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Abstract  

Background: Diffusion-weighted magnetic resonance imaging (DWI) has potential to non-

invasively characterize breast cancer lesions; models such as intravoxel incoherent motion 

(IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on 

details of acquisition and analysis strategy. 

Purpose: To examine the effect of fitting algorithms, including conventional least-squares 

(LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage 

(BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate 

benign and malignant breast lesions. 

Study Type: Prospective patient study. 

Subjects: 61 patients with confirmed breast lesions. 

Field Strength and Sequence: DWI (bipolar SE-EPI, 13 b-values) was included in a clinical 

MR protocol including T2W and DCE-MRI on a 3T scanner. 

Assessment: The IVIM model was fitted voxel-wise in lesion regions-of-interest (ROIs), and 

derived parameters were compared across methods within benign and malignant subgroups 

(correlation, coefficients of variation). Area-under receiver operator characteristic curves 

were calculated to determine discriminatory power of parameter combinations from all fitting 

methods. 

Statistical Tests: Kruskal-Wallis, Mann-Whitney, Pearson correlation. 

Results: All methods provided useful IVIM parameters; D was well-correlated across all 

methods (r > 0.8), with wider range for f and D* (0.3–0.7). Fitting methods gave detectable 

differences in parameters, but all showed increased f and decreased D in malign lesions. D 

was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). 

In general, ROC AUCs were maximised by the inclusion of pseudodiffusion parameters, and 

by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for 

BSP). 

Conclusion: DWI performs well at classifying breast lesions, but careful consideration of 

analysis procedure can improve performance. D is the most discriminatory single parameter, 

but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods 

outperformed conventional least-squares and segmented fitting methods for breast lesion 

classification. 
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Accuracy of breast cancer lesion classification using IVIM DWI is improved by the 

inclusion of global or local prior knowledge with Bayesian methods 

 

Introduction  

Diffusion-Weighted Magnetic Resonance Imaging (DWI) is primarily sensitive to the 

Brownian motion of water molecules, which occupy the majority of the volume in all living 

tissue. In addition, DWI may also be sensitive to vascularity (perfusion), an effect first 

noticed by Le Bihan [1] and incorporated into the intravoxel incoherent motion (IVIM) 

model. Le Bihan postulated that water molecules involved in flow through randomly-oriented 

capillary vessels would effectively present like diffusion, only with a very high "pseudo-

diffusion coefficient" D*. The IVIM model is thus formulated as the sum of two exponential 

components, of empirical coefficients D* and D, and the volume fraction f quantifying their 

relative contributions to the total signal. While IVIM has potential for non-invasive perfusion 

measurement, the method has not been widely clinically applied due to high noise sensitivity 

and lack of standardization, with studies demonstrating significantly different IVIM 

parameter values for the same tissue type [2] and in similar patient groups [3]; additionally, 

pseudodiffusion parameters f and D* are generally less repeatable than D [4, 5]. Alongside 

data acquisition strategy, image quality, and physiological noise, IVIM parameters may 

depend to some degree on the signal fitting methods/algorithms used [2, 3, 6–12].  

The most common method is to use some form of non-linear least squares (LSQ) fitting, 

which may be constrained or unconstrained to specified limits for each parameter; however, 

the noise sensitivity of this approach has led to exploration of alternatives that attempt to fit 

individual components separately in a segmented approach [3, 13-16], or to include some 

degree of prior knowledge, such as expectations of either local or global homogeneity, in 

more complex Bayesian-type approaches that are able to generate much cleaner parameter 

maps compared with those from non-linear least squares [17–21].  



It is important for clinical interpretation of DWI in the breast, however, to note that it is by no 

means clear whether such Bayesian fitting methods result in model parameters more in 

agreement with underlying "true" values, and whether this necessarily results in more 

clinically useful results than more conventional methods. A recent simulation paper [19] 

considered this issue, and one finding was that these advanced Bayesian methods may 

suppress pseudodiffusion effects severely in the presence of measurement noise. This 

illustrates that care must be taken when applying Bayesian methods. The goal of Bayesian 

estimation is to frame results in the light of prior knowledge (or assumptions, known as the 

‘prior’) about the true model parameters, and if the chosen prior is incorrect, the end result 

may be diverted away from the true values and give a less accurate result than a conventional 

method (i.e. LSQ). Thus, it is critical when applying Bayesian estimation to consider whether 

the chosen prior reflects the true behavior and properties of the tissue; to this end, additional 

and independent information about the tissue is required to act as reference and gold 

standard. Additionally, parameter estimates are typically derived from Bayesian methods by 

reporting specific metrics of the marginalized posterior distribution, such as the mean or 

mode, and the possible influence of the choice of metric on the final output needs to be 

explored [22]. 

Although useful for discussing and illuminating many issues, simulations cannot completely 

replace real experimental data in evaluating fitting methods, because the simulated data will 

ultimately be based on a model – and such models do not always capture all the relevant 

factors that influence real data, and will likely lack realistic spatial and statistical 

distributions. In this study, the utility of different IVIM fitting algorithms is assessed using 

the clinical classification of breast lesions, as either benign or malignant, as the success 

criterion. This explicitly avoids measures based on signal curve residuals, and focuses on the 

role of IVIM DWI in clinical decision making. 

The specific hypotheses examined in the study are: 



1. Bayesian fitting methods result in significantly different values for IVIM parameters in 

breast lesions compared to LSQ or segmented approaches. 

2. Results returned from Bayesian fitting methods are sensitive to the choice of algorithm 

details – specifically, type of prior information and the choice of mean or mode from the 

obtained posterior distribution.  

3. Bayesian fitting methods improve the classification of benign versus malignant voxels in 

breast lesions using the full IVIM parameter set, indicating better fit to the true perfusion 

properties. 

 

Materials and Methods  

Patient Cohort 

The study was approved by the Regional Committee for Medical and Health Research Ethics 

(REK Central Norway, 2011/568). All patients gave written informed consent prior to 

enrolment. Recruitment of patients was from October 2013 to August 2016.  

Following MR examination, patients with malignant tumors underwent surgery and 

histopathologic analysis was performed on the resected mass. Categorization of benign 

tumors was done by histopathologic analysis on core needle biopsies, or on resected tissue if 

the tumor was surgically removed. For benign lesions where biopsy was not requested by the 

radiologist, diagnosis was based on the patient history, which included either radiographic 

mammography, ultrasonography, or a previous clinical MR examination with at least 6 

months’ follow-up at the time of recruitment. MR was performed on 61 patients; 10 datasets 

were excluded from analysis (7 non-successful motion correction; 3 with significant Nyquist 

ghosting artefacts), giving 51 cases in total. Where multiple lesions were present in the same 

breast, the largest was selected for analysis.  

Of the 51 patients, 23 tumors were classified as benign and 28 as malignant. Clinical data is 

reported in Table 1. Data from this patient cohort was previously used in the study by Vidić 



et al [14], and a subset (34 of 51) of the patients analyzed in this study were previously 

reported in a study by Teruel et al. describing the novel DWI metric relative enhanced 

diffusivity (RED) [23]. 

MRI Protocols 

Patients were imaged with a 3T scanner (Skyra, Siemens Healthcare, Erlangen, Germany) 

equipped with a 16-channel breast coil (16-channel AI Breast Coil, Siemens Healthcare, 

Erlangen, Germany).  

Fat-suppressed (n=17 FatSat and n=34 SPAIR) unilateral sagittal DWI was acquired using a 

twice-refocused spin-echo echo-planar imaging sequence with: repetition time (TR) 9000ms, 

echo time (TE) 86ms, 90x90 matrix, 2x2mm in-plane resolution, slice thickness 2.5mm, 60 

slices, generalized auto-calibrating partially parallel acquisition (GRAPPA) factor 2, and 13 

b-values: 0, 10, 20, 30, 40, 50, 70, 90, 120, 150, 200, 400, 700 s/mm2 in either six (n=18, 

scan time 11 minutes) or three (n=33, scan time 6 minutes) directions. The protocol included 

one additional geometry-matched, non-diffusion-weighted (b=0s/mm2) series with reversed 

phase-encoding direction for implementation of distortion correction arising from 

susceptibility boundaries [24]. Twice-refocused diffusion encoding scheme was chosen to 

minimize eddy current effects [25]. 

Dynamic contrast enhanced (DCE) and T2-weighted images were also acquired. DCE scans 

consisted of 3D, T1-weighted, non-fat suppressed, gradient echo sequence, with TR 5.82ms, 

TE 2.18 ms, flip angle 15%, 256x256 matrix, in-plane resolution 0.7x0.7mm, slice thickness 

2.5mm, and temporal resolution of 1 min, collected pre-contrast and at 7 consecutive time 

points following contrast administration. The DCE images were used for guidance of region 

of interest (ROI) selection in the DWI images. T2-weighted images were non-fat suppressed, 

using a 2D turbo spin echo with TR 5500 ms, TE 118 ms, 256x256 matrix, in-plane 

resolution 0.7x0.7 mm, and slice thickness 2.5 mm.  

Data Analysis 



Preprocessing 

All diffusion images were initially distortion-corrected via the method described by Holland 

et al [26], and validated in the breast by Teruel et al [24], using the phase-reversed b = 0 

s.mm-2 images. A co-registration (3-dimensional, rigid) of all raw images to the 

corresponding b = 0 s.mm-2 image, using a normalized cross-correlation metric [27], was also 

performed in cases where there was substantial motion. Subsequently, trace images were 

calculated and entire lesions were segmented on the b = 700 s.mm-2 image guided by DCE 

images. Segmentation was performed by a basic scientist (I.V., 2 years of experience in 

breast imaging) with supervision by a breast radiologist (A.Ø., 20 years of experience). For 

each lesion, only the slice with the largest 2D ROI area was chosen for subsequent IVIM 

algorithm comparison.  

Distortion and motion corrections were performed using the preprocessing algorithm 

provided in the Computational Morphometry Toolkit (CMTK, SRI International, Menlo Park, 

CA). Image analysis and fitting were performed using Matlab routines (2016b Mathworks, 

Natick) developed in-house. 

Fitting methods  

The IVIM model is well-known, described by Le Bihan in the biexponential form: 

𝑆"
𝑆#
= (1 − 𝑓) ∙ 𝑒,"∙- + 𝑓 ∙ 𝑒,"(-/-∗) 

where D is the tissue diffusion coefficient, f is the pseudodiffusion fraction, and D* is the 

pseudodiffusion coefficient. Since IVIM is a model based on biophysical parameters, it is 

possible to impose boundaries on the parameters that are in line with expected underlying 

physiology; in this study, the following ‘basic’ limits were imposed: f < 0.5, implying that the 

pseudodiffusion component is not dominant in any voxel, D < 0.003 mm2s-1, the known limit 

for pure water diffusion at body temperature, and D* < 0.3 mm2s-1, at which the D* 

contribution is negligible at the lowest non-zero b-value in the study. Lower bounds were f > 



0.0005, D > 4.5x10-5 mm2s-1, and D* > 3.4x10-4 mm2s-1 in line with previous work [17]. The 

following fitting methods were used: 

 

1. Full non-linear least squares (LSQ) 

In this conventional approach, all parameters are simultaneously estimated using a non-linear 

least-squares fitting function in Matlab (R2016b, Mathworks, Natick, MA, USA) and the 

trust-region-reflective algorithm, which enables imposition of constraints on the parameter 

space using the values given above. Initial values for the parameters were taken from 

literature on breast [11], in order to avoid bias that might be introduced by initialization using 

other methods (for example the segmented approach) where the cost function surface is likely 

to be flat. 

 

2. Segmented approach (SEG) 

This simplified fitting method has been applied to IVIM data in a number of studies [6, 11, 

28], where the pseudodiffusion contribution to the signal is assumed negligible above a 

particular b-value, commonly 200 s.mm-2. Fitting for monoexponential decay for b ≥ 200 

s.mm-2 thus gives an estimation of D directly; the zero intercept (Sint) of this monoexponential 

decay is used to estimate the pseudodiffusion fraction parameter f: 

𝑓 =
𝑆"1# − 𝑆234

𝑆"1#
 

Finally, D* is estimated by a constrained LSQ fitting to the IVIM equation as above, but with 

fixed values for D and f.  

 

3. Bayesian uniform prior (BUP) 

The framework of Bayesian estimation is to include prior information when conducting a 

fitting operation; this prior can take various forms, and may be strong or weak in relation to 

the information contained in the data itself, and can be visualized by comparing the sharpness 



of the peak in the likelihood function (negative log of the least-squares cost function for 

Gaussian errors), with the peak (if any) in the prior distribution function. The simplest type of 

prior is known as ‘minimally-informative’, which implies that estimation is driven purely by 

the data, and not by the prior distribution. This method uses the Bayesian framework to 

produce a posterior distribution of parameter values from which final estimates can be 

obtained from central tendency measures, such as the mean or the mode. When a uniform 

prior distribution is used, the mode of the posterior distribution is the same as the maximum 

likelihood estimate (which for Gaussian errors will be the same as the optimal least-squares 

estimate). Application of the Bayesian approach with minimally informative priors for IVIM 

data was first presented by Neil and Bretthorst [29]. 

 

4. Bayesian Gaussian “shrinkage” prior (BSP) 

An alternative to using a uniform prior is to use a Gaussian prior with a mean and variance 

that reflect the expected location and spread in the values being estimated. However, 

providing fixed prior expected values for IVIM parameters is often unrealistic in real-world 

cases as these may not be known in advance. Another approach is to use the data in a 

collection of voxels (i.e. a lesion) to estimate characteristics of the Gaussian prior (mean and 

standard deviation) in addition to the IVIM parameters in each voxel. This prior model 

assumes a single tissue class, which for sufficiently homogeneous lesions will be a reasonable 

approximation in practice. This approach proposed by Orton et al [17] uses an LSQ fit to 

initialize a Markov Chain Monte Carlo (MCMC) estimation algorithm which then generates 

estimates of the Gaussian prior parameters and IVIM voxel parameters at every step. This 

form of prior distribution is often referred to as a ‘shrinkage prior’ because, for voxels that 

have both high IVIM parameter uncertainty and have estimates that are distant from the 

majority of the other voxels, there is a tendency for the estimates to ‘shrink’ towards the 

values estimated by the majority. High uncertainty can be due to poor SNR in the given 

voxel, or because the model is ill-conditioned (e.g. bi-exponential rate constants that are not 



well separated). A more detailed description of the shrinkage prior approach along with 

pseudo code for implementation is given in Orton et al [17]. Specific for this work, whole-

lesion ROIs were used to provide a large enough number of voxels for estimation of the 

initial Gaussian prior distribution, but only the largest slice was used in the analysis of the 

final IVIM parameters and comparison to other methods.  

Both Bayesian fittings, BUP and BSP, used the Markov Chain Monte Carlo algorithm, with 

2000 burn-in steps and 20,000 chain steps. 

 

5. Spatial homogeneity prior – fusion bootstrap moves (FBM) 

Unlike BSP, which considers all voxels form a single distribution, the spatial homogeneity 

prior from Freiman et al [18] assumes a level of voxel-to-neighboring-voxel similarity; the 

amount of homogeneity between neighboring voxels is governed by an additional parameter 

a in the energy minimization, which balances between returning a completely smooth map 

and a spatially-naïve map (as given by LSQ, which treats voxels entirely independently). 

Thus a is a case-specific parameter, and values were assessed and optimized visually. 

Additionally, the relative degree of smoothing between parameters is controlled by a 

weighting vector, W, and in this work the effective weighting of each parameter was 

approximately normalized by setting the three elements of W equal to the inverses of the 

literature values [11] that were also used to initialize LSQ. 

The LSQ estimates provide the initial maps, and new proposals are generated using bootstrap 

resampling of the data. Iterations are conducted using ‘fusion moves’, which combine the 

current and subsequent solutions at each step to minimize the corresponding energy function. 

Further details are provided by While [4]. 

 

Statistical Analysis 



Statistical analysis between fitting strategies was performed using the parameters derived 

from IVIM fitting within the 2D ROI, defined for each lesion as the slice with the largest 

area. The Kruskal-Wallis test was used to evaluate if parameter estimates came from the 

same underlying distribution. This was followed post-hoc by a Mann-Whitney test for 

multiple comparisons with Bonferroni correction. Receiver operating characteristic (ROC) 

along with area under the curves (AUC) were used for assessing differentiation ability of the 

parameters calculated from each method. Coefficients of variance, and Pearson correlation 

coefficients, were calculated for all parameters. All the statistical analysis was performed in 

Matlab (2016b Mathworks, Natick). 

 

Results  

Representative IVIM parameter maps are shown in Figure 1 for two tumors, with the 

corresponding value box plots; the variation in the parameters conforms roughly to 

expectation, with D being more consistent across the lesion and between fitting methods 

compared to f and D* being increasingly variable in both contexts. Visually, the D maps are 

similar across all methods, whereas the non-Bayesian methods (SEG, LSQ) show similar 

voxels of increased pseudodiffusion fraction f. The BUPmode maps follow the LSQ closely, 

which is unsurprising from theory. Notable is that the D* map using the local spatial 

homogeneity assumption in FBM appears much smoother, giving it a cleaner appearance 

(while not necessarily changing the lesion summary statistics); from visual inspection to 

avoid excessive smoothing, a value of α = 4 for the FBM method was used for all cases in 

this study. 

Histograms showing the distribution of IVIM parameters in all voxels across the cohort, 

separated by their pathological benign/malignant classification, are shown in Figure 2. The 

distributions in general replicate the known characteristics of breast lesions, specifically an 

increase in f for malignant lesions and the corresponding decrease in D, interpreted as 

meaning increased vascularization and cellularity, respectively. For some fitting methods, 



most notably LSQ and SEG, distributions for D* and f contain a fraction of voxels at the 

upper limit, which suggests a failure in fitting that may arise from extreme values of 

underlying characteristics, or from low-quality data in these voxels. 

The parameter distributions themselves vary across fitting methods to some degree (see 

Figure 3 for Mann-Whitney test results), and the Pearson correlations between parameters 

across fitting methods are given in Table 2. D appears to be consistently estimated across 

methods and has high inter-method correlations, whereas a wide range of correlation 

coefficients are seen for f and D* - from above 0.9 when comparing mean and mode of BSP 

(f and D*) to less than 0.4 when comparing BSP with LSQ (f) and SEG (D*), and for FBM 

with LSQ (f and D*), SEG (D*) and BUP (D*). 

A proxy for parameter precision was measured by the coefficient of variation (CV) for each 

parameter across the lesion, shown in Table 3. Since this necessarily contains underlying real 

variation it is not a true measure of precision, but relative values are illustrative; namely, D 

appears the most precise, followed by f and then D*; the pseudodiffusion parameters exhibit 

lower CVs in malign lesions. In general, FBM and both BSP approaches appear the most 

precise, although this is an expected consequence of these fitting approaches.  

It is important to note that since neither the underlying ‘true’ values nor the true applicability 

of the model are known, the most useful assessment of these resulting distributions is how 

they inform clinical decision making, in this case discrimination of malignant and benign 

tumors. The associated ROC curves, and the resulting AUC values, for the IVIM fitting 

methods are shown in Figure 4, with individual parameters in 4a) and pair combinations from 

logistic regression in 4b). Again, the overall picture is in line with previous work, with D 

performing well (minimum AUC 0.83 from LSQ, maximum 0.9 from both BSP metrics), and 

pseudodiffusion parameters f and D* performing poorly in isolation (maximum AUCs: 0.74 

and 0.65, for f with BSPmode and D* with FBM). In practice, of course, all IVIM parameters 

arise from the same scanning sequence, and so are not derived separately; ROC combinations 

of increasing complexity, from D, to (D+f) or (D+D*), and to (D+f+D*), illustrated in figure 



4c), show an increase in discriminatory power. Overall, the best classification accuracies are 

provided by methods that go beyond simple curve fitting and include spatial prior knowledge, 

with the Bayesian shrinkage prior (BSP, and taking the posterior mean) and fusion bootstrap 

moves (FBM) providing AUCs of 0.92 and 0.9, respectively. Of particular note is that the 

conventional least-squares approach to fitting, often the default, gives the lowest AUC in all 

comparisons, and indicates that the segmented approach should be a preferred default method 

in the absence of facility to employ the more complex fitting algorithms. 

 

Discussion 

Firstly, it should be recognized that all fitting methods were ‘successful’ in the simple sense 

of returning IVIM parameters, notionally providing superficially similar information about 

the breast lesions. Closer examination of the effects of the fitting detail, however, reveals an 

influence that can directly affect the conclusions drawn in terms of disease characterization 

and, ultimately, patient treatment. While DWI is rarely the only MR modality used for 

diagnosis of breast cancer, that is only the current status and it is critical that exploration of 

possibilities and limits be performed, such that coherent strategies are developed and 

standardized within the DWI community. Only then can we collectively maximize the utility 

of and trust in the additional information that DWI can provide in the context of an evolving 

understanding of disease presentation and management. Acknowledging all of the factors that 

influence the IVIM parameter estimates, including those which determine the behavior of the 

signal itself [30,31], as well as the choices made for any given analysis for a particular data 

set, is therefore essential for useful interpretation of results. 

Examining the hypotheses that were tested in this study, the results clearly indicate that the 

choice of fitting method influences the resulting IVIM parameter estimates, most evident in, 

but not restricted to, the pseudodiffusion parameters f and D*. A clear effect of using a 

Bayesian shrinkage or local spatial homogeneity prior is to reduce the variation in f and D*, 

including from extreme values. Spatial priors therefore give visually smoother parameter 



maps, which is perhaps more relevant to the use of DWI for lesion depiction and localization, 

rather than quantitative functional analysis, but this may nevertheless contribute to increased 

acceptance of IVIM as a clinical tool.  

The results from this study strongly suggest that attention to the details of diffusion imaging 

fitting method and execution results in better decisions, as measured by accuracy of breast 

lesion classification. An increase in ROC AUC was found for moving from simple non-linear 

least-squares fitting, unfortunately both the worst-performing and a common default method, 

to more advanced methods; this increase in AUC ranged in value, both when considering D 

in isolation (from +0.03 for BUPmode, to +0.07 for BSP methods), and when combining all 

parameters (from +0.01 for BUPmode, to +0.06 for BSPmean). It is interesting to note that the 

segmented approach outperformed the least-squares method; a simplified version of this 

approach involves estimation of only D and f, and can thus be performed using only 3 b-

values in a reduced scan time [32–36]. A relevant question is therefore whether D* 

contributes sufficient added clinical value to justify the added complexity in both acquisition 

and analysis, given the performance of simpler approaches. We observe that D* suffers most 

variation across lesions and fitting methods, and has relatively low classification accuracy in 

isolation (ROC AUC 0.65), but note that when added to a regression combination of all 

parameters D* does increase accuracy, regardless of fitting method, actually adding more 

value than f when added to D (although f is always provided alongside D*). The additional 

accuracy is small, however, so it is likely to remain a subjective choice whether the gain is 

worth the increased scanning and analysis demand. Nevertheless, this study contributes to the 

evidence in the literature that the IVIM effect is present and informative in breast lesions, 

albeit best pursued with the additional leverage provided by Bayesian approaches. 

It has been found by previous studies that the choice of Bayesian methods for fitting IVIM 

data can give lower variability, especially for f and D* [17, 18, 29], but runs the potential risk 

of obscuring real features in regions where there is a high uncertainty associated with the 

parameters [19]. Similarly, when the choice of posterior summary statistic can influence the 



resulting estimations [22], it is critical that analysis is not performed blind to these details. 

Additionally, Bayesian methods require substantially longer for analysis, and some studies 

argue that simpler analysis can provide similar results [10, 34]. However comparing across 

studies with different cohorts and acquisition protocols is problematic, and these studies do 

not go as far as examining effects on classification accuracy. While Bayesian methods are 

substantially more computationally expensive, which makes implementation more 

cumbersome, this is decreasingly a genuine barrier given the availability and cost of 

computational power. 

One limitation of this study is that the effect of parameter boundaries is not explored; it is 

possible to impose tighter boundaries to better reflect expected values, although this raises the 

issue of how to treat/interpret voxels at these boundaries. In this study, liberal boundaries 

were chosen, to avoid switching of D and D* compartments (i.e. f > 0.5) and to remain within 

constraints of physical limits. In the case where Bayesian methods are recommended, 

however, the effect of imposed parameter boundaries is minimal. Other algorithms have 

associated specific limitations; in the case of the Gaussian shrinkage prior, there is an implicit 

assumption that there is a single tissue class. Thus, analysis on a defined ROI works well if 

this assumption is valid, but the method cannot be applied to whole images, and this is a 

limitation not shared by the other methods. This means only that IVIM parameter maps from 

BSP cannot be used for lesion delineation, though this is most commonly done on DCE or 

high-b-value images. One limitation of the FBM approach in this study is that the degree of 

local homogeneity is governed by a parameter (a) that must be empirically selected, and this 

may be expected to be tissue and/or disease specific. A strategy for determining the optimal 

value for a would be a valuable addition to the FBM method. One final limitation of the 

study is the cohort data from a single center, and thus the conclusions are not implicitly 

generalized for data acquired across locations and scanners. 



Ultimately, the driving force behind DWI acquisition and analysis is creating the best 

information for patient care, and while neither DWI nor IVIM are new ideas, there remains 

much discussion – but no consensus - on optimal execution. A meta-analysis from 2008 of 44 

different studies found that, for lesion classification, DCE had a pooled weighted sensitivity 

of 0.90 and specificity of 0.72 [37], and so although DWI is often considered an adjunct 

modality rather than an explicit alternative, the results in this study clearly show a 

competitive accuracy derived from more careful DWI processing. Explicitly framing the role 

of IVIM parameters in terms of ROC accuracy for classification, this study provides 

increased support for the use of more advanced, Bayesian fitting algorithms, such as 

Gaussian shrinkage and local spatial homogeneity priors, and for the inclusion of 

pseudodiffusion parameters in lesion classification. 
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Figure 1a. IVIM parameter maps from each fitting method, taken from two typical lesions 
(malignant and benign in figures 1a and 1b, respectively). Fitting using prior information 
either across the lesion (BSP) or locally (FBM) yields smoother maps for both f and D*. BSP 
mean and mode are generally similar, as expected, as are BUPmode and LSQ, whereas 
BUPmean has some apparent smoothing. In general, D maps are clearest, and D* show the 
most variable characteristics. Note that voxel size appears different due to image cropping. 
 
 
 

 
 
Figure 1b. IVIM parameter maps from each fitting method, taken from two typical lesions 
(malignant and benign in figures 1a and 1b, respectively). Fitting using prior information 
either across the lesion (BSP) or locally (FBM) yields smoother maps for both f and D*. BSP 
mean and mode are generally similar, as expected, as are BUPmode and LSQ, whereas 
BUPmean has some apparent smoothing. In general, D maps are clearest, and D* show the 
most variable characteristics. Note that voxel size appears different due to image cropping. 
 



 

 

Figure 1c. Corresponding box plots for the lesion depicted in a). The more consistent 
behavior seen for D across the methods is not matched for either f or D*, where resulting 
values are more dependent on the method employed.  

 

 

Figure 1d. Corresponding box plots for the lesion depicted in b). The more consistent 
behavior seen for D across the methods is not matched for either f or D*, where resulting 
values are more dependent on the method employed. 

 



Figure 2. Histograms showing distributions of the estimated IVIM parameters obtained using 
different fitting methods, for all voxels in benign and malignant lesion sub-cohorts. Some 
statistical differences appear between distributions of different fitting methods, but the 
dominant general trend of increased f and decreased D for malignant lesions, which forms the 
basis of breast lesion classification using IVIM, is preserved. 
 
 

 
 
Figure 3. Connections indicate non-significant p-values (Mann-Whitney test with Bonferroni 
correction; p > 0.05) for comparison of IVIM parameter values obtained by different fitting 
methods; presented for benign (green) and malignant (red) subgroups. These data illustrate 
that the influence of the fitting methods is often statistically detectable, although minor in 
comparison with values compared across malignant/benign groups (Figure 2). 
 



 

Figure 4a ROC curves for differentiation of malignant/benign tumors using individual IVIM 
parameters from different fitting methods. In line with expectation, D outperforms f and D* 
in all methods, and D achieves a minimum AUC of 0.83 with LSQ method (interestingly, 
SEG outperforms LSQ for both D and f). Bayesian methods, specifically BSP and FBM, 
achieve the highest AUC of 0.9 and 0.89 respectively. 

 
Figure 4b ROC curves, with corresponding AUC values, for logistic regression combination 
pairs of IVIM parameters in classifying malignant vs. benign breast tumors. While D is the 
single best parameter, the addition of f or D* shows increased discriminatory power.  
  

Figure 4c Corresponding ROC curves where logistic regression allows for combining all 
parameters (left); adding contributions from f and D* to D increases AUC by approximately 
0.017 (for all methods except SEG). Graphical representation of ROC AUCs for each method 
and combination are shown (right). 
 
  



Table 1: Patient characteristics for the study cohort. 

Lesion Classification Malignant Benign 

Number 28 23 

Mean patient age (years) 53.7 (29 – 75) 29.9 (21 – 53) 

Mean tumor volume (cm3)  1.5 (0.2 – 4.25)  8.1 (0.1 – 104.1) 

Histologic type  Invasive ductal carcinoma (16)  Fibroadenoma (14) 

 
 Invasive ductal carcinoma with 

ductal carcinoma in situ (8)  Phyllodes (2) 

 
 Medullary carcinoma with ductal 

carcinoma in situ (1)  Fibroadenomatosis (1) 

  Invasive lobular carcinoma (1)  Adenosis (1) 

 
 Mucinous carcinoma with ductal 

carcinoma in situ (1) 
 No histologic analysis 

available (5) 

  Papillary carcinoma (1)  
Histologic grade 1:6, 2:9, 3:9, 2/3:2, not analyzed: 2  

 

  



Table 2. Correlation of parameters between methods and across all lesions. In general, D is 
highly correlated across all methods, whereas far less correlation is seen for f and D*. 
 
D SEG LSQ BSPmean BSPmode BUPmean BUPmode FBM 
SEG 1 0.84 0.9 0.89 0.91 0.89 0.85 
LSQ  1 0.88 0.89 0.92 0.88 0.88 
BSPmean   1 0.99 0.96 0.96 0.91 
BSPmode    1 0.96 0.96 0.91 
BUPmean     1 0.97 0.88 
BUPmode      1 0.92 
FBM       1 

        
f SEG LSQ BSPmean BSPmode BUPmean BUPmode FBM 
SEG 1 0.46 0.62 0.63 0.68 0.55 0.55 
LSQ  1 0.35 0.36 0.41 0.62 0.32 
BSPmean   1 0.94 0.75 0.5 0.55 
BSPmode    1 0.72 0.53 0.6 
BUPmean     1 0.59 0.45 
BUPmode      1 0.46 
FBM       1 

        
D* SEG LSQ BSPmean BSPmode BUPmean BUPmode FBM 
SEG 1 0.48 0.36 0.43 0.4 0.57 0.3 
LSQ  1 0.42 0.49 0.44 0.7 0.33 
BSPmean   1 0.92 0.68 0.59 0.54 
BSPmode    1 0.7 0.68 0.49 
BUPmean     1 0.68 0.38 
BUPmode      1 0.32 
FBM       1 

 
 
  



Table 3. Average coefficients of variation (CV) for IVIM parameters across lesions (thus 
also including true variation). For every approach, CV is lowest for D and highest for D*. 
The pseudodiffusion parameters exhibit lower CVs in malign lesions than in benign lesions, 
which may be a result of a more detectable/defined contribution to the IVIM signal. The 
pseudodiffusion parameter estimates from BSP and FBM possess lower CVs than those 
obtained from the conventional methods. 
 

Malignant D f D* 
SEG 0.28 0.88 1.49 
LSQ 0.39 0.98 1.31 
BSPmean 0.21 0.53 0.88 
BSPmode 0.21 0.49 1.09 
BUPmean 0.32 1 1.14 
BUPmode 0.27 0.97 1.58 
FBM 0.35 0.62 0.84 

    
Benign D f D* 
SEG 0.17 1.09 1.57 
LSQ 0.26 1.2 1.45 
BSPmean 0.11 0.62 0.77 
BSPmode 0.11 0.67 0.98 
BUPmean 0.18 1.07 1.26 
BUPmode 0.17 1.27 1.79 
FBM 0.21 0.75 1.01 

 
 
 
 


