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discussed with emphasis on the formalism used.
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1. Introduction

Today, laser technology makes it possible to generate electromagnetic pulses with durations
of only a few cycles per pulse. It is, for example, possible to obtain 5fs pulses from tita-
nium:sapphire lasers at 800nm by using double chirped mirrors for pulse compression. The
interaction of the fundamental 800nm wavelength from a titanium:sapphire laser system and
its second harmonic can also be used to excite third order nonlinearities in nitrogen plasmas,
which acts as a source for single-cycle THz pulses with electric field amplitudes as high as
40MV/m [1]. As examples of applications of ultrashort pulse technology, femtosecond pulses
are currently being used by spectroscopists in the characterization of the electronic properties
of matter, sub-cycle THz pulses have found useage in the manipulation of atomic wavefunc-
tions in Rydberg atoms [2], and vibrational cooling of molecules has recently been achieved
by optical pumping with broadband pulses [3]. The coherent matter-field interaction lies at the
heart of many of these applications. However, for short and/or strong pulses many of the stan-
dard approximations start to break down. The slowly varying envelope approximation(SVEA),
for example, requires the pulse’s bandwidth to be small compared to its central frequency. For
femtosecond pulses at optical wavelengths there are only a few cycles per pulse and the SVEA
is not very well satisfied. For the single- and sub-cycle regimes the SVEA has lost all validity.
Also, a two- or three-level approximation is often made for the medium, on the grounds that the
pulse is spectrally narrow and effectively interacts with only one or two transitions, and all other
transitions are spectrally far removed. In practice, the energy levels of atoms and molecules are
more evenly spaced and a few-level approximation becomes questionable when the bandwidth
of the pulse increases. An example of such a situation is the propagation of broadband THz
pulses in the vibration-rotation bands of molecular gases. Some works, related to ultrashort
pulse propagation in multilevel systems within SVEA, can be found in e.g. [4,5] and references
therein. Another standard approximation is the rotating wave approximation(RWA), which re-
quires near-resonant pulses and Rabi periods long compared to an optical cycle. The RWA is a
basic matter-field approximation, and it also breaks down in the short and strong pulse regimes
due to the broad spectrum of the pulse, as well as the possible generation of high-frequency
content when Rabi flops take place on the timescale of an optical cycle [6]. With the break-
down of these approximations it is very difficult to develop analytical tools that are appropriate
for investigating pulse propagation effects, and one must therefore often look to approximate
numerical methods.

Traditionally, simulations of nonlinear optical interactions deal with phenomenological mod-
els that are based on macroscopic properties of the medium, such as split-step finite difference
or spectral methods based on Debye or Drude dispersion models. However, a phenomenologi-
cal approach fails spectacularly in the strong and short pulse regimes when coherent quantum
effects first begin to manifest. This necessitates simulation models that take into account the
inherent microscopic structure of matter. An approach that has proven successful is to model
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the system by use of slowly varying envelopes for the electric field and the density matrix
elements, which is often supplemented by a rotating wave approximation for the matter-field
interaction. However, such models hold no validity for few-cycle pulses. The first numerical
simulations of the full two-level Maxwell-Bloch equation set was initiated by Ziolkowski in [7]
for two-level atoms. The approach in [7] is based on the Yee scheme [8] for Maxwell’s equa-
tions together with a Crank-Nicholson scheme for the Bloch equations, with corrections later
given in [9]. Since then, the Ziolkowski approach has been used to predict attosecond radiation
from femtosecond carrier-wave Rabi flopping [10], the formation of optical subcycle pulses in
dense media [11] and breakup and self-focusing of 2π pulses [12]. The method has also been
extended to inhomogeneously broadened media [13]. Indeed, the Ziolkowski approach works
quite well for two-level systems but does not generalize to more levels as it would lose the
positiveness property for the density matrix [14]. In [14] and [15], a generally valid method
that decouples the Maxwell and Bloch equations is introduced. The results in [14] and [15] are
quite good, and this method has since been extended to propagation in anisotropic media [16].

In this paper, we extend the work in [14] by working in a Liouville [17] space. In particular
we focus on the implementation of an arbitrary number of levels and show how inhomoge-
neous broadening can be included. Our simulations are based on weakly coupled methods for
the Bloch equations together with pseudospectral time domain methods [18, 19] for Maxwell’s
equations. Although our model is formulated generally, we focus on one-dimensional simula-
tions only.

2. Theoretical model

The Hamiltonian Ĥ = Ĥ(rrr,t,vvv,θ ,ϕ) for an absorber interacting with a classical electromagnetic
field EEE = EEE(rrr,t) under the dipole approximation and expanded in the energy basis is

Ĥ =
̵hωi(vvv)∣i⟩⟨i∣− ̵h

EEE(rrr,t) ⋅μμμ i j(θ ,ϕ)
̵h

∣i⟩⟨ j∣, (1)

with implicit summation of i and j over the N available energy levels. ̵hωi is the energy of
the energy eigenstate ∣i⟩, and μμμ i j = ⟨i ∣μ̂μμ ∣ j⟩ is the i j element of the effective dipole moment
operator μ̂μμ . The spherical angles θ ,ϕ and the velocity vvv are used to classify absorbers that
have a characteristic orientation in the θ ,ϕ direction and a spatial velocity vvv. Ĥ is implicitly
understood to belong to one of these classes in the unit volume at (rrr,t). It is natural to assume
that μ̂μμ and ωi are not functions of rrr and t which means that the medium is isotropic at all times,
although the extension to spatially varying media is straightforward.

For notational simplicity, we introduce a notation that denotes the fractional sum over all the
velocities and orientations as

⟨⟩
∑
=
∫

n(vvv,θ ,ϕ)dvvvdΩ, (2)

where n(vvv,θ ,ϕ)dvvvdΩ is the fraction of absorbers with orientation (θ ,ϕ)within the solid angle
dΩ, and a spatial velocity in the interval [vvv,vvv+dvvv]. The total number density of the medium is
denoted by Na.

2.1. Liouville space

From a numerical point of view it is convenient to modify the von Neumann equation by work-
ing with a vectorized form of the density operator ρ̂ . Therefore, we seek to replace the von
Neumann equation dt ρ̂ = (i̵h)−1

[Ĥ, ρ̂] by the vectorized version

dt ∣ρ⟫ = Ľ∣ρ⟫. (3)
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In a Hilbert space of dimension N, the density operator is typically represented as an N ×N
self-adjoint, positive definite matrix with a unity trace(if the system is closed). Here, we have
replaced that matrix by a column vector ∣ρ⟫ of length N2 containing all the entries of ρ̂ , and
replaced the commutator [Ĥ,] of dimension N×N by another operator Ľ of dimension N2

×N2.
To stay consistent with spectroscopic literature [17], we shall call the space in which ∣ρ⟫ exists
for a Liouville space. We shall denote Liouville space vectors by double kets and Liouville
space operators by inverted hats.

For every operator Ô in a Hilbert space, there exists an equivalent vector ∣O⟫ in a Liouville
space. These are generally written as

∣O⟫ =Ojk∣ jk⟫, (4)

where a sum over jk is implicit. Ojk is the jk element of the Hilbert space operator Ô and the
jk entry in the Liouville vector ∣O⟫. We define a bra-vector ⟪O∣ that corresponds to Ô† and a
scalar product of two vectors by

⟪O1 ∣O2⟫ = Tr(Ô†
1Ô2). (5)

This implies the orthogonality ⟪ jk ∣mn⟫ = δ jmδkn, and a completeness relation∑ jk ∣ jk⟫⟪ jk∣ = 1.
Every Liouville space operator can therefore be expanded as Ǒ =∑ jk,mn Ojk,mn∣ jk⟫⟪mn∣.

The order of the entries in the column vector ∣ρ⟫ is not fundamentally important, and the
operator Ľ can be formed in a general fashion once the order is chosen (the order of every other
operator follows the same order as ∣ρ⟫). However, we observe that the matrix equation C =AXB
can be written as ∣C⟫ = (B⊺⊗A)∣X⟫ if A and B are square matrices and ∣C⟫ and ∣X⟫ are column
major ordered (a similar expression exists for row major ordering). Ľ can therefore be written
in the form

Ľ =
i
̵h

Ĥ⊺⊕(−Ĥ). (6)

The Kronecker sum ⊕ is defined A⊕B = A⊗ Îdim(B) + Îdim(A)⊗B, where ⊗ is the Kronecker
product.

2.2. Relaxations and polarization

Physical effects not accounted for in the Hamiltonian in Eq. (1) can included phenomenologi-
cally by the addition of a relaxation operator Ř on the right hand side of Eq. (3),

Ľ→ Ľ+ Ř. (7)

The only fundamental restriction on Ř is that the equation dt ∣ρ⟫ = Ř∣ρ⟫ must preserve the
physical properties of ρ̂ . It is convenient to derive Ř directly from the master equation

dt ρ̂ = (i̵h)−1
[Ĥ, ρ̂]+∑

i, j
(γ̂i jρ̂ γ̂†

i j −
1
2

ρ̂ γ̂†
i j γ̂i j −

1
2

γ̂†
i j γ̂i jρ̂) , (8)

where the operators γ̂i j are of the form γ̂i j =
√γi j ∣i⟩⟨ j∣ with γi j real. Equation (8) preserves

positiveness, hermiticity and trace. Generally, operators γ̂i j with i ≠ j represent damping that
cause population transfer from state j to state i at a rate γi j(for example due to inelastic col-
lisions, spontaneous emission or a thermal background). Operators γ̂ii cause decoherence only
(for example due to elastic collisions). The off-diagonal and diagonal terms decay according to

dtρmn = (i̵h)
−1
[Ĥ, ρ̂]mn−

1
2
∑

j
(γ jm+γ jn)ρmn, m ≠ n (9a)

dtρmm = (i̵h)
−1
[Ĥ, ρ̂]mm+∑

j≠m
γm jρ j j −∑

j≠m
γ jmρmm (9b)
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The total off-diagonal decay rates are sums of both pure decoherence rates (γii’s) as well as
amplitude decay rates (γi j’s). The effective decay rates for the populations ρmm consist of pop-
ulation transfer from all states to ρmm minus the population transfer to all states from ρmm. The
relaxation operator can be written in Liouville space as

Ř =∑
i, j
[γ̂i j⊗ γ̂i j −

1
2
(γ̂⊺i j γ̂i j)⊕(γ̂⊺i j γ̂i j)] , (10)

where we have made use of the fact that all γi j’s are real.
In the literature, the initial condition for the medium is often taken as a coherent ensemble, or

the ground state if the transitions are highly energetic or the medium is cold(all factors ΔE/kBT
being very large). Other times, the initial state of the medium must be taken as an incoherent
ensemble with thermally distributed populations. An example of such a situation is the propaga-
tion of strong terahertz and microwave pulses in the vibrational and rotational levels in molec-
ular gases. Relaxation to a thermal equilibrium is forced by taking γm j = γ jm exp[−β(ωm−ω j)]

where β =
̵h/kBT . Independent of forcing the thermal restriction, the equilibrium state is the

solution to the rate balance equation ∑ j≠m γm jρ j j −∑ j≠m γ jmρmm = 0, and all off-diagonal ele-
ments equal to zero. This can be written as the linear system Γ∣diag(ρ̂)⟩ = 0 where ∣diag(ρ̂)⟩ is
the column vector corresponding to the diagonal elements of ρ̂ and Γ is the matrix correspond-
ing to the linear system ∑ j≠m γm jρ j j −∑ j≠m γ jmρmm = 0. The solution is known [20], and the

populations are ρmm =
Γ jm

∑ j Γ jm where Γ jm is the cofactor of the element Γ jm. Γ has the special

shape that all cofactors in every column are identical (Γ1m
= Γ2m

= . . . etc.), so the cofactor Γ jm

is independent of j.
With Ř now included implicitly in Ľ, the polarization PPP = ⟨Tr(μ̂μμρ̂)⟩

∑
and the time-derivative

of the polarization, dtPPP, can be written by the use of Eq. (3), Eq. (5) and the hermiticity of μ̂μμ as

PPP =Na ⟨⟪μμμ ∣ρ⟫⟩
∑
, (11a)

dtPPP =Na ⟨⟪μμμ ∣Ľ∣ρ⟫⟩
∑

. (11b)

2.3. Time evolution

By splitting the Liouville operator into time dependent and time independent parts, Ľ = Ľ0 +

Ľ1(t), the exact solution to Eq. (3) is

∣ρ(t)⟫ = Ǔ0(t,t0)exp[
∞

∑

n=1
Ω̌(t,t0)]∣ρ(t0)⟫, (12)

where the free propagator Ǔ0(t,t0) is Ǔ0(t,t0) = exp[Ľ0(t − t0)]. ∑
∞

n=1 Ω̌(t,t0) is the Magnus
series [21] where the first term reads

Ω̌1(t,t0) = ∫
t

t0
dτĽI(τ), (13)

where ĽI(t) = Ǔ−1
0 (t,t0)Ľ1(t)Ǔ0(t,t0). We shall assume that the higher order terms, which con-

tains the time integral of the commutator [ĽI(τ2), ĽI(τ1)], is negligible over the time t−t0 =Δt.
The transition in Eq. (7) does not preserve the anti-hermiticity in Eq. (6), so the free propagator
Ǔ0 is not necessarily unitary, although it still preserves the trace, hermiticity and positiveness
of ρ̂ .
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2.4. Inhomogeneous broadening

For non-zero temperatures the thermal motion of absorbers will give rise to collision broad-
ening and Doppler shifts on optical transitions. Consequently, instead of sharp-line absorp-
tion, there will be a spectrum of absorption frequencies centered around every resonance. In
one-dimensional unidirectional propagation, Doppler broadening can be incorporated into our
model by letting ωi = ωi0(1+ v/c) where ωi0 is the energy divided by ̵h of the level i for an
absorber at rest, and v is its velocity. Since Doppler broadening is a statistical time-independent
phenomena in our model, we shall see how it, in practice, only affects Ǔ0, which leads to a very
efficient numerical evaluation.

The line profile that is most commonly used in spectroscopic literature is the Voigt profile,
which results from convolving two line broadening mechanisms, one that gives a Lorentzian
profile(e.g. collision broadening) and one that gives a Gaussian profile(e.g. Doppler broaden-
ing). For gases it is usually a good approximation to only use a Gaussian profile due to the
broad Doppler distribution, and later we give a numerical example of a photon echo simulation
where Doppler broadening plays a key role.

2.5. Maxwell’s equations and dimensionless units

To ensure maximal precision of numerical simulations, we introduce characteristic scales such
that EEE is of order one, and a time-scale tc = Ω−1

= (Ecμc/
̵h)−1 which is equal to the inverse

Rabi frequency Ω, a quantity that is often on the order of an optical transition for very strong
matter-field interactions. Scaling of the rest of the model follows from these quantities: the
magnetic field HHH is scaled according to HHH →(Ec

√

ε/μ)HHH, rrr→(tc/
√με)rrr, Ľ→ Ľ/tc and ∣μμμ⟫→

μc∣μμμ⟫. The density operator is already of order one and dimensionless, and therefore remains
untouched. The entire Maxwell-Bloch model can now be summarized by the dimensionless
equations

∂tHHH = −∇×EEE, (14a)

∂tEEE =∇×HHH −ζ ⟨⟪μμμ ∣(Ľ0+EEE ⋅ ĽLL1)∣ρ⟫⟩
∑

, (14b)

dt ∣ρ⟫ = (Ľ0+EEE ⋅ ĽLL1)∣ρ⟫, (14c)

where ζ = 1
ε

Naμc
Ec

and the Liouville operators (that contain only dimensionless frequencies and
dipole moments) are

Ľ0 = iĤ⊺0 ⊕(−Ĥ0)+ Ř, (15a)

ĽLL1 = −iμ̂μμ⊺⊕(−μ̂μμ). (15b)

3. Numerical model

3.1. Method for Bloch equations

A generally valid method for the Bloch equations is what is known as an operator splitting
method, and it was first introduced in [14] for the Maxwell-Bloch system. Here we show how
the splitting method can be recovered from the exact solution ∣ρ(t)⟫ = Ǔ0(t,t0)ǓI(t,t0)∣ρ(t0)⟫,
where Ǔ0(t,t0) = exp[Ľ0(t−t0)] and ǓI(t,t0) = exp[∑∞n=1 Ω̌n(t,t0)]. Evaluating this on t0 = (n−
1/2)Δt, t = (n+1/2)Δt and keeping only the first order term in the Magnus series gives

∣ρn+1/2
⟫ = Ǔ0Ǔ

n
I ∣ρ

n−1/2
⟫, (16a)

Ǔ0 = exp(Ľ0Δt), (16b)

Ǔn
I = exp(Ľn

I Δt), (16c)
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where Ľn
I = Ǔ−1

0 EEEn
⋅ ĽLL1Ǔ0. We have truncated the Magnus series at the first term and approxi-

mated the integral
∫

(n+1/2)Δt
(n−1/2)Δt dτĽI(τ)≈ Ľn

I Δt. Equation (16) preserves all the physical properties

of ρ̂ as long as the matrix exponentials can be calculated exactly. Note that ∣ρ⟫ and EEE are stored
on staggered temporal grids, which is the general trend throughout this paper.

There are several approximations and simplifications that can be made in Eq. (16). Firstly,
the computation of the matrix exponential exp(Ľn

I Δt) must be performed at every time step and
therefore has the potential of being the bottleneck in a numerical simulation. It may therefore be
tempting to approximate ǓI , but in doing so one must be careful because truncating the expo-
nential has the potential to ultimately lead to violation of the trace, hermiticity and positiveness
property of ρ̂ . On the other hand, Ǔ0 is time independent and only needs to be calculated once
for each class of absorbers.

Secondly, we may take Ľn
I ≈ EEEn

⋅ ĽLL1. This reduces the number of matrix multiplications that
are necessary at each time step and also has the potential of increasing the rate of convergence
when splitting the operators. This approximation is also more consistent with the previous
approximation of keeping only the first order term in the Magnus series since ĽI = Ľ1+O(Δt).
If inhomogeneous broadening is included, taking Ľn

I ≈ EEEn
⋅ ĽLL1 means that only one interaction

propagator needs to be calculated at each spatial point at each time step. This drastically reduces
the necessary computations with introducing negligible errors only.

Next, with these approximations the interaction propagator Ǔn
I can be written

Ǔn
I = exp(iEEEn

⋅ μ̂μμΔt)∗⊗exp(iEEEn
⋅ μ̂μμΔt) , (17)

where we have made use of the property exp(AAA⊕BBB) = exp(AAA)⊗exp(BBB) and the hermiticity of
μ̂μμ . The point is that instead of calculating the matrix exponential exp(−iEEEn

⋅ [μ̂μμ⊺⊕(−μ̂μμ)]Δt)
where the argument is of order N4, we have reduced it to calculating the exponential exp(iEEEn

⋅

μ̂μμ) where the argument is of order N2. The approximations made so far essentially leads to the
method introduced in [14], and the solution is summarized as

∣ρn+1/2
⟫ = Ǔ0 [exp(iEEEn

⋅ μ̂μμΔt)∗⊗exp(iEEEn
⋅ μ̂μμΔt)]∣ρn−1/2

⟫. (18)

Additionally, higher order approximations can be achieved by rearranging the propagators in
Eq. (18),

∣ρn+1/2
⟫ = Ǔ1/2

0 Ǔn
I Ǔ1/2

0 ∣ρn−1/2
⟫. (19)

Equation (19) is an example of a second order approximation to the solution for ∣ρn+1/2
⟫

and converges faster than Eq. (18). We shall refer to rearrangements of the operators (such
as Eq. (19)) as the splitting method.

Finally, the propagators are very sparse and a large computational gain can be obtained by
storing the propagators in sparse formats and using optimized matrix multiplication. Besides,
for inhomogeneously broadened media the update of ∣ρ⟫ rather than the calculation of the in-
teraction propagator is the computational bottleneck, and the simulation time is greatly reduced
by using sparse matrix multiplication. As an example, in our 6-level simulation only 66 of the
1296 elements in each of the 301 free propagators were non-zero. The evolution of ∣ρ⟫ is also
local, which leads to a very efficient parallelization.

3.2. Pseudospectral time domain

The use of the Yee scheme comes with two large drawbacks that make it inefficient for modeling
coherent pulse propagation. Firstly, the Yee scheme requires a very fine sampling in space and
time in order to accurately model wave propagation. Since the largest computational burden
in our model is the updating of the Bloch equations, reducing the grid resolution can lead to
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drastic improvements in efficiency. Secondly, the Yee grid leads to a large and complicated
linear system that needs to be solved at every time step because EEE enters on both sides of
Eq. (14b). The problem is rooted in the staggeredness of the Yee grid, but does not enter in the
one-dimensional model because ⟪μ ∣EĽ1∣ρ⟫ = ETr(μ̂,[μ̂ , ρ̂]) = 0. Both drawbacks of the Yee
scheme can be remedied by the use of pseudospectral methods [18] for Maxwell’s equations. In
this case, one can use a non-staggered spatial grid for EEE, HHH and ∣ρ⟫, but a temporally staggered
grid is still necessary in order to achieve at least second order accuracy in time.

We define the Fourier derivative operator ∂Fd by

∂Fd F = F

−1
d (2πikdFd(F)) (20)

where kd is the spatial frequency in the d-direction, F is a component of either EEE or HHH, and Fd

and F−1
d denote the Fourier and inverse Fourier transforms in the d-direction. Taking the nu-

merical approximation ∂tF ≈ (D
tF)n, Maxwell’s equations can be summarized in their discrete

forms as

(D
tHx)

n
i, j,k = −(∂

F

y Ez−∂Fz Ey)
n

i, j,k
, (21a)

(D
tHy)

n
i, j,k = −(∂

F

z Ex−∂Fx Ez)
n

i, j,k
, (21b)

(D
tHz)

n
i, j,k = −(∂

F

x Ey−∂Fy Ex)
n

i, j,k
, (21c)

(D
tEx)

n+1/2
i, j,k = (∂Fy Hz−∂Fz Hy)

n+1/2

i, j,k
−(ζ ⟨⟪μx ∣(Ľ0+EEE ⋅ ĽLL1)∣ρ⟫⟩

∑

)

n+1/2

i, j,k
, (22a)

(D
tEy)

n+1/2
i, j,k = (∂Fz Hx−∂Fx Hz)

n+1/2

i, j,k
−(ζ ⟨⟪μy ∣(Ľ0+EEE ⋅ ĽLL1)∣ρ⟫⟩

∑

)

n+1/2

i, j,k
, (22b)

(D
tEz)

n+1/2
i, j,k = (∂Fx Hy−∂Fy Hx)

n+1/2

i, j,k
−(ζ ⟨⟪μz ∣(Ľ0+EEE ⋅ ĽLL1)∣ρ⟫⟩

∑

)

n+1/2

i, j,k
, (22c)

where ∣μx⟫ = x̂xx ⋅ ∣μμμ⟫, ∣μy⟫ = ŷyy ⋅ ∣μμμ⟫, ∣μz⟫ = ẑzz ⋅ ∣μμμ⟫. (DtF)n is traditionally taken as the second

order Yee-type leapfrogging (DtF)n
=

Fn+1/2
−Fn−1/2

Δt . However, while the use of Fourier trans-
forms means that the spatial derivatives are calculated exactly as long as the sampling is above
the Nyquist limit, the temporal Yee-type leapfrogging scheme is a source for numerical dis-
persion. This can lead to artificial chirps in the pulse, and the spatial resolution must therefore
be taken significantly higher than the Nyquist limit in order to achieve sufficient accuracy. We
seek to partially overcome the limitations of the second order pseudospectral scheme(PSTD-
2) by using a 4th order time stepping for (DtF)n, which will allow us to push closer to the
Nyquist limit. In one dimension, EEE = Ex, HHH = Hy, ∂x = ∂y = 0, the fourth order numerical ap-

proximation for ∂tF can be written (DtF)n
=

Fn+1/2
−Fn−1/2

Δt −

Δt2

24 F
−1
[(2πik)3

F(F)]n [19]. We
have neglected the cross terms ζ Δt3 because the dominant contribution from the polarization is
already captured by the terms on the right hand side of Eq. (22). The equivalent expressions in
two and three dimensions can be found in [19].

With the same grid resolutions, the fourth order scheme is not significantly slower than a
second order scheme because the largest computational burden lies in the update of ∣ρ⟫ and
the polarization terms on the right hand side of Eq. (22), and not the calculation of the Fourier
transforms. Since the fourth order PSTD scheme(PSTD-4) allows a rougher grid resolution than
PSTD-2 to achieve the same accuracy, the PSTD-4 method generally performs faster than an
equivalent PSTD-2 method.

The PSTD method also has a more stringent condition on the time step than the Yee scheme
does, and must be chosen according to Δt ≤ 2min(Δx,Δy,Δz)/(

√

Dπ) (in dimensionless units),
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where D is the dimensionality. It is always necessary to choose spatial and temporal time steps
small enough to resolve the generated spectrum, and not just the initial spectrum. The periodic-
ity introduced through the Fourier transforms also means that absorbing layers must be added
to the boundaries of the computational domain to counter wraparound effects.

As a final comment, the linear system that enters in Eq. (22) is block-diagonal and can be
inverted by direct methods.

4. Numerical examples

We now show several scenarios that can be modeled by full-field Maxwell-Bloch equations,
although our numbers do not necessarily describe a particular physical system. While we
solve our equations in dimensionless form, all simulations are presented in SI units only. In
all our simulations we take ∣μμμ⟫ = ∣μ⟫ and use the PSTD-4 method for Maxwell’s equations
and Eq. (19) for updating the Bloch equations. Our propagators are all calculated in full using
the expokit [22] software library, and our computational domains are padded with absorbing
layers with reflection coefficients less than 10−6.

4.1. Two-level systems

Our first numerical simulation shows how an energetic electromagnetic pulse can travel loss-
lessly through a two-level sharp line absorber. This pulse, the 2π pulse, owes its transparency
to its ability to locally excite the medium and then coherently return the medium to its initial
state in one inversion cycle. Likewise, a 2πn pulse will return the material to its initial state in n
inversion cycles, a (2n+1)π pulse inverts the medium through n inversions and a (2n+1)π/2
pulse leaves the material in a state with ρ11 = ρ22 = 0.5 after inverting the medium n times. The
material that we choose here is taken as Na = 1024m−3, μc = 10−29Cm and ω0 = 4π ⋅1014rad/s,
which reflects the choice of parameters made in [7].
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Fig. 1. Propagation of a 2π hyperbolic secant soliton shown in a two-level absorber of
length L = 37.5μm. The left figure shows the envelope ∣E(t,z)∣ of the electric field E(t,z) =
E(t,z)cosφ(t,z). The envelope has been extracted from the full-field data by use of a
Hilbert transform. The right figure shows the traveling inversion bump ρ22(t,z)−ρ11(t,z)
of the medium. The ”flattenings” on the inversion bump are manifestations of counter-
rotating terms in the matter-field interaction [7].

#147292 - $15.00 USD Received 10 May 2011; revised 23 Jul 2011; accepted 27 Jul 2011; published 15 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  16792



The injected pulse is E(t) = E(t)sin(ω0t) = Ecsech[(t −6τ)/τ]sin(ω0t) where Ec = 4.2186 ⋅
109V/m and τ = 5fs. This pulse has a FWHM ≈ 13fs. The length of our medium is L = 37.5μm
with spatial and temporal time steps Δz = L/250 = λ

10 = 0.15μm and Δt = 2Δz
cπ ≈ 0.318fs. The

chosen values for Ec,μc and τ reflect that the pulse area is A = μc
̵h ∫

∞

−∞
E(t′)dt′ = 2π , which is

the necessary condition for the lossless propagation of the 2π hyperbolic secant soliton shown
in Fig. 1.

Secondly, we show how a photon echo [23] can form locally in an inhomogeneously broad-
ened medium. Coupling to a Maxwell code is straightforward but does not illustrate the role of
Doppler broadening further. We use the same parameters as in the previous example but include
a Doppler distribution function

g(v) =
1

√

πv2
p

exp(−
v2

v2
p
) . (23)

Inserting the detuning ω =ωo(1+v/c) =ω0+Δω into Eq. (23) and integrating the free induction
decay P(t) =

∫

∞

−∞
d(Δω)g(Δω)cos[(ω0+Δω)t] we can extract a Doppler lifetime T∗2 =

2c
vp

1
ω0

.
In order to demonstrate and validate the role of the mean free velocity vp, which acts as a
control parameter of the inhomogeneous bandwidth, we choose to simulate three materials
with vp/c = 1/(50π), vp/c = 1/(100π) and vp/c = 1/(200π). Note that these velocities may be
unrealistically high for some materials, but they nevertheless serve to demonstrate the validity
of our method. The theoretically derived Doppler lifetimes are T∗2 = 250fs, T∗2 = 500fs and
T∗2 = 1ps. The inhomogeneous bandwidth (1/T∗2 ) lies in the THz range.
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Fig. 2. Photon echo(es) shown in a two-level absorber for a simulation with Δt = 0.318fs
for a total duration of 11ps. The top figure shows the injected pulse envelopes obtained
through a Hilbert transform of the full-field, while the inset shows the population inversion
⟨ρ22 −ρ11⟩∑ during the passage of the first pulse. The second figure (below) shows the
envelope(s) of the polarization(s) P(t)=P(t)cosϕ(t) obtained through a Hilbert transform
for vp/c = 1/(50π)(dotted), vp/c = 1/(100π)(dashed) and vp/c = 1/(200π)(solid).

Numerically, we represent the broadening function by sampling nl = 1001 absorption lines in
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the velocity interval v ∈ c[−0.025,0.025] distributed according to Eq. (23). A large number of
absorption lines is usually necessary in order to avoid artificial echoes due to finite sampling.
The photon echo shown in Fig. 2 is generated by the injection of a π/2 pulse that lifts the
absorbers onto the equator plane of the Bloch sphere [23]. When the pulse has passed, the
dipoles dephase due to their different resonance frequencies which causes a free induction
decay of the macroscopic polarization. This decay is not irreversible since the microscopic
polarization of each absorber is unaffected. An echo can therefore be reproduced from the
dipoles by injecting a π-pulse a time T /2 after the first pulse has passed, which rotates the
dipoles π radians around the Bloch sphere. When again in the equator plane the dipoles continue
their rotation around the Bloch sphere but the phase-shift of π causes a rephasing after an
additional time T /2, which results in an echo of the original polarization. Our injected pulses are
E(t) = Ec

4 (sech[(t −50τ)/τ]+ sech[(t −800τ)/(2τ)])sin(ω0t), so the π/2 and π pulses have
the same peak amplitude, but different pulselengths. We have verified, although not shown here
explicitly, that the numerically calculated T∗2 ’s agree very well with the theoretically predicted
values of 250fs,500fs and 1ps, which serves to validate our method.

4.2. Multilevel systems

As a final example we show the absorption of a strong few-cycle pulse in a 6-level anharmonic
ladder. We take the transitions of the medium at the spectral lines ωn+1−ωn =ω0[1−0.1(n−3)],
where n = 1,2,3,4,5, and ω0 is the angular carrier frequency ω0 = 2π ⋅1013rad/s. The injected
pulse is E(t) = Ec exp[−(t − t0)2

/τ2
]sin(ω0t) where τ = 100fs, t0 = 3τ and Ec = 5 ⋅ 108V/m.

This pulse has a spectral content that covers all the resonances ωn+1 −ωn, and the peak of the
spectrum is located at the ω4 −ω3 resonance. We include the Doppler broadening function in
Eq. (23) sampled at 301 Doppler lines with vp/c ≈ 10−4, which indicates an inhomogeneous
bandwidth in the GHz range. Note that the inhomogeneous bandwidth is much smaller than
spectral width of the pulse, and that the presence of inhomogeneous broadening therefore gives
rise to minor modifications only. We take relaxation rates γ−1

12 = 1ps, γ−1
23 = 1.1ps, γ−1

34 = 1.2ps,
γ−1

45 = 1.3ps, γ−1
56 = 1.4ps and γ−1

11 = γ−1
22 = . . . = γ−1

66 = 1ps. We force the thermal restriction γm j =

γ jm exp[−β(ωm −ω j)] with T = 600K, which means that the initial state of our medium is
ρ11 ≈ 0.6, ρ22 ≈ 0.23, ρ33 ≈ 0.096, ρ44 ≈ 0.044, ρ55 ≈ 0.02, ρ66 ≈ 0.01 and all coherences equal
to zero. We take the density as Na = 1025m−3 and take μ12 = μ23 = . . .μ56 = 10−29Cm. The length
of our simulation region is L = 1mm with spatial and temporal time steps Δz = L/500 = 2μm and
Δt = 2Δz/(cπ) ≈ 4.2fs.

In the following, we make no attempt to explain the physics but rather comment on the gen-
eral behaviour of the system. Our pulse is strong enough to appreciably affect the populations
since the normalized pulse area (the average Rabi frequency) Ω̄ = A/τ = (Ecμc

√

π)/̵h is higher
than all decoherence rates. Consequently, we expect to observe population fluctuations during
the passage of the pulse. Figure 3 shows the time and frequency domain propagation of the
pulse through the medium. The pulse is quickly absorbed at the entrance of the medium and it
is easy to observe flattenings of the spectrum on every resonance. The most conspicuous ab-
sorption is found at the ω2 −ω1 and ω3 −ω2 resonances where the population is highest. The
pulse propagates with lower absorption after z ≈ 0.5mm due to the spectral hole at the ω3 −ω2

and ω2−ω1 resonances.
Figure 4 shows the normalized energy (⟨Ĥ0⟩∑−ω10)/(ω60−ω10), the electric field and av-

eraged populations ⟨ρ11⟩∑,⟨ρ22⟩∑, . . . ,⟨ρ66⟩∑ at the entrance, z = 0, of the medium. It is quite
obvious that the strong pulse excites the medium, and that the medium relaxes toward its ther-
mal equilibrium after the pulse has passed. During the passage, the medium is excited to a high
energy level, and the population of the highest energy level, ⟨ρ66⟩∑, reaches 0.33 during propa-
gation. This final example also illustrates the simultaneous breakdown of the two- or three-level
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Fig. 3. Few-cycle pulse propagation shown in a 6-level ladder configuration. The left figure
shows the rapid absorption of the pulse in the medium. Even after only one pulselength the
peak amplitude has been reduced to half its initial amplitude. The right figure shows the
pulse spectrum during propagation.
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Fig. 4. The figure on the left shows the normalized energy during the passage of the pulse
at the entrance of the medium, while the figure on the right shows the level populations.

approximation, the SVEA and RWA.

5. Conclusion

The usefulness of the method presented here lies in the compactness of the formalism. Indeed,
the development of an N-level code should be of the same complexity as 2-level code, apart
from the additional degrees of freedom of the medium (it will also require longer simulation
times). The use of a Liouville space formalism together with pseudospectral methods not only
allows gain in computational time, but also allows us to reduce the number of polarization
terms in Maxwell’s equations which leads to simpler formulations of multi-dimensional sys-
tems. We include homogeneous relaxations via the master equation, which ensures that the
positive-definite property of the density matrix is not violated, and we also include inhomoge-
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neous broadening via the free propagators. The most expensive computational part for inhomo-
geneously broadened systems is the update of the density operators and the polarization terms,
which is made more efficient by use of sparse matrix multiplication and storage. The method
can be made even more efficient by use of numerical approximations and simplifications for the
interaction propagator, parallelization of the code and more optimized algorithms for updating
the density operator (for example, it is strictly not necessary to store and calculate both ρi j and
ρ ji). At any point, the transition from a mixed-state formalism to a pure state formalism can
be made by replacing ∣ρ⟫ by the state vector ∣Ψ⟩, and replacing the Liouville operator by the
Hamiltonian, although such systems do not allow one to consider the effects of homogeneous
relaxations.
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