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Summary

English
This thesis is concerned with the spread of altruism in a population facing the problem of dan-
gerous climate change. The population is divided into cooperators and defectors as in social
dilemmas, and put into a network to simulate the spatial structure of relations. The use of a
network is due to findings describing that the structure of people in a population influences the
spread of opinions and may significantly change the result. The simple dynamics are made with
both a continuous and discrete option of cooperating and put into a model. The results from
the simulations show that we could have a resulting population of all defectors, all coopera-
tors or equilibrium of both strategies depending on the different parameters. People of strong
opinions could be used in the continuous cases to induce a change in the overall population
until all agree, and external impacts could force both types of models to change the final state.
Moreover, the use of networks introduces the phenomenon of local grouping, where people of
the same strategy tend to be more stable together.

Norsk
Denne oppgaven handler om spredningen av altruisme i en befolkning som står overfor ut-
fordringen med farlige klimaendringer. Befolkningen er delt inn i tilhengere og motstandere
basert på holdninger, og satt inn i et sosialt nettverk for å simulere romlig struktur. Bruken av et
nettverk skyldes funn som beskriver at strukturen av mennesker i en befolkning påvirker spred-
ningen av meninger og kan endre resultatet vesentlig. Den enkle dynamikken er laget med både
et kontinuerlig og diskret alternativ for samarbeid. Simuleringer er gjennomført basert på en
samensatt modell. Resultatene viser at vi kan få en resulterende befolkning av kun motstandere,
kun tilhengere eller en likevekt mellom begge strategiene, avhengig av de forskjellige parame-
trene. Personer med sterke meninger kan brukes i de kontinuerlige tilfellene for å fasilitere en
endring i befolkningen til alle er enige, og en ekstern påvirkning kan føre til endring i sluttil-
standen for både kontinuerlig og diskret dynamikk. I tillegg finner man samlinger av mennesker
som er enige, slik at grupper med samme strategi viser seg å være mer stabile.
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Chapter 1

Introduction

1.1 Background and motivation
The world today is affected by several big challenges and among one of the greatest is the
risk of dangerous climate change. People of all nations share this challenge, and no single
nation can solve the problem alone on behalf of the rest [1]. This calls for cooperation and
altruistic behaviour among people. Fortunately, humans do not always act purely in their own
best interests. Many are willing to sacrifice something for the greater good, even if there is
no obvious immediate material reward. Such problems where the impact of a single person’s
behaviour is negligible in the big picture, but if everyone acts as most beneficial for them it
would be harmful in the long term, are called social dilemmas [2].

1.2 The Problem
Understanding the spreading mechanisms of human behaviour and opinion is key to finding
the necessary tools to mitigate the effects of climate change. In this thesis, the main focus
will be on the spread of different strategies in a human population, in order to find out what is
necessary for a successful model of cooperation in a community. To be able to build this model,
two fields of science are combined, namely network theory and evolutionary game theory with
focus on cooperation for sustainable development, in addition to several models used to simulate
populations under different circumstances.

1.3 Project Scope

1.3.1 Objectives
This project will be looking into the human behaviour in closed and simplified populations,
where the populations are divided into those who act altruistically and those who do not. The
literature study will involve complex models and experiments used to explain different aspects
of human behaviour and dynamics in a system. This includes general network theory, studies
of spreading phenomena in networks and studies based on evolutionary game theory. The ob-
jectives of this thesis are to find which factors are important when building a network model
of collective human behaviour. Based on these findings, a model is to be built by an iterative
and exploratory method. Further, the model will be used for simulations with different factors

1



Chapter 1. Introduction

presented in the literature study. Special interest is given to the spread of behaviour based on
some people with higher influence.

1.3.2 Research Questions
The thesis tries to answer the following questions:
RQ1: Which factors are important to build a network model to represent human interactions
with regards to climate change?
RQ2: What do models of human sustainability behaviour teach us about convincing society to
behave altruistically?
RQ3: What is the impact of polarised opinions, and is there a difference in dynamics between
binary and continuous opinions?
RQ4: How does the population react to the influence of some people of strong opinions?

1.3.3 Limitations
In order to keep this project within a reasonable scope, there have not been any attempts of
gathering data concerning real networks or climate change attitudes, and comparing the model
to these. The project is exploratory in the manner and aims to qualitatively, rather than quanti-
tatively, describe the collective development of climate attitudes. Moreover, this project is not
concerned about modelling how much the climate will change, and sustainability is only used
as a motivation for people to choose between different attitudes and behaviours.

1.4 Thesis Structure
The thesis consists of both theory describing networks and models of cooperation, and this is
split into two different chapters. The network science can be regarded as the tools used in order
to build a network and analyse its properties, while the chapter about cooperation games is used
to build the basis for the top level analysis and the bottom level interactions. The theory part
aims to answer the first research question. Further, these two parts of the theory are combined
into a proposed model in the fourth chapter. The model is used to simulate, and the results of the
simulations will hence be presented. Finally, the implications of the simulations is discussed.

2



Chapter 2

Network Theory

In order to discuss and use networks as a basis for the models studied in this thesis, a summary
of relevant network science is given in this section. Most of the following aspects are based
on the theory from Barabási et al. [3], and the curious reader is encouraged to look up a more
detailed explanation in his book, which could also be found online [4].

2.1 Basics

A network is described by a finite set of N nodes and L links between the nodes. The links can
be given as a list of the links and the nodes they link together such that wij = 1 if nodes ni
and nj are linked together and zero otherwise. In a weighted network, the links may be given
a weight describing the bond strength between two nodes, such that the value of wij may be
any number. The links can be defined as undirected or directed, meaning that the connection is
either symmetrical or not. In this project, we will mainly be concerned with undirected links.

2.2 Social Networks

A social network is a network where the nodes represent individuals, and the links represent a
relationship between these individuals. Examples of what links might represent includes (and
is not limited to) friendships, communication, Facebook friends and co-working. Humans tend
to seek together in communities, and within communities, the number of other people each is
regularly interacting with is limited. Dunbar found this figure to be somewhere around 150
people [5], and is also found in village and tribe sizes and can thus be assumed to be a regular
community size.

2.3 Network Properties

To be able to characterise and understand the behaviour in networks, some basic terminology is
needed. In this section, some properties of networks will be briefly explained based on Barabási
et al. [3].

3



Chapter 2. Network Theory

2.3.1 Degree

The number of links connected to a node ni is denoted as the degree ki. Note that this is different
for a directed network. The average degree in an undirected network is

〈k〉 = 2L
N

.

Networks can have many different degree distributions and this will be more discussed later.

2.3.2 Connectedness and Path Lengths

The nodes ni and nj are called connected if there is a way to get from one to another by
traversing the links between. A set of links connecting two nodes is called a path. This is used
to find the distance di,j , also called geodesic, between two nodes, which is the shortest path
between the nodes and is counted as the number of links traversed. A network is connected if
there is a path between any two nodes. The average path length 〈d〉 in a network is the average
of the distances between all nodes gives as

〈d〉 =
1

N(N − 1)

∑
i 6=j

di,j.

For social interaction networks, this number is found to be surprisingly small, giving rise to the
popular theory of ”six degrees of separation”. This theory proposes that all people on earth are
on average six acquaintances away from each other. Barabási et al. argues that such a low value
might be realistic for social networks. The existence of random links binding together nodes
of completely different parts of the network is the reason why some networks show the ”small
world property” [6], such that the network has an average path length that scales with lgN .

2.3.3 Clustering

A property found in several types of network, especially social networks, is clustering [7]. If
node ni and nj are linked, and nj and nk are linked, then there is a higher probability that ni
and nk are linked to each other as well, forming a triangle (triad) [6]. The clustering coefficient
measures the degree of clustering. It is given as ”in physical terms,C is the probability, averaged
over the network, that two of your friends will be friends also of one another” by Newman and
Park [8, p. 3]. A typical value for C in social networks is found to be around 0.5 [7].

2.3.4 Assortativity

In social networks, popular people tend to be friends with other popular people. This of property
of degree correlation is called assortativity. Degree correlation is present if there is a systematic
difference between the high-degree low-degree node links and what would be expected if it
was random. A network where high-degree nodes are mainly connected to low-degree nodes is
called disassortative.

4



2.4 Network Structure

Figure 2.1: A 2D lattice with N=100

2.4 Network Structure

Networks can be described in terms of network structure and network types. Some networks
with a particular set of properties have been given a name. In this section, four types of networks
are described.

2.4.1 Regular Lattice

A simple network type is a regular network where all the nodes have the same number of
connections and are structured regularly. An example of this is a regular 2D lattice network,
also called a grid network, as seen in figure 2.1. In this type, all nodes have the same degree
k = 4, except the nodes along the edges. This edge effect, usually called finite-size effect, can
be avoided by using periodic boundary conditions. This gives a high degree assortativity, as the
nodes connect to nodes of the same degree. The neighbourhood of a grid could be either the
von Neumann neighbourhood with the nodes directly to the sides and above and below, or the
Moore neighbourhood also including the diagonal nodes. In a 2D lattice network we would find
a high average distance, as there are no ”shortcuts” across the network. Further, in a grid with
von Neumann neighbourhood 〈k〉 ≈ 4, the clustering coefficient would be zero, as there are no
triads formed. This is not the case with the Moore neighbourhood with 〈k〉 ≈ 8.

2.4.2 Random Networks

A network where any two nodes are linked to each other with probability p is called a random
network. As the likelihood of linking is the same for all nodes, random networks have a dense
degree distribution with a peak at 〈k〉. An example network is visualised in Figure 2.2a, where
the node size indicates the degree of the specific node. Random networks are expected to have
a low average distance [6], low clustering coefficient and an assortativity number of around
zero[9].

5
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2.4.3 Scale-Free Networks
Barabási et al. have described a type of network characterised by a power-law degree distribu-
tion of the nodes, given by the probability pk of a given degree k as follows:

pk = Ck−γ .

In the given equation, C is a constant, and γ is the degree exponent, often between 2 and 3. This
they named the Scale-Free Network as networks with γ < 3 can show arbitrarily large degrees.
Note that in scale-free networks, there exist some hubs, being very well-connected nodes as a
result of preferential attachment. The high degree is visible in figure 2.2b by the size of the
largest nodes. A good example of a scale-free network is the internet, where the most popular
websites are linked to from a lot of other websites, while the vast majority only have only a few
links in comparison. Further, it has been argued that many types of social networks take the
shape of scale-free networks, such as the actor network[3, 10]. This network consists of all the
actors in the IMDB database, and two actors are linked if they have played in the same movie.

(a) Random network (b) Clustered Scale-Free Network

Figure 2.2: Example of two networks with N=70. The relative node size indicates the degree where
larger nodes have a higher degree.

2.4.4 Clustered Scale-Free Networks
In a random network or scale-free network, the expected clustering coefficient is close to zero
as links are made randomly, and not in any pattern. However, as it is not rare in social networks
to have common friends, Holme and Kim proposed a model to build networks with a tunable
clustering coefficient [10]. The network model combines the scale-free property with clustering
by a probability p. This makes for a better approximation of a social network, with a low average
distance and high clustering coefficient. The property this network type fails to reproduce is the
degree assortativity that could be found in social networks.

6



2.5 Communities in Networks

2.5 Communities in Networks
In several networks and especially important for social networks is the principle of community
structure. Intuitively a community is a group of people with a higher interaction density with
each other than with others outside the community. This could be, for example, a person’s
family, friends or colleagues. Note that this is usually a larger group than a cluster, which by
definition is a triadic closure. The community structure detected by an algorithm is also called
partition as it divides the network into smaller parts.

2.5.1 Modularity
In order to find these communities, one would have to find a measure to calculate the quality
of a partition. A measure designed for this purpose is modularity [3]. Given a randomly wired
network, one would not expect any particular structure in the links. Then, by comparing the
density of links within a given community partition and the expected density in a randomly
wired network, one finds the relative link density called the modularity. The mathematical
definition of the modularity is given as

M =
nc∑
c=1

[Lc
L
−
( kc

2L

)2]
whereLc and kc are the number of links in the community and the total degree of the nodes in the
community respectively. The value of the modularity in a network is in the range [-1, 1] where
a higher value is better, but all positive values indicate some community structure. Zero means
that the whole network is in one community, and a negative value is obtained by assigning
each node to its own community. The Louvain algorithm uses modularity maximisation to
find the best partition [3]. Note that there are several partitions usually giving about the same
modularity, so the Louvain algorithm optimises and chooses a good partition from the high
modularity plateau.

Studying social networks, one could find communities in, for example, a network of mobile
calls. An important finding in this graph is that most links between individuals in the same
community have a higher weight than the links between individuals of different communities
[3].

2.5.2 Complex Contagion
Spreading phenomena such as the one to be studied in this thesis can be assumed to fall within
the category of complex contagion as described by Barabási et al.. The difference between
simple contagion and complex contagion lies within the difficulty of the spreading process.
With simple contagion such as diseases, it is often enough to be in contact with someone to
contract it. In comparison, it is usually important to be repeatedly exposed to an idea, behaviour
or attitude to adopt it, making this spreading process more demanding. In both cases, the
existence of communities affects how the spreading materialises. The community structure
may make it easier for the idea to spread as the clustered ties between nodes makes for repeated
influences within the community. However, there is also a fair chance of the spreading being
captured within the community, never reaching other communities.
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Chapter 3

Theoretical Background

Several methods have been proposed to model and predict how people behave and affect their
surrounding environment and the people in it. In the case of climate change, it is generally
thought that the lack of support in the public is due to lack of information. However, studies
show that it is not the case and that people’s opinion is more tightly knit to the attitude of their
peers [11]. In order to build a model to study this, several models and theories are explained in
this section.

3.1 Tipping points and social norms
As climate change has become a subject of public discussion, people start to identify as a part
of a social movement. This phenomenon is confirmed in the case of climate deniers (often also
called sceptics), who are shown to display some feeling of group identity [12]. The separation
between believers and deniers might further polarise the attitude of people creating echo cham-
bers [13]. However, in social processes, the behaviour of people is affected by the expectation
of behaviour and attitude of others [14]. This leads to different dynamics of behaviour change
if it is visible for others, and to behaviour conformity in groups. Local clusters of cooperating
people may emerge, and if the behaviour is sufficiently visible and easy to adopt, it might spread
in the society. If a specific behavioural choice becomes more attractive the more widespread it
is, it can be characterised as a virtuous or vicious cycle. The tipping point is the point where the
cycle turns from one of the types to the other [14]. An example of such behaviour is choosing
to drive an electric car. More people owning and driving such cars would lead to more charging
stations and thus making it more attractive to own one as illustrated in fig 3.1. If a critical num-
ber of adopters is reached, the cycle may continue working without the influences of external
factors.

However, the fear of stigmatisation, is in some cases, causing people to withhold their beliefs
around climate change [15]. This goes both ways: some feel anxious about not living up the
standards of green behaviour while others do not want to be labelled, for example, a ”tree
hugger”. This could prevent the successful spread of behaviour so that the tipping point never
is reached.

9



Chapter 3. Theoretical Background

Figure 3.1: A causality diagram of a virtuous cycle of electric cars and charging stations, where more
electric cars leads to the building of more charging stations, which increases the attractiveness of owning
an electric car.

3.2 Game Theoretic Approaches
A common way to model and predict the outcome of a choice under a set of conditions is by
using game theory. Usually, the group of people making the choice is called players, and the
strategies are either cooperating or defecting. Depending on the choice made, the players typi-
cally receive some payoff or utility, such that the optimal and rational decision can be calculated.
This is done by finding the Nash equilibrium, which is the alternative with the highest payoff
no matter what the other player chooses. Evolutionary game theory uses repeated choices to
analyse the development of different strategies, and the optimal decision may vary over time,
as the players respond to the other players’ choices. In public goods games, a set of players can
choose between donating to a common pot or keeping their money by themselves. The pot is
then multiplied by some factor greater than one and then divided evenly between all the play-
ers. The Nash equilibrium shows that the most beneficial for every single player is to donate
nothing.

3.3 Common Pool Resource Models
Communities can share a limited (renewable) resource where all the individuals choose how
much of the resource they extract. Since the resource is open to everyone, it is called a common
pool resource (CPR) and may be, for example, a natural resource such as water. Those who ex-
tract a sustainable amount or less from the CPR are called cooperators. On the other hand, the
agents may maximise their benefit in self-interest and extract more of the resource than sustain-
able. These agents are called defectors or free riders since they do not care about the best for the
community as a whole or decide that the benefit of the resource is more important than society.
This kind of situation is called a social dilemma [2]. If all members of the community max-
imised their individual benefit by claiming as much of the resource as possible, the community
as a whole would be at risk of emptying the resource beyond repair. The phenomenon where a
society — for the individual’s benefit — extract more of the resource than sustainable until they
trespass the resource’s capacity is called the ”Tragedy of the Commons” [16]. Models studying
the cooperation in these kinds of cases are usually built based on evolutionary game theory,
using a utility function to study which choice the people would make by repeated playing.1

1This section is rewritten based on my project thesis.
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3.3 Common Pool Resource Models

Figure 3.2: The causal loop of the TSL model from [18]

Milinski et al. define the case of dangerous global temperature rise as a collective-risk so-
cial dilemma with the following characteristics: ”(i) people have to make decisions repeatedly
before the outcome is evident, (ii) investments are lost (i.e., no refunds), (iii) the effective value
of the public good (in this case, the prevention of dangerous climate change) is unknown, and
(iv) the remaining private good is at stake with a certain probability if the target sum is not
collected” [17, p. 1].

Three types of solutions are commonly mentioned for social dilemmas: motivational, strate-
gic and structural. The first goes into the personal values and choices, the second changes the
utilities of the people based on for example norms, and the third changes the structures such
that it is not a social dilemma anymore [2].

3.3.1 The TSL-model
A much-studied model of cooperation within a community with a CPR is the TSL model
(Tavoni, Schlüter, Levin) [18]. As the agents harvest the resource, some control mechanism
may be added to the system to prevent the community from over-harvesting. One such mech-
anism proposed by Tavoni et al. is ostracism. That means that those who follow the general
norm of being altruistic and staying at the sustainable level will exclude the defectors from
social benefits and help from society. By use of a utility function, the model weights off the
benefits of extracting the resource to the disadvantage of being ostracised from the community,
as seen in figure 3.2. The pluses and minuses in the diagram refer to the positive and negative
causality [19], such that more defector payoff gives more defector utility. This is balanced by
the dynamics of more social disapproval, giving less defector utility. Moreover, as an evolution-
ary process of imitation is conducted, the two strategies are spread by comparing two randomly
chosen agents utility and deciding to continue with the highest. The development of the two
strategies in a society can follow different paths. The results may end up with a monomorphic
population where all the agents share the same strategy or with a dimorphic population. Tavoni
et al. [18] found that both results may emerge in the model depending on the different parameter
values, especially the resource inflow.2

3.3.2 The TSL model in networks
One assumption in the original TSL-model is that the members in the society are well-mixed.
As the dynamics in the community emerge as a result of the interactions between the members,
one could argue that the structure of the relationships is essential. Hence the resulting state of
the community is not dependent on only the total fraction of cooperators and the state of the

2This section is rewritten based on my project thesis.
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resource, but also the norms around individuals. The TSL-model is further developed to account
for this by Sugiarto et al. [20] by including a network structure of the agents and modified to
have local discrete updating of the variables. They used asynchronous pairwise comparison
such that an agent may update his strategy if the chosen neighbour’s strategy is more beneficial.
The more resources available for the population, the more people decide to defect, while scarce
resources motivate people to cooperate. A result of this set up is that the regime shift from
mainly cooperating to mainly defecting and back is characterised by hysteresis - the change
is delayed compared to the change in the parameter. This is seen as they vary the amount of
resource available, and the fraction of cooperators will gradually change until one point where a
sudden jump is observed. The higher the degree of the nodes, the more evident is the hysteresis.
From this, we get an additional result that is not evident in the case of a uniformly interacting
population as in the TSL-model.3

Another important finding is that the average degree in the network is affecting the co-
operation [21]. As the average degree is reduced, the system is less similar to a well-mixed
population, and the effects of the social sanctioning are only applying to the defectors coupled
to cooperators. Hence sub-communities of only defectors may emerge and survive stably.

3.3.3 Rewiring in Networks

As human relationships develop, new friendships are created and old may cease to exist. This
could be replicated in networks by rewiring the links between nodes after a set of rules. Min
et al. [22] conducted a study based on the TSL-model with this taken into account. With a
certain probability based on the difference of utility between two agents, the chosen agent may
dismiss the friendship and create another friendship, but only if the agent is a cooperator. This
leads to the possibility of disconnected network components evolving, such as a one-strategy
component. If the component is a pure defector one, it cancels the effects of ostracism for the
agents in the component. This could possibly be leading to a stable dimorphic regime for the
whole system, meaning that both strategies exist in equilibrium.

3.4 Social Media Echo Chambers

Social media offers a platform for people to discuss matters across a lot of different subjects.
A study has been done on the subject of climate change on Twitter by Williams et al.. They
collected data from tweets and the accompanying users’ follower network based on five hashtags
associated with climate change discussion both among climate change activists and the climate
change deniers. The results show significant homophily for the follower networks and the
retweet networks, meaning that people tend to follow and retweet others with the same opinion
as themselves, possibly creating echo chambers.

Furthermore, the more active user showed a tendency to be the ones with the more polarised
views. The study did not spread out over time, so the change in attitudes could not be studied.
However, they found that those exposed to diverse opinions had a higher chance of being more
neutral in their expressed views. The network of user mentions within tweets was the network
with most mixing between activists and deniers.

3This section is rewritten based on my project thesis.
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3.4.1 Opinion Leaders in Social Media
It has been argued that information is interpreted and spread from media to the public by some
highly engaged people called opinion leaders [23]. These individuals are often well-connected
in social networks, enforcing influence on both friends, family and colleagues[13]. Social media
allows for extensive publications of individuals’ views, making them hubs of opinion, where the
number of followers can be a measure of possible influence. Nisbet and Kotcher suggest that
the existence of opinion leaders could be used actively to promote climate change awareness,
by making these spread information and views among their peers.

3.5 The Spread of Behaviour in Different Networks
Different network types show various properties, and it would be interesting to know which
features are best to promote behaviour change. An experiment was designed for this purpose
by Centola by studying the spread of health-related behaviour on constructed online social
networks. This was done by giving people an anonymous profile on a constructed health site.
Friendships were simulated by connecting the users to ”health buddies”. The linking of the
health buddies followed either a clustered regular network topology or a random network. Then
one person acted as an insurgent by starting the spread of a specific health forum and inviting
their buddies to join the forum. The results indicate that the clustered network shows both
faster and ultimately more successful spread of the forum. This is accounted to the fact that
clustering generates redundant invites and the visibility of each of the buddies joining the forum.
Those who received two or more invites were significantly more likely to join, and more invites
correlated with several re-visits to the forum. However, this is not a very costly change in
behaviour and may not be fully comparable to more complex behaviour adaptions. Studies of
insurgents (called zealots) by Kashisaz et al. [25] show that a high level of random links makes
for easier spread to a monomorphic regime with simple contagion.

3.6 Thresholds in Network Structures
In game theory, mathematical models are used to predict the strategy of a set of players under
certain conditions. A class of such games is threshold games. Chwe [26] described the threshold
as the number of neighbours in a network needed to agree on a choice before the agents decide
to adopt the behaviour. This example is relevant for describing how attitudes or behaviours
spread through a network of people as it becomes more popular. Note that people’s choice does
not depend on some external factor, such as resources or monetary incentives. Instead, the sheer
number of people is enough to change people’s behaviour, and it is thus called a cooperation
game. The case studied by Chwe [26] assumes there are some people with a predisposed incli-
nation towards following the proposed action, called insurgents. These may be able to spread
the opinion to a sufficient part of the network so that the action takes place. The case analysed
how many needs to be interested in going to a manifestation before it could be realised. The
main result from this study is that the placement of these insurgents in the network is crucial for
the successful spread in the network: they need to be dispersed in the network, but not spread
so much that they lose their influence on their neighbours. This shows how the structure of the
connections may change the result one would get by assuming everyone in a big pool. 4

4This section was rewritten based on my project thesis.
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3.6.1 Two-action Games on Networks
Let us have a look at games on networks with two possible actions as described by Jackson
and Zenou [27]. The option between to do something or not gives rise to the name two-action
games. This could be used with two classes of games called games of complements and games
of substitutes. The first one is a game where the more of the neighbours of an agent chooses to
do the action then it is more likely that the agent will do the same. The other is the opposite,
that is the more of the neighbours do it, the less likely it is that the agent does the same. In both
cases this could be used in threshold games and in a class of those called ”semi-anonymous” by
Jackson and Zenou [27] as the agent only knows the actions of its closest neighbours and do not
care about their individual choice, only how many chooses what. In these games, the threshold
could be defined as a threshold given a degree t(d). In a game of strategic complements, the
agent would choose to do the action if t(d) or more of the neighbours choose to do it and
otherwise not.

Conversely, in a game of strategic substitutes, if t(d) or more neighbours do it, the agent
would choose to not do it and vice versa. A good example of such a threshold is the majority of
the neighbours, being t(d) = 0.5 ·d. Another interesting proposition by Jackson and Zenou [27]
is to use a continuous range of actions where the agents will adjust according to the neighbours,
instead of two clearly defined actions.5

3.7 Linking Human Behaviour and Climate Models
There is done a lot of research on how climate change is developing and how much the global
average temperature will rise. One such model is the Climate Rapid Overview and Decision
Support model (called C-ROADS). By coupling the carbon model of the C-ROADS model
and social models of risk perception and how this affects behaviour by the theory of planned
behaviour [28], the resulting model gives a complete feedback loop as seen in figure 3.3 [29].
The idea of this coupled model is that extreme weather events, caused by the climate change, is
perceived by human beings who keep this in memory and evaluate the risk such that it affects
their attitude toward the environment. Other factors that might impact change in behaviour
include the perceived social acceptance of changing behaviour and the perceived difficulty of
such practice. If people then are convinced to conduct their actions in a different way it might
change their emission of greenhouse gases, which again affects global climate change and the
frequency of extreme weather events. 6

Recent studies, on the other hand, suggest that this link between extreme weather events
and change in behaviour is not that clear [30]. It is found some evidence suggesting that people
believe more in global warming in warm periods or days. However, it is found to have limited
effect on people’s behaviour in the long-term. This argues for the need to study how behaviour
change based on other factors.

5This section is rewritten based on my project thesis.
6This section is rewritten based on my project thesis.
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Figure 3.3: The causal loop from the model of Beckage et al. [29]
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Chapter 4

The Model

In order to study the spread of climate change attitudes and corresponding behaviour in a pop-
ulation, a model of social connections is to be built. There are many ways to create this model,
but to keep it comprehensible and within the project scope, a minimalist model is proposed.

4.1 Model Elements
Several different elements have been proposed to build the model. The most important are listed
here:
• A population of individuals
• Degree distribution of social connections in the network
• A resource, possibly relative to a critical threshold
• An external control mechanism, such as publicly available information or policies
• Different kinds of interactions between the agents and the external control mechanism(s)

The general idea is to make create dynamics as seen in the causal loop in Figure 4.1. This simple
feedback loop makes more cooperators increase the probability of interacting with a cooperator,
which would increase the rate of people becoming cooperators. The rate of people becoming
cooperators may also be affected by the exogenous factors of a sustainability-aware political
climate and the utility and comfort of defecting. In the following sections, the different model
elements and its structure will be discussed and chosen for further use in the model.

Figure 4.1: The causal loop of the proposed dynamics for the model.
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4.2 The Population
The system we want to study is composed of autonomous decision-making entities, and there-
fore, we have chosen to use agent-based modelling as described by Bonabeau [31]. This implies
that the number of cooperators and defectors at all times have to be integer numbers. The pop-
ulation is assumed fixed at a constant number of individuals N. Every person is represented by
an agent ni with the possibility of interaction with other agents.

The state of every agent ni’s attitude ai towards the environment is set to be between two
values: here chosen to be {-1, 1}. The use of attitude as the name of the variable is inspired
from the model of Beckage et al. linking human behaviour to climate models, and the attitude is
assumed to be directly linked to the impact of the behaviour the agent is expressing. The general
idea is that values above zero indicate a cooperating strategy in the sense of doing sustainable
actions protecting the environment from global warming. The values from zero down to minus
one represents the defectors, those who do nothing to help to limit the harm on the environment
or choosing to prioritise a comfortable lifestyle. There are two different versions of the model
studied, one where the attitude is discrete (D) as a two-action model at {-1, 1} and one with
continuous(C) values [-1, 1]. The perceived difficulty of adopting a different behaviour, as in
the model of Beckage et al. [29], is included as a stubbornness weightwi ∈ [−1, 1] on all agents.
This symbol is chosen as it can be regarded as the link strength from an agent towards itself.

The agents all need a state of the attitude before the simulations start, and several different
distributions are proposed:

1. The discrete model starts with half the population being cooperators and half defectors.
The continuous model starts with a Gaussian (normal) distribution around zero (neutral
attitudes). This means that both model types have an average at zero.

2. A skewed population such that the average is not equal to zero. This can be realised by
moving the normal distribution to one of the sides for C models and by increasing the
fraction of one of the strategies for D models.

3. Some people already have a strong predisposed attitude so that they can be the insurgents
convincing others to become cooperators or defectors as well, as seen in the models by
Chwe, Kashisaz et al..

4.3 Network structure
The agents are linked to each other in a network structure. The network types studied are
• Grid network
• Random network (Erdős-Rényi model [3])
• Clustered Scale Free Network (Holme-Kim model [10])

as described in Section 2.4. The different network types show different characteristics as de-
scribed in the theory section, and are thus used to see the impact of the different structures. In
general, the clustered scale-free network might be regarded as the most realistic approximation
of a social network. The random network is used as a control network, and the grid network
shows good assortativity and modularity properties, even though it has much longer distances
than realistic. The different network structures give rise to very different degree distributions. In
the grid network, all non-edge nodes have the same degree; the random network have a binomial
distribution with average 〈k〉 and the scale-free clustered network have a power-law distribution
[3]. As the nearest neighbours in a grid are restricted to either a von Neumann neighbourhood
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or a Moore neighbourhood, we choose that the average degree for the other network types has
to be 〈k〉 ≈ 4 or 〈k〉 ≈ 8 to be comparable.

4.3.1 Network Links
The link between two connected agents ni and nj is describing the friendship, being a general-
isation of a static(not changing over time) communication network. As not all friendships are
the same, the friendship strength is described by a weight wij indicating the frequency of inter-
action and valuation of friendship. In a realistic model, the links could be directed and also the
weight depending on the direction of the friendship, but in this simplified model, we assume it
to be symmetric in an undirected network. The value of the weights is in the range from zero to
one. In the model, a truncated normal distribution is used to choose the weight in for the links
N (0.5, 0.152). The value of the standard deviation σ = 0.15 is chosen since it makes 99.7% of
the weights fall within the range of 0.05-0.95 before truncating.

In a realistic case, the network would be dynamic in size and structure, meaning that agents
would have the option to change friends over time, as studied in the TSL-model with rewiring in
Section 3.3.3. In this model, the network is assumed static in both number, friendship weights
and in the likelihood of communication order. The latter means that at all time-steps it is equally
likely that an agent interacts with any of its neighbours.

4.4 The Resource
Some of the models previously looked at, such as the TSL-model, have a specific ecological
resource used as a parameter to analyse the development in the community. The ecological
resource, in this case, may be modelled as the amount of greenhouse gas left for the world to
emit before reaching the carrying capacity. Another option is using remaining CO2 quota per
year as the resource, even though this could be trespassed. This could be used with a threshold
according to the UN 1.5 degree goal, such that the cooperating strategy would be beneficial if
the goal is accomplished. However, as most people do not perceive their direct impact on the
climate [30, 32] we have decided to start by a model where the resource is not taken into account.
Instead, here the defector utility U is set to be a constant; in other words, it does not depend
on the amount of any resource left. This is possible as the greenhouse gas emission knows no
physical upper limit; there is only a limit to the estimated sustainable levels. Resource scarcity
was found to be one the motivations for agents to be cooperators in the TSL-model. With
unlimited resources, as it might feel like in our case, other motivations must be considered.

4.5 The External Impact
Today most governments and local control units try to mitigate the effects of climate change by
some regulations and other incentives to make it easier for people to choose to be environmen-
tally friendly. This corresponds to structural changes that can be done in a social dilemma to
make it less of a dilemma for individuals. To account for this, we have chosen to add an external
factor which represents the political climate and how the following policies try to make people
behave, called P . For both this factor and the utility U , values above zero indicate climate
change mitigating and values under are incentives to non-sustainable behaviour. As suggested
in the list of model elements, the external factor may also be other sources such as information
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regarding climate change. As the information available varies with which information sources
people use, this could be set to be a stochastic variable. For example, when someone watches a
movie about climate change being a hoax, the variable will be negative for them at that point.
On the other side, someone else may read an article about how to be more climate-friendly, and
the variable will then be positive. As media tend to make provocative news stories, we assume
that this stochastic event ek ∈ U(0, 0.252) is uniformly distributed with average at zero.

4.6 Agent Interactions
Other models used to study similar cases have been built based on game theoretic approaches.
Despite this and the similarity to a social dilemma, we have chosen not to use a game theoretic
approach. This is because the payoff for the different choices is not evident in a model without
a resource (or public goods), and it can thus not be modelled as a CPR game. Furthermore, it
is not evident which other game types this could be modelled as and thus the rules of the game
is unknown. Milinski et al. [17] already said that the payoff for each player in global climate
change is unknown and it might differ greatly from player to player. In addition, humans do
not always act rationally by maximising their utility. Instead, one of the general solutions of
social dilemmas is employed, as the political climate aims to reduce the dilemma by acting as a
structural solution.

The dynamics of the interactions follow the same pattern as in the model of Sugiarto et al.
[20] with pairwise asynchronous comparisons. For every time-step, an agent ni with attitude
ai is chosen randomly to reconsider their strategy by being impacted by friend nj with attitude
aj . As the impacted agent is chosen first and then the influencer(alter) is chosen among the first
order neighbours, well connected (high degree) agents are expected to be chosen to spread their
opinion more often.

The consideration is based on the following equation

xij = wi · ai + P + U + wij · aj, (4.1)

where P and U are the constants political climate and defector utility. These could be simplified
to just one constant, but are kept to visualise better that they could impact the agents in both
directions. The x is just the name of an intermediate result that will be used in the next step
where the dynamics are divided for the discrete and continuous models. The weights wi and
wij refers to the agent ni’s belief in their own opinion and the neighbour’s opinion.

4.6.1 Discrete Interactions
In the discrete model we use inequality

xij + ek > 0 (4.2)

to test if the agent ni should be a cooperator or not, compared to a threshold of zero. The
term ek refers to a random element drawn from a probability distribution to account for random
events people experience that affect their choices, such as reading articles or other impulses as
discussed earlier. If the left-hand side of the inequality is less than or equal to zero, the agent
will be a defector.

If both agents have the same opinion, naturally nothing will happen. If they have differing
opinions, two different inequalities can be made if we simplify it by excluding the random term.
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Figure 4.2: The different areas of impact for combinations of parameters with wi of 0.6.

In the first we have ni is a cooperator and is interacting with a defector such that ni decides to
be a cooperator following the inequality

1 · wi + (P + U) + wij · (−1) > 0 (4.3)
wi + (P + U)− wij > 0 (4.4)

wi + (P + U) > wij =⇒ Cooperator. (4.5)

Analogously we have the case where the agent ni is a defector and is impacted by a neighbour
nj being a cooperator given by the following derived inequality:

− wi + (P + U) > −wij =⇒ Cooperator. (4.6)

These linear functions from inequalities 4.6 and 4.5 could be plotted as seen in figure 4.2 as the
blue line and area and the red line and area respectively. Along the x-axis we can find the (P + U)
parameter, that is the sum of the political climate and the defector utility. Along the y-axis is the
link strength wij , and the intersection between the inequalities and the y-axis is determined by
the stubbornness wi = 0.6 in this example. The red line and area is the parameter combination
making the agent stay a cooperator in 4.6, while the blue is the parameter combinations making
the defecting agent in 4.5 become a cooperator. That means that the double-shaded region is the
parameter combination always giving cooperators, the white area will always give defectors, the
single-shaded red region will make the agents never change opinion, and the only-blue region
makes the agents change opinion back and forth every time.

4.6.2 Continuous Interactions
In the continuous model, the test is turned into a gradual change based on the probability of the
outcome of the test mentioned earlier as follows

∆ai = |ai − aj| · (P (xij + ek > 0)(1− ai)− P (xij + ek < 0)(1 + ai)). (4.7)
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The first term gives the absolute value of the difference between the two agents, such that
the impact is small if they already have the same opinion. The absolute value is used, as this is
only meant to give the amplitude of the change, and not the direction. Then in the second term,
it yields an impact based on the probability of the test, and the current value of the agent. If
the agent is fully cooperating, it will not be impacted by the result of the first probability, and
conversely, if the agent is fully defecting, it will not be impacted by the second probability. If
the agent has a value in between, it might be impacted based on which probabilities are larger
than zero.
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Chapter 5

Results

The model is set up and programmed in Python v3.7.2 with the use of the package Networkx
v2.2 [33]. This package is used for the creation and manipulation of complex networks and
graphs. Plotting is done with the library MatplotLib [34]. The main part of the code used can
be found in Appendix E.

5.1 Network Properties
The first thing to check is that the different network types display properties as expected. To do
this, Networkx is used to calculate the assortativity, average path length, clustering coefficient
and modularity for 100 networks and averaged. This is done for the network types grid, random
and clustered scale-free with a network of 144 nodes and 〈k〉 ≈ 4 or 〈k〉 ≈ 8. The results are
summed in tables 5.1 and 5.2. The results in table 5.1 show that the clustered scale-free network
show the best properties in terms of the previously stated realistic values of low average path
length, clustering of 0.5, and high modularity and assortativity. The property most off for this
network type is the assortativity which shows disassortative tendencies, but as we do not have
a realistic number to compare to it is not studied further. For 〈k〉 ≈ 8, on the other hand, the
grid network shows the properties most realistic for social networks, except for the high average
distance, so this degree is what we will use further.

Network Type Avg. path length Assortativity Clustering Modularity
Random 3.75 -0.03 0.03 0.53
Clustered Scale Free 3.27 -0.18 0.42 0.59
Grid 8.00 0.59 0.0 0.71

Table 5.1: Properties for different networks with N = 144 and 〈k〉 ≈ 4

Network Type Avg. path length Assortativity Clustering Modularity
Random 2.61 -0.02 0.05 0.34
Clustered Scale Free 2.53 -0.15 0.3 0.38
Grid 6.61 0.31 0.49 0.64

Table 5.2: Properties for different networks with N = 144 and 〈k〉 ≈ 8
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5.2 Communities and Symmetric Influences
This section is explaining how the different aspects of the models work together.

5.2.1 Community Structure
Given the different network structures, it would be interesting to see how a network is divided
into different communities based on the modularity and how this affects the resulting attitudes.
This is realised based on a python package [35] implementing the Louvain algorithm explained
in section 2.5. Let the initial values in the continuous model be Gaussian distributed with
N (0, 0.252), and the Political Climate P and Defector Utility U be equally large but opposite,
and thus P + U = 0. A clustered scale-free network with N=100 and 〈k〉 ≈ 8 is shown in
Figure 5.1. Note that the plotting of the node’s positions is based purely on the topology of the
network and not the attitude of the agents. The attitude of the agents is added later as the colour
of the nodes, where green indicate a cooperator, red a defector and shades of yellow are neutral
values as seen on the colour bar. The left part of 5.1a shows the initial states of the nodes. As
expected, most nodes are found in shades of yellow, as they are in a neutral state.

The right part shows the resulting community structures from the Louvain partition algo-
rithm, where colour indicates which community the agents belong to. In the legend, the re-
sulting average state (avg) of the nodes in each community is given, along with the standard
deviation of the average states and the number of nodes. The 100 nodes are divided into eight
different communities, of 7 to 19 nodes in each community. Partitions of grid networks show
approximately the same number of communities as random and clustered scale-free networks.
However, the calculated modularity for different network types show some variability, as seen
in tables 5.1 and 5.2. These values are all in the range of realistic values, for example, networks
as calculated by Newman and Girvan [36], where they have found values of 0.3-0.7.

The simulation of the example network is run for 1000 time steps, and Figure 5.1b show the
resulting network. There is a significant change in states for the nodes. Reading from the legend
of the community structure, one can observe that there is much difference between the average
state in the communities. The blue community has a considerable bias towards the cooperating
strategy with average state avg = 0.77 (sd=0.50), whereas the orange community, on the other
hand, is slightly defecting with avg = -0.250 (sd =0.87).

5.2.2 Example of Development On Grid
In order to understand how the nodes affect each other and how this develops in a network, an
example grid network is studied. The regularity of the grid makes for the most natural visual
inspection since spatial embedding in 2 dimensions is obvious. A grid network with 〈k〉 = 8
is shown in Figure 5.2 for six different time steps from the beginning to time step t=1500. In
the first snapshot 5.2a the agents show mostly neutral states. A few nodes are displaying more
extreme views, especially a defector on the bottom row. In the second snapshot, some of the
agents with previously stronger views have even stronger opinions, and several agents have
adopted a stronger viewpoint. This spreading is most prominent in neighbours of the nodes
showing stronger views in the first snapshot, such as the bottom row defector. In the third
snapshot 5.2c the network shows some signs of attitude-clusters forming, where the agents of
strong opinions have spread this to their neighbours and groups of more radicalised opinions
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(a) State of the network before simulations

(b) State of the network after 1000 time steps

Figure 5.1: Example of a clustered scale-free network with N=100 (a) before and (after) a simulation of
1000 time steps. Left is a representation of the nodes with the value of the states corresponding to the
colour as seen in the colour-bar. The right shows community affiliation, with the corresponding average
state, standard deviation and number of nodes in the legend. This is equal at all times as community
structure is dependent on network topology and not attitudes.
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(a) t = 10 (b) t = 100 (c) t = 250

(d) t = 500 (e) t = 1000 (f) t = 1500

Figure 5.2: An example of a grid network with N=144. The sub-figures show snapshots at six different
time steps in a simulation with 1500 time steps.

exist among the neutral agents. In the fourth and fifth snapshots, the neutral nodes are choosing
sides and most of the agents are now strongly cooperators or defectors. In the last snapshot
at t=1500 in Figure 5.2f, there are two main groups visible with the big defector group in the
bottom right area, and a strong cooperator group in the top left area. This is the first snapshot
where the average agreement has started to increase, as the process of radicalising leads to less
agreement. Some nodes are showing neutral values in the interface between the two groups.

The general tendency through the development has been that the first nodes to be radicalised,
also further impact the nodes around them, creating groups with stronger opinion. In this sense,
a high number of neighbours can both increase the size of the boundary between two different
groups, but also expose the agents to more influence. This might have an impact on the devel-
opment of the example network, as the agents first radicalised was mainly along the edges, and
the network may be subject to finite-size effects. An example of the development on a grid with
discrete attitudes can be seen in the appendix A.

5.2.3 Development over Time

The symmetric model could be studied over more time. Let the initial values in the continuous
model (C) be Gaussian distributed with N(0, 0.252), and the Political Climate P and Defector
Utility U be equal as in the models above. With this configuration, all forces are non-partisan
and we would expect no side to be dominating on average. In the discrete two-action models
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Figure 5.3: The development of the average state for different model types. The low-intensity lines
show the associated average standard deviation within networks (solid) and within the communities
(dotted).The right plot show the density of average resulting state for the 100 realisations for each model.
The y-axis shows the average state to correspond with the left plot as a cross-section.

(D), the initial distribution is of approximately 50% cooperators. Simulating for 4000 time-steps
shows how the networks are susceptible to possible influences.

Figure 5.3 visualises averages of 100 realisations of the three different network structures:
random, clustered scale-free and grid network for both model types. The Figure shows clustered
scale-free C in red and D in orange, random C in blue and D in green, grid C in pink and D
in cyan. Most models using two-action dynamics visualises the fraction of cooperators, but
since this is unfit in a model with continuous attitude values, we have chosen to rather visualise
the average state of the attitudes on the y-axis, and the time steps on the x-axis. As this is the
average of 100 simulations, the lines show the average of the average of the states within the
simulation. Further, in order to make a comparison with the standard deviation as simple as
possible, the average standard deviation is plotted directly into the same plot. Note that this is
plotted directly, and not relative to the average state. As we can see from the solid line of high
intensity in the Figure, the average state is staying at an even level around zero for all types. The
low-intensity lines show the average of the standard deviation within each simulation network.
For the continuous simulations, we see that the standard deviation first is increasing until a point
at approximately t=600. After this first stage, the SD stabilises, and especially for the random
and clustered scale-free networks, it decreases as the agents within the simulations reach some
degree of consensus.

The dotted lines indicate the average of the standard deviation within the communities
within the networks as following

SDc = 〈〈SD(ac)〉network〉simulations,

where ac refers to the attitudes in the community. At the maximum standard deviation, the
SD within the communities seem to decrease slightly before the SD within the networks as a
whole. In the continuous grid model, the SD within the communities seems significantly smaller
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Figure 5.4: The average agreement among closest neighbours for the simulations in Figure 5.3.

than the whole networks, indicating that the communities settle on one of the strategies while
the network has different strategies present. For the discrete models, one can observe a slight
decrease in SD, but still high such that the simulations give a dimorphic population.

The right part of the plot shows a density plot of the average final state for the 100 sim-
ulations. This means that for the cyan discrete grid simulations, most networks end up with
both strategies equally present, but with some networks with skewed final states. The clustered
scale-free (C) and the random (C) networks show a different behaviour from the rest, as already
seen in the standard deviation in the left plot. Most of the simulations in these cases end up as
mostly cooperating or mostly defecting after 4000 time-steps, indicating that in time they will
reach a monomorphic regime. This is probably the result of small noise giving one of the sides
a slight advantage in the beginning, that further spreads throughout the network. As the average
of the average state in the left plot is equal to zero, it indicates that it is equally many networks
are ending up as defecting and cooperating.

Agreement of First Order Neighbours

In order to study the spreading effects, we have plotted the network-average of the average
agreement 〈A〉 between the first order neighbours and every agent. For discrete models, it
is simply the average number of agreeing neighbours. The continuous agreement among all
nearest neighbours (n.n.) is calculated using the following formula for every agent ni and
averaged:

Ai = 1− 1

2
|ai − 〈a〉n.n.i|. (5.1)

In Figure 5.4, the average agreement is plotted, so that a value of 1 indicates that all the
closest neighbours agree, and a value of 0 indicates that all the closest neighbours disagree. As
this is an average for the whole network, it is not expected to fall under 0.5 due to triad closures
in the network, even though it could be 0 for a specific node and its closest neighbours. A grid
network with degree 4 could, in theory, be solved with a two-colouring algorithm such that 0
agreement could be reached, but this is not studied here.
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Figure 5.5: The density plot and histogram of average state within communities for the simulations at
time step t=500, t=1000 and t=4000 5.3.

In the continuous models, it shows a high initial agreement as the opinions are normally
distributed around neutral values, while the discrete case begins on approximately 0.5 as half the
population start with each opinion. The continuous models first decrease the average agreement,
as the model goes through a stage of radicalising, as already seen in the standard deviation.
Then, for all network types and both discrete and continuous models, we can observe a steady
increase in agreement among the closest friends up to a certain point. This indicates that the
model stabilises as the agents form local groups of the same opinion.

Average State in Communities

One last check of the simulations is conducted to see the development within the communities
over time. Figure 5.5 show the density plot and histogram of the average state within the com-
munities for the above simulation for time steps t=500, t=1000 and t=4000. In the beginning, it
shows something close to a normal distribution as most communities either have both strategies
present, or neutral strategies. At t=1000, the communities show average states from all over the
range of average attitudes, some already settling in the radicalised areas. The last part shows
the states at t=4000. It is not very clear from the figure, but at this point, all the continuous
models show clear agreement within the communities, being either far to the cooperating side
or the defecting side. Note that this also is true for the continuous grid model, even though
the networks as wholes show mixed states. The discrete models, on the other hand, show more
diversity, having communities with the average state at all the different state values, but with a
slight preference for an even mix as there has been less change from the original values.
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5.2.4 Effect of Stubbornness on Simulations
The stubbornness wi decides how much of an agent’s existing opinion should be taken into
account when calculating the specific influences xij . It would be interesting to see how this
value affects the balanced models. The basis used in the above examples is wi is 0.6, so the
value is changed to wi = 0.4 and wi = 0.8. As the expectancy value of the friendship weight
wij = 0.5, the agents in the first case will, on average, value the opinion of the neighbour more
than its own current attitude. The two cases are simulated and averaged over 50 simulations
each, for 4000 time-steps, and the trend of the results can be seen in Figure 5.6. The first sub-
figure 5.6a shows wi = 0.4, where the standard deviation increases as the network polarises.
After t=1000, the models show less standard deviation as one of the strategies gets an advantage
and the network chooses a side. Note that more C networks are ending with an average state
of neutral values than the previous case, as seen from the density plot. In the corresponding
subplot 5.6b for w = 0.8 the development of the standard deviation shows steep growth at the
beginning for the continuous models, meaning that the agents polarise, and then the standard
deviation stabilise at a high value. The standard deviation for the discrete models stays high at
all times. The density plots show that all the model types end up with the majority of simulations
in a dimorphic regime.
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(a) The development for wi = 0.4
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(b) The development for wi = 0.8

Figure 5.6: The development of the average state in the models for two different values of stubbornness.
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5.3 Simulations with Insurgents
How much influence can one person exert on the population as a whole? To test the theory of
Nisbet and Kotcher [23] with inspiration from Chwe [26] we have decided to add one insurgent
to see if this would affect the development in the network. Let the initial values in the continuous
model be Gaussian distributed with N(0, 0.252), except for one insurgent with an initial value
of a cooperator at 1 with a stubbornness of wi = 1, so that the insurgent stays at the same side
of the range as it starts. This insurgent is chosen to be the largest hub in the network in the case
of random networks and clustered scale-free networks, and a central node in the case of a grid
network. With the radicalised attitude, the insurgent may inspire behaviour change to spread
in the network. A simulation of 144 nodes within each network (50 networks for each type),
with 〈k〉 = 8, is run for 4000 time-steps. The resulting development can be seen in Figure
5.7. The general shape of the resulting development follows the baseline of the balanced case.
However, the continuous clustered scale-free and random networks show a much higher degree
of spreading, to the extent that the clustered networks are almost approaching a monomorphic
regime, and would probably do that in the long term. As the influences are most efficient in the
case of clustered networks, we suspect this to be due to the large degree of the hub. The discrete
models and the continuous grid network does not show the same level of influence from the
insurgent. Yet, there is some effect from the insurgent, though working much slower.

The simulation is redone with the insurgent picked from the nodes with an average degree,
instead of the node with highest degree, and the result can be seen in fig 5.8. In this plot,
we can see the same dynamics, but the random and the clustered scale-free (C) network seem
much more even in their influences. This indicates that the degree of the insurgent is important
and that with the current dynamics, random links seem more critical than the redundancy of
clustered influences proposed by Williams et al..

5.3.1 Two opposing insurgents
Given a network with the same conditions as above, just with two insurgents of opposing atti-
tudes, the expected outcome would be a balanced average state. Running the simulation gives
this, but with a tendency to make polarised communities.
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Figure 5.7: The development of the average state for different model types. The low-intensity lines show
the associated average standard deviation within networks (solid) and within the communities (dotted).
The right plot show the density of final average state for each model.
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Figure 5.8: The development of the average state for models with an insurgent with degree = 〈k〉.
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5.4 Uneven Initial Conditions
Given the current state of the human population, it would be unrealistic to assume that everyone
has an initial neutral attitude about climate change. To account for this, several initial states
are tried to check the change in development. Let the initial distribution be N (−0.1, 0.252)
instead of distributed around zero. For the discrete cases, a number of agents corresponding
to the change in average is chosen to be defectors such that the average state is equal to -
0.1 for all models. Figure 5.9 shows the average of 50 runs of the simulation. The addition
of a small skewness towards defecting strategy is most prominent in the continuous clustered
case, which already is shown to be most sensitive to changes. Both random and grid (C) also
show the same tendencies, while the discrete cases show slower development. The grid has an
intriguing development of the standard deviation showing that both strategies are prominent in
the networks, but the communities choose an internal strategy.

5.4.1 Development of Different Initial Condition
The case above tests the development of the initial condition for one specific value, and to
confirm the pattern, several initial conditions are tested. In Figure 5.10 the development for
simulations with initial state a) -0.2, b) -0.4, c) -0.6 and d) -0.8 is presented. Figure 5.10a
shows simulations with initial average state at -0.2. The continuous cases all show that the
average state of the agents in the network go towards defecting, while the discrete also show
some change, but much slower. The standard deviation shows a much faster radicalising than
with avg = −0.1, such that the standard deviation barely increases before converging towards
zero. The density plot shows that the continuous models go towards all defecting, except some
outliers in the grid models. All of the given examples of continuous models in Figure 5.10 show
that the initial value is efficient for the radicalisation towards a monomorphic strategy decision.
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Figure 5.9: The development of the average state for initial average state = -0.1
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(a) avg state = -0.2
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(b) avg state = -0.4
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(c) avg state = -0.6
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(d) avg state = -0.8

Figure 5.10: The development of the average state for different initial average states.
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5.5 Uneven Initial Condition with One Insurgent
Let the initial condition start with the average state at -0.1, except for one hub-insurgent with a
cooperating strategy. Letting the simulation run for 4000 time-steps generates the development
as seen in Figure 5.11. The graph shows that the insurgent is most influential in the clustered
scale-free network in both (C and D) models. Both these show an average state on the cooper-
ative side. The other continuous models, on the other hand, show that the initial bias is more
influential than the single insurgent. The discrete grid model and the random model do not seem
to be much affected at all.
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Figure 5.11: The development of the state for models with skewed initial conditions and one cooperator
insurgent.

5.6 Uneven Initial Conditions with Political Forces
Let the initial distribution be N (−0.1, 0.252) for C models and equally skewed for D models.
The political climate is set to be stronger than the defector utility such that P + U = 0.05. The
plot in Figure 5.12 show the development of the average state over time for the simulations. In
the continuous models, we can see that the initial skewed distribution is impacting the network
fast by making the network more defecting. By studying the standard deviation, we see that
in this stage, it is sharply increasing for the continuous models until most are radicalised and
the standard deviation high. The discrete models do not show much impact of the initial condi-
tions, as seen earlier, and reacts directly to the political climate. After some time (approximately
t=500), the models change into a stage where all the models show a decrease in standard devi-
ation. All the models seem to be overtaken by the political climate, and the agents are slowly
turned towards a cooperating strategy. The development of first being impacted by the initially
skewed average state and then being overtaken by the political climate leads to a bump in the
development of the average state. The same set up is tried with networks with average degree
〈k〉 ≈ 4, and with larger network size. The result of these is found in the Appendices B and
C.1. Both cases show similar development.
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Figure 5.12: The development of the state for models with political forces and skewed initial conditions.

5.6.1 Polarised Initial Conditions
The same configuration is tried, except for an initial state that is polarised for both continuous
and discrete models and average over 20 trials. This means that the continuous model also
has agents that are either totally defectors or cooperators in the beginning, even though the
dynamics are continuous. The result is illustrated in Figure 5.13. The average state is similar
for all the models, and the bump seen in the previous case has disappeared. This means that
the bump is a result of the normal distribution of initial values and the related first stage of
radicalising. Studying the standard deviation shows that once again, the continuous models
converge towards agreement faster than the discrete models, and the communities converge
slightly before the networks as wholes.
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Figure 5.13: The development of the average state for models with political forces of P +U = 0.05 and
skewed and polarised initial conditions.

5.7 Changing the Political Climate
To further understand the impact of the political climate in combination with a skewed initial
distribution, the political climate is changed approximately at the boundary between the stages,
at t=500. This is done after the continuous models start with normal distributed initial values
of −0.3 and the discrete models the polarised of the same average, and a political climate such
that P + U = 0.05. The first sub-figure 5.14a shows how the development degenerates for a
continued value of P + U = 0.05. The continuous models show that the initial values are most
important, and the little political climate manages to some extent to stop the total defection of
the populations compared to the development seen in section 5.4.1. The next two figures 5.14b
and 5.14c show the development where the political climate is increased to P + U = 0.15 and
P + U = 0.25. Looking at the average state, we can see that the average is balanced at a value
higher than the first. The density plot on the right, however, shows that the C networks may
end up with a final state in either the defecting or cooperating area, but the defecting states
are most prominent for the former, while the latter gives networks in both ends of the range.
Because the final standard deviation is minimal for all except the C grid, the networks will not
switch from one strategy to the other. A long-time plot of the development with parameters as
in Figure 5.14c can be seen in the appendix D. For the third value P + U = 0.25 5.14c we see
a sharp change in development for the discrete cases as the political climate starts affecting the
interactions. The last Figure 5.14d visualises the development for P + U = 0.35 and in this
case almost all networks go towards a cooperating regime. The standard deviations for the C
models show a sharp bump in the stage after the political climate has changed, as the dynamics
are much less dependent on the agreement among friends than the impact from the political
climate. The box in the density plot of the last two sub-figures indicate that all the simulations
end up with the same value, so that the histogram is plotted instead.
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(b) P + U = 0.15
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(c) P + U = 0.25
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Figure 5.14: The development for different political climates starting after the first stage of development,
for initial average state of -0.3.
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Chapter 6

Discussion

6.1 Network Structure

In the theory part, three properties of social networks were described, namely clustering, as-
sortativity (degree correlation) and average shortest path length. These properties can be found
in different types of networks, but none of the types discussed in this thesis have been able
to reproduce all of them at the same time, as seen in the results. Therefore, several network
types have been used throughout the simulations, so that the results can be seen in relation
to the properties. The two types most fit to describe social interaction networks are clustered
scale-free networks and grid networks.

6.2 Evaluation and Interpretation of the Results

6.2.1 Community Structures

The existence of communities is an inherent property in networks, and especially important in
social networks. A 2D lattice (grid) model does not intuitively for the human eye show any
communities, but this is due to the symmetry of the linking. By analysis of the modularity, we
find that it does give high modularity since all nodes are connected to only nodes nearby. This
means that in a given partition, the edge nodes in a community does show high affiliation to
its community, even though it is well-connected to the other neighbours as well. The clustered
scale-free networks show disappointingly low modularity in comparison to the grid networks.
This means that clustering does not automatically lead to natural community structures. During
the simulations, all the networks display a gap between the average standard deviation of the
state within the networks and the average standard deviation of the state within the communities.
The gap indicates that the communities agree more than the total network. Throughout the
simulations, the grid networks display the largest gap between community SD and network
SD. The combination of high modularity and long average path length may explain why this
is happening, by making well-defined communities where all nodes are in near proximity and
impact each other accordingly.
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6.2.2 Comparison Between the Discrete and Continuous Models

Most cooperation games divide the population into cooperators and defectors, but as this makes
for a coarse simplification of reality, this thesis has also included continuous dynamics. In all
simulations involving the development of the average state of the attitude in the community,
both types of dynamics has been shown. The general trend is that the discrete model shows less
sensitivity to changes in the agents’ internal states. For example, the introduction of a slight bias
in the initial distribution of the attitudes made a substantial impact on the continuous models,
while barely any at all for the discrete models. This will be discussed more in the following
sections. Another point where the two models differ significantly is the standard deviation. The
models that start with equally many defectors and cooperators do have a standard deviation close
to 1. As there are only two options for the attitude in the discrete model, the standard deviation
gives a measure of how much one of the strategies is leading over the other on average. For the
continuous model, on the contrary, a low standard deviation may also suggest that the agents
agree on a neutral values, as seen initially.

6.2.3 The Effect of Continuous Normal-Distributed Initial Opinions

The continuous normal distributed model shows much change in the first time steps, as the
neutral states seem less stable than the more radicalised states. When initialising the models
with Gaussian distributed neutral states for all agents, it displays signs of being in an unstable
dimorphic regime as the final states are diverging, except for the grid model. One reason for this
radicalisation in the model is that the continuous dynamics lets the interacting agent ni change
his or her opinion even though the other agent nj have a less extreme attitude. This is also the
reason why the continuous model shows a drop in average agreement among neighbours in the
polarising stage. The corresponding dynamics in real life would be when two people discuss
something, and are somewhat agreeing, but through discussion, one of them adopts an even
stronger opinion. However, since the continuous model gives an attitude increment relative to
the difference of the attitudes of the interacting nodes, a more polarised pair of nodes would
give a higher impact if the probability of the specific impact gives a state change. Intuitively, in
reality, those who decide to adopt a substantial degree of a strategy do so by an active choice,
and sometimes by ideology, and one would thus think that they would be hard to convince to
change side. This is actually found by the small chance of a change of side with sufficiently
high stubbornness. Yet, it should perhaps have been added some adjustments to make the
neutral states more stable, as most people are not as radicalised as the results from this model.
Alternatively, a proposed reason for this discrepancy is that the real population might still be in
a phase of radicalisation.

The continuous models show much more sensitivity to both skewed initial states and the
existence of insurgents, than the discrete models. This could be a sign that the successful
strategy to change the opinion of a whole group of people could be achieved by changing it
a little bit at the time, which would demand less effort than a sudden change at once for the
agents. It might be what is necessary to make a virtuous cycle, as the continuous models show
much more similarity to this phenomenon. This can be seen, for example, as a vicious cycle by
the effect where an initial average state of -0.2 in time leads the whole network into a defecting
regime. The discrete models, on the other hand, does not show much change at all.
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6.2 Evaluation and Interpretation of the Results

6.2.4 Difference for the Discrete Models

The discrete models show, in general, little sensitivity to the state of the agents’ attitude. In all
cases with initially biased attitudes, the discrete model shows balanced development as earlier.
Instead, the interaction is very much affected by the political climate. By analysis of the stan-
dard deviation in the different results, all discrete models show that the agents do, in fact, tend
somewhat towards agreement. Yet, the continuous models show both faster and more successful
consensus, except for the cases with strong political climate. The discrete models do, to some
extent, show the same properties as the continuous models do in the second stage, where the
agents have been radicalised. Assuming that the radicalising stage makes for an approximation
of the group-identity forming stage of reality, the discrete model could perhaps be appropriate
to use in models analysing polarised groups. What can be seen from studies of snapshots of
such development, is that the change in opinion is happening by the borders of the local groups
of agreement. This is reasonable, as groups of people talking to each other makes a norm and
may expand this norm.

6.2.5 Stubbornness

The study of the effect of stubbornness has been limited. Since the value represents how much
the agents value their current opinion in comparison to the neighbour’s, it ends up being a factor
radicalising the agents towards their initial tendency for sufficiently high values of wi in the C
model. This means that the populations enter stable dimorphic regimes, where there is little
to no change. For very low values, the agents show less stubbornness and change side much
more often. This makes it possible for mixed regimes to survive longer than in the base case,
as is seen in the results (Section 5.2.4) by the high but decreasing standard deviation. The
value used in the rest of the simulations wi = 0.6 is slightly larger than the expected value of
the friendship weights wij ∈ N (0.5, 0.152), such that the agents change opinion sometimes,
but stay at the same or radicalise more often. Realistically, the agents should perhaps have
been given a distribution of different values of stubbornness, as people show different levels of
commitment to their opinions.

6.2.6 Insurgents

Insurgents may act as opinion leaders in the network when they are given a strong initial opin-
ion, but the connectedness of the agents seems to be important. The first simulations with the
insurgent being the largest hub in the network show that the clustered scale-free networks are
much more affected by the insurgent than the other network types. However, when the insur-
gent is an agent with an average number of neighbours, the development was almost similar for
the clustered scale-free networks and the random networks, both for continuous and discrete
models. The main similarity between these two types is the long links (and thus short average
distance), connecting different parts of the network. This shows that the interaction dynamics
are not as similar to complex contagion as originally assumed, where clustering is shown to
facilitate the spread of a behaviour. The higher level of success for the hub in the clustered
scale-free network is also found in the discrete model, but disappears when the insurgent is an
averagely connected node. This is not surprising, as in the discrete model, the insurgent would
then be approximately the same as all the other agents.

Moreover, this spread might be less successful if the inter-community links were weaker, as
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claimed by Barabási et al.. This is not tested here, as all friendship weights are drawn from a
normal distribution. For the continuous model there is a pattern: the insurgents act like strong
forces in a specific direction in the beginning, such that the initially susceptible agents around
the insurgent fast build a group of radicalised agents. This gives the insurgents’ strategy a
head-start when the second stage begins, and the boundaries between the different groups are
essential, as this is where the persuasion happens. When the insurgent is a hub, it might be
chosen to impact agents often, as many agents connect to it. The result from this might be
several groups of cooperators from an early stage. It is not unrealistic to assume that some of
the well-connected people in real life would have a strong opinion, and thus might facilitate the
agreement in a group of susceptible people.

If popular people also show a higher level of influence on their friends, this could be useful to
impact more substantial amounts of people. One drawback could be that these people also might
be subject to a lot of influences themselves, which could make the nature of their expressed
views more neutral. This possibility is avoided in the simulations by setting the insurgents’
stubbornness to a high value. The existence of several opposing insurgent hubs is naturally
causing people to radicalise, both in our model and in reality [13]. In reality, people might
seek towards the insurgents they agree with, such that echo chambers are made. This is not
accounted for in the simulations carried out in this project.

6.2.7 Political Climate

The effect of a sustainable political climate has been shown to be a steady growth in the number
of cooperators. As already discussed, the political climate exerts the fastest and most successful
influence on the discrete models, while the continuous models are gradually impacted in the
second stage. The effect on the latter is notably due to the influence of the initial conditions,
where the radicalisation is stronger than the impact of the political climate, so that the political
climate does not affect the development much until the first stage is done. The simulations show
that when the policies are added after the stage of radicalisation, it can still make a difference
if it is strong enough, as seen in the results. However, we have also seen that the continuous
models might already be heavily influenced by a bias towards defection, such that it is uncertain
which final state the populations will end up in. In terms of social dilemmas, the addition of
policies would mean that by decreasing the dilemma it gives more people the needed incentive
to decide to cooperate, or to defect to a smaller degree. As the political climate is working as a
constant force on everyone in this model, it would not be possible to say what types of impact
would be most efficient.

6.3 Symmetry and Lack of Payoff

The interaction dynamics show straightforward properties, being symmetric and not inherently
favouring defecting and cooperating differently. As the model does not apply any version of
utility function or payoff, it is also not possible to calculate the optimised decision under any
conditions. Therefore it is not possible to use standard game-theoretic analytical approaches to
find Nash equilibria. This was an active choice as people do not always act rationally. However,
assuming that the dynamics is symmetric might be unrealistic, and has no evident support in the
theory presented in the literature study.
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6.4 Weaknesses

6.4.1 Realistic Social Networks

It has proven challenging to find good characteristics of friendship and communication net-
works based on real life. Most studies gathering communication data, that have been seen in
this project, are based on online or mobile phone call networks [3, 13]. The study of energy-
conservation conversations [15] used ego-networks(a person and whom he or she talks to) as
it is demanding to map the full inter-communication of the person’s alters. A weakness of the
model built in this project is the unsuccessful construction of an artificial but realistic social
network topology. For a more realistic analysis of a whole social network, it might be most
efficient to get a data set of online social networks, even though online social networks might
be different from real life interactions.

6.4.2 Attitude and Exerted Behaviour

This thesis has been considering behaviour change based on the simple assumption that be-
haviour is directly linked to attitude. However, studies in Canada have found a significant gap
between the intention and behaviour of people regarding sustainability [37]. The simplification
of attitude-induced behaviour change might therefore be a significant weakness of the model
when compared to reality. In order to make a more robust model, one should perhaps include
some more psychological foundation of this link, or choose to focus solely on either attitude or
behaviour.

6.5 Further Work
With the presence of today’s social media and globalisation, it is possible to reach out to many
people with little effort. Given that celebrities and people achieving 15-minutes-of-fame used
their influence to impact people’s opinion, would it have a long term impact on the development
of people’s decision? This could be further tested by introducing will-full hubs for shorter pe-
riods of time. To account for social media’s one-way influences, the network could be changed
into a directed one, since this is how large online sites such as Twitter and Instagram is working.

An interesting thing to try for further simulations is to test how many insurgents need to
work in a network when the defector utility is stronger than the political climate, and the initial
distribution is heavily biased towards the defecting strategy. This could replicate the situation
in societies where the government is denying the risks of climate change, and the population’s
opinion is initially opting for the individual benefits.

The choices of people are not solely dependent on one-to-one conversations. It would give
a widened understanding also to test how the agents in the model would behave under the
influence of groups of friends, such as in majority games. Some few simplified tries to replicate
such dynamics have been carried out in the initial stages of this project but was not included
in this as it needed further development to show proper results. The discrete case could be
implemented with a majority threshold game, while the continuous case gives more options for
possible approaches for implementation.

This model could be changed to include the dynamics of traditional social dilemmas in evo-
lutionary cooperation games by finding some way of using a payoff that can be maximised. It is
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not certain that this would add anything to the project, or teach us more about how populations
would behave, but it would give another set of approaches for analysis of the dynamics.
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Conclusion

As the world is faced with the challenge of dangerous climate change, the population is divided
between those who actively believe and cooperate to reduce the impact of human behaviour
and those who do not. The decision of whether to cooperate or not can be said be to be a social
dilemma, and people choose between their personal comfort and long term sustainable develop-
ment. To model this, we have employed agent-based modelling on different types of networks
reproducing properties of social networks. The model includes a simple form of interaction,
but without a maximisation of any payoff for the agents. The models with continuous levels of
cooperation and defection are shown to have the most dynamic development, with local groups
of agents agreeing first and eventually whole networks reaching a stable agreement, especially
when facilitated by insurgents. However, as these are found to be sensitive to small changes,
both defector regimes and cooperator regimes are found as the result of the simulations, even
with the same initial conditions. The discrete models, on the other hand, shows much less
variability as it is more demanding to change the opinion of the agents. In this case, the most
influential source of change is found to be an external impact.

This makes for the conclusion that in order to make a whole population agree on cooperat-
ing, it might be more successful to let people change their behaviour gradually, with the help
from influences from popular insurgents and a favourable political climate.

47



Chapter 7. Conclusion

48



Bibliography

[1] Intergovernmental Panel on Climate Change. Summary for Policymakers, page 1–30.
Cambridge University Press, 2015. doi: 10.1017/CBO9781107415416.005.

[2] Robyn M Dawes. Social dilemmas. Annual review of psychology, 31(1):169–193, 1980.
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Appendix A

Example of Discrete Development

The snapshots in the figure show that the agents change opinion from being randomly spread out
to more organised groups. The change happens gradually through all the different time-steps.

(a) t = 10 (b) t = 100 (c) t = 250

(d) t = 500 (e) t = 1000 (f) t = 1500

Figure A.1: An example of a grid network with N=144 and discrete attitudes. The sub-figures show
snapshots at six different time steps in a simulation with 1500 time steps.
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Appendix B

Political Climate and Another Degree

A plot showing the development of the average state for 50 simulations of the different network
types with 〈k〉 ≈ 4. The simulation is run 4000 time steps, and show that the development is
approximately the same as the development for networks with 〈k〉 ≈ 8, just a bit slower.
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Figure B.1: The development of the average state for models with political forces of P +U = 0.05 and
skewed initial conditions, for networks with 〈k〉 ≈ 4.
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Appendix C

Political Forces in Larger Networks

The case with political forces being slightly higher than the defector utility such that P + U =
0.05 is retried in a larger network N = 256. The initial average state is -0.1 and the system
is simulated for 10 000 time steps. The resulting figure can be seen in C.1. It is very similar
compared to the result of the original network size, except that the increase in network size
makes for slower development. This is not surprising, as it would take more time to interact
through all the agents at least once.
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Figure C.1: The development of the average state for models with political forces of P +U = 0.05 and
skewed initial conditions with network N=256.
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Appendix D

Changing the Political Climate

This plot is showing the development of the average state for 30 simulations of the different
network types. The simulation is run 8000 time-steps, and shows that the average state does not
change any more when the standard deviation within the networks reaches zero. That means
that of the 30 networks, a majority of the C have reached an average final state in the cooperating
area, while some networks have been convinced by the defecting strategy.
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Figure D.1: The development of the average state for models with political forces of P +U = 0.05 and
skewed initial conditions. The political climate is changed at t=500 so that P + U = 0.25 .

61



62



Appendix E

Python Code

1 import numpy as np
2 import random
3 import matplotlib.pyplot as plt
4 import matplotlib.colors as col
5 import seaborn as sns
6 from statistics import stdev, mean
7 import imageio
8 import networkx as nx
9 from scipy.stats import truncnorm

10 import os
11 import community
12 from operator import itemgetter
13 import heapq
14 from IPython.display import Image
15 import matplotlib.patches as mpatches
16
17 def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
18 return truncnorm(
19 (low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)
20
21 #Constants and Variables
22
23 states = [1, -1] #1 being cooperating, -1 being defecting
24 defectorUtility = -0.20
25 politicalClimate= 0.25
26 newPoliticalClimate = 0.25
27 selfWeight = 0.6
28 d = 4 #degree
29 s = 100 #number of simulations
30 k=4000 #timesteps
31 continuous = True
32 skew =-0.3
33 initSD = 0.25
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34 mypalette = ["blue","red","green", "orange", "magenta","cyan","
violet", "grey", "yellow"]

35 randomness = 0.25
36
37 args = {"defectorUtility" : defectorUtility,
38 "politicalClimate" : politicalClimate,
39 "selfWeight": selfWeight, "d":d,
40 "s": s, "k" : k, "continuous" : continuous, "type" : "cl",

"skew": skew, "initSD": initSD, "newPoliticalClimate":
newPoliticalClimate}

41
42 def simulate(i, newArgs):
43 setArgs(newArgs)
44 global args
45 X = get_truncated_normal(0.5, 0.15, 0, 1)
46 S = get_truncated_normal(args["skew"], args["initSD"], -1, 1)
47 ind = None
48
49 if(args["type"] == "cl"):
50 model =ClusteredPowerlawModel(144, args["d"], skew=args["

skew"], X=X, S=S)
51 elif(args["type"] == "sf"):
52 model = ScaleFreeModel(144, args["d"], skew=args["skew"], X

=X, S=S)
53 elif(args["type"] == "grid"):
54 ind = [64]
55 if(args["d"]>2): doubleDegree = True
56 else:doubleDegree = False
57 model = GridModel(12, skew=args["skew"], doubleDegree =

doubleDegree, X=X, S=S)
58 elif(args["type"] == "rand"):
59 model = RandomModel(144, args["d"], skew=args["skew"], X=X,

S=S)
60 else:
61 model = RandomModel(144, args["d"], X=X, S=S)
62
63 model.addInfluencers(newArgs["influencers"], index=ind, hub=

True)
64 res = model.runSim(args["k"], clusters=True)
65 return model
66
67 #Helper
68 def setArgs(newArgs):
69 global args
70 for arg, value in newArgs.items():
71 args[arg] = value
72
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73
74 def getRandomExpo():
75 x = np.random.exponential(scale=0.6667)-1
76 if(x>1): return 1
77 elif (x< -1): return -1
78 return x
79
80 class Agent:
81 def __init__(self, state, selfWeight):
82 self.state = state
83 self.selfWeight = selfWeight
84
85 def consider(self, neighbour, neighboursWeight,

politicalClimate):
86 if(self.selfWeight >= 1): return
87 global args
88 weight = self.state*self.selfWeight + politicalClimate +

args["defectorUtility"] + neighboursWeight*neighbour.state
89
90 if(args["continuous"]):
91 p1 = (randomness+weight)*(1/(2*randomness))
92
93 if(p1 <0): p1 = 0
94 if(p1 > 1): p1=1
95
96 delta = (1/2)*(-self.state+1)*(p1) - ((1/2)*(self.state

+1))*(1-p1)
97 increment = 2*delta*abs(self.state-neighbour.state)
98
99 self.state += increment

100 if(self.state > 1):
101 self.state = states[0]
102 elif(self.state <-1):
103 self.state = states[1]
104 else:
105 if(weight + random.uniform(-randomness, randomness) > 0):
106 self.state = states[0]
107 else:
108 self.state = states[1]
109
110 def setState(self, newState):
111 if(newState >= states[1] and newState <= states[0]):
112 self.state = newState
113 else:
114 print("Error state outside state range: ", newState)
115
116
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117 class Model:
118 def __init__(self, X = None, S=None):
119 global args
120 self.graph = nx.Graph()
121 self.politicalClimate = args["politicalClimate"]
122 self.ratio = []
123 self.states = []
124 self.statesds = []
125 self.pos = []
126 self.X = X
127 self.S = S
128 self.clusteravg = []
129 self.clusterSD = []
130 self.NbAgreeingFriends = []
131 self.avgNbAgreeingList = []
132 self.partition = None
133
134 def interact(self):
135 nodeIndex = random.randint(0, len(self.graph) - 1)
136 node = self.graph.nodes[nodeIndex][’agent’]
137 neighbours = list(self.graph.adj[nodeIndex].keys())
138 if(len(neighbours) == 0):
139 return nodeIndex
140
141 chosenNeighbourIndex = neighbours[random.randint(0, len(

neighbours)-1)]
142 chosenNeighbour = self.graph.nodes[chosenNeighbourIndex][’

agent’]
143 weight = self.graph[nodeIndex][chosenNeighbourIndex][’

weight’]
144
145 node.consider(chosenNeighbour, weight, self.

politicalClimate)
146 return nodeIndex
147
148
149 def findNbAgreeingFriends(self, nodeIdx = None):
150 global args
151 nbs = []
152
153 if(args["continuous"]):
154 for nodeIdx in self.graph.nodes:
155 state = self.graph.nodes[nodeIdx][’agent’].state
156 neighbours = list(self.graph.adj[nodeIdx])
157 neighStates = [self.graph.nodes[n][’agent’].state for n

in neighbours ]
158 if(len(neighbours) == 0):
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159 nbs.append(0)
160 continue
161 x = 1-abs((mean(neighStates)-state))/2
162 nbs.append(x)
163 else:
164 for nodeIdx in self.graph.nodes:
165 state = self.graph.nodes[nodeIdx][’agent’].state
166 neighbours = list(self.graph.adj[nodeIdx])
167 neighs = 0
168 if(len(neighbours) == 0):
169 nbs.append(0)
170 continue
171 for neighbourIdx in neighbours:
172 if(state == self.graph.nodes[neighbourIdx][’agent’].

state): neighs+=1
173 nbs.append(neighs/len(neighbours))
174 self.NbAgreeingFriends= nbs
175 return nbs
176
177 def updateAvgNbAgreeingFriends(self, nodeIndex):
178 neighbours = list(self.graph.adj[nodeIndex].keys())
179 if(len(neighbours) == 0):
180 return self.avgNbAgreeingList[-1]
181 nodeState = self.graph.nodes[nodeIndex][’agent’].state
182
183
184 if(args["continuous"]):
185 neighStates = [self.graph.nodes[n][’agent’].state for n

in neighbours ]
186 x = 1-abs((mean(neighStates)-nodeState))/2
187 self.NbAgreeingFriends[nodeIndex] = x
188 for node in neighbours:
189 nodeState = self.graph.nodes[node][’agent’].state
190 neighneigh = list(self.graph.adj[node])
191 neighStates = [self.graph.nodes[n][’agent’].state for n

in neighneigh ]
192 x = 1-abs((mean(neighStates)-nodeState))/2
193 self.NbAgreeingFriends[node] = x
194 else:
195 neighbours.append(nodeIndex)
196
197 for n in neighbours:
198 neighneighs = list(self.graph.adj[n])
199 neighs = 0
200 nState = self.graph.nodes[n][’agent’].state
201 if(len(neighneighs) == 0):
202 self.NbAgreeingFriends[n] = (0)
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203 continue
204 for neighbourIdx in neighneighs:
205 if(nState == self.graph.nodes[neighbourIdx][’agent’].

state): neighs+=1
206 self.NbAgreeingFriends[n] = neighs/len(neighneighs)
207
208 return mean(self.NbAgreeingFriends)
209
210 def addInfluencers(self, number = 0, index = None, hub = True

):
211 if(number == 0):
212 return
213 if(index == None):
214 degrees = nx.degree(self.graph)
215 if(hub):
216 largest = heapq.nlargest(number, degrees, key=

itemgetter(1))
217 index = [t[0] for t in largest]
218
219 else:
220 index = [p[0] for p in degrees if p[1] == d*2]
221 if(len(index) == 0 or len(index) < number ):
222 extra = [p[0] for p in degrees if p[1] == d*2-1]
223 index = index + extra
224 for i in range(number):
225 self.graph.node[index[i]][’agent’].setState(states[i %

2])
226 self.graph.node[index[i]][’agent’].selfWeight = 1
227
228
229
230 def countCooperatorRatio(self):
231 count = 0
232 for node in self.graph:
233 if self.graph.nodes[node][’agent’].state > 0:
234 count+=1
235 return count/len(self.graph)
236
237 def getAvgState(self):
238 states = []
239 for node in self.graph:
240 states.append(self.graph.nodes[node][’agent’].state)
241 statearray = np.array(states)
242 avg = statearray.mean(axis=0)
243 sd = statearray.std()
244 return (avg, sd)
245
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246 def getFriendshipWeight(self):
247 #weigth = random.uniform(0.1, 0.9)
248 #global X
249 weigth = self.X.rvs(1)
250 return weigth[0]
251
252 def getInitialState(self):
253 global args
254 if(args[’continuous’] != True):
255 state = states[random.randint(0,1)]
256 else:
257 #state = random.uniform(-1, 1)
258 state = self.S.rvs(1)[0]
259 return state
260
261 def runSim(self, k, drawModel = False, gifname=None, clusters

=False):
262 if(self.partition ==None):
263 self.partition = community.best_partition(self.graph)
264
265 if(drawModel):
266 draw_model(self)
267
268 filenames = []
269
270 #create list of number of agreeing friends
271 self.findNbAgreeingFriends()
272 self.avgNbAgreeingList.append(mean(self.NbAgreeingFriends))
273
274
275 for i in range(k):
276
277 nodeIndex = self.interact()
278 ratio = self.countCooperatorRatio()
279 self.ratio.append(ratio)
280 (state, sd) = self.getAvgState()
281 self.states.append(state)
282 self.statesds.append(sd)
283 avgFriends = self.updateAvgNbAgreeingFriends(nodeIndex)
284
285 self.avgNbAgreeingList.append(avgFriends)
286
287 global args
288 if(i ==500 and (args["newPoliticalClimate"] != args["

politicalClimate"])):
289 self.politicalClimate = args["newPoliticalClimate"]
290
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291 if(clusters):
292 (s, sds, size) = findAvgStateInClusters(self, self.

partition)
293 self.clusterSD.append(sds)
294 self.clusteravg.append(s)
295
296 if(gifname != None and (i % 1 == 0)):
297 draw_model(self, True, i, extraTitle = f’ avg state: {

self.states[-1]:1.2f} agreement: {self.avgNbAgreeingList
[-1]:1.2f}’)

298 filenames.append("plot" + str(i) +".png")
299
300 if(gifname != None):
301 images = []
302 for filename in filenames:
303 images.append(imageio.imread(filename))
304 # to get nice number of frames per second 0.08167
305 imageio.mimsave("network" +gifname+ ".gif", images,

duration=0.08167)
306
307 (avgs, sds, sizes) = findAvgStateInClusters(self, self.

partition)
308 self.clusteravg.append(avgs)
309
310 return self.ratio
311
312 def populateModel(self, n, skew = 0):
313 global args
314 for n in range (n):
315 agent1 = Agent(self.getInitialState(), args["selfWeight"

])
316 self.graph.node[n][’agent’] = agent1
317 edges = self.graph.edges()
318 for e in edges:
319 weight=self.getFriendshipWeight()
320 self.graph[e[0]][e[1]][’weight’] = weight
321
322 if(skew != 0 and not args["continuous"] ):
323 num = round(abs(skew)*len(self.graph.nodes))
324 indexes = random.sample(range(len(self.graph.nodes)), num

)
325 for i in indexes:
326 self.graph.node[i][’agent’].state = states[1]
327 self.pos = nx.spring_layout(self.graph)
328
329 class GridModel(Model):
330 def __init__(self, n, skew=0, doubleDegree=False, **kwargs):
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331 super().__init__(**kwargs)
332 global args
333 for i in range(n):
334 for j in range (n):
335 agent1 = Agent(self.getInitialState(), args["selfWeight

"])
336 self.graph.add_node(i*n+j, agent=agent1, pos=(i, j))
337 self.pos.append((i, j))
338 if(i!=0):
339 weight = self.getFriendshipWeight()
340 self.graph.add_edge(i*n+j, (i-1)*n+j, weight = weight

)
341 if(j!=0):
342 weight = self.getFriendshipWeight()
343 self.graph.add_edge(i*n+j, i*n+j-1, weight = weight)
344 if(doubleDegree):
345 for i in range(n):
346 for j in range(n):
347 if(i!=0 and j!=0 ):
348 weight = self.getFriendshipWeight()
349 self.graph.add_edge(i*n+j, (i-1)*n+j-1, weight =

weight)
350 if(i!=0 and j!=(n-1)):
351 weight = self.getFriendshipWeight()
352 self.graph.add_edge(i*n+j, (i-1)*n+j+1, weight =

weight)
353 if(skew != 0 and not args["continuous"] ):
354 num = round(abs(skew)*len(self.graph.nodes))
355 indexes = random.sample(range(len(self.graph.nodes)),

num)
356 for i in indexes:
357 self.graph.nodes[i][’agent’].state = states[1]
358
359 class ScaleFreeModel(Model):
360 def __init__(self, n, m, skew= 0, **kwargs):
361 super().__init__(**kwargs)
362
363 self.graph = nx.barabasi_albert_graph(n, m)
364 self.populateModel(n, skew)
365
366 class ClusteredPowerlawModel(Model):
367 def __init__(self, n, m, skew = 0, **kwargs):
368 super().__init__(**kwargs)
369
370 self.graph = nx.powerlaw_cluster_graph(n, m, 0.5)
371 self.populateModel(n, skew)
372
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373 class RandomModel(Model):
374 def __init__(self, n, m, skew= 0, **kwargs):
375 #m is avg degree/2
376 super().__init__(**kwargs)
377 p = 2*m/(n-1)
378
379 self.graph =nx.erdos_renyi_graph(n, p)
380 self.populateModel(n, skew)
381
382 import dill
383
384 def saveModels(models, filename):
385 with open(filename, ’wb’) as f:
386 dill.dump(models, f)
387
388 def loadModels(filename):
389 with open(filename, ’rb’) as f:
390 models = dill.load(f)
391 return models
392
393 def findClusters(model):
394 partition = community.best_partition(model.graph)
395 return partition
396
397
398 def findAvgStateInClusters(model, part):
399 states = [[] for i in range(len(set(part.values())))]
400
401 for n, v in part.items():
402 states[v].append(model.graph.node[n][’agent’].state)
403 clusters = []
404 sd = []
405 clsize = []
406 for c in range(len(states)):
407 clusters.append(mean(states[c]))
408 clsize.append(len(states[c]))
409 if(len(states[c])>1):
410 sd.append(stdev(states[c]))
411 else:
412 sd.append(0)
413 return (clusters, sd, clsize)
414
415 def findAvgSDinClusters(model, part):
416 states = [[] for i in range(len(set(part.values())))]
417 for n, v in part.items():
418 states[v].append(model.graph.node[n][’agent’].state)
419
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420 sd = []
421 for c in range(len(states)):
422 if(len(states[c])>1):
423 sd.append(stdev(states[c]))
424 else:
425 sd.append(0)
426 return sd
427
428 #-------- drawing functions ---------
429
430 def drawClusteredModel(model):
431 if(model.partition==None):
432 partition = findClusters(model)
433 else:
434 partition = model.partition
435
436 for k, v in partition.items():
437 model.graph.node[k]["louvain-val"] = v
438 degrees = nx.degree(model.graph)
439
440 edge_col = []
441 for node in model.graph.nodes():
442 edge_col.append(mypalette[model.graph.node[node]["louvain-

val"] % 9 ])
443 plt.figure(figsize=(16,16))
444 plt.subplot(1, 2, 2, title="Cluster Membership")
445 nx.draw(model.graph, model.pos, node_size=[d[1] * 20 for d in

degrees], node_color =edge_col)
446 (clusters, sd, clsize) = findAvgStateInClusters(model, part=

partition)
447 text = [f’x={clusters[c]:5.2f} sd={sd[c]:5.2f} n={clsize[c]}’

for c in range(len(clusters))]
448
449 ax = plt.gca()
450 handles = [mpatches.Patch(color=mypalette[c], label=text[c])

for c in range(len(text))]
451 ax.legend(handles=handles)
452
453 draw_model(model)
454
455 def draw_model(model, save=False, filenumber = None, outline=

None, partition=None, extraTitle=""):
456
457 plt.figure(figsize=(4, 4))
458 #plt.subplot(1, 2, 1, title="State of the Nodes")
459 color_map = []
460 intensities = []
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461
462 for node in model.graph:
463 if model.graph.nodes[node][’agent’].state > 0:
464 color_map.append((3/255,164/255,94/255, model.graph.nodes

[node][’agent’].state))
465 intensities.append(model.graph.nodes[node][’agent’].state

)
466 else:
467 color_map.append((247/255,121/255,109/255, -1*model.graph

.nodes[node][’agent’].state ))
468 intensities.append(model.graph.nodes[node][’agent’].state

)
469 degrees = nx.degree(model.graph)
470 #plt.subplot(121)
471 nx.draw(model.graph, model.pos, node_size=[d[1] * 30 for d in

degrees], linewidths=2, node_color =intensities, cmap=plt.
cm.RdYlGn, vmin=-1, vmax=1 )

472 #plt.colorbar(mcp)
473
474 if(outline !=None):
475 ax = plt.gca()
476 ax.collections[0].set_edgecolor(outline)
477 (clusters, sd, clsize) = findAvgStateInClusters(model, part

= partition)
478 text = [f’x={clusters[c]:5.2f} sd={sd[c]:5.2f} n={clsize[c

]}’ for c in range(len(clusters))]
479
480 handles = [mpatches.Patch(color=mypalette[c], label=text[c

]) for c in range(len(text))]
481 ax.legend(handles=handles)
482 plt.title("Snapshot of network with states and clusters")
483
484 if(save):
485 plt.title(str(filenumber)+extraTitle)
486 plt.savefig("plot" + str(filenumber) +".png", bbox_inches="

tight")
487 plt.close(’all’)
488
489
490 def drawAvgState(models, avg =False, pltNr=1, title="",

clusterSD = False):
491 plt.xlabel("Timesteps")
492 plt.ylabel("Average State")
493 plt.subplot(1, 2, 1, title="Average State and SD")
494
495 if(not avg):
496 plt.ylim((-1, 1))
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497 for i in range(len(models)):
498 plt.plot(models[i].states)
499 plt.plot(models[i].statesds, alpha=0.5)
500 if(clusterSD):
501 sds = np.array(models[i].clusterSD)
502 avgsd = sds.mean(axis=1)
503 plt.plot(avgsd, linestyle=":")
504 else:
505 states = []
506 sds = []
507 plt.ylim((-1, 1))
508 for i in range(len(models)):
509 states.append(models[i].states)
510 sds.append(models[i].statesds)
511 array = np.array(states)
512 avg = array.mean(axis=0)
513 std = np.array(sds).mean(axis=0)
514 p1 = plt.plot(avg, color=mypalette[pltNr-1], label=" ")
515 p2 = plt.plot(std, color=col.to_rgba(mypalette[pltNr-1],

0.5), label=" ")
516
517 if(clusterSD):
518 avgSds = []
519 for mod in models:
520 array = np.array(mod.clusterSD)
521 avgSd = array.mean(axis=1)
522 avgSds.append(avgSd)
523 array = np.array(avgSds)
524 avgAvgSd = array.mean(axis=0)
525 plt.plot(avgAvgSd, color=mypalette[pltNr-1], linestyle=":

", label=title)
526
527 return (p1, p2)
528
529 def drawCrossSection(models, pltNr = 1):
530 values = []
531
532 for model in models:
533 values.append(model.states[-1])
534 plt.subplot(1, 2, 2, title="Density Plot of State for

Simulations")
535 ax = plt.gca()
536 #ax.set_xscale(’log’)
537 plt.xlim((0, 5))
538 plt.ylim((-1, 1))
539 plt.xlabel(’Density’)
540 try:
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541 sns.distplot(values, hist=True, kde=True, color = mypalette
[pltNr-1], vertical=True)

542 except:
543 sns.distplot(values, hist=True, kde=False, color =

mypalette[pltNr-1], vertical=True)
544
545 def drawClustersizes(models, pltNr = 1):
546 sizes = []
547 for model in models:
548 part = findClusters(model)
549 (avg, sd, size) = findAvgStateInClusters(model, part)
550 for s in size:
551 sizes.append(s)
552 plt.subplot(1, 3, 3, title="Density Plot of clustersize

simulations")
553 plt.xlabel("Clustersize")
554 sns.distplot(sizes, hist=True, kde=True, color = mypalette[

pltNr-1])
555
556 def drawConvergence(variables, modelsList, pltNr = 1):
557 endState = []
558 for models in modelsList:
559 values = []
560 for model in models:
561 values.append(model.states[-1])
562 endState.append(mean(values))
563 plt.subplot(1,2,2)
564 plt.xlim((-1, 1))
565 plt.ylim((-1, 1))
566 plt.scatter(variables, endState, color=mypalette[pltNr-1])
567
568 def drawClusterState(models, pltNr = 1, step=-1, subplot=1):
569 plt.title("Density of Avg State in Communities")
570 if(step < 0):
571 plt.subplot(1, 3, 3, title="Avg State after Simulation")
572 states = []
573 for i in range(len(models)):
574 for c in models[i].clusteravg[-1]:
575 states.append(c)
576 else:
577 plt.subplot(1, 3, subplot, title="Avg State at t="+ str(

step))
578 states = []
579 for i in range(len(models)):
580 for c in models[i].clusteravg[step]:
581 states.append(c)
582 ax = plt.gca()
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583 #ax.set_xscale(’log’)
584 plt.xlim((0, 5))
585 plt.ylim((-1, 1))
586 plt.xlabel(’Density’)
587 plt.ylabel(’State’)
588 try:
589 sns.distplot(states, hist=True, kde=True, color = mypalette

[pltNr-1], vertical=True)
590 except:
591 sns.distplot(states, hist=True, kde=False, color =

mypalette[pltNr-1], vertical=True)
592
593 def drawAvgNumberOfAgreeingFriends(models, pltNr = 1):
594 avgNbAgreeingFriends = [model.avgNbAgreeingList for model in

models]
595 avgAvg = np.array(avgNbAgreeingFriends).mean(axis=0)
596 plt.title("Average Agreement of Neighbours")
597 plt.ylim((0, 1))
598 plt.xlabel("Timesteps")
599 plt.ylabel("Agreement")
600 plt.plot(avgAvg, color=mypalette[pltNr-1])
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