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Summary

This Master’s Thesis studies and analyses the output from batch simulations of the Burridge-Knopoff(BK)
and Burridge-Knopoff-Pad(BKP) model. The latter is newly developed and largely unstudied, and the
goal was to compare it to the well-established BK model further. To achieve a better understanding, the
simulation was enabled for batch simulation through the use of separated, human-readable parameters
files and simple scripts. These files and scripts control the simulation of the BK and BKP model. Each
simulation producing output that was analysed and visualised. These visualisations showed individual
behaviour in and caparisons within and between the models. An animation tool was developed for the
models to increase the understanding of the models’ behaviour while running. The animation, together
with the other visualisation tools helped to highlight some of the similarities and difference between the
two models. It also helped to discover ideas for further investigation of the models.
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Sammendrag

Denne masteroppgaven undersøker og analyserer data produsert fra gruppesimulering av Burridge-Knopoff
og Burridge-Knopoff-Pad modellene. Sistnevnte, BKP modellen, er nylig utviklet og lite undersøkt,
derfor er m̊alet å fortsette sammenligningen med den veletablerte BK modellen. For å oppn̊a bedre
forst̊aelse av modellene har simuleringen blitt implementert for gruppersimuleringer ved bruk av separ-
erter parameter- og konfigurasjonsfiler som er lesbare for mennesker og enkle dataskript. Disse skriptene
og filene kontrollere hvordan BK- og BKP modellene blir simulerte. Simuleringen som er blitt kjørt har
produsert datam som videre har blitt analysert og visualisert. Disse visualiseringene viste den individu-
elle oppførselen av kjøringen, samt forskjeller innad i modellene og iforhold til den andre. Det ble under
arbeidet med masteren uviklet et animeringsverktøy av forfatteren, som skulle øke forst̊aelsen av model-
lene under kjøringen. Animasjon som verktøy hjalp, i likhet med de andre visualiseringsverktøyene med
å fremheve likeheter og forskjeller mellom de to modellene. Dette verktøyet bidro ogs̊a til oppdagelsen
av ny idéer for hvordan modellene kunne undersøkes videre.
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Chapter 1
Introduction

1.1 Problem and goal

In this Thesis, the Burridge-Knopoff-Pad(BKP) model has been implemented dynamically, investigated
through efficient batch simulations and equipped with suitable analysis and visualisation tools. The
implementation is laying the ground for discovering this models application for studying the interplay
between at the sliding interface, and the generation of noise in a resonator such as a brake system. To
properly study a model, testing and interpretation are important. In this case, looking at how different
parameters and configurations affect the model is useful. During the project Thesis by the author, the
model was implemented to be prepared for efficient batch simulation. Enabling this put focus on the
implementation and tools supporting it. The implementation strives to make a model implementation
that is quick to change and review after the fact, as well as to be compatible with modern software
development tools. This focus helps to figure out whether the BKP is a valid model for this field of study.
The main goal of the Master’s Thesis is to perform simulations and investigate the BKP model. Moreover,
through this acquire a better understanding of how the pad makes it differ it from the well-established
BK model.

1.2 Background and motivation

This Thesis is a continuation of the project report written by the author during the autumn of 2018.
The project report was continuing the work in the Master’s Thesis of prior NTNU student H. Nylund
Ferre[1]. The Thesis looked at the model coined Burridge-Knopoff-Pad, which is a combination of the
Burridge-Knopoff(BK) and One Degree-of-Freedom(ODOF) models.

With the Thesis, he wanted to quote “ 1. implement and simulate the new combined Burridge–
Knopoff–Pad model, and, 2. investigate the results to see if this brings anything new into the study of
brake squeal or friction-induced vibrations.”

Both the BK and ODOF models are studied before, but before H. Ferre’s Thesis, the combination of
them was not studied to the authors’ knowledge. As concluded in the Thesis, the combined BKP is a
step in the right direction regarding realism when studying brake systems — continuing by stating that
further study is needed.

1.3 Approach

In order to make a simulation that is efficient to run and enables batch simulation, the implementation
and structure are of high priority. The project is constructed with a clear and concise structure to
ease the navigation and lower the learning curve. The simulation code is written in C++ with a basis
in the code developed by H. Ferre [1]. This implementation is built upon, increasing the flow in the
simulation process. To take advantage of running simulations on remote machines, tools such as CMake,
command-line scripts and git version-control system are utilised. The command-line scripts enable quick
setup for batch runs and synergies well with parameter and configuration files written in YAML. For each
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run, both the code, run-specific YAML-files and compiled files are stored. Storing achieves backtracking
and repeatability at low disk-space cost, neglectable compared to the storage used by the results. The
output of the simulations is stored and then investigated, taking advantage of the parameter file to get
information on each run. Appropriate tools developed in Python are then used to visualise and analyse
the output, such as animating the model for visual investigation.

First, the results and conclusions of the earlier Thesis were replicated or built upon in order to
establish what should be investigated further. Such results also build a ground for comparison and input
on what analysis and visualisation tools are best suited. Further, these results are used to reflect on and
determine parameters and configurations for new simulations.

1.4 Thesis structure

In Chapter 2, background literature related to the project is presented. Further, Chapters 3 and 4
present the models, methods and the tools used in the Thesis. Chapter 3 is focused on the mathematical
representation and methods used, while Chapter 4 covers the programming languages, development and
other technological tools. Next, Chapter 5 present the results and what they tell, with some brief
discussion. These results are discussed in a bigger context and concluded upon in Chapter 6. Lastly,
Chapters A, C and C are appendices providing parameter and configuration files for different simulations,
additional figures and link to web-hosted animations.
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Chapter 2
Background

2.1 What is friction?

Friction is everywhere and has been a matter of study for a long time. As mentioned in the introduction
of Sliding friction: physical principles and applications[2] friction is often introduced in early classical
mechanic and physics classes. This even if the subject is far from well understood. On a macroscopic
level, it enables an object to remain still relative to its resting surface with a slight incline. It is what
makes Newton’s first law which states “A body continues in a state of uniform rest or motion unless acted
upon by an external force.” valid[3]. If there were no friction force, the object would have an accelerating
motion due to gravity. Leonardo Da Vinci gave the first quantitative theory of friction[4]. From his
observations, he gathered that the friction force was proportional to the normal force on the object, but
also suggested it was independent of the surface area[4]. This suggestion was later debunked with the
knowledge of how surfaces gliding against each other looks on a microscopic level. Even if a surface looks
completely flat and smooth to the human eye, it might be a landscape of mountains and valleys at the
micrometre-scale[4]. When one of the surfaces starts to move some of these mountains from the surfaces
collide. Such a model makes friction depending on the normal force and the area of contact. An area
which is much smaller than what is apparent.

Figure 2.1: Figure showing simple experiment where a constant force is acting on a block resting on a
surface. An external force from the weight on the lefthand side pulls on the block through a line. The
block keeps still due to friction. Experiment originally performed by Leonardo Da Vinci[4].

As is consensus, friction is split into sliding friction and static friction in this thesis. The names speak
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for them self, but two quick rules are that static means the surfaces in contact are still. While sliding refer
that they are in relative movement. Some empirical relations have been discovered between them, namely
1. the static friction force is proportional to the force perpendicular on the surface 2. the static friction
force is greater than the dynamic 3. the dynamic friction is largely independent. This assumption works
reasonably well for very different sized systems of dry friction[5]. In his PhD, B. Huisman states “The
mechanisms underlying the friction forces are very different for these sliding systems, and the study of the
origins of friction defines the research field of tribology.” when commenting how well these assumptions
apply in different cases of dry friction[5].

2.2 Burridge-Knopoff Model

The Burridge-Knopoff model was made by L. Knopoff and R. Burridge to study friction[6, 7]. The BK
model is a one-dimensional model used to describe two surfaces in contact with the upper gliding over
the lower surface with a non-zero relative speed. The upper surface is represented with a row of block
masses where each block connects to a plate and its neighbouring blocks with springs as seen in Figure
2.2. Improvement suggestion: Friction from the lower surface works on the blocks gliding over it. The
idea is to get better representation than just having one giant block and better reflect the irregularities
of real-life surfaces.

kp

m

kp

m

kc

kp

m

kc

kp

m

kckc
...

v

Figure 2.2: Illustration of the Burridge-Knopoff model describing two surfaces where one consists of a row
with interconnected blocks, each connected to a upper surface through elastic springs. Made in Inkscape

The model can be represented by Equation 2.1 seen below

mẌj = kc(Xj−1 − 2Xj +Xj+1)− kpXj − F (v + Ẋj), (2.1)

where Xj denotes the position of block j relative to its equilibrium position. Further, c and p means
for coupling and pulling respectively and is used to differentiate the different spring constants kc and
kp. F is a friction scheme affected by the velocity if the upper surface v and the relative velocity of the

block Ẋj . The upper surface movement creates a force on the pulling spring which when exceeding a
maximum static friction force F0 leads to a slipping event. When a braking system uses friction to slow
down a surface by transforming kinetic energy to heat it generates noises, the BK model has among other
applications been used to study this[1]. Even though the model has been around for a long time, it is
still subject for further studies, like Bastian Huisman’s PhD Thesis[5]. The Thesis showcase that the BK
model has been used for systems of vastly different length scales ranging from tectonic plates to surfaces
at the atom level. This is made possible by changing the ratio of the coupling and pulling springs stiffness
kc
kp

and friction scheme F . It can then be applied to systems ranging tectonic plates to atomically small

surfaces[5].

Note: based on authors Project Thesis 4



2.3 One Degree-of-Freedom Model

v

kp0cp

mx

Figure 2.3: A ODOF model consisting of a pad mass, a single spring and a damper.

A one-degree-of-freedom model(ODOF) is a simple way of representing a dry friction oscillator[8]. The
model is shown in Figure 2.3, fasten with a damper as well as a spring. The ODOF illustrated is combined
with the BK model to constitute the BKP model presented in H. Ferre’s Thesis[1]. It has been linked to
that ODOF is to simple a model to study brake vibrations and noise, and its use has often might have
been motivated to due limited computational power[9]. The notion of the ODOF probably not being
suitable for these types of problems is supported by H. Ferre’s Thesis.

An equation that is governing an ODOF

mxẍ = −cpẋ− F (ẋ+ v0)− kp0x (2.2)

~x =

[
x
ẋ

]
~̇x = f(~x) =

[
ẋ

1
mx

[−cpẋ− F (ẋ− v0)− kp0x]

]
(2.3)

2.4 Related literature

During the specialisation project, more related literature surfaced. Two papers on snaking bifurcation
written by A. Papangelo et al. published in 2017 and 2018[10][11] was of interest. The fact that the
Burridge-Knopoff model is not mentioned is interesting, even though there are apparent similarities.
These similarities might be due to different branches in science looking at similar problems without the
knowledge of each other’s efforts.

2.4.1 Snaking bifurcation in a self-excited oscillator chain with cyclic sym-
metry

The first paper [10] by A. Papangelo et at. studies snaking bifurcations in a chain of mechanical oscillators.
The model studied consist of a cyclic system with N oscillators. These are coupled together with springs
of constant stiffness k∆. Each oscillator has the same mass m and connects to the ground with a linear
spring k and a non-linear damper c. The oscillators are non-linear due to non-linear damping terms,
which depends on the velocities in the system. These are introduced, quote “bringing into our purely
structural model the corresponding non-linear forcing and dissipation terms from surrounding flow, or an
involved friction interface.”[10]. The model is shown Figure 2.4.

The model is used in the paper to look at the formation of snaking patterns using a bifurcation diagram
to obtain a deeper understanding of it. They discuss how this can be used to predict localised non-linear
vibration states which are known to be the source issues in engineering and technology; among them,
they mention noise. The work is regarded as a first step and starting point for further studies.

Note: based on authors Project Thesis 5
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Figure 2.4: Model of the mechanical system studied in the paper[10]. It consist of a system with N
non-linear oscillators. Made in Inkscape.

2.4.2 Multiple spatially localised dynamic states in friction-excited oscillator
chains

Further, A. Papangelo et al. continues to look at snaking-like bifurcation patterns in the second paper[11].
The model used here (Figure 2.5) is similar to the one shown in Figure 2.4, but the oscillating blocks are
gliding on a moving belt and pressed by a constant normal force P . The system is a chain of non-linear
oscillators. Each oscillator has a mass m, stiffness k, a viscous damping coefficient c and is connected to
the neighbouring oscillators by a weak linear spring. The paper concludes by saying the results obtained
are relevant for systems experiencing friction-induced vibrations. Moreover, stating that “further work is
required to understand how the non-linear mechanism of localisation caused by friction can interact with
linear localisation phenomena occurring when the underlying linear system is not homogeneous”[11].
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Figure 2.5: Model of the mechanical system studied in the paper[11]. It consist of a system with N
non-linear oscillators on a moving belt. Made in Inkscape.
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Chapter 3
Implementation

3.1 Burridge-Knopoff-Pad model

The main method studied in this thesis is the Burridge-Knopoff-Pad model. H. Ferre developed this
model in his Master’s Thesis, which to his knowledge has not been studied before[1]. The BKP model is
a combination of the Burridge-Knopoff and one Degree-of-Freedom mode, each explained in Sections 2.2
and 2.3, respectively. The BKP model is illustrated in Figure 3.1. In this illustration, it is clear the
upper pad is inherited from ODOF model seen in Figure 2.3 and the blocks from the BK model seen in
Figure 2.2. The equations govern the BKP model in Equation (3.1)

muüj = kc(uj−1 − 2uj + uj+1)− kp(uj − x)−muφ(v + u̇j)

mxẍ = −cpẋ+ kp
∑
j

(uj − x)− kp0x (3.1)

consisting of two 2nd ordered differential equations. The pad position is expressed by x, and the blocks
position relative to the pad expressed as uj , where j = 1, . . . , N . N begin the total number of blocks.
φ given by Equation (3.6) represent the friction law, shown in Figure 3.2. Due to it being a substantial
amount of parameters in Equation (3.1), the remaining ones a described in Section 3.2. For a brief
overview see Table 3.1.

kp
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kp
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kckc
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kp0cp
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Figure 3.1: Illustration of the combined Burridge-Knopoff-pad model made in Inkscape. Parameters
shown are given in Table 3.1.
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3.2 Parameters

The BKP model contains of user-specified parameters/constants set in advance of running a simulation.
These parameters establish the behaviour of the model, and a full list is presented in Table 3.1. As
visible in the second part of the table, some parameters are derived from the user-specified shown in
Equations (3.2) to (3.4).

mu =
mx

N
(3.2)

kp =
kp0
N

(3.3)

k =
EA

L
, L =

Ltot

N

=
EA

Ltot
N

(3.4)

ζ =
cp
ccrit

, ccrit = 2
√
mxK, K = kp0 +Nkp (3.5)

Equation (3.2) shows that both the block mass mu and the pulling spring constant kp are proportional
to the pads mass mx and own pulling spring constant kp0 by 1

N . Setting these parameters in this manner
ensures that the total friction force from the disc through the blocks and onto the pad to be independent
on the number of blocks N .

User-specified
Parameter Symbol Value
Number of blocks N 100
Pad mass mx 100
Caliper-pad spring constant kp0 100
Damping ratio ζ 1

12

Maximum static friction force F0 1
Friction law scaling parameter σ 0.01
Disc speed ν V arying

Block mass scaling factor sm 1
Pulling spring constant scaling factor sc 0.01
Neighboring spring scaling factor sc 0.01

Derived
Parameter Symbol Value Given by
Mass of block mu 1 sm

mx
N

Pulling spring constant kp 1 sp
kp0
N

Neighboring spring constant kc 100 sckp0N

Critical damping coefficient ccrit 2
√

20000 ≈ 282.84 2
√

(kp0 +Nkp)mx

Damping coefficient cp
1
6

√
20000 ≈ 23.57 ζccrit

Table 3.1: Overview of parameters for the BKP model.

3.3 Friction

φ(y) =


F0[−1, 1], y = 0

F0
1− σ

1 + |y|
1−σ

sign(y), y 6= 0 (3.6)

The reader should note that all dimensions used in the Thesis are dimensionless. This is because the
system is not adapted to a specific application.
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Figure 3.2: Friction scheme used in Equation 3.1

3.4 Numerical Scheme

To solve the differential equations governing the Burridge-Knopoff 2.2 and Burridge-Knopoff-Pad 3.1
model, a numerical scheme is used. As in the specialisation project, the 2nd Order Runge-Kutta - also
known as the Midpoint Method - was used. The scheme is the same as the one used by H. Ferre [1] and
suggested by R. Burridge and L. Knopoff in their 1967 Paper [7]. The 2nd Order Runge-Kutta gets its
name from it being a two-stepped method and is defined for any function y as

yh = yn +
∆t

2

d

dt
(yn),

yn+1 = yn + ∆t
d

dt
(yh).

(3.7)

Here is the function y evaluated in between the current and next step. yh is the half way evaluation of y,
while yn and yn+1 is the current and next step. Equation (3.7) needs to be adapted to solve governing
Equation (3.1) of the BKP model. The adaptations requires the two 2nd order differential equations in
Equation (3.1) written as y in vector form ~y. ~y can be written with the general expression

~y =

[
y
ẏ

]
~̇y =

d

dt
(~y) =

[
ẏ
ÿ,

]
(3.8)

where the first element in ~̇y is second element in ~y and the 2nd order derivative of y is contained in
~̇y. Writing the BKP model on the form of Equation (3.8) generates Equations (3.9) and (3.10).

~uj =

[
uj
u̇j

]
~̇uj = f( ~uj) =

[
u̇j

1
mu

[kc(uj−1 − 2uj + uj+1)− kp(uj − x)−muφ(v + u̇j)]

]
(3.9)

With the boundary condition for the blocks set to zero.

~x =

[
x
ẋ

]
~̇x = f(~x) =

[
ẋ

1
mx

[−cpẋ+ kp
∑
j(uj − x)− kp0x]

]
(3.10)

Where function f is the derivative of either ~uj or ~x, making Equations (3.9) and (3.10) applicable for the
numerical scheme goverened in Equation (3.8).
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The 2nd Order Runge-Kutta has a truncation error of order O(∆t3) [12, p. 328]. This error can be con-
firmed by measuring calculating the total energy in the system. In Section 3.8.1 the error is investigated
through calculating the total energy in the system.

The step sized used is based on the calculation by H. Ferre and has been set to dt = 0.005 for the
batch runs.

3.5 Energy test

The amount of energy can be measured to test if the model behaves as expected. The law of conservation
of energy states that the amount of energy does not change[13]. Moreover, the law states build the
foundation for the first law of thermodynamics, that the total energy in an isolated system is constant.
From this, removing damping and friction from the system means the total energy should be constant in
the system and is expressed as

E =
1

2
mẋ2 + V (x) (3.11)

where E is the total energy, m the system mass and V denote the potential energy[p. 159][14]. The
system here being one of the two described below

1. pad is stationary, with only pulling springs connecting the pad and blocks activated. The total
energy expression Eps is shown in Equation (3.12).

2. pad is stationary, with only neighbouring springs in between neighbouring blocks activated. The
total energy expression Ens is shown in Equation (3.13).

N∑
j=1

Eps =
1

2
mu

N∑
j=1

u̇j
2 +

1

2
kp

N∑
j=1

u2
j (3.12)

N∑
j=1

Ens =
1

2
mu

N∑
j=1

u̇j
2 +

1

2
kc

N∑
j=2

(uj − uj−1)2 (3.13)

. Both of these are modified versions of the BKP model in Section 3.1. In Equations (3.12) and (3.13)
the energy of each individual block is summed up.

3.6 Friction Amplitude

As performed by H.Ferre in his thesis, the amplitude of the friction is calculated in the same manner[1].
Letting the slider have a constant speed for a set amount of time, the total friction in the system is
calculated and logged. The time interval is then split in two, and the friction amplitude is calculated by
using the mean squared error of the mean of the friction force. In this thesis, the amplitude is calculated
by looking at am interval I of the friction data. This interval is assumed to have constant slider velocity.
In practice, this is done by step-wise increasing the slider velocity. It step makes an interval, where
the second half is used as I. Further, the mean Ī of the interval is calculated. From Ī , the amplitude
is obtained as the root of the variance, as derived in Equations (3.14) and (3.15). The amplitude is
multiplied by the square root of two to obtain the actual amplitude [1].

Ī = avg(I) (3.14)

A =
√

2
√

avg(I − Ī) (3.15)

In order to indicate the accuracy, interval I is further split into J segments of size Ssize to calculate
the error. This is done in order to calculate the error of the amplitude. A formula for splitting the
interval is shown in Equation (3.16).

Ii = I[i ∗ Ssize, (i+ 1) ∗ Ssize] (3.16)
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Īi = avg(Ii) (3.17)

σ =
√

avg((Īi − Ī)2) (3.18)

ε =
σ√
J

(3.19)

As in Equation (3.15), the variance for the splits is calculated and from this the error as shown in
Equation (3.19). The amplitude A can be seen in Figure 3.3 where the 16 different runs of the Burridge-
Knopoff(BK) model is plotted. Here the the error ε is shown as red bars for velocities plotted. Note that
the amplitude is plotted step-wise and the lines between these steps are there to show the development.
The reader should also note that Figures C.1, 3.3 and 3.4 are plotted with log-scale on the ν-axis. Also
note that the mean value of the friction is included in Figure 3.5, represented by the lines in the upper
segment.
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Figure 3.3: 16 runs of the BK model, showing each friction amplitude with corresponding error as an
vertical bar. The mean of the friction force is included and are the top lines in the plot. The averaged
line and bars of the runs is shown in Figure 3.4.

In the attempt to find the general, but at same time individual behaviour of the runs, unique runs
are measured against the mean. This measure is done in the consecutive figures.
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Figure 3.4: Average of the friction amplitude runs in in Figure 3.3. The top lines show represent the
mean value of the friction and the bottom lines the friction amplitude.

In Figure 3.4, the mean of the multiple runs in Figure 3.3 is potted. As is done for the multiple
runs, both the friction amplitudes with associated error bars and the mean friction is plotted. The mean
friction amplitude is further used to view how much the individual runs differ from it. Figures 3.5 and 3.6
illustrate the per velocity and cumulative difference for each run to the mean.
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Figure 3.5: Difference path for each run in Figure 3.3 compared to the mean in Figure 3.4.
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Figure 3.6: Cumulative difference for each run based on Figure 3.5.

As is seen in Figures 3.5 and 3.6, the general nature of a particular model and setup is visible. These
figures also shows where the individual runs differ. In Figure 3.5 there are a few runs that varies more
than the average and one that really sticks out. This particular event is detailed in Chapter 5, and
shown here to establish the methods used to interpret the results of the simulations. Further, the total
cumulative difference is plotted as a bar chart in order to clearly see such outliers, as seen in Figure 3.7.
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Figure 3.7: Total difference for each run in Figure 3.4.

To give another measurement for how much the value friction amplitude varies, the confidence inter-
val(CI) was calculated. A CI is an interval where there is 100(1−α)% chance a random value or run will
be in. If α = 0.05, there is a 95% CI[15]. The CI utilised on Figure 3.5 is shown in Figure C.1.
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3.7 Output from model

Several values are possible to choose as the output of the model. This list contains; the velocity and
position of both the pad and blocks and combined friction force in the system. The most interesting
is the latter, together with the velocity and position of the pad. Due to the model being evaluated
numerically with a step size dt for a specified number of time steps, saving all the information in the
system can quickly build up the required disk space, memory and run time. To combat these two measures
are taken, only saving blocks specified in the parameters file and only saving a fraction of the steps. It
shows in Figures 3.8 and 3.9 that the last one can be done to maintain the information of the systems
behaviour. The position, velocity of the pad together with the combined friction, provides information
that helps to determine which runs it is worth looking into more. These values make saving only a subset
of the output of the block and outputting all when it is suiting a viable option.

dt: 0.001

blocks: 100

pad mass: 100

decreasing speed: 2.0 to 0.0

interval: every step

number of steps: 80 000 000

v

x

Figure 3.8: Pad position x plotted for different velocities ν. The velocity in the run is decreasing
continuously, where the end is shown here. The same run is done with different frequency in how often
the output is saved.

(a) Zoom of Figure 3.8 (b) Zoom of Figure 3.8

Figure 3.9: Smaller intervals of ν in the outputFigure 3.8 to show the effect of lowering the save frequency.

As is visible in Figures 3.9a and 3.9b, lower saving frequency leads to some loss of information and more
so in the regions with more oscillation. The loss in Figures 3.10 and 3.11 shows that while its reasonable
to not save every data point, but there is a limit. As is drawn from the sampling theorem referenced in
Section 3.10, too low sampling frequency will lead to loss inability to pick up higher frequencies in the
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signal. To investigate a suiting saving frequency, decreasing frequencies were compared to saving every
data point.
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(a) Friction amplitude for a single run of the BKP
model with increasing slider velocity. Here every
computed data point is used to produce the plot.
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save frequency is shown for for each friction ampli-
tude calculated with lines in between the values.

Figure 3.10: Comparing save frequencies. Note that ν in Figure 3.10a is plotted with log-scale.

The friction amplitudes - as in Figure 3.5 - for a single and randomly chosen run is shown in Fig-
ure 3.10a above. In Figures 3.10b, 3.11a and 3.11b saving every data point is compared to lower saving
frequencies.
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Figure 3.11: Comparing save frequencies.

3.8 Testing the implementation

In the project Thesis by the author, the BKP model was tested to review if it was behaving as expected
and to demonstrate its behaviour. In this section, a summary of this is given, as well as some additional
showcases of the model. This section is structured to effectively reference which part of the model is
focused and how it is achieved. The latter done with references to the parameter which reads from a
YAML file explained in Section 4.2.1.
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3.8.1 Blocks

To understand how the blocks affect the model, the different block components will be deactivated to
isolate the individual components of the BKP model. The isolation follows by deactivating different parts
of Equation (3.1).

Stationary springs

In Figure 3.12 the is set to be stationary like the upper surface in the BK model shown in Section 2.2.
The neighbouring springs and friction from the lower surface are deactivated. As visible in Figures 3.12a
and 3.12b this leads to the three blocks oscillating with a constant amplitude and frequency. The
oscillation is a result of the initial position of each block. Each block has an initial position uj and
velocity u̇j drawn from a uniform distribution. The uniform distribution notes as U(a, b) where a and
b are the minimum and maximum value and each value in the interval has an equal chance of being
selected. In this thesis the distribution U(−1, 1) is used, but the implementation also supports U(−1, 0)
and U0, 1) for generating the initial block position(s).

Parameters
Parameter Symbol Value
N N 3
slider speed ν 0.0

Debug
Parameter Symbol Value
debug no friction true
debug no neighbor springs true
debug no pad true
debug negative initial values true

Table 3.2: Table over important parameters used to only test the stationary springs from the pad to the
blocks. The different parameters reference those shown in Figures 4.4 and 4.5.
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(a) Position of the blocks.
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(b) Velocity of the blocks.

Figure 3.12: Output from model when only the stationary springs from the pad to the blocks is active.
Based on parameters and configurations in Table 3.2.

In Figures 3.12 and 3.14 uj and u̇j are the relative position and velocity of blocks, where j ∈ [1, 3].

Note: based on authors Project Thesis 16
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(a) Total energy is constant.
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(b) Numerical error from the numerical scheme is visible.

Figure 3.13: Total energy in system given by parameters and configurations in Table 3.2. Parameters file
in Appendix Section A.1.

dt Error E Ratio dt Ratio E
0.001 6.7133638737e-07 1 1
0.005 8.3910513645e-05 5 124.990266018

Table 3.3: Numerical error and ration of Figure 3.13 listed.

Neighbouring springs

Further, the neighbouring springs of the blocks in Equation (3.1) are isolated. As in Figure 3.12, the
position uj and velocity u̇j are shown in Figure 3.14, but with neighbouring instead of stationary springs
activated.

Parameters
Parameter Symbol Value
N N 3
slider speed ν 0.0

Debug
Parameter Symbol Value
debug no friction true
debug no stationary springs true
debug no pad true
debug negative initial values true

Table 3.4: Table over important parameters used to only test the neighbouring springs from between the
blocks. The different parameters reference those shown in Figures 4.4 and 4.5
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(a) Position of the blocks.
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(b) Velocity of the blocks.

Figure 3.14: Output from model when only the neighbouring springs from the pad to the blocks is active.
Based on parameters and configurations in Table 3.4.
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(a) Total energy E plotted over time.
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(b) Numerical error from the numerical scheme is visible.

Figure 3.15: Showcasing the numeric error present in Figure 3.15a.

dt Error E Ratio dt Ratio E
0.001 1.7230874505e-08 1 1
0.005 2.1537441377e-06 5 124.993315753

Table 3.5: Numerical error and ration of Figure 3.13 listed.

3.8.2 Pad

The pad is a big component of the BKP model, combining the ODOF and BK model. The pad is
connected to the upper surface with a spring and a damper. It is also affected by the lower surface
through the blocks connected to it by springs. Some of the pads behaviour is demonstrated in the figures
below. In Figure 3.16 the slider has a zero velocity, meaning there system will eventually stop if friction
or damping is activated. In both Figures 3.16 and 3.17 there are three blocks in the system, where their
initial position and velocity is the same as in Figure 3.14.
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(a) Pad position plot where the friction force is
deactivated, the pad position goes gradually towards
zero due to the damper seen in Figure 3.1.
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(b) Pad position plot where the damper is deactivated,
the pad slows down due to the blocks being slowed by
friction from the blocks.

Figure 3.16: Two setup showing how different parts of the BKP model affect the pad. In both figures
the slider velocity is zero. As seen in Figure 3.16b the the pads positions is positive. This is due to the
blocks velocity and position being mainly positive.

In Figure 3.17 the slider speed is constant. The pad is dragged back to around t ≈ 25 where the mean
value of the position averages out. The behaviour of the pad at his time is described in Section 3.8.3.

0 20 40 60 80 100
t

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

x

Figure 3.17: This setup shows how the pad is first dragged back from its origin position while oscillating
due to the three blocks connected to it. The slider speed is set to ν = 0.1.

3.8.3 Slipping

As described by in Ferres thesis, the system shows a stick-slip behaviour[1]. This can be seen clear in
Figure 3.18. The run shown follows ν = 0.000 + 0.005 · tmod2000, meaning that the slider is not moving
the first 2000 time steps. This is clearly visible when the pad is first being dragged back before stagnating
at a steady state. After the slider velocity increases and there is a slipping event of the pad. The pad
starts to get dragged back again before a new slipping event occurs. This behaviour continuous at a
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steady rate. When the slider speed increases again its possible to observe that the slipping happens at a
higher rate. The slipping occurs when n ∈ [1, N ] blocks slips and the pad back.
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t

−1.0

−0.8
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−0.2

0.0

x

Figure 3.18: Pad position plot showing how the pad slips regularly at non-zero slider velocity ν. ν is
increased by 0.005 every 2000 time step t.

3.8.4 Phase plot

As shown in the papers by A. Papangelo et al., plotting the blocks position versus their velocity in a
phase plot can show when they are sticking and slipping[10, 11]. In Figure 3.19 a simple BK system is
simulated with constant slider velocity ν = 0.08.
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Figure 3.19: Phase plot for BK system with three blocks. The paths show their behaviour during stick-
slipp events.
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Figure 3.19 shows how the blocks stick a negative oscillating velocity before slipping. In the slip
they obtain a positive velocity and moves in the opposite direction of the slider. This behaviour repeats
multiple times in the time interval shown.

3.9 Animation

In order to capture more of the behaviour of the system, an animation tool was developed. This tool
allows inspecting more closely what is already seen in the still plots and reveal possible new features. The
animation implementation enables both the BK and BKP model to be investigated in 1. inspecting the
interaction between the blocks themselves and with pad in the BKP model, 2. inspecting the transition
during different events in the model, like change in velocity, 3. compare the behaviour of different runs
and models in the manner described in the two previous points. Figures 3.21 and 3.22 each show a single
frame from an animation of the BK and BKP model, in that order. Both animations follow the same
layout in Figure 3.20,

A B C

D

Figure 3.20: Diagram showcasing different parts of the animation. A: Block position(s) over time.
B: Block position(s) as histogram over block number. C: Blocks avg. position or pad position over time.
D: Figure of the BK or BKP model with stationary and neighbouring

where A, B and C can be used to show phase diagrams, block and pad velocities as well as still
frames.

In both Figures 3.21 and 3.22 box A and B (as shown in Figure 3.20) visualise the position of the
blocks. A shows all the N = 100 block’s individual positions for the last - in this case - 100 logged data
points. Logged refers to that not all the steps of the simulation is necessarily saved as demonstrated in
Section 3.7. B Shows the relative position/offset of each block to the pad using a bar plot, also known
as a histogram. The number of each block is given on the x-axis where the leftmost is the first and the
rightmost the last block in the system. For Figure 3.21 box C shows the average position of all the blocks
shown in A. This average is given due to the lack of a pad in the BK model. In Figure 3.22 box C shows
the pads position. The figure in D is a representation of the BK or BKP model. The representation
contains lines that are displaying the pulling and coupling springs in Equations (2.1) and (3.1). The
blocks are shown as small squares and the pad as an elongated rectangle. Both blocks and pad moves
corresponding to the values in box A, B and C.
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Figure 3.21: Example of BK animation interface. Showing frame number 10 of an animation from a
decreasing velocity run if the BK model.
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Figure 3.22: Example of BKP animation interface. Showing frame number 150 of an animation from a
decreasing velocity run if the BKP model.
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3.10 Fourier spectrum

In order to capture the most predominant frequency and amplitude of the blocks and pad, discrete Fourier
transform(DFT) was used. The Fourier transform is used to perform spectrum analysis on a signal which
gives clear-to-read frequency and amplitude information[16, p. 365]. A signal in this thesis is refering
to the position of a block or the pad over time. Referring here to the blocks in the BK model and pad
and blocks in the BKP model. A signal is assumed to have a periodic waveform and is contained in N
samples in the sample interval T . The DFT is governed by the equation

G(
n

NT
) =

N−1∑
k=0

g(kT ) · ej·2π·n·k/N n = 0, 1, . . . , N − 1, j =
√
−1 (3.20)

, where g(kT ) is the sampled periodic function [16, p. 97].
The Fourier spectrum for the combined sine function below is shown in Figure 3.23b

g(kT ) = sin(50 · kT ) + 0.5 · sin(80 · kT )
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(a) Value of g(kT ) for kT ∈ [0.0, 1.0.
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(b) Different freqencies with respective amplitude in
g(kT ) shown in Figure 3.23a.

Figure 3.23: g(kT ) with corresponding Fourier spectrum.

, where kT ∈ [0, 1.0] is an arbitrary value, f is the frequency and A is the amplitude. The peaks in
frequency corresponds well with the combined sine function g(kT ) given above.

An important thing to have in mid when using the Fourier transform for a function the frequency
1
T = 2 · fc known as the Nyquist sample rate. It comes from the sampling theorem which states the
Fourier transform is zero for all frequencies grater than fc[16, p. 83-84]. This means that if the frequency
of the sampling is too low, the calculated frequencies in the DFT will miss the higher frequencies. The
sample rate should be set to at least twice the size of the highest frequency in the signal.

In the implementation, the DFT is calculated in Python using the fast Fourier transform(FFT)
function provided by SciPy. SciPy builds on top of NumPy to provide tools for optimisation, special
functions and image processing [17].
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Chapter 4
Implementation tools

4.1 Programming languages

The simulation runs by solving the differential equations in Equation (3.1) using the 2nd order Runge
Kutta numerical scheme governed by Equation (3.7). The scheme is implemented in C++ and described
more thoroughly in the following Section 4.1.1. When the simulation is complete, the results are placed
in files using the csv format. csv is a simple file format storing data as text using a comma to separate
values and a line break to separate data records[18]. The saved output can then be loaded and examined
multiple times retrospect the simulation. It also opens the possibility - that has taken in this thesis -
of using a second programming language to the analysis. Matlab, R and Python are good choices, with
the latter picked. The use of Python is described in greater detail in Section 4.1.2. As mentioned in
the introduction, the implementation strives to have good flow and erase the need to change the code
between runs.

4.1.1 C++

The BKP simulation is implemented in C++, consisting of three -.cpp and two -.hpp These are compiled to
one executable using CMake and Make. CMake uses a configuration file CMakeLists.txt which describe the
dependencies needed and where it should look for these, as well as where to put the compiled executable.
This building process is sketched out in Figure 4.1 which showcase the dependencies by connecting an
arrow from the dependant to the dependency. CMake combines the files shown into one executable that
takes one input, the path to a YAML file containing the parameters and configurations for a specific run.
YAML is described in more details in Section 4.2.

main.cpp simulation.hpp simulation.cpp

readParameters.hpp readParameters.cpp

yaml-cpp/yaml.h

Figure 4.1: Flowchart showing the connection between the scripts. Source: Project thesis

When starting a new simulation, main.cpp is called taking in one argument intended to be the path
to a parameter file. If the path is valid readParameters.cpp will read in and store the parameters and
configuration settings for the run, otherwise return an error. The newly created readParameters object
is used in simulation.cpp, calling it whenever a user-specified parameter is used or configuration checked.
When the simulation completes, the output is saved, ready for inspection and visualisation.
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Unique runs

The pads initial position and velocity are initially zero for every new run for the BKP model. As
described in Section 3.8.1, the blocks position and velocity is drawn from a uniform distribution U . This
initialisation allows obtaining two properties in the implementation; running unique runs with initial
values from a pseudorandom number generator(PRNG), using seeds to recreate specific runs. A seed is
an integer used to initialise the PRNG[19].

4.1.2 Python

Python, which refers to Python 3 and not Python 2 in this thesis, is a programming language that enables
efficiently writing small scripts while still enabling making bigger straightforward implementations. As
python developer J. Noller [20, p. xiii] stated, “It is useful for someone who wants only to do some math
or write a simple script. And it is equally useful for programmers who want to create large-scale systems,
web frameworks, and multimillion dollar video-sharing sites.”. Noller also states that he use Python
because it is quote “clean, simple and powerfull”. In this thesis, Python is used to make simple scripts
like reading a parameter from a YAML file as described in Section 4.2. It is also utilised to do more
powerful tasks, like animating the output data shown in Sections 3.9 and 4.1.2. .

Visualisation

“Matplotlib is a 2D graphics package used for Python for application development, interactive scripting,
and publication-quality image generation across user interfaces and operating systems.”, Quote by from
Matplotlib creator J.D. Hunter[21]. The Matplotlib package is the main addition to the Python core
for visualising the data. It has been a tremendous and versatile contribution that support plotting with
graphical user interface (GUI), multifigure plots, animation, bar charts, LaTex text and Scalable Vector
Graphics to mention some[21]. This support, combined with an extensive amount of customisation in,
e.g. colour, line style and labelling makes it fit the project very well. The packages SciPy and NumPy
has also been significant in the implementation. These two packages are built by scientist, engineers and
researchers to increase Python’s usefulness in scientific computing[22].

Animation

As described by the creator of Matplotlib, J.D. Hunter, the package has three basic class at the highest
level[21]. These classes can be imagined as a painters canvas, brush and the artist itself. Following this
metaphor, an animation canvas is created, and then different graphics are drawn on it. Here it starts to
differ from the analogy due to the ability to repaint the strokes in the painting, not needing to get a new
canvas. The animation takes advantage of this, redrawing each component instead of producing all of
the body, ticks and labels every frame.

4.1.3 Bash script

As the simulation code is implemented in Section 4.1.1, it synergies well with making a run folder for
each new run. Each of these folders contains a copy of the code which is compiled and run when doing a
new simulation. Simulating in this fashion gains the advantage of knowing the precise code used for a run
and the output produced by it. Small changes were frequently done both to improve the code and extract
new features during the project. Having the code for each run makes comparing changes simpler and
acts as insurance if odd behaviour is discovered, with the cost being a few megabytes extra in multiple
copies of the code. Each run has a describing name in the parent folder and a specified structure for
smooth navigation. Such folders can be generated manually, but it quickly gets tedious to copy code and
folder structure, then compile the code and call the executable with the path of the parameters. By using
simple UNIX commands, a bash-script automates this process. In short, it takes in a path for a new run
folder - relative to the current working directory -, copies code and parameter files, compiles and run the
code as shown in Figure 4.2.
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bash script code output

parameters python scripts

Figure 4.2: Flowchart showing the flow of the project. Source: Project thesis

In Figure 4.2 python scripts are included to help show how the output and parameters file is used
when visualising and interpreting a run. Running the Python scripts combines very well with storing
each run in a folder, see Subsection 4.1.2 for more detail on the use of Python.

Batch simulations

The term batch simulations is referencing running multiple simulations in sequence to compare or find
averages of different setups. In the project bash script where used to enable this feature. Often the
scripts utilised python code to change parameters in a predefined fashion, with altering the seed being
between runs being an example.

4.2 YAML

YAML, abbreviated from “YAML Ain’t Markup Language” is a data serialisation language. It is chosen
for the implementation due to its qualities of being “designed to be human-friendly and work well with
modern programming languages for common everyday tasks”[23]. The main advantage is that YAML is
easy to read for humans, meaning there is little previous experience required when working with it. The
rules of YAML are straightforward and results in a format that is similar to the ones used in everyday
writing. Due to this and its compatibility with C++, Python and other modern programming languages
YAML is well-suited for the project. It opens up the beneficial property of reading and altering the input
parameters without changing or keeping track of any code in the project. Figure 4.3 shows a simplified
version of the structure used for the input files for the simulation.

1 ---
2 map:
3 key 11 : v a l u e 1 1
4 key 12 : v a l u e 1 2
5

...
6 key 1n : v a l u e 1 n
7 l i s t :
8 - va lue 21
9

...
10 - va lue 2n
11 . . .

(a) Simple example of the YAML syntax.

1 ---
2 map 1:
3 key 11 : v a l u e 1 1
4 key 12 : v a l u e 1 2
5

...
6 key 1n : n e s t e d m a p :
7 key 1n1 : v a l u e 1 n 1
8 key 1n2 : v a l u e 1 n 2
9

...
10 key 1nm : v a l u e 1 nm
11 . . .

(b) Simple example of nested mapping.

Figure 4.3: Examples showcasing some of the YAML syntax utilised in the project. n and m are used to
demonstrate that an arbitrary amount of map and list elements can be chosen.

A common alternative to YAML is JSON, both of which has its pros and cons. JSON is to modern
programming environments more trivial to generate and parse, while YAML is more complex in that
regard with the advantage of increased human readability. It should be mentioned that a JSON file
with unique keys is a valid YAML file. This property simplifies the process of migrating from one of
the formats to the another. XML is also worth mentioning, being another popular format to store and
transport data. While also being created with the object of being human readable, XML gave this a lower
priority compared to YAML[24]. Quote from the YAML documentation state; “XML is a pioneer in many
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domains, YAML is the result of lessons learned from XML and other technologies.”. YAML works very
well in the project since it enables the parameters and settings to be altered and read effectively. The
language follows some simple rules of indentation and separation signs to construct key : value maps.
Maps are used to create new parameters file is simple, and editing one even more so. An example of how
it looks can be seen in Figure 4.4 and 4.5.

yaml-cpp

To parse the parameters to editable C++ objects, the YAML parser and emitter yaml-cpp is utilised[25].
It is used together with the 1.2 version of YAML[23]. In this Thesis, only the parser is used and has
shown to be sufficient at parsing the data. The parser in implemented in program that after loading a
YAML file, sets each of the known parameters and configuration variables setting the ones it finds. If
a variable is not available, it will be set to a default value. There is also an emitter available, which is
not used in the C++ implementation. Instead, there is a python-script to change values without directly
editing the YAML-files.

PyYaml

The information contained in the YAML-files is useful when visualising the data. PyYaml is a python
package[26] that enables parsing and emtting to the YAML format. Hence all the parameters set for a
given run can be loaded into a Python script. Loading the parameters reduce the amount of tuning and
file tracking needed when visualising runs with different parameters.

4.2.1 Parameters in YAML

The parameters file written in YAML is separated into two sections, one containing the parameters and
the other boolean values that change the behaviour of the simulation. These are shown in Figure 4.4 and
4.5 respectively.

28



CHAPTER 4. IMPLEMENTATION TOOLS 4.2. YAML

1 ---
2 Parameters :
3 dt : 0 . 0 0 5
4 seed : 1 0 1
5 num events : 1
6 N : 1 0 0
7 max time : 1 6 0 0 0
8 s l i d e r s p e e d : 0 . 0
9 increment : 0 . 1

10 i n t e r v a l : 2 0 0 0
11 f i l e name : t e s t s o l u t i o n s
12 p r o g r e s s i n d i c a t o r : true
13 m F0 : 1
14 m alpha : 0 . 5
15 m sigma : 0 . 0 1
16 m mass x : 1 0 0
17 m scale mass : 1
18 m zeta : 0 . 0 8 3 3
19 m k P0 : 1 0 0
20 m scale P : 1
21 m scale C : 0 . 0 1
22 m t : 0 . 0
23 m v0 : 0 . 0 0 0 1
24 m u min : 0
25 b locks : [ ]
26 s t a r t sp e ed con t i nuou s : 0 . 0
27 end speed cont inuous : 1 . 0
28 s a v e i n t e r v a l d t : 10
29 th re sho ld speed : 0 . 1

Figure 4.4: Parameters in YAML.

30 Debug:
31 debug no f r i c t i o n : f a l s e
32 debug no ne ighbor spr ings : f a l s e
33 debug no s t a t i ona ry sp r i ng s : f a l s e
34 debug no damper : f a l s e
35 debug no min speed : f a l s e
36 debug no pad : f a l s e
37 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
38 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
39 debug no random displacements : f a l s e
40 debug spe c i a l ph i : f a l s e
41 debug pad as b lock : f a l s e
42 debug s t op s l i d e r : f a l s e
43 debug s t i c k b l o ck s : f a l s e
44 debug wr i t e b locks : f a l s e
45 d ebug on l y w r i t e f r i c t i o n : f a l s e
46 debug con t i nuous s l i d e r speed : f a l s e
47 debug one degree freedom mode : f a l s e
48 . . .

Figure 4.5: Debug and configuration booleans in YAML.
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4.3 Technologies

As described in Sections 4.1 and 4.2, C++, Python and YAML are the leading technologies used in the
implementation of the model and processing of the results. This section seeks to give a brief description
of the main dependencies, supporting technologies and developing platform.

4.3.1 Key components

The whole project was developed on a Ubuntu 18.04 system using the code editor Visual Studio Code.
This editor provides a powerful tool when developing, but does not make the implementation dependent
on it. The C++ implementation has, in addition to Ubuntu 18.04, been successfully run on Ubuntu 16.04
and Debian 9.6 through an SSH connection.

User-specified
Package OS availability Version
CMake Unix & Windows 3.10.2
GNU Make Unix & Windows 4.1
GNU Bash Unix & Windows 4.4.19(1)
Armadillo - 8.400.0
yaml-cpp - 0.5.2
C++ Unix & Windows
C++14 python3 Unix & Windows 3.6.5

Table 4.1: Overview of key packages and dependencies.

4.3.2 Supporting technologies

Below is a list of technological tools and software with a brief description which has been useful during
the project.

• Kdenlive - free, open-source video editing software[27]. Used for combining animations videos
described in Section 3.9.

• InkScape - free, open-source vector graphics editor[28]. Used to draw models, produce vector
graphics and correct labels after the fact in an efficient manner.

• Git - free, open-source distributed version control system[29]. Used to maintain and track changes
in the code during development.

• Doxygen - free documentation generator[30]. Used to combine code documentation with source
files.
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Chapter 5
Results

This section presents the results of the simulations for the BK and BKP model. It starts by looking at the
pad position. Moreover, with the position establishing and justifying the use of step-wise changing slider
velocity ν to compare the behaviour of the two models. Through this, the difference between increasing
and decreasing ν is shown, both for continuous and step-wise changing ν. Further, the output from the
different models is compared and interpreted through phase plot, Fourier spectrum and animation of the
simulations.

All the models of the BK and BKP model shown in Chapter 5 are simulated with N = 100 blocks.
More details on the parameters and configurations can be seen through the YAML files in Chapter A.

5.1 Pad behaviour

As described in Section 3.1, the BKP model consist of a damped pad and N blocks connected with
springs. This section looks at output and results for the pad specifically.

5.1.1 Continuously changing slider velocity

To get an overview of pads nature, the pad position for the BKP model is studied for increasing and
decreasing continuous slider velocity. Both increasing and decreasing versions can be viewed individually
in Figures 5.1 and 5.2 and together in Figure 5.3. In all of these figures, x is the positional value of the
pad and ν is the velocity of the slider, as governed by Equation (3.1). In all runs, the pad starts with a
position, and velocity equal to zero.

In Figures 5.1 and 5.4 one can see that the pad starts by oscillating a short amount of time, before
being drawn back(back here referring to decreasing values of x). Further, the pad continues to oscillate
in the range x ∈ [−0.5,−1.0] until it reaches a region ν ∈ [0.11, 0.14]. In this region, the pad positions
position amplitude is significantly lower than the immediately preceding and following regions. This type
of region is from this point occasionally addressed as a bridge due to its shape. Following this bridge,
the pads positional amplitude follows a trend that continuously rises with higher slider velocity of ν. An
increasing positional amplitude is visible until ν ≈ 0.9. After ν ≈ 0.9, the pad amplitude rather abruptly
decreases toward a stable pad amplitude.

As in Figure 5.1, Figure 5.2 shows the pad position versus the slider velocity ν, but with ν decreasing
from 2.0 to 0.0. The difference in velocity direction is immediately visible with the pad being drawn
back at the opposite side of the velocity range. The pads position keeps a steady decreasing position
and amplitude till ν ≈ 0.68. At this slider velocity the pad starts to oscillate with an higher amplitude
similar to what is seen with the increasing slider velocity in Figure 5.1. From this point, the decreasing
run appears to follow the same behaviour as the increasing velocity run. This similarity is shown in
Figures 5.3 and 5.4.

When inspecting the increasing and decreasing velocity runs collectively, the domain where they differ
the most is ν ∈ [0.68, 1.11]. In order to make both lines visible when overlapping, 20% transparency is
added to the decreasing run.
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Figure 5.1: Continuously increasing the slider velocity from 0.0 to 2.0 over 80 000 time steps. The plot
shows how the pad position x change as ν increases.
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Figure 5.2: Continuously decreasing the slider velocity from 2.0 to 0.0 over 80 000 time steps. As in
Figure 5.1, the plot shows how the pad position x changes as the ν decreases.

32



CHAPTER 5. RESULTS 5.1. PAD BEHAVIOUR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
ν

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

x

Increasing
Decreasing

Figure 5.3: Comparison plot combining the pad position in Figures 5.1 and 5.2 to showcase where the
increasing and decreasing slider velocity runs differ and matches. The figure shows clear the difference
for the two runs in the domain ν ∈ [0.68, 1.11].
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Figure 5.4: Comparison plot combining the pad position in Figures 5.1 and 5.2 highlighting some of
regions of ν where the increasing and decreasing run either clearly differ from or matches the other.
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5.1.2 Step-wise increasing slider velocity

In order to investigate specific slider velocities more closely, step-wise velocity acceleration was introduced.
The step-wise acceleration is performed in the same manner as shown in Figure 3.18 when demonstrating
slipping. As in this demonstration, the velocity is held constant for a set amount of time. Further, the
slider accelerates a predefined amount at the end of each interval. In Figure 5.5 the plot with continuous
slider velocity Figure 5.4 is repeated with step-wise increasing or decreasing slider velocity.
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Figure 5.5: Step-wise changing the slider velocity ν every vertical line. The velocity increase with 0.01
every 2000 time step in the simulations. The plots indicates the difference and similarities of running
continuous or step-wise increasing slider velocities.

The runs shown in Figure 5.5 uses seed 112 from Figure 5.15 and seed 101 from Figure 5.10. An
alternative method to step-wise acceleration was also tested. This method used continuous slider accel-
eration until a threshold velocity is reached. From that point, the simulation ran for a set amount of
time. This method was implemented and tested but was not used to calculate the friction amplitude and
frequencies for different slider velocities. The choice to not use it was due to the higher computational
cost this would take without seeing any major improvement. It is possible that this method can reveal
aspects of the models when tested more and is written up as Section 6.5.

5.1.3 Phase plot

In order to get information about the pad at a specific slider velocity, the velocity of the pad is plotted
against the position. This plotting produces a phase plot that can give a picture of how regular the model
is behaving and if there are any predominant fluctuations. In Figure 5.6, phase plot from both runs in
Figure 5.5 for five slider velocities are plotted. These velocities are chosen to inspect regions that behave
differently when looking at the pad position.

The phase plots also visualise some of the similarities and difference of decreasing and increasing slider
velocity. For ν = 0.72, the difference in amplitude observed in Figure 5.5 is very clear. This difference is
also present for the pad velocity ẋ, with Figure 5.6a showing a more chaotic path than in Figure 5.6b. The
other phases visualised show more similarities with the decreasing runs showing a more spherical shape.
The shape here refers to the visual shape with the set axis limits. Figure 5.6 is meant to showcase how the
pad behaves quite untidy at some values of ν compared to others. Combined with the three-dimensional
visualisation in Figure 5.7, it shows that the pad gets into a stable phase at certain slider velocities.
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(a) BKP model with increasing slider velocity. ν =
0.67 or = 0.72 show a much more irregular pattern
than ν = 0.11 and = 1.11, which oscillates with
a stable position and velocity. As in Figure 5.6b,
ν = 0.08 show an irregular path, but with lower
minimum and maximum values for position and ve-
locity.
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(b) BKP model with decreasing slider velocity.
ν = 0.67 show more dense, but otherwise similar
path as in for the increasing slider velocity run in
Figure 5.6a. At the higher ν = 0.72, this similar-
ity is gone, now oscillating with a stable velocity as
with ν = 0.11 and = 1.11.

Figure 5.6: Phase plot of the pad position x versus velocity ẋ. The phase is plotted for different slider
velocities ν. Comparing the two one note that some velocities shows a higher x/ẋ-range ratio Note that
the axis range is different for x and ẋ which affect the shape of the phases.

ẋ
−1.5 −1.0 −0.5 0.0 0.5 x−0.6 −0.3 0.0 0.3

ν

0.00

0.25

0.50

0.75

1.00

1.25

(a) Increasing slider velocity for plotted against the
pads position and velocity. The Phase has clear
decrease at ν ≈ 0.84, followed by a linear decrease
before stabilising at ν ≈ 1.0. Individual phase lines
is shown in Figure 5.6a.

ẋ
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(b) Decreasing slider velocity for plotted against the
pads position and velocity. A clear change in the
phase is present at ν ≈ 0.68, as is shown though
the ν = 0.72 and = 0.67 phases in Figure 5.6b.

Figure 5.7: Both figures are originally 3D plots made of 2D phase plot for velocities ν ∈ [0.0, 1.49] stacked
upon another. Such 2D phase plots is shown in Figure 5.6. The colour of each phase is directly dependent
on the slider velocity ν, going from dark blue to yellow. Going bottom to top, Figures 5.7a and 5.7b, the
general behaviour for the decreasing and increasing runs are the same till ν ≈ 0.68 as seen in Figure 5.5.
From here the decreasing run has drastic contraction in positional and velocity range relative to the
region prior. This contraction is also present in the increasing run, here happening at a higher slider
velocity and less to a lesser extent.
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5.2 Comparing BK and BKP

In order to compare the BK to the BKP model, the friction amplitude as described in Section 3.6 was
compared for both step-wise increasing and decreasing slider velocity. In order to get a general behaviour
of the models, an average of multiple runs of each model was done for decreasing and increasing slider
velocity. The mean friction and friction amplitude from the models is shown together in Figure 5.12. Note
that the number of intervals used to calculate the error bars for the friction amplitude as in Equation (3.19)
is 4 for all runs. These error bars show the error when calculating the friction amplitude from a signal,
which here is the friction. To support this, the mean friction amplitude is visualised with a 95% CI
in Figure 5.8. While the error bars for the friction amplitude present the error when calculating the
amplitude, the CI shows how much the calculated amplitude for each run differs from the mean of all the
runs. These tools enable saying something about the accuracy of the amplitudes and if the models show
more constant or varying behaviour at different slider velocities. To support the figures in this section,
additional, but not essential figures containing visualisations of how each run used to calculate mean
differ from it are available. These are figures are found in Chapter C, Section C.4 in the appendices. All
of the runs compared in Section 5.2 have the same step size, number of time steps and range of velocities.
The general YAML file can be found in Chapter A containing all the parameters, while the key once are
listed in Table 5.1. The runs has a constant slider velocity for an interval which is given in Table 5.1.

Parameters
Parameter Symbol Increasing Decreasing
N N 100 -
slider speed ν 0.00 1.49
increment 0.01 -0.01
interval 2000 -
max time 300000 -

Debug
Parameter Symbol BK BKP
debug no pad true false

Table 5.1: Key parameters used when comparing the increasing and decreasing slider velocity simulations
of the BK and BKP model. - mean the value is the same as the column to the left. The combination of
slider speed, increment, interval and max time give both the increasing and decreasing runs 150 velocity
steps in ν ∈ [0.0, 1.49].

Visualised in Figure 5.8 is the mean friction amplitude with corresponding 95% confidence interval.
This figure enables comparison of the BK and BKP model, the simulations within each category, and
how the direction of the velocity of the slider affect the systems. From the figure, it is clear that in the
first few slider velocities, the BKP has a higher friction amplitude than the BK model. This difference
is only for a few velocities, keeping in mind that the ν-axis is plotted on log-scale. All of the simulation
types behave very similarly in the beginning. The similar behaviour is especially clear in the sudden dip
experience around ν = 10−1, shown in Figure 5.8. After this simultaneous drop, the different simulations
increase in amplitude at various paces, then experiencing another dip of varying magnitude and width.
Succeeding these drops in friction amplitude, the BK and BKP mode seems to stabilise at an increasing
amplitude value independent of the slider speed increasing or decreasing. It is clear to draw from the
figure that the BKP has a lower mean friction amplitude in this region, ν ∈ [0.25, 0.68]. Around this
point, all of the curves start to decrease with wider CI than the previous region. Eventually, all of the
curves stabilise with the BK model with increasing slider velocity having a wider CI than the other. It
is also quite notable how wide the CI interval is from ν = 0.99 to 1.34. This distinctive width is due to
an outlier seen in Figure 5.9 and animated in Figures 5.21 to 5.23.
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Figure 5.8: 95% CI of the friction amplitude for increasing and decreasing simulations of BK and BKP
model. Each mean and CI is produced from 16 runs with different initial position and velocity for the
blocks. The mean lines and CI intervals show where each run type has consistent behaviour and how it
differs from the types. ν ∈ [0.0, 1.49] plotted with logarithmic axis

5.2.1 Decreasing slider velocity

As the run shown with the position of the pad in Figure 5.2, runs with decreasing slider velocity for the
BK and BKP model was performed. As is clear in Figure 2.2, the BK model has no pad and therefore
friction force is inspected. This measure is also used in Section 5.2.2.

In Figures 5.9 and 5.10, the dips seen in Figure 5.8 starting at ν = 0.1 are both visible. One can also
see that not all the runs experience the second dip. In the runs where the friction dip two times, the paths
are similar. Further, the BK model enters the second dip more often than the BKP model, comparing 16
runs of each. This trend is detectable in Figure 5.12, where the second dip in the BKP model is tighter
and shallower. Zooming in on the dips - see Figures 5.11 and 5.13 -, the second dip varies more than the
first for both models with decreasing slider velocity. A faster increase in friction amplitude is also visible
in the BK compared to the BKP model. Note the higher amplitude limit in Figure 5.9, which is due to
the outlier.

Furthermore, it should be noted that the error bar, in, e.g. Figure 5.11 sometimes overlap, making the
error seem bigger than it is. Further, the ν-axis is not shown with log-scale due to the smaller interval.
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Figure 5.9: 32 unique runs of the BK model with step-wise decreasing velocity. The top lines shown
represent the mean value of the friction and the bottom lines the friction amplitude. ν ∈ [0.0, 1.49]
plotted with logarithmic axis.
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Figure 5.10: 16 unique runs of the BKP model with decreasing velocity. The top lines show represent
the mean value of the friction and the bottom lines the friction amplitude. One of the runs clearly differ
from the other in friction amplitude with a slightly lower mean friction. This run represented by a yellow
dashed line differs to such a degree it is clearly widening the CI in Figure 5.8. ν ∈ [0.0, 1.49] plotted with
logarithmic axis.
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Figure 5.11: Dip region, comparing 16 runs of the BK and BKP model with decreasing slider velocity
ν ∈ [0.08, 0.27]. The two figures show how 16 different runs of each model behave in the region of the two
dips apparent in the mean in Figure 5.8. The error bars appear bigger for some runs than is the reality
due to bars from multiple runs overlapping. Grid is added to make the values easier to read.
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Figure 5.12: Mean and error for the friction amplitude of increasing and decreasing simulations of BK and
BKP model. Each mean and error is produced from 16 runs with different initial position and velocity for
the blocks and is represented by the lower lines. Each mean shown in the lower line has a corresponding
mean of mean friction line among the upper lines with the same colour and line style. The topmost
line is the friction law shown in Figure 3.2 scaled with the number of blocks for further comparison.
ν ∈ [0.0, 1.49] plotted with logarithmic axis. Non-logarithmic version in Figure C.15
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5.2.2 Increasing slider velocity

Continuing the comparison of decreasing and increasing slider velocity, the increasing part is inspected
more closely. As done with the decreasing segment in Figure 5.11, the two dips present were focused.
There is some immediate difference in the dips when changing the direction of the sliders acceleration.
One change the fact that the dips are in some runs wider. From Figure 5.13 the wider dips are true for
both the BK and BKP model regarding the second dip and the BKP model in the first.
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Figure 5.13: Dip region, comparing 16 runs of the BK and BKP model with increasing slider velocity
ν ∈ [0.07, 0.27]. The two figures show how 16 different runs of each model behave in the region of the two
dips apparent in the mean in Figure 5.8. The error bars appear bigger for some runs than is the reality
due to bars from multiple runs overlapping. Grid is added to make the values easier to read.

Further inspecting the mean in Figure 5.12 of the runs plotted in Figures 5.14 and 5.15, the second
dip shallower is in the BKP model. This is consistent with the findings in Section 5.2.1 in regard to the
second dip. It differs though in it not being wider than its BK counterpart.
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Figure 5.14: 16 unique runs of the BK model with increasing slider velocity. The top lines show represent
the mean value of the friction and the bottom lines the friction amplitude.
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It is worth noting that the runs stabilise on average at different friction amplitude when the slider is
decreasing rather than increasing in velocity.
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Figure 5.15: 16 unique runs of the BKP model with increasing slider velocity. The top lines show represent
the mean value of the friction and the bottom lines the friction amplitude.

5.2.3 Pad vs. no pad

To further investigate the BK and BKP, this section contains a comparison of the use of pad and no pad
in the models. This investigation is done by comparing the phase plots and Fourier spectrum of specific
blocks for the BK and the same for pad and blocks in the BKP model. In all runs used in Figures 5.16
to 5.18 and Section C.3 showcasing blocks, the save interval is set to ten. Setting the save interval to
this means every tenth output from the simulation is saved. Using the spectrum theorem referenced
in Section 3.10 this enables the DFT to detect the highest frequencies in the block record using a save
interval of one. It also gives a sufficient margin to the blocks natural frequency calculated by H. Ferre in
his thesis[1] to 2.256.
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Figure 5.16: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with increasing slider velocity ν = 0.11. Note the axis are different that those of Figures 5.16
and 5.18 in order to see the values of the two plots. Seed value is 112.

The phase plot and Fourier spectrum in Figures 5.16 and 5.17 are plotted from the same instance
of the BKP model. As with the BK model in Figure 5.18 output for six different blocks are visualised.
The number of each block corresponds to its respective position with 0 being the leftmost and 99 the
rightmost block in a 100 block system.
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Figure 5.17: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BKP model with increasing slider velocity ν = 0.11. Seed value is 112.

In Figures 5.16 to 5.18 a single simulation of the BK and BKP model is visualised. In the plots, there
are similarities in the shape of the phases and peaks in the Fourier spectrum for the blocks. Both models
have the same clear peaks with the BKP model having some lower once in between. Another difference
is seen in the phase plot, where the BK model has a more condense pattern. It should also be noted
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that the BK model has a higher maximum and lower minimum position u and approximately the same
minimum and a lower maximum velocity u̇ than the BKP model. Further, it is observed that the same
blocks have the same general path in both phase plots.
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Figure 5.18: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK model with increasing slider velocity ν = 0.11. Seed value is 113.

The more condense pattern for the BK model is also present simulating with negative slider acceler-
ation, see Figure C.6.

Another observation is that the similarity in shape, frequency and amplitude for the models changes
for both increasing and decreasing at higher values of ν. Further, increasing and decreasing simulations
show a difference in the mentioned measurement at these velocities. Furthermore, these behaviours of
each simulation type are consistent with further increase in velocity. For visualisations, see Section C.3.

5.3 Fourier spectrum

The Fourier spectrum can as explained in Section 3.10 can be used to calculate the amplitude and
frequency of a periodic wave function. In Figures 5.19 and 5.20, two different disc velocities are shown
through the phase and amplitude frequency plot of a increasing BKP run. The Fourier spectrum is
calculated on the pad position. From the figures, all the axis except the f -axis are quite different. Taken
the difference in the axis, the amplitude of the pads position is clearly lower at ν = 0.12 than ν = 0.70.
Since both are from the run with seed 112 shown in Figure 5.5 this is consistent with earlier results.
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Figure 5.19: Phase plot and Fourier spectrum for the pads position with ν = 0.12 in a BKP run with
increasing slider velocity.

Another thing to point out is that there is a clear peak in the Fourier spectrum for Figure 5.20 and
that value of f is lower. The frequency f decrease at the higher velocity as seen in Figure 5.20 and show
a bigger range of motion.
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Figure 5.20: Phase plot and Fourier spectrum for the pads position with ν = 0.70 in a BKP run with
increasing slider velocity.
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5.4 Animation

The clear outlier shown in the interval ν ∈ [1.34, 0.99] of Figure 5.9 raise a question for what happened
for this particular run of the BK model with step-wise decreasing slider velocity. To identify this, the
animation tool comes in handy. In order to fully utilise the developed animation tool, the outlier run
was reproduced. The rerun was done so the output contained data of all the blocks. Due to the required
disk space, this is not the default as is explained in Section 3.7. Here the use of seed comes in useful and
makes it possible to rerun the same simulation with all the blocks logged.

In Figures 5.21 to 5.23 snapshots from the animation of the outlier is shown. These snapshots show
the behaviour of the model before, during and after this interval. The animation is implemented so that
when the first data point with a different slider velocity reaches the left side of the boxes in A and C,
the velocity at the top of the animation changes. This velocity refers to the velocity of the slider ν. In
Figure 5.21, the first velocity ν that has bigger positional, as well as friction amplitude than the mean
is visualised. The data with slider velocity ν = 1.34 starts at Time steps shown 40. At this time step,
the blocks show a clear and synchronous waveform in the left window. This synchronous oscillation is
apparent in the averaged block position in the right window. The average also shows the same underlying
period in the blocks is kept from the previous velocity of ν = 1.35, with a clear increase in amplitude.
The increased amplitude is present in the friction plot until ν = 0.99. In order to see if the behaviour in
Figure 5.21 continues, the animation is also started in the interval and towards the end of it.

Figure 5.21: Animation interface showing frame number 159 in a BK model run with decreasing slider
velocity. The figure shows when the run has a sudden spike in both the amplitude of the friction as well
as the block positions.

Figure 5.22 shows the outlier run 50000 time steps later, since each velocity is run for 2000 time steps
each. One can see that the behaviour of the blocks still is a periodic wave as in Figure 5.21. Figure 5.9
shows how friction amplitude decreases over time in the region considered. This decrease is also present
in the averaged block position at ν = 1.09. Furthermore, one can note that the maximum and minimum
value for individual blocks in the left window has changed far less than the average. The decrease in the
blocks average position comes from the blocks being less synchronous, which can be seen in the group of
position lines being thicker in the left window.

At ν = 0.99, the outlier in Figure 5.9 drops in fiction amplitude showing values closer to the mean in
Figure 5.12. This drop is inspected by animating the end of the outlier region. At the point the amplitude
drops, a clear change in the behaviour of the blocks is seen. This is clearly visible at Time steps shown
50 for the individual and averaged block positions animated in Figure 5.23. In the actual video, one sees
how the blocks are no longer oscillating synchronously. Rather, the blocks seem to have multiple wave
patterns moving through them. These patterns result in a clear decrease in the average block position.
This decrease indicates that the outlier occurred when the blocks started to act in a synchronous, close
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Figure 5.22: Animation interface showing frame 10 of the same run as in Figure 5.21. The animation
frame shows a later stage in the simulation at ν = 1.09.

to harmonious wave pattern and ended when exiting this pattern.

Figure 5.23: Animation interface showing frame 349 of the same run as in Figures 5.21 and 5.22. The
animation frame shows when the run exits the ourlier region.

5.4.1 Dips

In Section 5.2 two dips in the in the friction amplitude are presented. It was also shown that the second of
these dips were not always present. In order to inspect the properties of the different runs, animations of
the system were created for the region of interest. In Figure 5.24 two frames are plotted of runs behaving
differently at the same velocity ν. This figure shows two simulations of the BKP with the slider having
positive acceleration.

From the animation frames, it is possible to see that the position of the blocks (upper left in Figure 5.24
has a more noisy shape as well as the pad. In the run with seed 116, the pad is hardly moving in this
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region compared to the run with seed 112. This difference breaks with the behaviour of the systems in
the first dip. The animations reveal that they here behave very similar, something also shown in the
friction amplitude, see Figure 5.15.

5.4.2 Animation videos

In the appendix presented in Chapter B, a quick guide and summary of a web page hosted on a repository
belonging the authors GitHub profile. The page contains videos of animations used in the Thesis.
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Figure 5.24: Two frames from combined animation plot. Here two runs of the BKP model is compared.
The slider velocity is increasing step-wise, as shown in Section 5.1.2. The combined shown as well as a
corresponding animation for the BK model is hosted on a GitHub pages as is detailed in Section 5.4.2.
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Chapter 6
Discussion & Conclusion

6.1 Increasing vs decreasing slider velocity

In Section 5.1.1, the difference between decreasing and increasing the slider velocity is clear. It is also
possible to see that this difference changes with the slider velocity. At high velocity, it affects the
magnitude of the pad position to a lesser degree than at lower velocities. However, as seen in Figure 5.8
with the mean friction amplitude, the consistency of the different directions also varies with the velocity.
An example of this is around the second dip in the friction amplitude, again looking at Figure 5.8. Here
the CI is wider for the increasing than the decreasing runs. The wider CI might be due to the amount of
time step before this point in the simulation. Since log scaled is used, lower values of ν is stretched out.
This stretch means the first and second dip occurs in the first 20% of the simulation for increasing runs
and the last 20% for decreasing run. The specific percentages are specific to the simulations presented
in Chapter 5. Due to the general stability of the increasing simulations at lower velocity, the potential
contribution of this is likely little, if any. However, it should be considered in further work. Doing
bigger batches could reveal more on this matter. Furthermore, Figures 5.4 and 5.5 show that the general
behaviour of the simulation is intact when running step-wise increases in the slider velocity. Nevertheless,
it is also seen that there are evident differences between step-wise and continuous change in slider velocity.
This difference is mainly shown in less positional magnitude change for the step-wise runs. Reason for
this can be; more time to stabilise at the respective velocities, the bigger increases or decreases in velocity
for the step-wise runs is more disruptive than it is for continuous runs,or a combination of the two. For
further work, it is worthwhile to use finer changes in slider velocity steps to investigate if there are any
new behaviours discovered.

The phase plots in Figures 5.6 and 5.7 builds on the observations made for the pads positional plots in
Figures 5.3 to 5.5. Especially the showing where the pad have a more chaotic behaviour and the general
domains where it is consistent. It shows that there is a connection between the pads positional range and
how harmoniously the pad moves. Combining this connection and the findings in the friction plot, emerge
a behavioural pattern. At lower friction and positional amplitude, the system behaves more harmoniously
and periodically — a behaviour which is consistent for both the BK and BKP model. Though they are
very similar, they evolve towards it at different time steps or slider velocities.

Most visible in Figure 5.12 showing the averaged run types, is how the increasing and decreasing
runs converge to different values at the higher end of the slider velocity range. This converged value
is independent of the model. The independence could be due to the decreasing runs starting with the
position and velocity of the pad being zero. This explanation is the most could be right for the BKP
model, but not for the BK model, which has no pad. It should also be noted that the increasing BK line
shows a decreasing tendency before converging to A ≈ 11 like the corresponding BKP line.

6.2 BK vs. BKP

With a basis in 16 runs of each the BK and BKP model with increasing and decreasing slider velocity,
some difference can be described between the two models. As seen in the log-scaled curves in Figures 5.8
and 5.12, all of the four run types contain two dips in around ν = 0.11 and = 0.16, with the first dip
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being complementary among the four and the second less so. The second drop is evident in all the curves,
but is deeper and sharper for the BK model. The CI interval is also wider for the BKP model, suggesting
the simulations do not always go into the dip. This is confirmed in Figures 5.11 and 5.13. While all the
runs to some degree enter the first dip, not all enter the second. Further, skipping the second is more
prominent for the BKP model. In H. Ferre’s Thesis, he stated that it would be interesting to figure out
why the BKP did not go into a dip around the same velocity as discussed here, ν = 0.17[1]. As is seen
in the figures listed, the BKP model does experience a dip, but it does it less frequent than the BK
model. This difference points to the need for running more significant averages in order to reveal the true
frequency and behaviour of the dips shown at mentioned slider velocities. Hence, running bigger batches
for both models is listed as further work.

Looking at Section 5.2.3 comparing the BK and BKP model, there are notable differences in position
and velocity, as well as the frequency and amplitude of the position from different blocks in the BK and
BKP models. Furthermore, the phase and Fourier spectrum show very similar shapes, frequencies and
amplitudes at ν = 0.11, where the first dip is experienced. The similarity is apparent for both increasing
and decreasing ν. As noted, there are differences for the BK and BKP model at this slider velocity with
the BK model showing a more condense pattern. The BK model also shows fewer peaks in the Fourier
spectrum, sharing the ones it has with the BKP model. These new peaks in the BKP model are probably
a result of the pad, making the blocks oscillation dependent on more than its closest neighbours and
friction. Higher velocities ν also show consistent differences between the BK and BKP model, but to a
more substantial degree than shown at the dip. There are also apparent differences here between runs
where the slider is increasing and decreasing in velocity. There is a possibility that these results are run
specific, and it is hard to conclude specific features without analysing more significant averages. It can,
however, tell that the pad has an impact on the system which is detectable. Further, the Fourier spectrum
for the sample of blocks show each share the same frequencies with varying amplitude. Investigating these
data closer for bigger batches and potentially more block could yield a better understanding.

The pad seems to have a very consistent effect of lowering the friction amplitude in the slider velocity
interval of ν ∈ [0.25, 0.68] compared to the BK model. Figures 5.8 and 5.12 clearly show this difference
between the two models. The blocks in the BK model has also shown a tendency of more often obtaining
a positive position relative to where their pulling (top) spring is attached. This tendency is visible in
the domain where the blocks are oscillating in a more chaotic pattern. The domain in question is also
an interval where the pad is showing a high positional amplitude, as seen in Figure 5.4. Interestingly, it
is the BK-pad with the decreasing slider velocity, which has the highest mean friction amplitude in the
interval of ν ∈ [0.86, 1.06]. This observation is interesting due to the pad position consistently has a low
amplitude in this interval. This interval could be interesting to look into for further work, generating
animations to try to see what is happening in the interval. The previous interval ν ∈ [0.25, 0.68], the pad
is likely limiting the range of motion for the blocks causing a lower frictional amplitude. As for all the
models, the general behaviour of the mean friction is quite similar except for the second dip. Further, all
follow the general shape of the scaled friction law.

6.3 Animation

Another thing that is important to mention is how useful animation has been for studying and inspecting
different parts of the system. Adding the option to view large parts of the system and how they behave
over time is a useful asset to have, especially when looking at specific regions in, i.e. slider velocity. The
system does require more fine-tuning and further development in order to increase the user-friendliness
of it. It is worth noting that the animation is written in the same language used for creating the majority
of the plots and figures, namely Python. Being written in this language making it very applicable
for including more methods described in the Thesis into the animation, i.e. the Fourier spectrum.
Implementing a live Fourier spectrum could reveal more on how the frequencies and amplitudes change
and why.

A Fourier spectrum would give more insight into the animation of the outlier detailed in Section 5.4.
The animation shows that the blocks oscillate in a synchronous pattern showing a periodic wave behaviour
in the position of the blocks. This wave behaviour is present in the blocks until obtaining the slider velocity
where the drop in friction amplitude occurs. The close to harmonious wave pattern is replaced by a more
chaotic pattern consisting of multiple waves. The animation indicates that the outlier occurred when the
blocks started to oscillate in a synchronous and repetitive pattern. There are similarities in this behaviour
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and the one shown for dips in Section 5.4.1. In both situations, there is a clear and repetitive pattern in
the blocks. The difference is that instead of increasing the pads or blocks averaged position magnitude,
the pattern in dips has the opposite effect. The pad or blocks averaged position show an almost flat line
during the dips. If more outliers are detected in possible future work, the difference between them and
the dips could be material for further investigation.

Due to the current situation of video editing, it is also possible to combine runs with simple and
often free tools such as the editor KdenLive (Section 4.3.2). KdenLive is used to compared different runs
of the BK and BKP model where different runs of the respective models show different behaviour. In
Figure 5.24, two animations of the BKP model where one of them enters the second dip is edited together.
The animations clearly show that the blocks and pad display quite different behaviour in the two cases.
The animation where the dip is present show a tidier and repeating positional change in the blocks with
little movement in the pad. The other has a quite messy behaviour in the blocks which is reflected onto
the pad. The indicates that the dip is likely due to the blocks getting into a synchronous and repetitive
pattern. The frequency this happens in the different models tells something about the probability of it
happening. These probabilities are hard to conclude from an average of 16 runs, but could be discovered
with more runs used in the average. Running bigger batches for averages could be looked into in further
work. More significant averages will also reveal the presence of different outliers.

An interesting aspect of both models friction amplitude paths as in Figure 5.8 is the fact that they
seem to follow two underlying functions. One is decreasing, and the other function is increasing from
the start and cross in ν = 0.05. This shape might be an underlying behaviour in the models where the
highest value of the two functions is taken. Such an underlying behaviour is not possible to conclude or
debunk with the results in this Thesis and is listed in Section 6.5.

6.4 Conclusion

In this Thesis, the BK and BKP model was successfully implemented for running batch simulations.
These batches proved useful for investigating and comparing the BK and BKP model. The comparison
was made using step-wise changing slider velocity ν for the models, which was confirmed to be sufficiently
close in behaviour to continuous change. Through phase plots of the pads position, it is clear that there is a
connection between the pads range of motion and how stable its oscillation is, with higher range leading
to less stability. Further, the pad is stable for a more significant velocity range when ν is decreasing
compared to increasing.

Through the use of averages, the BK and BKP model show some apparent similarities and differences.
They both share two dips in the mean friction and fiction amplitude at low slider velocity. It is shown
that both models share the same general behaviour in these measurements for the first dip, for both
increasing and decreasing ν. The second dip has a clear difference between the models. One difference is
that the BK model shows a more significant decrease in the mean friction and friction amplitude. This
difference is caused by the single BKP runs, which more seldom enters the second dip. This behaviour,
together with the fact the BKP runs that enter the second dip with increasing ν, has a wider dip, show
a clear difference from the pad. Further, the pad causes a lower friction amplitude in the interval of
ν ∈ [0.25, 0.68] through limiting the range of motion for the blocks.

The Thesis also concludes that the animation of the model has been a great asset in gaining an
understanding of the model. A large amount of output can be visually inspected efficiently while also
providing information that is hard to inspect in still figures. New video editing tools make it simple to
combine multiple animations to highlight some difference or compare them to each other. The project as
a whole has also shown the value of using modern developing tools and mindsets, especially through the
animation.

By continuing on the implementation and results presented in this Thesis, a clear understanding of
the applicability of the BKP model to real-life problems such as brake squeal can be determined.
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6.5 Further work

The further work sections are split up in three sections. The first section spells out ideas for further
investigation. The second section is a list of smaller ideas and improvements concerning the simulations
themselves and the analysis of the output. The last section concern technical improvements, such as ones
that could improve the workflow running simulations and increase user-friendliness.

Ideas

• Run the same simulations as shown in the papers by A. Papangelo et al. presented in Section 2.4
and compare them to the BKP model. The comparison could link the literature better together
and potentially give more insight into the viability of the BKP model.

• Use the implementation to study how the noise in a brake system can be controlled.

• Implement and inspect a more advanced friction law to map the BKP models applications in real
life problems.

Simulation

• Run bigger batches to get a better picture of the general behaviour of the BK and BKP model.

• Look at the ending friction force for the BK and BKP model for the increasing slider velocity.

• Make animations for the BK and BKP model with decreasing slider velocity.

• Run averages to find or confirm the general frequencies of the pad and blocks in the BK and BKP
model at different slider velocities.

• Investigate the possible underlying functions present in the friction amplitude of the BK and BKP
model.

• Do step-wise runs with finer increases in slider velocity.

• Investigate further accelerating the slider to a threshold as an alternative to step-wise acceleration
described in Section 5.1.2.

Technical

• Develop a standard for output to improve the system overall and reduce the time required to
interpret it.

• Develop a GUI that fuse the different visualisation possibilities. The GUI should make it possible
to interpret the system with little prior knowledge of the implementation.

• Make the animation interactive. It has been shown that the animation can support different visu-
alisation of the output. With interaction, these could be interpreted more efficiently. This point is
a continuation of the previous point.

• Develop a more sophisticated python wrapper for running and setting up the simulations.
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Appendix A
YAML Appendix

This appendix includes yaml-files containing parameters and configurations for runs shown in the thesis.
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A.1. BLOCKS: ONLY STATIONARY SPRINGS APPENDIX A. YAML APPENDIX

A.1 Blocks: only stationary springs

1 ---
2 Parameters :
3 dt : 0 . 0 0 5
4 seed : 1 0 1
5 num events : 1
6 N : 3
7 max time : 50
8 s l i d e r s p e e d : 0 . 0 0 0
9 increment : 0 . 0 0 0

10 i n t e r v a l : 1 0 0 0
11 f i l e name : t e s t s o l u t i o n s
12 p r o g r e s s i n d i c a t o r : true
13 m F0 : 1
14 m alpha : 0 . 5
15 m sigma : 0 . 0 1
16 m mass x : 1 0 0
17 m scale mass : 1
18 m zeta : 0 . 0 8 3 3
19 m k P0 : 1 0 0
20 m scale P : 1
21 m scale C : 0 . 0 1
22 m t : 0 . 0
23 m v0 : 0 . 0 0 0 1
24 m u min : 0
25 b locks : [ ]
26 s t a r t sp e ed con t i nuou s : 0 . 0
27 end speed cont inuous : 1 . 0
28 s a v e i n t e r v a l d t : 1
29 th re sho ld speed : 0 . 1
30 Debug:
31 # Debug variables . Should normally be false

32 debug no f r i c t i o n : true
33 debug no ne ighbor spr ings : true
34 debug no s t a t i ona ry sp r i ng s : f a l s e
35 debug no damper : f a l s e
36 debug no min speed : f a l s e
37 debug no pad : true
38 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
39 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
40 debug no random displacements : f a l s e
41 debug spe c i a l ph i : f a l s e
42 debug pad as b lock : f a l s e
43 debug s t op s l i d e r : f a l s e
44 debug s t i c k b l o ck s : f a l s e
45 debug wr i t e b locks : f a l s e
46 d ebug on l y w r i t e f r i c t i o n : f a l s e
47 debug con t i nuous s l i d e r speed : f a l s e
48 debug one degree freedom mode : f a l s e
49 . . .
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APPENDIX A. YAML APPENDIX A.2. BLOCKS: ONLY NEIGHBOURING SPRINGS

A.2 Blocks: only neighbouring springs

1 ---
2 Parameters :
3 dt : 0 . 0 0 5
4 seed : 1 0 3
5 num events : 1
6 N : 3
7 max time : 1 0 0
8 s l i d e r s p e e d : 0 . 0 0 0
9 increment : 0 . 0 0 0

10 i n t e r v a l : 1 0 0 0
11 f i l e name : t e s t s o l u t i o n s
12 p r o g r e s s i n d i c a t o r : true
13 m F0 : 1
14 m alpha : 0 . 5
15 m sigma : 0 . 0 1
16 m mass x : 1 0 0
17 m scale mass : 1
18 m zeta : 0 . 0 8 3 3
19 m k P0 : 1 0 0
20 m scale P : 1
21 m scale C : 0 . 0 1
22 m t : 0 . 0
23 m v0 : 0 . 0 0 0 1
24 m u min : 0
25 b locks : [ ]
26 s t a r t sp e ed con t i nuou s : 0 . 0
27 end speed cont inuous : 1 . 0
28 s a v e i n t e r v a l d t : 1
29 th re sho ld speed : 0 . 1
30 Debug:
31 # Debug variables . Should normally be false

32 debug no f r i c t i o n : true
33 debug no ne ighbor spr ings : f a l s e
34 debug no s t a t i ona ry sp r i ng s : true
35 debug no damper : f a l s e
36 debug no min speed : f a l s e
37 debug no pad : true
38 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
39 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
40 debug no random displacements : f a l s e
41 debug spe c i a l ph i : f a l s e
42 debug pad as b lock : f a l s e
43 debug s t op s l i d e r : f a l s e
44 debug s t i c k b l o ck s : f a l s e
45 debug wr i t e b locks : f a l s e
46 d ebug on l y w r i t e f r i c t i o n : f a l s e
47 debug con t i nuous s l i d e r speed : f a l s e
48 debug one degree freedom mode : f a l s e
49 . . .

59



A.3. ANIMATION: BK DECREASE SEED 106 APPENDIX A. YAML APPENDIX

A.3 Animation: BK decrease seed 106

1 Debug:
2 debug con t i nuous s l i d e r speed : f a l s e
3 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
4 debug no damper : f a l s e
5 debug no f r i c t i o n : f a l s e
6 debug no min speed : f a l s e
7 debug no ne ighbor spr ings : f a l s e
8 debug no pad : true
9 debug no random displacements : f a l s e

10 debug no s t a t i ona ry sp r i ng s : f a l s e
11 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
12 d ebug on l y w r i t e f r i c t i o n : f a l s e
13 debug pad as b lock : f a l s e
14 debug spe c i a l ph i : f a l s e
15 debug s t i c k b l o ck s : f a l s e
16 debug s t op s l i d e r : f a l s e
17 debug wr i t e b locks : f a l s e
18 Parameters :
19 N: 1 0 0
20 b locks : [ ]
21 dt : 0 . 0 0 5
22 end speed cont inuous : 1 . 0
23 f i l e name : t e s t s o l u t i o n s
24 increment : −0 .01
25 i n t e r v a l : 2 0 0 0
26 m F0: 1
27 m alpha : 0 . 5
28 m k P0: 1 0 0
29 m mass x: 1 0 0
30 m scale C : 0 . 0 1
31 m scale P : 1
32 m scale mass : 1
33 m sigma: 0 . 0 1
34 m t: 0 . 0
35 m u min: 0
36 m v0: 0 . 0 0 0 1
37 m zeta : 0 . 0 8 3 3
38 max time: 3 0 0 0 0 0
39 num events : 1
40 p r o g r e s s i n d i c a t o r : true
41 s a v e i n t e r v a l d t : 1 0 0
42 seed : 1 0 6
43 s l i d e r s p e e d : 1 . 4 9
44 s t a r t sp e ed con t i nuou s : 0 . 0
45 th re sho ld speed : 0 . 1
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APPENDIX A. YAML APPENDIX A.4. ANIMATION: BK INCREASE SEED 101

A.4 Animation: BK increase seed 101

1 Debug:
2 debug con t i nuous s l i d e r speed : f a l s e
3 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
4 debug no damper : f a l s e
5 debug no f r i c t i o n : f a l s e
6 debug no min speed : f a l s e
7 debug no ne ighbor spr ings : f a l s e
8 debug no pad : true
9 debug no random displacements : f a l s e

10 debug no s t a t i ona ry sp r i ng s : f a l s e
11 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
12 d ebug on l y w r i t e f r i c t i o n : f a l s e
13 debug pad as b lock : f a l s e
14 debug spe c i a l ph i : f a l s e
15 debug s t i c k b l o ck s : f a l s e
16 debug s t op s l i d e r : f a l s e
17 debug wr i t e b locks : f a l s e
18 Parameters :
19 N: 1 0 0
20 b locks :
21 - 1
22 - 2
23 - 3
24 dt : 0 . 0 0 5
25 end speed cont inuous : 1 . 0
26 f i l e name : t e s t s o l u t i o n s
27 increment : 0 . 0 1
28 i n t e r v a l : 2 0 0 0
29 m F0: 1
30 m alpha : 0 . 5
31 m k P0: 1 0 0
32 m mass x: 1 0 0
33 m scale C : 0 . 0 1
34 m scale P : 1
35 m scale mass : 1
36 m sigma: 0 . 0 1
37 m t: 0 . 0
38 m u min: 0
39 m v0: 0 . 0 0 0 1
40 m zeta : 0 . 0 8 3 3
41 max time: 3 0 0 0 0 0
42 num events : 1
43 p r o g r e s s i n d i c a t o r : true
44 s a v e i n t e r v a l d t : 1 0 0
45 seed : 1 0 1
46 s l i d e r s p e e d : 0 . 0
47 s t a r t sp e ed con t i nuou s : 0 . 0
48 th re sho ld speed : 0 . 1
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A.5. ANIMATION: BKP DECREASE SEED 116 APPENDIX A. YAML APPENDIX

A.5 Animation: BKP decrease seed 116

1 Debug:
2 debug con t i nuous s l i d e r speed : f a l s e
3 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
4 debug no damper : f a l s e
5 debug no f r i c t i o n : f a l s e
6 debug no min speed : f a l s e
7 debug no ne ighbor spr ings : f a l s e
8 debug no pad : f a l s e
9 debug no random displacements : f a l s e

10 debug no s t a t i ona ry sp r i ng s : f a l s e
11 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
12 d ebug on l y w r i t e f r i c t i o n : f a l s e
13 debug pad as b lock : f a l s e
14 debug spe c i a l ph i : f a l s e
15 debug s t i c k b l o ck s : f a l s e
16 debug s t op s l i d e r : f a l s e
17 debug wr i t e b locks : f a l s e
18 Parameters :
19 N: 1 0 0
20 b locks : [ ]
21 dt : 0 . 0 0 5
22 end speed cont inuous : 1 . 0
23 f i l e name : t e s t s o l u t i o n s
24 increment : −0 .01
25 i n t e r v a l : 2 0 0 0
26 m F0: 1
27 m alpha : 0 . 5
28 m k P0: 1 0 0
29 m mass x: 1 0 0
30 m scale C : 0 . 0 1
31 m scale P : 1
32 m scale mass : 1
33 m sigma: 0 . 0 1
34 m t: 0 . 0
35 m u min: 0
36 m v0: 0 . 0 0 0 1
37 m zeta : 0 . 0 8 3 3
38 max time: 3 0 0 0 0 0
39 num events : 1
40 p r o g r e s s i n d i c a t o r : true
41 s a v e i n t e r v a l d t : 1 0 0
42 seed : 1 1 6
43 s l i d e r s p e e d : 1 . 4 9
44 s t a r t sp e ed con t i nuou s : 0 . 0
45 th re sho ld speed : 0 . 1
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APPENDIX A. YAML APPENDIX A.6. ANIMATION: BKP INSREASE SEED 116

A.6 Animation: BKP insrease seed 116

1 Debug:
2 debug con t i nuous s l i d e r speed : f a l s e
3 d e bu g n e g a t i v e i n i t i a l v a l u e s : true
4 debug no damper : f a l s e
5 debug no f r i c t i o n : f a l s e
6 debug no min speed : f a l s e
7 debug no ne ighbor spr ings : f a l s e
8 debug no pad : f a l s e
9 debug no random displacements : f a l s e

10 debug no s t a t i ona ry sp r i ng s : f a l s e
11 d ebu g on l y n e g a t i v e i n i t i a l : f a l s e
12 d ebug on l y w r i t e f r i c t i o n : f a l s e
13 debug pad as b lock : f a l s e
14 debug spe c i a l ph i : f a l s e
15 debug s t i c k b l o ck s : f a l s e
16 debug s t op s l i d e r : f a l s e
17 debug wr i t e b locks : f a l s e
18 Parameters :
19 N: 1 0 0
20 b locks : [ ]
21 dt : 0 . 0 0 5
22 end speed cont inuous : 1 . 0
23 f i l e name : t e s t s o l u t i o n s
24 increment : 0 . 0 1
25 i n t e r v a l : 2 0 0 0
26 m F0: 1
27 m alpha : 0 . 5
28 m k P0: 1 0 0
29 m mass x: 1 0 0
30 m scale C : 0 . 0 1
31 m scale P : 1
32 m scale mass : 1
33 m sigma: 0 . 0 1
34 m t: 0 . 0
35 m u min: 0
36 m v0: 0 . 0 0 0 1
37 m zeta : 0 . 0 8 3 3
38 max time: 3 0 0 0 0 0
39 num events : 1
40 p r o g r e s s i n d i c a t o r : true
41 s a v e i n t e r v a l d t : 1 0 0
42 seed : 1 1 6
43 s l i d e r s p e e d : 0 . 0
44 s t a r t sp e ed con t i nuou s : 0 . 0
45 th re sho ld speed : 0 . 1
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A.6. ANIMATION: BKP INSREASE SEED 116 APPENDIX A. YAML APPENDIX
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Appendix B
Animation and Code Appendix

B.1 Web-hosted videos

Due to it being difficult to get a view of the animations in a PDF-format, a GitHub pages hosting some
of the videos is made. Under is a link together with a small guide of how to use the page.

The page itself is written in markdown and contains links to different pages showing specific videos
mentioned in the thesis among with some explanation as to how they where made. To get back to the
main page the title Simulating Brake Noise by Friction (Home) can be clicked or navigation arrows used.

The page also host the documentation for the code together with the source files. As of this moment
a button or link for going back to the main page is not implemented. To get back to the main page, use
the navigation arrows or change the URL back to the one given below.

Link to the GitHub pages page is given by the following link.

https://izome.github.io/burridge-knopoff-pad-karsten/

B.2 Code

This Thesis is submitted together with a zip-file. The zip contains a readme explaining its content.
Further, it contains documentation of the code used in the project created in HTML by Doxygen[30]. In
addition to the documentation, it contains the plain code for the simulation. This code is also documented
in the Doxygen documentation, which contain the source files for both C++ and Python code.
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B.2. CODE APPENDIX B. ANIMATION AND CODE APPENDIX
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Figure B.1: Animation interface showing frame 0 of an increasing run of the BKP model. The animation
frame shows when the run in the first dip seen in Figure 5.13.

0 20 40 60 80
Time steps shown

−3

−2

−1

0

1

2

u
i

Position

0 20 40 60 80
Block

−3

−2

−1

0

1

2

u
i

Bar

0 20 40 60 80
Time steps shown

−3

−2

−1

0

1

2

x

Pad position

0 20 40 60 80 100
x

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
o
d
e
l

Model

Velocity: 0.120 — Frame: 10

Figure B.2: Animation interface showing frame 10 of the same run as in Figure B.1.
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Appendix C
Supporting Figures Appendix

C.1 Implementation

This appendix contains some additional plots that are supporting, but not essential of the ones found in
the Thesis.
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Figure C.1: Average with 95% confidence interval of the friction amplitude runs in in Figure 3.3 plotted
with log-scale on the ν-axis.
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C.2. FOURIER HEAT MAP APPENDIX C. SUPPORTING FIGURES APPENDIX

C.2 Fourier heat map
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Figure C.2: Fourier spectrum heat map for the BKP model with increasing slider velocity. Seed value is
112. The amplitude is give by the heat bar on the right. Some lines are visible showing which frequencies
show the highest amplitude at different velocities. It is also possible to see where multiple frequencies
are present.
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APPENDIX C. SUPPORTING FIGURES APPENDIX C.3. FOURIER SPECTRUM

C.3 Fourier spectrum
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Figure C.3: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with increasing slider velocity ν = 0.11. Note the axis are different that those of Figures 5.16
and 5.18 in order to see the values of the two plots. Seed value is 112.
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C.3. FOURIER SPECTRUM APPENDIX C. SUPPORTING FIGURES APPENDIX
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Figure C.4: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BKP model with increasing slider velocity ν = 0.11. Seed value is 112.
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Figure C.5: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK model with increasing slider velocity ν = 0.11. Seed value is 113.
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APPENDIX C. SUPPORTING FIGURES APPENDIX C.3. FOURIER SPECTRUM
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ẋ

−3

−2

−1

0

1

2

x

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A

Block:
1
3
20
49
80
99

ν =0.11

(a) BK decreasing
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Figure C.6: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK and BKP model with decreasing slider velocity ν = 0.11.
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Figure C.7: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with decreasing slider velocity ν = 1.11.
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(a) BK decreasing
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Figure C.8: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK and BKP model with decreasing slider velocity ν = 1.11.
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C.3. FOURIER SPECTRUM APPENDIX C. SUPPORTING FIGURES APPENDIX
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Figure C.9: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with increasing slider velocity ν = 1.11.
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(a) BK increasing
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Figure C.10: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK and BKP model with increasing slider velocity ν = 1.11.
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ẋ

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

x

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f

0.00

0.02

0.04

0.06

0.08

0.10

A

Pad

ν =1.3

Figure C.11: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with decreasing slider velocity ν = 1.30.
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Figure C.12: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK and BKP model with decreasing slider velocity ν = 1.30.
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Figure C.13: Showing the phase plot to the left and Fourier spectrum to the right of the pad for the BKP
model with increasing slider velocity ν = 1.30.
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Figure C.14: Showing the phase plot to the left and Fourier spectrum to the right of six different blocks
for the BK and BKP model with increasing slider velocity ν = 1.30.
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C.4 Comparing BK and BKP
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Figure C.15: Mean and error for the friction amplitude of increasing and decreasing simulations of BK
and BKP model. Each mean and error is produced from 16 runs with different initial position and
velocity for the blocks and is represented by the lower lines. Each mean shown in the lower line has
a corresponding mean of mean friction line among the upper lines with the same colour and line style.
The topmost line is the friction law shown in Figure 3.2 scaled with the number of blocks for further
comparison. Non-logarithmic version of Figure 5.12
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Figure C.16: Average friction amplitude with 95% confidence interval based on 32 runs of the decreasing
BK model plotted with log-scale on the ν-axis.
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Figure C.17: Error for each run at different slider velocity
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(a) 32 runs of the BK model plotted with log-scale on the
ν-axis.
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(b) 16 runs of the BKP model.

Figure C.18: Cumulative error following the slider velocity. The slider is decreasing in velocity.
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Figure C.19: Total error for each run in order of increasing seed used in the runs.
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C.5 BK increasing
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Figure C.20: Average friction amplitude with 95% confidence interval based on 16 runs of the increasing
BK model plotted with log-scale on the ν-axis.
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Figure C.21: Error for each run at different slider velocity for increasing BK runs
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Figure C.22: Cumulative error following the slider velocity of increasing BK runs.
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Figure C.23: Total error for each run in order for increasing seed used in the runs.
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C.5.1 BKP decreasing
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Figure C.24: Average friction amplitude with 95% confidence interval based on 316 runs of the decreasing
BKP model plotted with log-scale on the ν-axis.
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Figure C.25: Error for each run at different slider velocities for decreasing BKP runs.
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Figure C.26: Total error for each run in order of increasing seed used in the runs for decreasing BK runs.

C.5.2 BKP increasing

10−2 10−1 1
ν

0

5

10

15

20

25

30

35

40

45

A

BK-Pad

Average BK-Pad increase run(s)

Figure C.27: Average friction amplitude with 95% confidence interval based on 16 runs of the increasing
BKP model plotted with log-scale on the ν-axis.
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Figure C.28: Error for each run at different slider velocity for increasing BKP runs.
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Figure C.29: Cumulative error following the slider velocity for increasing BKP runs.
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Figure C.30: Total error for each run in order of increasing seed used in the runs.
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