
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Tharald Jørgen Stray

Application of deep reinforcement
learning for control problems

Master’s thesis in Cybernetics and Robotics
Supervisor: Ole Morten Aamo

January 2019

Tharald Jørgen Stray

Application of deep reinforcement
learning for control problems

Master’s thesis in Cybernetics and Robotics
Supervisor: Ole Morten Aamo
January 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis is the result of completing the course "TTK4900 - Engineering Cyber-
netics, Master’s Thesis" at the Norwegian University of Science and Technology.
The work was carried out during the autumn semester of 2018, and is the final
project in the Cybernetics and Robotics study programme.

The thesis idea was proposed by my supervisor, Professor Ole Morten Aamo.
Inspired by recent achievements of deep reinforcement learning methods in games
such as Go and Dota 2, the basic goal was to investigate if similar methods could
be applied to control problems. References to the OpenAI Baselines open-source
implementations of DRL algorithms [9], and the AlphaGo Zero algorithm [32]
were included, and combined with the suggested tasks established the basis for
the thesis.

The candidate algorithm of choice, DDPG, was presented by Lillicrap et al. [19].
As suggested by the thesis proposal, an open-source implementation was used,
forked from the Spinning Up [2] repository (as specified in section 2.3 and 3.4). The
proposed environments utilize the interface outlined by OpenAI Gym [5]. All code
has been written using the Python programming language, and its broad ecosystem
has been utilized in many aspects of the implementation: the SciPy package is used
for ODE solving and the NumPy package is used for array objects and random
number generators. GitHub repositories were used f or version control.

Professor Ole Morten Aamo has provided valuable help and suggestions through-
out the thesis work.

The reader is assumed to have a technical background, with some basic knowl-
edge of control theory, numerical optimization, object-oriented programming and
software architecture.

Acknowledgment

I would like to thank my supervisor, Professor Ole Morten Aamo for all the help
and guidance during the work with this thesis. A warm "thank you" also goes out
to all my friends and family for the support they have provided.

Summary

In cybernetics, the control approach usually relies on, in some way or other, explic-
itly designing and implementing a controller based on some analysis of the system.
The deep reinforcement learning control (DRL) approach is different. No part of a
DRL agent’s behaviour policy has been explicitly implemented, rather, the policy
has been learned, through repeatedly interacting with its environment. This is one
of the underlying motivations for machine learning. The solutions to some tasks
are hard to program explicitly. Because of the continued increase in computational
power available, problems in machine learning that were previously regarded as
too computationally expensive have now become almost trivial to solve.

Motivated by recent successes in the field of DRL, this thesis investigates the
possibility of applying the same concepts underpinning DeepMinds’s AlphaZero,
to control problems. A simulation framework based on the OpenAI Gym interface
is presented, and some example scenarios are implemented. Different open-source
implementations of DRL alorithms are explored and discussed.

i

Sammendrag

Innenfor kybernetikk er tilnærmingen til prosesskontroll ofte basert på eksplisitt
design og implementasjon av en regulator, basert på analyser av systemet. I dyp
forsterkende læring er tilnærmingen svært forskjellig. Ingen deler av agentens
oppførsel er eksplisitt implementert, men lært, gjennom gjentatt interaksjon med
omgivelsene sine. Dette er en av de underliggende motivasjonene bak maskin-
læring, løsningen på noen problemer er svært vanskelige å programmere eksplisitt.
På grunn av økende tilgang til prosessorkraft, har problemer innenfor maskin-
læring som man tidligere trodde var uløselige, nå blitt nærmest trivielle.

Motivert av nylige suksesser innenfor dyp forsterkende læring, undersøker denne
oppgaven muligheten for å anvende de samme konseptene som ligger bak Deep-
Minds AlphaZero, for å løse reguleringsoppgaver. Et simuleringsrammeverk basert
på grensesnittet til OpenAI Gym blir presentert, og noen scenarioeksempler blir
utledet. Forskjellige implementasjoner av DRL-algoritmer med åpen kildekode
blir utforsket og diskutert.

i

ii

Table of Contents

Preface 1

Acknowledgment 3

Summary i

Sammendrag i

Table of Contents iv

Abbreviations v

1 Introduction 1
1.1 Background . 1
1.2 Goals . 2
1.3 Outline . 3

2 Theoretical background 5
2.1 Machine learning . 5

2.1.1 Supervised learning . 6
2.1.2 Artificial neural networks 7
2.1.3 Deep learning . 8

2.2 Reinforcement learning . 11
2.2.1 Problem formulation . 12
2.2.2 Value function . 14

iii

2.2.3 Exploration vs. exploitation 15
2.2.4 Model-free vs. model-based RL 16
2.2.5 Temporal difference learning 18
2.2.6 Policy optimization . 21
2.2.7 Deep deterministic policy gradient 25

2.3 DRL algorithm implementations 31
2.3.1 OpenAI Baselines . 32
2.3.2 Stable Baselines . 32
2.3.3 OpenAI Spinning Up . 33
2.3.4 RLlib . 34

3 Implementation 35
3.1 Systems . 35

3.1.1 First order system . 35
3.1.2 Second order system . 36

3.2 PID controller . 37
3.2.1 Tuning . 38

3.3 Environments . 38
3.3.1 Generalization and dynamics randomization 39
3.3.2 Observation contents . 39
3.3.3 Reward function . 40
3.3.4 Simulation of system dynamics 41
3.3.5 OpenAI’s Gym interface . 41
3.3.6 Environment classes . 43

3.4 DDPG algorithm . 49
3.4.1 Neural networks . 50
3.4.2 Hyperparameters . 51

4 Experiments and results 53
4.1 Training . 53

4.1.1 Network architectures . 53
4.1.2 Hyperparameters . 54
4.1.3 Performance . 55

5 Conclusion 59
5.1 Further work . 60

Bibliography 61

iv

Abbreviations

AI Artificial intelligence
ANN Artificial neural network
API Application programming interface
DDPG Deep deterministic policy gradient
DNN Deep neural network
DRL Deep reinforcement learning
MDP Markov decision process
ML Machine learning
RL Reinforcement learning

v

vi

Chapter1
Introduction

The goal of reinforcement learning, a subfield of machine learning, can be sum-
marized as follows: an agent attempts to learn a policy which will allow it to
control a dynamic environment to maximize some objective function. Although
a simplification, this formulation is constructed mainly to catch the attention of
anyone with experience in the field of control theory, as this should seem very
similar to what their own field of study attempts to accomplish. However, the
two fields have different approaches to the problem of controlling dynamic sys-
tems, with control theory being mainly model-driven, and machine learning being
mainly data-driven. This thesis will explore the theory behind the relatively new
field of deep reinforcement learning, with a focus on how it can be used in problems
related to control theory.

1.1 Background

The field of artificial intelligence (AI) has seen a surge of interest lately, both in
academia and in the industry. This is mostly due to recent successes in machine
learning, which is a subfield of AI, in many different areas such as computer vision,
speech recognition, and more. Another astonishing achievement has taken place
in a subfield of machine learning called reinforcement learning (RL), namely the
superhuman performance in the games Chess and Go.

1

Chapter 1. Introduction

Deep Q-Networks (DQN) were first presented by Mnih et al. [22] in 2013, and
then further explained in-depth in a paper published in Nature [23] in 2015. This
is considered a breakthrough, because for the first time, reinforcement learning
was successfully combined with deep neural networks at scale, and achieving high
performance in advanced control tasks (Atari games), in some cases even beating
human experts. DQN ignited the current wave of interest and development in the
field of deep reinforcement learning, by combating the stability and convergence
issues of using DNNs in RL methods [16]. Building on concepts introduced by
DQN, DeepMind’s AlphaZero [32] beat the best human player in the game of
Go, a feat which most AI experts thought was years away, while crushing all the
previous best chess computers using the same general learning algorithm.

1.2 Goals

The underlying motivation for this master’s thesis was to explore if some of the
approaches and concepts described above could be adopted to solve control prob-
lems. To investigate this, some subtasks were given:

1. Conduct a literature study into the realm of deep reinforcement learning,
and identify a suitable algorithm

2. Implement a simulator for different scenarios, such as "setpoint change",
"input disturbance", and/or "output disturbance"

3. For reference, implement a controller with reasonable tuning

4. Train the algorithm until acceptable performance is obtained

5. If time permits, implement more processes

The final result consists of different parts. The theory section is aimed at anyone
with a control theory background interesting in learning more about the field of
RL, especially DRL, and includes a short review of different open-source algorithm
implementations and solutions. A general simulation framework for constructing
RL environments out of processes and different scenarios, with an interface based
on the unified OpenAI Gym interface, is presented. Some approaches to using
DRL in control problems are presented. A PID controller implementation which
can be used with the simulator is included. The results of some experiments with
an open-source DRL algorithm and the simulator are discussed.

2

1.3 Outline

Five years of studying control theory has provided me with knowledge in areas
which are central in reinforcement learning, such as linear algebra and numerical
optimization. However, reinforcement learning is a vast field of study, and dur-
ing my time at NTNU, I have only had one course which introduced the concept
briefly. Consequently, a good portion of the time spent working with this thesis
was devoted to the literature study. The different sources of information, com-
bined with the open-source implementations of different algorithms [9][2] and the
framework of OpenAI Gym [5] provide excellent tools for not only learning about
deep RL theory, but also learning how to use it in practice. Using these tools
has allowed me to test and play around with different high performing implemen-
tations of cutting edge algorithms while reading the theoretical background and
papers, which has been an invaluable addition. Some parts of this endeavour are
suitable as content of a thesis such as this, others are not. However, I have learned
more during this thesis work than any other semester at NTNU, and I hope it has
resulted in a good thesis as well.

"My work consists of two parts: of the one which is here, and of
everything which I have not written. And precisely this second part is
the important one." - Ludwig Wittgenstein [21]

1.3 Outline

The thesis is structured as follows:

• Chapter 1. Introduction: Presents the background and goals of the thesis.

• Chapter 2. Theoretical background: Some underlying theoretical concepts
are explained and summarized, with a focus on deep reinforcement learning.

• Chapter 3. Implementation: The implementations of the thesis are detailed
and discussed.

• Chapter 4. Experiments and results: Some experiments and their results
are presented and discussed.

• Chapter 5. Conclusion: A short conclusion and some recommendations for
further work.

3

Chapter 1. Introduction

4

Chapter2
Theoretical background

This chapter will provide some theoretical background for the algorithms and
methods studied in this thesis. First, some general concepts of machine learning
will be presented, and the rest will mostly focus on reinforcement learning specifi-
cally. Some control theory concepts will also be touched upon briefly. Most of the
material in this chapter is distilled from various books, papers and articles from
the web. Worth mentioning specifically are the books "Artificial Intelligence: A
Modern Approach" by Russel and Norvig [28], "Deep Reinforcement Learning"
by Li [16], and "Reinforcement Learning: An Introduction" by Sutton and Barto
[33], the UCL reinforcement learning course by Silver [30], OpenAI’s educational
resource "Spinning Up" [2], and the papers "Human-level control through deep
reinforcement learning" by Mnih et al. [23], "Deterministic policy gradient algo-
rithms" by [31], and "Continuous control with deep reinforcement learning" by
Lillicrap et al. [19].

2.1 Machine learning

Machine learning is a subfield of artificial intelligence which focuses on how a
computer can learn (ie. improve its performance on a task), by applying various
statistical methods on data. Machine learning can be roughly divided into three
different categories:

5

Chapter 2. Theoretical background

• Supervised learning: in supervised learning, an agent is given a set of labelled
data, examples of output/input pairs, and attempts to learn the function
which has produced these pairs. In other words, it tries to generalize a rule
by looking at (usually a lot of) examples.

• Unsupervised learning: unsupervised learning is fairly similar to supervised
learning, except the input data examples are not labelled. The task of the
agent is to find the a structure or pattern in the input data by itself, with
no explicit feedback given.

• Reinforcement learning: in reinforcement learning, an agent is placed in an
environment to fend for itself. At each time step, is receives a percept, and
chooses an action. Then, it learns from a series of reinforcements, in the
form of rewards or punishments.

Unsupervised learning is not very relevant to this thesis, and will not be discussed
further. However, both supervised learning and reinforcement learning will be
described in more detail.

2.1.1 Supervised learning

The task of supervised learning can be stated like this: Given a training set of N
input/output pairs:

(x1, y1), (x2, y2), ..., (xN , yN)

where each yj has been generated by a function y = f(x), find a function h(x)

which approximates f(x).

Note that both x and y can be of any type, such as text, a number, or an image.
The function h(x) is called a hypothesis. Learning is a search through the space
of possible hypotheses for one which will generalize well from the examples. The
performance of the hypothesis is usually measured by giving it inputs it has not
seen before, and testing if it is able to predict the output, or label. This can be
done by putting aside some of the example data before training, these examples
are called a test set.

6

2.1 Machine learning

Figure 2.1: Example of a simple model for a neuron. From Russel and Norvig [28].

2.1.2 Artificial neural networks

Artificial neural networks (ANNs) were created as an attempt to mimic how the
animal brain functions. They turned out to be a oversimplification, but remain
very useful as function approximators. ANNs are called networks, because they
contain multiple neurons (i.e. nodes) which are connected together. Each node
has a number of inputs, and an output (which can be connected to multiple other
nodes). When a linear combination of the inputs exceeds some value, the node
produces an output. Mathematically, each node j calculates a weighted sum of its
inputs:

inj =

n∑
i=0

wi,jai, (2.1)

where the index i ranges over all nodes in the previous layer connected to it. Then,
an activation function g is applied, producing the output:

aj = g(inj) = g(

n∑
i=0

wi,jai) (2.2)

These neurons are arranged in different layers, which can be divided into three
broad categories: input layers, hidden layer(s), and output layers. Every neural
network has one input layer, where the input data is fed to the network, and
one output layer, which produces the resulting output. Networks can have any
number of hidden layers, including zero. In a feedforward network, nodes in each
layer are connected to nodes in the next layer, see figure 2.2. If there are loops in
the ANN, it is a recurrent network, but most of the ANNs discussed in this thesis

7

Chapter 2. Theoretical background

are feedforward networks.

Each node implements a linear classifier, but the network as a whole can approxi-
mate nonlinear functions as well. Cybenko [7] showed that two hidden layers can
represent any function, and later proved that a single hidden layer is enough to
represent any continuous function [8], an early version of the universal approxi-
mation theorem. This is done by varying the different weights of the nodes in the
network, collectively called the parameters, and denoted as θ. Then, the problem
is finding a combination of weights which will produce a function closest to the
target function the network is to approximate.

Gradient descent

In the context of neural networks, training refers to solving the problem described
above. The weights of the neural network are updated incrementally to increase its
accuracy and performance on the task. There are multiple ways of doing this, but
by far the most popular is a numerical optimization algorithm known as gradient
descent (also known as steepest descent). Gradient descent uses the gradient of the
function to be minimized (in this case the loss function of the neural network) to
iteratively search for the minimum. Given a loss function Loss(θ), the parameter
updates are,

θ ← θ − α∇θLoss(θ), (2.3)

where α is the step size, or learning rate. It can either be a constant, or de-
crease over time to ensure convergence. This means that each weight is updated
by,

wi ← wi − α
∂

∂wi
Loss(θ). (2.4)

A popular way of performing gradient descent consists of randomly selecting train-
ing examples, and taking a step after each one. This is known as stochastic gradient
descent (SGD).

2.1.3 Deep learning

Deep learning is a class of machine learning algorithms which employ multiple
layers of nonlinear processing units in order to learn. Most modern deep learning
models are based on the artifical neural networks discussed above, and this chapter

8

2.1 Machine learning

Figure 2.2: Simple example showing a deep neural network with four layers. From
Nielsen [25].

will focus on these architectures, often referred to as deep neural networks (DNNs,
see figure 2.2). DNNs have become quite popular lately, and are responsible for
some of the most impressive abilities of modern machine learning systems.

Deep neural networks contain multiple hidden layers between the input and output
layers, and while there is no definition for how many hidden layers are "required",
ANNs with two or more hidden layers are usually considered to be DNNs. Most
"shallow" machine learning techniques require carefully engineered features (indi-
vidual measurable characteristics found in the training data) to perform well. In
other words, humans have to decide what parts of the data to give to the algorithm
as input, to ensure that it learns effectively. One of the biggest advantages of deep
learning, is that feature engineering is not required. A deep neural network can
take raw data as input, and then learn which features are the most relevant on
its own. This is due to the multi-layered architecture of the DNN, each layer can
create abstractions which are then fed to the next layer. In this way, each layer can
build more and more complex features. As an example, it can be useful to think
of the case of computer vision: the early layers might learn that lines are useful
features to detect, later layers might combine these to form edges and corners, and
even later layers might build even more complicated features.

Because these networks are very large, they also require a lot of training data
to be effective, compared to other methods, and this is one of the drawbacks of

9

Chapter 2. Theoretical background

deep learning. Naturally, this causes training to be very computationally expen-
sive. However, deep learning methods can keep improving with more training
data where other methods reach a saturation threshold (when more training does
not improve performance). Moreover, some theoretical results suggest that deep
networks are more powerful than shallow networks by nature [26].

Back-propagation

As described in chapter 2.1.2, training neural networks is usually done using SGD,
and this is also the case for deep neural networks. However, with the addition of
hidden layers, a complication worth noting arises. While the error y − hθ (where
y is the correct output and hθ is the output of the neural network hypothesis)
at the output layer is easily obtained, the error in the hidden layers are not as
straight-forward to find. However, it turns out that the error in the output layer
can be propagated backwards to the hidden layers, and used to calculate the weight
updates. The weight-update rule for an output node k is given as,

wj,k ← wj,k + α× aj ×∆k, (2.5)

where
∆k = Errork × g′(ink), (2.6)

where Errork is the error in output node k, g is the activation function, and
ink is the weighted sum as shown in equation 2.1. Then, we want to propagate
this modified error ∆k backwards to all the nodes connected to output node k.
Intuitively, the idea is that each hidden node j is responsible for some part of this
error, proportional to the strength of the connection between node j and k. The
error is propagated in the following way,

∆j = g′(inj)×
∑
k

wj,k∆k, (2.7)

which makes the weight-update rule for the hidden layers identical to the output
layer,

wi,j ← wi,j + α× ai ×∆j . (2.8)

For a more mathematically detailed explanation and derivation of back-propagation,
see Russel and Norvig [28], chapter 18.7.4.

10

2.2 Reinforcement learning

2.2 Reinforcement learning

Reinforcement learning (RL) is an area of machine learning focusing on how agents
can learn how to act in a certain environment so as to maximize some cumulative
reward. The agent is often initialized with a blank slate, tabula rasa, with no in-
formation about what it should do or how the environment works, and then learns
by interacting with it repeatedly. RL can be divided into two problems:

• Prediction, where RL is used to learn the value function (explained in
chapter 2.2.2) for a given policy. This is also known as policy evaluation.

• Control, where RL is used to learn a policy which maximizes the reward,
which might include prediction. For simplicity, this is what "reinforcement
learning" will refer to in this thesis unless otherwise specified.

The task of the RL agent is to figure out which actions to perform in the different
states it can encounter, and it does this by observing how the environment re-
sponds to different actions, both in terms of state change, and reward received. In
some approaches, the agents attempts to learn the dynamics of the environment
in order to find the best policy, while other methods simply attempts to learn
the value of each state and/or action directly. As is usual in machine learning
methods, the agent learns how to improve its performance iteratively. When deep
neural networks are used as function approximators in the RL agent design, it is
called deep reinforcement learning (DRL).

The reward is the ultimate measurement of how good or bad a state or action is,
but the RL agent can take into account the possibility of potential future rewards in
potential future states when estimating the value of an action or state. One thing
to note about rewards, is that they can be intermittent, and therefore, temporally
delayed. Take the game of chess as an example: the agent might perform hundreds
of interactions with the environment (moves) before receiving the reinforcement
at the end of the game. This creates a problem for the agent: how does it know
which of the moves were important to win the game? This is known as the credit
assignment problem.

In control literature, reinforcement learning is often called approximate dynamic
programming, or neuro-dynamic programming.

11

Chapter 2. Theoretical background

Agent

Environment

Action
a

State, reward
s, r

Figure 2.3: Illustration showing how the agent interacts with the environment.

2.2.1 Problem formulation

One characteristic which separates RL from other machine learning paradigms, is
that time is an important factor. The RL agent interacts with the environment
sequentially over time, and at each time step t, the following happens: the agent
receives a state st from the state space S, then selects an action at from the action
space A, according to a policy, which is a rule used by the agent to decide what
actions to take, i.e. a mapping from the state st to actions at. The policy might be
deterministic, in which case it is usually denoted as µ(st), or stochastic, in which
case it is usually denoted as π(at|st). Then, the agent receives a percept, which
contains both a scalar reward rt, and the next state, st+1 (see figure 2.3). If the
environment is episodic, the process continues until it reaches a terminal state,
and can be repeated multiple times. The return value is the accumulated reward,
often discounted by a discount factor γ ∈ [0, 1],

R(τ) =

∞∑
t=0

γtrt, (2.9)

where τ is a trajectory, which is a sequence of states and actions in the environ-
ment,

τ = (s0, a0, s1, a1, ...) (2.10)

The goal of the agent is to optimize its policy so as to maximize the expectation

12

2.2 Reinforcement learning

of the long term return in each state, that is, maximize

Rt =

∞∑
k=0

γkrt+k, (2.11)

in each time step t. In the case of deep RL, there are parameterized policies,
which are policies whose outputs depend on a set of parameters (e.g. the weights
and biases of a neural network, as discussed in chapter 2.1.2), which can be ad-
justed using some optimization algorithm. These parameters are often denoted
by θ, and the associated policy by πθ. The optimization aims at finding the op-
timal policy, denoted by π∗, but this is often infeasible, so an approximation is
acceptable.

Markov decision process

The Markov decision process (MDP) provides a mathematical framework for mod-
eling the environment which the RL agent is interacting with, as described above.
An MDP consists of the following:

• A set of states, S, which contains all possible states of the environment

• A set of actions, A(s), which contains all possible actions in each state

• A transition model, P (s′|s, a), which denotes the probability of reaching
state s′ when performing action a in state s

• A reward function R(s), which is the reward perceived in state s

The state transitions of the environment are assumed to obey theMarkov property,
which means the probability of reaching state s′ only depends on s, and not on
the history of any earlier states.

If the complete state of the environment is available to the agent through the state,
the environment is fully observable. If only a partial observation is available, the
environment is partially observable.

Different environments allow different kinds of actions, and the set of all valid
actions in a given environment is called the action space. In chess, for example,
the action space of a given state could be the set of legal moves available. This is
an example of a discrete action space, where a finite number of moves are available
to the RL agent. Other environments can have continuous actions spaces, such

13

Chapter 2. Theoretical background

as real-valued inputs or parameters. The different environments explored later in
this thesis have continuous action spaces.

2.2.2 Value function

The value function Vπ(s) is the expected return value of state s when following
policy π,

Vπ(s) = E[Rt|st = s] (2.12)

In other words, the value function estimates how good a state is. The action value
function, also known as the Q-function, Qπ(s, a), gives the expected return for
performing action a in state s, and then act according to policy π:

Qπ(s, a) = E[Rt|st = s, at = a] (2.13)

In both of these value functions, Rt is the return value as defined in equation 2.11.
The optimal value function,

V ∗(s) = max
π

Vπ(s) = max
π

E[Rt|st = s], (2.14)

gives the expected return when starting in state s, and acting according to the
optimal policy π∗ afterwards. The optimal action-value function,

Q∗(s, a) = max
π

Qπ(s, a) = max
π

E[Rt|st = s, at = a], (2.15)

gives the expected return when starting in state s, performing action a, and then
acting according to the optimal policy π∗ afterwards. There is an important
connection between the optimal action-value function and the optimal action: the
optimal policy in s will select the action which maximizes the expected return
when starting in s. Therefore, if Q∗(s, a) is known, the optimal action a∗(s) can
be obtained directly,

a∗(s) = arg max
a

Q∗(s, a). (2.16)

Bellman equation

A Bellman equation is a necessary condition for optimality in dynamic program-
ming (DP). Dynamic programming is an optimization method which simplifies a
complicated problem by recursively breaking it down into simpler sub-problems,

14

2.2 Reinforcement learning

which can then be solved. Russel and Norvig [28] gives a formulation applied to
the utility of a state,

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)U(s′) (2.17)

In the RL and MDP context, the underlying concept of the Bellman equation can
be described intuitively as follows: the value of a state is the immediate reward
perceived in that state, plus the value of the next state. Both the value function
and Q-function described above obey the Bellman equation,

Vπ(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)(r + γVπ(s′)) (2.18)

Qπ =
∑
s′

P (s′|s, a)[r + γ
∑
a′

π(a′|s′)Qπ(s′, a′)] (2.19)

Advantage function

Sometimes, it is not necessary to know how good an action is in the absolute sense,
and knowing how much better it is than other actions on average is satisfactory.
This can be done using an advantage function Aπ(s, a), which describes how good
choosing a specific action a is, compared to simply following the policy π,

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.20)

This is very useful in policy optimization methods, which will be discussed later,
in section 2.2.6.

2.2.3 Exploration vs. exploitation

An important problem in reinforcement learning is the tradeoff between explo-
ration and exploitation. To achieve high rewards, the agent has to choose actions
it has tried before and know to be good, but to discover these actions, it has
to choose actions that have not been tried. Exploration refers to the RL agent
exploring the environment to collect more information, and exploitation means
simply following the current best policy to gain as much reward as possible (the

15

Chapter 2. Theoretical background

Figure 2.4: A non-exhaustive taxonomy of modern RL algorithms. Figure by Achiam
[2].

latter is known as a greedy agent). In other words, short-term rewards have to
sacrificed to be able to find a good policy in the long run.

Silver [30] proposes some solutions, such as naive exploration, optimistic initial-
ization, optimism in the face of uncertainty, probability matching and information
state search.

One of the most popular methods used is a version of naive exploration called ε-
greedy, which is fairly straight-forward: Let ε ∈ (0, 1). The agent selects a random
action with a probability of ε, and a greedy action a = arg maxaQπ(s, a) according
to the current best policy π with a probability of (1− ε).

2.2.4 Model-free vs. model-based RL

A very important distinction to make with RL algorithms, is whether its approach
is model-based or model-free.

In model-based algorithms, the agent either has access to a complete model of
the environment, or attempts to learn it through interaction. In this context, a
model of the environment refers to a function which predicts state transitions and
rewards. A major advantage of having a model is that it allows the agent to plan

16

2.2 Reinforcement learning

ahead, and see what would happen for a range of different actions it can perform
in its current state, and then comparing these outcomes when deciding which
action to take. This can lead to a substantial improvement in sample efficiency,
compared to algorithms that do not use a model. One example of this is AlphaZero
[32].

Unfortunately, a ground-truth model of the environment is rarely available in
most RL problems. If a model-based approach is to be used without a perfect
model available, the agent has to learn the model itself from experience, which
raises some challenges. The biggest challenge is usually that the agent, by design,
exploits any bias found in the learned model, which might cause poor performance
in the actual environment.

While model-free algorithms forego the potential gains in sample efficiency, they
tend to be easier to implement and tune. At this time, model-free methods are
more popular and have been more extensively developed and tested than model-
based methods [2]. This thesis focuses mainly on the model-free approaches, but
some examples of model-based RL are discussed below. Later subsections will
discuss model-free methods.

Learning in model-based RL

The most basic approach is to not learn a policy at all, and employ pure planning
methods such as model predictive control (MPC), widely used in control theory.
In MPC, an optimal plan with respect to the model is computed over some finite
time-horizon, and then discarded in the next time step, and computed again. MPC
has been combined with learned models to improve sample efficiency in locomotion
tasks [24].

A slightly more advanced approach than pure planning involves simultaneously
following and learning a policy, by employing some planning algorithm, such as
Monte Carlo Tree Search (MCTS) [15], α-β Search and greedy search. Potential
actions are generated by sampling its current policy, πθ(a|s), and comparing dif-
ferent plans. This is called expert iteration, because the planning algorithm is able
to choose actions which are better than what the policy suggests, making it an
"expert" relative to the policy alone. The policy is then updated to produce ac-
tions similar to the planning algorithm. Examples of using this approach include
AlphaZero [32] and ExIt [4].

17

Chapter 2. Theoretical background

A third approach called data augmentation for model-free methods, uses a model-
free RL algorithm to learn either a policy or an action-value function, but uses
either augmented or purely fictional experiences for training the agent. One ex-
ample of augmenting real experiences with constructed ones is Model-Based Value
Estimation [10], while Recurrent World Models [11] trains an agent entirely inside
of a self-generated world, and transfers the learned policy back into the actual
environment.

Yet another approach is embedding planning loops into policies. The planning part
is integrated directly into the policy, making complete plans available as additional
context for the policy while learning the policy itself with a model-free algorithm.
The idea is that the policy can learn to choose whether or not to use the plans,
and how. This combats the problem of model bias, because the policy can learn to
ignore the plan in states where the model is unhelpful. Imagination-Augmented
Agents (I2A) [37] is an example of one such architecture.

For a more in-depth discussion of model-based RL and planning, see Sutton and
Barto [33], chapter 8. For a more in-depth summary of different implementations,
see Li [16], chapter 6.

2.2.5 Temporal difference learning

Temporal difference (TD) learning is a very central topic in reinforcement learn-
ing. TD learning methods are model-free, and can learn directly from experiences
without a model of the environment. These methods can also employ bootstrap-
ping, which means estimates are updated in part by using other learned estimates,
without waiting for the actual outcome. TD learning often refers to the prediction
problem with an update rule for the value function given as,

V (s)← V (s) + α(r + γV (s′)− V (s)), (2.21)

where α is the learning rate, and γ is the discount factor. Note the part inside of
the parenthesis, this is known as the TD error,

δt = r + γV (s′)− V (s), (2.22)

and arises in various forms in many areas of reinforcement learning.

The TD learning method for prediction is used in two different methods for doing

18

2.2 Reinforcement learning

TD control, which are discussed below. The main difference is that one is on-
policy, and the other is off-policy.

SARSA

SARSA gets its name from the quintuple representing a transition from one state-
action pair to the next: (s, a, r, s′, a′). It works by taking the principle of TD
prediction, and applying it to learning an action-value function Q(s, a), instead
of a value function. It is an on-policy method, because it estimates Qπ(s, a) for
the current policy π, and simultaneously update the π greedily with respect to the
estimated Qπ. The action-value update rule is given as

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)), (2.23)

and is used after every transition to a nonterminal state s. If a state s′ is found
to be terminal (usually available to the agent via its percept), Q(s′, a′) is set to
zero. It can be shown that SARSA converges to an optimal action-value function
and policy when all state-action pairs are visited an infinite number of times, and
the policy converges to be purely greedy [33].

Q-learning

In 1989, Watkins [36] presented one of the early breakthroughs in reinforcement
learning, namely the off-policy TD control algorithm Q-learning. Its update rule
is given as

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)). (2.24)

The algorithm is regarded as off-policy, because the learned action-value function
directly approximates the optimal action-value function Q∗, independent of the
actual policy π the agent follows. In practice, this means that the update can use
transition data from any point during training, regardless of how the agent was
behaving when the data was obtained. The policy still determines which action-
state pairs are visited and updated, but the only requirement for convergence to
the optimal policy is that all pairs continue to be updated [33]. The actual policy
is learned via the connection between Q∗ and π∗, as the actions chosen by the

19

Chapter 2. Theoretical background

Figure 2.5: Illustration of different TD methods. White circles are states, black circles
represent actions. Figure (slightly modified) from Sutton and Barto [33].

agent are given by
a(s) = π(s) = arg max

a
Q(s, a). (2.25)

Multistep bootstrapping

The algorithms described above only use a single look-ahead step when calculating
the return, and are sometimes referred to as TD(0), SARSA(0) and Q(0). They
also have variants with multistep returns, which utilize additional steps in their
estimations. The n-step update, the state-value function is updated towards the
n-step return, defined as

rt + γrt+1 + . . .+ γn−1rt+n−1 + γnV (st+ n)[16]. (2.26)

Bootstrapping methods are usually fast to learn, and enable online, continual
learning. For a more in-depth discussion of multistep bootstrapping, see Sutton
and Barto [33], chapter 7.

20

2.2 Reinforcement learning

2.2.6 Policy optimization

The value-based methods discussed thus far optimize value functions first, and
then use them to derive the policies. An alternative to this is policy optimiza-
tion. These methods represent a policy explicitly as πθ(a|s), and optimize their
parameters θ either directly, by using gradient ascent on the objective function
J(πθ), or indirectly, by maximizing some local approximation of J(πθ). Compared
to value-based methods, these methods usually have better convergence proper-
ties, are effective in high-dimensional or continuous action spaces, and can learn
both stochastic and deterministic policies [16]. On the other hand, policy-based
methods sometimes converge to local optimum, can be inefficient to evaluate, and
encounter high variance [30].

Note that J(θ) = J(πθ) is sometimes used for simplicity when θ denotes the
parameters of the function approximation of the policy π. Using gradient ascent,
the parameters are updated in the following way:

θt+1 = θt + α∇θJ(θt). (2.27)

The gradient of the objective function, ∇θ, is called the policy gradient, and
methods which optimize this way are collectively called policy gradient methods.
Using this update rule, the problem now becomes finding an expression of the
policy gradient which can be computed numerically. The objective function itself
is the expected long term return when following some trajectory dictated by the
policy:

J(θ) = Eτ∼πθ
[R(τ)]. (2.28)

For a differentiable policy πθ(a|s), the gradient of the policy can be calculated
analytically:

∇θπθ(a|s) = πθ(a|s)∇θπθ(a|s)
πθ(a|s)

= πθ(a|s)∇θ log πθ(a|s) (2.29)

Using this, and the policy gradient theorem [34], we get

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Qπθ

(s, a)]. (2.30)

The algorithm REINFORCE [38] is a simple example of using this method. It
utilizes the return Rt as an unbiased sample of the action-value function Q(st, at),

21

Chapter 2. Theoretical background

which results in the policy gradient

∇θJ(θ) = ∇θ log πθ(at|st)Rt (2.31)

Using this gradient, each parameter update will be proportional to the return value
Rt, multiplied with a vector ∇πθ(at|st), which is the gradient of the probability of
choosing the action which was chosen, divided by the probability of choosing that
action, πθ(at|st). Intuitively, the gradient vector will be the direction in parameter
space which will lead to the largest increase of the probability of choosing action at
in state st, which means the update will lead to an increase in the parameter vector
in this direction which is proportional to the return value, causing the policy to
favor actions with high return values. The division causes this increase to also be
inversely proportional to the current probability of choosing this actions, which
will normalize it to avoid giving frequent actions an advantage over infrequent
actions, regardless of return value.

By generalizing the policy gradient theorem slightly, a baseline b(st) can be in-
cluded for comparison of the action value, by subtracting it from the action-value
function. This is to reduce the variance of the gradient estimate. Using the base-
line, the policy gradient becomes

∇θJ(θ) = ∇θ log πθ(at|st)(Qπθ
(st, at)− b(st)) (2.32)

The baseline can be any function, as long as it does not depend on the action
a. Policy optimization often involves learning an approximation of the the on-
policy value function Vπθ

(s), which is then used in the update of the policy πθ.
Pseudocode of the REINFORCE algorithm with a baselines is shown in algorithm
1.

Note that if the value function is used as a baseline, we end up with the advantage
function:

∇θJ(θ) = ∇θ log πθ(at|st)(Qπθ
(st, at)− Vπθ

(st)) (2.33)

= ∇θ log πθ(at|st)Aπθ
(st, at) (2.34)

Empirically, using this baseline results in faster and more stable learning [2].

22

2.2 Reinforcement learning

Algorithm 1 REINFORCE (with baseline)

Input: policy π(s|θπ), state-value function v(s|θv)
Parameters: step sizes, απ > 0, αv > 0
Initialize policy parameters θπ and state-value parameters θv
for episode = 0, M-1 do

Generate an episode (s0, a0, r1, . . . , sT−1, aT−1, rT), following πθπ
for t = 0, T-1 do
Gt ←

∑T
k=t+1 γ

k−t−1Rk
δ ← Gt − v(st|θv)
θv ← θv + αvδ∇θvv(st|θv)
θπ ← θπ + απγ

tδ∇θπ log π(st|θπ)
end for

end for

Actor-critic

Pure policy gradient methods tend to learn slowly due to estimates with high
variance, and are inconvenient to implement for online problems, however, the
TD methods discussed in chapter 2.2.5 can be used to combat these problems.
Actor-critic methods combine these two approaches to learn both a policy and a
state value function simultaneously, and use the value function for bootstrapping.
Note that learning a value function for use as a baseline is not an example of
actor-critic, because the value function is not used for bootstrapping. The policy
is the actor, and controls how the agent behaves, while the learned value function
is the critic, and measures how good an action is, i.e. criticizes the actions chosen
by the actor.

The critic value function can be learning using some TD method as described
above. The actor policy is learned by using the policy gradient, with the esti-
mated value function being used in the calculation of the TD error, replacing the
return:

θπt+1 = θπt + α
(
rt+1 + γv(st+1|θv)− v(s|θv)

)
∇θπ log π(s|θπt) (2.35)

= θπt + αδ∇θπ log π(s|θπt) (2.36)

Note that the notation θπ is the same as θπ. An illustration of the actor-critic
method is shown in figure 2.6, and pseudocode for a simple one-step actor-critic
algorithm is shown in algorithm 2.

23

Chapter 2. Theoretical background

Environment

Action
a

Value function
(critic)

Policy
(actor)

Reward
r

State
s

TD
error

Figure 2.6: Illustration showing how the actor and critic interact with each other and
the environment.

Algorithm 2 Actor-critic

Input: policy π(s|θπ), state-value function v(s|θv)
Parameters: step sizes, απ > 0, αv > 0
Initialize policy parameters θπ and state-value parameters θv
for episode = 0, M-1 do

Initialize first state s0

for t = 0, T-1 do
Perform action at according to policy π(st|θπ), receive percept st+1, rt
δ ← rt + γv(st+1|θv)− v(st|θv)
θv ← θv + αvδ∇θvv(st|θv)
θπ ← θπ + απγ

tδ∇θπ log π(st|θπ)
end for

end for

24

2.2 Reinforcement learning

2.2.7 Deep deterministic policy gradient

Deep deterministic policy gradient (DDPG) is a model-free, actor-critic algorithm
with continuous action spaces, presented by Lillicrap et al. [19] in 2015. It is
the main algorithm chosen for study in this thesis, mainly due to being adapted
specifically for environments with continuous action spaces, which most physical
control tasks have, and because of its high performance. DDPG is an extension of
two other algorithms, Deep Q-Networks (DQN) [22, 23] and Deterministic Policy
Gradient (DPG) [31]. Specifically, it utilizes the experience replay and target
network techniques from DQN, and uses actor-critic with a deterministic policy as
in DPG. DDPG concurrently learns an action-value function and a policy, by using
off-policy data and the Bellman equation to learn the action-value function, and
then uses the action-value function to learn the policy. The different techniques
and methods will be discussed in-depth below. Pseudocode for DDPG is shown
in algorithm 3.

The Bellman equation for the action-value function can be written as,

Qπ(st, at) = Est+1∼E
[
r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]

]
, (2.37)

where st+1 ∼ E means that the transition is sampled from the environment E,
and at+1 ∼ π means that an action is sampled from the policy π. If the policy
is stochastic, it is usually denoted µ, and the inner expectation of the Bellman
equation can be avoided,

Qµ(st, at) = Est+1∼E [r(st, at) + γQµ(st+1, µ(st+1))] (2.38)

Because this expectation only depends on the environment, Qµ can be learned
off-policy, by using transitions generated by a different stochastic policy β. Using
the greedy policy from Q-learning, µ(s) = arg maxaQ(s, a), and representing the
Q-function as a function approximator parameterized by θQ, the mean-squared
Bellman error (MSBE) can be used as a loss function. That is, optimization is
done by minimizing

L(θQ) = Est∼ρβ ,at∼β,rt∼E
[
(Q(st, at)|θQ)− yt)2

]
, (2.39)

where
yt = r(st, at) + γQ(st+1, µ(st+1)|θQ), (2.40)

25

Chapter 2. Theoretical background

and ρβ is the discounted state visitation distribution for the policy β. yt is often
called the target value.

Using deep neural networks as function approximators, DQN [22, 23] is capable of
solving problems with high-dimensional observation spaces (i.e. state spaces), but
can only handle low-dimensional and discrete action spaces. This is due to the way
DQN chooses actions, by maximizing the action-value function (Q-function), which
would require an iterative optimization for each time step for a continuous action
space. One solution is to discretize the action space of the environment, however,
this leads to some problems. First of all, the curse of dimensionality comes into
play, especially when considering systems with multiple degrees of freedom, or
where fine control is required. The number of different actions to choose from can
quickly increase to a number where using DQN directly is infeasible. Additionally,
discretization of continuous action spaces might lead to loss of valuable information
about the action domain structure.

DDPG solves this issue by using an actor-critic approach based on the DPG algo-
rithm [31]. The actor is a parameterized approximation of a deterministic policy,
µ(s|θµ), and the critic is a parameterized approximation of the action-value func-
tion, Q(s, a|θQ), and they are both represented by deep neural networks. The
critic, Q(s, a) is learned using the Bellman equation as in Q-learning (see above),
while the actor is learned by using the policy gradient. Silver et al. [31] showed
that for a deterministic policy, the policy gradient is simply the expected gradient
of the action-value function:

∇θµJ ≈ Est∼ρβ
[
∇θµQ(st, µ(st|θµ)|θQ)

]
(2.41)

= Est∼ρβ
[
∇aQ(st, µ(st)|θQ)∇θµµ(st|θµ)

]
(2.42)

Recall from chapter 2.2.6 that in the stochastic case, the policy gradient integrates
over both state and actions spaces. The deterministic policy gradient, however,
only integrates over state space, and can therefore be estimated much more effi-
ciently than the stochastic policy gradient.

Replay buffers

Most optimization algorithms used for training neural networks assume that the
samples used are independently and identically distributed. In reinforcement
learning, where the samples are generated from sequentially interacting with the

26

2.2 Reinforcement learning

environment, this assumption does not hold. Additionally, to take advantage of
hardware optimizations, it is essential to learn in mini-batches, rather than online
[19].

One way to deal with this issue, is to use a experience replay buffer, which was
introduced by Lin [20], and used in DQN [22]. Following some policy, different
transition tuples et = (st, at, rt, st+1) are generated, and saved in a cache Rt =

{e1, ..., et}. This set contains a finite amount of previous experiences, and at each
time step, both the actor and critic are updated using a uniformly sampled mini-
batch of tuples from this buffer, yielding uncorrelated samples for training. The
implementation from the original DDPG paper [19] used a replay buffer size of
106. When the buffer is full, old samples are discarded to make room for new
ones. Note that this means that the updates might use old transitions generated
by an outdated policy. However, this is not a problem, because DDPG is off-
policy. This is due to the nature of Q-learning, the optimal action-value function
Q∗(s, a) should satisfy the Bellman equation for all possible transitions, and all
transitions are therefore useful for training, regardless of how good the action
chosen was.

Another advantage of using replay buffers, is that each step of experience et can
be used in multiple weight updates, which allows for greater data efficiency. Fur-
thermore, learning on-policy means that the current policy parameters determine
the next transition, which produces the next training sample used for updating
the parameters. This might cause unwanted feedback loops and lead to the agent
getting stuck in local minimum, or even divergence [23].

Target networks

Another trick used in DQN to achieve stable learning with the deep neural net-
works, is the use of target networks. The critic networkQ(s, a|θQ) is being updated
while also being used in the target value (see equation 2.40) of the MSBE loss,
which means the parameter update depends on the parameters θ which are being
updated. This causes the Q update to be prone to divergence, and makes learning
unstable. To avoid this, copies of both the actor and critic networks are created,
and denoted µ′(s|θµ′) and Q′(s, a|θQ′). They are used for calculating the target
values, hence their names. The idea is that the weights of the target networks are
initialized as copies of the weights of the actor and critic networks, but updated
more slowly.

27

Chapter 2. Theoretical background

In DQN, the main network is cloned to create the target network every C updates,
and then used for C updates, where C is a fixed size number. In DDPG, a slightly
different approach is used. The target networks are updated as often as the main
networks, but with "soft" updates:

θQ′ ← τθQ + (1− τ)θQ′ (2.43)

θµ′ ← τθµ + (1− τ)θµ′ (2.44)

where τ ∈ (0, 1) is a hyperparameter, usually with a small value (e.g. 0.001). This
causes the target networks to change slowly, which slows learning, but greatly
improves learning stability [19].

Exploration

As discussed earlier, the tradeoff between exploration and exploitation is an im-
portant problem in reinforcement learning, especially in continuous action spaces.
Because DDPG is off-policy, the problem of exploration can be completely seper-
ated from the learning algorithm itself. In order to make the DDPG agent explore
the environment, noise sampled from a noise process N is added to the actor policy
when selecting an action a during training:

π(st) = µ(st|θµ) +N (2.45)

This is called action noise. Different noise processes can be used, the original
DDPG paper [19] suggests an Ornstein-Uhlenbeck process, which is time corre-
lated. More recent results suggest that uncorrelated, mean-zero Gaussian noise
works well, and is often used because it is simpler [2]. When testing the agent, the
noise is simply removed from the actor policy, causing it to exploit the information
it has gathered as much as possible.

Parameter noise

Another way to ensure exploration, is to introduce noise to the parameters of
the neural network representing the policy, instead of adding it to the action
output (see figure 2.7). This has been shown to cause more consistent, effective
exploration and faster learning [27]. One important difference between action
noise and parameter noise, is episode consistency. Consider equation 2.45: the

28

2.2 Reinforcement learning

Algorithm 3 DDPG algorithm, from Lillicrap et al. [19]

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ
and θµ
Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1

for t = 1, T do
Select action at = µ(st|θµ) +Nt according to the current policy and explo-
ration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

end for
end for

29

Chapter 2. Theoretical background

Figure 2.7: Illustration of action noise (left) and parameter noise (right). Figure from
the OpenAI blog post on parameter noise1.

policy µ might be deterministic, but combined with the noise process, it becomes
a stochastic policy π, which might choose different actions in the same state st
during the same episode. In other words, action noise is independent of the state.
With parameter noise, perturbations are added to the parameters at the beginning
of each episode, which ensures consistency in the choice of action in any fixed state
st.

Choosing a scale σ for parameter noise is not straightforward, mainly due to the
complexity of neural networks. Plappert et al. [27] propose a solution to this
problem, by making the noise scale adaptive. Some distance measure d(µ, µ′)

is defined, where µ′ and µ is the policy with and without parameter noise, re-
spectively. Some threshold δ is set for this distance measure, and the parameter
noise is then adaptively increased or decreased based on the distance measure, as
such:

σk+1 =

{
ασk if d(µ, µ′) ≤ δ,
α−1σk otherwise

(2.46)

where α is a scaling factor, usually slightly bigger than 1.
1https://blog.openai.com/better-exploration-with-parameter-noise/

30

https://blog.openai.com/better-exploration-with-parameter-noise/

2.3 DRL algorithm implementations

For off-policy algorithms such as DDPG, application of parameter noise is as
simple as using action noise, because all generated transitions are useful. The
noise is simply used during training to cause exploration, and the data is used to
train a noise-free network afterwards. For a more detailed description of adaptive
parameter noise, see Plappert et al. [27].

2.3 DRL algorithm implementations

There are many different open-source repositories available which implement dif-
ferent DRL algorithms and primitives. A considerable part of working with this
thesis was spent exploring, testing and comparing different implementations of
DRL algorithms, especially the DDPG algorithm. The different implementations
were considered with a focus on four main aspects:

• Performance: Different measures such as convergence speed, i.e. how many
steps are usually required before a good solution is found, and training time,
which is how much time is needed to perform the steps, and the quality of
the trained policy, usually dictated by a good exploration policy.

• Functionality: What kind of additional functionality the frameworks provide
in addition to the algorithm itself, such as saving and restoring the agents
properly, logging of relevant information, etc.

• Code quality: Well written, structured, easy to understand code with useful
comments and function/variable names.

• Documentation: Comprehensive and structured documentation which com-
plements the code, with good examples and explanations of functionality.

Because the example environments are rather simple and basic, the performance
difference is minimal in terms of solution quality. Combined with the fact that
training is fairly well optimized in all of the implementations, the overall perfor-
mance difference is rather negligible. Therefore, the latter three qualities were
weighted more heavily when deciding which repository to use in the final im-
plementation. Below is a brief summary of the different repositories that were
tested.

31

Chapter 2. Theoretical background

2.3.1 OpenAI Baselines

Baselines [9] is a repository with implementations of multiple reinforcement learn-
ing algorithms, created by the company OpenAI. It is under active development,
which means breaking changes may happen in future updates.

Performance. The algorithm implementations are high-performing, well opti-
mized, and support parallelization. Baselines implement adaptive parameter noise
(see section 2.2.7), which has been shown to improve learning [27].

Functionality. Baselines is a bare-bones repository which only provides the basic
necessities for running the algorithms. Most of the algorithms have functionality
for saving and restoring, however, the DDPG implementation lacks these, and they
are not straightforward to implement. Some logging and plotting functionality
exists.

Code quality. The code base is fairly well structured, but rather complex and
can be hard to read. It does not follow the Python PEP8 code style [35]. The
different algorithms are also implemented differently, and do not have a common
interface.

Documentation. Baselines comes with no documentation, except for some basic
examples in the README file. Some algorithm subdirectories contain more detailed
examples and references.

2.3.2 Stable Baselines

Stable Baselines [12] is a fork of OpenAI Baselines which aims to fix many of the
issues with documentation and functionality that Baselines has.

Performance. Similar performance to OpenAI Baselines, however, because it is
a fork, it lacks some of the newest tricks implemented in the Baselines repository.
It is under active development, so this may change. Some algorithms support
multi-processing, but the DDPG implementation does not. Stable Baselines also
implements adaptive parameter noise [27].

Functionality. All algorithms use a common interface, which implements func-
tionality for saving and restoring agents. Additional functionality for logging and
plotting exists.

32

2.3 DRL algorithm implementations

Code quality. Stable Baselines is a major refactoring of the original Baselines
repository. The structure is changed, all algorithm implementations follow the
same unified structure and use the same common interface. The code has been
improved, and follows the Python PEP8 code style [35]. It is easier to understand
and has useful comments to some degree, but also contains more functionality,
and some parts are complex and hard to follow.

Documentation. Stable Baselines also adds documentation, which is well struc-
tured and easy to use. It includes good examples of most of the functional-
ity.

2.3.3 OpenAI Spinning Up

Spinning Up [2] is an educational resource, which is also created by OpenAI. It
contains a repository of short and simple algorithm implementations. Spinning
Up is a great resource for anyone looking to learn more about deep reinforcement
learning.

Performance. The algorithm implementations have decent performance, but pri-
oritize simplicity, which means they lack certain tricks found in other repositories,
such as adaptive parameter noise. Some of the algorithms support parallelization,
but the DDPG implementation does not.

Functionality. Includes functionality for saving and restoration, with extended
tools for logging and plotting. Also comes with a small utility for running experi-
ments called ExperimentGrid.

Code quality. Spinning Up has the highest code quality of all the reposito-
ries gathered here, mostly due to its focus on simplicity. The code is easy to
understand, well commented, and all the algorithm implementations are stan-
dalone.

Documentation. The Spinning Up documentation is excellent, it is well struc-
tured, has good examples, and complements the code nicely. It also doubles as a
learning resource for DRL concepts, and contains descriptions and explanations
of all the algorithms and some of their underlying theory.

33

Chapter 2. Theoretical background

2.3.4 RLlib

RLlib [17] is a library for reinforcement learning which contains both a set of
algorithm implementations, and primitives for creating new ones. It is built on
top of the distributed execution framework Ray.

Performance. Potentially high throughput with Ray. RLlib does not implement
adaptive parameter noise for DDPG.

Functionality. Includes functionality for saving and restoration, and logs infor-
mation during training. No tools for plotting included. RLlib has primitives which
can be used to develop custom RL algorithms, and includes a REST interface in
addition to the regular Python interface. Ray also comes with a hyperparameter
search tool called Tune [18], which is great for testing algorithms.

Code quality. Decent code quality comparable to OpenAI Baselines. The code
structure can be hard to follow, but is manageable. Algorithms use shared primi-
tives and inheritance, which avoid code duplication. Decent readability and com-
ments.

Documentation. Decent, but rather convoluted documentation. Basic function-
ality is explained, but lacks good examples and in-depth descriptions of functions
and parameters. The structure could be clearer.

34

Chapter3
Implementation

3.1 Systems

To explore whether DRL could be used for typical control problems and measure
their performance, two generic examples of systems with simple dynamics, one of
first and one of second order, were chosen rather arbitrarily. This section details
the relevant information about these systems.

3.1.1 First order system

The first system is a simple, standard first order system with Kp = 3 and τp = 2.
The Laplace domain transfer function is given as

Y (s)

U(s)
=

Kp

τps+ 1
(3.1)

The state space model of the system is

ẋ = Ax+Bu (3.2)

y = Cx+Du (3.3)

A = − 1

τp
, B = − 1

τp
, C = 1, D = 0 (3.4)

35

Chapter 3. Implementation

Figure 3.1: Step response of the first order system.

The system step response can be seen in figure 3.1.

3.1.2 Second order system

The second system is a standard second order system. The transfer function
is

Y (s)

U(s)
=

Kp

τ2
s s

2 + 2ζτss+ 1
e−θps (3.5)

The state space model is

[
ẋ1

ẋ2

]
=

[
0 1

− 1
τ2
s
− 2ζ
τs

][
x1

x2

]
+

[
0
Kp
τ2
s

]
u(t− τp) (3.6)

y =
[
1 0

] [x1

x2

]
+
[
0
]
u (3.7)

With ζ = 0.25 < 1, it is underdamped. The gain is Kp = 3 and time constant
τp = 2. No time delay, θp = 0. The step response can be seen in figure 3.2.

36

3.2 PID controller

Figure 3.2: Step response of the second order system.

3.2 PID controller

A proportional-integral-derivative (PID) controller was implemented as part of this
thesis, both for comparison purposes, and for use in the PID tuning environments
which will be explained later. There are open-source implementations of PID
controllers available, but most of them implement real-time simulation, which uses
actual time differences to calculate ∆t. In DRL environments, producing a very
large amount of environment interaction experience is required to learn properly,
which means using time delays in simulations is out of the question. Therefore,
to be able to simulate dynamics with time, but without using actual time delays,
a discrete PID controller class with variable ∆t (dt) was implemented.

PID controllers calculate error values based on a desired setpoint value, and a
measurement of the actual output:

e(t) = SP (t)− y(t) (3.8)

Based on this error value, three different terms are calculated, and combined to
produce the system input,

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (3.9)

37

Chapter 3. Implementation

Figure 3.3: Illustration of a PID controller, from Wikipedia1.

The interface is reasonably straightforward, ∆t, setpoint value, output and integral
limits, and term coefficients can be set either through the constructor, relevant
methods, or directly by accessing the attributes. Output limits and integral limits
(also known as windup guard) are optional.

3.2.1 Tuning

Tuning was done using the Ziegler-Nichols method [39], then performing adjust-
ments until a reasonable performance was achieved. For the SetpointChange-v0
environment, using an average setpoint change, the coefficients are

Kp = 6.4,Ki = 0.4,Kd = 3.8 (3.10)

3.3 Environments

As discussed in the theory section, the two basic parts of any RL problem are
the agent, which is the algorithm implementation, and the environment the agent
interacts with. The behaviour of an DRL agent is not programmed explicitly,
but implicitly, by carefully designing the environments in which they are trained.
The DRL algorithm itself is usually very general, and only impose restrictions on
problem details such as whether the action space and observation space are discrete

1https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png

38

https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png

3.3 Environments

or continuous. We can say that the algorithm implementation dictates how the
agent learns, but the environment dictates what the agent learns. Specifically,
the implementation of the system simulation and the reward function shape the
resulting agent policy.

3.3.1 Generalization and dynamics randomization

One important feature of any agent is the level of generalization. Agents can be
trained to perform a specific task, e.g. control a specific plant or process, in which
case it can be appropriate to train the agent using some model of the specific plant.
If, however, the agent should be able to control a variety of different processes, it
will have to learn to generalize from different models during training.

This can be achieved by introducing randomness into the environment, which
can be done in different ways, depending on the desired level of generalization.
For example, a general-purpose agent capable of controlling a variety of different
systems can be trained by randomizing the system dynamics of the environment.
In practice, this can be done by having the simulator initialize the system variables
with some degree of randomness, producing a system with different variables with
each reinitialization. If an agent is to control a system with a known disturbance,
a constant model of the disturbance can be used in the simulation. If the system
should be able to handle different types of disturbances, the disturbance process
can be initialized with variable dynamics to reflect this. In other words, the
relevant aspects of the environment are randomized so as to influence the level of
generalization achieved by the agent. This is known as dynamics randomization.
Two examples of randomization of a variable are random sampling and adding
noise.

All of the environments utilize some form of dynamics randomization. The initial
state is always initialized with some small random deviation, and other environment-
specific variables are also randomized.

3.3.2 Observation contents

With each interaction with an environment, the agent receives an observation
which describes the current state of the environment. The agent behaviour is
dictated by a policy which maps these states to actions, so what information is
made available to the agent through the observation is of vital importance for its

39

Chapter 3. Implementation

performance. Providing useful state information and transformations can help an
algorithm learn better policies faster. However, one of the reasons to use deep
neural networks as function approximators is that they are able to learn useful
abstractions from the input by itself, and one of the goals of DRL in general is to
design agents which can learn from raw input data, without the need for feature
engineering. The environment observations are limited to basic state values and
the error (see the implementations in section 3.3.6 for more details).

3.3.3 Reward function

The reward function is the measure the DRL agent uses to gauge its own per-
formance. The policy is optimized so as to maximize the accumulated returns
from this function, which means that the design of the reward function essentially
dictates the behaviour of the agent. This can be used both to reward desirable
behaviour, and to punish undesirable behaviour. Standard control objectives such
as minimizing or limiting the rise time and overshoot, rejecting disturbance and
constraining input and input change can be accomplished by including relevant
terms in the reward function. Rise time can be minimized by for example using
the error (see below), overshoot can be limited by punishing the state value being
higher than the setpoint, and input and input change can be added as costs directly
to achieve preferential behaviour. The basic reward function in the constructed
environments is simply

r(st, at) = −|e(st+1)|, (3.11)

where e(st) is the error at time t, given by

e(st) = SPt − yt. (3.12)

where SPt is the target value, or setpoint, and yt is the system output, both
at time t. The square of the error can also be used. Some of the constructed
environments add a small cost on changing the input to avoid large oscillations,
which can be undesirable in many physical systems. A reward function combining
the above objectives might look like this:

r(st, at) = −e(st+1)2 − wuu(t)− w∆u|∆u(t)|, (3.13)

where wu, w∆t ∈ [0, 1] are weight values, and ∆ut = ut − ut−1. Note that hard
limits can also be imposed in the simulation of the system.

40

3.3 Environments

The example environments are fairly simple, so the reward functions can also be
rather simple and general. In more complex systems or environments, a well-
designed reward function is very important for convergence of learning, and for
finding a good policy.

3.3.4 Simulation of system dynamics

The simulation of the system dynamics is implemented in one of two ways, de-
pending on the environment. The simplest way is to set some fixed time constant,
and calculate the state updates directly at each time step, using the differential
equation(s) and the time constant.

The second method also sets a fixed time constant, which is the time each iteration
of the step function takes, i.e. when the agent can update the system input u.
However, during each iteration, an explicit Runge-Kutta method is used to solve
the ODEs over the step duration. Specifically, the integrate.RK45() class from
SciPy’s integration and ODEs module [13] is used, which implements an explicit
Runge-Kutta method of order 5(4). According to the documentation, the error
is controlled assuming accuracy of the fourth-order method accuracy, but steps
are taken using the fifth-order accurate formula, and local extrapolation is done,
while a quartic interpolation polynomial is used for the dense output.

The Runge-Kutta method is fairly computationally expensive compared to the
first method, but ensures a stable simulation of the system dynamics.

3.3.5 OpenAI’s Gym interface

The environments are implemented using the OpenAI Gym [5] interface. In Gym,
the core interface is implemented as a class called Env, which encapsulates an en-
vironment, which can be either partially or fully observable, hiding the specifics of
the environment dynamics. Different environments are implemented by inheriting
the Env class, and overriding its main methods and attributes. The main API
methods are

• reset(): Resets the state of the environment, and returns the initial percept.
This is used for initialization and reinitialization of the environment.

• step(action): Takes an action as input, and runs one time step of the
environment dynamics. Returns the percept of the next time step.

41

Chapter 3. Implementation

• seed(seed): Sets a seed for the random number generator(s) used in the
environment. This is used when the environment has some stochastic ele-
ment which requires randomness (e.g. disturbance). The input parameter
seed defaults to None.

• render(): Used for rendering the environment, useful for illustrating the
progress and/or performance of an agent when simulating real world control
problems (e.g. cartpole with a pendulum). This method is not implemented
in the environments in this thesis, as data is logged and can be plotted
afterwards.

• close(): Can be used if manual cleanup is required. Not implemented in
the environments in this thesis.

As an example, a call to step() could look like this:

observation, reward, done, info = env.step(action)

where env is an instance of a specific environment class, and action is the action
to be performed in the current time step.

The percept returned by reset() and step() contains the following variables:

• observation: An observation object, which contains the new state of the
environment, which is the agent’s current observation.

• reward: Reward value, which is the amount of reward given to the agent
after performing the previous action

• done: A boolean value indicating whether the current episode of the envi-
ronment is completed or not. When this value is true, further calls to the
step() function will return undefined results.

• info: Contains addition diagnostic information, which is mostly used for
debugging, but sometimes for learning as well.

The Env class also has three main attributes:

• action_space: The action space, which defines the space of valid actions
the agent can choose from.

• observation_space: The observation space, or state space, which defines
the space of valid states the environment can be in.

42

3.3 Environments

• reward_range: A reward range tuple which sets a boundary on minimum
and maximum possible reward. The default value is (−∞,∞), and it is only
set if a more narrow range is required.

The action_space and observation_space attributes are objects of type Space,
which is implemented by the Gym framework specifically for action and obser-
vation spaces. The most common spaces are Discrete and Box. The Discrete
space consists of a finite amount of non-negative numbers, while the Box space
takes bounds represented as a matrix or multiple arrays as input, and creates an
n-dimensional box to represent the space.

In short, creating an environment consists of constructing an environment class,
defining the necessary constants and variables as attributes, and implementing
the methods described above. This includes creating a simulation of the system
dynamics, and designing a reward function, which are the two main parts of the
environment. To allow the algorithm implementations to remain completely gen-
eral, and ensure decoupling, all the simulation and system details are defined and
implemented inside the environment.

The environment can be integrated into the Gym repository by registering the
environment and its entry point (the details of this process is included with the
code delivery), and used as any other Gym environment. In Gym, the naming con-
vention for environments are EnvName-vN, where N is the version number.

3.3.6 Environment classes

The different environments are implemented as classes, and follow the general
Gym interface discussed above. Different ways of controlling dynamic systems
were explored:

• Directly controlling the system. The states of the system are used to create
the input for the DRL algorithm, which directly gives the system input as
its output.

• PID tuning. Both the system state and the parameters of the PID con-
troller are used to create the input for the DRL algorithm, which in turn
manipulates the PID parameters through its own output.

• Output adjustment. The DRL algorithm works in parallel with a PID con-
troller, producing output adjustments for the controller output. The outputs

43

Chapter 3. Implementation

Type Name Class File name

Basic FirstOrder-v0 FirstOrderEnv first_order.py
SecondOrder-v0 SecondOrderEnv second_order.py

Scenario
SetpointChange-v0 SetpointChangeEnv setpoint_change.py
InputDisturbance-v0 InputDisturbanceEnv input_disturbance.py
OutputDisturbance-v0 OutputDisturbanceEnv output_disturbance.py

PID
tuning

PidTuning-v0 PidTuningEnv pid_tuning.py
OnlineTuning-v0 OnlineTuningEnv online_tuning.py

Output
adjustment

OutputAdjustment-v0 OutputAdjustmentEnv output_adjustment.py

Table 3.1: Overview of the different environments.

of the DRL algorithm and the PID controller are combined and used as in-
put in the system. Both the system state and the parameters of the PID
controller are used to create the input for the DRL algorithm.

There are two basic environment classes, which implement the dynamics of first-
order and a second-order systems described in section 3.1. Then, some envi-
ronment classes implement different simulation scenarios on top of one of these
system dynamics classes, using class inheritance. The scenario environments are
themselves instantiated and used for simulation by other environments.

Note that in the environment implementations, the variable state refers to the
state of the environment, which is made available through the interface as an
observation. The state of the system is denoted by x (numbered if there are
multiple state values).

As mentioned earlier, the Gym interface requires defined action and observation
spaces. Many DRL algorithm implementations normalize their actions to stay
within the range [−1, 1], therefore this limit is used for inputs, which are then
scaled up if needed. Because it is required, limits are also imposed on the state,
but are mostly chosen such that they should not be reachable with the limit on u,
or at least so that the optimum solution lies within the range.

Basic environments

Both of these environments mainly implement system dynamics, but also include
a simulation of a simple scenario, where the state is initialized to 0, some constant
setpoint value is used, and the system is simulated for a constant number of

44

3.3 Environments

steps, dictated by the variables duration and step_size.

The first environment, FirstOrder-v0, was implemented to simulate the first
order system described in section 3.1. It is a simple environment, using the system
state x as observation, and the action is the system input u. The simulation of
the system dynamics is done by solving the differential equation at each iteration,
using a constant time_step variable as ∆t.

The second environment, SecondOrder-v0, simulates the dynamics of the second
order system described in 3.1. It is similar to FirstOrder-v0, but slightly more
advanced, mainly due to its dynamics being more complex. The reward is cal-
culated in the same way as in equation 3.11. The observation is the state vector

x =

[
x1

x2

]
, and the action is the system input u. The state and input constraints

are:

x1 ∈ [−50, 50], x2 ∈ [−20, 20], (3.14)

u ∈ [−10, 10] (3.15)

The SecondOrderEnv class is structured a bit differently from FirstOrderEnv,
mainly because it is used as a superclass for the environments in subsection 3.3.6
below. It has three important additions apart from the standard API meth-
ods:

• system_init(): Initializes the system constants and other attributes used in
the simulation, except for the ones used in action_space and observation_space.

• model(t, x): Contains the ordinary differential equations which describe
the dynamics of the system. This function is not used explicitly, but passed
to the ODE solver in simulate().

• simulate(t_start, t_stop, state): Simulates the system from time t_start
to t_stop, using state as the initial state. The simulation is done by solv-
ing the ODEs described in the model() class method using the Runge-Kutta
method implemented by the scipy.integrate.RK45 class described in sec-
tion 3.3.4.

These methods are inherited by the subclasses, and used in the simulation.

45

Chapter 3. Implementation

Figure 3.4: Illustration of the direct control environments. Reward is left out.

Scenario environments

These environments extend the basic environments, and add some additional func-
tionality to simulate different control scenarios, i.e. they are subclasses of the
SecondOrderEnv superclass. They override the initialization function and the
main API methods step and reset, but inherit the other methods.

In these environments, the agent controls the system directly. Figure 3.4 shows
this architecture. In this regard, the environments are similar to the basic envi-
ronments: the action is the system input u. The observation, however, is different,
it now includes the error value of the current step

state =

x1

x2

e

 =

x1

ẋ1

e

 (3.16)

The reason for the addition to the state variable is that the scenario environments
introduce randomness into both the timing and magnitude of certain events af-
fecting the error value (e.g. change in setpoint or disturbance), which makes them
unpredictable. Adding error to the observation allows the agent to learn to adapt
to the different events.

The SetpointChange-v0 environment simulates a scenario where the setpoint
changes from 0 to some value setpoint_change_value, at some time step
setpoint_change_time. Both of these variables are initialized to a random value
inside the environment reset method.

In the InputDisturbance-v0 environment, the state is initialized around 0, and

46

3.3 Environments

Figure 3.5: Illustration of the PID tuning environments. Reward is left out.

the setpoint is 0 during the simulation. At some random time step disturbance_time,
a constant step-like disturbance of value disturbance_value is introduced to
the system input, and remains active for the duration of the simulation. As in
SetpointChange-v0, these variables are initialized to random values.

In OutputDisturbance-v0, a disturbance with a value of disturbance_value
is introduced at time disturbance_time as in InputDisturbance-v0, but the
disturbance is added to the system state output instead of the input.

The disturbances can easily be modified to have a value given by e.g. some time
dependent function, or to include noise.

PID tuning

Sedighizadeh and Rezazadeh [29] and Chen et al. [6] propose architectures where
RL agents do adaptive PID tuning. The PID tuning environments explore whether
the DRL agent is capable of tuning the parameters of a PID controller, both adap-
tively, and as a one-step process at the start of each simulation. There are two dif-
ferent environments, PidTuner-v0 and OnlineTuner-v0. In both environments,
the PID controller is connected to the second order system, while the DRL agent
adjusts the parameters of the PID controller in some way (see figure 3.5).

47

Chapter 3. Implementation

The scenario environments above are used to simulate system dynamics, by creat-
ing an instance of the scenario environment class as an attribute of the PID tuning
environment class,

import gym
self.env = gym.make('EnvName-vN')

The PID controller itself is also imported in a similar way, using the implementa-
tion discussed in section 3.2,

import pid_controller
self.pid = pid_controller.PID()

Note that the constructor arguments of the PID class are left out for simplicity.
See the environment code for more details.

In the PidTuner-v0 environment, each episode only has a single time step. This
means that there are only two states, the initial state and the end state, and
only a single action is chosen. The action is a vector containing the PID parame-
ters:

action =

Kp

Ki

Kd

 (3.17)

subject to the restrictions
Kp,Ki,Kd ∈ [0, 10] (3.18)

The state is initialized to 0. During the single time step, the scenario environment
is ran until completion, using output from the PID controller as input for the
env.step function, with parameters as set by the agent action input. When the
scenario output returns done = True, the total accumulated error from all scenario
time steps is used as the final state, and also used in the reward calculation:

state = [etotal] (3.19)

r = −etotal (3.20)

The OnlineTuner-v0 environment implements an adaptive PID tuning scenario.
It also imports a scenario environment, but only runs its env.step function once
per its own episode time step, i.e. the tuning environment has as many time steps
as the scenario environment it uses to simulate the system. In each time step, the
DRL agent can change the parameters of the PID controller, its action is a vector

48

3.4 DDPG algorithm

of changes in each parameter:

action =

∆Kp

∆Ki

∆Kd

 (3.21)

subject to the restrictions

∆Kp ,∆Ki ,∆Kd ∈ [−5, 5] (3.22)

In this environment, the state vector contains the PID parameters, the system
state, and the current error:

state =

Kp

Ki

Kd

x1

x2

e

(3.23)

The parameters are subject to the same restrictions as in equation 3.18, and the
system states as in 3.14.

Output adjustment

Anderson et al. [3] propose an architecture where an RL agent is combined with a
PI controller to produce system inputs. The last environment, OutputAdjustment-v0,
contains a simulation of a system with a connected PID controller. The outputs
of the DRL agent and PID controller are combined to produce the system input
u. Figure 3.6 shows an illustration of this setup. Both the action of the agent
and the combined input is restricted to [−10, 10]. The observation contains the
PID parameters and system state information as in equation 3.23. The system is
simulated by an instance of a scenario environment.

3.4 DDPG algorithm

The main algorithm chosen for testing is the deep deterministic policy gradient
(DDPG) [19] described in section 2.2.7. This section will discuss the Spinning
Up [2] implementation of DDPG, which was chosen among the various versions

49

Chapter 3. Implementation

Figure 3.6: Illustration of the environment OutputAdjustment. Reward is left out.

discussed in section 2.3, mainly due to its high quality documentation, simple
implementation, comprehensive functionality and solid performance.

3.4.1 Neural networks

The implementation uses the Tensorflow library [1] for most of the neural network
functionality. Both the actor and the critic are implemented with multilayer per-
ceptrons (MLPs), which are feedforward neural networks with at least one hidden
layer. The network architecture is customizable, the number of hidden layers and
the number of nodes in each layer can be specified in the algorithm construc-
tor. For DDPG, the default hidden layer setup is (400, 300), which indicates two
hidden layers with 400 nodes in the first and 300 in the second one. With this
architecture, the networks have ∼ 122000 parameters each. The neural network
parameters are learned using the Adam optimization method [14], implemented
by the Tensorflow class AdamOptimizer.

50

3.4 DDPG algorithm

Parameter Value Description
steps_per_epoch 5000 Number of steps per epoch

epochs 100 Number of epochs
replay_size 106 Replay buffer size
batch_size 100 SGD batch size

gamma 0.1 Discount factor (γ)
polyak 0.995 Polyak interpolation factor value (ρ)
pi_lr 10−3 Policy learning rate
q_lr 10−3 Q networks learning rate

act_noise 0.1 Action noise standard deviation
start_steps 104 Number of start steps

Table 3.2: Overview of default DDPG hyperparameters.

Activation functions

There are two main node activation functions used, the rectified linear function
and the hyperbolic tangent function:

relu(x) = max(0, x) (3.24)

tanh(x) =
e2x − 1

e2x + 1
(3.25)

Nodes using the rectified linear are called ReLUs (rectified linear units), and nodes
using the tangent are simply called tanh units. By default, the actor uses ReLUs
as nodes in the hidden layers, and tanh units in the output layer. Critics are
implemented with ReLUs in the hidden layers, and no specific activation function
in the output layer, which means they maintain a linear activation.

3.4.2 Hyperparameters

Hyperparameters are parameters that are set before learning starts, and dictate
different aspects of the learning process. An overview of the default hyperparam-
eters in the Spinning Up DDPG implementation is shown in table 3.2.

The two first hyperparameters, steps_per_epoch and epochs decide how many
total steps the algorithm is going to perform. 5000 steps per epoch and 100 epochs
results in 5 × 105 time steps in total, also referred to as number of environment
interactions. The replay buffer size is the maximum amount of state transitions

51

Chapter 3. Implementation

which can be stored at once, and batch_size dictates how many transitions are
in each minibatch used for stochastic gradient descent when the networks are
updated.

The polyak parameter ρ relates to the hyperparameter τ used in the DDPG target
network updates (see section 2.2.7):

ρ = 1− τ, (3.26)

so that the target parameter updates become

θtarget ← ρθtarget + (1− ρ)θ. (3.27)

To improve exploration, the agent samples completely random actions from the
action space for a set number of steps during the start of training. The start_steps
parameter dictates how many random steps are chosen before following routine
DDPG training behaviour.

52

Chapter4
Experiments and results

The DDPG algorithm implementation from section 3.4 was tested with the dif-
ferent environment classes from section 3.3. This chapter presents some of these
experiments, and discuss the results.

4.1 Training

In the training progress comparisons, each agent is trained multiple times (5 unless
otherwise specified) with different seeds, and then averaged. In training plots, the
solid line represents the average, and the shaded area shows the standard deviation.
Performance is measured by average returns (rewards) in test episodes which are
ran during training. TotalEnvInteracts is the same as total time steps. The
SetpointChange-v0 environment is used for the agent comparisons. Most of the
training is performed for 20 epochs, unless otherwise specified.

4.1.1 Network architectures

Different number of nodes in the hidden layers were tested, and some smaller net-
works were found to perform as well as the default setup of (400, 300) on average.
Networks with as small as (128, 64) usually converge quickly, and rarely diverge
or get stuck at local minima. Figure 4.1 shows a training comparison with two

53

Chapter 4. Experiments and results

Figure 4.1: Benchmark test of two different network architectures for the
SetpointChange-v0 environment.

smaller networks with hidden layers as (128, 64) and (64, 32), which results in
∼ 18000 and ∼ 4800 network parameters, respectively, compared to the ∼ 244000

of the default setup. Fewer parameters means faster training, but the difference
is not drastic in terms of training time. Both of the smaller networks do learn
a decent policy, but the smallest one is generally slightly below the two others.
It also has a somewhat higher standard deviation. With a combination of fast
learning and high performance, the architecture with (128, 64) as hidden layers is
used in most of the benchmark tests.

4.1.2 Hyperparameters

The default hyperparameters generally results in stable training. Figure 4.2 shows
a comparison between two agents, one of which uses slightly modified hyperparam-
eters. The updates are shown in 4.1. These changes causes the learning to become
unstable, and the agent fails to converge on average. The DDPG algorithm is
fairly sensitive to hyperparameter tuning. Small changes are generally unprob-
lematic or can lead to faster learning in some cases, but since the default settings
tend to work well, they are used for most of the examples. The modifications are

54

4.1 Training

Parameter Default Modified
polyak 0.995 0.99
pi_lr 10−3 10−2

q_lr 10−3 10−2

Table 4.1: Default and modified hyperparameters used in figure 4.2.

Figure 4.2: Benchmark test of two networks with different hyperparameters, using the
SetpointChange-v0 environment.

detailed in table 4.1.

4.1.3 Performance

Figure 4.3 shows the behaviour of the agent in a setpoint scenario. The perfor-
mance itself is fine, comparable to that of the PID controller, but there are rather
large input oscillations, even when the error is low. In an attempt to reduce input
oscillations, a new reward function with a penalty for input changes was tested.
The new reward function is as follows:

rt = −e2
t − 0.01∆u2 (4.1)

55

Chapter 4. Experiments and results

Figure 4.3: Example of input oscillations.

This is a slightly more advanced reward function, the training progress is shown
in figure 4.4. The resulting behaviour is shown in figure 4.5. The rise time is still
good, and there are no oscillations when the system reaches a steady state.

As a comparison, figure 4.6 shows the training progress of three different ap-
proaches to controlling the SetpointChange-v0 environment. One-step PID tun-
ing (implemented by PidTuning-v0), direct control (implemented by SetpointChange-v0
and output adjustment (implemented by OutputAdjustment-v0). The result
shows they all perform similarly, with the one-step PID tuning slightly outper-
forming the others on average.

56

4.1 Training

Figure 4.4: Training progress with a new reward function. 30 epochs of training in
SetpointChange-v0.

Figure 4.5: Performance of DDPG agent after training with the new reward function.

57

Chapter 4. Experiments and results

Figure 4.6: Training progress comparison for three different approaches for controlling
SetpointChange-v0. 20 epochs of training.

58

Chapter5
Conclusion

The DRL algorithm achieves fairly high performance in the demonstrated exper-
iments, considering the general and generic implementation, short training time
and little hyperparameter tuning. The DRL algorithm displays an impressive
flexibility in a variety of control domains. The performance of the agent with a
modified reward function demonstrates the power of using reward functions to de-
sign agent behaviour, and the level of generalization due to dynamic randomization
is also notable.

However, there are substantial drawbacks to the DRL paradigm. In the control
theory approach, robustness and stability are important aspects of any controller
solution. When dealing with deep neural network approximators, there are few
guarantees to be made in practice. In theory, given infinite simulation steps, the
policy are guaranteed to converge, but this is not realizable when it comes to the
real world. If something goes wrong in real systems, explanations and analysis are
usually required, which can be considerably difficult or even impossible to obtain
in black box systems. Even if DRL methods outperform the classic control theory
methods, safety concerns and robustness and stability outweigh performance in
most physical systems.

For simple problems, general implementations can yield satisfying results. In
complex domains, a considerable drawback of using DRL is the vulnerability of
convergence conditions, which is especially prominent in the DDPG algorithm. It
can be very sensitive to the design of the reward function, and to the hyperpa-

59

Chapter 5. Conclusion

rameters. Tuning a PID controller can seem easy when compared to the amount
of different variables affecting the performance of a DRL agent.

Sample inefficiency is one of the biggest problems in DRL. The best performing
algorithms usually require millions of environment interactions to find good so-
lutions for complex problems, and few methods exist for when the sample size is
small. This is also a problem for deep learning in general.

Purely data-driven approaches such as DRL might not be the leading solution
for real-world applications yet, and they might never be, but there is no denying
that these methods have achieved impressive feats. The attempt to combine the
robustness and stability of control theory with the exciting performance of machine
learning is definitely an interesting research area.

5.1 Further work

Other algorithms can be tested, such as the DDPG improvements TD3 and SAC.
Functionality for hyperparameter search and even automatic tuning could be in-
teresting. Tune [18] is an open-source alternative. Most research in DRL is focused
on model-free approaches (such as DDPG), however, model-based approaches are
also gaining popularity outside of very specific domains.

More control theory functionality can be added to the simulation framework, such
as system analysis. The Python package python-control could be interesting to
integrate. Test with other controllers, such as LQR or MPC.

Using DRL and dynamics randomization to transfer learned policies from sim-
ulation to the real world is an interesting field, see OpenAI’s Learning Dexter-
ity1.

1https://blog.openai.com/learning-dexterity/

60

https://blog.openai.com/learning-dexterity/

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kud-
lur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Joshua Achiam. Spinning Up in Deep RL, 2018. URL https://spinningup.
openai.com/.

[3] Charles W. Anderson, Douglas C. Hittle, Alon D. Katz, and R.Matt Kretch-
mar. Synthesis of reinforcement learning, neural networks and pi control
applied to a simulated heating coil. Artificial Intelligence in Engineering,
11(4):421 – 429, 1997. ISSN 0954-1810. doi: https://doi.org/10.1016/
S0954-1810(97)00004-6. URL http://www.sciencedirect.com/science/
article/pii/S0954181097000046. Applications of Neural Networks in Pro-
cess Engineering.

[4] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow
with deep learning and tree search. CoRR, abs/1705.08439, 2017. URL
http://arxiv.org/abs/1705.08439.

61

https://www.tensorflow.org/
https://www.tensorflow.org/
https://spinningup.openai.com/
https://spinningup.openai.com/
http://www.sciencedirect.com/science/article/pii/S0954181097000046
http://www.sciencedirect.com/science/article/pii/S0954181097000046
http://arxiv.org/abs/1705.08439

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016.

[6] Pengzhan Chen, Zhiqiang He, Chuanxi Chen, and Jiahong Xu. Control
strategy of speed servo systems based on deep reinforcement learning. Al-
gorithms, 11(5), 2018. ISSN 1999-4893. doi: 10.3390/a11050065. URL
http://www.mdpi.com/1999-4893/11/5/65.

[7] George Cybenko. Continuous Valued Neural Networks with Two Hidden
Layers are Sufficient. Technical report, Department of Computer Science,
Tufts University, 1988.

[8] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Controls, Signals, and Systems, 2:303–314, 1989.

[9] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Pe-
ter Zhokhov. OpenAI Baselines. https://github.com/openai/baselines,
2017.

[10] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E.
Gonzalez, and Sergey Levine. Model-based value estimation for efficient
model-free reinforcement learning. CoRR, abs/1803.00101, 2018. URL
http://arxiv.org/abs/1803.00101.

[11] David Ha and Jürgen Schmidhuber. Recurrent world models facil-
itate policy evolution. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages 2455–2467. Cur-
ran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7512-recurrent-world-models-facilitate-policy-evolution.pdf.

[12] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable base-
lines. https://github.com/hill-a/stable-baselines, 2018.

[13] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. URL http://www.scipy.org/.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

62

http://www.mdpi.com/1999-4893/11/5/65
https://github.com/openai/baselines
http://arxiv.org/abs/1803.00101
http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution.pdf
http://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution.pdf
https://github.com/hill-a/stable-baselines
http://www.scipy.org/
http://arxiv.org/abs/1412.6980

[15] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,
Machine Learning: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

[16] Yuxi Li. Deep reinforcement learning. CoRR, abs/1810.06339, 2018. URL
http://arxiv.org/abs/1810.06339.

[17] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Ab-
stractions for distributed reinforcement learning. In International Conference
on Machine Learning (ICML), 2018.

[18] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonza-
lez, and Ion Stoica. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118, 2018.

[19] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971, 2015. URL http:
//arxiv.org/abs/1509.02971.

[20] Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX93-22750.

[21] C. Grant Luckhardt. Wittgenstein, Sources and Perspectives. Cornell Uni-
versity Press, 1979.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013. URL http://
arxiv.org/abs/1312.5602.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learn-
ing. Nature, 518:529–533, 2015.

[24] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine.
Neural network dynamics for model-based deep reinforcement learning with

63

http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

model-free fine-tuning. CoRR, abs/1708.02596, 2017. URL http://arxiv.
org/abs/1708.02596.

[25] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015.

[26] Razvan Pascanu, Guido Montúfar, and Yoshua Bengio. On the number of
inference regions of deep feed forward networks with piece-wise linear acti-
vations. CoRR, abs/1312.6098, 2013. URL http://arxiv.org/abs/1312.
6098.

[27] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,
Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin
Andrychowicz. Parameter space noise for exploration. CoRR, abs/1706.01905,
2017. URL http://arxiv.org/abs/1706.01905.

[28] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, New Jersey 07458, 3rd edition, 2010.

[29] Mostafa Sedighizadeh and Alireza Rezazadeh. Adaptive pid controller based
on reinforcement learning for wind turbine control. 2008.

[30] David Silver. Reinforcement learning course lectures, 2015. URL http://
www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html.

[31] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, pages I–387–I–395. JMLR.org, 2014. URL
http://dl.acm.org/citation.cfm?id=3044805.3044850.

[32] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. CoRR, abs/1712.01815, 2017. URL http:
//arxiv.org/abs/1712.01815.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. 2018.

64

http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1706.01905
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815

[34] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Conference on Neural Informa-
tion Processing Systems, NIPS’99, pages 1057–1063, Cambridge, MA, USA,
1999. MIT Press. URL http://dl.acm.org/citation.cfm?id=3009657.
3009806.

[35] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style Guide
for Python Code. https://www.python.org/dev/peps/pep-0008/, 2001.

[36] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards.
PhD thesis, King’s College, Cambridge, UK, May 1989. URL http://www.
cs.rhul.ac.uk/~chrisw/new_thesis.pdf.

[37] Theophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing,
Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol
Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, David
Silver, and Daan Wierstra. Imagination-augmented agents for deep reinforce-
ment learning. CoRR, abs/1707.06203, 2017. URL http://arxiv.org/abs/
1707.06203.

[38] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3):229–256, May
1992. ISSN 1573-0565. doi: 10.1007/BF00992696. URL https://doi.org/
10.1007/BF00992696.

[39] John G. Ziegler and Natalie B Nichols. Optimum settings for automatic
controllers. 1942.

65

http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806
https://www.python.org/dev/peps/pep-0008/
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://arxiv.org/abs/1707.06203
http://arxiv.org/abs/1707.06203
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
ri

ng
 C

yb
er

ne
tic

s

M
as

te
r’

s
th

es
is

Tharald Jørgen Stray

Application of deep reinforcement
learning for control problems

Master’s thesis in Cybernetics and Robotics
Supervisor: Ole Morten Aamo

January 2019

	Preface
	Acknowledgment
	Summary
	Sammendrag
	Table of Contents
	Abbreviations
	Introduction
	Background
	Goals
	Outline

	Theoretical background
	Machine learning
	Supervised learning
	Artificial neural networks
	Deep learning

	Reinforcement learning
	Problem formulation
	Value function
	Exploration vs. exploitation
	Model-free vs. model-based RL
	Temporal difference learning
	Policy optimization
	Deep deterministic policy gradient

	DRL algorithm implementations
	OpenAI Baselines
	Stable Baselines
	OpenAI Spinning Up
	RLlib

	Implementation
	Systems
	First order system
	Second order system

	PID controller
	Tuning

	Environments
	Generalization and dynamics randomization
	Observation contents
	Reward function
	Simulation of system dynamics
	OpenAI's Gym interface
	Environment classes

	DDPG algorithm
	Neural networks
	Hyperparameters

	Experiments and results
	Training
	Network architectures
	Hyperparameters
	Performance

	Conclusion
	Further work

	Bibliography

