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Abstract

We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method.
Numerical tests of convergence towards continuum results are performed for several SU(2) gauge fields.
Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements
of the action as well as differently sized Wilson loops as functions of β.
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1. Introduction

1.1. General introduction

Gauge quantum field theory (QFT) has been extremely successful in modeling the behaviour
of fundamental high energy particle physics. This is done using the standard model of particle
physics, which is based on the gauge symmetry group G = U(1) × SU(2) × SU(3). Quantum
gauge field theories based on such noncommutative gauge groups are also called Yang–Mills
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theories [1–4]. Despite the massive successes of this model, there are still large difficulties in
calculating low energy properties of quarks and gluons. When restricting to these quantum fields,
the standard model reduces to the theory of Quantum Chromodynamics (QCD), with gauge group
SU(3). The problems is that through the effect of renormalization, the QCD coupling constant
increases as interaction energies is decrease, in such a way that perturbation theory breaks down.
This phenomenon is the source of confinement in QCD. Direct paper-and-pen calculation of
masses and interactions among low energy bound states of quarks is therefore quite problematic.

1.2. Lattice gauge theory

By discretizing QCD onto a lattice, a lot of these difficulties are removed. Lattice gauge
theory (LGT) [5,6] has proven itself to be a powerful method of doing nonperturbative gauge
theory calculations. It has therefore been, still is, and will for a long time be immensely useful in
testing QCD against experimental results at low energy.

Usually LGT models are formulated using a hypercubic lattice on a Euclidean spacetime.
Such a mesh preserves some discrete subgroups of the translational, mirror and 4d rotational
symmetries. Note that a clever way of retaining continuous symmetries while working on a lattice
is to use random lattices [7–9].

The models are almost always defined so as to also preserve a discrete gauge symmetry. This
has the beneficial effect of enforcing a vanishing gluon mass in the discrete model.

1.3. Simplicial lattices

Simplicial meshes have been used for QCD simulations before [10–16], with promising
numerical results. Here, we construct a simplicial gauge theory (SGT) based on the general
mathematical concept of a simplicial complex, while preserving gauge invariance. This allows
us to define SGT on a very general class of meshes, without restricting ourselves to a particular
type of simplicial lattice.

The construction of the gauge invariant SGT action functional is inspired by the finite ele-
ment method (FEM) most commonly used for solving partial differential equations, particularly
on complicated domains [17–21]. The formalism therefore includes the use of finite element
function spaces on simplicial meshes, and the concept of mass matrices. The term “mass matrix”
in this context has nothing to do with physical particle masses, and is therefore not to be confused
with the usual mass matrix of quantum states within quantum field theory.

Through the use of the FEM formulation, and the massive resources of methods available
within that subject area, we hope to gain advantages for QCD simulations in future implemen-
tations, in particular with regards to the possibilities of grid refinement. This could be useful in
modeling some QCD phenomena, e.g. for highly concentrated gluon flux tubes between quarks
where an increase lattice resolution might be desired. An earlier work used FEM inspired meth-
ods within QFT, although along a different direction involving solutions of operator equations
instead of Monte Carlo simulations [22,23].

1.4. Computer simulation

The mathematical proof of consistency between the SGT and continuous Yang–Mills gauge
theory action is described in a companion paper [24], along with a description of the more com-
prehensive Yang–Mills–Higgs model. In the current article we are content to provide numerical
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evidence for convergence towards exact continuum results for several choices of gauge field con-
figurations. In addition, we perform Monte Carlo quantum pure gauge field theory simulations
for the gauge group SU(2) in temporal gauge, as a proof-of-concept for SGT. Observable mea-
surements include expectation values of the action density as well as a series of different Wilson
loops.

1.5. Outline

Section 2 contains a short repetition of the fundamental definitions of gauge symmetry and
the continuous spacetime Yang–Mills action in Section 2.1, the basics of traditional lattice gauge
theory in Section 2.2, as well as an introduction to the proposed SGT action in Section 2.3.
In Section 3.1, we report on the numerical convergence of the SGT action towards the exact
continuum value for several different cases of SU(2) gauge fields, as well as similar results
from traditional LGT. Theoretical results proving consistency for general gauge fields can be
found in [24]. In Section 3.2, we perform Monte Carlo quantum field theory simulations in order
to observe that SGT correctly reproduces the basic aspects of the SU(2) quantum field theory.
We draw our conclusions in Section 4. Appendix A contains a short introduction to elementary
aspects of simplicial complexes, and some notes about basis functions and mass matrices that are
use in our construction of SGT. Appendix B contains a calculation of strong and weak coupling
limits for a Wilson triangle and the action density. Lastly, Appendix C contains a short discussion
of some aspects of the numerical computer implementation.

2. Construction

2.1. Continuous gauge theory

Consider the spacetime domain M = R × S, where R is time and S ⊂ R
3. The domain M

represents either Lorentzian or Euclidean spacetime, in each case equipped with the appropriate
metric. In the standard orthonormal M-basis {eμ}μ=0,1,2,3, a general point x ∈ M has compo-
nents {xμ}μ=0,1,2,3. Greek indices run from 0 to 3, and Latin indices from 1 to 3.

Furthermore, in this article we shall consider pure SU(2) gauge theory. However, the con-
struction presented is applicable to any gauge theory based on a compact Lie group G which can
be represented by a subgroup of the complex unitary n × n matrices. We define the real-valued
scalar product on G as

g′ · g := � tr
(
g′gH

)
, (1)

where gH is the hermitian conjugate of a matrix g.
The connection between the continuous theory and the discrete simplicial theory is most easily

seen in a coordinate free formulation. Thus, we start with a coordinate free formulation, before
we give the more familiar coordinate based one.

The free variable in pure Yang–Mills theory with gauge Lie group G is a gauge potential or
more formally a one-form A on M, with values in the corresponding gauge Lie algebra g. For
simplicity of notation, we hereby specify G = SU(2) and g = su(2). We split A into temporal
and spatial components A = (A0,A). In this context, A0 can be thought of as a scalar function,1

and A as a spatial vector. The curvature (field strength) of such a one-form is given by

1 However, not a scalar in the sense of spacetime symmetry transformation properties.
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F(A) = dA + i

2
[A,A] = d0A + dA0 + dA + i[A,A0] + i

2
[A,A], (2)

where d = (d0, d), d0 and d denote exterior derivative in the temporal and spatial directions
respectively, and [·,·] is the commutator between Lie algebra valued one-forms. We choose the
basis {ta}a=1,2,3, where ta := σa/2, for su(2), where {σa}a=1,2,3 are the Pauli matrices. Thus,
we can expand the gauge field into components, A = Aata . We also have

[A,A] =
∑
ab

Aa ∧ Ab
[
ta, tb

] =
∑
abc

iεabcAa ∧ Abtc, (3)

where εabc is the antisymmetric Levi-Civita symbol with ε123 = 1 and ∧ is the wedge product
(exterior product). For later convenience we split the curvature in a temporal and spatial part

F t (A) = d0A + dA0 + i[A,A0], F s(A) = dA + i

2
[A,A]. (4)

The action that defines the gauge theory is the functional

S[A] = 1

4e2

∫
M

∣∣F(A)
∣∣2 = 1

4e2

∫
M

∣∣F t (A)
∣∣2 + ∣∣F s(A)

∣∣2
, (5)

where the norms are generated the metric and e is the dimensionless Yang–Mills coupling con-
stant.

A gauge transformation is defined by a choice of G(x) ∈ SU(2) for each x ∈ M, and trans-
forms the gauge field as

A0 �→ G(A0 + dt )G
−1, A �→ G(A + d)G−1. (6)

Note that the action S[A] is invariant under such gauge transformations. For a more precise
mathematical exposition, see [24].

A formulation more familiar within physics is obtained by expressing the one form and cur-
vature in coordinates. In other words, one decomposes the one-form Aa in the basis {dxμ}, i.e.
Aa = ∑

μ Aa
μ dxμ. The exterior derivative of such a one-form is given by

dAa =
∑
μν

∂νA
a
μ dxν ∧ dxμ =

∑
μν

1

2

(
∂μAa

ν − ∂νA
a
μ

)
dxμ ∧ dxν. (7)

Furthermore, the curvature is given by Fa = ∑
μν

1
2Fa

μν dxμ ∧ dxν , where

Fa
μν = ∂μAa

ν − ∂νA
a
μ − εabcAb

μAc
ν. (8)

Finally, the action can be expressed as

S = 1

4e2

∫
M

∑
μνa

F a
μνF

aμν dx, (9)

the usual coordinate dependent expression for the Yang–Mills action functional.
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2.2. Lattice gauge theory

To see the connection between lattice gauge theory (LGT) and the simplicial gauge theory
(SGT), we will in this section give a brief overview of the discretization procedure from LGT.
For a more complete description see e.g. [6].

The discretization procedure of both LGT and SGT is based on the following identity. Con-
sider a small surface Σ with area proportional to h2, where h is a small positive quantity. Then
the following identity holds

⊂⊃
∫∫
Σ

F(A) = H(A) − 1 + O
(
h3),

where H(A) is the holonomy of the one-form A, i.e. the parallel transport induced by A around
the boundary of Σ . This parallel transport is defined as follows. Given a curve γ : [0,1] → M,
such that γ (0) = x and γ (1) = y, the parallel transport operator along γ is given by

Uγ (x, y) = P

(
exp

(
i

∫
γ

A

))
,

where P denotes path-ordering, and the subscript γ is attached to U to denote the path-
dependence. In LGT, this quantity is known as the Wilson line.

In LGT, spacetime M is usually discretized by a uniform hypercubic lattice L. Neighbouring
node positions are related through translation vectors {aμ} for which we assume |aμ| = h for
all μ. To each edge e which connects neighbouring nodes, n and n + aμ for some μ, we attach
an approximation of the parallel transport operator along e. Thus,

Uμ(n) := exp

(
ihAμ

(
n + 1

2
aμ

))
≈ Ue(n,n + aμ) = P

(
exp

(
i

n+aμ∫
n

A

))
. (10)

In LGT this quantity is called a link variable, link matrix or link group element. Furthermore,
given a face f of a cube in the mesh, called a plaquette, we approximate the holonomy associated
to this face as the path-ordered product of the link variables along its boundary. In other words,
if f lies in the μν plane, with nodes n, n + aμ, n + aν , and n + aμ + aν , we approximate the
holonomy as

Uf (n) := Uμν(n) := Uμ(n)Uν(n + aμ)UH
μ (n + aν)U

H
ν (n)

≈ H(A) := P

(
exp

(
i

∮
∂f

A

))
, (11)

where ∂f denotes the boundary of the plaquette f . In LGT, this quantity is known as the Wilson
loop. Moreover, we approximate the curvature as

Ff
μν ≈ Uf − 1. (12)

Finally, the LGT action is defined as

SLGT = β
∑ 1

4
tr
[
(Uf − 1)(Uf − 1)H

] = β
∑

1 − 1

4
tr
(
Uf + UH

f

)
, (13)
f f
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where β is related to the coupling constant by β = 4/e2. A discrete gauge transformation is
associated with a choice of G(n) ∈ SU(2) for each node n. Each link variable then transforms as

Uμ(n) �→ G(n)Uμ(n)G(n + aμ)−1. (14)

By the cyclic invariance of the trace, the action SLGT is discretely gauge invariant.

2.2.1. Remarks
The LGT action can be viewed as a mass lumped FEM action, and this observation is useful to

have in mind when we construct the simplicial analogue. In the FEM setting, the gauge potential
is assumed to be a lowest order curl-conforming Nédélec element in 4d on hypercubes, with one
dimension representing time [19]. The degree of freedom associated to such a gauge potential at
an edge e from n to n + aμ is

Ae =
n+aμ∫
n

A = hAμ

(
n + 1

2
aμ

)
.

The parallel transport operator is as in Eq. (10), i.e. Uμ(n) = exp(iAe). Then, the holonomy
is approximated as in Eq. (11), the curvature as in Eq. (12), and one considers Uf − 1 as the
components of the two-form∑

f

(Uf − 1)ωf ,

where {ωf } are the Nédélec basis two-forms. The FEM action associated to such a two-form is

S := β

2

∑
f,f ′

Mff ′ tr
[
(Uf − 1)(Uf ′ − 1)H

]
, Mff ′ :=

∫
M

ωf · ωf ′ ,

where Mff ′ is called the mass matrix, and (·) denotes the scalar product of alternating forms w.r.t.
the metric. The mass matrix is not diagonal, which means that the discrete curvature at different
faces interact. This again implies that the action is not discretely gauge invariant. However, by
diagonalizing the mass matrix using numerical quadrature, this action reduces to the LGT action,
Eq. (13). The diagonalization procedure can also be shown to be numerically consistent in the
sense of approximation theory [24].

2.3. Simplicial gauge theory

In this section we construct the discretely gauge invariant simplicial gauge theory (SGT)
action on a simplicial complex, as defined in Appendix A. The construction is the simplicial
analogue of the FEM action described above, including additional parallel transport operators to
make it discretely gauge invariant.

The curvature associated to the temporal and spatial faces is defined exactly as in LGT. In the
notation of Appendix A, consider a temporal and spatial face

ft (τ ) := {iτ , jτ , jτ+�t , iτ+�t },
f (τ ) := {iτ , jτ , kτ }, (15)
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where iτ denotes node i at time τ . The time-dependency will from here on often be suppressed,
unless confusion can arise. The spatial and temporal holonomies associated to these faces, in-
duced by the gauge potential, are approximated as

Uft (iτ ) = U(iτ , jτ )U(jτ , jτ+�t )U(jτ+�t , iτ+�t )U(iτ+�t , iτ ),

Uf (i) = U(i, j)U(j, k)U(k, i), (16)

where the arguments iτ and i are included to indicate where the holonomy is located, and the
parallel transport operators are defined exactly as in LGT, i.e. Eq. (10). We observe that the
holonomies located at different nodes are related through the formulas

Uft (iτ + �t) = U(iτ+�t , iτ )Uft (iτ )U(iτ , iτ+�t ),

Uf (j) = U(j, i)Uf (i)U(i, j),

which give formulas for parallel transport of curvature. Hence, we have defined the curvature
associated to the temporal and spatial faces in our 4d mesh. The distinguished point of f and ft ,
i.e. the location of their holonomy, are denoted ḟ and ḟt respectively. Note that under a discrete
gauge transformation, the parallel transport operators are transformed as in LGT, i.e.

U(iτ , iτ+�t ) �→ G(iτ )U(iτ , iτ+�t )G(iτ+�t )
−1,

U(i, j) �→ G(i)U(i, j)G(j)−1,

for G(i) ∈ SU(2) for each vertex i.
As in LGT the curvature is approximated as

F t ≈ Uft − 1,

F s ≈ Uf − 1, (17)

considered as components of the two-forms∑
ft

(Uft − 1)Λft ,

∑
f

(Uf − 1)Λf ,

where the Λ are basis functions as described in Appendix A. The associated FEM action is
S = St + Ss , where the temporal part is

St = β

2
�

∑
ft ,f

′
t

Mftf
′
t

tr
[
(Uft − 1)(Uf ′

t
− 1)H

]
, Mftf

′
t
:=

∫
M

Λft · Λf ′
t
, (18)

and the spatial part is

Ss = β

2
�

∑
f,f ′

Mff ′ tr
[
(Uf − 1)(Uf ′ − 1)H

]
, Mff ′ :=

∫
M

Λf · Λf ′ , (19)

where β = 2/e2. Note that we have suppressed the dependency of S on A. Again, Mftf
′
t

and
Mff ′ are called mass matrices. They depend on the details of the mesh, and are described more
in detail in Appendix A. As pointed out in the discussion about the FEM formulation of LGT,
the mass matrices are not diagonal. This implies that the action is not discretely gauge invariant.
However, this can be resolved by parallel transport of curvature. The temporal and spatial part of
the action, St and Ss , are now treated separately.
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2.3.1. The temporal part
Let ft (τ ) and f ′

t (τ ) be two temporal faces. We now use some properties of the basis functions,
which are explained in Appendix A. Since the temporal basis face functions (Λft ) are piecewise
constant in time, the interactions between the temporal curvature occur only at coinciding time
intervals. Also, by properties of the edge basis functions (λe), which define the temporal basis
face functions, we can connect the curvature at ft with the curvature at f ′

t by parallel transport
along at most one edge. Thus, we connect the curvatures by parallel transport along the connect-
ing edge e = {ḟt , ḟ

′
t } of their distinguished points. In other words, we approximate the temporal

part of the action by

St
SGT := β

2
�

∑
ft (τ ),f ′

t (τ )

Mft (τ),f ′
t (τ ) tr

[
U

(
ḟ ′

t , ḟt

)
(Uft (τ) − 1)U

(
ḟt , ḟ

′
t

)
(Uf ′

t (τ ) − 1)H
]
.

(20)

2.3.2. The spatial part
Let f and f ′ be two spatial faces of a tetrahedron T . The curvature associated to the face f

at time τ will interact with the curvature associated to the face f ′ not only at time τ , but also at
times τ ± �t , since the facial basis functions are piecewise affine in time. Thus, to connect the
curvature at f (τ) with the curvature at f ′(τ ′) we must parallel transport in both space and time.
Thus, we replace

(Uf (τ) − 1)(Uf ′(τ ′) − 1)H

by

U
(
ḟ ′(τ ), ḟ (τ )

)
(Uf (τ) − 1)U

(
ḟ (τ ), ḟ ′(τ )

)
U

(
ḟ ′(τ ), ḟ ′(τ ′))(Uf ′(τ ′) − 1)H

× U
(
ḟ ′(τ ′), ḟ ′(τ )

)
in the FEM action (19). In words, we first parallel transport the curvature associated to f , lo-
cated at the vertex ḟ (τ )) to the vertex ḟ ′(τ ) along the edge e = {ḟ (τ ), ḟ ′(τ )}. Then we parallel
transport it in the temporal direction from ḟ ′(τ ) to ḟ ′(τ ′). So, we approximate the spatial part of
the action as

Ss
SGT := β

2
�

∑
f (τ),f ′(τ ′)

Mf (τ),f ′(τ ′) tr
[
U

(
ḟ ′(τ ), ḟ (τ )

)
(Uf (τ) − 1)U

(
ḟ (τ ), ḟ ′(τ )

)
× U

(
ḟ ′(τ ), ḟ ′(τ ′))(Uf ′(τ ′) − 1)H U

(
ḟ ′(τ ′), ḟ ′(τ )

)]
. (21)

The simplicial gauge theory action is then defined as

SSGT := St
SGT + Ss

SGT , (22)

and by the cyclic invariance of the trace, this action is discretely gauge invariant. A compan-
ion paper [24] contains more details about this construction, as well as mathematical proofs of
consistency with the continuous action (5) in the sense of approximation theory.

3. Computer simulation

For our SGT computer simulations, we chose the Euclidean cubic domain M = [0,1]4 ⊂ R
4

with periodic boundary conditions. We simulated the pure gauge SGT action (22) in temporal
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Fig. 1. Elementary 3d mesh building block containing six tetrahedra, all of which share the single interior diagonal. This
particular choice implies an anisotropy in the discretization. This anisotropy will of course disappear in the continuum
limit.

gauge on a simplicial lattice with the gauge group SU(2). Choice of gauge is not necessary, but it
does simplify the algorithm slightly, since all temporal edge matrices then reduce to the identity.

The spatial lattice was constructed using a cubic arrangement of N3 identical building block
cubes of size h3, each consisting of six tetrahedra as shown in Fig. 1. The resulting spatial mesh
was repeated at N consecutive time steps to form a cubic domain of physical volume (hN)4. As
described above, each spatial edge is part of two temporal square-shaped faces, going forward
and backward in time.

The SGT action employs parallel transport matrices in order for gauge invariance to be re-
spected. By defining the distinguished points of all spatial and temporal faces to coincide for
as many pairs of faces as possible, we only need the parallel transport matrices for terms in the
action involving pairs of temporal faces with no common nodes. More details regarding the exact
computer implementation are given in Appendix C.

3.1. Convergence of the action

In order to check the continuum limit of the discrete action, we examined four different gauge
field configurations for which the exact continuum value Scont of the action is calculable. We did
numerical calculations for square meshes with N = 4,8,16,32 in order to observe convergence
of the numerical values towards the exact values. By the estimates in [24] we expect that the
error be of second order in the lattice constant h. We used the following gauge field configuration
cases:

1. Gauge field oriented towards the x-direction in space and towards t3 within su(2), with a
sinusoidal t -dependence. The only nonzero component of the gauge field A is

A3
x(t, x, y, z) := e

2π
sin(2πt), S = 1.

2. Gauge field oriented towards the y-direction in space and t3 within su(2), with a sinusoidal
x-dependence. The nonzero component of the gauge field in this case was

A3
y(t, x, y, z) := e

2π
sin(2πx), S = 1.
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Fig. 2. The relative error of the action versus the number of lattice sites per side N , for the actions 1, 2, 3, 4 described
in Section 3.1. The squares are the simulation data points and the solid lines are the second order polynomial fits. Errors
are proportional to h2 in all cases.

3. A case with two nonzero components,

A1
x := e

2π
sin(2πy), A2

y := e

2π
sin(2πx), S = 1

2
+ e2

8(2π)4
.

4. A constant field that only contributes to the nonlinear term in the field strength,

A1
x := √

e, A2
y := √

e, S = 1

2
.

In order to provoke a sizable nonlinear contribution in case 3, we chose a small β = 2/e2 = 1/5.
The link matrices needed to evaluate the SGT action are calculated from these gauge fields by
means of the exponential map (10).

The results are displayed using double logarithmic plots in Fig. 2 for traditional Wilson action
LGT as well as the SGT results. As expected from the estimates in [24], in all cases the relative
error behaves as

Relative error ∼ Ch2,

as determined by extracting the linear coefficient of the second order polynomial fits shown in
the figures. Note that while the convergence exponent of h is the same in all cases, the pref-
actor C is smaller in the SGT cases involving time-independent fields, due to its finer spatial
discretization for the same N . Where time-dependence is involved, the errors coincide since the
time-discretization we have chosen for this SGT simulation is of the same quality as for the LGT
simulation.

3.2. Quantum field simulation

Analogous to the traditional lattice QCD simulations, we performed parallel SU(2) quantum
field theory Monte Carlo simulations for N = 8. In this case, the edge matrices are sampled
directly without reference to a gauge field and lattice constant value. Therefore, the physical
size of the simulation domain is unknown prior to experimental comparisons. All dimensional
observable quantities are automatically calculated in units of powers of the lattice constant h.
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Fig. 3. The simulated Wilson loops shapes correspond to the outer edges of these figures. They lie in the xy, yz and
zx planes.

As is customary, it is a Monte Carlo simulation using the Metropolis algorithm to generate
a Markov chain of gauge field configurations that are distributed according to the Boltzmann
weight exp(−S). Each Monte Carlo step involves randomization of some edge SU(2) matrices,
which is done by multiplication of a small su(2) algebra matrix, together with a Metropolis step
for acceptance/rejection of the update. The algorithm adapted itself to drive the MC acceptance
rate towards 1/2. The use of temporal gauge may slow the convergence of this type of numerical
simulation. However, Monte Carlo convergence was ascertained and high quality error estimates
were made by the use of data blocking [25]. In addition, convergence was verified subjectively
by inspection of the time series for observable values with their accompanying distributions, as
well as time series for cumulative averages.

The data blocking error estimates were found to be smaller than the displayed data points in
all the plots.

We simulated at different values of β , at each of which we measured the average action density
S/N4, and a list of different Wilson loops shown in Fig. 3, all of which are gauge-invariant
quantities. For each Wilson loop shape, we average over all possible loop positions, as well as
loop orientations in the xy, yz and zx planes. For a given closed path C , the corresponding
Wilson loop variable for gauge group SU(n) is defined as

WC := 1

2
� tr

∏
e∈C

Ue, (23)

which involves an ordered product of the edge matrices {Ue} along the path C .
Expectation values for any observable quantity O, e.g. the action density S/N4 or a Wilson

loop WC , is given by

〈O〉 = 1

Z

∫ (∏
e

dUe

)
O exp(−S), (24)

where the partition function Z is defined by

Z :=
∫ (∏

e

dUe

)
exp(−S). (25)

The integration measure involved in these expressions is a product of the normalized Haar inte-
gration measure for each edge group element in the mesh. Note that the normalized Haar measure
satisfies∫

dU = 1. (26)
G
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Fig. 4. Plots showing the β-dependency of (a) the average action density 〈S/N4〉 and (b) the various Wilson loops
〈W 〉 from Fig. 3. Solid squares are data points and solid lines are linear interpolations. The strong and weak coupling
asymptotes are included for the action density and the elementary triangular loop. Monte Carlo errors are smaller than
the data points.

To accompany these measurements, the strong (small β) and weak (large β) coupling asymp-
totic behaviour were calculated in Appendix B, using methods described in [6]. At strong
coupling, this involves various group integrals, while at weak coupling it suffices to use a ther-
modynamic analogy to determine the limiting behaviour.

The simulated results for the action density and Wilson loops are displayed in Fig. 4. In
Fig. 4(a) we can see the characteristic and nontrivial behaviour in the medium coupling range
β ∈ (1,3). This coincides qualitatively with LGT simulations [26]. Only qualitative, not exact,
agreement is expected, since the physical lattice constant will differ in each type of simulation.
Compared to LGT simulations, the behaviour at small β deviates more from linearity due to the
nonlinear aspects of the SGT action. In this region, the actions do not approximate the continuum
action, and differences between discrete actions are unphysical.

The Wilson loops in Fig. 4(b) show the same qualitative behaviour as do LGT simulation
results, and approaches the calculated asymptotes nicely. Also here, the behaviour is less linear
at small β for the same reason as stated above. The typical strong suppression of the Wilson loops
as functions of loop area is reproduced, as expected from the area law behaviour that indicates
confinement.

4. Conclusions

We have implemented the general SGT action on a particular simplicial mesh, and performed
Monte Carlo quantum field theory simulations that show sensible results that are qualitatively
consistent with standard LGT simulations, as must be the case for this initial proof-of-concept
implementation.

We expect that this method will lend itself nicely to the use of mesh refinement within
quantum QCD simulations, and that this will lead to opportunities of novel applications using
nontrivial mesh structures, e.g. in the vicinity of gluon flux tubes as mentioned in the introduc-
tion.

The nondiagonal nature of the action increases the amount of computer work in the Metropolis
step after each proposed update. However, since the number of interactions for each elementary
face is finite, the scaling at large meshes for this model will be the same as for traditional QCD.
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There might be possibilities of real-time adaptive diagonalization, thereby increasing the algo-
rithm efficiency throughout the initial part of the simulation.
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Appendix A. Simplicial complex, finite elements and mass matrices

Consider a collection of vertexes, edges, faces, tetrahedra in 3d space. These elementary
objects are called simplexes, and the collection of these a simplicial complex T . For any k-
dimensional simplex Tk for 1 � k � 3, the boundary ∂Tk is a union of (k − 1)-dimensional
simplexes. Consult [27, Section 5.1] for a precise definition. In our construction, we assume that
this spatial simplicial complex spans the spatial domain S. The vertexes, edges, faces, and tetra-
hedra according to dimension, and are labeled i, e, f , and T respectively. The symbol T will be
used for simplexes of any dimension.

In order to expand this to a 4d spacetime simplicial complex T, consider a uniform time-
discretization with a time spacing �t . The simplicial complex T is then repeated at each discrete
time step value τ . For each such τ , we define additional simplexes for our T by extruding each
simplex of T along the time interval [τ, τ + �t]. As the basic building block in classical 3d
FEM theory is a tetrahedron T , the basic building block in this extended FEM version is T × Iτ ,
where Iτ = [τ, τ + �t], i.e. a time-extrusion of a tetrahedron. Temporal edges are generated by
extruding 3d vertices, and temporal faces by extruding 3d edges.

The space of Whitney k-forms on T (T ) is denoted Wk(T ) (Wk(T )), with canonical basis
(λT ), T ranging over the set of k-dimensional simplexes in T [20]. The 0-forms λi are the
barycentric coordinate maps for each vertex i. In other words, it is the piecewise affine map
taking the value 1 at the vertex i and 0 at other vertices. For an edge e = {i, j}, with orientation
i → j , the associated Whitney 1-form is defined by

λe := λij := λi∇λj − λj∇λi. (A.1)

For a face f = {i, j, k}, whose orientation is i → j → k, the associated Whitney 2-form is
defined by

λf := λijk := 2(λi∇λj × ∇λk + λj∇λk × ∇λi + λk∇λi × ∇λj ). (A.2)

In the 4d spacetime FEM setting, these basis k-forms are extended to be piecewise affine in
time and are denoted (ΛT (τ)), i.e.

λT → ΛT (τ) = λT ⊗ P t
1,

where P t
1 denotes polynomials in the time variable of degree at most one, and T (τ) := (τ, T )

denotes the spatial simplex T at temporal node τ . More precisely, ΛT (τ) is the piecewise affine
function in time, taking the value λT at τ and 0 at the other temporal nodes. In addition, we
define temporal basis edge and face functions.

To every vertex i in the spatial mesh there are temporal edges et (τ ) = {iτ , iτ+�t }, where
iτ := i(τ ). The temporal basis edge function attached to et (τ ) is then the piecewise constant
function in time defined by
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Λet (τ)(t) =
{

λi ◦ π 1
�t

dt, t ∈ [τ, τ + �t],
0, otherwise,

where π is the canonical projection onto the space S,

π : M = R × S → S,

and dt is the standard basis one-form in the temporal direction.
To every spatial edge e there are corresponding temporal faces ft (τ ) = e × Iτ . The temporal

basis face function attached to ft (τ ) is then the piecewise constant function in time defined by

Λft (τ)(t) =
{

λe ◦ π ∧ 1
�t

dt, t ∈ [τ, τ + �t],
0, otherwise.

In addition to these basis functions, we must define mass matrix elements. Let mT T ′ denote
the classical 3d mass matrices for spatial Whitney elements

mT T ′ =
∫
S

λT · λT ′ ,

where T , T ′ are k-dimensional simplexes, and (·) denotes the scalar product of alternating forms.
In the definition of the SGT action we use the generalization

MT (t)T ′(τ ) =
∫
M

ΛT (t) · ΛT ′(τ ).

This generalization can be expressed through the classical mass matrices by performing the time
integration explicitly. Thus, let T be a spatial tetrahedron and Iτ = [τ, τ +�t]. Considering now
only this time interval, the piecewise affine function taking the value 1 at time τ and 0 at time
τ + �t is given by

pτ (t) = 1 − t − τ

�t
.

The analogous function for the temporal node τ + �t on the same time interval is given by

pτ+�t (t) = t − τ

�t
.

Restricted to the basic building block T × Iτ , we therefore get

Mf (τ)f ′(τ )(T × Iτ ) =
∫

T ×Iτ

Λf (τ) · Λf ′(τ ) =
∫
Iτ

p2
τ

∫
T

λf · λf ′ = 1

3
�tmff ′(T ),

Mf (τ)f ′(τ+�t)(T × Iτ )

=
∫

T ×Iτ

Λf (τ) · Λf ′(τ+�t) =
∫
Iτ

pτpτ+�t

∫
T

λf · λf ′ = 1

6
�tmff ′(T ),

Mf (τ+�t)f ′(τ+�t)(T × Iτ )

=
∫

T ×Iτ

Λf (τ+�t) · Λf ′(τ+�t) =
∫
Iτ

p2
τ+�t

∫
T

λf · λf ′ = 1

3
�tmff ′(T ).

Similarly, the mass matrix element corresponding to the temporal face basis is given by
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Mft(τ)f ′
t (τ )(T × Iτ ) =

∫
T ×Iτ

Λft (τ) · Λf ′
t (τ ) = 1

�t

∫
T

λe · λ′
e = 1

�t
mee′(T ).

Appendix B. Strong and weak coupling limits

B.1. Strong coupling limit

Here we will show some details regarding the calculation of the strong coupling limits of
the elementary triangular Wilson loop. We will use the following integrals over SU(2) group
space [6]∫

dU Uαβ = 0,

∫
dU Uα1β1U†β2α2 = 1

2
δα1α2δβ1β2 ,∫

dU Uα1β1Uα2β2 = 1

2
εα1α2εβ1β2 , (B.1)

where the Greek symbols are matrix indices.
In this calculation, the Wilson loop encircles an elementary spatial triangular plaquette Pt at

time t . We denote this Wilson loop by WPt . By Eq. (23), it is given by

WPt := 1

2
� tr(UaUbUc),

where the plaquette Pt is encircled cyclically by the SU(2) edge matrices Ua ,Ub and Uc . Due to
our choice of distinguished points and plaquette orientations, the spatial SGT action is given by

S = β

2

∑
f,f ′

Mff ′ tr
(
Uf UH

f ′ − Uf − UH
f ′ + 1

)
,

where the sum extends over all spatial faces at all times. Since we are interested in small β ,
consider a first order truncated Taylor expansion of the exponential in Eq. (24), i.e.

〈WPt 〉 ≈ −β

4Zβ

∫ (∏
e

dUe

)
� tr(UaUbUc)

∑
f,f ′

Mff ′ tr
(
Uf UH

f ′ − Uf − UH
f ′ + 1

)
.

By the properties of the SU(2) integration measure, terms involving integration over odd powers
of link matrices vanish. Therefore, nonvanishing contributions to the integral only come from
terms where either f and/or f ′ coincide with the plaquette Pt . The Uf UH

f ′ doesn’t contribute.
Indeed, if either f or f ′ differ from Pt , we such a term includes an integral over a single power,
which vanishes. If on the other hand f = f ′ = Pt , we have Uf UH

f = 1 which again leads to an
integral over a single power and thus vanishes. This is also the case for the constant term in the
parenthesis.

We are left with

〈WPt 〉 ≈ β

4Zβ

�
∫ (∏

e

dUe

)
tr(UaUbUc)

∑
f,f ′

Mff ′ tr
(
Uf + UH

f ′
)
,

where we have moved the real part operator � outside of the integral. Contributions only come
when at least one of f,f ′ coincide with Pt . Therefore, by the properties of the particular mesh
we have constructed,
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〈WPt 〉 ≈ β

4Zβ

(MPtPt + MPtPt+1 + MPtPt−1)

× �
∫ (∏

e

dUe

)
tr(UaUbUc) tr

(
UPt + UH

Pt

)
.

Using UPt := UaUbUc and the SU(2) integration formulas (B.1), we get

〈WPt 〉 ≈ β

2
(MPtPt + MPtPt+1 + MPtPt−1) = 2

3
β,

where we have used Z ≈ 1 for small β . The last equality follows from the particular mass matrix
element values produced by our choice of simplicial lattice.

A similar calculation, only slightly more involved because several faces are involved, can be
performed to determine the strong coupling limit of the action. Approximations of higher order
in β can be found by including higher order terms in the Taylor expansion of the exponential.

B.2. Weak coupling

In order to determine the weak coupling limit of the action density, we simple follow a ther-
modynamic analogy described in [6]. At large β , the system is described well by a Gaussian
partition function approximation. This corresponds to a free theory, and we can find the weak
coupling limit of the action by distributing an amount kT /2 = 1/2β of energy among all the
degrees of freedom in the theory. We have seven edges for each building block cube, each of
which contributes three degrees of freedom (the number of generators of SU(2)). In accordance
with our use of temporal gauge in the simulations, we have excluded the unphysical temporal
components when counting degrees of freedom. To obtain the action, we multiply by β , which
results in

SSGT → β × 1

2β
× 7 × 3 = 21

2
N4, as β → ∞. (B.2)

This result can be used to determine the same limit of the triangular Wilson loop in the αβ plane.
We have

〈W1〉 = 1 − a4

16

〈
tr
(
F 2

αβ

)〉
,

where there is no sum over the spacetime indices. The antisymmetric field strength has six in-
dependent spacetime components. By the equipartitioning of the Euclidean energy among these
degrees of freedom, we have

〈
tr
(
F 2

αβ

)〉 = 1

6

〈
tr
(
FμνF

μν
)〉 = 2g2

6

〈
SSGT

N4

〉
= 42g2

12
.

Now using β = 2/g2, we get

〈W1〉 = 1 − 21

48β
. (B.3)



182 T.G. Halvorsen, T.M. Sørensen / Nuclear Physics B 854 [FS] (2012) 166–183
Appendix C. Computer implementation

Our computer implementation of the simplicial lattice and accompanying SGT action consists
of object-oriented C++ code, using MPICH2 [28] for parallelization, running on a quadruple
CPU run-of-the-mill modern workstation computer. The data structures involved are reminiscent
of what is used in implementations of the finite element method. This involves different types of
mass matrix and connectivity information for elements of the simplicial mesh. The parallelization
consisted of running independent simulations on each node, and averaging the results. We used
the yarn2 algorithm from the TINA pseudo-random number generator [29], which is designed
for use in parallelized algorithms. Although the edge matrix randomization appeared to perform
stably enough for our purposes, we regularly did projections of the edge matrices onto SU(2) as
a precautionary measure.
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