
Developing a Client for a Digital
Twin Cloud Platform

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Odd Harald Sjursen Sande
Andreas Børhaug

2019
Odd H

arald Sjursen Sande, Andreas Børhaug

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g

Developing a Client for a Digital Twin
Cloud Platform

Odd Harald Sjursen Sande
Andreas Børhaug

Engineering and ICT
Submission date: June 2019
Supervisor: Terje Rølvåg
Co-supervisor: Bjørn Haugen

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

Sammendrag

Det er forventet at selskaper bruker en stadig større mengde ressurser på å implementere
Digitale Tvillinger hvert år, spesielt med tanke på prediktivt vedlikehold og overvåking av
strukturell integritet. På det nåværende tidspunkt eksisterer det ikke noen åpen kildeplat-
tform for å visualisere data fra Digitale Tvillinger. Denne avhandlingen beskriver utviklin-
gen av en slik platform, spesielt med fokus på frontend og det grafiske brukergrensesnit-
tet.

Prototypen som er blitt utviklet støtter plotting av sanntidsdata i form av tidsserier samt
visualisering av en 3D modell. 3D modellen speiler bevegelsen til den fysiske tvillingen
som er valgt, basert på informasjon fra en Functional Mock-up Unit (FMU). Prototypen er
generalisert til å støtte en vilkårlig Digital Tvilling så lenge den følger FMU standarden.
Ved å implementere forskjellige komponenter for plotting og visualisering lar prototypen
brukeren lage fleksible og modifiserbare oppsett. Brukeren kan videre definere prosessorer
for å transformere data, for eksempel Fast Fourier Transform, Butterworth filtre og FMUer
for simulasjon.

i

Summary

Companies are predicted to allocate a greater amount of resources to implement Digital
Twins in their business every year. especially in regards to predictive maintenance and
monitoring structural integrity. However, currently there exists no non-proprietary cloud
platforms for visualizing data from Digital Twins. This thesis documents the development
of such a platform, especially the front end and the Graphical User Interface.

The prototype developed, supports plotting real-time data as time series and visualizing a
3D model. The 3D model replicates the movement of the physical twin selected, based on
output from an FMU. The prototype is generalized to support any Digital Twin following
the FMU standard. By implementing different components for plotting and visualization,
the prototype allows the user to create flexible and customizeable layouts. The user can
also define processors for transforming data, such as Fast Fourier Transform, Butterworth
filters and FMUs for simulation.

i

Preface

This Master’s thesis is written on behalf of the Department of Mechanical and Indus-
trial Engineering (MTP) as part of the study program Engineering and ICT. The project
was initialized and completed during the spring 2019 semester as a continuation of a spe-
cialization project completed the prior semester. Supervisor Terje Rølvåg proposed this
project with the aim to bring Digital Twins into the Cloud. Terje Rølvag along with our
co-supervisor Bjørn Haugen has been providing assistance and guidance throughout the
project period. External assistance has been provided from two companies, Ceetron and
Fedem Technologies (Now part of SAP). Fedem Technologies has assisted with both soft-
ware to do calculations on models as well as human resources to help in our utilization of
their software. Ceetron has provided us with code excerpts and software to visualize these
models in 3D directly in the browser, as well as being available to answer relevant ques-
tions regarding their software. This thesis assumes the reader has a general understanding
within the field of IT development, mechanical engineering and signal processing.

ii

Table of Contents

Summary i

Summary i

Preface ii

Table of Contents v

List of Tables vi

List of Figures viii

List of Listings ix

Acronyms x

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Goals . 2
1.3 Research Scope . 3

1.3.1 Objectives . 3
1.3.2 Limitations . 3
1.3.3 Thesis Structure . 4

2 Theory 6
2.1 Digital Twins . 6

2.1.1 Definitions of Digital Twins . 6
2.1.2 Benefits of Digital Twins . 7
2.1.3 Examples of Digital Twins in practice 8

2.2 Data visualization . 8
2.3 Signal Analysis . 9

iii

2.3.1 Fast Fourier Transform . 9
2.3.2 Butterworth Filter . 9

2.4 Functional Mock-up Interface . 9
2.5 Technologies and Frameworks . 10

2.5.1 JavaScript . 10
2.5.2 Vue . 10
2.5.3 WebSocket . 12

3 Implementation 14
3.1 Requirements and Reasoning . 15

3.1.1 Integration Requirements . 15
3.2 Back-end Communication . 16

3.2.1 Resource requests . 16
3.2.2 Data Subscription . 16

3.3 Data Flow . 18
3.3.1 Channel/Source Handling . 18
3.3.2 Parsing data . 19
3.3.3 Extracting data for Visualization 20

3.4 Vue . 21
3.4.1 Vuetify . 21
3.4.2 Lazy Loading . 22
3.4.3 Layout Grid . 24

3.5 Visualization . 26
3.5.1 Plotly . 26
3.5.2 Ceetron Cloud Components . 27

3.6 Challenges . 27

4 Results 29
4.1 Graphical User Interface . 29
4.2 Visualization Components . 30

4.2.1 Plot Component . 30
4.2.2 Visualizer . 32
4.2.3 Timeline . 32

4.3 Views/Routes/Pages . 33
4.3.1 Home . 33
4.3.2 Data Sources . 34
4.3.3 Processors . 36
4.3.4 Dashboard . 43

5 Discussion and further work 45
5.1 Cooperation with related projects . 45
5.2 Impact of choosing to use Vue.js . 45
5.3 Plotting . 46

5.3.1 Visualization/3D Model . 46
5.4 Bottlenecks/Improvements . 47

5.4.1 Plotting Performance . 47

iv

5.4.2 Dataparsing . 47
5.5 Graphical User Interface . 48

5.5.1 Home . 48
5.5.2 Processors . 48
5.5.3 Datasources . 49

5.6 Further Work . 49
5.6.1 Historical data . 49
5.6.2 Event Trigger . 50
5.6.3 Future Visualization Components 50

6 Conclusion 52

Bibliography 53

Appendices i

A User Guide ii

B Digital Twin Specialization Project Autumn, 2018 iii

C Source Code lviii

v

List of Tables

1.1 Overview of thesis structure . 4

vi

List of Figures

2.1 A Digital Twin as Kritzinger’s paper defines it 7

3.1 Overview of the Cloud Based Monitoring System (CBMS) with its cou-
pling to the physical twins . 14

3.2 Application Programming Interface (API) response for get fmus request . 16
3.3 Initiating a WebSocket connection to the server 17
3.4 Subscription flow . 17
3.5 Subscribeable sources . 17
3.6 Simple overview over data flow in the client 18
3.7 Snapshot of sourceBuffers object 19
3.8 Overview of Application routes (dynamic routes are surrounded by {}) . 22
3.9 Lighthouse audit of production build without lazy-loaded views 24
3.10 Lighthouse audit of production build with lazy-loaded views 24
3.11 The dashboard with an example layout 25
3.12 Plot Component . 26
3.13 Visualizer Component . 27

4.1 The landing page of the application: The home route 30
4.2 PlotComponent: A simple component for plotting 31
4.3 MarkerPlot component, Extension of the plot component 31
4.4 The Visualizer component . 32
4.5 Example of the timeline component . 32
4.6 The Home Page, with the model of the testrig selected and displacement plot 33
4.7 Component relocation using drag/drop 34
4.8 The landing page for the Datasources route 35
4.9 Creating a new data source . 35
4.10 The empty form for a new data source 36
4.11 Subscribeable channels for testrig using the setup displayed in figure 4.8 . 36
4.12 Selecting a processor to edit or create a new one 37
4.13 Create Processor page . 37

vii

4.14 JSON-object response from /processors/ showing that the processor has
been created . 38

4.15 Final step of creating a processor . 38
4.16 JavaScript Object Notation (JSON)-object response from /processors/ show-

ing that the processor has been created and started 38
4.17 Landing page of Processors now showing the started processor 39
4.18 Screenshot: Editing a processor . 40
4.19 Topics List from Select Datasources . 41
4.20 Output List from Select Datasource . 42
4.21 The Dashboard page, choose a layout or create a new one 43
4.22 The Layout Controls for dashboard: Select, delete or save a layout 43

5.1 Create Processor page during selection of FMU 49

viii

Listings

2.1 A Basic Vue Component . 11
2.2 Using a Basic Vue Component . 11
3.1 An example of a get request from the API helper file 16
3.2 The channel module’s state object . 18
3.3 The parseData and pushData method . 19
3.4 The parsing methods in Plot component 20
3.5 Async component and dynamic import 22
3.6 Combining Async component and dynamic import 22
3.7 Lazy-load View function . 23
3.8 Example of Layout . 24
3.9 The computed itemComp property . 25
3.10 LayoutGridItem: Dynamic component declaration 25
3.11 PlotComponent: Resize event listening 26
3.12 PlotComponent: Resize callback function 26

ix

Acronyms

API Application Programming Interface. vii, ix, 3, 8, 14, 15, 36, 40

CBMS Cloud Based Monitoring System. 2

CSS Cascading Style Sheets. 9

CSV Comma Separated Values. 30

FFT Fast Fourier Transform. 3, 8, 46

FMI Functional Mock-up Interface. 9

FMU Functional Mock-up Unit. i, viii, 9, 25, 46, 48, 49

GUI Graphical User Interface. 10, 13, 28, 46

HTML Hypertext Markup Language. 9

HTTP Hypertext Transfer Protocol. 8, 15

IDE Integrated Development Environment. 14

JSON JavaScript Object Notation. viii, 15, 38

MTP Department of Mechanical and Industrial Engineering. ii, 1, 3

PLM Product Lifecycle Management. 5

TCP Transmission Control Protocol. 8

x

UI User Interface. 38

USG Unstruct Surface Grid. 25

xi

Chapter 1
Introduction

This thesis describes the development of a client to interact and utilize backend developed
in the companion project [7] to this thesis. As a development project, the focus will be
both on the result as well as the road from initial conception to finished product. This
chapter presents the background, scope and outline of the thesis.

1.1 Background and Motivation

Following previous projects at MTP in the field of Digital Twins, a need to establish an
ecosystem in the cloud where Digital Twins may be accessed and configured has emerged.
Such a system would eliminate the need for direct access to powerful hardware with large
enterprise programs installed to do the necessary calculations for your digital twin. This
would move the load over to a centralized server that can be utilized by any sanctioned
device at any location. As a direct consequence, new opportunities to use the Digital Twin
may be realized such as running calculations or creating new views using nothing but a
device with internet access. During maintenance, skilled operators may be able to use and
update the Digital Twin on-site to help them complete their tasks, without having to report
irregularities back to a central hub that controls the Digital Twin.

The supervisor of this project, Terje Rølvåg at MTP has been cooperating with Fedem
Technologies regarding Digital Twins. Along with our co-supervisor Bjørn Haugen, Rølvag
proposed that a project to launch the Digital Twin into the cloud. At it’s core, the idea was
to create an application for modelling Digital Twins in the cloud that could support a wide
range of different fields. Input data from two concurrent projects was to be made available
for testing as well as the the Torsion Bar Suspension Rig used in B.

1

1.2 Research Goals

The complete project has been sectioned into multiple individual but dependent projects:
The twins that will be monitored and the CBMS. Terje Rølvåg defined five goals for the
CBMS to help give direction to the project as a whole. These five goals were as fol-
lows:

1. Identify structural failure modes to be detected by CBMS (fatigue, yield, buckling,
instability etc.). Collect inputs from the generator and crane master students.

2. Identify the functional requirements for monitoring of the most critical failure modes.
Collect requirements from the generator and crane master students.

3. Implement a generic configuration system in the cloud solution for easy adaption to
other digital twin applications (other sensors, actuators, streaming analytics etc.)

4. Implement required software functionality in the cloud solution to support the re-
quirements from task 2 (streaming analytics, curve plotting, 3D visualization, event
trigging, report generation)

5. Setup and benchmark the CBMS on a physical crane

The CBMS project was split into two sections, frontend and backend [7] where this thesis
is covering the frontend part and how these goals are part of the bigger picture. The
overall goal for the front-end was that the final product should be a user-friendly interface
for Digital Twins. The prototype should include generic configurations that would suit the
master students of the crane and generator.

Another major goal is to facilitate inspecting the data the Digital Twin model can provide.
This would allow the user to select what is critical for the current situation, e.g yield. To
complete these goals, a few basic requirements must be met in regards to performance. As
a result, performance has continuously been evaluated.

2

1.3 Research Scope

1.3.1 Objectives

While the overall goals were described in the previous section, the objectives will describe
implementation steps to achieve those goals and provide discussion points for why changes
happen during development.

1. Choose a framework for quick prototyping.

2. Choose and implement a visualization tool for graphs and charts.

3. Implement a layout creator and selector where the user can set up and save layouts
for re-use.

4. Implement functionality to allow user to subscribe and receive both raw and trans-
formed sensor data.

5. Set up Ceetron 3D visualization to show displacement of the 3D model currently
being inspected in real time.

6. Extend the graphing tool to allow for different types of inputs, e.g Fast Fourier
Transform (FFT).

7. Set up event triggers to notify users when a critical point of a Digital Twin is reached.

8. Create automatic reports showing a breakdown of critical events.

9. Allow for look-ups on saved data for statistics and long term analysis.

1.3.2 Limitations

The focus of the project has not been to create a commercial solution ready to use. The
currently supported functionality will only be as accurate as the model. During develop-
ment, a majority of the testing has been done on the Testrig located at MTP. While the
general functionality should work for any Digital Twin, some verification and tweaks may
be needed depending on how different the twin is. Furthermore, this project is reliant on
what data and functionality is provided by the backend API. Additional functionality must
both be added to the backend and the frontend before it can be accessed by the user.

The 3D Visualization using Ceetron’s technology does not provide an exact real time
replica of the physical model. Delay from calculations, transfer of data and the render-
ing on the screen adds a noticeable delay. However, the visualization does follow the
model adequately and can be in most cases used as if it was real time.

3

1.3.3 Thesis Structure

Chapter/Appendix Description
Introduction Gives an introduction to the background and goals for the project

Theory Describes concepts and technologies used in this project
Implementation Describes how the project has been solved

Results Showcases the end result of the project
Discussion Discussion of the results and where it can be taken next
Conclusion A critical view of the project

Table 1.1: Overview of thesis structure

4

Chapter 2
Theory

2.1 Digital Twins

2.1.1 Definitions of Digital Twins

There is not a single, fully accepted definition of Digital twin. The definition varies in
what field it’s used, and in what context. The concept as it is known today was first
introduced back in 2002 by Michale Grieves, in the context of a presentation regarding
Product Lifecycle Management (PLM). Grieves later went on to define Digital Twin in a
paper written along with John Vickers in 2017:

Digital Twin is a set of virtual information constructs that fully describes a
potential or actual physical manufactured product from the micro atomic level
to the macrogeometrical level. At its optimum, any information that could be
obtained from inspecting a physical manufactured product can be obtained
from its Digital Twin. [4]

Another commonly referred to definition from Glaessgen of NASA is:

A Digital Twin is an integrated multiphysics, multiscale, probabilistic sim-
ulation of an as-built vehicle or system that uses the best available physical
models, sensor updates, fleet history, etc., to mirror the life of its correspond-
ing flying twin. [3]

Richard Howells of SAP 1 defines Digital Twin as a “digital representation of a real world
object, product or asset” [5]

In a recent paper by Kritzinger et al. [9], the authors used a combination of the aforemen-
tioned definitions to define three levels of integration. A common theme in the definitions

1SAP - Systems, Applications and Products in Data Processing, a german ERP company

6

of a Digital Twin is that a Digital Twin is a digital counterpart to physical objects. Within
that space, there is much room for interpretation. The three levels of integration introduced
in the paper is an attempt to differentiate inside this space.

The three levels of integration are as follows: A digital model, A digital shadow and a
digital twin. They all fulfill the basic requirement of being a digital counterpart to physical
objects, however they do it to different degrees. A Digital Model is a manually created
model of the physical asset. Any updates to the model is done manually. In a Digital
Shadow data flows from the physical object to the digital representation to keep it up to
date. A Digital Twin in their paper refers then to a further extension of a Digital Shadow,
in which data flows both ways. State change in the Digital Twin will impact its physical
counterpart and vice versa.

Figure 2.1: A Digital Twin as Kritzinger’s paper defines it. Information flows automatically both
to and from the Digital model and the physical asset. A Digital Shadow will not have the automatic
communication back to the physical asset and a Digital Model will have no automatic communica-
tion at all

2.1.2 Benefits of Digital Twins

The main use cases of Digital twins are in regards to predictive maintenance and monitor-
ing of structural integrity. Digital Twin lessens the need of on-site inspections and gives
a better lifetime estimation. SAP claims that implementing Digital Twins gives a “25%
reduction in the cost of quality defects with digital twins and that 65% of manufacturing
businesses will be using Digital Twins by 2020. ” [11]. Thomas Kaiser, SAP Senior Vice
President of IoT, put it this way: “Digital twins are becoming a business imperative, cov-
ering the entire lifecycle of an asset or process and forming the foundation for connected
products and services. Companies that fail to respond will be left behind.”

Siemens claims that Digital Twins will reduce product defects and production costs as well
as shorten the time to market [12].

Similar claims can be found from many manufacturing businesses and also in other fields.
However Digital Twin is still not a mature technology. One of the reasons for this is that the
cost of implementation and operation has been very high. While sensors have decreased
in price over the years, the amount of data being transferred from a physical object may
require expensive equipment to handle.

7

2.1.3 Examples of Digital Twins in practice

Digital Twins have been used in various fields to both different degrees of success and
correctness. Many companies claim to use Digital Twins, however what has actually been
implemented varies in a great degree. The McLaren group, for example talks positively
about the impact their implementation of Digital Twins has had on performance in a sport
where every second counts. Dr Peter van Manen, a former managing director and vice
president for McLaren Applied Technologies is quoted saying:

It’s just the sort of thing a digital twin is perfect for helping with, Formula 1
is all about time management. Every second counts so when you can shave
them off by learning key insights about the inner workings of your car, it
really matters. We used a digital twin – though we just called it a computer
simulation – to help us do that [13].

This shows that while the Digital Twin concept can be difficult to implement to its full
definition, it is not required to provide value within competitive fields such as Formula 1
racing. Furthermore, Dr. van Manen has an interesting perspective of their experiences
implementing a Digital Twin.

For the first three to five years, we were just playing around with it, trying to
work out what it could do – it’s important to have this phase. Digital twins are
not going to be perfect straight away – they’re a bit like a puppy at Christmas –
it’s great but you have to keep taking care of it if you want to reap the benefits
[13].

Another practical example comes from Brazil where Stara, a manufacturer of tractors has
implemented Digital Twins. In cooperation with SAP they have implemented IoT sensors
with the goal of providing live updates on how their tractors operate. Consequently, farm-
ers using Stara’s tractors have reported a 21% less usage of seeds and 19% less usage of
fertilizers [6].

2.2 Data visualization

Visualization of data can come in many forms, charts, plots, maps, models etc. The classic
visualization challenge is figuring out which visualization fits for your static data set. As
mentioned in the previous section, a Digital Twin uses real time data, which is not a static
data set. It is continuously updated with data from the physical asset and is closer to
needing techniques derived from what the IT sector calls Big Data Visualization. In a
Digital Twin, the amount of data will quickly become too great to keep in a database. Only
some of the data can be stored. The data must to be visualized on the fly and decisions
must be made whether or not the data should be stored for further analysis.

As a consequence, the first challenge is to choose what data must be visualized. For
a Digital Twin the equivalent is to ask: Do you need to visualize the entire model at
once? Another issue is encountered when attempting to manipulate the incoming data:

8

The computer cannot keep up. Each action must be repeated on each data point. The
problem may be mitigated by increasing computational power, however this is expensive.
Instead it might be advisable to limit the amount of actions to keep costs down.

2.3 Signal Analysis

2.3.1 Fast Fourier Transform

FFT, is an algorithm for efficiently computing the discrete Fourier series of a sequence.
Cohen et al. [2] describes it as the following:

The fast Fourier transform is a computational tool which facilitates signal
analysis such as power spectrum analysis and filter simulation by means of
digital computers. It is a method for efficiently computing the discrete Fourier
transform of a series of data samples (referred to as a time series)

The discrete Fourier series of a sequence is commonly used to analyze a signals properties.
Through identifying the higher frequency components of a signal, it may be possible to
pinpoint the source of the unwanted vibration or noise. FFT is often used in combination
with filters to remove the unwanted frequencies once the range has been identified.

2.3.2 Butterworth Filter

In signal processing a filter is typically used to remove noise, i.e unwanted frequency
components, from the signal. A low pass filter, as the name states, lets only frequencies
below a certain cut-off frequency pass through, while a high pass one only lets frequen-
cies higher than the cut-off pass through. The range of frequencies that pass through a
filter is called the bandpass, and an ideal filter should have a flat as possible passband as
Butterworth states in his paper [1]: “An ideal electrical filter should not only completely
reject the unwanted frequencies but should also have uniform sensitivity for the wanted
frequencies.”

The Butterworth filter fulfills these conditions, more importantly the latter one, meaning
it does not affect the frequencies that it should let pass. The higher order the filter has
the flatter the frequency response from the passband becomes, however as the order in-
creases, so does the latency of the signal. This is one of the filter that are available in the
prototype.

2.4 Functional Mock-up Interface

Functional Mock-up Interface (FMI) is a tool independent standard to support
both model exchange and co-simulation of dynamic models using a combina-
tion of xml-files and compiled C-code.

9

...
Models are described by differential, algebraic and discrete equations with
time-, state- and step-events. [10] (from Modelica, the association behind
FMI)

The models used in the interface are packaged in zip files with an .fmu extension, short
for Functional Mock-up Unit. These FMUs contain several files. The definition of all
variables and other information pertaining to the model is contained in an xml file, such
that the target machine will not need to specify these. In addition a small set of C-functions
provided in binary or as source files, which expose the model equations in a simple manner.
An FMU might also contain additional data, especially maps and tables needed by the
specific model.

2.5 Technologies and Frameworks

2.5.1 JavaScript

JavaScript is the core language used to create web-pages as it can be run directly in the
browser with no additional installations. Together with HTML and CSS, it forms the most
common foundation of modern web development in client side programming.

2.5.2 Vue

Vue.js2 is JavaScript front-end framework for building user interfaces. Vue is component-
based, meaning it splits Graphical User Interface (GUI) into encapsulated elements hold-
ing their own logic, template and styling. The application itself is built by combining these
loosely coupled elements, called components.

Comparison with React

Vue, similar to React3, which is backed by Facebook, focuses on the view layer of an
application. However, unlike React, Vue offers a more complete solution for build Web
Applications/Single Page Applications. While React relies on other third party libraries
for advanced features such as Redux for state management, Vue supports it with their own
library Vuex4. The Vue team also provides a command line tool, Vue CLI5 for minimal
configuration and instant prototyping.

2https://vuejs.org/
3https://reactjs.org/
4https://vuex.vuejs.org/
5https://cli.vuejs.org/

10

https://vuejs.org/
https://reactjs.org/
https://vuex.vuejs.org/
https://cli.vuejs.org/

Additionally, Vue’s documentation6 states that Vue scales down just as well as up. This
means that the framework should easily fit an application growing in size. Coupled with
the Vue CLI, this makes the threshold for getting started with Vue.js low and a good choice
for rapid development. Examples of large companies using Vue are Alibaba, Gitlab7,
Expedia and Adobe. 8

Usage

The component approach is quite similar to that of a class in Object-Oriented Program-
ming and likewise a component is instantiated inside a parent component with parame-
ters.

A basic Vue component and it’s usage is shown in listing 2.1 and 2.2 respectively. The
styling in the bottom of the listing is written in CSS, the template is HTML and the logic
is JavaScript within the script tag.

1<t e m p l a t e>
2 <d i v c l a s s =” b a s i c−component ”>
3 {{ t e x t }}
4 </ d iv>
5 </ t e m p l a t e>
6<s c r i p t >
7 e x p o r t d e f a u l t {
8 name : ’ BasicComponent ’ ,
9 p r o p s : {

10 t e x t : {
11 t y p e : S t r i n g ,
12 d e f a u l t : ’ H e l l o World ’
13 }
14 }
15 }
16 </ s c r i p t >
17

18<s t y l e scoped>
19 . b a s i c−component{
20 background : b l u e ;
21 }
22

23 </ s t y l e >

Listing 2.1: A Basic Vue Component

1<BasicComponent t e x t =” H e l l o There ”></BasicComponent>

Listing 2.2: Using a Basic Vue Component

6https://vuejs.org/v2/guide/comparison.html
7https://about.gitlab.com/2016/10/20/why-we-chose-vue/
8https://github.com/vuejs/awesome-vue

11

https://vuejs.org/v2/guide/comparison.html
https://about.gitlab.com/2016/10/20/why-we-chose-vue/
https://github.com/vuejs/awesome-vue

2.5.3 WebSocket

WebSocket is a computer communication protocol, allowing communication in both di-
rections simultaneously (full-duplex) over a single TCP (Transmission Control Protocol)
connection. Comparatively, HTTP (Hypertext Transfer Protocol) connections are half-
duplex, meaning they only allow communication in one direction at a time, similarly to
walkie-talkies and most handheld radios. In the WebSocket protocol, message exchange
is allowed while keeping the connection open and the server can send content to the client
without receiving a client request first.

As a result the interaction between a web server and a browser has less overhead com-
pared to HTTP polling, therefore placing less burden on the server. HTML5 WebSockets
can also traverse proxies and firewalls, which many application have problems with [14].
Altogether it makes real time data transfer between server and client easily achievable and
the WebSocket API9 is therefore a good fit for streaming data fast and efficiently.

9https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

12

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Chapter 3
Implementation

This chapter covers the current implementation of the prototype. Since the main objective
is to create the basis for a Digital Twin Cloud Platform, no heavy optimization is done per-
taining to scalability or accessibility. Building a working model with clear paths towards
further development has been prioritized instead.

Figure 3.1: Overview of the CBMS with its coupling to the physical twins

Note, the chapter will mainly focus on implementation details and the code behind the
GUI, so it’s mostly directed at those who intend to develop the prototype further.

14

3.1 Requirements and Reasoning

In applications where large volumes of data are visualized, the main requirement is to be
able to provide visualizations the user actually wants. Choosing between technologies and
frameworks often becomes a question of scalability and availability. If the framework can’t
handle the necessary volumes of data, the solution is either to start again with a different
framework or limit the functionality the user needs.

The technology needed to handle communication with the backend part of the project,
both through request-based communication like REST or SOAP as well as a technology
for receiving continuous data from the backend. Furthermore, it is desired for the project
to be platform independent, requiring no extra installations on the user’s part.

Due to this overarching requirement, and based on experience from prior projects, our
front-end framework had the following requirements:

1. Quick prototyping

• Sometimes you don’t know if things will work out. Being able to retry without
spending a month working on it is crucial.

2. Support development in Integrated Development Environment (IDE)

• Framework needs to be well-established with development support in IDE for
further timesaving and refactoring purposes.

3. Libraries and examples for graphical elements and standardized components

• Most problems in the realm of graphical web applications have already been
solved. Having a library with examples to choose and edit to fit the needs of
the project can be a massive time saver.

3.1.1 Integration Requirements

At the frontend it is required to use libraries that work with the API exposed by the back-
end. Any frontend being developed including this project is therefore limited to select
technologies that work within that scope. However, since both of these projects were de-
veloped simultaneously and as there is no additional projects depending on the backend,
the backend can be adapted to support new technologies.

Current integration requirements are as follows:

1. WebSocket. WebSocket (section 2.5.3) is the current technology exposed to handle
streaming of data from the Digital Twin(s)

2. REST. A REST inspired API is exposed allowing for standard http methods to re-
quest information from server. SOAP is thus not supported

15

3.2 Back-end Communication

3.2.1 Resource requests

The frontend communicates with the backend via HTTP requests, such as GET, POST
and DELETE. Sending a GET request to an endpoint returns a resource as a JSON-object,
which can easily be read in the Vue/JavaScript frontend. An example is a list of running
subscribeable sources. POST requests are used if the client needs to submit data with the
request, for instance submitting a definition of sensors, ID, address and port in order to cre-
ate a new data source. The methods used to make requests to the server are asynchronous
functions in order to not halt the user interface during execution. Most of these can be
found in the APIHelper.js file (Appendix C).

1 e x p o r t a sync f u n c t i o n getFMUs () {
2 r e t u r n getJSONResponse (roo tAPI + / fmus /)
3 }

Listing 3.1: An example of a get request from the API helper file

Figure 3.2: API response for get fmus request

3.2.2 Data Subscription

Data needed for visualization is continuously received through a WebSocket connection
to the server. The process for opening a WebSocket to the server is depicted in figure 3.3.
The client can then start sending subscribe and unsubscribe requests in order to receive data
through the WebSocket (figure 3.4). These requests can also be executed before before the
WebSocket connection has opened.

16

Figure 3.3: Initiating a WebSocket connection to the server

Figure 3.4: Subscription flow

Figure 3.5: Subscribeable sources: Data sources and processors. Data sources output data directly
from external source, meaning the physicals assets sensors, while processors transforms data from
a data source or another processor. This means that processors can be chained, creating a pipeline
with a source (the data source) and a sink (the client)

17

3.3 Data Flow

The incoming data from the WebSocket is received in the channelParser script, which
parses the incoming data and bundles it in a buffer. When a set number of packets have
been received the parser then emits a newData event with the buffer data. Visualization
components that listen to this event will then receive all the buffer data and retrieve the
relevant data for visualization. The plot component will for instance retrieve data for its
selected channels (listing 3.4).

Figure 3.6: Simple overview over data flow in the client

3.3.1 Channel/Source Handling

The prototype uses Vuex1 for state management. The Vuex store can be thought of as an
in-memory database, a central store that holds the common state between components in
the application. The visualizer, plot and markerplot component all need information on
what channels have been subscribed to in order to visualize data. The subscribed channels
are therefore stored in a dictionary located in the state object of the channel module in the
application’s Vuex store as displayed in listing 3.2.

1 s t a t e : {
2 / / D i c t i o n a r y o f sou rce IDs , example :
3 /∗ s o u r c e D i c t : {
4 0000 : {
5 b y t e F o r m a t : ’<dddddddddd ’
6 name : ’ t e s t r i g ’ ,
7 c h a n n e l s : [
8 {
9 i d : 1 ,

10 name : ’ Load [N] ’
11 }
12]
13 }
14 } ∗ /
15 s o u r c e D i c t : {}
16 } ,

Listing 3.2: The channel module’s state object

1https://vuex.vuejs.org/

18

https://vuex.vuejs.org/

3.3.2 Parsing data

The sourceDict consists of all channels the user have subscribed to, and is used to
create a dictionary for parsing incoming data. Selecting all channels for the testrig data
source results in the sourceBuffers dictionary shown in figure 3.7. The unpacker
object depicted comes from the struct.js2 library and is used to iteratively parse the incom-
ing data. As listing 3.3 illustrates, the unpacked data is put into the x and y buffers related
to the sourceID.

Figure 3.7: Snapshot of sourceBuffers for testrig with all channels selected (Vue Devtools).
The X buffer holds to timestamp while Y buffer holds value

Every 100 milliseconds an event is emitted with the data received since last event. This
event is called newData and sends a copy of the current sourceBuffers as shown
in listing 3.3 line 19-25. Note that a copy of the sourceBuffers object is emitted
in the event and not the object itself (line 21, listing 3.3). If the object itself had been
passed, the resetBuffers method would start manipulating the sourceBuffers
object while the event listeners process the data. In other words, data would be overwritten
and lost.

1 p a r s e D a t a (da t a , s o u r c e I D) {
2 c o n s t s o u r c e B u f f e r = t h i s . s o u r c e B u f f e r s [s o u r c e I D]
3 i f (s o u r c e B u f f e r === u n d e f i n e d) {
4 r e t u r n
5 }
6 t h i s . p a c k e t C o u n t e r ++

2https://github.com/lyngklip/structjs

19

https://github.com/lyngklip/structjs

7 c o n s t u n p a c k e r = s o u r c e B u f f e r . u n p a c k e r
8 c o n s t u n p a c k I t e r a t o r = u n p a c k e r . i t e r u n p a c k (d a t a)
9 l e t unpacked = u n p a c k I t e r a t o r . n e x t () . v a l u e

10 w h i l e (unpacked) {
11 s o u r c e B u f f e r . x b u f f e r . push (new Date (unpacked [0] ∗ 1000))
12 c o n s t c h a n n e l s I d s = t h i s . s u b s c r i b e d S o u r c e s [s o u r c e I D] . c h a n n e l s . map

((i t) => i t . i d)
13 c h a n n e l s I d s . f o r E a c h (channe l ID => {
14 s o u r c e B u f f e r . y b u f f e r [channe l ID] . push (unpacked [channe l ID + 1])
15 })
16 unpacked = u n p a c k I t e r a t o r . n e x t () . v a l u e
17 }
18 } ,
19 async pushData () {
20 i f (t h i s . p a c k e t C o u n t e r > 0) {
21 EventBus . $emi t (EVENTS . newData , deepCopy (t h i s . s o u r c e B u f f e r s))
22 t h i s . r e s e t B u f f e r s ()
23 t h i s . p a c k e t C o u n t e r = 0
24 }
25 } ,
26 i n i t P a r s e r () {
27 t h i s . i n i t B u f f e r s ()
28 t h i s . p u s h D a t a I n t e r v a l I D = s e t I n t e r v a l (t h i s . pushData , 100)
29 } ,

Listing 3.3: The parseData and pushData method

3.3.3 Extracting data for Visualization

The code that runs upon receiving the event in plot component is displayed in listing 3.4.
When the plot component receives data it makes a new call to the requestAnimationFrame
3 with updatePlot as a callback function, telling the browser to make the callback on
the next available screen repaint. This ensures a smoother update animation of the plot, as
the callback is executed when the user’s computer is ready to make changes to the screen,
not after a set time as the setTimeout4 method does.

The updatePlot method loops through the selected channels and unpacks the corre-
sponding data from the newData object, in other words the passed copy of the sourceBuffers.
Lastly it calls Plotly’s extendTraces to plot the new points. Note: indicesToUpdate
is simply an array of what indices in the plot to update, i.e if three channels are selected
the array would be: [0, 1, 2]. This array is created every time the user selects or deselects
a channel:

this . indicesToUpdate = [... Array(this . selectedChannels . length) .keys()].

The logic is somewhat the same in the Visualizer (see appendix C).

1 d a t a R e c e i v e d C a l l b a c k (newData) {
2 t h i s . newData = newData

3https://developer.mozilla.org/en-US/docs/Web/API/window/
requestAnimationFrame

4https://www.w3schools.com/jsref/met_win_settimeout.asp

20

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://www.w3schools.com/jsref/met_win_settimeout.asp

3 r e q u e s t A n i m a t i o n F r a m e (t h i s . u p d a t e P l o t)
4 } ,
5 u p d a t e P l o t () {
6 l e t newXValues = []
7 l e t newYValues = []
8 c o n s t newData = t h i s . newData
9 f o r (l e t i = 0 ; i < t h i s . s e l e c t e d C h a n n e l s . l e n g t h ; i ++) {

10 c o n s t sou r ceChanne l ID = t h i s . s e l e c t e d C h a n n e l s [i] . i d
11 c o n s t newChannelData = newData [sou rceChann e l ID [0]]
12 newYValues . push (newChannelData . y b u f f e r [sou rceChan ne l ID [1]])
13 newXValues . push (newChannelData . x b u f f e r)
14 }
15 t h i s . $ r e f s . p l o t l y D i v . e x t e n d T r a c e s (
16 {
17 y : newYValues ,
18 x : newXValues
19 } ,
20 t h i s . i n d i c e s T o U p d a t e ,
21 t h i s . maxPoin t s)
22 }

Listing 3.4: The parsing methods in Plot component

3.4 Vue

This section describes how the frontend has been implemented in Vue, with a more detailed
explanation of the flexible layout and how functionality has been separated.

The application’s functionality is split into routes utilizing the Vue-router library. Vue-
router 5 makes it easy to create navigable routes that remember their state for when the user
re-visits the route. It also enables efficient code splitting 6 of the application. JavaScript
web applications can become quite large when using a bundler, resulting in increased
page load time. The Vue-router leverages this by making it trivial to lazy-load the route
components (section 3.4.2).

3.4.1 Vuetify

The GUI itself utilizes Vuetify.js7, which is a Material UI component framework for Vue.
It currently provides over 80 specialized components such as dropdown menus, buttons
and text fields. The framework follows Google’s Material Specification8, and leverages
the tedious task of maintaining a consistent UI.

5https://router.vuejs.org/
6https://webpack.js.org/guides/code-splitting/
7https://vuetifyjs.com/en/
8https://material.io/design/

21

https://router.vuejs.org/
https://webpack.js.org/guides/code-splitting/
https://vuetifyjs.com/en/
https://material.io/design/

Figure 3.8: Overview of Application routes (dynamic routes are surrounded by {})

3.4.2 Lazy Loading

Lazy loading involves splitting the code into separate chunks that are loaded when needed.
For instance instead of loading the whole web application, only the code needed for the
destination page is loaded when the user navigates to the website. A simple lazy-loading
of a component or JavaScript module can be done by combining Vue’s async compononent
feature9 and webpack’s code splitting feature10 (listing 3.5 and 3.6)11.

1 c o n s t Foo = () => Promise . r e s o l v e ({ /∗ p a r a m e t e r s f o r component ∗ / }
2

3 i m p o r t (’ . / Foo . vue ’) / / r e t u r n s a p romise

Listing 3.5: Async component and dynamic import

1 c o n s t Foo = () => i m p o r t (’ . / Foo . vue ’)
2

3 c o n s t r o u t e r = new VueRouter ({
4 r o u t e s : {
5 { p a t h : ’ / foo ’ , component : Foo}
6 }
7

8 }

Listing 3.6: Combining Async component and dynamic import

9https://vuejs.org/v2/guide/components-dynamic-async.html#
Async-Components

10https://webpack.js.org/guides/code-splitting/
11https://router.vuejs.org/guide/advanced/lazy-loading.html#

grouping-components-in-the-same-chunk

22

https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components
https://webpack.js.org/guides/code-splitting/
https://router.vuejs.org/guide/advanced/lazy-loading.html#grouping-components-in-the-same-chunk
https://router.vuejs.org/guide/advanced/lazy-loading.html#grouping-components-in-the-same-chunk

Iterating on the above, all the views in the prototype are loaded using the lazyLoadView
function in listing 3.7. It displays a progress component if the view takes longer than 200
milliseconds (ms) to load and a timed out component it loads for longer than the timeout
field, set to 5000 ms. A similar function used for loading a component with a progress bar
and timeout view can be found in appendix C.

1 / / Lazy−l o a d s view components , b u t w i th b e t t e r UX. A l o a d i n g view
2 / / w i l l be used i f t h e component t a k e s a w h i l e t o load , f a l l i n g
3 / / back t o a t i m e o u t view i n c a s e t h e page f a i l s t o l o a d . You can
4 / / u se t h i s component t o l azy−l o a d a r o u t e wi th :
5 / /
6 / / component : () => lazyLoadView (i m p o r t (’ @views / my−view ’))
7 / /
8 / / NOTE: Components l o a d e d wi th t h i s s t r a t e g y DO NOT have a c c e s s
9 / / t o in−component guards , such as b e f o r e R o u t e E n t e r ,

10 / / b e fo r eRou teUpda t e , and b e f o r e R o u t e L e a v e . You must e i t h e r use
11 / / r o u t e−l e v e l g u a r d s i n s t e a d o r l azy−l o a d t h e component d i r e c t l y :
12 / /
13 / / component : () => i m p o r t (’ @views / my−view ’)
14 / /
15 e x p o r t f u n c t i o n lazyLoadView (AsyncView) {
16 c o n s t AsyncHandler = () => ({
17 component : AsyncView ,
18 / / A component t o use w h i l e t h e component i s l o a d i n g .
19 l o a d i n g : r e q u i r e (’ . . / v iews / l o a d i n g ’) . d e f a u l t ,
20 / / Delay b e f o r e showing t h e l o a d i n g component .
21 / / D e f a u l t : 200 (m i l l i s e c o n d s) .
22 d e l a y : 200 ,
23 / / A f a l l b a c k component i n c a s e t h e t i m e o u t i s exceeded
24 / / when l o a d i n g t h e component .
25 e r r o r : r e q u i r e (’ . . / v iews / t i m e o u t ’) . d e f a u l t ,
26 / / Time b e f o r e g i v i n g up t r y i n g t o l o a d t h e component .
27 / / D e f a u l t : I n f i n i t y (m i l l i s e c o n d s) .
28 t i m e o u t : 5000
29 })
30

31 r e t u r n Promise . r e s o l v e ({
32 f u n c t i o n a l : t r u e ,
33 r e n d e r (h , { da ta , c h i l d r e n }) {
34 / / T r a n s p a r e n t l y p a s s any p r o p s o r c h i l d r e n
35 / / t o t h e view component .
36 r e t u r n h (AsyncHandler , da t a , c h i l d r e n)
37 }
38 })
39 }

Listing 3.7: Lazy-load View function

The benefit of lazy loading can be measured in a Lighthouse12 audit. As seen in figures
3.9 and 3.10, the lazy-loaded version of the prototype loads significantly faster than the
one without lazy-loading.

12https://chrome.google.com/webstore/detail/lighthouse/
blipmdconlkpinefehnmjammfjpmpbjk

23

https://chrome.google.com/webstore/detail/lighthouse/blipmdconlkpinefehnmjammfjpmpbjk
https://chrome.google.com/webstore/detail/lighthouse/blipmdconlkpinefehnmjammfjpmpbjk

Figure 3.9: Lighthouse audit of production build without lazy-loaded views

Figure 3.10: Lighthouse audit of production build with lazy-loaded views

3.4.3 Layout Grid

The prototype is designed to have a very flexible layout, with visualization components
that can be resized, dragged and reordered in a grid. This way each user can customize
their layout as they desire. This is achieved through the LayoutGrid component.

The LayoutGrid component holds moveable LayoutGridItems. The LayoutGrid
uses a list of layout objects in order to create a complete layout of components. What
component an object represents is inferred from its type field. The LayoutGridItem
component is meant to be a simple wrapper for whatever component is put into it.

1

2 c o n s t g r i d L a y o u t = [
3 { ’ x ’ : 0 , ’ y ’ : 0 , ’w’ : 4 , ’ h ’ : 1 , ’ i ’ : ’ 0 ’ , t y p e : ’ M a r k e r P l o t ’ , p r o p s :

{ t i t l e : ’ C r a n e S h o r t ’ } } ,
4 { ’ x ’ : 0 , ’ y ’ : 1 , ’w’ : 4 , ’ h ’ : 1 , ’ i ’ : ’ 1 ’ , t y p e : ’ V i s u a l i z e r ’ }
5]

Listing 3.8: Example of Layout

24

Figure 3.11: The dashboard with an example layout

The type field described in listing 3.8 is passed (as compType) to the computed property
(listing 3.9) named itemComp. This coupled with Vue’s dynamic component 13 allows
for dynamic rendering of a component from the gridItems folder. Props can also be passed
such as title to the MarkerPlot which is also depicted in the listing.

1 computed : {
2 itemComp () {
3 c o n s t itemName = t h i s . compType
4 r e t u r n lazyLoadComponent (i m p o r t (’ . / g r i d i t e m s / ’ + itemName + ’ . vue ’

))
5 }
6 }

Listing 3.9: The computed itemComp property

1 <component : i s =” itemComp ”
2 c l a s s =” no−d rag ”
3 v−b ind =” p r o p e r t i e s ”
4 >
5 </ component>

Listing 3.10: LayoutGridItem: Dynamic component declaration

This means that adding a new LayoutGridItem is as simple as adding a new compo-
nent in the projects griditems folder, and then using it by supplying a layout object as in
listing 3.8 with a type field corresponding to the new components name. Note that the type
field has to match the casing of the new component.

Depending on the responsiveness of the component’s child component, a callback to resize
might be needed. An example from the PlotComponent is depicted in listings 3.11

13https://vuejs.org/v2/guide/components-dynamic-async.html

25

https://vuejs.org/v2/guide/components-dynamic-async.html

and 3.12. Note that controlsRow is a v-layout component from Vuetify, which resizes
correctly, so the callback function simply resizes the Plotly to have the same width.

1 <v−l a y o u t column v−r e s i z e =” r e l a y o u t ”>

Listing 3.11: PlotComponent: Resize event listening

1 / / S e t t h e p l o t l y c o n t a i n e r s wid th t o match con t ro l sRow
2 r e l a y o u t () {
3 l e t p a r e n t W i d t h = t h i s . $ r e f s . con t ro l sRow . o f f s e t W i d t h
4 t h i s . $ r e f s . p l o t l y D i v . r e l a y o u t ({ wid th : p a r e n t W i d t h })
5 } ,

Listing 3.12: PlotComponent: Resize callback function

3.5 Visualization

3.5.1 Plotly

Several plot libraries for JavaScript where reviewed before ending up on Plotly.js. High-
charts, Smoothie.js and Chartist.js were all suitable, but was decided against due to the
lack of functionality or/and licensing compared to Plotly. Chartist, for instance, appears
great for creating responsive, colorful, and visually striking plots, but not for visualizing
live data. To implement Plotly in our project, a wrapper of Vue for Plotly was used 14. It
has been used in the PlotComponent as shown in listing 3.4

Figure 3.12: The Plot Component. The bar below and the blue controls on the left are additions
created in Vue, the plot itself is from vue-plotly

14https://github.com/statnett/vue-plotly

26

https://github.com/statnett/vue-plotly

3.5.2 Ceetron Cloud Components

The prototype utilizes Ceetron Cloud Components for 3D visualization, namely the Un-
struct Surface Grid (USG) model functionality. The USG model does not require an ad-
ditional server component, the Remote Model and Constant Remote model do,therefore
the USG was deemed more suitable for a prototype. The models themselves are stored for
each FMU on the backend and can be fetched on demand.

Figure 3.13: The Visualizer component containing the Ceetron Canvas. (the menus in top right
corner and the buttons in the top left corner are not part of the canvas)

3.6 Challenges

The largest obstacle during development was implementing a general parsing algorithm
and a way to store the channel structure. Prior to utilizing EventBus to emit events,
the data was parsed directly into each channel object in the store. By watching a counter
value in the channel module, the plot component could then add the values currently in
the channel to the plot. This method proved inefficient and resource demanding due to
using the store as a buffer. The reason is that the Vuex store comes with some overhead for
monitoring its state, which was not needed in our case and only brought more complexity
with it.

Making the plot update smoothly was also a minor obstacle. During initial testing the
browser froze over several times, due to a large amount of update calls being issued to
Plotly.

27

Chapter 4
Results

This chapter highlights the GUI of the prototype, namely the different pages and visual-
ization components implemented. As the prototype is a web application and navigation is
done mainly through the GUI itself, the address bar has been omitted in all route screen-
shots except the landing page.

4.1 Graphical User Interface

As the application is split into routes, one can easily switch between different functionality.
These routes can be navigated using the dropdown menu in the top left corner of the
toolbar, as displayed in figure 4.1. From the toolbar it is possible to control what sources
to subscribe to as well as closing or opening the WebSocket connection manually. For
a detailed step by step instructions on how to use the app, see the user guide (Appendix
A).

29

Figure 4.1: The landing page of the application: The home route

4.2 Visualization Components

4.2.1 Plot Component

The plot component is the key component for visualization (see figure 4.2). You can select
what channels to plot, toggle plotting for the selected channels, and select a maximum
value for how many points should be plotted before removing the oldest points. In addition,
saving and downloading the current plot data as a CSV file is possible. The Plotly container
inside the component provides functionality for zooming, hiding channels and saving as
image to mention a few.

30

Figure 4.2: PlotComponent: A simple component for plotting

Marker Plot

MarkerPlot (figure 4.3) is an extension of plot components functionality. It adds the pos-
sibility to create a dotted colored line on the plot for a specified value.

Figure 4.3: MarkerPlot component, Extension of the plot component

31

4.2.2 Visualizer

The Visualizer utilizes Ceetron’s Cloud Components 1 to display the model of the physical
asset. Different model styles can be selected from the dropdown menu such as outline,
surface and surface mesh.

Figure 4.4: The Visualizer component

4.2.3 Timeline

This component is left here as a concept, since it requires more logic both from the fron-
tend and backend to be functional. The thought is to highlight failure events by tying it
to a MarkerPlot (4.3) component, and then display events when the value selected passes
a certain threshold. This can be done entirely in the client, but calculating these failure
events on the backend would provide a more robust and desirable solution.

Figure 4.5: Example of the timeline component

1https://ceetron.com/ceetron-cloud-components/

32

https://ceetron.com/ceetron-cloud-components/

4.3 Views/Routes/Pages

This section highlights the several pages the user interface has been split into. All routes
have the toolbar in common, with some slight variations on it depending on the route. The
common options are selecting data sources, the navigation drop-down menu and toggling
the WebSocket connection.

4.3.1 Home

A simple layout with a plot component (section 4.2.1) and a visualizer component (section
4.2.2. The intention is to have the most important functionality readily available, such that
user can subscribe and view data in a few clicks. One can select data sources to subscribe
to through the dialog displayed on pressing the button labeled ”Select Datasource” in the
toolbar.

Figure 4.6: The Home Page, with the model of the testrig selected and displacement plot

The page supports relocation of components through drag and drop.

33

Figure 4.7: Component relocation using drag/drop

4.3.2 Data Sources

The datasources page is used to edit and create new data sources. A data source is a gen-
eralization of receiving data from a physical asset. It has a set of sensors with a name and
a data type, currently allowing d, H, I, symbols for double, unsigned short and unsigned
integer respectively2. To simplify the rest of the application’s logic, especially in regards
to the parsing logic explained in section 3.3.2, the user has to specify a sensor to be used as
time input. The select output column in the table, specifies which channels that should be
possible to subscribe to and view data from after creation. The setup in figure 4.8 results
in the options depicted in figure 4.11.

2https://github.com/lyngklip/structjs

34

https://github.com/lyngklip/structjs

Figure 4.8: The landing page for the Datasources route

The selector labeled ”DataSource” is searchable and can also be used to create a new data
source as shown in figures 4.9 and 4.10.

Figure 4.9: Creating a new data source: Typing a new name and hitting enter will open the template
for creating a new data source

35

Figure 4.10: The empty form for a new data source

Figure 4.11: Subscribeable channels for testrig using the setup displayed in figure 4.8

4.3.3 Processors

The processor page is the landing page for handling processors. A processor in this case
is a data processor which takes input from either other processors or a data source and
transforms the input data. This data is made available for the user through outputs which
can be subscribed to. The processor design is an attempt to generalize and standardize data
extraction making it so if you support the ”standard” processor API, only small touches
may occasionally be needed to adopt it for new types of processors.

This page allows further access for the user to either edit an existing process, or create a
new one.

36

Figure 4.12: Selecting a processor to edit or create a new one

Create Processor

Figure 4.13: Create Processor page

Upon creating a processor, a request is sent to the backend to initialize the processor that
has been setup. This may be confirmed by accessing the backend directly or by looking at
the landing page for Processors.

37

Figure 4.14: JSON-object response from /processors/ showing that the processor has been created

Start Processor

As shown in the previous section, a created processor is not ready until it has been started.
After pressing Create the user is shown start parameters as shown in figure 4.15. This
is a simplified version of the User Interface (UI) shown in figure 4.18. as the only option
from this page is to start the specific processor that has been created.

Figure 4.15: Final step of creating a processor

After pressing start, a request is sent and the processor should be running. This can again
be confirmed in both the backend and in the UI directly.

Figure 4.16: JSON-object response from /processors/ showing that the processor has been created
and started

38

Figure 4.17: Landing page of Processors now showing the started processor. Note the switch to
show only started processor is on

Edit Processor

The edit processor page allows the user to edit inputs and outputs for a running processor.
If the processor has not been started yet, it is possible to edit its start parameters from this
page, similar to the ”Create Processor” page in figure 4.13. Running processors can be
stopped or deleted as well.

39

Figure 4.18: Screenshot: Editing a processor

Subscribe to topics

Topics is a term from Kafka3 that is used in the backend as the API endpoint for any place
data is published. This translates to any processor or datasource that is currently both
created and started. To request data from topics, one has to run a subscribe request to the
backend of the chosen topic. The select datasource button shown in figure 4.1 opens a
view of all processors and datasources that are available for subscription. Upon opening
the view, it is possible to subscribe to any multitude of outputs from different topics as
seen in figures 4.19 and 4.20

3https://kafka.apache.org/

40

https://kafka.apache.org/

Figure 4.19: Screenshot: List of topics one can select. After selecing a topic one can select which
output(s) that is desired to visualize.

41

Figure 4.20: Screenshot: List of outputs from selected datasource. One can select outputs from
different topics by pressing the corresponding tab(s)

42

4.3.4 Dashboard

The Dashboard page is meant for editing and creating custom layouts as well as viewing
data in a custom layout. Layouts can be selected from the dropdown menu to the far left in
figure 4.22. The current layout can be edited and then saved or deleted from the controls
displayed in the same figure. To create a new layout, press the button to the right of the
navigation menu, labeled ”New Layout” (figure 4.21).

Figure 4.21: The Dashboard page, choose a layout or create a new one

Figure 4.22: The Layout Controls for dashboard: Select, delete or save a layout

43

Chapter 5
Discussion and further work

In this chapter we discuss the prototype capabilities and several improvements and possible
advisory tasks for further work. In particular, the chapter will focus on the choices made
to facilitate further development of the project.

5.1 Cooperation with related projects

This project was as mentioned in the introduction launched alongside several dependent
projects. In practice, during the project there’s been close cooperation with the backend
side of the CBMS project and some occasional interaction with the Crane Project. In
the case of the Crane Project [8], one of the major reasons for the lack of significant
cooperation is related to the stage each project was in.

On the other hand, the backend side can interact with the frontend side on a much earlier
stage of development. However, two of the research goals included a suggestion to col-
lect inputs from the crane and generator students. As this was difficult partly due to the
progress of each project, instead these goals were satisfied in part by allowing the user to
configure the interface.

5.2 Impact of choosing to use Vue.js

Vue has worked out very well and it is recommended to continue using Vue unless there is
a need for advanced capabilities not provided by the framework. There are several reasons
why we recommend Vue. It has offered us out of the box solutions that merely need to be
modified for the current usage. Furthermore, it has detailed documentation to help people
who do not have prior experience get started. However, while we think Vue is the best

45

choice right now, future development regarding visualization applications might lead to a
different conclusion.

5.3 Plotting

Compared to the implementation from Autumn 2018’s, specialization project (Appendix
B), the current prototype supports user selection of channels to plot. However, time series
is still the only plot type available to the user. An FFT plot for instance, would require
the values for a channel to be plot along a single ”x-axis” showing frequencies. This is
now fairly trivial to implement and is a natural expansion of the current plotting function-
ality.

On the other hand, it should be fairly simple to create a new component for plotting that
utilizes another plotting library than Plotly. This comes as a result of a flexible and cus-
tomizable layout coupled with a reasonably generalized parsing method. Extending the
current plot implementation should also be relatively simple, which the MarkerPlot (figure
4.3) component is proof of.

5.3.1 Visualization/3D Model

Our goal with the development of the 3D model was to generalize the implementation
from the specialization project. The resulting prototype, was hard-coded to show a real
time 3D model of the Torsion Bar Suspension Rig. That prototype could not be used for
different models (or FMUs).

The new implementation fulfills the same requirements as the prototype from Autumn
2018, but it is not hard-coded for the Testrig. It uses FMUs to show the output and in the-
ory it only requires a model to show real time changes on any other Digital Twin. During
testing however, we did not have access to the crane, nor does it send data over internet.
Testing had to be done using output data from the Torsion Bar Suspension Rig (Appendix
B) to move the crane model. While this did confirm that the Crane changes position by
looking at the graphs, it was difficult to verify any movement on the 3D model of the
Crane. Further testing is required to prove a moving model, either by tuning the output
from the Torsion Bar Suspension Rig and applying it at specific inputs, or by setting up
the Crane to give output.

The 3D Model visualization goal (section 1.3.1) is therefore not fully proven to apply
to multiple models. To fully prove that the goal has been completed it would be neces-
sary to prove the model’s movement visually as well as in the graphs. What has been
proven is that the model’s parameters change as the input changes. This indicates that
the 3D model accepts the current generic configuration for any model following the FMU
standards. There is also currently no user-friendly way of creating simulated movement
without getting output data from an asset. One way to do it would be to create a simulated
data source that sends for example a sine time series. The effect of that would depend on

46

the model, and as mentioned significant knowledge of the model would be necessary for
it to have a use.

5.4 Bottlenecks/Improvements

This section outlays several areas of the prototype application that may be improved, not
touched on previously. These areas will vary in importance and it is always important to
not optimize prematurely. At the same time, it is important during development to spend
the time to get a decent, working solution instead of creating temporary solutions at every
turn.

5.4.1 Plotting Performance

During implementation of the curveplotting component, performance quickly deteriorated
as more data points were rendered simultaneously. Research into the issue did not give
clear-cut answers. Examples from other applications and visualizations revealed that the
problem should not be lying in the amount of points rendered. However, there was still a
clear difference between their visualization and ours. Their visualizations were based on
static data points, not real time streamed data. Alternatives like Smoothie.js, a lightweight
JavaScript graphing framework, was considered. To fix this, initially a lazy solution to
limit the number of points on screen was chosen. However, this proved to be unsatisfac-
tory.

It was discovered later on that the problem itself mainly was related to how data was plot-
ted, not the framework. Initially the plot-call overwrote all current data points in the plot,
simply adding the new points since last call improved performance significantly. There is
now no significant lag using the system and the user can now set how many points should
be retained in the plot. In other words, it is possible to set the points threshold unusually
high and the application will start slowing down the browser, but this will vary depending
on the computer’s hardware. Therefore it’s better to have an adjustable threshold, catering
to each user’s need.

5.4.2 Dataparsing

We discovered that issuing plot calls to Plotly was clearly the most resource demanding
part of the prototype. The parsing logic remains relatively simple and with minimal opti-
mization efforts as a result. Should it be discovered as a bottleneck later on, it would be
advisable to use a web worker 1 to move work away from the main thread/process. A web
worker is simply put another script running in the background, not interrupted by other
scripts responding to user-interactions.

1https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_
web_workers

47

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

Another drawback with the current data parsing implementation is the unnecessary load
put on the Visualizer and Plot components. As mentioned in the data parsing section 3.3.2,
the whole buffer of parsed data is sent to all these components where the desired data is
filtered out. Emitting events and sending large amounts of data in this way is not ideal.
There are multiple solutions to these issues, but figuring out a solution that actually results
in a better data parser requires additional experience.

As a side note, it might help using WebAssembly2 to implement a new parser, especially
if higher performance is needed. It enables you to use already existing C/C++ code and
compile it to modules usable in JavaScript, which is beneficial if there exists a C/C++
library that fits this usage. There is however a cost to issuing calls to these WebAssembly
modules, which means that depending on the implementation the performance might not
improve as much as desired.

5.5 Graphical User Interface

5.5.1 Home

The home page’s design is in two parts as shown in 4.6. The objective of this page has been
to provide the user a view that can show both the selected 3D model as well as a graph of
real time data. One issue however is that depending on the 3D model, users may sometimes
wish for more space dedicated for the 3D model. With the current implementation resizing
the 3D visualizer is not supported and a user is limited to the space dedicated for the 3D
model. A mitigating factor for this problem is that the visualizer component itself supports
zoom, but ideally resizing should also be a supported feature.

5.5.2 Processors

The Processors page has a simple design using a stepper function. We believe the steps
itself of creating a process is shown in a good way on the processor page. Nonetheless,
improvements can be made. At current implementation, documentation is only shown
when the user is active in the input field. A more elaborate documentation might improve
experience for both new and experienced users. Furthermore, if the type of processor the
user wants to create is a FMU, an extra dropdown menu is currently required. The reason
for this is to show the user which FMUs are currently available from the backend. The
”real” selection is performed in the field below where it says ”testrig.fmu” as default. This
may be confusing for some users.

A more logical implementation would be for the dropdown menu to actually select which
FMU to use.The reason that solution was not chosen is to fulfill of the major goals of
the project, which was to create a generic configuration. The FMU is a special case,

2https://webassembly.org/

48

https://webassembly.org/

as the backend for it is slightly different to how for example different filters have been
implemented.

Figure 5.1: Create Processor page during selection of FMU

5.5.3 Datasources

The Datasources page is a mostly static page where the user can start a data source from a
template or create a new one. A problem with the current design is that the way to create
a new data source is not immediately apparent to a new user. A create button or a stepper
option similar to the one on the Processor page might make it clearer. The interface is
missing the option to start and stop data sources. However, at its current stage there is very
little need to create new sources, since the only available source has been the Torsion Bar
Suspension Rig (Appendix B) therefore it has not been a priority.

5.6 Further Work

5.6.1 Historical data

Late in the development cycle, the ability to view historical data was added to the backend.
Viewing historical data may be crucial for utilizing a Digital Twin to its fullest. Without a
way of looking at old behaviour, it is difficult to find trends and utilize what is supposed
to be one of Digital Twins biggest advantages - predictive maintenance.

49

5.6.2 Event Trigger

As mentioned in section 4.2.3, the Timeline component was made as a way to visualize
events where the structure being monitored hit any critical modes. The back end has an
event trigger processor implemented, but there is currently no automatic report generation.
The easiest solution would be to do the automatic report generation entirely in the client.
However, unlike the server, the user might not want to have the client running for longer
periods of time, therefore it would be better to do it on the server side, as the server should
always be up and running. The MarkerPlot component may be built upon to provide an
intuitive interface for defining the thresholds that trigger these interactions.

5.6.3 Future Visualization Components

Once automatic report generation is implemented, there will be a need for new visualiza-
tion components tailored to the data from such a report. The Timeline component (section
4.2.3) is a good start and can be further iterated upon. Another useful component would be
a statistics component displaying a quick breakdown of the report and also more detailed
information for a specific time period. Additionally it would be quite beneficial to have
some sort of component that displays sensor status or sensor value color mapped to match
it’s value spectrum. In other words, green if the sensor is online or the value is within a
defined accepted range. The suggestions have been summarized below:

• Status Bits: Red or Green boxes showing for instance overvoltage or sensor status.

• Statistics component, breakdown or report of a failure event

• Tailored visualization components for viewing generated reports

50

Chapter 6
Conclusion

A framework has been chosen for fast prototyping and a prototype has been developed.
Plotly has been chosen as the library for plotting and a simple plot component has been
implemented. The prototype has a flexible and customizeable layout for visualization and
user-defined layouts can be created and saved. Raw and transformed real time data can
be subscribed to and viewed in the user interface. The 3D visualization implemented can
display the behaviour of the physical asset transmitting data.

The current prototype has not been tested sufficiently with any other digital twins than the
Torsion Bar Suspension Rig. Consequently, it is difficult to say how well it will function
with other twins, but the implementation should be general enough to support any digital
twin, most likely without any tweaking. The solution for data parsing and extracting data
for visualizations is not ideal, as a lot of unnecessary data gets passed through events.
It’s however without a doubt a feasible solution at the current time, but the data parsing
solution might have to be tweaked or re-written when scaling up the prototype.

We were able to create a solution that fulfills some of the initial research goals as well as
our main development objective which was to create a solution that had a user friendly
interface and a generic configuration applicable to any Digital Twin. While there is room
to grow in regards to both the UI, and testing on additional Digital Twins, current solution
provides an adequate basis for having a Digital Twin in the Cloud.

Further development should focus on extending and testing the current prototype up against
other digital twins as well as implementing new functionality. There is especially a need
for a specialized GUI tailored to view historical data, and support for automatic report
generation.

52

Bibliography

[1] Butterworth, S., 1930. On the theory of filter amplifiers. Wireless Engineer 7 (6),
536–541.
URL https://www.changpuak.ch/electronics/downloads/On_
the_Theory_of_Filter_Amplifiers.pdf

[2] Cochran, W., Cooley, J., Favin, D., Helms, H., Kaenel, R., Lang, W., Maling,
G., Nelson, D., Rader, C., Welch, P., 1967. What is the fast fourier transform?
Proceedings of the IEEE 55 (10), 1664–1674.
URL https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=1447887

[3] Glaessgen, E., Stargel, D., 2012. The Digital Twin Paradigm forFuture NASA and
U.S. Air Force Vehicles. NASA.

[4] Grieves, M., Vickers, J., 2017. Digital twin: Mitigating unpredictable, undesirable
emergent behavior in complex systems. Transdisciplinary Perspectives on Complex
Systems, 85–113.

[5] Howells, R., 02 2018. Should businesses be scared to meet their digital twin? Forbes.
URL https://www.forbes.com/sites/sap/2018/02/28/
should-businesses-be-scared-to-meet-their-digital-twin/
#75a2154363a1

[6] Howells, R., 2019. The digital twin effect: Four ways it can revitalize your business.
URL https://www.forbes.com/sites/sap/2018/06/22/
the-digital-twin-effect-four-ways-it-can-revitalize-your-business/
#704a494e5835

[7] Jensen, S. N., 6 2019. Building an extensible prototype for a cloud based digital twin
platform. Master’s thesis, NTNU.

[8] Johansen, C., 6 2019. Digital twin of offshore knuckle boom crane. Master’s thesis,
NTNU.

54

https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1447887
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1447887
https://www.forbes.com/sites/sap/2018/02/28/should-businesses-be-scared-to-meet-their-digital-twin/#75a2154363a1
https://www.forbes.com/sites/sap/2018/02/28/should-businesses-be-scared-to-meet-their-digital-twin/#75a2154363a1
https://www.forbes.com/sites/sap/2018/02/28/should-businesses-be-scared-to-meet-their-digital-twin/#75a2154363a1
https://www.forbes.com/sites/sap/2018/06/22/the-digital-twin-effect-four-ways-it-can-revitalize-your-business/#704a494e5835
https://www.forbes.com/sites/sap/2018/06/22/the-digital-twin-effect-four-ways-it-can-revitalize-your-business/#704a494e5835
https://www.forbes.com/sites/sap/2018/06/22/the-digital-twin-effect-four-ways-it-can-revitalize-your-business/#704a494e5835

[9] Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W., 2017. Digital twin in
manufacturing: A categorical literature review and classification. Sciencedirect.

[10] Modelica, 2010. Tool news: Functional mockup interface (fmi).
URL https://www.modelica.org/publications/newsletters/
2010-1/index_html#item8

[11] SAP, 2019. Bridge digital and physical worlds with digital twin technology.
URL https://www.sap.com/products/digital-supply-chain/
digital-twin.html

[12] Taylor, D., 2017. Advantages of the digital twin in your manufacturing business.
URL https://community.plm.automation.
siemens.com/t5/Digital-Twin-Knowledge-Base/
Advantages-of-the-digital-twin-in-your-manufacturing-business/
ta-p/432983

[13] Todd, F., 2019. Digital twin examples: Simulating formula 1, singapore and wind
farms to improve results.
URL https://www.compelo.com/digital-twin-examples-formula1-singapore/

[14] Websocket.org, (n.d). About html5 websockets.
URL https://www.websocket.org/aboutwebsocket.html

55

https://www.modelica.org/publications/newsletters/2010-1/index_html#item8
https://www.modelica.org/publications/newsletters/2010-1/index_html#item8
https://www.sap.com/products/digital-supply-chain/digital-twin.html
https://www.sap.com/products/digital-supply-chain/digital-twin.html
https://community.plm.automation.siemens.com/t5/Digital-Twin-Knowledge-Base/Advantages-of-the-digital-twin-in-your-manufacturing-business/ta-p/432983
https://community.plm.automation.siemens.com/t5/Digital-Twin-Knowledge-Base/Advantages-of-the-digital-twin-in-your-manufacturing-business/ta-p/432983
https://community.plm.automation.siemens.com/t5/Digital-Twin-Knowledge-Base/Advantages-of-the-digital-twin-in-your-manufacturing-business/ta-p/432983
https://community.plm.automation.siemens.com/t5/Digital-Twin-Knowledge-Base/Advantages-of-the-digital-twin-in-your-manufacturing-business/ta-p/432983
https://www.compelo.com/digital-twin-examples-formula1-singapore/
https://www.websocket.org/aboutwebsocket.html

56

Appendices

i

Appendix A
User Guide

A user guide has been created showing the central actions a user can take. Each action has
its own youtube video. The list below provides links to each video.

• How to use the Dashboard

• How to handle Datasources

• How to handle Processors

• How to subscribe and visualize data

ii

https://youtu.be/plw_sXgs_bQ
https://youtu.be/0trbUoGk8SE
https://youtu.be/gqAJ-qolEMY
https://youtu.be/tVToZ4m2dKg

Appendix B
Digital Twin Specialization Project
Autumn, 2018

iii

Project Thesis

Cloud Software For Digital Twin Modeling And

Monitoring

Christian Johansen, Simen Norderud Jensen, Andreas Børhaug,
Odd Harald Sjursen Sande, Kia Brekke

Fall 2018

Summary

The objective of the project is to explore and decide upon possible solutions
to create a cloud-based digital twin solution with FEDEM software assisting
in simulation and processing of FE models. The development of the project
has been in cooperation with SAP and Ceetron, under supervision of MTP
represented by Terje Rølv̊ag and Bjørn Haugen.

A user guide has been made to facilitate a quick-start in new environments,
or as documentation together with the system overview. A prototype con-
taining the key features required has been developed. The chosen solution
is based on a local server receiving relevant data from a data acquisition
system. The data is received by a server and analysed with FEDEM. The
FE results are forward to a web application where motion of the asset is
reproduced in a 3D model.

i

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2

2 Requirements 3

3 System Overview 5
3.1 Physical Twin . 6
3.2 Data Acquisition Software 6
3.3 Server . 8

3.3.1 Courier Script . 8
3.3.2 FEDEM . 11
3.3.3 Web Application . 12

4 Web Application Prototype 23

5 User guide 25
5.1 Ethernet . 25
5.2 Catman configuration for Torsion Bar Suspension Rig 25

5.2.1 Initialisation and Calibration 25
5.2.2 Remote Connection 26
5.2.3 Storage . 27
5.2.4 Transfer . 28
5.2.5 Create New Project (OPTIONAL) 29

5.3 Server . 31

6 Discussion and Evaluation 33
6.1 Technologies . 33

6.1.1 Data Acquisition System 33
6.1.2 Server Architecture . 34
6.1.3 Data Communication 34
6.1.4 Visualisation tools . 34

6.2 Challenges and limitations 35
6.3 Scalability . 36

6.3.1 Adding a new digital twin 36
6.4 Further work . 37

7 Conclusion 39

ii

Appendices 40

A Torsion Bar Suspension Rig Manual 40

B Software Packages 49
B.1 Node Packages . 49
B.2 Python Modules . 49

iii

List of Figures

1 System overview . 5
2 Digital Twin . 24
3 Remote Connection in Catman 26
4 Storage management in Catman 27
5 Transfer management in Catman 28
6 New Project in Catman AP (1) 29
7 New Project in Catman AP (2) 30
8 New Project in Catman AP (3) 31

Listings

1 RigSolver.py . 9
2 index.js . 12
3 index.html . 14
4 usg.ts . 19

iv

1 Introduction

The purpose of this project is to explore, test and evaluate possibilities
regarding cloud based software solutions for Digital Twins using the FEDEM
software for simulation and processing. The development of the project
has been in cooperation with SAP and Ceetron, under supervision of MTP
represented by Terje Rølv̊ag and Bjørn Haugen.

1.1 Background

The concept behind digital twins is to have a software replica of a physical
object or process (physical twin) that can be used to better understand the
system. However, the term is used loosely and its meaning varies depending
on the physical twin it is representing. In this project a digital twin refers to
a finite element (FE) model of a physical asset that through FE simulations,
based on sensor data, can replicate the assets behaviour in real-time.

Multiple industries are looking to make use of digital twins because the de-
velopment of the Internet of Things (IoT) has made sensors less expensive.
The main use cases are predictive maintenance and monitoring of structural
integrity. Benefits include better lifetime estimation, less need for on-site
maintenance inspections and overall cost saving. To that purpose software
companies are working on improving and creating new digital twin solutions
to meet the demands of these industries. However, currently there are no
non-proprietary digital twin solutions accessible. The Department of Me-
chanical and Industrial Engineering (MTP) at NTNU has a goal to develop
a cloud based software solution that supports the digital twin applications
both NTNU and SAP are currently developing. This project thesis lays the
ground work for developing such software.

1

1.2 Problem Formulation

There are three main objectives in this project.

1. Write functional requirements for development of digital twin software.
These should be based on hands-on experience and knowledge about
technology.

2. Identify and select state-of-the-art software solutions. This includes
exploration and evaluation based on usability, cost and ability to sat-
isfy the functionality requirements.

3. Develop a prototype to test how well the requirements can be satisfied
with the chosen solution.

This report will present the requirements, a system overview and a user
manual on how to set up some of the parts. Furthermore, the results from
prototypes developed will be displayed and explained. Finally there will be
a discussion around technology options, challenges and further work.

2

2 Requirements

This section describes the different components needed for the digital twin
cloud software, and the desired functionality that the end-user can experi-
ence.

Minimum Functionality Requirements

Physical twin
1. Measure relevant physical attributes
2. Transmit data to external server

Server
1. Receive measurement data
2. Sensor based real-time FE simulation and analysis
3. Transmit results to clients

Client
1. Be available through a browser
2. Visualise data from server in real-time
3. Save data from server to local file-system

Desired Functionality

• Real-time 2D plot of sensor data
• Real-time transformation of 3D model mirroring the physical

twin
• Real-time video stream of the physical twin
• Stress analysis visualisation
• Fatigue analysis (S-N Curve)
• Possibility to save sensor values for further analysis
• Fast Fourier Transform
• Rewind in 3D visualisation and live-plot in case of interesting

events

3

Hardware Components for Physical Twin

• Sensors
• Data Acquisition Board
• Computer(s)

4

3 System Overview

This section describes the system, including the physical asset, as is.

Figure 1: System overview

5

3.1 Physical Twin

The physical twin used in this project is the Torsion Bar Suspension Rig,
which is equipped with eight sensors:

1. Load Cell

2. Displacement

3. Accelerometer

4. 0° Strain Gauge

5. +45° Rosette

6. 90° Rosette

7. −45° Rosette

8. +45° in Radius

The sensor values are sampled with an HBM data acquisition board and
transferred to a computer located on the rig using an ethernet connection.
More detailed information on the Torsion Bar Suspension Rig is included in
appendix A.

3.2 Data Acquisition Software

The samples arriving to the computer on the Torsion Bar Suspension Rig
are captured using the data acquisition software Catman. Catman is then
used to map the samples values from voltage to the corresponding physical
measurements. After the data is processed it is sent to the server using the
remote connection option. This allows for sending data over the internet
using the user datagram protocol (UDP). The remote connection option
sends the data as a byte stream of 104 bytes for each time step. The mapping
of the values to the bytes is shown in table 1.

6

Variable Bytes

ID [0:1]

Number of channels [2:3]

Sequence counter [4:7]

Time 1 - default sample rate [8:15]

Time 1 - slow sample rate [16:23]

Time 1 - fast sample rate [24:31]

Load [N] [32:39]

Displacement [mm] [40:47]

AccelerometerX [48:55]

0 Degrees Transvers on Axle [56:63]

Rosett +45 Degrees Along Axle [64:71]

Rosett 90 Degrees Along Axle [72:79]

Rosett -45 Degrees Along Axle [80:87]

Radius +45 Degrees Along Axle [88:95]

MX840A 0 hardware time default sample rate [96:103]

Table 1: Catman Output Format for rigTimestamp.MEP

7

3.3 Server

The server hosts the software used to represent the digital twin. For this
project a virtual machine (VM) with Windows Server 2016 has been pro-
vided by NTNU IT. The following sections describe the components on the
server in more detail.

3.3.1 Courier Script

The Python script (RigSolver.py) works as a courier between the physical
twin, FEDEM and the web application. It receives sensor data from the
physical twin and forwards this to FEDEM. When FEDEM is done with the
dynamic analysis the results are returned and sent to the web application.

The code for RigSolver.py can be found in listing 1. The main functionality
of the code is described below:

1. Initiate communication with the Torsion Bar Suspension Rig and the
Web Application (Line 10-13)

2. Initiate communication with FEDEM solver (Line 16-20)

3. Listen for new sensor data from the Torsion Bar Suspension Rig (Line
26)

4. Unpack the sensor data to a FEDEM-friendly format (Line 30 and 33)

5. Solve dynamic analysis (Line 46)F

6. Get transformation data (Line 49)

7. Send transformation data and time stamp to the web application (Line
58)

8

1 import s t r u c t
2 import socke t
3

4 from fedem . fedemdl l . vpmSolverRun import VpmSolverRun
5

6# DT setup parameters
7 fedem model path = ’ TestRig . fmm ’
8

9# Conf igure UDP Socket
10PHYSICAL TWIN ADDRESS = (” 0 . 0 . 0 . 0 ” , 7331)
11WEB SERVER ADDRESS = (” l o c a l h o s t ” , 8001)
12 sock = socket . socke t (socke t .AF INET, socket .SOCKDGRAM)
13 sock . bind (PHYSICAL TWIN ADDRESS)
14

15# In i t a t e VpmSolverRun ob j e c t
16 with VpmSolverRun (fedem model path) as twin :
17

18 # I n i t i a l i z a t i o n o f s o l v e r (Needed f o r fedem func t i on s)
19 f o r n in range (2) :
20 twin . so lveNext ()
21

22 # Continous ly r e c e i v e data , so lve , and forward r e s u l t through
UDP

23 whi le (True) :
24

25 # Receive datagram
26 data , = sock . recvfrom (32000)
27

28 # Unpack disp lacement in mm from bytes 40 :48 o f datagram
29 # Mult ip ly with 0 .001 to go from mi l l ime t e r s to meters
30 disp lacement = 0.001∗ s t r u c t . unpack (’<d ’ , data [4 0 : 4 8]) [0]
31

32 # Rounding up the disp lacement value
33 rounded disp lacement=round (displacement , 4)
34

35 # Print the s enso r va lue
36 pr in t (” Sensor va lue : {} meters ” . format (rounded disp lacement))
37

38 # Get cur rent time . Needed f o r Fedem
39 time = twin . getCurrentTime ()
40

41 # Connects s enso r input to c o r r e c t channel (Model s p e s i f i c)
42 # Set ext func channel ’2 ’ as time ’ time ’ with data ’

rounded disp lacement ’ .
43 twin . setExtFunc (1 , time , rounded disp lacement)
44

45 # Solves dynamic ana l y s i s f o r t h i s time step based on senso r
input

46 twin . so lveNext ()

9

47

48 # Get t rans fo rmat ion data f o r a l l t r i a d s and par t s
49 trans format ionData = twin . s a v e t r an s f o rma t i on s t a t e ()
50

51 # Retr i eve timestamp from re c e i v ed datagram
52 timestamp = data [9 6 : 1 0 4]
53

54 # Assemble message with timestamp and trans format ionData
55 message = timestamp + transformat ionData
56

57 # Sends timestamp and trans fo rmat ion data to web c l i e n t
58 sock . sendto (message , WEB SERVER ADDRESS)

Listing 1: RigSolver.py

10

3.3.2 FEDEM

FEDEM is used to run dynamic analysis on the FE-model of the physical
twin. The analysis is based on the sensor input from the physical twin and
outputs transformation data for the triads and parts in the model. This is
made possible by the external functions option in FEDEM. The output is
an array containing the data type double. The format of the output array
is shown in table 2.

Variable Element

Time step [0]

Time [1]

Step length [2]

Triad/Part [3:17]

Triad/Part [18:32]
...

...

Triad/Part [End-14:End]

Table 2: Transformation Data array

Each sub array ”Triad/Part” is on the format shown in table 3. ”Object-
Type” equals ”1” for triads and ”2” for parts.

Variable Element

ObjectType [0]

BaseID [1]

Rotation Matrix


2 3 4
5 6 7
8 9 10


 [2:10]

Translation vector


11
12
13


 [11:13]

Table 3: Triad/Part Transformation Data array

FEDEM is also used to create the surface model used for 3D visualisation
from a volume model of the Torsion Bar Suspension Rig.

11

3.3.3 Web Application

The Node.js script index.js (Listing 2) receives the transformation data
from RigSolver.py (Listing 1) and parses it. It uses socket.io to send
the relevant parsed data via WebSockets to index.html (Listing 3).

The code for index.js can be found in listing 2. The main functionality of
the code is described below:

1. Initialise HTTP server (Line 10-12 and 17-20)

2. Serve files required by visualisation module (Line 14-15)

3. Parse and forward incoming data (Line 32-60)

4. Listen for new data (Line 63)

1 // Import and i n i t i a l i s e l i b r a r i e s
2 const expre s s = r equ i r e (’ expre s s ’) ;
3 const app = expre s s () ;
4 const http = r equ i r e (’ http ’) . Server (app) ;
5 const i o = r equ i r e (’ socke t . i o ’) (http) ;
6 const dgram = requ i r e (’ dgram ’) ;
7 const s t r u c t = r equ i r e (’ python−s t r u c t ’) ;
8

9 // Serve index . html when use r s v i s i t s the page
10 app . get (’ / ’ , f unc t i on (req , r e s) {
11 r e s . s endF i l e (dirname + ’ / index . html ’) ;
12 }) ;
13

14 app . use (’ / cee t ron ’ , expre s s . s t a t i c (’ c ee t ron ’)) ;
15 app . use (’ / j s ’ , expre s s . s t a t i c (’ j s ’)) ;
16

17 // Star t the http s e r v e r f o r s e rv ing index . html
18 http . l i s t e n (1337 , func t i on () {
19 conso l e . l og (’ l i s t e n i n g on ∗ : 1337 ’) ;
20 }) ;
21

22 // Create socke t l i s t e n i n g f o r new data from so l v e r
23 fedemSocket = dgram . c r ea t eSocke t (’ udp4 ’) ;
24

25 // Pr int to conso l e when ready to l i s t e n f o r new data
26 fedemSocket . on (’ l i s t e n i n g ’ , f unc t i on () {
27 const address = fedemSocket . address () ;
28 conso l e . l og (’ l i s t e n i n g on ’ + address . address + ’ : ’ +

address . port) ;
29 }) ;

12

30

31 // Function f o r par s ing new data from so l v e r
32 fedemSocket . on (’ message ’ , f unc t i on (message , remote) {
33

34 // Extract timestamp from message
35 const timestamp = s t r u c t . unpack (’<d ’ , message) [0] ∗ 1 0 0 0 ;
36

37 // I t e r a t e over the bytes from the s o l v e r
38 // Skip the timestamp and the f i r s t 3 doubles (24 bytes)
39 // The bytes r ep r e s en t s an array o f doubles with a s i z e o f 8

bytes each
40 // I t e r a t e over the remaining doubles , 14 doubles at a time

(112 bytes)
41 f o r (var i = 32 ; i < message . length −111; i += 112) {
42 // Read the baseId as the second o f the 14 doubles
43 const baseId = s t r u c t . unpack (’<d ’ , message . s l i c e (i +8)) ;
44 i f (baseId [0] === 318) {
45 // Read the v e r t i c a l d i sp lacement o f the element

from the message
46 const d i sp lacement = s t r u c t . unpack (’<d ’ , message .

s l i c e (i + 96)) [0] ;
47 // Send the v e r t i c a l d i sp lacement to the c l i e n t
48 i o . emit (’new data ’ , [timestamp , d isp lacement]) ;
49 } e l s e i f (baseId [0] === 316) {
50 const t = s t r u c t . unpack (’<12d ’ , message . s l i c e (i +16))

;
51 const m = [
52 t [0] , t [1] , t [2] , 0 ,
53 t [3] , t [4] , t [5] , 0 ,
54 t [6] , t [7] , t [8] , 0 ,
55 t [9] , t [1 0] , t [1 1] , 1
56] ;
57 i o . emit (’ t rans fo rmat ion ’ , m) ;
58 }
59 }
60 }) ;
61

62 // Star t l i s t e n i n g f o r new data from s o l v e r
63 fedemSocket . bind (8001 , ’ 0 . 0 . 0 . 0 ’) ;

Listing 2: index.js

13

index.html (Listing 3) is used to plot the sensor data in the browser client
and display a 3D model of the torsion bar suspension rig that replicates the
movement of the asset. Socket.io is used to receive data sent by index.js
(listing 2), Ceetron Cloud Components is used for 3D graphics and plotly

is used for plotting.

The code for index.html can be found in listing 3. The main functionality
of the code is described below:

1. Add toolbox for configuring 3D model draw style (Line 11-23)

2. Initialise connection to HTTP server (Line 34)

3. Initialise 3D visualisation from usg.ts (Listing 4) (Line 37-76)

4. Initialise plot (Line 85-98)

5. Plot live datastream (Line 103-115)

6. Update 3D model (Line 17-124)

7. Add save functionality (Line 126-152)

1< ! doctype html>
2<html lang=”en”>
3<head>
4 < t i t l e>Dig i t a l Twin</ t i t l e>
5 < l i n k r e l=” s t y l e . c s s ”>
6 <s c r i p t s r c=”/ socket . i o / socket . i o . j s ”></ s c r i p t>
7 <s c r i p t s r c=” https : // cdn . p l o t . l y / p lo t l y−l a t e s t . j s ” cha r s e t=”

utf−8”></ s c r i p t>
8</head>
9<body s t y l e=”margin : 0 ; he ight :100 vh ; d i sp l ay : g r id ; g r i d :

minmax(400px , 50%) minmax(200px , 50%) / minmax(400px , 100%)”>
10

11<div s t y l e=” d i sp l ay : f l e x ”>
12 <div id=” chartConta iner ” s t y l e=”width : 100%”></ div>
13 <div s t y l e=” d i sp l ay : f l e x ; f l e x−d i r e c t i o n : column”>
14 <button on c l i c k=” save () ”>Save</button>
15 <div s t y l e=” f l e x−grow : 1”></ div>
16 Model S ty l e
17 <button on c l i c k=”myApp. setDrawStyle (’ su r face ’) ”>Sur face<

/button>
18 <button on c l i c k=”myApp. setDrawStyle (’ sur face mesh ’) ”>

Sur face Mesh</button>
19 <button on c l i c k=”myApp. setDrawStyle (’ out l ine mesh ’) ”>

Outl ine Mesh</button>

14

20 <button on c l i c k=”myApp. setDrawStyle (’ l i n e s ’) ”>Lines</
button>

21 <button on c l i c k=”myApp. setDrawStyle (’ po ints ’) ”>Points</
button>

22 <button on c l i c k=”myApp. setDrawStyle (’ ou t l i n e ’) ”>Outl ine<
/button>

23 </ div>
24</ div>
25

26<div s t y l e=” l i n e−he ight : 0”>
27 <canvas id=”CeetronCanvas”></ canvas>
28</ div>
29

30<s c r i p t s r c=” cee t ron / r equ i r e . j s ”></ s c r i p t>
31<s c r i p t>
32

33 // I n i t i a l i s e connect ion to s e r v e r
34 var socket = i o () ;
35

36 // I n i t i a l i s e USG module
37 var myApp = nu l l ;
38 r e qu i r e ([” j s /usg”] , f unc t i on (appModule) {
39 myApp = appModule . startApp (”CeetronCanvas”) ;
40

41 // Retr i eve arm geometry
42 var oReq = new XMLHttpRequest () ;
43 oReq . onload = armLoaded ;
44 oReq . open (” get ” , ”/ j s /arm . j son ” , t rue) ;
45 oReq . send () ;
46 }) ;
47

48 f unc t i on armLoaded (e) {
49 // Send arm geometry to v i s u a l i s e r
50 data = JSON. parse (t h i s . responseText) ;
51 myApp. addArmGeometry (data) ;
52

53 // Retr i eve t o r s i o n rod geometry
54 var oReq = new XMLHttpRequest () ;
55 oReq . onload = rodLoaded ;
56 oReq . open (” get ” , ”/ j s /TorsionRod . j son ” , t rue) ;
57 oReq . send () ;
58 }
59

60 f unc t i on rodLoaded (e) {
61 // Send t o r s i o n rod geometry to v i s u a l i s e r
62 data = JSON. parse (t h i s . responseText) ;
63 myApp. addRodGeometry (data) ;
64

65 // Retr i eve frame geometry

15

66 var oReq = new XMLHttpRequest () ;
67 oReq . onload = frameLoaded ;
68 oReq . open (” get ” , ”/ j s /Frame . j son ” , t rue) ;
69 oReq . send () ;
70 }
71

72 f unc t i on frameLoaded (e) {
73 // Send frame geometry to v i s u a l i s e r
74 data = JSON. parse (t h i s . responseText) ;
75 myApp. addFrameGeometry (data) ;
76 }
77

78 // Store r e f e r e n c e to conta ine r f o r p l o t
79 var graphContainer = document . getElementById (’ chartContainer

’) ;
80

81 // Container f o r d i sp lacement p l o t data
82 var d i sp lacements = {x : [[]] , y : [[]] } ;
83

84 // I n i t i a l i s e p l o t
85 Plo t l y . newPlot (
86 graphContainer ,
87 [{ y : [] }] ,
88 {
89 t i t l e : ’ Displacement ’ ,
90 xax i s : {
91 t i t l e : ’ Displacement (mm) ’
92 } ,
93 yax i s : {
94 t i t l e : ’Timestamp ’
95 }
96 } ,
97 { r e spon s i v e : t rue }
98) ;
99

100 // Counter f o r how many data po in t s has been r e c e i v ed
101 var dataRecievedCount = 0 ;
102

103 // Update p l o t with new data f o r every 100 new data po in t s
104 socke t . on (’ new data ’ , f unc t i on (msg) {
105 di sp lacements . x [0] . push (new Date (msg [0])) ;
106 di sp lacements . y [0] . push (msg [1]) ;
107 // I f 100 data po in t s r e c i e v ed s i n c e l a s t update
108 i f (dataRecievedCount++ % 100 === 0) {
109 // Remove po in t s r e c e i v ed more than 1000 po in t s ago
110 di sp lacements . x [0] = di sp lacements . x [0] . s l i c e

(−100000) ;
111 di sp lacements . y [0] = di sp lacements . y [0] . s l i c e

(−100000) ;

16

112 // Update p l o t
113 Plo t l y . r e s t y l e (graphContainer , d i sp lacements) ;
114 }
115 }) ;
116

117 // Update t rans fo rmat ion o f model f o r every 100 new data
po in t s

118 socke t . on (’ t rans format ion ’ , f unc t i on (msg) {
119 i f (dataRecievedCount % 100 === 0) {
120 i f (myApp !== nu l l) {
121 myApp. updateDisplacement (msg) ;
122 }
123 }
124 }) ;
125

126 // Create download d i a l o g f o r cu r r en t l y p l o t t ed data
127 f unc t i on save () {
128 var saveData = ”Timestamp , d isp lacement (mm) \ r \n” ;
129 f o r (var i = 0 ; i < di sp lacements . x [0] . l ength ; i++) {
130 saveData += disp lacements . x [0] [i] . valueOf () + ” , ” +

disp lacements . y [0] [i] + ”\ r \n”
131 }
132 download (saveData , ” twin ” + new Date () . toISOStr ing () +

” . csv ” , ” t ext / csv ”) ;
133 }
134

135 // Downloading data to a f i l e
136 f unc t i on download (data , f i l ename , type) {
137 var f i l e = new Blob ([data] , { type : type }) ;
138 i f (window . nav igator . msSaveOrOpenBlob) // IE10+
139 window . nav igator . msSaveOrOpenBlob (f i l e , f i l ename) ;
140 e l s e { // Others
141 var a = document . createElement (”a”) ,
142 u r l = URL. createObjectURL (f i l e) ;
143 a . h r e f = ur l ;
144 a . download = f i l ename ;
145 document . body . appendChild (a) ;
146 a . c l i c k () ;
147 setTimeout (func t i on () {
148 document . body . removeChild (a) ;
149 window .URL. revokeObjectURL (u r l) ;
150 } , 0) ;
151 }
152 }
153</ s c r i p t>
154</body>
155</html>

Listing 3: index.html

17

The module usg.ts (Listing 4) is used to visualise movement in the torsion
bar suspension rig through a 3D model. The model is translated and ro-
tated according to the transformation given in the update method (which
is calculated in the FEDEM solver). The drawing style of the geometry is
changed through the setDrawStyle method.

The code for usg.ts can be found in listing 4. The main functionality of the
code is described below:

1. Import Ceetron USG module used for creating, transforming and dis-
playing the geometry. (Line 1)

2. Initialisation (Line 4-10)

3. Define class used to handle the visualisation (Line 13-141)

4. Initialise the visualisation state (Line 16-50)

5. Create the geometry representing the torsion arm (Line 65-70)

6. Create the geometry representing the torsion rod (Line 72-86)

7. Create the geometry representing the frame (Line 88-94)

8. Display statistics about the geometry in bottom left corner (Line 96-
111)

9. Update arm geometry according to transformation (from FEDEM)
(Line 113-127)

10. Change the drawing style of the visualisation (Line 130-141)

18

1 import ∗ as cee from ” . . / cee t ron /CeeCloudClientComponent” ;
2

3 // I n i t i a l i s e r f o r Ceetron module o f app l i c a t i o n
4 export func t i on startApp (canvasElementId : s t r i n g) : App {
5 l e t canvas = document . getElementById (canvasElementId) ;
6 i f (! (canvas i n s t an c e o f HTMLCanvasElement)) {
7 throw (”Could not get canvas element ”) ;
8 }
9 re turn new App(canvas) ;

10 }
11

12 // Class conta in ing Ceetron Cloud Cl i en t Component s t a t e
13 export c l a s s App {
14

15 // Ceetron Cloud Cl i en t Component s t a t e
16 pr i va t e c l oudSe s s i on : cee . CloudSess ion ;
17 pr i va t e view : cee . View ;
18 pr i va t e model : cee . usg . UnstructGridModel ;
19 pr i va t e s t a t e : cee . usg . State ;
20

21 // Canvas conta in ing v i s u a l i s a t i o n
22 pr i va t e canvas : HTMLCanvasElement ;
23

24 con s t ruc to r (canvas : HTMLCanvasElement) {
25 t h i s . canvas = canvas ;
26

27 // I n i t i a l i s e Ceetron Cloud Cl i en t Component
28 t h i s . c l oudSe s s i on = new cee . CloudSess ion () ;
29 l e t v iewer = th i s . c l oudSe s s i on . addViewer (canvas) ;
30 i f (! v iewer) {
31 throw (”No WebGL support ”) ;
32 }
33 t h i s . view = viewer . addView () ;
34 t h i s . model = new cee . usg . UnstructGridModel () ;
35 t h i s . view . addModel (t h i s . model) ;
36 t h i s . s t a t e = th i s . model . addState () ;
37 t h i s . s t a t e . geometry = new cee . usg . Geometry () ;
38

39 // Hide infoBox i n i t i a l l y
40 t h i s . view . over l ay . i n f oBoxVi s i b l e = f a l s e ;
41

42 // L i s t en f o r r e s i z e events
43 window . addEventListener (’ r e s i z e ’ , () => t h i s .

handleWindowResizeEvent ()) ;
44

45 // Manually run r e s i z e func t i on once
46 t h i s . handleWindowResizeEvent () ;
47

48 // Update view every browser frame

19

49 window . requestAnimationFrame ((time : number) => t h i s .
myAnimationFrameCallback (time)) ;

50 }
51

52 // Adjust view dimension (c a l l e d when window i s r e s i z e d)
53 pr i va t e handleWindowResizeEvent () {
54 l e t canvasWidth = window . innerWidth ;
55 l e t canvasHeight = th i s . canvas . parentElement .

o f f s e tHe i gh t ;
56 t h i s . c l oudSe s s i on . getViewerAt (0) . r e s i z eV i ewe r (

canvasWidth , canvasHeight) ;
57 }
58

59 // Update view (c a l l e d every browser frame)
60 pr i va t e myAnimationFrameCallback (highResTimestamp : number) {
61 t h i s . c l oudSe s s i on . handleAnimationFrameCallback (

highResTimestamp) ;
62 window . requestAnimationFrame ((time : number) => t h i s .

myAnimationFrameCallback (time)) ;
63 }
64

65 // Create the t o r s i o n arm geometry
66 addArmGeometry (data) {
67 l e t geometry = th i s . s t a t e . geometry . addPart () ;
68 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .

elementTypeArr , data . elementNodeIndexArr) ;
69 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 1 , . 1 , . 1) ;
70 }
71

72 // Create the t o r s i o n rod geometry
73 addRodGeometry (data) {
74 l e t geometry = th i s . s t a t e . geometry . addPart () ;
75 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .

elementTypeArr , data . elementNodeIndexArr) ;
76 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 8 , . 8 , . 8) ;
77

78 // Transform to g l oba l coo rd ina te system
79 const c = cee .Mat4 . fromElements (
80 1 , 0 , 0 , −0.02407066 ,
81 0 , 1 , 0 , −0.02722985 ,
82 0 , 0 , 1 , 0 .27199998 ,
83 0 , 0 , 0 , 1
84) ;
85 t h i s . s t a t e . setPartTransformationAt (1 , c) ;
86 }
87

88 // Create the frame geometry
89 addFrameGeometry (data) {
90 l e t geometry = th i s . s t a t e . geometry . addPart () ;

20

91 geometry . mesh = new cee . usg .Mesh(data . nodeArr , data .
elementTypeArr , data . elementNodeIndexArr) ;

92 geometry . s e t t i n g s . c o l o r = new cee . Color3 (. 2 , . 2 , . 7) ;
93 t h i s . s h owS t a t i s t i c s (t h i s . s t a t e . geometry) ;
94 }
95

96 pr i va t e s howS t a t i s t i c s (geometry) {
97 // Generate s t a t i s t i c s on geometry
98 l e t nodeCount = 0 ;
99 l e t elementCount = 0 ;

100 f o r (l e t part o f geometry . getPartArray ()) {
101 nodeCount += part . mesh . nodeCount ;
102 elementCount += part . mesh . elementCount ;
103 }
104

105 // Log generated s t a t i s t i c s
106 conso l e . l og (” I n i t i a l s t a t e loaded , nodeCount=” +

nodeCount + ” , elementCount=” + elementCount) ;
107

108 // Draw generated s t a t i s t i c s in bottom r i gh t corner
109 t h i s . view . over l ay . i n f oBoxVi s i b l e = true ;
110 t h i s . view . over l ay . setInfoBoxContent (‘ Elements : ${

elementCount} e lements \nNodes : ${nodeCount} nodes ‘) ;
111 }
112

113 updateDisplacement (trans format ionMatr ix : number []) {
114 // Create Ceetron matrix from trans fo rmat ion data
115 const m = cee .Mat4 . fromArray (trans format ionMatr ix) ;
116

117 const loca lToGlobalTrans format ion = cee .Mat4 .
fromElements (

118 1 , 0 , 0 , −0.00000001 ,
119 0 , 1 , 0 , −0.00000000 ,
120 0 , 0 , 1 , 0 .00199997 ,
121 0 , 0 , 0 , 1
122) ;
123 const t rans fo rmat ion = cee .Mat4 . mult ip ly (m,

loca lToGlobalTrans format ion) ;
124

125 // Apply t rans fo rmat ion to armGeometry
126 t h i s . s t a t e . setPartTransformationAt (0 , t rans fo rmat ion) ;
127 }
128

129 // Change drawing s t y l e f o r geometr i e s
130 setDrawStyle (ds : s t r i n g) {
131 const geometry = th i s . model . getStateAt (0) . geometry ;
132 f o r (l e t part o f geometry . getPartArray ()) {
133 i f (ds === ” su r f a c e ”) part .

s e t t i n g s . drawStyle = cee . usg . DrawStyle .SURFACE;

21

134 e l s e i f (ds === ” sur face mesh ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .
SURFACEMESH;

135 e l s e i f (ds === ” out l ine mesh ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .
SURFACE OUTLINE MESH;

136 e l s e i f (ds === ” l i n e s ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle . LINES ;

137 e l s e i f (ds === ” po in t s ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .POINTS;

138 e l s e i f (ds === ” ou t l i n e ”) part .
s e t t i n g s . drawStyle = cee . usg . DrawStyle .OUTLINE;

139 }
140 }
141 }

Listing 4: usg.ts

22

4 Web Application Prototype

The web application prototype is available at
http://tvilling.digital:1337 when connected to the NTNU network.
Figure 2 shows a digital representation of the physical asset.

The upper half of the web browser consists of a live 2D plot of the torsion
arm displacement. Extra functionality for the plot window such as zoom and
pan can be found in the toolbox at the top-right of the plotting window. To
the right of the toolbox there is a save button. By pressing this button you
can download a CSV-file to your own computer containing the previous 100
000 data points and their associated timestamp. The timestamp is saved
using the Unix time standard, which is number of seconds elapsed since
1st of January 1970. A visualisation of the torsion bar suspension rig is
shown on the bottom half. A model of the torsion bar suspension rig moves
according to the movement of the torsion arm calculated in FEDEM. It is
possible to change the zoom and camera position by scrolling and dragging,
and the draw style can be changed with the buttons above on the right.

23

Figure 2: Digital Twin

24

5 User guide

This section is a user guide on how to setup the digital twin cloud software
with the Torsion Bar Suspension Rig. Each subsection describes a part of
the system and how to configure it.

5.1 Ethernet

The computer on the Torsion Bar Suspension Rig needs to be connected to
the data acquisition board and with the WIN.NTNU.NO network through
a common ethernet connection. This can be achieved by using an ether-
net switch. On the Torsion Bar Suspension Rig the ethernet connection is
already set up.

5.2 Catman configuration for Torsion Bar Suspension Rig

NOTE:

• The username and password for the computer is written on top of it

• Catman must be run in Administrator mode for the remote connection
to work properly

5.2.1 Initialisation and Calibration

First navigate to the directory: C:\Users\labuser\Documents \HBM RIGG
TEST\ and run the file riggTimestamp.MEP. This will open Catman with
the correct setup. Next you need to calibrate the sensors. The calibration
procedure is explained in the Torsion Bar Suspension Rig Manual found in
appendix A.
NOTE: This manual is designed for the project file RIGGOPPSETT.MEP and
some of the functionality it describes is not available for the project file
riggTimestamp.MEP.

25

5.2.2 Remote Connection

To set up the remote connection to the server you need to:
Go to DAQJobs in the header > Choose Advanced and then Remote.
The window should look like figure 3.
In this window you need to:

• Check the option for UDP output active

• Fill in the server port number (7331)

• Choose the format 8 Byte Single precision

• Choose Send to single address and fill in the IP-address of the server
(tvilling.digital or 10.212.25.104)

Figure 3: Remote Connection in Catman

26

5.2.3 Storage

If not specified, Catman will locally store all data recorded. To avoid this:
Go to DAQJobs in the header > Choose Storage and then Local data
storage and saving > Click on Data saving and choose None (test mode).
The window should look like figure 4.

Figure 4: Storage management in Catman

27

5.2.4 Transfer

The size and frequency of data transmissions can be managed. To do this
you need to:
Go to DAQJobs in the header > Choose Advanced and then Data trans-
fer and error handling.
The window should look like figure 5.

Figure 5: Transfer management in Catman

28

5.2.5 Create New Project (OPTIONAL)

To create a new project file (.MEP): open Catman AP (See figure 6) > Click
on ”Select device type, interface and additional hardware options”
> In this new window (See figure 7) Click on Hardware time channels,
choose Create hardware time channels and click OK > Click on Start
a new DAQ project > In this new window (See figure 8) click Connect.

Note that the data acquisition board must be connected to the sensors and
the computer with Catman for this to work properly.

Figure 6: New Project in Catman AP (1)

29

Figure 7: New Project in Catman AP (2)

30

Figure 8: New Project in Catman AP (3)

5.3 Server

This section explains how to set up the cloud software on the server from
scratch.
NOTE:

• Before you start you need to install Python and Node with NPM on
the server.

• The servers Firewall may have to be configured to allow for UDP
communication on ports 8001 and 7331, and TCP communication on
port 1337.

• To gain access to the folder DT Example you must sign a
non-disclosure agreement (NDA) with SAP.

• The udpplotter can be retrieved from the Github repository:
”https://github.com/simennj/udpplotter”. It is currently private be-
cause of license restrictions.

• You need to start a job in Catman for the plotting to commence. To
do so simply press the Start-button found in the top-left corner in
the Catman window.

31

• Catman has to be set up to send the data to the new server, see 5.2.2.

Procedure:

1. Install all necessary Python packages. A complete list of the packages
can be found in Appendix B.

2. Navigate to the directory of the udpplotter folder (see notes) in the
terminal and type npm install.

3. Run the web application by typing node index.js in the terminal.

4. In a new terminal window navigate to the DT Example folder (see
notes) and run the command: python RigSolver.py

The server should now be set up properly. If you have configured the rest of
the system according to sections 5.1 and 5.2 you should now be able open the
web application if you type localhost:1337 in the server’s web browser. If
the firewall is set up correctly, the web application should then be available
on <server address>:1337 on other computers.

32

6 Discussion and Evaluation

6.1 Technologies

6.1.1 Data Acquisition System

A data acquisition system consists of three parts: sensors, data acquisition
boards and data acquisition software. The sensors capture and quantify
a physical phenomena through a voltage which is then sampled by a data
acquisition board. The samples are read by the data acquisition software
and the voltage value is translated into a corresponding engineering unit.
Examples of DAQ software is Catman by HBM and LabVIEW by National
Instruments.

At the beginning of the project, a previous setup was available using a data
acquisition board from HBM and Catman, and there was no immediate
need for changes. However, in the early stages of the project the license for
Catman expired. An alternative to purchasing license based data acquisition
software is to develop an in-house software solution. In addition to cost
savings, an in-house software solution is more transparent and can offer
more control than Catman. The possibility of an in-house software solution
was explored and a prototype was developed. This prototype was able to
retrieve raw data from the data acquisition board.

While the prototype is able to retrieve the raw data from the board, there are
still two obstacles. The first is interpreting data from the data acquisition
board; what values are received and which sensor they originate from. The
second is mapping the voltage values to an engineering unit. Both of these
issues require access to documentation of the sensors and the data acquisition
board in order to be solved.

At that point there were two clear ways forward, either continue working on
the prototype or renewing the Catman license. After discussing the options
with Terje Rølv̊ag it was decided to renew the Catman licence. This was due
to time constraints and uncertainty of successfully finishing the prototype
without access to the proper documentation. However, we would like to
stress that the digital twin cloud software is not locked to Catman.

The choice of data acquisition solution should be assessed in the case of in-
strumenting a new physical asset. As long as the solution is able to send the
measured values as doubles through UDP, it should be compatible with the

33

digital twin solution. This could potentially reduce costs spent on hardware
and software licenses.

6.1.2 Server Architecture

One of the sub-goals of the project is to be able to host digital twin soft-
ware externally in an application. During development, two options have
been considered: Self hosting and renting space at cloud computing service
companies such as Amazon Web Services (AWS), Microsoft Azure or NTNU
IT. Hosting at a cloud service required less work than self hosting and was
therefore preferable. After researching the cloud services we discovered that
while AWS and Azure are expensive, hosting at NTNU IT would not cost
anything and still provide the necessary features. The chosen solution was
to host a local VM provided by NTNU IT.

6.1.3 Data Communication

Two protocols for sending raw data over the internet were considered: Trans-
mission Control Protocol (TCP) and User Datagram Protocol (UDP). An
assessment was done in order to choose which would be the best for the
digital twin cloud software. For this project, the most important difference
between the protocols is that UDP simply sends the packets without check-
ing if they are received while TCP re-sends the packet if it is not received.
It was decided after discussions with Terje Rølv̊ag that in the case of a
lost packet it would be better to continue transmitting new packets instead
of halting the stream to re-transmit the lost packet. The need for a high
throughput with as little delay as possible is deemed more important than
the occasional loss of a packet. Since the latter has no noticeable effect on
the simulation, UDP was chosen as the data communication protocol.

6.1.4 Visualisation tools

There is a large number of visualisation tools for web development available
that offer 2D graphics, both open-source and closed-source. However, for
the digital twin cloud software we needed a tool that could make a 2D-plot
of a live data-stream, without stuttering. To avoid losing time on issues
regarding licenses, open-source libraries were prioritised. After research and

34

testing, the JavaScript library Plotly was chosen. Other tools were re-
viewed, but due to the successful implementation of Plotly we chose not
to go any further with other options.

The number of visualisation tools for web development that offer 3D graphics
is more limited. There are a few open-source libraries such as BabylonJS

and Three.js specifically made for 3D graphics, but they do not support
FE-models. We were introduced to the company Ceetron by Terje Rølv̊ag
which offers several tools for visualisation and post-processing of FE-models.
A meeting was arranged with Ceetron and SAP in late November to discuss
how we could use Ceetron software in our web application to visualise and
animate the FE-model results. For this purpose it was suggested that we
make use of the Unstruct Surface Grid (USG) model functionality found
in Ceetron Cloud Components.

Ceetron also suggested an alternative solution. It required an additional
server component, and was more complex. USG was therefore chosen since
the additional functionality from the other solution was not required for this
project. Swapping to the more complete solution was described as being a
feasible option, if functionality not offered in USG is required in the future.

6.2 Challenges and limitations

In the beginning of this project we were introduced to three different physical
assets: The Torsion Bar Suspension Rig, a crane located at MTP labora-
tories at Valgrinda and Lerkendal stadium. All three physical assets lacked
the necessary hardware components for this project. The computer located
on the Torsion Bar Suspension Rig had recently broken down, but a new
one had been ordered. The crane at Valgrinda lacked a data acquisition
board and a computer, while Lerkendal stadium lacked all the hardware
components. In order to start prototyping as soon as possible we decided
to start working with the Torsion Bar Suspension Rig since it required the
least time to get up and running. In addition it was the asset that was most
accessible and complete.

Digital Twin as a field and as a concept is still in the process of being es-
tablished and developed. As a result, there are very few ’best practices’
available. In discovering what tools to employ there was thus very little
documentation regarding how to utilise them. This extended to FEDEM
and Catman, where the complexity of the programs and lack of proper doc-

35

umentation of the relevant functionality have been a challenge. An example
of this was during our first attempt at streaming the incoming data through
FEDEM. The Dynamic Link Library (DLL) for the FEDEM solver exposed
only the name of the functions with no explanation of their input parame-
ters, types or purposes. Since there was no documentation or header files
available we were unable to use it directly and had to use a wrapper from
SAP, which was not immediately available. Catman had similar issues with
documentation, especially regarding the physical wiring needed for the re-
mote connection option. It was eventually solved by trial and error.

Another challenge was selecting which tools to employ and when. While
there is no established best practice in cloud software for digital twins, there
are plenty of tools that advertise as being helpful. There are many streaming
analytics tools which claim to ’process continuous streams of event data in
real time and act on the results’. During development, some of these tools
were tested (SAP Analytics Cloud for instance). However it was decided
that for now we would not utilise these tools as most of the analysis needed
could be handled by simple statistics and plots.

6.3 Scalability

The server currently runs on a virtual machine with limited resources. This
puts a limit on how many processes and script jobs that can run simultane-
ously. Consequently, in order to support a larger user base than the MTP
department, one would need more space and processing power, especially
if more complex analytic tools are needed later on. These tools will likely
require the ability and space to store historical data, as currently data may
only be stored client side.

Additional resources could be granted from NTNU IT if necessary. Moving
the solution to a different host with more resources is also possible.

6.3.1 Adding a new digital twin

Our digital twin cloud software is tailored towards the Torsion Bar Suspen-
sion Rig and there is currently no functionality to simply add new models.
Most of the code on the server can be reused (Listing 1, 2, 3 and 4) for a
new model. However, there are lines of code that are model specific and
these will mainly depend on:

36

• Number and types of sensors

• Output format for sensor data (See table 1)

• Configuration of external functions in FEDEM model

• Which values should be plotted

Should the new physical asset in question be equipped with another data
acquisition system than described in section 6.1.1 this should not present a
problem. As long as the data acquisition system uses UDP to send sensor
values as a byte stream, the system will work with only minor adjustments
on the server side.

6.4 Further work

As mentioned in section 6.2 there were two additional assets that could be
used. An advisable task would be to instrument at least one of these assets.
This will be beneficial for two reasons: First, if the instrumentation process
is documented well, the documentation can be used as guide for setting up
data acquisition systems for other physical assets later. Second, it will make
it possible to test the robustness and scalability of the current digital twin
cloud software.

A live video stream of the physical twin in the client is a requested feature.
This feature would make it easier to verify that the digital twin behaves the
same way as the physical. The system currently requires a computer at the
site of the physical twin. Therefore, a solution is to connect a camera to the
computer and send the live stream to the server in a similar fashion as the
sensor data.

Another requested feature is event triggers to reduce the amount of unin-
teresting data received. In digital twins, only some of the behaviour will be
of relevance, i.e during activity and under stress.

Currently the web application is tailored to visualise the Torsion Bar Sus-
pension Rig. In the future, a more flexible visualisation setup is desired to
make transition between different digital twins simpler for both the user and
the developer. The visualisation should also be expanded to show deforma-
tion and stress in the form of colour change in the 3D model. The stress
could in addition be visualised by a S-N curve as part of Fatigue analysis,
however that would likely be separate from the current visualisation.

37

For digital twins equipped with accelerometers, a key feature to implement
would be Fast Fourier Transform. This enables frequency analysis of the
asset and can be used to detect structural changes. In addition it can be
used to verify the precision of the FE model.

38

7 Conclusion

Cloud-based solutions for digital twin modelling have been explored and an
environment has been established for developing a software solution. Re-
quirements have been specified for developing a cloud based digital twin
software solution. A prototype based on the torsion bar suspension rig has
been created showcasing and satisfying most of the major points of the re-
quirements. A user guide for how to setup each component of the prototype
is available for reproducing or referencing the current system. Steps have
been outlined for further iteration on this prototype to move towards a com-
plete digital twin cloud solution.

39

Appendices

A Torsion Bar Suspension Rig Manual

40

B Software Packages

B.1 Node Packages

• python-struct

• dgram

• express

• http

• socket.io

B.2 Python Modules

• struct

• socket

• vpmSolverRun

• vpmSolver

49

Appendix C
Source Code

lviii

