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Abstract

The nonlinear stability analysis of a supercritical light water reactor (SCLWR) is presented

using a nuclear-coupled thermal-hydraulic reduced-order model. The analytical model is

developed by coupling 1. the point-kinetics equations with one group of delayed neutrons,

2. the fuel heat transfer and 3. a 1-D reduced order model which represents the heat

absorption phenomenon during the coolant flow. Unlike the existing studies, which are

limited to linear stability analysis, the primary objective of the work is to present the

detailed nonlinear dynamics of the SCLWR system. The said goal is achieved at two levels.

The first level is the linear stability analysis wherein the linear stability boundaries are

shown in two sets of parameter space namely the two intrinsic reactivity feedbacks (Doppler

reactivity feedback and density reactivity feedback) and the pseudo-phase-change number

and pseudo subcooling number. The parametric effects show the sensitivity of the linear

stability boundaries with the system parameters. In the second level, to discuss the nonlinear

characteristics of the system, two types of Hopf bifurcations (subcritical and supercritical)

are studied with the help of first Lyapunov coefficients of the system. Multiple numerical

simulations are performed to verify the resultant limit cycle behavior associated with these

bifurcations. Moreover, the occurrence of the generalized Hopf bifurcation is shown which

represents the bifurcation between the subcritical Hopf and the supercritical Hopf regions.

Further, inside the stable region of the linear stability boundary, the saddle-node bifurcation

is found which represents the location of the turning point and the threshold of the globally

stable region of the system.

Keywords: super-critical-light water reactor, linear stability, nonlinear stability,
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subcritical Hopf, supercritical Hopf, generalized Hopf, saddle node bifurcation, globally

stable region

1. Introduction

Modeling and analysis of Super-Critical-Light-Water cooled Reactors (SCLWRs) are of

paramount interest to researchers for several decades. This is due to the large thermal effi-

ciency of SCLWRs compared to light water reactors. The core cooling system of an SCLWR

is a once-through direct cycle in which the coolant does not boil and flows directly to the

turbine. This also reduces the overall maintenance cost of the reactor as compared to light

water reactors, where the turbine is more susceptible to wear and tear. The core coolant flow

rate is approximately one-eighth of that of a Boiling-Water-Reactor (BWR) (Dobashi et al.,

1997) because of the high enthalpy difference and no recirculation. In SCLWR, since the

coolant does not undergo a phase-change when it crosses the pseudo-critical point; hence,

it can operate at a very high temperature without triggering the departure from nucleate

boiling phenomenon. However, when the coolant crosses the pseudo-critical point, it’s den-

sity decreases by a large extent (e.g. In the U.S. reference SCLWR, the density decreases

from 780kg/m3 to 90kg/m3). This large decrease in density coupled with nuclear feedbacks

raises concern to flow instabilities in an SCLWR.

Till now, several studies have been carried out to analyze these instabilities in SCLWRs.

The flow instabilities have been reported by Chatoorgoon (2001). He studied the steady

and nonlinear stability behavior of a natural circulation loop with supercritical water acting

as a coolant. Yang and Zavaljevski (2003) has presented the single channel stability of the

U.S. reference design of SCLWR. Yang and Zavaljevski (2003) analyzed the stability behav-

ior of the U.S. reference SCLWR with a linear model. Further, the study was extended by

Yang and Zavaljevski (2005) to include the effect of water rod heating. Several other studies

have been presented by Zhao et al. (2004a,b); Zhao (2005); Zhao et al. (2006, 2007) with
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matrix multiplication method to analyze the stability characteristics of the U.S. reference

SCLWR and supercritical CO2 cooled reactors. Later, Jain and Rizwan-uddin (2008) in-

vestigated the flow instabilities in a supercritical CO2 natural circulation loop. Moreover,

Sharma et al. (2009, 2010) also presented the steady-state and linear stability of an SCLWR

natural circulation loop.

It should be noted that, although a plethora of literature provided stability analyses of

SCLWRs, they are limited to linear stability analyses only. These linear stability analyses

only provide the system behavior in the vicinity of the stability boundaries and are valid for

small perturbations in the system. However, recent studies on similar dynamical systems

by Pandey and Singh (2016, 2017); Verma et al. (2018); Rahman and Singh (2018) reveal

that the dynamical system like nuclear reactors possess various other stability behavior

when investigations are made in a wide range of parametric space away from the linear

stability threshold region. These behaviors are dominantly known as nonlinear stability

characteristics which provide very good information about the system behavior with large

perturbations. Moreover, most of the literature do not present the detailed stability analyses

of an SCLWR in the wide ranges of various reactivity feedbacks, which couples the thermal

hydraulic and neutron generation inside a reactor core.

Considering the extreme operating conditions associated with an SCLWR and the pos-

sible occurrence of nonlinear stability behavior similar to the BWRs, which may trigger

undesired events like power oscillations leading to a system failure, it is essential to present

a detailed investigation of the linear and nonlinear stability of the SCLWR.

With an aim to suffuse the mentioned knowledge-gap, in this work, a nuclear-coupled

thermal-hydraulic reduced order model of an SCLWR is presented. To represent the neutron

balance inside the reactor core, a point reactor kinetic model is used. To represent the

thermal-hydraulic, a two-zone reduced order model is used. The concept of reduced-order-

model has proven its’ capability to model similar systems in earlier studies (Paul and Singh,

2014a,b, 2015, 2017a,b; Dokhane et al., 2007a,b). The adoption of the two-zone reduced

order model makes the analyses convenient, as in the one hand; it provides results close to

realistic conditions, on the other hand, the use of linear approximations makes the system
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equations simpler. The two intrinsic reactivity feedbacks namely Doppler and the density

provide the coupling between the neutron balance and the thermal-hydraulic of the said

dynamical system.

The primary objective of this work is to delineate the comprehensive nonlinear stability

of an SCLWR. The linear and nonlinear stability of the dynamical system are discussed

in two sets of parameter planes; first the Doppler and density coefficient of reactivity and

second; the pseudo-phase-change number and pseudo-subcooling number. This study reveals

the occurrence of various types of bifurcations namely; subcritical Hopf, supercritical Hopf,

Generalized Hopf, and saddle-node bifurcation. In addition, the bistable region and globally

stable region are also shown.

2. Mathematical Model

In this section, a simplified mathematical model for a forced circulation SCLWR is devel-

oped. The model couples the neutronics with a thermal-hydraulic reduced order model for

the coolant. The SCLWR lattice cell is considered as a single vertical channel with the fuel

at its center. The whole mathematical model of the SCLWR is developed in three sections

namely 1. Neutronics modeling, 2. Fuel heat transfer modeling, and 3. Coolant thermal-

hydraulic modeling. It should be noted that all the symbols used to write the equations are

explained in the Nomenclature.

2.1. Neutronics Modeling

The neutron balance inside the SCLWR core is represented by the point-kinetics equa-

tions with one group of delayed neutrons as

dN∗(τ ∗)

dτ ∗
=
R(τ ∗)− β

Λ∗
N∗(τ ∗) + λ∗C∗(τ ∗) (1)

and
dC∗(τ ∗)

dτ ∗
=

β

Λ∗
N∗(τ ∗)− λ∗C∗(τ ∗) (2)
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The net reactivity R(τ ∗) appearing in Eq. 1 has three components namely, steady-state

reactivity, reactivity due to external sources and feedback reactivity. Since we represent the

neutron balance inside the core by a source free point kinetics model, hence the reactivity

due to external sources are zero. In addition, the SCLWR system being an autonomous

system, the steady-state reactivity is taken as zero. Thus, the net reactivity R(τ ∗) consists

of only feedback reactivities. Although there are several components of feedback reactivities

inside a reactor core, for simplicity, the present model limits its’ scope by considering only the

intrinsic dynamic and hence only the intrinsic reactivity feedbacks namely Doppler reactivity

and density reactivity are considered. Assuming a linear model, the net reactivity R(τ ∗) is

written as,

R(τ ∗) = RD(τ
∗) +Rd(τ

∗) = α∗

f (T
∗

F (τ
∗)− T ∗

F0(τ
∗)) + α∗

d(ρ
∗

avg(τ
∗)− ρ∗avg0) (3)

2.2. Fuel Heat Transfer Modeling

The fuel heat balance equation is written in analogy to that written for BWRs (Verma et al.,

2018) as,

ρ∗FC
∗

PFA
∗

c

dT ∗

F (τ
∗)

dτ ∗
= A∗

cq
′′′
∗(τ ∗)− P ∗

hq
′′
∗(τ ∗) (4)

where the volumetric heat generation rate q
′′′
∗(τ ∗) is directly proportional to the neutrons

generated inside the reactor core and thus

q
′′′
∗ = C∗

qN
∗(τ ∗) (5)

where C∗

q is the proportionality constant between the volumetric heat generation rate

and the neutrons generated inside the core.

Assuming a uniform heat flux along the length of the whole fuel element, the heat flux q
′′
∗

is written as,

q
′′
∗ = H∗(T ∗

F (τ
∗)− T ∗

pc) (6)

where H∗ represents the overall heat transfer coefficient. It is calculated by the relation given

in Eq. 7 (Yi et al., 2004a,b). Note that, to write the Eq. 6, the whole coolant inside the flow
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channel is assumed to be at uniform temperature T ∗

pc. To model a reasonably simple case

for the SCLWR and to present the nonlinear dynamics; such assumption has been made.

Although the temperature variation of the coolant along the length of the flow channel can

be considered for representing the system dynamics close to realistic conditions, for the sake

of simplicity the variation of the coolant temperature along the length of the flow channel

is neglected.

H∗ =
Nu ∗ k∗

D∗

e

(7)

Nu = 0.015 ∗Re0.85 ∗ Pry (8)

The parameter y is given by:

y = 0.69−
81000

200G∗1.25
+

(

− 8.7 ∗ 10−8 −
0.65

200G∗1.25

)

(9)

The Eq. 4 can now be written as

ρ∗FC
∗

PFA
∗

c

dT ∗

F (τ
∗)

dτ ∗
= A∗

cq
′′′
∗(τ ∗)− P ∗

hH
∗(T ∗

F (τ
∗)− T ∗

pc) (10)

By choosing the non-dimensional variables given in Appendix A, the set of equations (Eqs.

1, 2, and 10) are written in the non-dimensional form as;

dx1
dt

= Λ

(

x1 + x2 + (1 + x1)(afx3 + ad(ρavg(t)− ρavg,0))

)

(11)

dx2
dt

= λ(x1 − x2) (12)

dx3
dt

= ξ1x1 − ξ2x3 (13)

It is worth noting that, in the above set of equations the term ρavg(t) provides the coupling

between the neutron kinetics and the thermal-hydraulic of the dynamical system. The term

ρavg(t) represents the average density of the coolant during its flow through the channel.

The mathematical expression to calculate this term is explained in the next section.
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2.3. Coolant Thermal-Hydraulic Modeling

The thermal-hydraulic model of the SCLWR coolant flow system is developed by assum-

ing a 1-D axial flow. The three basic conservation PDEs of mass, energy, and momentum are

used to define the flow phenomenon. Although, in reality; the flow system of the SCLWR

contains various flow driving components and phenomena, including all those phenomena

in this analysis will increase the complexity of the model. In addition, since the primary

objective of the present work is to delineate the nonlinear stability behavior of the system,

hence for the sake of parity; all such phenomena are disregarded. To develop the model some

simplifying assumptions are made in analogy to that used for subcritical fluid flow systems

(Singh et al., 2018).

Assumptions used in this model are as follows,

1. The system pressure remains constant.

2. Input heat flux is uniform along the length of the channel.

3. ∂P
∂t

term in the energy conservation equation is neglected.

Using the above assumptions, the one-dimensional mass, momentum, and energy balance

equations are written as:
∂ρ∗

∂τ ∗
+
∂(ρ∗w∗)

∂z∗
= 0 (14)

ρ∗
∂w∗

∂τ ∗
+ ρ∗w∗

∂w∗

∂z∗
= −

∂P ∗

∂z∗
− ρ∗g∗ − [

f ∗

D∗

h

+ 2K∗

inδ
∗

d(z
∗) + 2K∗

exitδ
∗

d(z
∗ − L∗)]

ρ∗w∗2

2
(15)

ρ∗
∂h∗

∂τ ∗
+ ρ∗w∗

∂h∗

∂z∗
=
q
′′
∗P ∗

h

A∗

c

(16)

In the momentum equation (Eq. 15), the two functions δ∗d represent the dimensional Dirac

delta functions centered at the channel inlet and the exit respectively. These functions

provide a mathematical formulation of the localized pressure drops at the inlet and the exit

of the channel.

Using the established non-dimensional parameters given by Ambrosini and Sharabi (2008);

Ambrosini (2009), and making use of the relations given in Appendix A, the aforementioned

set of conservation PDEs are converted into following non-dimensional form as:
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∂ρ

∂t
+
∂(ρw)

∂z
= 0 (17)

ρ
∂w

∂t
+ ρw

∂w

∂z
= −

∂P

∂z
− ρg − [Nf +Kinδd(z) +Kexitδd(z − L)]ρw2 (18)

ρ
∂h

∂t
+ ρw

∂h

∂z
= Ntpc(x3 + 1−∆) (19)

Note that, the non-dimenional parameter Ntpc is directly proportional to the steady-state

fuel rod temperature T ∗

F0 which defines the wall heat flux q
′′
∗

0 . The term Ntpc is defined as:

Ntpc =
H∗T ∗

F0P
∗

hβ
∗

pcL
∗

ch

A∗

cρ
∗

pcC
∗

pcW
∗

0

(20)

The Eq. 20 shows that, a change in Ntpc changes the T
∗

F0 which eventually changes the

steady-state neutron density (N∗

0 , by using Eq. 4, and 5) inside the reactor core. These inter-

relations provide perfect coupling between the neutron kinetic and the thermal hydraulic

phenomena.

Since the density of a supercritical fluid changes significantly as it crosses the pseudo-

critical point, hence in the present work the flow channel is modeled in two zones (Fig.

1). In the lower section (where the temperature of the fluid is below the pseudo-critical

temperature) the fluid density does not decrease significantly as it absorbs heat. In the

upper section; after crossing the pseudo-critical point (the temperature of the fluid becomes

higher than the pseudo-critical temperature), the density of the fluid decreases rapidly.

Hence, the lower section is called as Heavy fluid zone, and the upper section is called as

Light fluid zone.

2.3.1. Equations for the heavy fluid zone

To develop the reduced order model of the PDEs (Eq. 17,19), the enthalpy, density and

velocity of the supercritical water are spatially approximated as:

h(z, t) = hin + a1(t)z (21)

ρ(z, t) =
1

1
ρin

+ b1(t)z
(22)
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Figure 1: Schematic view of flow channel

w(z, t) = win(t) + A1Ntpc(x3 + 1−∆)z (23)

where the detailed justification for using the above-mentioned approximations are given in

Appendix B. The coefficients a1(t) and b1(t) provides the time dependency of the enthalpy

and the density respectively. It should be noted that, since spatial approximations are used

to identify the solutions of the conservation PDEs, it is necessary to minimize the error over

the respective region. Hence, using the equations (Eq. 21, 22, 23), weighted residual method

is applied to the energy and mass conservation PDEs (Eq. 17, 19) and thus we get the set

of coupled nonlinear ODEs as:

∫ Lpc(t)

0

(
da1
dt
z + ρ(z, t)w(z, t)a1(t)−Ntpc(x3 + 1−∆))ψ1(z)dz = 0 (24)

∫ Lpc(t)

0

(
∂ρ(z, t)

∂t
+

∂

∂z
[ρ(z, t)w(z, t)])ψ2(z)dz = 0 (25)
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where ψ1(z) and ψ2(z) are the weighting functions (chosen as unity). The pseudo-critical

boundary (Lpc(t)) is given by,

Lpc(t) =
hpc − hin
a1(t)

=
Nspc

a1(t)
(26)

Simplifying the equations (Eq. 24, 25), we get the coupled nonlinear ODEs as,

da1(t)

dt
= Φ1(t) (27)

db1(t)

dt
= Φ2(t) (28)

The detailed expressions of the functions Φ1(t) and Φ2(t) are given in Appendix D.

2.3.2. Equations for the light fluid zone

Similar to the heavy fluid zone, the enthalpy, density and velocity of the supercritical

water in the light fluid zone are approximated as:

h(z, t) = hpc + a2(t)(z − Lpc(t)) (29)

ρ(z, t) =
1

1
ρpc(t)

+ b2(t)(z − Lpc(t))
(30)

w(z, t) = wpc(t) + A2Ntpc(x3 + 1−∆)(z − Lpc(t)) (31)

Following the same weighted residual procedure as done in section 2.3.1, the energy and

mass conservation PDEs are converted into coupled nonlinear ODEs as:

da2(t)

dt
= Φ3(t) (32)

db2(t)

dt
= Φ4(t) (33)

The detailed expressions of the functions Φ3(t) and Φ4(t) are given in Appendix D.
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2.3.3. Equation for the fluid velocity

The equation for the fluid velocity; which governs the inlet flow rate of the coolant during

the flow oscillations is obtained by integrating the momentum conservation equation (Eq.

18) over the two zones. The spatially approximated relations of the flow variables (density

and velocity, Eq. 22, 23, 30, 31) are used to in the momentum conservation equation during

the integrations.

Integrating the momentum conservation PDE in the heavy fluid zone, we get the pressure

drop across this zone as:

∆Pheavy = Φ5(t) (34)

Similarly, integrating the momentum conservation PDE in the light fluid zone, we get the

pressure drop across this zone as:

∆Plight = Φ6(t) (35)

Equating the sum of the two pressure drops mentioned above to a constant external pressure

drop ∆Pext, we get the ODE for the inlet velocity as:

dwin(t)

dt
= Φ7(t) (36)

The detailed expressions of the functions Φ5(t), Φ6(t), and Φ7(t) are given in Appendix D.

It is worth noting that, the assumption of constant external pressure drop is reasonable

because it replicates the realistic condition inside a reactor core. Inside the core of a typical

nuclear reactor, a large number of coolant channels exist (typically of the order of 103). In

these kind of designs where the coolant flow across multiple parallel channels, if one channel

experience disturbance in its flow condition, the rest of the channels inside the core can

easily fix the pressure drop across the single channel due to a large bypass effect. Hence,

to derive the ODE for inlet velocity of the coolant, a constant external pressure drop is

considered.
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3. Representation of the SCLWR Dynamical System

Following the derivations done in the previous section 2, the SCLWR dynamical system

is represented by the set of eight coupled nonlinear ODEs as:

dx1
dt

= Λ

(

− x1 + x2 + (1 + x1)(afx3 + ad(ρavg(t)− ρavg,0))

)

(37)

dx2
dt

= λ(x1 − x2) (38)

dx3
dt

= ξ1x1 − ξ2x3 (39)

da1(t)

dt
= Φ1(t) (40)

db1(t)

dt
= Φ2(t) (41)

da2(t)

dt
= Φ3(t) (42)

db2(t)

dt
= Φ4(t) (43)

dwin(t)

dt
= Φ7(t) (44)

A close inspection of the above system of ODEs reveal that, the variables x1, x2, and x3

represent the fluctuations around the steady state values of neutron density, delayed neutron

precursor density, and fuel rod temperature respectively. The variables a1, b1, a2, b2, and

win represent the time dependent component of the enthalpy, density and the coolant inlet

velocity.

During the steady-state operation of the SCLWR, the values of x1, x2, and x3 become

zero. Whereas, the values of a1, b1, a2, b2, and win are:

a1,0 =
Ntpc

ρin
(1−∆) (45)

b1,0 = A1
Ntpc

ρin
(1−∆) (46)

a2,0 =
Ntpc

ρin
(1−∆) (47)
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b2,0 = A2
Ntpc

ρin
(1−∆) (48)

win,0 = 1 (49)

Hence, to make the representation of the dynamical system uniform across all the variables;

suitable change of variables around the steady-state values are applied to a1, b1, a2, b2, and

win as:

x4(t) = a1(t)− a1,0 = a1(t)−
Ntpc

ρin
(1−∆) (50)

x5(t) = b1(t)− b1,0 = b1(t)−A1
Ntpc

ρin
(1−∆) (51)

x6(t) = a2(t)− a2,0 = a2(t)−
Ntpc

ρin
(1−∆) (52)

x7(t) = b2(t)− b2,0 = b2(t)−A2
Ntpc

ρin
(1−∆) (53)

x8(t) = win(t)− win,0 = win(t)− 1 (54)

The variables x4, x5, x6, x7, and x8 represent the fluctuations around the steady state values

of the time dependent coefficients of a1, b1, a2, b2, and win. The steady-state values of

the variables x4, x5, x6, x7, and x8 now become zero, thus it makes the representation of

the dynamical system of SCLWR uniform. With these change in variables, the dynamical

system of SCLWR now become:

dx1
dt

= Λ

(

− x1 + x2 + (1 + x1)(afx3 + ad(ρavg(t)− ρavg,0))

)

(55)

dx2
dt

= λ(x1 − x2) (56)

dx3
dt

= ξ1x1 − ξ2x3 (57)

dx4
dt

= Φ8(t) (58)

dx5
dt

= Φ9(t) (59)

dx6
dt

= Φ10(t) (60)
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dx7
dt

= Φ11(t) (61)

dx8
dt

= Φ12(t) (62)

The detailed expressions for all the functions are given in Appendix D

4. Linear Stability Analysis (First Level): Search for Hopf Bifurcation

The first step which sets the platform to carry detailed nonlinear stability analysis of

any dynamical system is Linear stability analysis. This provides information about the

onset of instabilities of a dynamical system under the influence of small perturbations in

its normal (steady) operating conditions. To perform the linear stability analysis, the set

of ODEs are linearized around the equilibrium solution (steady-state) of the dynamical

system. The linearized equation is known as characteristic equation. Then, the roots of the

characteristic equation are studied to determine the linear stability behavior. To perform the

linear stability analysis, the dynamics of the SCLWR is written in a generalized state-space

form as:
−→̇
X = F

(

−→
X(t), η

)

(63)

where
−→
X(t) = (x1, x2, x3, x4, x5, x6, x7, x8)

T is the set of state variables and η is the set of

design and operating parameters. Since the steady-state values of all the state variables are

zero, hence performing Taylor series expansion around the steady-state values and dropping

the higher order terms (by considering small perturbation), Eq. 63 can be written as:

δ
−→̇
X = J

(

−→
X0, η

)

δ
−→
X (64)

Here, J is the Jacobian obtained after linearizing the above system of ODEs. To determine

the linear stability characteristics, the eigenvalues of this Jacobian are monitored across the

mentioned parameter spaces of N ′

tpc −Nspc and af − ad. Since an oscillatory system posses

complex eigenvalues, the real and imaginary part of the eigenvalue determines the stability

and frequency of oscillation. A set of parameter will be qualified for a stable state (damped

oscillation) if real parts of all the eigenvalues of this Jacobian become negative. However,
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the system will be unstable (growing oscillation) if at-least one real part of the eigenvalues

is positive and the corresponding set of parameters will be known as the unstable state. The

set of parameters at which the real part of the complex eigenvalue become zero is known

as the linear stability threshold. At this point, the system has pure imaginary eigenvalues

and shows self-sustained oscillations with constant amplitude and frequency. The loci of

all such thresholds represents the linear stability boundary (Hopf bifurcation boundary).

The criteria for occurrence of Hopf bifurcation is given in Appendix C. Mathematically, the

linear stability thresholds followed by the linear stability boundary are generated by solving

the following set of equations.

Real
(

Det(J − ιωI)
)

= 0

Imag
(

Det(J − ιωI)
)

= 0

where ι =
√
−1 and I is the identity matrix. The SCLWR system has four independent

operating parameters namely, 1. Pseudo phase change number (N ′

tpc = Ntpc

ρin
), 2. Pseudo

subcooling number (Nspc), 3. Doppler coefficient of reactivity (af), and 4. Density coefficient

of reactivity (ad). The linear stability boundaries are plotted by varying two parameters at

a time keeping the rest of the two parameters fixed. The stability boundaries thus obtained

are shown in Fig. 2. The various design parameters used to obtain these stability boundaries

Dobashi et al. (1997) are given in Table 1.

In Fig. 2, the Hopf bifurcation boundary (representing the linear stability) is depicted by

blue lines while the static instability boundary is shown by a red line (detailed explanation

of static instability is given in Appendix C). In Figure 2a a typical L-fold nature of the

stability map is observed as evident from the existing literature. From Figure 2b it is seen

that the SCLWR system is stable when operated at positive density coefficient of reactivities

(ad). This is in agreement with the real case, as in real operating conditions, the SCLWR

is operated with positive density coefficient of reactivities. It is also observed that Fig.

2b predicts a stable region of operation for some positive Doppler coefficient of reactivities
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Table 1: Characteristics of SCLWR with single tube water rods (with orifices and channel boxes)

Thermal/electric power (MW) 2490/1013

Thermal efficiency (%) 40.7

Pressure (MPa) 25

Fuel assembly

Fuel/fuel rod dia./pitch (cm) UO2/0.80/0.95

Cladding/thickness (cm) SSs/0.046

Number of fuel/water/control rods 258/30/9

Uranium enrichment, upper/middle/lower (%) 6.41/5.22/4.66

Number of fuel rods containing gadolinia 31

Gadolinia concentration, upper/ middle/ lower (wt%) 2.1/3.1/4.3

Number of fuel assemblies 163

Average Power Density (MW/m3) 106

Discharge burnup (GWd/t) 45

Refueling period (days) 400

Feedwater flow rate (kg/s) 2314

Coolant inlet/outlet temperature (◦C) 324/397

Core height/dia. (m) 3.70/2.84

Reactor pressure vessel thickness (cm) 32.2

Total peaking factor (for design) 2.50

Calculated total/axial/radial/local peaking factors 2.31/1.58/1.26/1.16

Doppler coefficient at HFP (pcm/K) -2.4

Coolant density coefficient (dk/k/[g/cm3]) 0.45

Other parameters assumed (due to unavailability)

Inlet/Exit loss coefficient (Kin/Kexit) 0

Friction number (Nf) 4.34

λ∗ (s−1) 0.075

Λ∗ (s) 22 ∗ 10−5

β 0.003
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Figure 2: Stability diagrams of SCLWR in (a) N ′

tpc −Nspc plane and (b) ad − af plane

(af), provided the density coefficient of reactivity is positive. Moreover, as the value of af

is increased, it shrinks the stable operation region rapidly. The highest possible value of af

for stable operation of the SCLWR with the chosen design parameters is found to be 10. In

short, it is concluded from Figure 2 that increase in Nspc will stabilize the system, whereas

increase in N ′

tpc and ad will drive the system towards unstable region.
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Figure 3: Comparison of stability boundaries obtained by the present model with the studies by

Ambrosini and Sharabi (2008); Ambrosini (2009)

To validate the model predictions, the linear stability boundaries obtained with the

present model are compared with the results of Ambrosini and Sharabi (2008); Ambrosini
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(2009) and significant agreements are observed. The discrepancies observed between the

present model and the existing literature is due to the numerical model adopted. Since

the present model is developed by assuming the channel to be composed of three nodes

(two-regions: heavy fluid region and light fluid region), the model results differ to that of

Ambrosini and Sharabi (2008); Ambrosini (2009) where the authors considered 48 nodes for

the analyses. Moreover, from Fig. 4 it is observed that the stability boundaries obtained

using the present model also depend on the parameters (A1 & A2) which capture the drastic

change in the density along the length of the flow channel.Thus, these comparisons provided

a level of confidence to carry a detailed stability analysis of the SCLWR dynamical system.
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Figure 4: Shows that by changing the parameters which capture the variation of the density along the length

of the flow channel; the stability boundaries change their position. This indicates that to obtain a better

accuracy of the results, one can increase the number of nodes along the length of the channel to capture the

actual density variation.
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5. Parametric Effects on Linear Stability

In this section, the effect of some key design (Kin and Kexit) and operating parameters

(ad, af , N
′

tpc, and Nspc) on the linear stability characteristics of the system are shown. for

this purpose stability boundaries are plotted first in reactivity plane (ad − af ) and second

in heat flux plane (N ′

tpc −Nspc) keeping the rest of the parameters fixed.
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Figure 5: Effect of various parameters on stable region of SCLWR with Fr = 0.03, Nf = 4.34 (a) for different

N ′

tpc (Nspc = 1, Kin = 0, Kexit = 0) (b) for different Nspc (N ′

tpc = 2, Kin = 0, Kexit = 0) (c) for

different Kin (N ′

tpc = 2, Nspc = 1, Kexit = 0) and (d) for different Kexit (N
′

tpc = 2, Nspc = 1, Kin = 0)

5.1. Effects on ad − af plane

From Fig. 5, a few observations have been made as follows:
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1. Increase in heat flux (N ′

tpc) shrinks the stable operation region in ad − af plane (Fig.

5a). This indicates that, an increase in heat flux produce de-stabilizing effect to the

system operation. This is due to the fact that, an increase in heat flux decreases

the average density of the fluid inside the flow channel. Hence, for the same amount

of Doppler reactivity, the density coefficient of reactivity must be lowered down to

maintain a constant total reactivity (Eq. 3) of the reactor core for stable operation.

2. Increase in pseudo-subcooling (Nspc) shrinks the stable operation region in ad − af

plane (Fig. 5b). This indicates that, an increase in pseudo-subcooling produce de-

stabilizing effect to the system operation. This is due to the fact that, an increase

in pseudo-subcooling also decreases the average density of the fluid inside the flow

channel. Hence, for the same amount of Doppler reactivity, the density coefficient of

reactivity must be lowered down to maintain a constant total reactivity (Eq. 3) of the

reactor core for stable operation.

3. Increase in inlet pressure loss coefficient (Kin) broadens the stable operation region

in ad − af plane (Fig. 5c). This indicates that, an increase in inlet pressure loss

coefficient (Kin) produce stabilizing effect to the system operation. This is because,

the inlet pressure loss coefficient (Kin) resists the inlet flow and acts as a damping

agent to the oscillations.

4. Compared to Kin, an opposite effect (de-stabilizing effect) is shown (Fig. 5d) by exit

pressure loss coefficient (Kexit). An increase in exit pressure loss coefficient (Kexit)

shrinks the stable operation region in ad − af plane . This is because, the exit loss

coefficient acts as a suction for the flow which in-turn drive the oscillations.

5.2. Effects on N ′

tpc −Nspc plane

From Fig. 6, a few observations have been made as follows:

1. Increase in Kin produces similar stabilizing effect (Fig. 6a) as shown in Fig. 5c.

2. Increase in Kexit produces similar de-stabilizing effect (Fig. 6b) as shown in Fig. 5d.

3. Increase in Doppler coefficient of reactivity shrinks the stable region (Fig. 6c) and

hence produces de-stabilizing effect. This is because, when the Doppler coefficient of
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Figure 6: Effect of various parameters on stable region of SCLWR with Fr = 0.03, Nf = 4.34 (a) for different

Kin (af = −50, ad = 1200, Kexit = 0) (b) for different Kexit (af = −50, ad = 1200, Kin = 0) (c)

for different af (αd = 1200, Kin = 0, Kexit = 0) and (d) for different ad (af = −50, Kin = 0, Kexit = 0)

reactivity is increased, it increases the total reactivity and hence power of the reactor.

At the same pseudo-subcooling, when power of the reactor increases, it lowers the exit

density of the fluid and increases the pressure drop (suction) across the flow channel.

This increased suction acts as a driving force to the oscillations.

4. Similar de-stabilizing effect is observed for density coefficient of reactivity (Fig. 6d).

When density coefficient of reactivity is increased, it increases the total reactivity and

power of the reactor and hence pressure drop across the channel, which then acts as a

driving force to the oscillations.

21



6. Nonlinear Stability Analysis (Second Level)

6.1. Step 1: Identify the Type of Hopf Bifurcation

The second level for analyzing the instabilities is to identify the type of Hopf bifurca-

tions. In general, there are two types of Hopf bifurcations namely, 1. Supercritical Hopf

and 2. Subcritical Hopf. The detailed explanations of the characteristics of these Hopf

bifurcations can be found in Paul and Singh (2017b). To identify the occurrence of these

Hopf bifurcations, the First Lyapunov Coefficients (FLCs, (Paul and Singh, 2017b)) along

the linear stability boundaries are calculated. For a supercritical Hopf (subcritical Hopf),

the FLCs are negative (positive). The variations of the FLCs along the stability boundaries

are plotted in Fig. 7. It should be noted that, the phenomenon of separation between su-

percritical and subcritical Hopf bifurcation is known as Generalized Hopf bifurcation, and

the corresponding point is called as the Generalized Hopf (GH) point. At the GH point the

FLC becomes zero.

It is seen from Fig. 7 that, the FLC changes it′s sign once along the stability boundary

in the N ′

tpc − Nspc plane, however, the FLC changes it’s sign twice in ad − af plane. This

implies that along-with the thermal-hydraulic parameters (N ′

tpc − Nspc) the reactivities of

the SCLWR play dominant role in defining the nonlinear stability behavior of the system.

6.2. Step 2: Understanding of the Limit Cycles

A Hopf bifurcation is always accompanied by the existence of limit cycles at the vicinity

of the bifurcation boundary. There are two types of limit cycles namely 1. stable limit

cycles and 2. unstable limit cycles. The stable limit cycles (unstable limit cycles) are closed

trajectories which attract (repel) the nearby trajectories. The detailed discussion of the

limit cycles can be found in Strogatz (1994). In the supercritical Hopf bifurcation region,

small amplitude stable limit cycles are found in unstable side of the stability boundary. In

the subcritical Hopf bifurcation region, small amplitude unstable limit cycles are found in

the stable side of the stability boundary. However, these small amplitude unstable limit

cycles are again encircled by stable limit cycles.
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Figure 7: (a) Left: Stability boundary in N ′

tpc−Nspc plane andRight: Variation of FLCs along the stability

boundary showing occurrence of sub- and supercritical Hopf bifurcation (b) Left: Stability boundary in

ad − af plane and Right: Variation of FLCs along the stability boundary showing occurrence of two

subcritical and one supercritical Hopf bifurcation regions

The above-said characteristics of the limit cycles and sub- & supercritical Hopf bifurca-

tions are confirmed by the numerical simulations carried out at various points (Table 2) of

the stability map (Fig. 7).
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Table 2: Points considered to verify oscillation characteristics

Fig. no ad af Amount of perturbation (% of P0)

7a 1045 -50 0.1

7b 1045 -50 2000

7c 1038 -50 1

7d 1038 -50 70

7e 1038 -50 2000

8a 1805 -80 0.1

8b 1805 -80 80

8c 1795 -80 10

8d 1795 -80 400

For the numerical simulations, the system of ODEs (Eq. 55 to Eq. 62) are solved

numerically using ODE45 solver in MATLAB. The point A1 being on the unstable side

shows growing oscillations (Fig. 8a) for small perturbation. However, due to the existence

of the stable limit cycle in this region, the growing oscillations (decaying oscillations, for

large perturbation) settle down (Fig. 8a and Fig. 8b) around the stable limit cycle. The

point A2 being in the stable side of the stability boundary shows decaying oscillations (Fig.

8c) with small perturbation. However, when large perturbation is applied, the oscillations

grow (Fig. 8d) due to the existence of unstable limit cycle in this region. These growing

oscillations (decaying oscillations, even larger perturbation) again settle down (Fig. 8d and

Fig. 8e) around a stable limit cycle. These phenomena confirms the occurrence of the

subcritical Hopf bifurcation at the vicinity of the stability boundary.

The point B1 being on the unstable side shows growing oscillations (Fig. 9a) for small

perturbation. However, due to the existence of the stable limit cycles in this region, the

growing (decaying for large perturbation) oscillations settle down (Fig. 9a and Fig. 9b)

around the stable limit cycle. The point B2 being in the stable side of the stability boundary

shows decaying oscillations for both small (Fig. 9c) and large (Fig. 9d) perturbations. These

phenomena confirms the occurrence of the supercritical Hopf bifurcation at the vicinity of
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the stability boundary.
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Figure 8: Case of subcritical Hopf bifurcation (a) Point A1: Growing oscillations with small perturbation

settle into a stable limit cycle (b) Point A1: Decaying oscillations with large perturbation settle into a

stable limit cycle (c) PointA2: Decaying oscillations with small perturbation (d) PointA2: Growing

oscillations with large perturbation settle into a stable limit cycle (e) Point A2: Decaying oscillations

with even larger perturbation settle into a stable limit cycle
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Figure 9: Case of supercritical Hopf bifurcation (a) Point B1: Growing oscillations with small perturbation

settle into a stable limit cycle (b) Point B1: Decaying oscillations with large perturbation settle into

a stable limit cycle (c) Point B2: Decaying oscillations with small perturbation (d) Point B2:

Decaying oscillations with large perturbation

6.3. Step 3: Saddle Node Bifurcation and a Turning Point

The saddle node bifurcation or fold bifurcation is a co-dimension one bifurcation. In

this bifurcation, two limit cycles (stable and unstable) of a dynamical system collide and

disappear. In the stable side of the subcritical Hopf bifurcation region, if we start varying

one parameter of the system from the Hopf point, a saddle node bifurcation appears when

one of the eigenvalues of the monodromy matrix (or Floquet multipliers) becomes one. In

the present analysis, the Floquet multipliers of the system are calculated using the MAT-

CONT bifurcation package. The corresponding location in the parameter space where this

bifurcation appears is called as a turning point or a limit point of cycles (LPC). A gen-
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Figure 10: Generalized view of a turning point

eralized view of a turning point is shown in Fig. 10. In the subcritical Hopf bifurcation

region, a small amplitude unstable limit cycle appear at the Hopf point (LPC1), which is

surrounded by a large amplitude stable limit cycle. As we go deep into the stable side by

varying only one system parameter, the amplitudes of the unstable limit cycles correspond-

ing to each location on the parameter space keep on increasing. Moreover, the amplitudes

of the stable limit cycles that surround these unstable limit cycles keep on decreasing. At

the turning point represented by LPC2, the amplitudes of both unstable and stable limit

cycles become equal and thus at this point both these limit cycles collide and disappear. It

can also be seen that the stable limit cycles continue to appear even on the unstable side of

the stability boundary. Thus, the oscillations will never grow for infinite time and will settle

into constant large amplitude stable limit cycles even when the system is operated under

unstable operating conditions. In the present study one such turning point is shown in Fig.

11. It is seen that, the numerical simulations shown in the Fig. 8 are in agreement with that
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Figure 11: View of an actual saddle node bifurcation and a turning point. The point LPC2 represents the

turning point. The region left to the LPC2 is the globally stable region. The region between LPC2 & LPC1

is the bistable region.

expected according to their positions in the Fig. 11. When small (position 1) and large (po-

sition 2) perturbations are applied at the point A1 , the trajectories move towards the large

amplitude stable limit cycle, and hence growing & decaying oscillations are observed. At

point A2, when small perturbation is applied (position 1), the trajectories move away from

the unstable limit cycle and hence decaying oscillations are observed. However, when large

perturbation is applied at point A2 (position 2), the trajectories again move away from the

unstable limit cycle and settle around the large amplitude stable limit cycle. Furthermore,

at point A2; by applying even more perturbation (position 3), the stable limit cycle attracts

the trajectories and hence decaying oscillations are observed. It is also noted that, in the
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subcritical Hopf bifurcation region, the Hopf points are always represented as the first limit

point of cycles (LPC1), however, they do not represent the turning points.
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Figure 12: Oscillations at point G, showing globally stable behavior for very large perturbation

6.4. Step 4: Identification of the Globally Stable Region

It is worth noting that, the left hand side of the green vertical dashed line in the Fig. 11

do not contain any limit cycle. Hence, this region is said to be globally stable. To confirm

this phenomenon, numerical simulations for very large perturbations are done at point G

shown in Fig. 12. Decaying oscillations are observed for very large perturbation, hence

this region is confirmed as globally stable. Moreover, the region between LPC1 and LPC2

is known as the Bistable region. This is because, this region shows dual characteristics of
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both stable and unstable limit cycles which depend on the amount of perturbation in the

system. The loci of all the turning points (LPC2) in Fig. 13a and Fig. 13b are known as

the nonlinear stability boundaries (also known as the limit point of cycles curves).

Conclusions

In this work, the development of a simplified SCLWR nuclear coupled thermal hydraulic

reduced order model is presented. The model couples 1-D reduced-order thermal hydraulics,

point kinetics with one group of delayed neutrons and fuel heat transfer phenomena inside

the reactor core. Only two intrinsic reactivity feedbacks, namely, Doppler reactivity feedback

and density reactivity feedback are considered to study the SCLWR dynamics. The system

stability has been studied in two different sets of parameter spaces: (1) the thermal hydraulic

parameters (N ′

tpc − Nspc) and (2) the intrinsic reactivity feedbacks (ad − af ). Following

conclusions are made with this study:

1. Increase in inlet pseudo-subcooling widens the stable operation region both on thermal-

hydraulic parameter plane and reactivity feedback plane. This indicates, an increase

in inlet pseudo-subcooling will stabilize the system.

2. Increase in Doppler reactivity will drive the system towards unstable operating condi-

tions.

3. An increase in heat flux has destabilizing effect to the system on reactivity feedback

plane.

4. An increase in inlet pressure loss coefficient will stabilize the system.

5. Compared to inlet pressure loss coefficient, an increase in exit pressure loss coefficient

will destabilize the system.

Moreover, the model shows the occurrence of two types of Hopf bifurcation (subcritical and

supercritical). In addition it shows the existence of turning points in the stable side of the

linear stability boundary which also denote the threshold of nonlinear stability.
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Nomenclature

A∗

C Cross sectional area of the coolant channel (m2)

C∗

q Heat generated in the SCLWR channel (W)

C∗

pc Specific heat of the coolant at pseudo-critical temperature (J kg−1 K−1)

C∗

PF Specific heat of the fuel rod (J kg−1K−1)

D∗

e Equivalent diamater of the fuel rod (m)

D∗

h Hydraulic diamater of the flow channel (m)

f Friction factor

G∗ Mass flux (kgm−2 s−1)

g∗ Acceleration due to gravity (m s−2)

H∗ Heat transfer coefficient (Wm−2K−1)

k∗ Thermal conductivity of the fuel rod (Wm−1 K−1)

Kexit Exit pressure loss coefficient

Kin Inlet pressure loss coefficient

L∗

ch Length of the flow channel (m)

Nf Friction number

Nspc Pseudo subcooling number

Ntpc Pseudo phase change number

Nu Nusselt number

P ∗

h Peremeter of coolant channel (m)
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Pr Prandtl number

q′′∗ Wall heat flux (Wm−2)

q′′′∗ Heat generation rate per unit volume (Wm−3)

R∗

D Doppler reactivity (dk/k)

R∗

d Density reactivity (dk/k)

Re Reynold’s number

T ∗

F0 Steady-state fuel rod temperature (K)

T ∗

F Fuel rod temperature (K)

T ∗

in Coolant inlet temperature (K)

T ∗

pc Pseudo-critical temperature (K)

w∗ Velocity of the coolant (m s−1)

w∗

0 Inlet velocity of the coolant (m s−1)

C∗ Average delayed neutron precursor density (m−1)

h∗ Specific enthalpy of coolant J kg−1

h∗in Inlet specific enthalpy of coolant J kg−1

h∗pc Specific enthalpy at pseudo-critical temperature J kg−1

h∗pc Specific enthalpy of coolant at pseudo-critical temperature J kg−1

N∗ Average neutron density inside the reactor (m−3)

R∗ Reactivity (dk/k)

Greek Letters

α∗

d Density coefficient of reactivity (dk/k m3 kg−1)
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α∗

f Fuel tempearature coefficient of reactivity (dk/k K−1)

β∗

pc Isobaric thermal expansion coefficient (K−1)

∆P ∗ Pressure drop (Pa)

ρ∗ Density of the coolant (kgm−3)

ρ∗avg0 Steady-state average density of the coolant (kgm−3)

ρ∗avg Average density of the coolant (kgm−3)

ρ∗F Density of the fuel rod (kgm−3)

ρ∗pc Density at pseudo-critical temperature (kgm−3)

β Delayed neutron fraction

Λ∗ Neutron generation time (s)

λ∗ Decay constant for delayed neutron precursors (s−1)

ν∗ Specific volume of the coolant m3 kg−1

τ ∗ Time (s)
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Appendix A.

The non-dimensional parameters used to develop the present model are as follows:

x1 =
N∗ −N∗

0

N∗

0

=
P ∗ − P ∗

0

P ∗

0

x2 =
C∗ − C∗

0

C∗

0

x3 =
T ∗

F − T ∗

F0

T ∗

F0

ξ1 =
P ∗

hH
∗L∗

ch(T
∗

F0 − T ∗

pc)

A∗

cρ
∗

FC
∗

PFT
∗

F0w
∗

0

ξ2 =
P ∗

hH
∗L∗

ch

A∗

cρ
∗

FC
∗

PFw
∗

0

Ntpc =
H∗T ∗

F0P
∗

hβ
∗

pcL
∗

ch

A∗

cρ
∗

pcC
∗

pcw
∗

0

Nspc =
β∗

pc

C∗

pc

(h∗pc − h∗in) h =
β∗

pc

C∗

pc

(h∗ − h∗pc) Nf =
fL∗

ch

2D∗

h

af =
α∗

fT
∗

F0

β
ad =

α∗

dρ
∗

pc

β
ρ =

ρ∗

ρ∗pc

λ =
λ∗L∗

ch

w∗

0

Λ =
βL∗

ch

Λ∗w∗

0

∆ =
T ∗

pc

T ∗

F0

A1 =
ρin − ρpc

(hpc − hin)ρinρpc
A2 =

ρpc − ρexit
(hexit − hpc)ρpcρexit

∆P =
∆P ∗

ρ∗pcw
2∗
0

w =
w∗

w∗

0

z =
z∗

L∗

ch

t =
τ ∗

L∗

ch/w
∗

0

Appendix B.

Appendix B.1. Justification for enthalpy approximation

The approximation for the enthalpy (Eq. 21) is made in analogy to that made for

subcritical water flow systems (Paul and Singh, 2014b,a, 2015) This type of approximation

was first proposed by Clausse and Lahey (1991). Using constant heat flux assumption,

Clausse and Lahey (1991) proposed a model for density wave oscillations for two-phase flow

systems by dividing the single-phase region into N number of equidistant nodes, and the

enthalpy was approximated between consecutive nodes as,

hn = hin +
n− 1

N − 1
(hsat − hin) (B.1)

where it was also stated that, though hn is a constant but its spatial location is time

dependent. Now, the enthalpy h(z,t) at any location z was written as,

h(z, t) = hin +
z

µ(t)
(hsat − hin) (B.2)
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Hence, this form of approximation is also used in the case of supercritical fluids shown by

Eq. 21. Note that, the term excluding the z in R.H.S of Eq. B.2 is denoted as a1(t) in Eq.

21.

Appendix B.2. Justification for density approximation

To understand the approximation for the density, let us first observe the variation of

specific volume of a supercritical fluid with temperature, which is shown by Fig. B.14.

Figure B.14: Variation of specific-volume with temperature of a supercritical fluid

To approximate the density in the above-shown two zones, it is first assumed that, at

steady-state; when the temperature of the fluid increases linearly along the length of the

channel, the specific volume of the fluid also increases linearly with temperature as shown

by the dashed lines in Fig. B.14.

Hence, at steady-state; the variation of specific enthalpy along the length of the flow channel

can be written as:

υ(z) = υin + Γ ∗ z (B.3)

where Γ is the proportionality constant which relates the specific-volume and the channel

location z and is given by Eq. 46. Similarly, during transient operation of the system, the
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specific volume is assumed to be a linear function of channel position, and thus it can be

written as:

υ(z, t) = υin + Γ(t) ∗ z (B.4)

It should be noted that, now the proportionality constant becomes a function of time (Γ(t) =

b1(t)) to represent the time dependency of the specific-volume.

By simplifying the Eq. B.4 we get:

ρ(z, t) =
1

1
ρin

+ b1(t) ∗ z
(B.5)

Appendix B.3. Justification for velocity approximation

In case of a two-phase flow system with subcritical fluid, the mixture velocity is given

by Verma et al. (2018):
∂w∗

m

∂z∗
=

q”∗P ∗

h∆ρ
∗

ρ∗fρ
∗

gA
∗

c∆h
∗

fg

(B.6)

After non-dimensionalizing suitably and by further simplification, the above equation can

be written as:

wm(z, t) = win(t) +Npchz (B.7)

In analogy to the Eq. B.7, in case of a supercritical fluid, the velocity is approximated as:

w(z, t) = win(t) + A1Ntpc(1−∆)z (B.8)

Note that, there is no direct theoretical relation present for a supercritical fluid which can

correlate the fluid velocity with heat flux as done in case of a subcritical fluid (Eq. B.6).

However, to find the relation equation of continuity at steady-state with incompressible

flow assumption (∂(ρw)
∂z

= 0) is used. Since the density variation of the fluid with position

is known (Eq. B.4), hence after simplifying ∂(ρw)
∂z

= 0 we get the above relation for fluid

velocity (Eq. B.8).
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Appendix C.

Appendix C.1. Hopf bifurcation

A qualitative change in the behavior of a dynamical system by varying a parameters

of the system is known as a bifurcation. The Poincare–Andronov–Hopf (PAH) bifurcation,

dominantly known as the Hopf bifurcation is a special type of bifurcation which appears

in a nonlinear dynamical system when certain conditions are met (Strogatz, 1994). This

bifurcation guarantees the existence of periodic (stable and unstable) solutions. Moreover,

it is known as co-dimension one bifurcation (a bifurcation which is observed by varying

only one free parameter at a time) and is also referred as local bifurcation. Recently

this bifurcation is widely studied for Boiling Water Reactors (BWRs) (Rizwan-uddin, 2006;

Bindra and Rizwan-uddin, 2014; Wahi and Kumawat, 2011).

The conditions for Hopf bifurcation to occur are as follows:

1. The minimum number of dimensions of the system must be two.

2. The system must possess at-least one pair of complex conjugate eigenvalues.

3. At the critical parameter (λc, the parameter defining the linear stability threshold)

the eigenvalues must be purely imaginary (±ιω).

Figure C.15: Variation of eigenvalues around the critical point
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4. If the real (σ) and imaginary parts (ω) of the eigenvalues are plotted on a complex

plane along X- & Y- axes respectively, the loci of all the plotted eigenvalues as the

system parameter (λ) is varied from stable to unstable side of the linear stability

boundary, must cross the imaginary axis at non-zero rate as shown in Fig C.15.

Appendix C.2. Static instability

It should be noted that, in Hopf bifurcation, we observe growing oscillations in the

unstable side when small perturbation is applied to the system. However, in static instability

region, no oscillations are observed and the system suddenly jumps from one operating

condition to another (Fig. C.16). The threshold of the static instability region is known as

branch point (BP) where one real eigenvalue of the system becomes zero.

Figure C.16: No oscillations are observed in static instability region

Appendix D.

All the functions defined earlier to develop the model are given in this section.

Mtpc = Ntpc × [x3 + 1−∆]

Φ1(t) =
−(a1A1 − b1)b1(L1 − Lin)Mtpcρin + a1(A1Mtpc + b1ρin(dLin − vin))Log[1 + b1(L1 − Lin)ρin]

b1(L1 − Lin)ρin − Log[1 + b1(L1 − Lin)ρin]

(D.1)
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Φ2(t) = −

[

ρinvin − ρ1(A1(L1 − Lin)Mtpc + vin))

b1(−L1 + Lin)ρin + (1 + b1(L1 − Lin)ρin)Log[1 + b1(L1 − Lin)ρin]

+
−(((L1 − Lin)(dρin + b1dLinρ

2
in))/(1 + b1(L1 − Lin)ρin))

b1(−L1 + Lin)ρin + (1 + b1(L1 − Lin)ρin)Log[1 + b1(L1 − Lin)ρin]

]

× (b21(1 + b1(L1 − Lin)ρin) (D.2)

Φ3(t) =
Mtpcb

2
2(L1 − L2)ρ1 − a2(A2MtpcLog(1 + b2(L2 − L1)ρ1)

Log(1 + b2(L2 − L1)ρ1) + b2(L1 − L2)ρ1

+
b2ρ1(A2Mtpc(L1 − L2) + Log(1 + b2(L2 − L1)ρ1)(−v1 + dL1)))

Log(1 + b2(L2 − L1)ρ1) + b2(L1 − L2)ρ1
(D.3)

Φ4(t) =
b22(−1 + b2(L1 − L2)ρ1)(ρ1v1 − ρ2(A2Mtpc(L2 − L1) + v1)

Log(1 + b2(L2 − L1)ρ1)− b2(L1 − L2)(−1 + Log(1 + b2(L2 − L1)ρ1))ρ1

+
−((L1 − L2)(b2ρ

2
1dL1 + dρ1))/(−1 + b2(L1 − L2)ρ1))

Log(1 + b2(L2 − L1)ρ1)− b2(L1 − L2)(−1 + Log(1 + b2(L2 − L1)ρ1))ρ1
(D.4)

∆P1 = −((A1MtpcLog(1 + b1(L1 − Lin)ρin)dLin)/b1)

∆P2 = (Log(1 + b1(L1 − Lin)ρin))/b1

∆P3 = (A1Mtpc(−A1MtpcLog(1 + b1(L1 − Lin)ρin) + b1ρin(A1Mtpc(L1 − Lin)

+ Log(1 + b1(L1 − Lin)ρin)vin)))/(b
2
1ρin)

∆P4 = Nf ×

[

(1/(2b31ρ
2
in))(2A

2
1M

2
tpcLog(1 + b1(L1 − Lin)ρin)

+ b1ρin(A
2
1M

2
tpc(L1 − Lin)(−2 + b1(L1 − Lin)ρin)

− 4A1Mtpc(Log(1 + b1(L1 − Lin)ρin) + b1(−L1 + Lin)ρin)vin

+ 2b1Log(1 + b1(L1 − Lin)ρin)ρinv
2
in))

]
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∆P5 =
1

Fr
×

[

(Log(b1(L1 − Lin) + 1/ρin)− Log(1/ρin))/b1

]

Φ5(t) = ∆P1+∆P3+∆P4+∆P5+∆P2× [A1(Ntpc(1−∆))(ξ1x1− ξ2x3)]+Kinρinv
2
in (D.5)

∆P6(t) = (MtpcLog(1 + b2(L2 − L1)ρ1)((A1 − A2)dL1 − A1dLin))/b2

∆P7(t) = (Log(1 + b2(L2 − L1)ρ1))/b2

∆P8(t) = (A2Mtpc(−A2MtpcLog(1 + b2(L2 − L1)ρ1) + b2ρ1(A2Mtpc(L2 − L1)

+ Log(1 + b2(L2 − L1)ρ1)v1)))/(b
2
2ρ1)

∆P9(t) = Nf ×

[

(1/(2b32ρ
2
1))(2A

2
2M

2
tpcLog(1 + b2(L2 − L1)ρ1)

+ b2ρ1(A
2
2M

2
tpc(L2 − L1)(−2 + b2(L2 − L1)ρ1)

−4A2Mtpc(Log(1+ b2(L2−L1)ρ1)+ b2(L1−L2)ρ1)v1+2b2Log(1+ b2(L2−L1)ρ1)ρ1v1
2))

]

∆P10 =
1

Fr
×

[

(Log(b2(L2 − L1) + 1/ρ1)− Log(1/ρ1))/b2

]

Φ6(t) = ∆P6+∆P8+∆P9+∆P10+∆P7× [A2(Ntpc(1−∆))(ξ1x1−ξ2x3)]+Kexitρ2v
2
2 (D.6)

Φ7(t) =
∆Pext −∆Pheavy −∆Plight

(Log(1 + b2(L2 − L1)ρ1))/b2 + (Log(1 + b1(L1 − Lin)ρin))/b1
(D.7)

Putting Eq. 50 to Eq. 54 into Φ1(t) to Φ7(t), we found the expressions for Φ8(t) to

Φ12(t).
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