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Abstract

Floating structures play a major role in a wide range of traditional industrial branches
as well as in recently developing sectors such as renewable energies. An accurate pre-
diction of the movement of floating structures induced by varying environmental loads
is essential for their design. Numerical models nowadays play a key role in the cal-
culation of processes in hydraulic and marine engineering, due to their advantage
in cost and time efficiency. Nonetheless, the traditional approach of physical model
experiments has not lost its importance since the validity of numerical tools has to be
ensured. REEF3D is an open-source numerical CFD solver developed at the Depart-
ment of Civil and Environmental Engineering at the NTNU. It solves the Reynolds
averaged Navier-Stokes equations in two phases using a finite differences method and
a level set method to capture the free surface between water and air. Floating struc-
tures are represented as a level set function, too. The motion of the function is based
on the rigid body dynamics in 6DOF. A directional immersed boundary method is
used to implicitly incorporate appropriate boundary conditions at the fluid-structure
interface. A set of benchmark data is to be generated at the physical wave flume of
the Ludwig-Franzius institute in Hanover, Germany. A simple cuboid wooden barge
of constant density is examined. The motion of the barge in various waves, ranging
from 2cm to 4cm in wave height and from 0.8s to 2.4s in wave period is tracked. The
configuration of the set-up varies from a soft-mooring-system, ensuring free motion of
the structure, to a traditional mooring system. The system includes springs of differ-
ent material parameters representing the elasticity of the mooring system in a slack
and a taut configuration and catenary mooring comprised of a small metal chain.
The movement is quantified using an OptiTrack Motion-Tracking System composed
of four cameras referencing three infra-red markers positioned on the test object. On
basis of these experimental results the influence of the mooring system on the motion
of the moored-floating barge is evaluated. The experimental data shall be compared
to numerical data. For this purpose, the experimental set-up is reproduced in the
numerical wave tank of REEF3D. A focus of the study is the investigation of the
different mooring models which are available in REEF3D: an analytical approach not
considering hydrodynamic forces and a quasi-static model solving the force equilib-
rium on a discretized line taking into account drag forces.
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Chapter 1

Introduction

1.1 Motivation

In a wide range of practical applications floating structures play a major role. As of
now more than a fourth of the world’s oil and gas production comes from offshore
(Agency (2018)). In addition, there are many arising industrial branches that rely
on floating bodies. Staying in the energetic sector, renewable energies are projected
to be produced offshore, with offshore wind energy platforms being constructed in
deeper seas of more than 50m depth (Bento and Fontes (2019)). Other concepts rely
on the use of wave energy to convert into electric energy (Blažauskas et al. (2015)).
In Norway a large export industry is salmon production from aquacultures, with
expected growth rates in the upcoming years (Ernst and Young (2017)). But not
only fish, even seaweed is cultivated in aquaculture farms (Sulaiman et al. (2013)).
All these structures have in common that they need to be kept in place for reliable
operation. This is done by mooring lines attaching the floating structure to the sea
floor. Various concepts exist including a wide range of materials and arrangements.
While the large structures for the oil and gas industry have traditionally been calcu-
lated using potential-theory, the smaller scale structures emerging a more accurate
calculation is desirable regarding the safe but also economic design of the structures.
Furthermore mooring lines can be an important factor for the function of the floating
structure such as presented in Fitzgerald and Bergdahl (2008), further illustrating
the need for a precise calculation.
Numerical simulations are a valuable tool in many disciplines, also established in
the field of marine engineering. They are able to reduce the cost and time caused by
physical simulations. The methods are evolving quickly and the computational power
available is increasing. But in order to generate reliable results, the solvers need to
be validated carefully to ensure they represent the real world properly.
Typical experimental set-ups include complex geometries for floating bodies repre-
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senting scaled equivalents of real floating bodies to be applied on the ocean. For the
validation of numerical tools, it is desirable to start with simpler geometries. Only if
their behaviour is represented correctly, the integration of more complex solid bodies
is an option.
No matter the importance of this simple data, it is usually difficult to obtain. One
set of benchmark-data available for a very simple barge stems from Ren et al. (2015),
but its reduction to just one wave reduces the possibilities of validation. A typical
application of a rather simple floating body is a floating breakwater. Here several
physical experiments were undertaken to estimate the movement under waves. The
influence of various parameters was examined. These are for the example the use of
pneumatic chambers in He et al. (2012), the use of different geometries, including
mesh and other porous elements in Ji et al. (2016), the use of horizontal plates in
Christensen et al. (2018) or different attachment points in Sannasiraj et al. (1998).
But either important parameters of the floating structure are not known or their
complexity makes them unnecessarily difficult to implement as a validation case.
Hydrodynamic forces on isolated mooring lines are also tested in experiments, as
for example in Bergdahl et al. (2016), but still no tests for a very simple geometry
combined with exactly controlled mooring line parameters was found.
As a consequence, a dataset especially considering these requirements was to be gen-
erated within this thesis, extending an existing dataset for a free floating barge to
allow for the validation of the floating-algorithm of the Computational fluid dynam-
ics (CFD)-solver REEF3D and the mooring models included. The experimental pro-
cedure is introduced in chapter 2 and results for different configurations are shown.
The advantages of CFD are already pointed out. However, it is a method relying
on numerous models, approximations and simplifications. It is therefore indispens-
able for the user to critical evaluate on the output of the model. Hence, profound
knowledge of the underlying concepts of the solver is necessary to apply it effectively.
On the other hand entire books are filled introducing mathematical descriptions, dis-
cretization methods and solution methods for the generated equations, so that it
would exceed the possibilities of this thesis to cover them all in detail. As a conse-
quence just the mathematical description of the problem is introduced, including the
treatment of turbulence, the different discretization schemes are pointed out, as well
as some criteria to evaluate the quality of the model before introducing the main idea
of the applied discretization scheme in chapter 3.
The results for the free floating barge are then presented in chapter 4 and compared
against the experimental data, before introducing the mooring systems in chapter 5.
The results are discussed in chapter 6. Concluding remarks and prospects for further
research are then given in chapter 7.
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1.2 Operating principle of mooring lines

Mooring chains or cables, that are conventionally used, have completely different
mechanisms of providing station keeping of a floating body than synthetic ropes do.
Chains provide a restoring force dependent on the part of it, that is lifted from the
floor. The more the platform is displaced the more of the chain is lifted from the floor
and the larger the restoring force caused by its own weight gets (Brown (2005)). The
elasticity of such a mooring cable is only activated in the case of extreme conditions
(Faltinsen (1990)).
Due to the large weight of this traditional mooring system, synthetic mooring lines are
recently of increasing interest. They are typically taut, but avoid shock loads on the
floating body due to their elasticity. The weight is reduced to one tenth, compared
to a steel mooring, so that their application is especially interesting in deep water
locations (Brown (2005)).
To be able to include both of these mechanisms in the numerical solver, validation
data for both types of mooring lines is generated. A mooring system typically consists
of several mooring lines, spread in different orientations. Also, additional elements
such as buoyancy elements or additional weights or interconnections between mooring
lines can be part of the system. Again the aim is to keep the validation data as simple
as possible, so no such elements are included in the tests.

1.3 Definition of the possible movements

Any body in space has six degrees of freedom in which to move. Consequently the
same possible motions also account for a floating barge. Those are three translational
movements along the axes, and three rotational movements around the axes. The
naming of the motions sometimes differs a little in literature, so a definition is given
here, to avoid any confusion following M J Journée and W Massie (2001). In the
current application the x-axis, is given oriented in the direction of the wave tank,
the y-axis as crosswise to it and the z-axis as vertical. An illustration is found in
Figure 1.1.

Surge (xb) Translational movement in x-direction

Sway (yb) Translational movement in y-direction

Heave (zb) Translational movement in z-direction

Roll (Φ) Rotational movement around the x-axis

Pitch (Θ) Rotational movement around the y-axis
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Figure 1.1: Definition of the six degrees of freedom

Yaw (Ψ) Rotational movement around the z-axis

In two dimensions this is reduced to just three degrees of freedom. In a plane within
the x- and z-axis, this is just the surge, heave and pitch motion.

1.4 Potential theory

Besides experimental and numerical approaches a third concept for the calculation of
the motion response in waves should also be mentioned. These are approaches relying
on the potential theory, for example given in M J Journée and W Massie (2001).
It is an approach relying on a simplified set of equations compared to the Navier-
Stokes (NS) equations introduced in section 3.2, that even allows for an analytical
solution in simple cases. The mathematical description of the problem makes it
necessary to introduce several assumptions. It is not the focus here, but same basic
concepts are given in the following, to show where the limitations are.
A potential function is introduced, that has no physical meaning, but its derivative
leads to the velocity vector (Faltinsen (1990)):

V = i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z
, (1.1)

where i,j and k are unit vectors.
In order to apply the theory two criteria have to be met:
The flow is free from rotation, that means all forces acting upon a particle are normal
to its surface (Durst (2006)).
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The second criteria is, that since water is incompressible the Laplace equation needs
to be fulfilled:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (1.2)

To solve these equations a set of boundary-conditions needs to be introduced. They
can be found for example in Faltinsen (1990). For an isolated water body this results
in the linear wave theory. This can now be used to incorporate the forces acting on
the body.
The motion of the body can be superimposed from different force components. This is
also done to calculate the motion in response to irregular waves. For a body in regular
waves two components are differentiated. These are the forces acting on a moving
body in still water and the forces induced by the oscillating water. For an isolated
heave motion, often used as an academic example (M J Journée andWMassie (2001)),
the body can now be described as a spring system, where the elastic and damping
components are determined analytically. The main assumptions, that need to be
made, are that the waves are not affected by the floating structure. Diffraction is not
taken into account, and the body is assumed to be small in comparison to the wave,
so that the force acting on the body’s bottom is constant. The advantage compared
to the approach introduced in this thesis is, that it is very effective.
In a case like the one presented in chapter 2 those assumptions are not really met, but
still with the rather gentle waves generated, the solution should not be too distant.
However, the idea of the solver is to have a tool that is able to handle a wide variety
of cases and not to rely on the same assumptions that have to be made in order to
find an analytical solution.
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Chapter 2

Physical model tests

2.1 Experimental methods

2.1.1 Barge

The tests were performed at the wave flume of the Ludwig-Franzius-Institute in
Hanover. The flume has a length of 110m and a width of 2.2m. It is equipped with a
piston-type wave maker. The barge consists of massive wood, leading to a uniformly
distributed mass. In order to prevent the material from swelling, it is sealed using
three layers of varnish coating. The dimensions of the box are 0.6m · 0.3m · 0.15m,
which results in a total volume of 0.0027m3, with a weight of 18.35kg. This results in
a density of ρ = 680kg/m3. On top of it four eye screws were placed to provide the
possibility to perform decay-tests, as well as two ones on the front and back at the
height of the waterline for attaching the mooring system, and one on the center of
each lateral side for attaching the soft-mooring system. A photography of this body
is given in the appendix.
The water level was chosen to 0.85 m for all experiments conducted. Two different
data sets were used for the validation of the numerical model. The one for the
soft-mooring system was generated in Meyer (2018), while the data for the set-ups
including a traditional mooring system were generated in the framework of this thesis.

2.1.2 Soft-mooring system

Two basic set-ups for the mooring system were chosen. The first one was a soft
mooring system, allowing for unhindered movement in pitch-direction, due to its
attachment point at the rotational axis. In the heave direction the influence of the
soft mooring-system is negligible, due to the orientation of the springs orthogonal
to the axis of motion. In Meyer (2018), it is shown, how small the influence of this
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Figure 2.1: Sketch of the experimental set-up for the soft-mooring configuration
[Meyer (2018)]

system is. It was implemented using an aluminium ring that surrounded the model
and was fixed to the wall of the flume. The ring and the lateral sides of the barge were
connected via a set of springs within an angle of 60◦ to the incident wave direction.
For each connection two springs with a constant of 10 N/m were placed into series,
resulting in a final stiffness constant of 5 N/m. In Figure 2.1, a sketch of this set-up
can be seen.
The barge was moored in a distance of 39.5m to the wave maker, in order to establish a
time-window of movement unaltered from reflecting waves returning from the flume’s
end, and also to reduce the length that has to be modelled by the numerical code.
For this set-up a total of seven ultrasonic wave gauges was used. Six of them were
positioned in a row in front of the barge and one was used next to it. This is the
dataset of Meyer (2018).

2.1.3 Traditional mooring system

The second basic set-up consisted of the same barge moored by a traditional mooring
system. Different materials for the mooring lines were chosen. The two main classes
are a rope mooring system and a small metal chain partly laying on the floor. For the
rope mooring four stiff polyethylene-ropes were connected to attachment-points at the
floor of the flume. Those points were weight ballasted. The top of the attachment
points was 12.5 cm above the floor. The material is very stiff, so that it is assumed
to stretch only negligibly under the given loads. To exactly control the elasticity of
the mooring system, to account for the stretch within real applications and to avoid
shock loads, the connection to the barge was established, via a set of springs. Three
different sets of springs with elasticity-constants of 0.072N/mm (F1), 0.209N/mm
(F2) and 0.305N/mm (F3) were used. For all of the constants a horizontal distance
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Figure 2.2: Sketch of the experimental set-up for the traditional mooring configuration
(chain and taut)

of 8.30 m between the attachment points was examined, that is 4 m distance from
each side of the box. In order to allow for the change of the springs, the connection
was established via a set of two key rings on each mooring line. The length of the line
was chosen to 3.97 m, so that the diagonal length including the springs and the key
rings cumulated to 4.07 m. This matched exactly with the diagonal length between
the attachment points. The density of the rope material is with ρ = 0.97g/cm3 a
little lower than the one of water so that it creates some buoyancy. Due to the use of
the metal key rings and the springs, no such behaviour could be observed.
On the attachment points the forces exerted on the mooring lines were measured
using force sensors. Due to the fact that the system was symmetric and the long
drying periods for the sensors, of which only a limited amount was available, only
one side in front of the barge and one side behind it were measured. A sketch of this
set-up is depicted in Figure 2.2.
In addition, a slack configuration was also tested. The same mooring lines with the
spring F1 were used, but the attachment points at the floor were moved closer to each
other. The horizontal distance in between was then only 7.90 m. The length of the
mooring lines were left unchanged.
The second system consisted of four metal chains with a length of 4.23 m and a weight
per unit length of 0.023 kg/m, that connected the box to attachment points, the same
way as described above. The horizontal distance between the attachment points on
the sea floor was the same as in the taut configuration, so that the chain partly lay
on the bottom. Therefore, it was not possible to measure the forces here. Due to
the fact that no properties of any prototype had to be met, the choice of material
was done following the availability in the retail market. A summary of the tested
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Table 2.1: Overview over the tested configurations

Parameter Soft-
mooring Traditional mooring

Line
material

Horizontal
springs

Chain
(ρ = 7.85 g

cm3

γ0 = 0.023kg
m
)

Polyethylene rope + springs
(ρ = 0.97 g

cm3 , d = 1.5mm )

Distance
anchoring
points

8.30 m 8.30 m (Taut) 7.90 m
(Slack)

Length of
the line 4.23 m 4.07 m

Spring
used

0.072
N/mm
(F1)

0.209
N/mm
(F2)

0.305
N/mm
(F3)

0.072
N/mm
(F1)

configurations and the parameters of the material is given in Table 2.1.
The model was positioned in 15 m distance to the wave-maker. For this set-up only
four ultrasonic wave-gauges were used. Two of them were positioned next to each
other in front of the barge, and two of them positioned on each side of the barge.

2.1.4 The tracking-system

An OptiTrack-system was used, to measure the barge’s movement in reaction to
the waves. It consists of four infra-red cameras, located in the four corners around
the barge. On top of the barge, three infra-red-LEDs were positioned, powered by
a battery-pack. The aim of the use of active markers was to avoid problems due to
reflections of the infra-red light on the water surface, which would have occurred using
passive markers. Additionally to the infra-red cameras, a traditional video-camera
was installed for visualization of the movement.
Considering the specific local conditions and the position of the measurement PC, all
sensors were connected to two HBM Quantum measurement amplifiers. These were
synchronized using a trigger in form of a battery-pack connected to the amplifiers as
well to an additional Light emitting diode (LED) mounted on the side of the flume,
where it could be registered by all of the cameras. Switching on the trigger led to an
electric tension, registered on the amplifiers and also switching on the LED.
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Table 2.2: Overview over the tested waves

wave-height [cm] wave-period [s]
2 1 1.6
3 0.8 1 1.2 1.4 1.6 1.8

2.1.5 Data evaluation

The resulting data was analysed in use of the program MATLAB, as presented in
Meyer (2018). Both, the wave gauge data and the motion-tracking data were prepro-
cessed using a low-pass filter to remove high frequency-oscillations as well as noise.
The data series was cut according to the time the trigger-LED was visible and the
movement calculated according to the position of the center of gravity and the rota-
tion.

2.1.6 Decay-tests

In order to capture the movement of the body undisturbed from waves, several decay-
tests were performed. These consist of an evaluation of the movement without ex-
ternal wave forces. The barge is displaced and the motion until it returns to its
equilibrium position is tracked.
Two different kinds of decay-tests were performed, one for the heave movement and
one for the pitch movement. For the heave-test, the body was lifted via a rope, which
was then cut. For the pitch decay test a person had to enter the flume and press on
one edge to induce a rotation to the body. After the water was still the body was
released.

2.1.7 Tests under regular waves

For the tests under regular waves, each mooring configuration was exposed to a set
of seventy waves in a row, with the same parameters. After the water reached a
still status again the parameters were altered. Each configuration was tested under
the influence of eight different waves shown in Table 2.2. In this thesis no Response
amplitude operators (RAO) are generated, but the exact time series of the movement
of the barge is compared. Therefore three waves were chosen displaying the whole
range of the periods tested, for further examination. The ones picked have a period
of 0.8 s, 1.2 s and 1.6 s, all with a height of 3 cm.
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Table 2.3: Overview of the parameters of the examined waves

Parameter:
Period: 0.8 s 1.2 s 1.6 s

wavelength [m] 0.999 2.213 3.604
wave number 6.290 2.839 1.7434
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Figure 2.3: Movement under different mooring configurations in the experiment
(T=0.8 s, H = 3cm)

2.2 Experimental results

2.2.1 Depiction

In the following the focus is just on the influence of the mooring systems compared
to the soft-mooring system and the influence of the different parameters of the tra-
ditional mooring system, since the observations on the movement the soft-moored
barge are already given in detail in Meyer (2018). All plots are dimensionless using
the wave period FT for normalizing the time, the water depth d to normalize the
translational movements and the wave number k times water depth d to for the rota-
tional movements. To allow for an idea of the absolute values of the movements, the
numbers are given in Table 2.3. The windows were chosen in such a way, that the
heave phase of the experiments matches.

2.2.2 Comparison between the traditional and the soft moor-
ing system

In Figure 2.3 to Figure 2.5, the behaviour of the body under different waves can be
seen for the soft-moored system, the taut rope-mooring with spring F2 and the chain.
A similar influence of the mooring-system under all the waves can be observed. The
heave motion is only slightly affected with an increase of amplitude with the chain
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Figure 2.4: Movement under different mooring configurations in the experiment
(T=1.2 s, H = 3cm)
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Figure 2.5: Movement under different mooring configurations in the experiment
(T=1.6 s, H = 3cm)
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Figure 2.6: Movement of the barge in the experiment with different rope mooring
parameters ( T = 1.2 s, H = 3cm)

mooring applied, for the waves with a period of 0.8s and 1.2s. The rope mooring does
not show any influence on this motion.
In contrast, the influence on the pitch motion is enormous with an increase of the
amplitude of more than twice for waves T = 0.8 s and T = 1.6 s. For waves with a
period of 1.2 s, the increase is not that high but still significant. The chain mooring
has only a small influence on this movement. For the shortest wave, a phase lag
compared to the free-floating barge can be observed, while for the largest wave some
lower troughs can be observed. On the waves with T = 1.2 s, no influence can be
observed at all.

2.2.3 Influence of the mooring line parameters

In the following the three different spring constants, are compared against each other
in regular waves with a period of 1.2s and H=3cm. Again it can be seen, that the
influence on the heave motion is minimal, but the different mooring-line configurations
lead to different pitch movements. The smallest motions are observed using the
stiffest spring F3, and the largest amplitudes can be seen with the most flexible
spring F1 used. The movement for spring F2 lies in between the two. The difference
in amplitude is not excessively large with 2.8 for spring F3 and 3.4 for spring F1.

2.2.4 Influence of the horizontal distance between the attach-
ment points

It can be seen, that the slack mooring configuration shows almost the same motion
as the soft-moored one in a wave of 1.2 s (Figure 2.4). The heave amplitude is
a little increased, leading to higher values than for the soft-moored and the tense-
moored configuration. The peak-values of the pitch motion are also increased, but
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Figure 2.7: Movement of the barge in the experiment with different attachment points
at the floor (T = 1.2 s, H = 3cm)
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Figure 2.8: Movement of the barge in the experiment with different attachment points
at the floor (T = 1.6 s, H = 3cm)
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still significantly lower than for the taut mooring-configuration. The troughs match
with the soft-moored configuration. The pitch motion of the tense mooring system
lags compared to the one of the other two motions.
For a wave of 1.6 s (Figure 2.8), the influence is similarly small. No difference in the
heave motion of the experiments can be observed, but the pitch motion also shows
some lag in the phase. The troughs in the pitch motion of the slack configuration are
slightly reduced compared to the free-floating one.
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Chapter 3

Numerical methods

3.1 Numerical approach

Two ways of describing the mechanics of a fluid are established. These are the La-
grangian point of view and the Eulerian one. The Lagrangian one is based on a
viewing point, that moves with the fluid (Laurien and Oertel (2018)). This concept is
underlying to an numerical approach called Smoothed particle hydrodynamics (SPH).
Recently this idea got some attention (see for example Ren et al. (2015)). The method
has some advantages like the capturing of the free surface, but a major problem is
the definition of boundaries at the interface between solids and the fluid.
The Eulerian point of view instead, is fixed while the fluid moves relative to it. It is
then used to examine the flows passing through a fixed volume of control (Laurien
and Oertel (2018)). This is the more common approach in CFD, and also used in
REEF3D.

3.2 Governing equations

3.2.1 Momentum equation

Numerical simulations of flow are used in many disciplines. They are all based on
the same principles and mathematical approaches. However, the properties of the
models and the questions arising are different in marine engineering, than in other
disciplines. As a result the focus is just on the equations important for this thesis
and the more general fundamentals are not mentioned.
The mathematical description of the flow is given by the NS-equations. In the given
range of applications the solver just treats fluids that are viscous, but the range of
the Mach number, that sets the velocity in relation to the speed of sound, allows the
assumption of an incompressible flow. The governing equations for three dimensions
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are composed of four equations: the momentum equation for each coordinate direc-
tion and in addition the continuity equation, based on the conservation of mass is
introduced.
There are various ways of derivating the NS equations. This summary is following jr.
Oertel et al. (2015). The momentum equation is formed as the sum of all momentums
entering the control volume, the ones leaving the control volume, the tensions acting
on it and the forces acting upon the mass. For the mass we will restrict to the forces
of gravity. The pressure of the fluid is acting upon all the sides of the boundaries is
the normal stress. Including it in the equation leads to a term of its space derivative
for each equation. The shear and normal tensions depend upon the flow properties of
the fluid. Applying Newton’s second law, this leads to a description of the resulting
forces depending on the derivatives of the velocities and the viscosity ν.
Finally, this results in the complete NS-equations for an incompressible fluid, pre-
sented in compact tensor notation (Laurien and Oertel (2018)):

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ gi (3.1)

The discretization of the different terms in the equation differs, so a short overview
of the components should be given. On the left hand side, there is a transient term
dependent on the time and a convective term formed depending on the first derivative
in space. On the right hand side, there is a pressure term, a diffusive term, smoothing
out gradients and accounting for the energy consumption in a real fluid and a source
term that just includes gravity in this context.

3.2.2 Continuity equation

Additionally to the conservation of momentum, the conservation of mass has to be
ensured. In a similar way as for the momentum, the resulting flows over the bound-
aries of the volume can be balanced. For a detailed summary again see jr. Oertel
et al. (2015). For an incompressible fluid this results in:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.2)

or in tensor notation:

∂ui
∂xi

= 0. (3.3)
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Figure 3.1: Demonstrative eddy structure in a flow(left) and time dependency of a
velocity component in a fixed point(right) [Ferziger and Perić (2008)]

3.3 Turbulence treatment

3.3.1 Direct numerical simulation

With these equations it is already possible to compute an exact solution for the
processes in a fluid. There are four equations now for the four unknown variables
u, v, w and p. Due to the turbulent nature of the flow in typical applications, the
scale of the resolution in space and time needs to be very fine in order to include the
whole energy-cascade. This makes the calculation extremely demanding and requires
high computational capacities. This method known under the name Direct numerical
simulation (DNS) is therefore mainly used in basic research or for the validation of
other numerical methods.

3.3.2 Large eddy simulation

A widely used method to reduce the computational cost, is the Large eddy simulation
(LES). Here, only the largest eddies are simulated, while the smaller ones are modelled
making use of the self similarity of the turbulence structures both in space and time.
An illustration of the eddy structure in a flow and the resulting simplifications can
be seen in Figure 3.1. The basis for this method are filtered versions of the NS
equations. Details can for example be found in Ferziger and Perić (2008). Despite
the reduction of the computational expenses, calculations are still quite demanding,
while the results are more precise than required in many applications.
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Figure 3.2: Turbulence averaging for a stationary flow (left) and an instationary one
(right) [Ferziger and Perić (2008)]

3.3.3 Reynolds averaging

In typical engineering applications the user is not interested in knowing all the pa-
rameters of a turbulent flow. Usually it is enough to know about the influence of the
eddies on the mean flow in form of the energetic consumption they induce. Hence, ap-
proximations are introduced to the NS-equations to further reduce the computational
cost. In the process of Reynolds averaging the equations all variables depending on
time are split into an averaged one φ̄ and a fluctuating one φ′ according to (Ferziger
and Perić (2008)):

φ = φ̄+ φ′ (3.4)

with:

φ̄ =
1

δt

∫
δt

φdt (3.5)

and:

0 =
1

δt

∫
δt

φ′dt (3.6)

An illustration of this step is given in Figure 3.2. Replacing all parameters of the
NS equations with the averaged and fluctuating one leads to the Reynolds averaged
Navier-Stokes (RANS) equations. Since the average of the fluctuations is zero by
definition, the linear components of the equation velocity, pressure and friction are
replaced by the averaged ones. For the quadratic nature of the diffusive terms, the
fluctuating component is not averaged to zero but additional terms of correlation be-
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tween the components of the fluctuating velocities arise (Laurien and Oertel (2018)).
These so called Reynolds tensions are summarized to a tensor:

τij = −ρ

u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

 (3.7)

Including this tensor in the NS-equations leads to the RANS equations.

∂ūi
∂xi

= 0 (3.8)

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− u′iu′j

)
+ gi (3.9)

Due to the introduction of the new fluctuating components, the number of unknown
variables exceeds the number of equations to determine them. In order to overcome
this so-called closure problem a new set of equations has to be introduced. Those
are the turbulence closure models, of which various approaches exist. To keep the
structure compact, just the one being applied is explained further.

3.3.4 Classification of turbulence closure models

Following Laurien and Oertel (2018) turbulence models can generally be grouped in
four categories as summarized in Table 3.1.

Table 3.1: Classification of turbulence models [Laurien and Oertel (2018)]

Category:
Class: isotropic anisotropic

eddy viscosity Reynolds-tension
Algebraic models Prandtl-mixing length algebraic
Models without transport Baldwin Lomax Model Reynolds-tension models
Zero-equation models
Differential-equation models k − ε model τ − ε model
Transport models k − ω model τ − ω-model
One/two-equation models SST -model

Reynolds tension models are used to model certain properties of flow connected to
anisotropy of the turbulence, that can not be modelled by other turbulence models,
for example secondary flow. They play no role in the framework of this thesis and
are therefore not explained further.
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A widespread concept underlying all the models in the left column of the table is to
model the turbulence induced tension as an eddy viscosity. This viscosity induces an
energy consumption during flow, analogously to the dynamic viscosity. However, it
is not a material parameter but depends on the local flow properties. Due to the fact
that the estimation of turbulence is reduced to one parameter in all three directions,
isotropy of the turbulence is required. The Reynolds tensions are modelled as a
single unknown viscosity depending on known averaged flow properties according to
the Boussinesq-approximation (Laurien and Oertel (2018)):

τ ′ij = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij, (3.10)

where δij is defined as the Kronecker-delta.
As can be seen in Table 3.1 several approaches exist, to determine the parameter
νt. The algebraic models in the top line rely on algebraic equations and are mostly
used for very specialized applications due to their lack of accuracy on more general
problems. An exception is the mixing length model of Prandtl, that is of major
historical importance, and is still used especially for modelling the viscous underlayer
of a flow, due to its high precision in this area proven by DNS ( Laurien and Oertel
(2018)).

3.3.5 Two-equation models

The most commonly used approaches in CFD are the two-equation models, intro-
ducing two additional transport equations for turbulent parameters. In REEF3D the
models provided are the k-ε and the k-ω-model (Wilcox (2006)). Both models pro-
vide a transport equation for the specific turbulent energy k and a second transport
equation for ε, respectively ω. An advantage of the k-ω-model is the resolution in
vicinity to the wall. A third common approach is a mixture of both models, the SST-
model (Menter (1993)), with a k-ω-model close to the wall and a k-ε one in distance
to it. Since its application in this thesis, the main equations of the k-ω-model are
introduced in the following.
νt is calculated taking into account the kinetic energy k, the specific turbulent dissi-
pation ω (jr. Oertel et al. (2015)):

νt =
k

ω
. (3.11)

The turbulent kinetic energy k is given by the fluctuating components of the velocity
defined as:

k =
1

2
(u′2 + v′2 + w′2) (3.12)
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Two additional transport equations are introduced to balance these two parameters.

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − βkkω (3.13)

∂ω

∂t
+ uj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+
ω

k
αPk − βω2 (3.14)

where Pk is the turbulent production rate and the coefficients have the empirically
determined values α = 5

9
, βk = 9

100
, β 3

40
, σk = 2 and σω = 2 (Bihs (2018)) .

3.4 Computational methods

3.4.1 General methods

So far the mathematical formulas and models to describe the processes in a fluid
within a given range of applications were described. For the implementation of these
formulas in a CFD-solver, discretization from the continuum to a finite number of
calculating points is required since the equations can not be solved analytically.
Three methods of discretization are typically applied in CFD. Of course each method
has some typical advantages and disadvantages. These are (Ferziger and Perić (2008)):

Finite Volume Method The solution domain is split into a finite number of control
volumes. The integrated form of the conservation equation is used to compute
the exchange over the surface of the control element, with the values on the
surface being interpolated from the variables known at the center of each vol-
ume. This results in an algebraic equation for each control volume, that includes
variables from the computing node and the ones from the neighbouring cells.
The main advantages are that the method is applicable to unstructured grids,
conservatism is ensured and all the terms are physically interpretable. On the
other hand higher orders than the second are difficult to obtain on unstructured
grids.

Finite Elements Method The solution domain gets divided into a number of un-
structured finite elements. The equations are multiplied with a weighting func-
tion before integrating them over the whole solution domain. The use of un-
structured grids makes it possible to specifically refine it in areas of interest
and adapt it to a wide number of geometries. The main difficulty is then the
efficient solution method for the unstructured matrices.

Finite Differences Method The conservation equations are approximated for each
point on a grid covering the solution domain by replacing the partial deriva-
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tions using a discrete formulation based on the node values. This results in an
equation for each grid point, that includes its own variables as well as a number
of the neighbouring ones, depending on the order of the method. The main
drawback is that a structured grid is required, which results in a comparatively
high number of grid points. On the other hand the approach allows for higher
order methods, and with progressing availability of computational resources the
number of mesh points is of decreasing importance. This is the approach used
in REEF3D.

3.4.2 Requirements

To make reliable calculations possible, a numerical tool has to fulfil a number of
criteria. Since they are used to explain the advantages of several parts of the solver, a
quick overview of them according to Ferziger and Perić (2008) is given before dealing
with the details of the tool.

Consistency: With decreasing size of the mesh’s cells the difference between the
discretized solution and the exact one should converge to zero. It is usually
estimated using Taylor-series.

Stability: The numerical method is called stable if the errors occurring during the
calculation do not build up. For iterations that means, the solutions to it are
not diverging. Examining this is difficult, especially for complex, non-linear
equations. Many methods require the time step, not to exceed a certain level,
so a criterion is introduced in subsection 3.4.3.

Convergence: Convergence describes the convergence to the exact solution of the
differential equation. It is often demonstrated in showing that the method is
stable and consistent.

Accuracy: Resulting from the fact that numerical solutions to flow problems are
just approximations, several errors are induced. There are different types of
errors that should be differentiated, to allow for precisely improve the numerical
solution. These are:

Model errors: Deviation between the mathematical description of the prob-
lem and the real flow.

Discretization errors: Deviation of the exact solution of the differential equa-
tions and the discretized one.

Iterative errors: Deviation between the exact solution of the algebraic equa-
tion system and the iterative solution to it.
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3.4.3 Finite differences method

Due to the application in this work, the main idea of the spatial discretization in the
finite differences method is given in some more detail. For other general aspects of
the discretization see the literature (for example Ferziger and Perić (2008), Griebel
et al. (1998)).
Underlying to the method is a structured grid, which means an obvious relation to the
neighbouring cells exists. The values of the variables at the knots, the intersections
between the lines, are unknown. As mentioned above the idea of the method now
consists of solving the local differential equation by approximating it by the tangent
in use of the neighbouring values. A visualization for a one-dimensional discretization
and three simple schemes can be seen in Figure 3.3.
The tangent is either formed by the right-neighbouring point (forward difference):[

du

dx

]
=
u(xi+1)− u(xi)

∆x
(3.15)

the left neighbouring knot (backward difference):[
du

dx

]
=
u(xi)− u(xi−1)

∆x
(3.16)

or including both points(central differences):[
du

dx

]
=
u(xi+1)− u(xi−1)

2 ·∆x
(3.17)

From this simple example it can already be seen, how close the approximation gets
to the precise solution, depending on the distance of the points and the method ap-
plied. The difference is decreasing with the number of knots included in the scheme
for approximation. This can be shown by calculating the difference between Taylor-
polynomials approximating the derivative and the approximations given above. An
error dependent on the power of ∆x is left. This exponent is referred to as the order
of the discretization method, and describes how the error gets smaller with decreas-
ing mesh size. For the presented approximations that means the central differences
method is of second order, while the other methods are only of first order, so the error
linearly depends on the grid size.
A problem for higher order discretization schemes can be non-physical oscillations
affecting the stability of the solution (see subsection 3.4.2). They arise if the mesh
discretization is too coarse (Griebel et al. (1998)). An illustration of this is given in
Figure 3.4.
Resulting from this numerous schemes have been developed on approximating the
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Figure 3.3: The different spatial discretization on a generic example for 1D [jr. Oertel
et al. (2015)]
F
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Figure 3.4: Illustration of stability problems on a diffusion/convection problem
[Griebel et al. (1998)]

derivative. The scheme applied in the solver is presented in subsection 3.5.2.
The diffusive terms include the second order derivative, which means that the ap-
proximating schemes for the first derivative are just applied two times. For a central
difference formulation this yields:[

d2u

dx2

]
=
u(xi+1) + u(xi−1)− 2uxi

∆x2
(3.18)

The time can be seen as a fourth coordinate direction, which is also discretized in
time steps ∆t. Different from the spatial coordinate the information is just trans-
ported in one direction. Any influence can only affect the future of the flow, there
is no influence acting backwards (Ferziger and Perić (2008)). Consequently the dis-
cretization methods are adapted. A rather intuitive approach to it are the two level
solution methods. For the generic variable Φ the value of a time step in the future
can be determined adding the integral over the derivation in time, and then using the
obtained value as a new initial value:

Φn+1 = Φn +

∫ tn+1

tn

∂Φ

∂t
dt. (3.19)

Four rather simple approaches to solve the discretized form of the integrals, that can
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Figure 3.5: The four schemes for time discretization presented, from left to right:
Explicit Euler, Implicit Euler, trapezoidal rule, midpoint rule [Ferziger and Perić
(2008)]

still be geometrically interpreted (Figure 3.5) are given by Ferziger and Perić (2008).
With ∂Φ

∂t
= f(t,Φ(t)) these are:

• The explicit Euler method uses the initial point Φn+1 = Φn + f(tn,Φ
n)∆t

• The implicit Euler method uses the final point Φn+1 = Φn + f(tn+1,Φ
n+1)∆t

• The trapezoidal rule uses an interpolation between the points Φn+1 = Φn +
1
2
[f(tn,Φ

n) + f(tn+1,Φ
n+1)]∆t

• The midpoint rule uses the value in between the initial and final point Φn+1 =

Φn + f(tn+ 1
2
,Φn+ 1

2 )∆t

Since all methods, except the explicit Euler method, require the unknown value of a
time step tn in the future, they require further approximations or iterations.
Like in space a number of more complex approximation of this derivative have been
developed. The ones applied here are given in subsection 3.5.3. To ensure the stability
of the methods, it has to be ensured, that the time step is sufficiently small. The
Courant-Friedrich-Levy (CFL)-condition, as a method to set the timestep in reference
to the spatial coordinate, is applied. It is defined as:

CFL = u
∆x

∆t
≤ 1. (3.20)

The discretized expressions for both, time and space can then be written as a system
of matrices, including initial and boundary-conditions, that is solved. Here again,
various approaches exist. See for examples Ferziger and Perić (2008).
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3.5 Implementation in REEF3D

3.5.1 Development of the model

REEF3D is a numerical tool developed at the department of civil engineering at the
NTNU in Trondheim. It is designed under the premise of large super-computers
available and focuses therefore on accuracy and the user productivity. The code is
open source and written in C++, so that it is available for everyone and editable for
many users due to the programming language being widely spread ((Bihs, 2018)). For
post-processing the data paraview is suggested. After introducing the mathematical
descriptions of the problem and giving a small overview over the basic concepts of
solution methods in CFD, in the following the specific implementation in REEF3D
is summarized.

3.5.2 Spatial discretization

Upon the different terms of the RANS equations, different methods of discretization
are applied. The convective term typically suffers from numerical diffusion leading
to a damping of waves. Another aspect is the stability and effectivity of the method.
Higher order discretization schemes typically affect the numerical damping positively,
while they are often problematic concerning stability. The WENO method according
to Jiang and Shu (1996) is one that balances these needs. It is an extension of
the ENO scheme adding extended limiters to improve the solution at discontinuous
gradients.
By simply interpolating the values of the neighboured grid-knots the convection ve-
locity ũ is acquired:

ui
∂ui
∂xi
≈ 1

∆x
(ũi+1/2ui+1/2 − ũi−1/2ui−1/2) (3.21)

Based on Equation 3.21 the WENO procedure then reads:

U±i+1/2 = ω±1 U
1±
i+1/2 + ω±2 U

2±
i+1/2 + ω±3 U

3±
i+1/2 (3.22)

This is the three ENO stencils U1±
i+1/2, U

2±
i+1/2, U

3±
i+1/2, weighted with the use of the

non-linear weights ω.
The three stencils are:

U1−
i+1/2 =

1

3
ui−2 −

7

6
ui−1 +

11

6
ui

U2−
i+1/2 = −1

6
ui−1 +

5

6
ui +

1

3
ui+1 (3.23)
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U2−
i+1/2 = −1

3
ui +

5

6
ui+1 −

1

6
ui+2

The inclusion of five points in total, make it a fifth-order scheme.
The weights are calculated as follows:

ω±1 =
α±1

α±1 + α±2 + α±3
, ω±1 =

α±2
α±1 + α±2 + α±3

, ω±1 =
α±3

α±1 + α±2 + α±3
(3.24)

with:

α±1 =
1

10

1

(ε̃+ IS±2 )2
, α±2 =

6

10

1

(ε̃+ IS±2 )
, α±1 =

1

10

1

(ε̃+ IS±2 )
, (3.25)

The weighting is done according to the smoothness of the function, and therefore the
stability is increased. The weights will be largest for the stencil with the smoothest
solution, while for stencils with larger gradients the weight will get smaller. For the
case that two weights are put to zero, due to large gradients, the order will be three.

3.5.3 Time treatment

For the discretization in time high numerical accuracy and stability are required. The
explicit third-order Total variation diminishing (TVD) Runge-Kutta scheme following
Shu and Osher (1988) is fulfilling this requirements. The discretization is explicit and
of third order. It is applied to the momentum equations and the level set function.
For a generic variable φ, the equations are:

φ(1) = φn + ∆tL(φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL(φ(1)) (3.26)

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆tL(φ(2))

To control the CFL number, adaptive time-stepping is applied, taking into account
the influences from diffusion, velocity and a source term, such as gravity(Bihs et al.
(2016):

∆t ≤ 2

( |u|max
dx

+D

)
+

√(
|u|max
dx

+D

)2

+
4|Smax|
dx

−1

(3.27)

with the diffusion term:
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D = max(ν + νt) ·
(

2

(dx)2
+

2

(dy)2
+

2

(dz)2

)
(3.28)

The discretization of the two-equation turbulence model, using an explicit time-
stepping scheme such as TVD Runge-Kutta, would lead to a small time step compared
to the one from the momentum equation. As a consequence, these equations are dis-
cretized with the use of an implicit first-order Euler scheme (Bihs et al. (2016)).
To solve the equations of the floating body, a second-order accurate Adams-Bashforth
scheme is applied. For a generic variable φ, that is (Bihs and Kamath (2017)):

φ(n+1) = φ(n) +
∆t

2
· (3φ̇(n+1) − φ̇(n)) (3.29)

3.5.4 Pressure discretization

Unlike the other components of the RANS equations, there is no independent equation
to calculate the pressure term. Chorin’s projection method is applied in order to
overcome this (Chorin (1968)).
In the predicter step, the pressure term is removed from the momentum equations.
The resulting velocity after applying the time discretization is used to form a Poisson
equation, the pressure needs to fulfil in order to ensure a divergence free flow field
(Bihs et al. (2016)):

∂

∂xi

(
1

ρ(φn)

∂pn+1

∂xi

)
=

1

∆t

∂symustern

∂xi
(3.30)

The solution of this equation is obtained using the BiCGStab algorithm from the
HYPRE library (van der Vorst (1992)). This iterative method is applied due to high
computational expenses it takes to solve the equation. In the next time step, the
divergence free velocity is acquired by correcting the intermediate velocity field with
the resulting pressure term:

un+1
i = u∗i −

∆t

ρ(φ)

∂p

∂xi
(3.31)

3.5.5 Turbulence model in REEF3D

As mentioned in subsection 3.3.5, a k-ωmodel is applied. In addition to the gen-
eral approach, REEF3D includes some additional terms which are explained in the
following (Bihs et al. (2016)).
To include the surface roughness, Schlichting’s rough wall formulation is used at solid
boundaries (Schlichting (1979)) :
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u+ =
1

κ
ln

(
30y

ks

)
. (3.32)

To avoid overproduction, an eddy viscosity limiter for the region outside of the bound-
ary layer is established. As a consequence, two terms for the calculation of νt are
evaluated according to:

νt = min

(
k

ω
,

√
2

3

k

|S|

)
(3.33)

In the region of the free surface the dissipation is increased: Since this is usually
not included within turbulence model and would lead to an overestimation of the
turbulence close to the surface, a damping-scheme is included.
This is:

ωs =
c

1
4
µ

κ
k

1
2 ·
(

1

y′
+

1

y∗

)
(3.34)

,with y′ = 0.07 cµ = 0.07 and κ = 0.4 (Bihs et al. (2016)).

3.5.6 Free surface capturing

To account for the free surface in the intersection between water and air, the flow
is modelled as a two-phase system. The level set function φ describes the shortest
distance to the interface Γ. The interface is defined as the zero contour, while the
two phases are distinguished by the change of the sign (Osher and Sethian (1988)):

φ(~x, t)


> 0 if ~x ∈ phase1
= 0 if ~x ∈ Γ

< 0 if ~x ∈ phase2
(3.35)

A convection equation is introduced for the level set function. This is:

∂φ

∂t
+ uj

∂φ

∂xj
= 0 (3.36)

This equation is solved numerically with use of the Hamilton-Jacobi version of the
WENO scheme in space and the third order TVD Runge-Kutta scheme in time. In
order to keep the signed distance property of this function, that would otherwise
be lost with evolvement of the interface, a reinitialization algorithm is included that
reads (Sussman et al. (1994)):

φ

∂t
+ S(Φ)

(∣∣∣∣ ∂φ∂xj
∣∣∣∣− 1

)
= 0. (3.37)
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Figure 3.6: A staggered grid [Griebel et al. (1998)]

3.5.7 Immersed boundary

The grid applied is a staggered one, meaning that in contrast to a collocated one
the variables are not all defined on the knots but on different points within the grid
(Figure 3.6). This is favourable especially regarding the pressure-velocity coupling.
The boundaries are defined as ghost cell immersed boundaries in all three dimensions
(Berthelsen and Faltinsen (2008)). That is an extrapolation to fictious ghost cells
lying in the solid region. Hence the solver does not have to account for the con-
ditions explicitly, but they are enforced implicitly. Complex geometries to the grid
can be included via the STL-format, that can be generated from CAD-files. Simpler
geometries such as boxes, cylinders and wedges can be included directly.

3.5.8 Parallelization

REEF3D relies on supercomputer capacities for being able to provide high accuracy
on a small scale. To do so, advanced parallelization strategies are the key to make
use of the capacities effectively. The strategy used is the domain decomposition (Bihs
et al. (2016)). The simulation domain is split into several smaller domains which are
exchanging information on their boundaries through ghost cells. Making use of the
same method as for the solid boundary has the advantage of straight-forward coding.
For the exchange of the ghost cell values, the Message passing interface (MPI) is used.
Due to the use of the fifth order discretization scheme, three layers of ghost cells are

32



necessary.

3.5.9 Numerical wave tank

A numerical wave tank is implemented in REEF3D. It consists of a cuboid with
boundary conditions on each of the six sides. It is split into three sections, a wave
generation zone, a middle zone where the experimental set-up is placed and an ab-
sorption zone to prevent any reflections from the end of the tank (Bihs et al. (2016)).
For illustrative purposes see Figure 4.1.
The waves are generated and absorbed using the wave relaxation method. In compar-
ison to a Dirichlet type boundary, this leads to waves of higher quality (Mayer et al.
(1998)). Within the generation zone, the wave parameters are smoothly ramped up
to the analytical values of the wave theory chosen, while they are smoothly trans-
formed to the parameters of the still water level within the absorption zone. With
the dimensionless parameter x̃ for the length of the relaxation zone this reads:

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational (3.38)

w(x̃)relaxed = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational (3.39)

p(x̃)relaxed = Γ(x̃)panalytical + (1− Γ(x̃))pcomputational (3.40)

φ(x̃)relaxed = Γ(x̃)φanalytical + (1− Γ(x̃))φcomputational (3.41)

Γ is the relaxation function (Jacobsen et al. (2012)):

Γ(x̃) = 1− ex̃
3.5 − 1

e− 1
(3.42)

The analytical parameters are defined according to the wave theory chosen by the
user, such as linear waves, 2nd-order Stokes theory or 5th-order Stokes theory.

3.5.10 Floating algorithm

To describe the geometry of the solid body, a surface mesh is implemented. This
can be done by most CAD-programs exporting STL data files, or by using an inter-
nal algorithm of the tool for simple geometries. The intersections to the underlying
Cartesian grid are determined with a ray-tracing algorithm, that calculates the short-
est distance from a grid point to the closest triangle (Yang and Stern (2013)).
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A reinitialization algorithm according to Sussman et al. (1994) is again applied, re-
turning signed distance properties for a level set function in the vicinity of the solid
body. The ghost cell immersed boundary method of Berthelsen and Faltinsen (2008)
is applied to treat the solid fluid interface .
Using the pressure and viscous stress tensor, the forces acting on the surface Ω can
be determined as (Bihs and Kamath (2017)):

Fi,e =

∫
Ω

(−nip+ niτ)dΩ. (3.43)

The acting moments on the body result as (Bihs and Kamath (2017)):

Mi,e =

∫
Ω

R× (−nip+ niτ)dΩ, (3.44)

with the distance to the center of gravity R and the surface of the body Ω.
Any point of the rigid structure is described by the body’s center of gravity and
the orientation in the inertial coordinate system. Using Euler angles to describe the
position leads to the position vector (Bihs and Kamath (2017)):

x = (x1, x2, x3, x4, x5, x6)T (3.45)

with the first components being the coordinates of the center of gravity, and the last
three ones being the three Euler-Angles φ, θ and ψ.
The introduction of a separate coordinate system for the solid body simplifies the
calculation of the body’s movement. The fluid flow is calculated in an inertial co-
ordinate system, and the floating body in a non-inertial coordinate system, so that
the the forces and moments can be calculated in the inertial system. The rotation
components in the non-inertial coordinate system are then given with:

ξ = (ξ1, ξ2, ξ3)T (3.46)

With the origin of the non-inertial coordinate system positioned in the body’s center
of gravity the moments of inertia are (Bihs and Kamath (2017)):

I =

Ix 0 0

0 Iy 0

0 0 Iz

 =

mR2
x 0 0

0 mR2
y 0

0 0 mR2
z

 (3.47)

with m the mass of the body and Rx, Ry and Rz the distances of a point to the center
of gravity. To transfer the acting moments M on the system from the flow to the
non-inertial system, it is necessary to include a rotational matrix.

Mξ = (M1,ξ,M2,ξ,M3,ξ)
T = J−1 ·Mx (3.48)

34



This results in a description of the translational movements as:ẍ1

ẍ2

ẍ3

 =
1

m
·

Fx1,xFx2,x
Fx3,x

 (3.49)

where Fx are the acting forces upon the system (Martin et al. (2018a)). The rotational
movements are described with the Euler equations in the non-inertial system (Fossen
(1994)).

Ixξ̈1 + ξ̇2ξ̇3 · (Iz − Iy) = M1,ξ

Iy ξ̈2 + ξ̇1ξ̇3 · (Ix − Iz) = M2,ξ (3.50)

Iz ξ̈3 + ξ̇1ξ̇2 · (Iy − Ix) = M3,ξ

By integrating 3.49 twice, the position of the body can be calculated analytically,
while the system 3.50 is solved numerically using the second-order accurate Adam-
Bashforth scheme (see subsection 3.5.3 ).
For physical interpretation the Euler angles need to be transformed back into the
inertial coordinate system.
Fluid-structure coupling is done in a a weak form. Acting forces from the fluid on the
structure are calculated first, and the position of the structure is calculated. The fluid
properties are updated afterwards, including the boundary-conditions of the solid in
use of the ghost cell immersed boundary method (Berthelsen and Faltinsen (2008)).
The velocities and pressure are both calculated from the motion of the body.

3.5.11 Mooring models

Catenary mooring model

Three different models to account for the behaviour of the mooring lines of different
complexity can be applied within the framework of the tool. Due to the different scale
in space of the mooring lines compared to the floating body, a direct inclusion via the
RANS equations would require the model to be extremely high resolved. Regarding
the inefficiency of this approach other ways of calculating the forces from the mooring
lines upon the structure are presented.
The simplest approach is an analytical way, the so called catenary model. Here, the
forces are just calculated dependent on the starting and end point of the line and its
weight. To apply this model, parts of the mooring line have to lay on the ground.
Static conditions with no current have to be assumed in order to find an analytical
solution. A sketch of a line with the different parameters can be seen in Figure 3.7.
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dxy

dz Fhx

z

Figure 3.7: Catenary mooring model

A catenary equation describes the shape of a line dependent on the weight and ex-
ternal forces as follows (Faltinsen (1990)):

z(x, y) =
Fh
γ0

·
(
cosh

(
γ0

Fh
·
√
x2 + y2

))
(3.51)

The influence of the mooring system on the body is included in a weakly coupled form.
Hence, the forces acting on the body by the mooring system need to be calculated.
The tension forces FT are calculated as follows:

FT (z) = Fh + γ0dz + (z − dz) · (γ0 + ρgA) (3.52)

Dependent on the distance between the fixed anchor point and the time varying
attachment point on the floating body, the horizontal force is calculated using a
Newton-Raphson algorithm for the following equation:

dxy =
√
dx2 + dy2 = L− dz ·

√
1 + 2 · Fh

γ0dz
+
Fh
γ0

· cosh−1

(
1 +

γ0dz

Fh

)
(3.53)

Knowing this force, the forces at each mooring point are calculated as follows:

X = Fhcos

(
tan−1

(
dx

dy

))
, (3.54)

Y = Fhsin

(
tan−1

(
dx

dy

))
, (3.55)

Z = Fhdz ·
√

1 +
2Fh
wdz

. (3.56)
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Figure 3.8: Discretization of the mooring lines [Martin et al. (2018b)]

The moments can then be computed multiplying the forces with the distances to the
center of gravity.

Quasi-static model

A more sophisticated approach that balances the need for a more precise calculation
and computational cost, is a quasi-static model, originally developed for floating nets.
It is not restricted to lines that partly lay on the floor and therefore allows for a more
general use. Details can be found in Martin et al. (2018c) and Martin et al. (2018b).
The dynamic of a mooring line neglecting bending stiffness is represented by the
following equation of motion:

γ0r̈ =
∂

∂s
(FT ~f) + fext, (3.57)

This equation is simplified assuming small line motion in time and steady state flow
of the fluid:

∂

∂s
(FT ~f) = −fext, (3.58)

This force equilibrium is discretized splitting each line into N bars of length l with
the knots P in between as can be seen in Figure 3.8 . Consequently the outer knots
are connected to the floating body and the bottom.
Gravity forces are taken into account distributing the line’s mass equally on all knots:

~
F

(j)
G = γ0 · ~g ·

ρm − ρ
ρm

· l
(j) + l(j+1)

2
, j =, ...N − 1 (3.59)

The hydrodynamic forces FH are taken into account using Morison’s formula at each
bar:
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z

Figure 3.9: Force equilibrium on a single node P (j)

~FH
(j)

= l(j)d(j)ρ

2
· [ct(ui · ~f)]|ui · ~f | · ~f +cn(ui− (ui · ~f) · ~f)|ui− (ui · ~f) · ~f |](j), j = 1, ..., N

(3.60)
Finally this leads to the discrete formulation for the inner knots for the knot P (j),
illustrated in Figure 3.9 :

~f (j+1)F
(j+1)
T − ~f (j)F

(j)
T +

~
F

(j)
H +

~
F

(j)
G = ~0, j = 1, ..., N − 1 (3.61)

The elasticity is included by calculating the length l dependent o the force FT . Fur-
thermore a geometrical constraint is added to ensure the same number of equation as
unknown variables. This is the length of al bars adding up to the distance between
the anchoring points ~L:

N∑
j=1

~f jl(j) = ~L (3.62)

This leads to a system of equation that is solved using an iterative method following
Hackmann (1983). Dynamic transparency is assumed, so that no influence from
the mooring model on the fluid is taken into account. Only the resulting forces
and directions on the floating body originating are included on the Fluid structure
interaction (FSI) solver, adding the forces to the fluid forces.
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Chapter 4

Validation of the floating algorithm

4.1 Set-up

To allocate possible errors the numerical models got stepwise more complex, starting
with an empty wave tank, then adding the barge first in decay-tests, afterwards
under regular waves and finally ending up with the moored floating body under wave
load. Due to the computational expenses, it was chosen to perform the simulations
in two dimensions. The numerical wave tank of REEF3D was used as described in
subsection 3.5.9. The wave generation zones were chosen according to the wavelength
of the tested wave λ, with one wavelength for the generating zone and twice the
wavelength for the damping zone. An exception is the wave with a period of 1.6 s
where only one wavelength for damping was used due to the large extension. The
barge was placed in the middle of the tank in its main direction. A sketch of this
set-up can be seen in Figure 4.1.
In the solver, 2D simulations are designed in a way that one slice of the real world
set-up is modelled consisting of only one layer of cells. This means the width of the
model depends on the cell size of the mesh. The barge was implemented in a manner,

10 m

20 m
λ 2 λ

0.
85

m

wave-generation wave-damping

x

z

y

Figure 4.1: Sketch of the barge in the numerical wave tank
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Figure 4.2: Contour of the level set function describing the boundary to the solid
body (∆x = 0.005m)

that it had the same width. Its initial position was chosen in respect to the floating
equilibrium, meaning that the initial center of gravity was located at z = 0.823 m
and no initial angle was assumed. The contours of the level set function describing
the boundary of the barge can be seen in Figure 4.2
Considering the fact, that in a 2D model the wave gauge can not be positioned next
to the barge, it was moved 2 m in front of its location. Consequently the heave motion
does not match with the surface elevation, but general comparisons of the values or
effects on the wave height are still possible.

4.2 Parameter study

4.2.1 Wave theory

A first step to reproduce the experimental tests was to choose the appropriate wave
theory. Therefore, waves with a period of 0.8 s were generated with different ap-
proaches in a numerical wave tank without any structure inside and compared with
elevation measurements of the empty physical flume. The wave period was chosen as
it is known that differences might get more obvious on steeper waves. The wave the-
ories applied were linear waves for intermediate water depth, 2nd order stokes waves
and 5th order Stokes waves. The results can be seen in Figure 4.3.
No influence of the theory on the elevation can be seen, so that 2nd order Stokes
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Figure 4.3: Three different wave theories and experimental test compared in an empty
tank, T=0.8 H=3cm

theory was chosen for all further numerical set-ups conducted. The experimental and
numerical datasets match very well.

4.2.2 Tank Length

A second important parameter is the appropriate length of the tank. The shorter the
tank is, the less cells have to be modelled. Hence, the computational costs reduce
drastically. On the other hand there is a risk of reflecting waves influencing the
movement of the body, even though the numerical damping implemented is quite
effective. To exclude this potential error source, two different tank lengths were
compared. One with a length of 12m, the other one with a length of 20m. If the
results would match, the shorter one was chosen, otherwise the computationally more
expensive longer one had to be used. In Figure 4.4 the results for the decay-tests can
be seen, in Figure 4.5 the results for a regular wave are visible.
As can be seen, the tank length has no influence in the beginning of the heave decay
test, but after some seconds there are reflections inducing additional movements in
the shorter tank, while on the longer tank a still status is reached. For the pitch
decay test, an influence can be seen during almost the entire test, with significantly
higher amplitudes of the movement in the shorter wave tank.
The tank length also has an influence on the movement in regular waves. For waves
with a period of 1.6s the heave amplitude is smaller in the shorter tank, while the
pitch amplitude is higher. As a consequence, the longer tank with a length of 20m is
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Figure 4.4: Decay-test for two different tank lengths compared to the experimental
data
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Figure 4.5: Regular waves for two different tank lengths (T = 1.6s, H = 3cm)
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Figure 4.6: Comparison of the k−ω-turbulence model with the potential solution (T
= 1.6 s, H = 3 cm)

used in all following models.

4.2.3 Turbulence-model

Instead of modelling the turbulence, it is also possible to just set the turbulent viscos-
ity to 0. That means energy consumption is not taken into account, but the results
equal the ones from applying the potential theory. Since the goal of developing the
CFD solver is to overcome the limitations of this approach, it is clearly desired to
take a turbulence model into account. Since the parameters of the validation data
generated are similar to ideal conditions for applying the potential theory both results
are compared, to see if the deviations are as small as expected.
In Figure 4.6 the movements under waves with a period of 1.6s can be seen for models
with potential theory and k-ω turbulence-closure. The amplitude of the pitch motion
is reduced in some points with the application of the pitch motion. The heave motion
is almost unaffected. Furthermore it can be seen, that the drift motion is reduced
with the use of the turbulence model. The differences between the two variants are
considered negligible, so that the k-ω model is applied.
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Figure 4.7: Comparison of the movement in regular waves for three different meshes
for the floating body ( ∆x = 0.005m T=0.8s H=3cm)

4.2.4 Mesh of the floating body

The tool provides the possibility to include floating bodies, via generating its mesh in
a CAD tool. This is the only possibility to influence the resolution of the mesh. Three
different models for the floating body’s grid have been compared for a body under
regular waves with T = 0.8 s and H = 3 cm. The wave was chosen, due to the rapid
movement of the barge and the following sensitivity. The resulting movements are
shown in Figure 4.7. The three meshes are a coarse one generated in a CAD-tool, one
using REEF3D’s internal meshing algorithm and a higher resolved mesh generated
with CAD. The advantage of a CAD-tool is, that the mesh can be designed with a
higher resolution on critical points, such as edges. Therefore the number of triangles
is not the only parameter having an influence on the quality.
It can be seen that the influence of the body’s grid is not to high, but at some points
the predicted motion for both heave and pitch is lower, when the lower resolved
meshes are applied. Hence, the finer mesh generated with the CAD-tool is used in all
following models.

4.2.5 Springs

The soft-mooring system in the experimental test was included to prevent the model
from drifting within the channel. The same effect can also be observed in the nu-
merical models, especially in the shorter waves. This leads to a change in the period
of the barge’s movements, since the wave forces are attacking at a different time in
other places. To prevent this from happening a set of springs is included exceeding a
force on the floating body linearly increasing with the displacement, just the same as
in the experimental tests. To include them in a two dimensional model, their stiffness
constant needs to be adapted, by dividing them by the share one cell has of the body’s
width.
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Figure 4.8: The movement of the body with and without springs (∆x = 0.005m, T=
0.8 s, H = 3 cm)

For waves with a period of 0.8 s (Figure 4.8), it can be seen that the drift motion is
reduced significantly even though it is still quite high with the springs implemented.
The springs almost have no influence on the heave amplitude of the body. The motion
is slightly shifted, reaching the maxima earlier then without springs and showing some
prolongation of the period due to the still existing drift. A similar influence can be
observed for the pitch motion, the motion is shifted as well, and a small increase in
the period can be seen. The amplitude is slightly higher, when no springs are taken
into account.
The movement shown in Figure 4.9 for waves with a period of 1.2 s is also not drasti-
cally influenced by the springs. Without the springs the barge is drifting against the
wave direction, with springs this is reduced, but still some drift can be observed. In
the part examined the surge motion is constantly oscillating about the same value.
The amplitude in heave direction is better reproduced without springs, but the differ-
ence in between the numerical models is not big. The difference to the experimental
data is about one fourth. Induced by the surge movement a change of period can
be observed, with the free-floating model having a reduced period, due to the drift
motion. This can not be seen for the model including springs, following the preven-
tion of further drift movements. In the pitch motion it can be seen, that the results
are very similar in the beginning of the time series, but closer to the ending the am-
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Figure 4.9: The movement of the body with and without springs (∆x = 0.005m, T=
1.2 s, H = 3 cm)

plitude without the springs increases, while it stays more constant, when springs are
included.
For a period of 1.6 s (Figure 4.10) the numerical results show the best match to the
experiments. The drift motion is only small, for both numerical cases. For the heave
motion the springs do not seem to have any influence. The pitch motion shows some
irregularities for both of the numerical models, especially in the lowest points. For
the pitch motion some differences can be observed, the amplitude is reduced slightly
by the application of the springs.

4.3 Convergence

4.3.1 Decay-tests

To evaluate an appropriate resolution for the mesh, the decay tests as well as the tests
under regular waves were calculated on three different grids and compared afterwards.
The cell sizes were 10mm, 7mm and 5mm.
In Figure 4.11 the decay tests for three different mesh resolutions can be seen, com-
pared to the experimental tests performed. Since the initial displacement in the
experimental test differ slightly, the movement is normalized with the initial displace-
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Figure 4.10: The movement of the body with and without springs (∆x = 0.005m,
T= 1.6 s, H = 3 cm)
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Figure 4.11: Comparison of the decay-test for three mesh resolutions

47



ment, to allow for comparison with the decay tests for both the soft-mooring-system
as well as free floating. As stated in Meyer (2018), the influence of the soft-mooring
system is marginal, so that just the results for the soft-mooring system are given here
for a more lucid presentation.
For the heave decay test, it can be stated that in general the three numerical models
are damped too much in comparison to the experimental dataset. The length of the
first two periods is well reproduced by the 5mm-model, while the other ones show a
longer phase already in the second period. After that, none of the models matches
the dataset, but it can also be seen, that in this part of the data series, show some
unexpected behaviour. That is the peak at 3.5 s being higher than the one at 2.5 s,
which is a sign of non-physical behaviour of the barge, so that the comparison should
focus more on the beginning of the time series. Here, also the amplitude is reproduced
better by the highly resolved grid than by the two other ones, but still the difference
is about one fourth compared to the experimental dataset.
For the pitch decay-test the reproduction is in total better. All the models tested show
a really small difference in the period compared to the experiments. The amplitude
is also well reproduced, with differences between a fifth and a tenth.

4.3.2 Regular waves

In Figure 4.12 to Figure 4.14 the convergence tests for the simulation of the body
under regular waves can be seen. The models include springs as tested in subsec-
tion 4.2.5, to ensure similarity to the physical parameters even though some of the
results are influenced negatively.
For a period of 0.8 s, it can be seen that the surge motion is largest for a mesh
resolution of 10mm and smallest for a grid size of 5mm. The influence on the heave
motion is small. For the pitch motion, the difference is larger. It can be seen that
the coarser the grid is the larger the deviations between the crests of the same model
gets.
The value of the crests in the pitch motion differs between 0.31 and 0.35 for the finest
mesh, while the values range from 0.3 to 0.5 for the coarsest mesh. The period in
the heave and pitch motion does not match exactly with the experimental one for all
mesh variants. The period of the numerical data set is longer, leading to enlarging
deviations of the extrema in time. The pitch motion also lags in the beginning, when
the position of the crests in the heave motion still matches with the experimental one.
For a period of 1.2 s, a similar behaviour is observed regarding heave and pitch, but
the drift is largest for the finest mesh. The influence of the resolution on heave is
small again, with amplitudes being a little smaller and therefore more distant to the
experiments for the finest mesh. For the pitch movement, it can again be seen that
the variation is large for the coarser grid, but drastically reduced for a mesh of 5mm
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Figure 4.12: Comparison of three mesh resolutions, T=0.8s H=3cm
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Figure 4.13: Comparison of three mesh resolutions, T=1.2 s H=3cm
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Figure 4.14: Comparison of three mesh resolutions, T=1.6 s H=3cm

and 7mm. The 5mm variant is the one closest to the experimental data here.
For waves with a period of 1.6 s, the drift motion is low for all variants but largest
for a resolution of 7 mm. The difference on the heave motion is again small, but the
influence is higher on the pitch motion . All the resolutions show some irregularities,
especially in the troughs of the movement. The normalized angles differ between
values of 1 and 1.7 for the coarsest mesh, and between 1.1 and 1.6 for the finest mesh,
so that the variation is a little reduced with a higher resolved grid. The influence is
not as obvious as for the other waves tested.
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Chapter 5

Validation of the mooring models

5.1 Procedure

The next element to be included are the different mooring lines used. Due to the
very small difference induced by the use of different spring parameters, in comparison
to the deviations already existing for the free floating barge between numerical and
experimental datasets, this parameter is not examined further.
Since the results are best for a waves with a period of 1.6 s and 1.2 s, these are chosen
for further examination including mooring models. Not all models implemented can
be used for each experimental mooring line, so different experiments are used to
validate different models. The catenary equation requires parts of the mooring line
to lay on the bottom. This is only the case for the chain-mooring tested, so it is used
here. The quasi-static mooring is problematic regarding the neglection of the contact
force to the sea floor, that is problems with modelling the chain mooring, which lays
on the floor. Instead the rope mooring is used to validate this model.
Due to the fact that the numerical models are performed in only two dimensions,
assumptions have to be made on how the mooring line parameters have to be adjusted.
Since only a slice of the floating body is modelled, the resulting forces acting on the
body are reduced. In the weakly coupled algorithm the mooring models are just taken
into account as additional forces acting upon the body. It can be assumed, that the
hydrodynamic forces are reduced by the share of the original width, as it was already
done to include the soft-mooring springs. That means the parameters of the mooring
lines need to be adapted accordingly to account for the same reduction.
The fastest way to derive the adapted parameters for the catenary equation, is by
introducing two new equations. With the newly introduced parameter a the horizontal
force acting upon the body results to (Faltinsen (1990)):

Th = a · γ0, (5.1)
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The parameter a can be calculated, resulting from regrouping the following equation
(Faltinsen (1990)):

dxy = l − dz
√

(1 + 2
a

dz
) + a · cos−1(1 +

dz

a
). (5.2)

All the parameters in this equation just result from geometric properties of the moor-
ing cable, that means a is independent from the desired reduction of the force, since
the geometry is not supposed to be adapted. As a consequence the resulting force
upon the body solely linearly depends on the weight per unit length of the cable γ0.
This is adjusted accordingly. For a mesh of 5 mm, the acting force on the body is
divided by 120 compared to the entire width of the three-dimensional prototype. To
reduce the force resulting from the mooring model, the same factor is used for the
weight of the line. Since only one line on each side of the body is assumed in the
numerical model, the line used needs to account for two lines in the experimental
models. Hence, the resulting weight needs to be multiplied by two. The resulting
weight is then: 0.023kg/m · 2

120
= 0.00038kg/m.

For the rope mooring system, the same idea of accounting for the parameters in a way
that the forces acting on the body are reduced, is applied. Since the weight of the line
under buoyancy is negligible and with respect to the mechanisms of a rope mooring
(section 1.2), the factor scaled here is the elasticity of the line. Linear behaviour of
the material is assumed (Hooke’s law). EA, the value required by the model for the
definition of elasticity is then calculated as c ·L = EA. For the spring F2 this leads to
a value of 209N/m · 4.10m = 856.9N for the three dimensional set-up. Including the
same scaling parameter as explained above this results then to a value of 14.2 N for a
model with a width of 5 mm. For the spring F1 examined in the slack configuration,
this leads to a value of 4.9N on a mesh of 5 mm.
In REEF3D, the lines are included by defining the coordinates for the attachment
points on both the floor and the floating body in the ctrl-file. For both models the
assumption that the fixing point on the floor is not elevated had to be introduced.
Then some additional parameters are included depending on the type of model chosen.
In behalf of the neglection of hydrodynamic forces, this is just the line length for the
catenary model, which was given as 4.23 m, and the density which was chosen to
7850kg/m3, the density of steel. Elasticity was not taken into account, what can be
defined by setting EA to 0.
For the quasi-static model, the density was chosen to 1001kg/m3 to account for the
additional weight by the springs and key chains, and the line length to 4.10m due to
the elongation induced by the lower attachment point on the bottom. Additionally,
the diameter for the calculation of the hydrodynamic forces was required. This was
obtained by scaling the weight known for the original rope in the same manner as
for the catenary model to 0.00007 kg/m and then, calculating the diameter from
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Figure 5.1: Initial position of the floating barge and the mooring chains
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Figure 5.2: Movement of the barge using a catenary mooring model compared to
experimental results ( T = 1.2 s, H = 3cm)

the known density to 0.00094 m. Since the values are so small, it can be assumed,
that they do not play any role and the hydrodynamic forces acting on the line are
negligible. The number of elements, the line was discretized into, was chosen to be
10.

5.2 Validation of the catenary mooring model

The initial shape of the mooring lines with the parameters explained above can be
seen in Figure 5.1. The resulting motion of the barge is shown in Figure 5.2 for a
period of 1.2 s and in Figure 5.3 for a period of 1.6 s.
For waves with a period of 1.2 s it can be seen, that the periods of the heave and pitch
motion match very well, but the amplitude is reduced compared to the experiments.
The reduction is about one fourth for both of the motions. The differences for the
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Figure 5.3: Movement of the barge using a catenary mooring model compared to
experimental results ( T = 1.6 s, H = 3cm)

surge motion on the other hand are significant. The motion is irregular and not even
a match in the period can be observed. Compared to the free floating model under
the same wave, the difference for the heave motion does not really increase, but the
results for the pitch motion show larger deviations. The drift displacement that is
observed in the free-floating test is not visible here.
For waves with a period of 1.6 s, the results show smaller deviations. The heave
motions are very well captured with an almost perfect match of the troughs, and
only slight differences in the crests. The pitch motion is also captured very well,
almost no deviations in the amplitude can be observed. A small lag in the phase
of the pitch can be observed. The surge amplitude is significantly overestimated by
the numerical model, but in contrast to the other wave period tested the period is
reproduced correctly.

5.3 Validation of the quasi-static mooring model

The quasi static mooring model was applied on the two rope mooring systems, the
taut one with spring F2 one and the slack one. Each configuration was checked for two
waves, T =1.2 s and T= 1.6 s. The initial position of the barge and the mooring line
for the slack configuration is depicted in Figure 5.4, the one for the taut configuration
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Figure 5.4: Initial position of the floating barge and the mooring ropes of a slack
configuration

Figure 5.5: Initial position of the floating barge and the mooring lines of a taut
configuration

in Figure 5.5.
The slack configuration does not induce a lot of change to the motion of the body
(Figure 5.6 and Figure 5.7). The deviations in the heave and pitch amplitude are
comparable to the ones for the free-floating barge. The surge motion is very different
for both of the waves tested.
The fact, that not much change is induced by the mooring lines, leads to very good
results for the 1.6 s wave and the slack configuration, since they are already very good
for the free-floating configuration. The match for the heave motion is very good, the
match for the pitch motion as well, even if some irregularities are observed. The
surge motion is limited to a drift of a couple of centimeters in the wave direction.
The amplitude of the surge motion almost matches with the one from the experimental
data.
The deviations for the wave of 1.2 s in period are larger, like already given for the
free-floating tests, but an overall match is given. A fact to draw the attention to is
the large displacement of the barge in surge direction, here a drift of over 20 cm is
observed. This matches with the displacement of the attachment point on the floor.
For the wave with a period of 1.2 s and the taut mooring (Figure 5.8) the periods of
all motions are well captured. The surge motion shows some irregularities, but the
overall amplitude matches. The heave amplitude is smaller than in the experiments,
but the deviation is not increased compared to the free-floating results. For the pitch
motion in contrast the deviations in the amplitude are large, in numbers the difference
is about 1.4.
For the waves with a period 1.6 s and the taut mooring (Figure 5.9), the overall re-
production is similar. The periods match, but some deviations in the amplitudes can
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Figure 5.6: Movement of the barge using a quasi-static mooring model compared to
experimental results (slack)( T = 1.2 s, H = 3cm)
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Figure 5.7: Movement of the barge using a quasi-static mooring model compared to
experimental results (slack)( T = 1.6 s, H = 3cm)
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Figure 5.8: Movement of the barge using a quasi-static mooring model compared to
experimental results (taut, F2)( T = 1.2 s, H = 3cm)

12 12.5 13 13.5 14 14.5 15 15.5
time[t/T]

-0.02

-0.01

0

0.01

0.02

el
ev

at
io

n[
h/

d]

Surface Elevation

Numerical Experimental

(a)

12 12.5 13 13.5 14 14.5 15 15.5
time[t/T]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

el
ev

at
io

n[
x/

d]

Surge

Numerical Experimental

(b)

12 12.5 13 13.5 14 14.5 15 15.5
time[t/T]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

el
ev

at
io

n[
z/

d]

Heave

Numerical Experimental

(c)

12 12.5 13 13.5 14 14.5 15 15.5
time[t/T]

-4

-3

-2

-1

0

1

2

3

4

an
gl

e 
[

/k
d]

Pitch

Numerical Experimental

(d)

Figure 5.9: Movement of the barge using a quasi-static mooring model compared to
experimental results (taut, F2)( T = 1.6 s, H = 3cm)
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be observed. The surge motion is again irregular and the amplitude is a little under-
estimated by the numerics. The heave motion matches perfectly, but the deviations
in the pitch motion are even larger. While the amplitude increases drastically in the
experiments, the numerical values are about the same as in the free-floating set-up,
leading to numerical values of only about a third of the experimental ones.
In order to further examine on these rather large differences between the experimental
and the numerical results for a taut configuration, it is checked if the adoption of
several parameters might have a positive influence on the match of the results. With
regards to the fact, that the match is already good for the T = 1.2 s wave, it is the
one chosen to be investigated on further.

5.4 Sensitivity analysis for the quasi-static system

Since the results for the taut quasi-static mooring model are not satisfying a sensitivity
analysis was performed to examine if variations on some parameters could enhance
the overall quality of the modelling results. Three different parameters were checked.
This is the elasticity of the rope, the length of the rope and the vertical position of the
attachment points on the barge. In addition to that, the results for the quasi-static
mooring system were compared against a model, where the entire mooring lines were
modelled as a set of springs. They are weightless and no hydrodynamic forces are
taken into account, but since the density of the rope is so similar to water and the
diameter is negligibly small in a 2D-model, very similar results were expected. The
parameter that needs to be defined in addition to the geometric properties of the
spring is its constraint c. That only means, that it is not multiplied with the length
of the line L, as it is done to obtain EA, which results in a value of 3.5N/m.
The motion under the use of the springs is shown in comparison to the solution with
the use of the quasi-static model in Figure 5.10. The reproduction of the motion
reduces drastically with this model applied. The introduction has a significant in-
fluence on the wave gauge, reducing the elevation on some peaks. The peaks of the
heave motion are also reduced, while the troughs stay mostly constant. The largest
influence can be observed on the pitch motion, where strong irregularities occur. In
some parts the amplitude is increased, so that it matches with the experimental data,
in some parts it is reduced to significantly lower values than for the quasi-static one.
In Figure 5.11, the movement of the barge for the different elasticity-parameters is
shown. It can be seen, that a reduction of the stiffness leads to higher amplitudes
for the pitch motion, which reduces the deviation to the experimental data. On some
points of the heave motion an increase can also be observed with the increase of the
elasticity, but here no general trend can be seen. The surge motion is more difficult
to compare, since the amplitude of motion is irregular in both cases. The change of

58



15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
time[t/T]

-0.02

-0.01

0

0.01

0.02

el
ev

at
io

n[
h/

d]

Surface Elevation

QuasiStatic Springs Experimental

(a)

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
time[t/T]

-0.05

0

0.05

el
ev

at
io

n[
x/

d]

Surge

QuasiStatic Springs Experimental

(b)

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
time[t/T]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

el
ev

at
io

n[
z/

d]

Heave

QuasiStatic Springs Experimental

(c)

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
time[t/T]

-4

-3

-2

-1

0

1

2

3

4

an
gl

e 
[

/k
d]

Pitch

QuasiStatic Springs Experimental

(d)

Figure 5.10: Movement of the barge using a quasi-static mooring model and the spring
model compared to experimental results (taut, F2)( T = 1.2 s, H = 3cm)

elasticity leads to a drastically altered motion in this direction, with differences of
several cm and completely different trends in the motion.
The comparison of two different line lengths in Figure 5.12 shows only a small in-
fluence of the line length on the motion. The heave motion is barely affected. The
pitch motion reveals some deviations with larger amplitudes, when the longer rope
is used between 16.5 and 18.5, but reduced amplitudes for this variant on the end
of the examined time series. In the surge motion, a large influence can be observed.
At the beginning of the window examined, a large displacement for the longer rope
is observed, which is reduced later in time, but still the motions of the two numer-
ical experiments never match and are much more volatile than the results from the
physical experiments.
The model shows to be highly sensitive to changes on the location of the attachment
points, as can be seen in Figure 5.13. The surge motion is again irregular, and
shows completely different development for all variants tested. No clear trend of how
this motion is affected by the changed attachment points can be determined. The
heave motion is only slightly affected, the amplitude with higher attachment points is
decreased in some points. Again a large effect can be observed on the pitch motion.
Here, a change of the attachment points leads to highly irregular movements. In
some points the amplitude is increased in some points decreased for both directions
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Figure 5.11: Movement of the barge using a quasi-static mooring model for two
different values of EA compared to experiments (taut, F2)( T = 1.2 s, H = 3cm)
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Figure 5.12: Movement of the barge using a quasi-static mooring model for two
different line lengths compared to experiments (taut, F2)( T = 1.2 s, H = 3cm)
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Figure 5.13: Movement of the barge using a quasi-static mooring model for different
vertical positions of the attachment points on the box (taut, F2)( T = 1.2 s, H =
3cm)

of replacement of the attachment points. The match to the experimental data is very
good on some points, but also very bad on others.
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Chapter 6

Discussion

6.1 Free-floating barge

While comparing the numerical results to the experimental ones, it has of course to be
considered, that the experimental results also include errors, induced for example by
the instruments, by small irregularities of the materials used or imprecision in the set-
up of the model. In this light especially the mooring lines added are prone to errors
due to many possible deviations from the planned set-up. The exact positioning of the
attachment points on the floor, as well as the exact length of the lines were difficult
to adjust. That is a reason for why the influence of those parameters changing were
finally included in a parameter study.
However, the regular motion in most of the experimental set-ups is a clear sign,
that the overall quality is high and only small errors may be induced in the exact
amplitudes of the single movements. Naturally the possibility of errors does not mean
that, they are necessarily favourable for the comparison of the results. It could also
be that the deviation gets smaller caused by a small error in the experimental results.
The only wave, where some irregularities could be observed, is the one with T = 0.8
s for the free-floating body. Here the crests and troughs differ periodically over time.
It is not clear if this a physical behavior or if the rapidly moving barge limited exact
capturing of its movement (see appendix).
The quality of reproduction of the CFD solver differs for the different waves tested.
The deviations arise in different aspects of the reproduction, so that a differentiation
is made and the waves are discussed separately. A problem was the drift motion
induced. For the numerical reproduction, a completely free floating barge would have
been favourable due to the reduction of unknown parameters then. In the tested scale
and the given facilities this is not possible due to the fact, that a free floating barge
could damage instruments, itself or just drift out of the area, that is covered by the
tracking cameras. Consequently the limits of the physical world need to be accepted,

62



and taken into account within the numerical modelling.
The spring’s influence depends on the initial drift motion without springs. For the
wave with a period of 1.6 s, the waves did not induce drift motion, so that an inclusion
of the springs did not lead to an altered behaviour of the box. In contrast to that, both
of the other waves did show differences in their heave and pitch motion, with springs
included while this was explicitly not the case for the physical models. The basis
for the introduction of the soft-mooring system was the fact of having no influence
on these two motions. In addition to that, the physically scaled introduction of the
springs did not show the intended effect on the surge motion of the barge. With
the chosen values they were not able to reproduce the stationkeeping given in the
experiment. Maybe this could have been overcome by increasing the stiffness of the
spring, but then no physical basis for the parameter would have existed anymore and
a danger of overcalibrating would arise.
Another point in this context is the runtime of the model, with increasing length of
the springs an increasing force on the body would be induced, while the drift force
stays constant. At a certain point this would have led to a movement against the
wave direction. A tendency of this could already be seen when a larger timeseries
is studied (Appendix). To really allow for a surge motion in equilibrium, a much
larger timeseries would have had to be examined, with the effect, that the size of the
wave tank would probably also have had to be increased to prevent reflecting waves
from interfering. In consequence, an examination of this was not possible due to the
limitations of computational power.
The resolution of the grid had a similar influence on the models under all waveloads.
The heave motion in the algorithm seems to be not to strongly affected by the reso-
lution of the cells, while the pitch motion seems to be very sensitive to the resolution.
This seems convincing since the pitch motion is determined by small scale influences,
like the exact capturing of the edges of the barge. In contrast to that, we do not see
that much of an influence in the pitch decay tests, while in the heave decay-test the
correct period was only captured in a mesh of 5 mm resolution. In regular waves the
effect was rather on the regularity of the motion, that was expected from the har-
mony of the attacking forces and supported by showing the exact same behavior in
the experiments, than on the exact values. Different from the decay-tests, the period
was captured well in use of all mesh resolutions.
The exact match between the numerical data for the finest mesh and the experimental
data seems generally satisfying, for all of the waves examined. The quality of the
match is improving with growing wave period. It has to be kept in mind that the
normalization leads to a different scale for the pitch amplitude, with values of the
numerical model ranging about 2◦ for the waves T=0.8 s and T = 1.6 s and an
absolute value of about 5◦ for wave T = 1.2 s. That also means that the different
quality of reproduction is not connected to the absolute value of the movement, but
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the period seems to have a direct impact.
Considering the possible errors in the experiments some deviation in the exact am-
plitudes seems acceptable. The change of the periods is in agreement with the drift
motion of the body. In this context the drifting against the wave direction for a the
wave T = 1.2 s arises questions, since this is not the direction expected. Furthermore
it has again to be stressed, that the floating algorithm could not be tested isolated,
but only with the springs included, which makes it more prone to the inclusion of er-
rors. Even though the absolute values for the wave with a period of 1.6 s are the best
matching ones, the attention should be drawn to the fact the the algorithm produces
irregularities in the pitch motion, no matter if the springs are included or not. This
is a behaviour clearly not physical, and can not be explained by small deviations in
the set-up, since the numerical input is absolutely harmonic and symmetric.

6.2 Catenary mooring model

The overall match of the results for the numerical data generated in use of the cate-
nary model is also satisfying, taking into account the already existing deviations for
the calculation of the free-floating barge. The existing deviations from the floating
algorithm make the comparison more difficult, but still the tendency of the influence
of the mooring can be evaluated on. Since here the deviations in the setup intro-
duced by the springs do not account anymore, the surge motion is expected to be
more precisely reproduced.
Again the quality of the results increases with the length of the waves used. For
the wave T=1.2 s both, heave and pitch motion are damped more when the mooring
model is applied, but the difference is rather small, so the match of the data is still
acceptable. However the experiments don’t show such a behaviour. It was expected,
that the mooring model had no influence on the amplitudes. The surge motion is
completely of the expected values, this might be an explanation for the damping of
the two other motions.
The results of the 1.6 s wave even improve with the use of the catenary model.
The change in the heave motion is small but the tendency is also of introducing
an additional damping, while the experiments showed the opposite influence. The
main drawback in the reproduction of the results for this wave in the free-floating
case can not be observed anymore. This is, the irregularities in the pitch motion
disappear, while still showing a good match in the amplitude. This is surprising,
since it occurred in both the free floating and the soft-mooring system, so the effect
can not be explained by the use of springs. The deviation in time exist the same
way as before, indicating that this is a general problem of the floating algorithm
in reproducing the motion for the given wave. An aspect that clearly needs to be
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addressed in the future is the surge motion, which is not reproduced as desired.

6.3 Quasi-static mooring model

To evaluate on the reproduction with this mooring model applied, the tendency in-
duced in the experiments needs to be kept in mind. The slack mooring configuration
barely leads to any change in the motion, while the taut configuration increases the
pitch amplitude drastically, especially for a wave of 1.6 s.
The results are good for a wave of 1.6 s and a slack configuration, acceptable for both
configurations for a wave of 1.2 s and unsatisfying for the taut configuration for the
1.6 s wave. The largest deviations in between the experiments and their reproduction
become manifest in the pitch motion, so exactly in the motion, where the taut mooring
lines have the largest influence in the experiments. In the numerical results no such
influence of the different mooring configuration is observed. The motion stays almost
unaffected for all configurations. For that reason the match for the slack test are very
similar to the match for the free-floating body.
Regardless of the absolute match of the data at least a qualitative influence on motion
should be observed. In this case that would be an increase in the pitch amplitude
induced by the taut mooring model. Here in the examined tests no increase of the
pitch motion induced by the mooring model can be observed at all. That means the
main feature of the taut mooring system is not captured. In order to check if this
could be induced by some variations in the experimental tests or the wrong choice of
several parameters in the set-up of the numerical model the sensitivity analysis was
performed, which is discussed below.

6.4 Sensitivity of the quasi-static mooring model

An influence that clearly has a positive effect on the reproduction is the reduction
of the stiffness of the mooring line EA. This leads to an increase in the amplitude
of the pitch motion, which is the result that was desired. The strong effect on the
surge motion is another aspect that requires further investigation. The model does
not seem to be very sensitive to the line length, as this has no large influence on the
motion.
Other aspects don’t show such an obvious tendency. Both, the use of springs as well
as the change of position of the attachment points lead to an irregular motion. The
influence of the displacement of the attachment points was not checked in experiments,
but it seems highly questionable that a symmetric change would alter the motion in
such a way. In the light of the numerical results showing such irregularities in other
cases as well, it rather seems to be connected to the solver.
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The deviations induced by the springs to model the same set-up further rise suspicions
regarding the numerical solution. The difference can not be explained by the different
model assumptions as the differences were expected to be negligible as explained. The
irregularities in the solution under use of the springs, makes the quasi-static solution
seem more trustworthy. In any case the deviation in between the results is clearly
another topic, that should be investigated further on, at least one of the models
produces results that are not reliable.
Overall the quasi-static mooring model can not be validated. The heave motion is
predicted well and does not show to be very sensitive to changes on the mooring
line, but the pitch and the surge motion are not reproduced satisfyingly. It can not
reproduce the increase in pitch amplitudes for a taut mooring system that are induced
in the experiments and reacts very sensitive to changes upon the line’s parameters
regarding the pitch and surge motions. For cases where the mooring lines don’t have
a large influence, namely the slack configuration, the results are still very good.
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Chapter 7

Conclusion and Outlook

Numerical tools are a fast an efficient way to calculate the response of floating struc-
tures to waves, but they need benchmark data to validate the quality of their pre-
diction. Taking into account the reduced complexity of generic cases with simple
geometric forms, they are a good starting, point for the validation of the numerical
tools. In this thesis, an existing dataset for a floating wooden box of constant density
was extended, adding different configurations of mooring lines to ensure the station-
keeping. The configurations included a chain and a rope mooring, tested in a taut and
a slack status, as well as the use of different springs to account for different elastic
parameters. All additional configurations were tested under regular waves ranging
between 0.8 s and 1.6 s in period and 2 cm and 3 cm in height. This benchmark data
now allows for different CFD codes to test their floating and mooring algorithms.
In this work, this was done for REEF3D, a solver for the RANS-equations relying on a
finite differences approach, developed at the department of marine civil engineering at
the NTNU in Trondheim, Norway. The solver includes a weakly coupled floating algo-
rithm based on ghost-cell immersed boundary approach. Furthermore three different
mooring models are included to account for the effect of different mooring configura-
tions, taking into account a varying number of environmental loads. In this thesis a
catenary approach and a quasi-static one were tested. For the validation, the set-up
was reproduced in a 20 m long numerical wave tank provided by the code. In order
to save computational expenses, the calculations were done in only two dimensions.
An issue was the stationkeeping of the barge using a soft-mooring system in the
experiments. To reproduce the lack of a drift motion in the numeric set-up, soft-
springs were introduced here as well. This influenced some results negatively, but
was nonetheless applied to ensure proximity to the experimental set up. For the free-
floating barge, the result are generally satisfying. The quality increases with increased
period. All the motions are under-predicted by the solver except for the 1.6 s wave
where a match is obtained. The pitch motion shows to be more sensitive, here an
irregular movement can be observed in some cases. These irregularities are reduced
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with the use of a higher resolved grid.
In a next step, the catenary mooring model is validated using the data from the
chain as mooring lines. Due to the reduction of dimensions, the parameters had to be
adapted. Hence, the weight of the mooring line was divided by the share of the 2D
body of the original width, to reduce the acting forces on the body. The mooring line
does not show to have a large influence, as was already expected by the experimental
results. Consequently the match is very well for the 1.6 s wave, but the motion is
underestimated for the 1.2 s wave. With the mooring model no more drift influences
can be seen, but the surge motion is overestimated.
The quasi-static mooring model is compared against experimental data from the rope
as a mooring line. Both, a taut and a slack configuration are tested. Here, the
elasticity of the line was reduced to account for the two dimensional model. Again,
the mooring line showed to have only a small influence on the body. This led to good
results for the slack mooring, where the experimental influence was also small. The
taut mooring induced a significant increase in the pitch amplitude in the experiments
which could not be reproduced by the numerical model. In order to further examine
this, the sensitivity of various parameters was checked. Here the reduction of the
stiffness showed to have a positive impact, but irregularities induced by a change of the
vertical position of the attachment points on the box and the use of the spring models
for the mooring lines arose further questions instead of providing clarity. Overall the
model could therefore not be validated, since the main effect, the induction of higher
pitch amplitudes in a taut configuration could not be reproduced.
Further research is especially required in the accurate prediction of the surge motion,
since here independent from the mooring system largest deviations could be observed.
In cases that showed accurate prediction of the surge motion, the other motions were
also well predicted. This indicates a correlation in the movements.
With the existence of the benchmark data, all improvements implemented in the code
now can directly be tested in terms of reproduction of the experiments. Even though
the floating solver shows good results, the match especially for shorter waves should
still be improved. The catenary mooring shows generally good results, regarding
the deviation already existing from the isolated free-floating solution, but the surge
motion is not predicted accurately. Hence, further investigation is required to predict
this motion precisely. The quasi-static mooring model requires revision, since it does
not reproduce the effect on the motion for cases, where the mooring set-up alters the
movement.
Experimental and numerical modelling are a powerful couple. The data-set generated
can be used for the validation of various CFD-codes. The existing data set allows for
some more features of the solvers also to be tested. But as mentioned the influence
of different inertia was also tested for the free-floating barge in the experiments, and
it should be checked if the solver can handle this input. Numerous extensions of the

68



benchmark data are also possible to bring it stepwise closer to the complex cases used
in real applications and therefore allow for the code to be used for practical purposes.
This could be the examination of different attachment points on the box, different
geometries of the barge, different scales of the model or different densities.
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Appendix A

Photographies of the experimental
set-up

Figure A.1: A motion-tracking camera

75



Figure A.2: Picture of the ring for attaching the soft-mooring system
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Figure A.3: The barge
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Figure A.4: Two wave gauges
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Figure A.5: The weight-ballasted attachment points on the floor
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Appendix B

Long term time series
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Figure B.1: Long term periodic motions of the free-floating barge in the experiments
(T = 0.8 s, H = 3cm)
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Figure B.2: Long time modelled time series including springs (T = 0.8 s, H = 3cm)
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