.83 6.68
Method 2, fixed 79 -7.07(0.01) 1.00 0.50 0.50 4.03

differ, we can not know that the results would be the same if the algorithm was correct and
converged to the correct distribution. We still expect that the estimates for the simulations that
converge close to the target distribution in (36) are reliable, and would be similar if the algorithm
was correct, but the simulation for α = 30.0 is a special case because of the high variance.

Table 7 shows the results from comparing the algorithm from Luo and Tjelmeland (2018)
to the version of our algorithm which grows the DAGs by Method 1 and Method 2 from Section
5.1. In these two methods, the expected number of children for a node n is Poisson distributed,
and the intensity parameter is a function of the levels in the DAG. Method 1 uses the function
in (30) for the intensity parameter, and Method 2 uses (31). To avoid zero probabilities, we have
added a small adjustment to Method 1, so that the intensity parameter is set to 0.5 when the
expression in (30) becomes zero, corresponding to the DAG having more than three levels. We do
one run of 100 000 iterations for each method, to get an estimate of the variance of the limiting
distributions of the different simulations, since this might effect the results, as discussed above.
The results are shown in Table 7.

In general, it seems like the density of the values proposed within the algorithm from Luo
and Tjelmeland (2018) are significantly lower, and that the difference is larger for the simulations
in Table 7 than in Table 6, which is because the DAGs in the simulations from Table 7 are larger.
If we compare the methods based on levels from Section 5.1 to the method independent of levels
from Section 5.2, we see that the difference is not significant. The average number of nodes in
the DAGs for the the simulation with α = 0.2 and β = 0.1 is 61.88, which is about the same
as for Method 1 and Method 2 when the DAGs are grown stochastically. The estimates for the
mean of the logarithm of the densities fall within the interval [−4.56,−4.48], which is quite small.
In general it seems like the estimates for the density of the proposed values in our algorithm
is quite robust when the number of nodes in the DAGs increase. Even when the DAGs grow
large, the mean density of the proposed values does not decrease as much as in the algorithm
from Luo and Tjelmeland (2018). But, since the algorithm is not correct, it is difficult to draw
conclusions.

7.3 The algorithm’s ability to jump between levels in the DAG.

To make use of the multiple proposals generated within the DAG, it is important that the algorithm
has the ability to jump between levels when sampling a new root node, corresponding to an
iteration of the algorithm. In this section the different methods for growing the DAG from Section
5 will be tested on this ability, and the results are compared to the algorithm from Luo and
Tjelmeland (2018).

To compare our algorithm to the algorithm in Luo and Tjelmeland (2018), we use the
same strategy as in the previous section. We initially grow the DAGs by the methods we wish
to compare them to, and keep them fixed throughout the simulations. The simulations are based
on 300 iterations, and are shown in Table 8 and Table 9 with standard deviations shown in the
paranthesis. By ”mean levels jumped” we mean the expected number of levels the algorithm
jumps in one iteration of the algorithm. The column marked ”still” has the estimated proportion
of iterations where the algorithm does not move, but re-samples its old root.

From the results it is clear that the algorithm’s ability to jump between levels in the DAG

28

Table 8: The expected number of levels jumped in each iteration, together with the proportion
of iterations where the old root was resampled. The DAGs are grown by the method from Section
5.2. The estimates are based on 300 iterations

α β fixed/stochastic mean number of nodes mean levels jumped still (%)
0.0 30.0 stochastic 4.26 (0.07) 0.10 (0.02) 89.74%
0.0 30.0 fixed 5 1.02 (0.05) 31.56%
0.2 0.1 stochastic 59.49 (1.80) 0.90 (0.08) 50.75%
0.2 0.1 fixed 53 4.10 (0.12) 6.64%
0.5 0.2 stochastic 21.62 (0.84) 0.88 (0.07) 44.69%
0.5 0.2 fixed 26 2.96 (0.10) 11.96%
0.4 0.1 stochastic 32.61 (1.15) 0.86 (0.05) 49.52%
0.4 0.1 fixed 32 3.39 (0.12) 10.96%

30.0 0.2 stochastic 12.22 (0.56) 0.23 (0.03) 77.77%
30.0 0.2 fixed 17 2.42 (0.09) 12.62%

Table 9: The expected number of levels jumped in each iteration, together with the proportion
of iterations where the old root was resampled. The DAGs are grown by the method from Section
5.1. The estimates are based on 300 iterations .

Method stochastic/fixed graph average number of nodes mean levels jumped still (%)
1 stochastic DAG 58.08 (2.50) 0.30 (0.03) 80.40%
1 fixed graph 48 4.02 (0.15) 7.30%
2 stochastic DAG 78.10(3.70) 0.86 (0.08) 61.11%
2 fixed graph 71 4.41 (0.12) 5.64%

is weak for the setup described in this work. In Table 8, one of best results for growing the DAG
stochastically is when α = 0.5 and β = 0.2, and the algorithm jumps 0.88 levels on average, which
means that the algorithm is expected to move a bit below one level for every iteration. Since
the DAGs generated with these parameters has an expected size of 21.62 nodes, most of these
values have approximately zero probability of being sampled as the new root. The proportion of
iterations where the original root node is resampled as the new root is 44.69% , which is the best
result for the methods growing the DAG stochastically in Table 8. This means that in 44.69% of
the iterations, approximately 21 proposals are rejected. This makes the generation of these values
useless, and it seems like the algorithm performance does not compensate for the computational
cost it takes to generate the multiple proposals, when growing the DAGs by this strategy.

Table 9 shows simulations for our algorithm and the algorithm from Luo and Tjelmeland
(2018) when the growth of the DAGs are level based from Section 5.1. Looking at the estimates,
the level based methods performance is weak compared to the method independent on levels from
Section 5.2. Looking at the DAGs of approxiamtely equal size, the method for α = 0.2 and
β = 0.1 resamples its old root in 59.75% of the iterations, compared to Method 1 and 2 which
resamples its old roots in respectively 80 and 61.11% of the iterations. The worst performance
for growing the DAGs stochastically is for Method 1. Method 2 and the method independent of
levels’ performance are equal.

The algorithm from Luo and Tjelmeland (2018) jumps easier between levels, with its lowest
result for estimated proportion iterations it resamples its old root equal to 5.64%, which is a lot
better than the estimated proportions for our algorithm. Growing the DAGs stochastically will
always add an extra factor to the probability of resampling the old root, compared to the algorithm
in Luo and Tjelmeland, and this is a weakness of this setup. In most cases, the DAG that grows is
the DAG which has the highest probability of being grown, which is a consequence of the definition
of probability. The best we can do is to reduce this factor, so that the density of the proposed
values dominates the acceptance probabilities to a larger extent. When growing the DAGs by the
methods presented in Section 5, neither of the strategies perform well enough to compensate for
the computational cost of generating multiple proposals.

29

As discussed earlier, we can not completely rely on the evaluations of the algorithm’s
performance as long as the acceptance probabilities are wrong, which also makes the estimates
related to the acceptance probabilities incorrect. The algorithm’s ability to sample a new root node
is directly related to the acceptance probabilities from Section 4.3, since this is the probability for
sampling the new root. The results discussed in this section is therefore not completely reliable,
but is likely to give an indication of how well the methods for growing the DAGs work in practice.
What is clear is that finding a good strategy for growing the DAGs is a big challenge in this setup,
and is essential for making this algorithm useful.

8 Closing remarks

The algorithm discussed in this work is based on the algorithm presented in Luo and Tjelmeland
(2018), and is meant to be an improvement of this algorithm in the sense that it tailors the number
of proposals generated, to reduce the number of low density values being proposed. Although the
derivation of the M–H acceptance probabilities presented in Section 4.3 intuitively seem equivalent
to the acceptance probabilities used in Luo and Tjelmeland (2018), the algorithm does not converge
to the given target distribution as demonstrated in Section 7.1.

The simulation experiments gave an indication of where in the M–H setup the error was
located. Naturally, the error is related to growing the DAGs stochastically, since this is what
separates our algorithm from the one presented in Luo and Tjelmeland (2018). That the algorithm
does not converge, even when the growth of the DAGs are independent of the densities proposed,
indicates that the error is related to the probability of growing a specific structure of a DAG,
and that the probability of proposing the values associated within the DAG is independent of this
error. The experiment in Section 7.1 showed a special case in which the simulations seemed to have
the correct convergence properties. This simulation was based on the method from Section 5.2
which grows the DAG independent of levels, and simulated with extreme values for the parameter
β. In this simulation, the DAGs being generated have one of two shapes, shown in Figure 11 in
essentially all iterations.

Since the simulation leading to the small set of possible DAGs shown in Figure 11 seem to
converge, it could be that the acceptance probabilities are correct in this special case, and that the
two DAGs are examples of ”legal” structures which makes the algorithm correct. What is special
about the two structures in Figure 11 is that they are symmetric, so rotating them would not
change how the DAGs appear in the two dimensional illustrations. To understand how we grow a
DAG, it is important to keep in mind what we have defined a DAG to be. In Section 4 we defined
a DAG Gr to be a set of nodes Sr and a set of directed edges Er, where r is the root node of the
DAG which determines the direction of the edges. We also defined a set Xr which is the set of all
proposed values generated through the directed edges of the DAG. What we did not define, was
the order of the children for a specific node in the DAG. We have in the implementation assigned
ID’s for the nodes corresponding to which order the child got its proposed value through (14).
However, this order was assigned coincidentally in the implementation, and is not included in the
joint distribution from (22). The children of a node are independent of each other, they only
depend on their predecessor.

We have associated the set Xr to a DAG, but how every node is associated to a specific
value is not clearly defined in our M–H setup. If a node n has three children, three values will
be proposed, conditioned on the value ”associated” with n. These three values are assigned to
the node n’s children, but which child gets what value is not accounted for in our setup. The
relationship between the set Xr and the DAG is that the values are proposed in the direction of
the edges of the DAG, but the relationship between one node and one value in Xr is not clear. We
therefore try and look at the special case, when the DAG is grown independently of the proposed
values, to get a more defined situation.

The process of growing a DAG independent of the densities, and generating the associated
proposals, can be regarded as doing the process in two separate steps. Step one is to grow the full
DAG, and step two is to propose values in direction of the directed edges. We set the probability
for the root node having four children equal to 0.75, and the probability of having one child
equal to 0.25. The probability for all other nodes having three children is equal to 0.2, and the

30

(a) The root node samples its number
of children with a probability of 0.75

(b) One of four nodes samples children.
The probability of growing this DAG is
estimated to be 0.75 · 0.83 · 0.2. in our
setup

(c) A DAG isomorphic to the DAG in
(b).

Figure 12: The process of growing a DAG according to the procedure presented in this work. In
the first step, the root node samples its number of children. In the next step, only one of the
nodes at level one samples children, leading to the DAG in (b). Isomorphic structures could have
been grown in three other ways, corresponding to one of four nodes having children. The DAG in
(c) is isomorphic to the DAG in (b).

probability of not having children is consequently 0.8. As an example, imagine that we grow a
DAG with these probabilities, and that the process is shown in Figure 12. We try to calculate
the probability for the process of growing the DAG in Figure 12 (b) in the same manner as we
have calculated the probabilities for growing the DAGs in Section 4.3, by regarding every node
sampling its number of children as separate and independent events.

The first node to sample its children, is the root node. The root node gets four children
with a probability of 0.75. Then the four children of the root node samples its number of children.
One node gets three children, with a probability of 0.2, and the other nodes get zero children, with
a probability of 0.8. Calculating the probability for the DAG getting this structure, according to
our setup, becomes

0.75 · 0.2 · 0.8 · 0.8 · 0.8 = 0.75 · 0.83 · 0.2. (39)

Recall that what define a DAG by the direction of the edges, and the nodes connected to these
edges. The question is whether a different process could lead to the same DAG being generated,
or could a different DAG lead to the same order of proposed values? According to our definition of
DAG, which not defines the order of the children, there is nothing separating the DAG in Figure
12 (b) and the DAG in 12 (c). Both DAGs lead to the same joint distribution of the proposed
values to be proposed in step two of this example. The probability of growing a DAG which leads
to proposing the set of associated values in the same order as the DAG in Figure 12 (b) is by these

31

arguments equal to (
4

1

)
0.75 · 0.83 · 0.2, (40)

since one of four nodes having children can happen in four different ways, and they all lead to
the same structure of the DAG. This probability is four times the probability we would assign the
same DAG in our M–H setup. Since we have not defined the order of the children of a node in a
DAG, there is nothing in our definition separating the structure in Figure 12 (b) from the DAG
in Figure 12 (c). The two DAGs are said to be isomorphic (Tolley et al. 1995), meaning that
there is nothing in our definition of a DAG which separates these two objects. The two objects
are structurally identical.

By the arguments presented above, the error in the M–H setup is that several processes
for growing a DAG can lead to the same joint density of the proposed values proposed within the
DAG. In other words, the same structure can be grown in multiple ways. That this is the error
in the M–H setup is difficult to verify, because it includes calculating all possible ways a specific
structure can be grown. For the DAG in Figure 12 (b) it is easy to see that there are four different
processes for growing this structure, but as the DAGs grows larger, it is difficult to count how
many ways a specific structure could have been grown.

To get a correct algorithm according to our hypothesis, the number of ways to grow a
DAG isomorphic to the structure that was grown should be multiplied to the expression for joint
distribution in (22). Algorithms related to finding isomorphisms are known to be computationally
expensive (Tolley et al. 1995). The problem of identifying whether two graphs are isomorphic
is known as the ”Graph isomorphism problem”, which has no known solution in polynomial time
(Tolley et al. 1995). To verify if our hypothesis is correct, it is possible to test if an adjusted
version of the algorithm converges for small DAGs, where the number of isomorphic DAGs is
possible to calculate. If the hypothesis is correct, and the adjusting factor would lead to correct
acceptance probabilities, one could try to limit the possible structures to be grown, or find a way
to make each DAG unique through defining the order of a node’s children and include this in the
acceptance probabilities. If the DAGs are grown in the same way as discussed in this work, the
algorithm would be too computationally expensive, since counting the set of isomorphic DAGs
that can be grown involves verifying if two sub DAGs are isomorphic, which is equivalent to the
isomorphism problem (Tolley et al. 1995).

The algorithm fails to converge to the target distribution in the general case, and there
are many challenges related to the setup presented in this work. In Section 7 we demonstrated
that even if the algorithm succeeds in proposing high density values, it fails to make use of these
values, because its ability to jump between levels is too poor. The algorithm resamples its old
root in most of the iterations, and when it jumps it is often to its neighbours, making the other
proposed values useless. A better strategy for growing a DAG is likely to exist, but growing the
DAG stochastically will always add a probability for the root node being resampled to the benefit
of the other nodes in most cases, as discussed in Section 7. The algorithm presented in this work
is far from complete, and to make a version that converges to the correct target distribution and is
able to jump easily between levels, is a demanding task. The algorithm might still have potential,
since it succeeds in proposing multiple high density values.

32

References

Cormen, H., Leiserson, E., Rivest, Stein. (2009) Introduction to Algorithms, Third edition. MIT
Press. 22, 594-602

Gamerman, D., Lopes, H. (2006) Markov Chain Monte Carlo–Stochastic Simulation for Bayesian
inference, Second edition. Chapman & Hall/CRC.

Geman, S. and Geman, D. (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721–741.

Hasting, W. K (1070). Hastings, W. K. (1970). “Monte Carlo simulation methods using Markov
chains and their applications.” Biometrika, 57, 97–109.

Liu, J. S., Liang, F. M., and Wong, W. H. (2000).“The multiple-try method and local optimization
in Metropolis sampling.” Journal of American Statistical Association, 95, 121–134.

Luo, X., Tjelmeland, H. (2018). ”A multiple-try Metropolis-Hastings algorithm with tailored
proposals.” Tech. rep., ArXiv e-prints 1807.01914v1, Available from http://arxiv-export-
lb.library.cornell.edu/abs/1807.01914

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
“Equation of state calculations by fast computing machines.” Journal of Chemical Physics, 21,
1087–1092.

Savitch W. (2013), Absolute C++, Fifth edition. Pearson 448-699.

Tolley, R., Franceschini W., Petty D. (1995) ”Graph Isomorphism Algorithms: Investigation Of
The Graph Isomorphism Problem.” Institute for Simulation and Training, Paper 106, Available
from http://stars.library.ucf.edu/istlibrary/106

33

	Introduction
	The Metropolis–Hastings algorithm
	Constructing a Markov chain with a given limiting distribution
	Gibb's sampling
	Requirements for convergence

	A Multiple-try Metropolis algorithm
	An undirected acyclic graph to generate multiple proposals
	An expansion of the target distribution
	Sampling from the expanded target distribution

	Growing the DAG stochastically
	A target distribution which includes the growth of a DAG
	Sampling from the expanded target distribution
	The acceptance probabilities

	Methods for growing the DAG
	Growing the DAG dependent on levels
	Growing the DAG independent on levels

	Implementation of the algorithm
	Classes and data structures
	Implementing the growth of the DAG
	Changing root node and calculating the acceptance probabilities

	Simulation experiments
	A variance dependent on parameters in the proposal distribution
	Comparing the algorithms ability to propose high density values
	The algorithm's ability to jump between levels in the DAG.

	Closing remarks

