BISON
IST-2001-38923

Biology-Inspired techniques for
Self Organization in dynamic Networks

Demonstrator 1:

Ant-based monitoring on software IP routers

Deliverable Number:
Delivery Date:
Classification:
Contact Authors:
Document Version:

Contract Start Date:
Duration:

Project Coordinator:
Partners:

D14

March 2006

Public Circulation

Poul Heegaard, Ingebrigt Fuglem
Final (15th March 2006)

1 January 2003

36 months

Universita di Bologna (Italy)

Telenor ASA (Norway),

Technische Universitdt Dresden (Germany),
IDSIA (Switzerland)

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5" Framework Tnfor;gfg;

(1998-2002) technologies

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Abstract

The purpose of AntPing, an ant-based routing and monitoring system, is to demonstrate a
working implementation on a software based IP router. The AntPing is used to establish, main-
tain, and monitor virtual paths through a 10 node network. The network is a replication of the
Telenor core Internet backbone topology.

The demonstrator visualizes the inner workings of the ant algorithm by animation of ants mov-
ing and dropping in the network, and topology changes like link failures and restorations. The
animation also shows the ants that do not find the destination but are dropped because the TTL
is expired. In addition, the changes in cost values of each virtual path is plotted as a function
over time, both the cost of the current best cost, and the last cost, even when rejected by the
elite selection.

To supplement the demonstrator, a series of simulations in ns2 are conducted. The results
from these simulations show how the AntPing compares to Ping with link state routing under
network dynamics, and how AntPing scales with increasing number of virtual connections and
with increasing network size.

Demonstrator 1 (Final)

Contents

I[Introduction|

I Theoretical background - the elite CE ants algorithm|

(1__Generate ants|

2 Forward searching ants |

i3__Path evaluationl|

@ Backward updates|

III AntPing - design and implementation|

“ 77

“ 4

(7 Ant forwarding in Click]
/1 Methods

[7.2 Implementations| o o oL

[8 Ant datagram format

9 Animations

IV Description of scenario |

(10 Topology details and implementation|

(11 Monitoring quality of virtual connections|

3

11

14

16
16
17

18
19
19

19
20
21

24

25

28

28

29

Biology-Inspired techniques for Self Organization in dynamic Networks

IST-2001-38923

(12 Monitoring indices|

(13 Network dynamics in the demonstrator|

[14.2 Simulations of demo topology|.

[14.3 Simulations of extended topology|.

[V Closing remarks|

[A_TCMP ping|

(B Route record and source routing|

[B.1 IP Record RouteOption|
[B.2 IP Source Routing Option|

[C Hping scripts|

IC.2 Recv-nam.htcll

[D Demo start-up description|

[E Installing OpenWRT on LinkSys WRT54G(S)|

[E.1 About OpenWRT|

[E.2 Preparing Router for Accepting flash via tftp/thftp and boot_wait|

[E.2.1 Boot wait on routers older than V4.0.|
IE.2.2 Boot waiton WRT54GS>V4.0.|
[E.3 Flashing the firmware|.,

[F How to configure network interface on switch ports|

[G Tnstalling Click on OpenWRT]

31

32

35

.......... 36
.......... 36
.......... 42

44

48

50

50

50

.......... 50
.......... 52

53

.......... 53
.......... 58

61

Demonstrator 1 (Final)

(G.1 OpenWRT Toolchain| 66
(G2 CompilingClickl 67
(G.3 PreparetherouterforClick| 68
(G.4 Generate Click contigurationfilel 68
IG5 RunClickl. 69

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Part 1
Introduction

Proper network management and provisioning of service guarantees and differentiation in the
Internet requires high quality measurement data. It is a great challenge to obtain sufficient,
necessary, correct, and fresh data for various network management and traffic engineering
aspects, security and fraud detection, and accounting. Performance monitoring collects and
aggregates quality attributes about a service, or a set of services, e.g. by use of active monitoring
with Ping or traceroute. It is typically of interest to verify that a service is delivered according to
the specifications, e.g. as given in Service Level Agreements.

As a supplement to best practice in performance monitoring it is of interest to look into the
potential of collection and aggregation of performance data from indices of a complex adaptive
system based on swarm intelligence. The idea is to observe temporal variables of a swarm
intelligence system designed e.g. for solving reliable path management problems [17, 15] or
optimizing routing [13} 3] in the Internet. These variables will change as the network changes
and, hence, as the corresponding quality of the delivered service. Previous studies [4] of the
transient behaviour of CE ants [5], a Cross Entropy based Ant system for path management,
identified that several adaptive components of such a system can be used as indicators of the
network condition status with respect to traffic load level and topology. The indicators are the
stochastic routing matrix (the pheromones), routing path probability, cost values, and grade of
convergence (denoted temperature in CE ants).

To demonstrate its feasibility, a prototype implementation of a CE ants in software IP router
is prepared. The prototype is named AntPing and will demonstrate the CE ants principles in
a small-scale network. The implementation is based on Click [7], a modular software router
running on standard Linux PCs, and hping&ﬂ providing a rich TCL based API for socket pro-
gramming. A previous working prototype implementation based on a Mobile Agent System
(Java based) demonstrated the implementation feasibility [8]. However, the Java solution suf-
fers from severe performance limitations even in a small-scale demo network. Providing new
modules to the click router will provide useful insights in the complexity of implementing
swarms in real operating routers, and detect potential performance bottleneck introduced by
the CE ants system.

The report is organized as follows. Part [l describes in brief the theoretical background for the
Cross-Entropy based Ant routing algorithm used in the demonstrator. In Part |1l details of the
specification and implementation are given. Part[TV|describes the scenario used to demonstrate
the handling of dynamics in this monitoring system and some simulation results to comple-
ment the demonstrator with respect to scalability. The document is closed by some concluding
remarks in Part

1www.hping.org

Demonstrator 1 (Final)

Part 11

Theoretical background - the elite CE ants
algorithm

Finding the best path from node s to d is a routing problem in a network, G = (V, E), represent-
ing a bidirectional connected graph. The V' = {v;} are nodes (vertexes) in GG, where v; is node
i. The E = {e;;} are the links (edges) in G, where ¢;; is the link between node ¢ and j, v; — v;.
N, is the number of links in each node. The c(e) is the cost of link e, and L(7) = > ., c(e) is
the total cost of path 7. The network topology can change and G(t) is the graph at time ¢. The
path Trt(i) is the path (trajectory) found from source node s to destination node d after iteration
t. The basic steps are described in more detail in Deliverable 05 [4].

The routing approach is either

e hop-by-hop routing (e.g. OSPF, BGP) - the routing information in the intermediate nodes
from s to d is only destination specific and contains information about the first hop of the
best path from the current intermediate router to the destination d.

o virtual path (e.g. MPLS) - the routing information in the intermediate nodes is source and
destination specific and contains the information about the best path all the way from s
tod.

In the following, the algorithm is described for virtual path management. However, the same
principle applies for the hop-by-hop routing as well. The cost of the different paths from s to
d changes over time due to network dynamics like topology changes (nodes and links move,
(re)appear, and disappear) and changes in traffic pattern.

The algorithm consists basically of:

e Forward search - at each node i along the path from the source node, s, to the destination
node d choose the next edge e;; at random according to the routing probabilities in node
@) -

2, pi’z‘)yav] € v,

e Path evaluation - determine the cost value, L(m;) of the path of iteration ¢, m;. Let c(e)
be the cost of link e. In this section, c(e) is the delay experienced by the agent traveling
over this link, including queuing and processing at the originating end. Hence, the object
function used for illustration in this section is the end-to-end delay of the path 7 from
source node s to destination d.

L(m) =) cle) 1)

Veenm

e Backward updates - return to source node s and update the routing probabilities in each
node along the path ;.

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

The path evaluation and pheromone updates are guided by Cross Entropy, initially proposed
by Rubinstein for rare event theory [12]. In Helvik and Wittner [6] a distributed variant of
this is developed and combined with ant algorithm for the primary backup path problem. In
order to control and reduce the overhead of this CE ants algorithm, the use of elite selection is
proposed in Heegaard, Wittner, Nicola, Helvik [5].

In order to implement a path management strategy based on the elite CE ants approach out-
lined above, basically four algorithms must be implemented in every node that can be source,
destination and/or routing nodes. In this section a brief description of the algorithms are de-
scribed. A simulator implementing these algorithms are described in Deliverable D06 [2], and
examples of use is given in Deliverable D07 [1].

1 Generate ants

An implementation of CE ants must have a function that generates ants with the mission to
find the best path to the destination d. Each ant species has a unique task of finding the best
path between a specific source and destination pair. A sequence of ants of the same species is
sent out from a given source s to a destination d. Each ant species might have individual set of
rules (e.g. how to search, how to update) and specific parameters (e.g. memory, ant frequency).
When more and more information about paths between s and d is obtained, the frequency of
ants submitted can be decreased to reduce the management overhead. In a static network the
ant frequency can be set to 0 when the optimal (or at least a good) solution is found. However,
under dynamic network conditions and environments the frequency must always be greater
than 0 in order to detect network changes. The frequency might be regulated in accordance to
the dynamics of the network, i.e. high frequency of (significant) changes will require a high
frequency of ants.

The i’th ant of a specific species is submitted from the source node s to the destination d, at time
epoch ¢;. The ant interarrival time, i.e. the time between epochs ¢;iand ¢;, is either determin-
istic of following a negative exponential distribution, f(t) = Ae™*, where 1/ is the expected
time between two ants (of the same species).

2 Forward searching ants

An exploration ant uses no information in the nodes of the quality of the different alternatives
when selecting the next hop. This is simply done by a unguided random walk over the existing
alternative outgoing links. A normal ant (i.e. exploitation, or also called maintenance ant) will
in its forward search use the following routing probability at time ¢ in node ¢

! l l
pg,z)j = Tt(z)]/ ZTt(,i)k
vk

where 7" and is the pheromone value at time ¢ over interface j in node i for species [(i.e. for
t,1 p p

a specific source destination pair).

Demonstrator 1 (Final)

The forward searching ants will at each node randomly select the next hop by sampling over
the outgoing interfaces from this node. The sampling probability is given by the normalized
pheromone values updated by the backward ants. Hence, the higher the pheromone value, the
more likely it is to select a given interface. A random selection of interface can efficiently be
implemented by the following algorithm:

Let f; be pheromone value on interface i,
fo=3",fi is the sum of pheromones over all interfaces

Sample U =Uopi - fo, where Upi is uniformly distributed over [0,1].
Initialize i=1 and q¢= fi:
WHILE U > g DO

=1+ 1

q=q+fi
Returns ¢ — the sampled interface

An example of implementation is given in Listing 1| (quasi, Simula-like):

3 Path evaluation

At the destination node the cost value L(m) of t'th path found, 7, is calculated. Based on this
cost value, a performance function h; is obtained that includes the cost value and some cost
value history. The historical cost values are recorded through an autoregressive formulation
with a memory parameter 5. This formulation enables a compact representation of previous
cost values weighted decreasingly as time goes by and new paths are found. The performance
function is (see details in [6]):

ht = Bhy—ar + (1 — ﬂ)e—L(m)/% ®

The ~; is the scaling parameter that is the result of the optimization of the change of measure
f in the routing probability matrix. Each ant species has a unique scaling parameter. The
scaling parameter is referred to as the “temperature”, and this parameter is identified as a
useful monitoring parameter for the stability of a path. In order to avoid storage of all (or a
part) of previous cost values, the 7 is calculated through a first order Taylor expansion (See [6]
and [15] for details):

B+L(m)-exp(— =)

_ Yt—At
T O exp(— E) A
e (L o
B — B(B+ L(m)exp(—H1t))
Tt—-At Nt
M — M+1

where the initial values are A = B = M = 0 and v = —L(m)/In(p). The node only needs to
store v, A, B, and M instead of the complete observation window. After iteration ¢, the ants are

9

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Listing 1: Forward ants

! sxx FORWARD ANTS BY STOCHASTIC ROUTING sk ;

! tmptab — contains pheromones;
tmptab (0) := 0;
! tmpl — identity function on every edge: l=eligable, O=non—eligable;
tmpI(0):=0;
! run through all edges for the current node;
FOR i:=1 STEP 1 UNTIL eTab(nodelD) DO
BEGIN
! revisits to a node is not allowed;
revisit:=FALSE;
IF NOT explore THEN
BEGIN FOR j:=1 STEP 1 UNTIL pck.hop—1 DO

revisit := revisit OR (pck.path(j) = neigh(i));
END;

! disable selection interface down, or revisit to cell;
IF < Link down > OR revisit THEN
BEGIN

tmplI(i) := 0;

tmptab (i) = 0;
ELSE
BEGIN

tmpl(i) := 1;

IF pck.explore THEN

tmptab (i) := 1.0

ELSE

tmptab (i) := metric(tmpflag, pck.token, i);
END;
tmptab (0) := tmptab(0) + tmptab(i);
tmpl(0) := tmpI(0) + tmpl(i);

7

! tmptab now contains pheromone values, tmptab(0) the sum of these;

! NORMAL CASE: ;
! xxx check if packet not too old xx;
IF tmptab(0) > 0.0 AND pck.hop < TTL THEN
! at least one valid next step exits;
BEGIN
! sample a value uniformly between 0 and sum of pheromones;
samp := tmptab(0)*unif0l.sample;
tmp := tmptab(1);
i:=1;
! do while the sampled number is less than acc. sum;
WHILE tmp<samp AND i<eTab (nodelD) DO
BEGIN
i:=i+1;
tmp := tmp + tmptab(i);
END;

=> the selected edge / interface is i;

! update cost value;
pck.T := pck.T + cost(i);

10

Demonstrator 1 (Final)

carrying information about the path found, 7, information about the observed cost value and
historical values.

Only ants with cost values less than the elite limit (calculated as a function of the current tem-
perature, see [5] for further details), are returned to the source and updating the pheromone
(routing table) of the intermediate nodes, see Section

A quasi-code (Simula) of an implementation of this is given in Listing[2| The cost value T is in
the payload of the backtracking ant (pck).

4 Backward updates

The backward agents updates the pheromones 7} (for simplicity the species /, the iteration time
t and node i indices are suppressed) and the corresponding p; = T/ > ;. Ti- The pheromone
is given as

B G 1 Bj
_L(my) — + = o < oA
Ti=I({j} em)e” " +A;+4 _p TN @
ic; otherwise
where
. _L(m) L I
AJ — B(A] + I({]} S 7Tt)€ Tt (]_ + (’/Tt) (1 + 2(7Tt))))
Tt Yt
) _ Liry) L)
Bj ,B(Bj + I({j} eme n (L(m)+ %))
. L) L(7)2
C; ﬁ(Cj +I1({j} em)e (2t))

This means that each node must store a set of A;, B, C}, one for each destination d and for each
outgoing link j. The initial values of () are A; = B; = C; = 0.

A quasi-code (Simula) of an implementation of this is given in Listing[3] The cost value T'is in
the payload of the backtracking ant (pck).

11

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Listing 2: Path evaluation

I xxx PACKET ARRIVED AT DESTINATION NODE;
! swap source and destination addresse;

! update score values, the T is in the packet payload;

! CEAnts: calculate score vaule, L(pi)=T;
T := pck.T;

! get temperature over all samples;
! the token is in the packet payload and identifies the ant species;
tmpT := —gaOtot(tmpflag, pck.token)*Ln(rho(pck.token));

! get temperature over elite samples;
tmpTresh := —ga0(tmpflag, pck.token)*Ln(rho(pck.token));

! elite selection: dynamic;
! ie. update the pheromones if T is less than or equal to tmpT;

update := pck.T <= tmpT;

! remember src and dst are swapped;

d := pck.src;
s := pck.dst;
tok := pck.token;

! update temperature for updating ants;
IF pck.hop<TTL AND update THEN
BEGIN
pck.update := TRUE;
IF gaO(tok) EQ 0 OR M(tok) EQ 0 THEN
BEGIN

ga0(tok) := —T/Ln(rho(pck.token));
END
ELSE
BEGIN

tmp := T/ga0(tok);

tmpA := A(tok);

tmpB := B(tok);

tmpE := Exp(—tmp);

gal(tok) := (tmpB + TxtmpE)/((1+tmp)=*tmpE +

(tmpA—rho (pck. token)*((1 —betax*(M(tok)+1))/(1—beta)))) ;
A(tok) := (tmpA + (1+tmp)*Exp(—tmp))=beta;
B(tok) := (tmpB + TxExp(—tmp))x*beta;
END;
M(tok) := M(tok)+1;

! sx EXCEPTION HANDLING, gamma very small or even less than 0;
IF gaO(tok) < verysmall THEN
BEGIN
gal(tok) := —T/Ln(rho(pck.token));
END;

pck.ga0 := gaO(tok);
END;

! update temperature for all ants, same procedure except that ;
! ga0 — galOtot; ! M —> Mtot; ! A —> Atot; ! B — Btot;

12

Demonstrator 1 (Final)

Listing 3: Backward ant

! xxx BACKWARD AGENT — UPDATE ROUTING TABLES s ;
! #%xx CEAnts: use cross entropy approach ssxx;

remember that src and dst are swapped;
%% the ants follows the reverse path;

!

!

s:

d:= pck.dst;

= pck.src;
tok:= pck.token;
T := pck.T;

tmpgal0 := pck.ga0;
FOR i:=1 STEP 1 UNTIL eTab (nodelD) DO

BEGIN
tmpA := Ars(tok, i);
tmpB := Brs(tok, i);
tmpC := Crs(tok, i);

IF i EQ pck.infpath (pck.hop) THEN
! along selected path;

BEGIN
tmpE := Exp(—T/tmpga0) ;
tmpA := tmpA + tmpEx(1 + T/tmpgaO*(1+T/(2+tmpga0))) ;
tmpB := tmpB + tmpEx(T + (Tx%2)/tmpga0);
tmpC := tmpC + tmpEx*(T*x%2)/2;
END;
Ars(tok, i) := tmpAsxbeta;
Brs(tok, i) := tmpBxbeta;
Crs(tok, i) := tmpCxbeta;
tmp := tmpA;

IF tmpBxtmpCxtmpga0 > 0 THEN
BEGIN
IF 1/tmpga0 < tmpB/(2xtmpC) THEN
tmp := tmp + tmpC/tmpga0*+2 — tmpB/tmpgal
ELSE
tmp := tmp — (tmpB*%2)/(4xtmpC) ;

’

IF i EQ pck.infpath (pck.hop) THEN
! along selected path;

metric(pck.token, i) := tmpE + tmp
ELSE
metric(pck.token, i) := tmp;

’

13

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Part 111
AntPing - design and implementation

The AntPing sends monitoring and routing packets from a source to a specific destination N
times per second. The main differences between AntPing and ordinary ICMP Ping [11] are:

e AntPing does both routing and monitoring, while Ping only does monitoring

e AntPing is routed according to a stochastic ant routing algorithm, Ping is routed accord-
ing to link state (e.g. OSPF, ISIS) or distance vector (e.g. BGP) routing algorithm.

e AntPing records forward route (route records). Some implementations of Ping supports
the -R flag that records route if supported in the routers.

e In AntPing the datagrams are sent backwards on reversed route (path) using source rout-
ing, see Section[B.2

e AntPing adds extra statistics in the routers as implemented by Click. The IP address at
every hop is stored in IP header option field [10] and time stamps (e.g. the static link
metrics) added to the payload.

¢ AntPing sends UDP datagrams on destination port 51234, Ping uses ICMP.
¢ AntPing indicates ant type (normal, exploration, forward, backward, update) in payload

e AntPing supports both deterministic or random interarrival times with adjustable sender
rate.

e AntPing collects animation data for demo purpose.

The AntPing requires implementation of a generator of ant datagrams (UDP datagrams), a re-
ceiver of these ant datagrams, and processing support in the routers to forward and update these
ant datagrams. Figure [I|shows an example of how the AntPing works. In the source host S,
an ant datagram is generated. The time this datagram was generated is added to the payload,
source address is set to S and destination address to D (more details on datagram field set-
tings in the following). At router R1, the datagram’s destination address is read and the next
hop is either selected randomly according to a uniform distribution over all available interfaces
(random-walk), or according to the ant routing method presented in Part[[l} Random-walk rout-
ing is applied when the ant type is exploration, i.e. when the ants do not smell any pheromone
values in its search for new paths. After selected next hop, but before transmitting it, the ant
datagram is updated; the host address of the first router visited is recoded and stored in the
datagram header (the optional IP header). Then the datagram is forwarded. This is repeated
for every router along the path until the host address is equal to the destination address D. At
host D, it is checked whether this is the first ant from the source S. If yes, a new connection is
established (source port number will be unique for this species). Otherwise, the cost value of
the path traveled is calculated, the temperature updated and added to the payload. An update
packet is now sent where the source address is D, and the final destination address is S.

14

Demonstrator 1 (Final)

In order to update pheromone values according to the total path quality in all intermediate
routers between D and S, the AntPing will follow the reversed path back to S and hence the
destination address of the first hop is R3, the second R2, and so on until the next hop is S. This
is done by using loose source routing (see Section[B.2). This works as follows: In D the reversed
route is added to the datagram’s header. The first hop, R3, is placed in the destination address
field, the final destination, S, is placed at the end of the reversed path, and the next hop pointer
is pointing at R2 (in boldface). At R3, the destination address is changed to the value pointed
to by next hop pointer, and the pointer is moved to the next element in the reversed path, R1.
This is repeated for every hop along the reversed path until the destination address is S. When
the ant datagram is received by .S, essential monitoring information is written to a log, if this is
not done in D.

D

A A
: A L
: S [D }-» s |[D}-» s |[D }t-»s | D |
. [] R | R1 [R2] R1[R2 [R3 |1
| origtime origtime origtime origtime '
: accum. cost accum. cost accum. cost accum. cost :

: Y
D | S |e----1 D | Rl |«-{ D [R2 |e----- D | R3
R3 [R2 [R1 R3|R2| S R3[R1[S R2 [R1| S
temp temp temp temp
cost cost cost cost

Figure 1: Route record for forward ants and source routing for backward ants.

The sequence chart in Figure [2] gives a more detailed description of the exploration and con-
nection establishment phase and the maintenance and improvement phases.

From this description, the following components of AntPing are identified:

o AntGen (the ant nest) - here the ants are generated and received if and when they return
to the nest

e AntRec (the food source) - the ants that reach the destination will accumulate the cost of
the path (trail) and update of the temperature and return to the nest with this information.

e Router (the path (trail)) - responsible for routing and forwarding of the ants.

In the following sections these 3 components are described.

15

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

AntGen Router Router AntRec
(hping) (click) (click) (hping)
" Antrouting:
exploration ANT(1/explore/rho/beta) —— gl Random walk 4
and setup ANT(1/rho/beta/cost!) —— g
phase [ANT(1ometa/cost1.) — gl . Frc ot fomsres
1 Establish]
T Update TN 1 connection /
1 ANT(0(update)/cost/temp/beta/cost1/...)
L pheromones [
o Y ANT(1/costitemp/beta/costi/...)
Source routing _lg——
e ————
7 sucesstul ANT(1/costitemp/beta/cost1...)
1 | e—
L exploration ant
maintenance | 7 Antrouting:
N ANT(0(normal)) ————ppii ¢ i J
and improvment), Stochastic routing ¢
phase — ANT(Ofcost!) —0onouu e
ANT(0/cost1/cost2/...) ——pp! ;' Elite selection: ‘
""""""" % 1 cost vs. temp f
Update | ANT(0(ost/.) A

\ pheromones jt&—

ANT(O/cost/temp/beta/cost1/...)

" Source routing '7<,/~
R ————

—
N ANT(0/cost/temp/beta/cost1/...) SO -~
Update e . Ant routing:

\ plot & animation 4 [ANT(2(explore))), Stochastic routing /‘

T ANT(2lcost) ——— 3]
[ANT(2/costi/cost2/..) —— gl .~~~ 77T .
P —— . 4 Elite selection:
Just forward, 1 cost vs. temp
| noupdateof ANT(1(no update)/cost1/...)
% pheromones f -«

Source routing | ANT(/eostiL.)
R ——i
r————— - —

/ Update ‘-: «———— ANT(1/cost1/...)
L only animation 4

Figure 2: Sequence chart of the AntPing protocol behaviour

5 AntGen - “the ant nest”

The AntGen (“the ant nest”) consists of two sub processes; generator of UDP datagrams that
represent the ants, and receiver of the UDP datagrams that returns to the AntGen (“the ant
nest”) with information about the path (“trail”) quality to the destination (“food source”).

5.1 Methods

The generator creates an UDP datagram, insert the generation time stamp, and sends it over an
IP socket to the default gateway. The following methods are required to implement this:

generate_ants(explore, rate, det, portno, destaddr) - sends an explore (if explore is TRUE, oth-
erwise a normal (exploitation/maintenance) ant is sent) ant to the destination destaddr on
port portno (51234 is used as an ant datagram identifier) on average rate times per second.
The interarrival times are deterministic if det is TRUE, otherwise it is negative exponen-
tial, i.e. the ant generator process is Poisson. The following sub-methods are identified:

CEA = create() - creates a reference to an ant datagram (uses UDP, see Section|[§)

16

Demonstrator 1 (Final)

set_typeAnt(CEA, value) - set ant type according to Table|l|on page

set_forward_flag(CEA, 51234) - sets forward flag by setting destination port=51234 in
the UDP header.

set_address(CEA, address) - sets destination address of CEA to address.

set_specid(CEA, specID) - sets a unique ID given by source and destination addresses;
the ID is stored in the SRC_PORT field in UDP header.

send_ant(CEA) - sends ant datagram to socket.

The receiver process inside the AntGen needs to recognize the ants generated inside AntGen
and extract data regarding the quality of the path, both the total cost and the hop-by-hop cost
of every step along the path.

return_ants(CEA, portno, inf) - listen on portno (default=51234) at interface inf.

read_payload(CEA) - extract the path and cost data from the payload

print_animation_log(CEA) - print data to animate ants, see Section 9] for description of
the animation format.

print_log(CEA, temp, cost, rrlist) - print monitoring data to log-file.
print_plot(CEA, temp, cost, rrlist) - print monitoring data to plot-file.

5.2 Implementations

The AntGen is implemented by use of hpingﬂ version 3 with embedded TCL. This enables
simple customization of IP packets, e.g. in for the demo this means implementation of sending
of UDP datagrams, and receiving IP packets and extracting header fields and payload data.

The script in Listing 4 implements the generating of ants as specified by the methods above
(see http:/ /wiki.hping.org/ for a hping and TCL wiki):

Listing 4: Generator in AntPing implemented in hping

Send ants every $freq [ms] to destination as specified in $target
proc genAnts {} {
global target freq sentind recvind explAnts explRatio antld rho beta delay accTime

explore = 0 : maintenace ants and data packets

explore =1 : exploration ants

explore = 2 : exploration ants, initialisation phase
cost = 0: ant packets

cost = 1: data packets

the ant is sent as exploration ant at startup and later as maintenance
the initial exploration phase is over when the predefined number of ants
are received
if {$recvind <= $explAnts} {

set explore 2

2See http:/ /wiki.hping.org/

17

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

} else {
set explore [expr rand() < $explRatio]

}

if { $data == 1 } {
set explore 0

}

construct packet to be sent to $tagret and with route record
set pck "ip(daddr=$target,ttl=8)+ip.rr"

append pck "+udp(sport=$antld,dport=51234)"

set cost $data

if { $explore == 2 } {
Send initialisation exploration ant to reset
the variables on receiver for port number $antld
append pck "+data(str=$explore/$rho/$beta/$cost)"”
} else {
cost values for testing of NAM trace generation
append pck "+data(str=$explore/S$cost)"

send packet
incr sentind 1

puts "Generated:_$pck"
hping send $pck

next packet using "bootstrapping”
after $freq genAnts

The send script also contains support for the printing of log files, see Section E] for animation
details and Appendix|C.1|for listing of the full “send-nam.htcl” script.

6 AntRec - “the food source”

The AntRec implements the “food source” which is located at the destination node of the vir-
tual path that is to be established. From the sequence chart in Figure [2| it is seen that in the
initial phase, exploration ants are sent discovering paths to the destination. The ant receiver
listens to port 51234. When the first of these ants arrives, the AntRec process detects that this
is a new, unknown, connection (i.e. a new species) and creates an object in the receiver pro-
cess that contains counter and temperature variables. The ant is returned to the source node
with information about the initial animation time counter. The preceding (both exploration
and maintenance) ants will update the temperature of this species based on its cost value and
the current temperature. The elitism principle, as described in [5], is implemented, meaning
that the AntRec checks whether the ant’s cost value is almost the best so far before the ant is
returned with information of pheromone updates and not just animation data.

18

Demonstrator 1 (Final)

6.1 Methods

The following methods are required:

CEA = listen_to_ant_port(portno) - connects to socket and listens on port portno assigns pointer
to incoming ant datagram.

reply_ants(CEA) - return an ant on reversed route with updated temperature information and
forward flag set to FALSE.

cost = calculate_delay(CEA) - reads time stamp from CEA datagram and compares with
current system time on receiving host. This option is used in the simulation results
in Section [14

costl = calculate_hops(CEA) - alternative 1 cost function: reads the number of hops, i.e.
the number of elements in the recorded route list.

cost2 = calculate_cost(CEA) - alternative 2 cost function: reads the accumulated cost in
the payload of the packet. This can be the number of hops or sum of interface met-

rics read and accumulated by the routers. This option is used in the demo trials in
Section [14

specID = read_ID(CEA) - reads species identity from source port field of UDP header,
see Section

rrlist = read_recorded_route(CEA) - reads recorded route from optional IP header (see
description in Section[B.1).

temp = update_temperature(specid, cost) - updates temperature of species specid reflect-
ing last cost observation.

elite(cost, temp) - determines whether this ant meets the selection criterion according to
the elitism principle or not.

add_source_route(CEA, rrlist) - reverses recorded route and adds it to optional header
to perform source routing in click as described in Section

add_temp(CEA, temp) - adds updated temperature temp to CEA.

add_animation_data(CEA, rrlist, rcost) - adds information about the path (rrlist) and the
cost if each hop along the path (rcost)

send_ant(CEA) - sends ant datagram to socket.

6.2 Implementations
The AntRec is also implemented by use of hping, see Appendix|C.2|for listing of the full “recv-

nam.htcl” script.

7 Ant forwarding in Click

The software IP router is implemented based on Click Modular router (Click http://www.
read.cs.ucla.edu/click/). The router is modified to detect UDP datagrams on destina-
tion port 51234 and treat them as ants. The Click router is flow oriented, i.e. the sequence of

19

http://www.read.cs.ucla.edu/click/
http://www.read.cs.ucla.edu/click/

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

operations on the datagram through the router is described. In order to route ants and update
the ant routing tables it is necessary to intercept the datagram flow. A few extensions to the
existing, and some new Click modules are required. The ants datagrams are treated differently
dependent on whether they are forward or backward datagrams.

7.1

1.

Methods

Forward ants (dport=51234): read destination address and species identity. They look up
the ant routing table and select randomly the next hop. The following AntPing specific
methods are required:

CEA = listen_to_ant(portno) - the router recognizes an ant datagram (portno=51234) and
a pointer to the datagram object is assigned, denoted CEA here.

specID = read_ID(CEA) - reads species identity from source port field of UDP header,
see Section

antType = read_type(CEA) - reads ant type from payload.

vector = lookupAntTable(specID, antType) - the routing vector for ant species specID
is assigned vector. The antType value (see Table [1) determines whether this is an
exploration ant (routed according to uniform distribution over the available interfaces
(simple random walk)) or a normal ant (uses the pheromone values).

next = rand_getnext(vector) - the next hop is randomly chosen from the probabilities
determined by the normalized list in vector.

set_next_addr(CEA, next) - the CEA address is updated.

add_rraddr(CEA, CURRENT_IP) - adds current IP address to the record route field in
the optional IP header (see description in Section [B.T).

cost = read_cost(CEA) - reads ant datagram to next module in click flow.

update_cost(CEA, cost) - read interface cost and adds to the accumulative cost read from
the packet payload and write the new value back to the payload.

Backward ants (dport=51234): read destination address and species ID. They update all
pheromone values in the ant routing table for this species identity. The backward ants are
routed according to source routing information found in the optimal IP header of these
ants. The following AntPing specific methods are required:

CEA = listen_to_ant(portno) - the router recognizes an ant datagram (portno=54321) and
a pointer to the datagram object is assigned, denoted CEA here.

temp = read_temp(CEA) - reads the temperature from the payload of the ant datagram.

expCost = read_exp_cost(CEA) - reads the exponential value of the cost value of this ant,
e L™,

specID = read_ID(CEA) - reads species identity from source port field of UDP header,
see Section

antType = read_type(CEA) - reads ant type from payload.

20

Demonstrator 1 (Final)

updateAntTable(temp, specID, expCost, antType) - updates the pheromones of the ant
routing table if antType is 0 (normal).

next = get_next_addr(CEA) - reads optional IP header and gets next address (and move
the header pointer one position).

set_next_addr(CEA, next) - the CEA address is updated.

send_ant(CEA) - sends ant datagram to next module in click flow.

7.2 Implementations

To make the demonstrator portable, the ant routing is implemented on home routers flashed
with Linux OS. The demo network described in this document consists of 10 wired routers
to represent the core of the Telenor backbone. We have used LinkSys WRT54GS, v4.0. Other
home routers do also support the OpenWRT http://OpenWRT.org/ Linux distribution. The
LinkSys WRT54GS, v.4.0 has 16 Mbytes of memory and 4 Mbytes flash. The 4 switch ports are
reconfigured to be IP interfaces and the up-link interface is defined for monitoring and configu-
ration of the router. The wireless interface was disabled because the swarm based method was
not developed for wireless broadcast routing, but also because it was expected potential radio
interference between the 10 routers that will be rather close to each other in the demo setup. In
Figure 3|an illustration of the demo setup in our lab is given.

Click (Click http://www.read.cs.ucla.edu/click/)is a modular software router devel-
oped by MIT LCS’s Parallel and Distributed Operating Systems group. A Click router is a
collection of modules called elements. The elements control every aspect of the router’s behav-
ior, from communicating with devices to packet modification to queuing, dropping policies
and packet scheduling. It is easy to write new elements in C++. The router configuration is
describing the packet “flow” through the router be gluing the required elements together with
a simple language. The AntPing router has extended the click library by 5 new elements:

1. SourceRoute - provides support for source routing of IP packets based on Loose Source
Routing as described in Appendix The backward ants is routed according to source
routing, see methods get_next_addr(CEA) and set_next_addr(CEA, next) listed above.

2. Antlable - element holding persistent information about the interfaces and the routing,
like cost and pheromone values.

3. BackwardAnt - updates the pheromones of the ant routing table if antType of the backward
ant is 0 (normal), see method updateAntTable(temp, specID, expCost, antType) above. All
other ants are returned without updating the pheromone values.

4. AntLookup - provides support for stochastic routing according either to uniform distri-
bution (exploration ants does random-walk) or normalized pheromone values (normal
ants). The ant type is determined according to the settings in Table[I] After the next hop is
selected, the record route and cost values are updated for the IP packet implementing the

ant. See methods lookupAntTable(specID, antType), rand_getnext(vector), set_next_addr(CEA, next),

add_rraddr(CEA, CURRENT_IP), update_cost(CEA, cost) as listed above. This element also
notices link failure and TTL expiration.

21

http://OpenWRT.org/
http://www.read.cs.ucla.edu/click/

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Figure 3: The AntPing installation of the Telenor lab in Trondheim. To the right a wooden copy
of the Tyholt tower (TV/radio and a rotating restaurant) just outside our office window.

5. AntTrafficMonitor - Measures the byte and packet rate through the router, and updates the
AntTable. These measurements can be used as cost values in the CE-ant algorithm, but
are currently not in use.

In Figure @] the configuration of the packet flow for AntPing is illustrated. Packets are read
from the network interface in FromDevice. The packet flows from element to element until it
reaches ToDevice or ToHost. Each element may alter the content of the packet. If an element
has two or more outputs, the content of the packet usually decides which output it is sent
to. Most of the elements are necessary for normal IP routing, like ARP handling, broadcast
dropping, decreasing TTL, static routing, sending ICMP error messages when necessary etc. In
addition we filter out forward- and backward ant packets, and send them to the Forward Ant
and Backward Ant elements to do the swarm based routing. Forward Ant decides which output
the packet goes to, based on the swarm intelligence, while the Backward Ant sends all packets
to SourceRoute which finds the next hop.

Running Click in home routers implies that we must consider the rather restrictive constraint

22

Demonstrator 1 (Final)

FromDevice(eth0)

Classifier(...)

ARPResponder

(109.10.1)

o Queve to ARPQuerier

Strip(14)

FromDevice(eth1)

Classifier(...)

ARPResponder

(10.1.9.2)

to Queue

to ARPQuerier

Paint(1)

ForwardAnt()

DropBroadcasts

PaintTee(0)

MarkIPHeader()

CheckIPHeader(...)

IPClassifier(...)

FowarsAm BackwargAm Detaut
= = =

BackwardAnt()
SourceRoute()

DropBroadcasts

PaintTee(1)

Strip(14)
MarkIPHeader()

StaticlPLookup(...)

IPReassembler

EtherEncap(..)

|_/

IoMPEror IoMPEmor

rediect redirect
IPGWOptions(10.9.10.1) | | IPGWOptions(10.1.9.2) |

ICMPEror IoMPEror

redrect redirect
FixIPSrc(10.9.10.1) FixIPSrc(10.1.9.2)
DeclPTTL DeclPTTL

ICMPEror IoMPEror

redrect redirect

|_/

| IPFragmenter(1500) |

| IPFragmenter(1500) |

redirect

rom Giassier

ARPQuerier(10.9.10.1,...)

ToDevice(etho)

ICMPEror
rodi

from Cjasser

ARPQuerier(10.1.9.2,...)

ToDevice(eth1)

A

ToHost()

Figure 4: Click module flow chart for AntPing

23

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

of 16 Mbytes of RAM and only 4 Mbytes of flash memory. The Click elements are C++ and
compiling with C++ standard library will result in code larger than 16 Mbytes. The alternative
used in this implementation is uClibc++ (uClibc++ http://cxx.uclibc.org/) which is a
library optimized with respect to size rather than performance for embedded systems.

The flashing of LinkSys and installation of OpenWRT Linux distribution on these boxes are
described in Appendix[El A brief description of how to configure the network interfaces on the
LinkSys switch port is described in Appendix [F Other details of the demo setup procedures,
including in installation of and starting click, starting hping on source and destination nodes,
and running live animation and cost plotting, are given in Appendix D}

8 Ant datagram format

The ants are implemented by use of UDP datagram. In Figures[5|and [|the IP- and UDP-headers
are shown, as well as the payload that contains information to ensure correct operation of the
AntPing. The total size of the packet is less than 100 bytes. The protocol type is UDP (17
according to [9]).

All ants are UDP datagrams identified by destination (forward) and source (backward) port
equal to 51234. The ant species are distinguished by unique source port number (greater than
50000) given by the unique source and destination addresses.

Table 1: antType encoding

] Update? \ Init? \ Expl? \ Backw? \ sport \ dport \ antType \ Comments on ant type ‘

yes no no no 5000* | 51234 0 maintenance and improve-
ment ants

yes yes | yes no 5000* | 51234 1 the exploration ants in the
initial phase

yes no yes no 5000* | 51234 2 explore the networks in sta-
ble phase

yes no no yes 51234 | 5000* 0 updates pheromones along
reversed path

no no no yes 51234 | 5000* 1 no updates, sends animation
data “home”

The first 2 bits of the payload are used for indication of whether this is an explore or normal
(exploitation/maintenance) ant (Figure [5). Forward and backward ants are distinguished by
dport=51234 and sport=51234, respectively. See Table [1| for details of the antType and port
encoding. The UDP source port contains the ant species identity (e.g. given by the IP source
and destination addresses).

The payload format depends on the ant’s role (distinguished by antType values and source and
destination ports):

24

http://cxx.uclibc.org/

Demonstrator 1 (Final)

Initialization exploration ants (dport=51234 and antType=1):

- payload = 1/p/[(search focus (p) and memory parameters (3), added to the pay-
load by the AntGen generator process)

Normal (maintenance and improvement) ants (dport=51234 and antType=0):

- payload = 0/costl/cost2/.../costN (cost value for each of the N hops,
added to the payload by the IP router)

Exploration ants (dport=51234 and antType=2):

- payload = 2/costl/cost2/.../costN

Pheromone update ants (sport=51234 and antType=0):

- payload = 0/e ™/ /L(7)/~v/B/NAMt ime/cost1l/cost2/ . ../costN (the ex-
ponential value is added to avoid problems with float number manipulations in the
IP router, see Section This, and total cost (L()), current temperature (), mem-
ory parameter (), current animation time, and the cost vector are added by the
AntRec process).

Animation update ants (sport=51234 and antType=1):

- payload = 1/e L™/ /L(7)/v/B/NAMt ime/cost1/cost2/.../costN

As described in previous sections, the optional IP header is non-empty because this is used for
recording route by forward ants, and for strict source routing by backward ants. According to
RFC791 [10], the maximum optional IP header is 39 bytes. This implies that when storing 4
bytes per hop, at most 9 hops can be recorded and given in the source route. However, since
the demo implements the parsing of ant datagrams we are in the position to extend this limit, if
necessary. For the demo the upper limit of 9 hops is sufficient. For larger scale implementation,
the AntPing could be implemented using IPv6 where this header limitation do not exist.

9 Animations

To visualize the ant movements and the network dynamics, the AntPing demo has included
support for animation through the Network Animator (NAMﬂ which is in widespread use as
visualization tool together with Network Simulator (ns The demonstrator visualizes discrete
events in the ant routing used for detecting, establishing and maintaining virtual paths in the
demo network described in the next section.

The NAM format consists of a static part where the topology is described:

3See http:/ /www.isi.edu/nsnam/nam/
4Gee http:/ /www.isi.edu/nsnam/ns/

25

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

. A
v:r-glct) n length | 8-bittype of service 16-bit total length (in bytes)
o e 3-bit .
16-bit identification flags 13-bit fragment offset
L . 8-bit protocol
8-bit t(';“TeL;o live UDP=17 16-bit header checksum
[RFC762]
IP header
32-bit source IP address
32-bit destination IP address
%‘g S| addr#1 | addr#2 | addr#3 | addr#4 | addr#5 | addr#6 | — — — - -
N ‘ \
, o _ A
source port: destination port:
ant species identity ant port = 51234
UDP header
16-bit UDP length 16-bit UDP checksum
antType/[rho/beta/]cost1/cost2/... payload

Figure 5: Format of forward ant datagrams with details in IP and UDP headers

e The nodes given by their identity.

e The links specified by the end node identities. The node positions are given relatively by
the length of the link and its angle.

e The delay and capacity of the links.

The dynamic part of the NAM trace defines the events. In the demo, the following event are
visualized

e ant leaving a node - start of transmission over a link, speed given by link delay, and size
of ant is given by observed size of UDP datagram relative to given link capacity
e ant arrives at a node - end of transmission over a link, speed and sizes as above.

e ant dropped at a node - packet dropped from the node and downwards to the bottom
border of the window.

e link fails - the color of the link is changed to red

e link restored - the color of the link is changed (back) to black

26

Demonstrator 1 (Final)

4-bit A
) 8-bit 1 f servi -bi i
version length it type of service 16-bit total length (in bytes)
o - 3-bit .
16-bit identification flags 13-bit fragment offset
L . 8-bit protocol
8-bit t(';“TeL;o live UDP=17 16-bit header checksum
[RFC762]
IP header
32-bit source IP address
32-bit destination IP address
%‘g 2| addr #1 addr#2 | addr#3 | addr#4 | addr#5 | addr #6
\
, o _ A
source port: destination port:
ant port =51234 ant species identity
UDP header
16-bit UDP length 16-bit UDP checksum
antType/exp(-cost/temperature)/cost/temperature/beta/cost1/cost2/... payload
T —

Figure 6: Format of backwards ant datagrams with details in IP and UDP headers

e new connection detected at AntRec - a box (an agent) appears next to the destination node
To log the events listed above, only three nam entry types are required:

e “h” - packet is sent on link (leaving the node), add to log file: h -t <time> -s <from
node> —-d <to node> -a <color>

e “d” - packet is dropped on link, add to log file: d -t <time> -s <from node> -d
<to node> -a <color>

e “1” - change link status, add to log file: 1 -t <time> -S UP | DOWN
The AntGen process instance writes the NAM trace to a file. The nam process instance reads
this from stdin and presents this “live” as the running AntGen process instance continuously
updates the dynamic part of the trace with new events. To give an impression of this, a snap-

shot is include in Figure[7]where the source (AntGen) is connected to node 8 and the destination
(AntRec) to node 3. The NAM is run “live” with initial step of 50ms by the following command

%> tail -f S$namtracefile | nam -r 50ms -

27

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

‘806 X! nam: t50000.nam

Fle Views Analysis £50000.nam

« -« u »> » 25302070 | Step: 31.6ms

Q|6

lo|o|=s

‘\IHIHH‘\\I\\I\H‘I\\Iﬂlﬁﬁﬁ‘I‘HH"I‘HHHHHHH‘H"IHHH‘IHHH‘IHHH‘IH

Figure 7: Snapshot of NAM live animation. In this snapshot example the source is connected
to node 8, and destination to node 3.

Part IV

Description of scenario

As described in previous section, the demonstrator implements the AntPing on Click modular
software routers software. See Section [7.2|for more details. To make the demo portable, it is
chosen to run the implementation on small home routers, LinkSys WRT54GS (version 4.0), see
Figure[22|for a picture of the setup. Live monitoring data from the demo trials are logged to files
and continuously presented in graphs using gnuplo while animation of the ants movements
and link status are presented by use of NAM (network animatorﬂ see Sectionlglfor more details.

This section describes the topology, delivered service, and the network dynamics scenarios
defined for the demo. Some observations from the demo trials and supplementary simulations
are also included.

10 Topology details and implementation

The topology of the demo is similar to the core topology of t.net, the former IP platform of
Telenor. It is a 10 node network with 15 edges, i.e. out-degree of 3 edges per node. All links are

5 http:/ /www.gnuplot.info/
6h’c’cp: / /www.isi.edu/nsnam/nam/index.html

28

Demonstrator 1 (Final)

bidirectional with the same cost and capacity in both directions. An illustration of the topology
is given in Figure[8|

Figure 8: Demo topology inspired by t.net core topology

The physical implementation and sub-netting in this topology is illustrated in Figure[9} Each
link and the interface at either end constitutes a subnet. The assigned subnet numbers are
10.B.C.0/30, where B and C refer to the router identity number of the endpoints of the link.
The router entity number is from 1 to 10 prefixed by AR-, see Figure 0] The interface at the
endpoint with the lowest cardinal number, is assigned *.*.*.1, while the interface at the other
end is *.*.*2. E.g. the interface in AR-3 connecting AR-3 and AR-4, is given the number 10.3.4.1,
while the corresponding interface at AR-4 is 10.3.4.2. They both belong to subnet 10.3.4.0/ 3qﬂ

Using shortest path routing, the complete static routing table of the topology in Figure [9 is
given in Table 2} Observe that only the B.C.D of the 10.B.C.D address is given. In Tables[3|and 4]
the minimum end-to-end cost and delay for each node pair are listed. The cost and delay of
each link in the network are assumed symmetric, see the values in Figure[9]

11 Monitoring quality of virtual connections

Monitoring in the demo means monitoring of the quality of a specific service that is delivered.
The service of the demo is establishment and management of virtual connections between a
specific set of end-nodes. In the current demo, the quality of this service is estimated by the
end-to-end delayﬁ Monitoring of the quality of this service is essential in the establishment and

"Mask 30 means a subnet with addresses in the range 10.3.4.0 to 10.3.4.3 where .0 is the network address and .3
is the broadcast. address. This leaves only 2 host addresses, one for each end.
®In the demo the delay per link is estimated from predefined metrics specified for each interface.

29

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

| I 10.6.10.0/30 10.6.8.0/30
o 10/1.05 | [J'1 35/3.45

10.9.10.0/30
1/0.10

10.5.6.0/30
1/0.10

10.7.8.0/30

1/0.10

10.4.8.0/30

10.2.10.0/30 | 30/2.35

20/2.35

10.3.7.0/30
30/2.66

10.1.9.0/30

20/2.35

10.2.4.0/30
1/0.10

10.1.5.0/30
26 /2.60

| A | 10.1.2.0/30 |
1/0.10

10.3.4.0/30
| 1/0.10

1

net address

10.1.3.0/30 cost /delax

1/0.10

Figure 9: The physical topology of the demo

Table 2: Static routing (next hop) in demo network (only B.C.D of 10.B.C.D is given)

[from \to | AR-1 | AR2 [AR3 | AR4 | AR5 | AR6 | AR7 | AR8 | AR9Y | AR10 |

AR-1 - 121 | 131 | 121 | 151 | 121 | 1.31 | 1.21 | 191 1.2.1
AR-2 1.2.2 - 241 | 241 | 261 | 261 | 241 | 241 | 2101 | 2.10.1
AR-3 132 | 34.1 - 341 | 132 | 341 | 371 | 341 | 132 | 34.1
AR-4 342 | 242 | 342 - 481 | 481 | 481 | 481 | 342 | 242

AR-5 152 | 561 | 152 | 5.6.1 - 561 | 56.1 | 56.1 | 1.52 | 56.1
AR-6 562 | 262 | 681 | 681 | 5.6.2 - 6.8.1 | 681 | 6.10.1 | 6.10.1
AR-7 372 | 781 | 372 | 781 | 781 | 7.8.1 - 781 | 372 | 781

AR-8 682 | 682 | 782 | 482 | 682 | 682 | 782 - 6.82 | 682
AR-9 192 | 9101 | 192 |9.101 | 192 | 9101 | 19.2 | 9.10.1 - 9.10.1

AR-10 |9.10.2 | 2.10.2 | 9.10.2 | 2.10.2 | 6.10.2 | 6.10.2 | 6.10.2 | 6.10.2 | 9.10.2 -

management of virtual connections. Changes in quality will be detected as events presented in
the animation, and traced and visualized through the plotting functions in the demo.

30

Demonstrator 1 (Final)

Table 3: The end-to-end cost in demo network.

| from \to | AR-1 | AR-2 [AR-3 | AR-4 | AR-5 | AR-6 | AR-7 | AR-8 | AR-9 | AR-10

AR-1 0 1 1 2 26 27 31 32 20 21
AR-2 1 0 2 1 27 26 32 31 21 20
AR-3 1 2 0 1 27 28 30 31 21 22
AR-4 2 1 1 0 28 27 31 30 22 21
AR-5 26 27 27 28 0 1 38 37 12 11
AR-6 27 26 28 27 1 0 37 36 11 10
AR-7 31 32 30 31 38 37 0 1 48 47
AR-8 32 31 31 30 37 36 1 0 47 46
AR-9 20 21 21 22 12 11 48 47 0 1
AR-10 21 20 22 21 11 10 47 46 1 0

Table 4: The end-to-end delay [ms] in demo network.

[from \ to | AR-1 | AR2 [AR-3 | AR-4 | AR5 | AR6 | AR7 | AR8 [AR9 [AR-10 |
AR-1 0 [01 [01 | 02 | 26 | 26 | 265 | 255 | 2.35 | 245
AR2 | 01 | 0 | 02 | 01 | 26 | 25 | 255 | 245 | 245 | 235
AR3 | 01 | 02 | 0 | 01 | 27 | 27 | 255 | 245 | 245 | 255
AR4 | 02 | 01 | 01 | 0 | 27 | 26 | 245 | 235 | 255 | 245
AR5 | 26 | 26 | 27 | 27 | 0 | 01 | 365 | 355 | 125 | 115
AR6 | 26 | 25 | 27 | 26 | 01 | 0 | 355 | 345 | 115 | 105
AR7 | 265 | 255 | 255 | 245 | 365 | 355 | 0 | 01 | 47 | 46
ARS8 | 255 | 245 | 245 | 235 | 355 | 345 | 01 | 0 | 46 | 45
AR9 | 235 | 245 | 245 | 255 | 125 | 115 | 47 | 46 | 0 | 0.1
AR10 | 245 | 235 | 255 | 245 | 115 | 105 | 46 | 45 | 01 | 0

12 Monitoring indices

A study of potential candidates for monitoring indices in an ant-based routing system [4] has
shown that the most promising with respect to detect significant changes in the network con-
ditions are:

e convergence index (temperature, or the elite limit that is a function of this)
e cost value index (path delay, or loss ratio, available bandwidth)

e pheromone values (in nodes)

A summary of the study and how to apply the results is given in Table

31

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Table 5: Examples of use of CAS indices (from[4])

Metric Observations “Health” Alarms
Ant route table Deviation from data Misconfigurationin | Significant deviation
routing table routing, interface (in time or space)
overload
Pheromone values | Increase by x% in n sec. | Node/link/path down | Check configuration
Convergence Decrease by 2% in n New node/link/path | A lower delay path
index sec. discovered for the VC exists
Cost value index Average over n sec. Aftereffect of change in None
decreased by 2% last network (still
minute exploration)
Path probability Close to max. for last Stable network None
minute

In the demonstrator, the cost (delay) of a virtual connection is monitored. The cost value,
convergence index (temperature), and pheromone values are plotted. Changes in traffic load
and topology are introduced to illustrate how this affects the plotted values.

The results presented in this documents are based on the running demo network, and some
supplementary simulations of this, and some simulations of a larger network, see Section [14]

13 Network dynamics in the demonstrator

The demonstrator starts with a fully operational topology as described above and with no
virtual connection (VC) established. In the simulations, the VCs between node 1 and all other
nodes (2, - - -, 10) are established and monitored. All references in the following to “preferred
path of a VC” means a path connecting the end-points constituting an VC with the current
lowest (or amongst the lowest) end-to-end delays. The scenario consists of the following phases
(the focus is on VC7):

e Phase 1, time [0, 10] : Initialization, no connections are established, the ants are exploring
the network to find the best quality virtual connections (VC).

e Phase 2, time [10, 50]: Stable phase, the VC(s) has converged and is monitored. It is
expected that Ping (following routes given by link state (LS) routing) and AntPing find
the same connections and observe the same delay. If the routing metrics (the static cost
values for the LS routing) are not correctly reflecting the link delays the Ping will observe
larger delays than AntPing. This will demonstrate that AntPing is delay sensitive.

e Phase 3, time [50, 100]: Link [4,8] increases its delay from 2.35 ms to 4.00 ms to emulate
increased traffic. It is expected that the preferred route from node 1 to 8 is changed from
{1,34,8} (or {1,2,4,8}) to {1,3,7,8} (see the delay estimates in Table [and [7|for VC7). This

32

Demonstrator 1 (Final)

increase in delay will not affect the LS routing because the cost values are not delay sensi-
tive. This demonstrates AntPing’s ability to detect increases in a bottleneck on a preferred
path for a VC, and shortly after propose an alternative path for the same VC.

e Phase 4, time [100, 150]: Link [2,4] is down. This will not affect the path preferred by
AntPing because it follows {1,3,7,8}. However, the LS routing will now recalculate the
shortest path routing tables, and the Ping packets will now be routed either along {1,3,4,8}
or {1,3,7,8}. Hence, in this case the link failure will result in decreased observed Ping
delays .

e Phase 5, time [150, 200]: Link [1,3] is down. This will affect both the AntPing and the
LS/Ping. The preferred route is now {1,5,6,8} with a significant increase in cost and delay.
This is expected to be detected by both AntPing and LS/Ping.

e Phase 6, time [200, 250]: Link [2,4] is up. This will affect both the AntPing and the LS/Ping.
The minimum delay route is now {1,2,4,3,7,8} with a significantly decrease in cost and
delay compared to Phase 5. This is expected to be detected by both AntPing and LS/Ping.

The demo trials open for dynamics introduced by the audience where they are allowed to
unplug and plug cables in the demo network.

The optimal paths, and the corresponding minimum cost, and end-to-end delay for each of the
VC between node 1 and all other node in Phase 2 are given in Table [} In the simulator all
VC are established. The effects of the changes for the other VCs can be determined from the
Tables|[6] to

Table 6: Shortest path in original system from Figure

VC | src | dst | primary path (nodes) | cost | delay [ms]
1 1] 2 {1,2} 1 0.1
2 1] 3 {1, 3} 1 0.1
3 1| 4 {1,2,4},{1, 3, 4} 2 0.2
4 |1 |5 {1, 5} 26 2.6
5 1 6 {1,2,6} 27 2.7
6 1 7 {1,3,7} 31 (2.76)

{1,3,4,8,7},{1,2,4,8,7} | (33) 2.65
7 | 1| 8 {1,3,4,8},{1,2,4,8} 32 2.55
8 119 {1, 9} 20 2.35
9 1 | 10 {1, 2,10}, {1, 9, 10} 21 2.45

In Phase 3, the delay on link [4,8] is increased. The new optimal solution and the corresponding
cost values and delays are listed in Table [7}

In Phase 4 link [2,4] is down. The new optimal solution and the corresponding cost values and
delays are listed in Table

In Phase 5 link [1,3] is down. The new optimal solution and the corresponding cost values and
delays are listed in Table [9}

33

Biology-Inspired techniques for Self Organization in dynamic Networks

IST-2001-38923

Table 7: Shortest path in Phase 4 (changes indicated by *)

VC | src | dst | primary path (nodes) | cost | delay [ms]
1 1 2 {1,2} 1 0.1
2 [1] 3 11,3 1 0.1
3 11 4 {1,2,4},{1,3,4} 2 0.2
4 | 1] 5 {1, 5} 26 2.6
51116 {1,2,6} 27 2.6
6* | 1 | 7 {1,3,7) 31 2.76
71 8 {1,3,4,8},11,2,4,8} 32 4.2)

{1,3,7,8} 32 2.86
8 | 1] 9 {1,9} 20 2.35
9 1 | 10 {1,2,10}, {1, 9, 10} 21 2.45

Table 8: Shortest path in Phase 4 (changes indicated by *)

VC | src | dst | primary path (nodes) | cost | delay [ms]
1 1 2 {1,2} 1 0.1
2 [1] 3 11,3} 1 0.1
3* 1 4 {1, 3, 4} 2 0.2
4 | 1|5 {1, 5} 26 2.6
51116 {1,2, 6} 27 2.7
6 | 1|7 {1,3,7) 31 2.76
71 8 {1, 3,4, 8} 32 4.2)

{1,3,7, 8} 32 2.86
8 | 1] 9 {1,9} 20 2.35
9 1 | 10 {1,2,10},{1, 9, 10} 21 2.45

In Phase 6 link [2,4] is up again. The new optimal solution and the corresponding cost values
and delays are listed in Table

(a) Phase 4

Figure 10: Demo topology changes

(b) Phase 5

34

(c) Phase 6

Demonstrator 1 (Final)

Table 9: Shortest path in Phase 5 (changes indicated by *)

VC | src | dst | primary path (nodes) | cost | delay [ms]
1 1 2 {1,2} 1 0.1
211 |3 {1,2,6,8,7,3} 93 8.81

{1,2,6,8,4,3} 93 (10.15)

311 | 4 {1,2,6,8, 4} 92 (10.05)
{1,2,6,8,7,3,4} (94) 8.91
4 |1 1] 5 {1, 5} 26 2.6
511 1] 6 {1,2,6} 27 2.6

6* 1 7 {1,2,6,8,7} 63 6.15
701 8 {1,2, 6,8} 62 6.05
8 | 1] 9 {1,9} 20 2.35
9 1 | 10 {1,2,10}, {1, 9, 10} 21 2.45

Table 10: Shortest path in Phase 6 (changes indicated by *)

VC | src | dst | primary path (nodes) | cost | delay [ms]
1 1 2 {1,2} 1 0.1
2% 1 3 {1,2,4,3) 3 0.3
311 | 4 {1,2,4) 2 0.2
4 | 1] 5 {1, 5} 26 2.6
51116 {1,2,6} 27 2.6
6* | 1 | 7 {1,2,4,3,7} 33 2.96
71 8 {1, 2,4, 8} 32 4.2)
{1,2,4,3,7,8} (34) 3.06
8 | 1] 9 {1,9} 20 2.35
9 1 | 10 {1,2,10},{1, 9,10} 21 2.45

14 Observations from demo trials and simulations

The experiments reported in this document are both from the demo trial using the LinkSys
equipment, and from simulations using an ns-2 implementation of the AntPing method. In
both cases the quality (measured as delay) for a set of virtual connection (VC) is monitored.
The results given in this section is related to the monitoring of this quality, and the overhead
introduced by means of AntPing. The AntPing is compared to the current practice of using
Ping and traceroute to monitor virtual routes and paths in an interdomain network typically

routed by OSPF (link state routing protocol).

35

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

14.1 Demo trials

The LinkSys demo implements establishment and maintenance of virtual connection between
node 3 and node 8 or node 10. It is possible to change the end nodes to another pair of nodes,
but more equipment (more laptops) are required to monitor more than one VC at the time. The
dynamics are up to the audience in the sense that they are allowed to unplug and plug the ca-
bles. Changes in interface capacity and delay are also possible. Adding new interfaces or links
that are not predefined are not possible because a discovery protocol are not yet implemented.
Further more, dual stack routing logic is not implemented, and therefor it is not possible to run
AntPing and Ping over OSPF in parallel.

14.2 Simulations of demo topology

To supplement the LinkSys demo with respect to multi-VC behaviour, the co-existence with
Ping over OSPFE, observing the dynamics in pheromone values in each node, and study the
behaviour in larger networks, a simulator is implemented in ns—ﬂ In this section a few results
are presented simulating the same dynamics as described in previous section. The simulator
has both AntPing and Ping, and are setting up VCs between node 1 and all other nodes in the
network. ns-2 has implemented a Link state routing protocol that emulates the “OSPF” routing
behaviour in an interdomain.

In the following, some of the results are presented and observations given.

Time plot of cost and elite limit values. Changes in the network topology, and in cost or
delay on links, are easily observed both by AntPing and Ping. In Figure [17]the time plots for
the cost values are given for VC3 (from node 1 to 4) and VC7 (from node 1 to 8). Both plots
include the observed cost values for the ants that returns and update the pheromone values
(AntPing: cost), the cost values for all ants reaching the destination (AntPing: costall), the
elite limit that determines whether the VC should be updated or not (AntPing: elitelimit), and
finally the one-way delay from the source to the destination observed by Ping packets.

From the changes in observed delay it is evident e.g. that at time 50 a change occurs that affects
VC7 and not VC3. At that point in time the change in delay of AntPing and Ping are different
which implies that they follow different paths. The reason in this case is that the link state
routing uses static cost values, while AntPing is sensitive to changes in link delays. Hence, if
the cost metrics are not consistently set to reflect the (expected or observed) delays, the routing
of AntPing and Ping might end up following different routes. The elite limit is a function of
the temperature in the CEants method. This is averaging the cost values and might serve as a
monitoring indices, in particularly when each VC have many alternative cost values.

In Figure(12|the average cost values over 25 replications are plotted together with the observed
Ping delays. The plot includes the average value and the 95% confidence limits assuming
independent replications.

It is observed very little variance in the stable phases, except when link [2,4] is restored. The
variance here is due to the fact that in the transient period just after the link is restored, AntPing

9h’c’cp: / /nsnam.isi.edu/nsnam/index.php/Main_Page

36

Demonstrator 1 (Final)

1d50003: cost, typical sample

0.011 | | |
AntPing: cost +
0.01 - x X XX ok ook ANtPIng: costall
AntPing: elitelimit
0.009 - - X Ping 4
[
0.008 |- “ B
|
0.007 |- | B
* |
. 0.006 - | B
(%)
£ ¥ |
0.005 |- | B
0.004 |- “ 4
|
0.003 |- | B
|
0.002 |- | ‘ 4
0.001 y L B
0 i i K — 1
0 50 100 150 200 250
time
(a) VC3
1d50007: cost, typical sample
0.009 T T T
AntPing: cost +
AntPing: costall x
* AntPing: elitelimit
0.008 - Ping B
0.007 - X X 7
0.006 |- —
o
£
0.005 | B
W%X X XX X
0.004 ‘ B
L x\ — m
0.002 L L L L
0 50 100 150 200 250
time
(b) VC7

Figure 11: Cost and elite limit sample for typical time series for both VC3 and VC7.

alternates between two paths with different cost values, see Figure[LT|for a sample from a single
simulation.

Time plot of pheromone values of selected nodes and VCs. As an alternative to observing
the VC quality in the end systems (in source and/or destination nodes) some information and

37

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

1d50007: cost, sample
0.009 : ;

AntPing
Ping
0.008 -

0.007

0.006

0.005 |+

[ms]

0.004 -

A [
| Rl
0.003 - o il

0.002 || 4

0.001 |- | -

0 50 100 150 200 250
time

Figure 12: Average cost values (25 replications) for VC7. Delay observed for both Ping and
AntPing are plotted.

indications of changes can be obtained by observing the pheromone values of the CE ants in
the intermediate nodes. In Figure (13| the pheromone values of VC7 are given for nodes 1, 4,
and 6. The plots include values for a selection of interfaces. In particular, node 1 contains 2
more interfaces than shown in the figure, but they were not visited during the simulations and
therefor removed. In Figure[14]the pheromone values for interface 2 and 3 in node 1 are plotted
for VC3 and VC7.

A few observations are made from these plots:

e When a VC has two (or more) alternative paths with almost the same cost value (see
phase [0,50] in Figure [I3{(a)), all the corresponding pheromone values in the nodes will
be updated.

e If a pheromone value is increasing, this link is updated and part of a preferred path. If it
is decreasing, another link in the same node is part of a preferred path. This observation
can be used to detect when a VC changes preferred path, and when a VC has alternative
paths through the same node which makes this node more critical. See e.g. at time 150 in
node 1 the preferred path is changing from interface 3 (link [1,3]) to 2 (link [1,2]).

e When the frequency of ants decreases (e.g. at time 50 in Figure [13(b)), the node is no
longer part of any of the preferred paths for a given VC. It stops completely, e.g. at time
150 in node 4. This is probably because the node is now unreachable so even the explo-
ration ants will not visit it. Observe also that the pheromone values will not evaporate
in the period with no ant visits to the node. This makes it likely to quickly return to the
previous path when the links or/and nodes are recovered.

38

Demonstrator 1 (Final)

e When the frequency of ants increases (e,g. at time 150 in Figure C)), the node is now
becoming a part of one or more preferred paths for a given VC.

e Plotting all VC in a node (Figure 14/ shows a sample of VC3 and VC7 in node 1), will
visualize the importance (the number of VCs that have at least one preferred path through
this node), stability of node region (the number of VCs that changes the ant frequency and
pheromone values) and criticality (the number of VCs with more than one preferred path
through this node).

Time plot of accumulated overhead of AntPing and Ping. To give a brief indication of the
overhead introduced by the AntPing monitoring system, the sum of packets sent and received
by the source node for VC7 is plotted in Figure The figure plots the number of traceroute
packets because this is required to determine the path of a given VC. Traceroute is implemented
by sending Ping packets with increasing TTL until the destination is reached. This means that
if a path consists of n hops, n Ping packets must be sent and received by the source node.

From the figure it is observed that the AntPing has an initial high overhead to explore the
network. Ping and traceroute also have an initial overhead because the underlying LS (link
state) routing protocol generates o(N x L) packets where N is the number of nodes, and L is
the average number of hops between two nodes. However, since the LS routing establishes the
complete routing table between all node pairs, and AntPing in the current implementation is
on-demand routing with no sharing of pheromones, the LS routing packets are not included.
From the figure it is seen that AntPing has an initial boost of packets, and are boosting packets
on changes in the topology or cost values. The traceroute will have constant number of packets
unless the number of steps in the preferred path is changing. At time 200 in Figure [15|it is
observed that the slope of the traceroute plot is increases. This is a result of a longer path for
VC7. A few comments on the validity of this “comparison” is in order:

e Traceroute is an inefficient way of tracing the path from source to destination with respect
to the number of packets. A better alternative is to use the route record option, but in IPv4
this is limited to 8 hops and it is not activate in all routers. This is improved in IPv6 that
has dynamic headers and hence should in principle hold arbitrary number of hops.

e The frequency of packets sent by AntPing and Ping should be a compromise between
what is necessary to detect the dynamic changes and to maintain information about the
quality. In this simulation no extensive experimentation to determine this parameter is
conducted. The same frequency is used by both AntPing and Ping.

e AntPing will in the current implementation create a unique set of pheromone values for
each VC. To reduce the storage requirements, and the route convergence times, it is es-
sential to let the different VC partially share the pheromone values, e.g. similar to the
approach in [16].

e AntPing does only maintain information about the defined VCs and not all node pairs as
required by LS routing.

39

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

1d50007: pheromone values at node 1

[pheromon values]

0.7
0.6
05
0.4
0.3

interface

250

(a) node 1

1d50007: pheromone values at node 4

[pheromon values]

e

+
A

3

l‘*“’wwww
i
oy .

interface

250

(b) node 4

1d50007: pheromone values at node 6

[pheromon values]

interface

250

(c) node 6

Figure 13: Pheromone values for VC7 in selected nodes. The nodes are part of preferred paths
in different phases of the simulation experiment.

40

Demonstrator 1 (Final)

Pheromone values at node 1

VC7 +
VC1 x

[pheromon values] K

0.7
0.6
0.5 fw
0.4
0.3
0.2
0.1

0

g
h
A
Y
.
4

RN

interface

250

Figure 14: Pheromone values for VC3 and VC7 in node 1. It illustrates that VC7 changes pre-
ferred path at time 100 when link [2,4] fails. VC1 is not affected by the same dynamics, it has
interface 2 as its preferred path for the entire period.

1d50007: overhead
3500 T T T

I AntPing

Traceroute -------

3000

2500

2000

[number]

1500

1000

500

0 50 100 150 200 250
time

Figure 15: Overhead for AntPing and traceroute (multiple Ping) for monitoring of one VC. The
link state routing overhead is not included in the Ping overhead.

41

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

14.3 Simulations of extended topology

In order to study how the AntPing and Ping behave when the network increases in size, the
demo network is extended from the core of t.net, to the complete backbone of t.net, 216 nodes
and 373 links illustrated in Figure (16| This section includes results and observations from the
simulations. The scenario consists of the following phases:

e Phase 1, time [0, 10] : Initialization.
e Phase 2, time [10,50]: Stable phase.

e Phase 3, time [50, 100]: Link [2, 4] increases its delay from 0.10 ms to 4.00 ms to emulate
increased traffic.

e Phase 4, time [100, 150]: Link [1, 42] is down.
e Phase 5, time [150, 200]: Link [2, 4] is down.
e Phase 6, time [200, 250]: Link [1, 42] is up.

The focus is now on VC1 connecting node 74 and 164 in Figure

Time plot of cost and elite limit values. The following observations are made from the sim-
ulation results:

o Attime 50 the delay on link [2, 4] is significantly increased. As was commented in the pre-
vious simulations, this change is not captured by the Ping over Link State routing because
the link state metrics in this simulation case are not changed when the delay is changed.
The AntPing will after a few seconds change the preferred path (at approximately 75 in
the simulated example given in Figure (17| The same is observed in Figure [18|that shows
the cost and elite limit averaged over 15 replications.

e Ping observes higher delay values from time 150 to 250. The reason is again that the
static routing metrics does not reflect the link delays. In addition the static cost metrics
on the low delay link between node 13 and 14 in Figure[I0]was too high to be the shortest
path obtained by the link state routing. The AntPing uses the link 13 to 14 as part of its
preferred route from node 74 to 164.

Time plot of pheromone values of selected nodes and VCs. The preferred path from node
74 to 164 includes node 1 or 2 in all phases of the simulation experiment. In Figure (19 the
pheromone values of a few interfaces (link to node) are given. The following observation are
made:

e In phase 2 the interface towards node 42 in node 1, and interface towards node 41 in node
2 have positive values which means that both interfaces are amongst the preferred ones.

42

Demonstrator 1 (Final)

E 4m0 1 12

destiation

51 52 9 *30

L

Figure 16: The simulated backbone network (model of t.net). The task is to establish and mon-
itor the quality of the virtual connection (VC1) between node 74 (source) and node 164 (desti-
nation). The preferred path, {74,69,13,4,2,41,164}, of VC1 in phase 1 (stable phase) is indicated
by thick lines.

e At time 50, the delay on link from node 4 to node 2 is significantly increased, and hence
the path through node 1 is the preferred one (observe that the pheromone increases) and
node 2 is no longer among the preferred ones (observe that the pheromone value de-
creases).

e At time 100, the link from node 1 to node 42 goes down. This is clearly observed in
Figure [19(a) where the pheromone on this interface drops to 0. At the same time observe
that interface towards node 41 in node 2 is now increased indicating the the preferred
path now includes link from 2 to 41.

43

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

1d50000: cost, typical sample
0.014 ; ;

T
AntPing: cost +
g AntPing: elitelimit
Ping

0.012

0.01 —

0.008 B

[ms]
+

0.006 —

0.004

a
¢
0.002 E | h W —

0 50 100 150 200 250
time

Figure 17: Cost and elite limit sample for typical time series for VC1 between node 74 and 164
in t.net backbone.

1d50000: cost, sample

AntPing
0.014 + ping
0.012 i
0.01 + i
0.008 - 4

[ms]

0.006

0.004

0.002

time

Figure 18: Average cost values (15 replications)

44

Demonstrator 1 (Final)

1d50000: pheromone values at node 1

[pheromon values]

(a) node 1

1d50000: pheromone values at node 2

[pheromon values]

=
4l
T

(b) node 2

Figure 19: Pheromone values for VCI.

45

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Part V
Closing remarks

The purpose of AntPing (ant-based routing and monitoring system) is to demonstrate that it
is feasible to implement this on a software IP router. The prototype, named AntPing, demon-
strates the CE ants principles in a small-scale network. The implementation is based on Click Mod-
ular software router system, and hpingﬂ with TCL as an API for socket programming. The
AntPing is implemented on home routers (in this demo LinkSys WRT54GS(v4.0) routers) with
OpenWRT Linux. This implementation has quite modest hardware and software requirements,
which makes the demo inexpensive, flexible, and easily portable. With a few extensions the
implementation can be used as (ad-hoc) “hot-spots” in wireless infrastructures, e.g. like the
RoofNet http://www.comclub.org/roofnet/ initiative. It is also feasible to exchange the
CE ants swarm routing algorithm with the AntHocNet algorithm for MANET developed in the
BISON project.

The demonstrator visualizes the inner workings of the ant algorithm by animation of ants mov-
ing and dropping in the network, and topology changes like link failures and restorations. The
animation also shows ants that do not find the destination but are dropped because the TTL
is expired. In addition, the changes in cost values of each virtual path is plotted as a function
over time, both the cost of the current best cost, and the last cost, even when rejected by the
elite selection.

Previous studies [4] of the transient behaviour of CE ants [5], a Cross Entropy based Ant sys-
tem for path management, identified that several adaptive components of such a system can be
used as indicators of the network condition status with respect to traffic load level and topol-
ogy. The indicators are the stochastic routing matrix (the pheromones), routing path probabil-
ity, cost values, and grade of convergence (denoted temperature in CE ants).

The dynamics in the demo trial are up to the audience to define in the sense that they are al-
lowed to unplug and plug the cables. Adding new interfaces or links that are not predefined
are not possible because a discovery protocol are not yet implemented. Further more, dual
stack routing logic is not implemented, and therefor it is not possible to run AntPing and Ping
over OSPF in parallel. This can be solved by adding a working OSPF/RIP /BGP routing imple-
mentation, e.g. by Zebra (zebra www.zebra.org) the LinkSys boxes can compare Ping and
AntPing. Hence, to demonstrate how the AntPing compares to Ping using link state routing,
how it scales with increasing virtual connections and network size, a few series of simulations
in ns-2 are conducted. The results in this report is related to the monitoring of this quality,
and the overhead introduced by means of AntPing. The AntPing is compared to the current
practice of using Ping and traceroute to monitor virtual routes and paths in an interdomain
network typically routed by OSPF (link state routing protocol).

Changes in the network topology, and in cost or delay on links, are easily observed both by
AntPing and Ping. But, if the cost metrics are not consistently set to reflect the (expected or
observed) delays, the routing of AntPing and Ping might end up following different routes,
meaning that the AntPing is able to detect potential misconfiguration.

1Owww.hping.org

46

http://www.comclub.org/roofnet/
www.zebra.org

Demonstrator 1 (Final)

An alternative to observing the VC quality in the end systems (in source and/or destina-
tion nodes) some information and indications of changes can be obtained by observing the
pheromone values of the CE ants in the intermediate nodes. When a VC has two (or more)
alternative paths with almost the same cost value the corresponding pheromone values in the
nodes will be updated. If a pheromone value is increasing, the link is part of a preferred path
that is updated. If it is decreasing, another link in the same node is part of a preferred path.

The frequency of packets sent by AntPing and Ping should be a compromise between what is
required in order to detect the dynamic and to maintain information about the quality. In this
simulation no extensive experimentation is conducted to determine how to set or adjust the
frequency of ants and Ping packets. This is current ongoing research.

47

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

References

[1] Gianni Di Caro, Frederick Ducatelle, Poul Heegaard, Mark Jelasity, and Roberto Monte-
manni. Evaluation of basic services in ahn, p2p and grid networks. Deliverable 07 of
IST-FET Project BISON (IST-2001-38923), December 2004.

[2] Gianni Di Caro, Frederick Ducatelle, Poul Heegaard, Mark Jelasity, and Roberto Monte-
manni. Implementation of basic services in ahn, p2p and grid networks. Deliverable 06 of
IST-FET Project BISON (IST-2001-38923), December 2004.

[3] Marco Dorigo and Gianni Di Caro. Ant Algorithms for Discrete Optimization. Artificial
Life, 5(3):137-172, 1999.

[4] P.E. Heegaard. Performance monitoring of routing stability in dynamic networks. Section
5in Deliverable 05: "Models for basic services in AHN, P2P and Grid networks" in IST-FET
Project BISON (IST-2001-38923), December 2003.

[5] Poul E. Heegaard, Otto Wittner, Victor F. Nicola, and Bjarne E. Helvik. Distributed asyn-
chronous algorithm for cross-entropy-based combinatorial optimization. Budapest, Hun-
gary, September 7-8 2004.

[6] Bjarne E. Helvik and Otto Wittner. Using the Cross Entropy Method to Guide/Govern
Mobile Agent’s Path Finding in Networks. In Proceedings of 3rd International Workshop on
Mobile Agents for Telecommunication Applications. Springer Verlag, August 14-16 2001.

[7] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The
click modular router. ACM Transactions on Computer Systems, 18(3):263-297, August 2000.

[8] Anders Mykkeltveit, Poul Heegaard, and Otto Wittner. Realization of a distributed route
management system on software routers. In Proceedings of Norsk Informatikkonferanse, Sta-
vanger, Norway, 29. Nov - 1. Dec 2004.

[9] Jon Postel. Rfc 762: Assigned numbers. IETE, January 1980.
[10] Jon Postel. REC 791: Internet Protocol. IETF, September 1981.
[11] Jon Postel. Rfc 792: Internet control message protocol (icmp). IETF, September 1981.

[12] R. Y. Rubinstein. Combinatorial Optimization, Cross-Entropy, Ants and Rare Events. In
S. Uryasev and P. M. Pardalos, editors, Stochastic Optimization: Algorithms and Applications.
Kluwer Academic Publishers, 2001.

[13] R.Schoonderwoerd, O.E. Holland, J. Bruten, and L. Rothkrantz. Ant-based load balancing
in telecommunications networks. Technical Report HPL-96-76, HP Labs, May 1996.

[14] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. ISBN 0-201-63346-9.
Addison-Wesley, 1994.

[15] Otto Wittner. Emergent Behavior Based Implements for Distributed Network Management. PhD
thesis, The Norwegian University of Science and Technology, November 2003.

48

Demonstrator 1 (Final)

[16] Otto Wittner, Poul E. Heegaard, and Bjarne E. Helvik. Scalable distributed discovery of
resource paths in telecommunication networks using cooperative ant-like agents. In Pro-
ceedings of Congress on Evolutionary Computation, CEC2003, Canberra, Australia, December
2003. IEEE.

[17] Otto Wittner and Bjarne E. Helvik. Cross Entropy Guided Ant-like Agents Finding De-
pendable Primary/Backup Path Patterns in Networks. In Proceedings of Congress on Evolu-
tionary Computation (CEC2002), Honolulu, Hawaii, May 12-17th 2002. IEEE.

49

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

A ICMP ping

The Internet Protocol (IP) is used to transport datagrams between Internet hosts. It is known as
a connectionless datagram service. The ICMP protocol provides a method of sending informa-
tion to the source host regarding information about a datagram. ICMP is a separate protocol
from IP, but every IP implementation must include the ICMP protocol. ICMP makes use of the
IP protocol as a transport. The purpose of ICMP is to provide feedback regarding the network
and datagrams. ICMP messages use a basic IP datagram header with the IP data being the
ICMP message. The IP source address is that of the host or gateway sending the ICMP mes-
sage with the destination IP address being that of the original source IP address. RFC 792 E
states that, where applicable, each ICMP message contains the IP header and first 64 bits of the
original datagram which is used to match the datagram to a process. RFC 1812Hindicates that
this is no longer adequate and an ICMP message, where applicable, should contain as much of
the original datagram as possible that can fit within a 576 byte message.

ICMP Ping checks a remote host for availability. Local hosts should normally respond to ping
requests within milliseconds. However, on a very congested network it may take up to 3 sec-
onds or longer to receive an echo packet from the remote host. If the timeout is set too low
under these conditions, it will appear that the remote host is not reachable (which is almost the
truth). ActiveXperts Network Monitor checks servers for availability by sending ICMP Echo
commands and wait for the responds. An ICMP timeout failure doesn’t necessarily mean that
the remote host is actually functioning beyond its ability to echo packets. An ICMP/Ping check
has the following parameters:

Hostname or IP address - The DNS name or IP address of the computer you want to ping (can
even be a WINS name, but only if the name can be resolved by some WINS server in the
network);

Timeout for each reply - Maximum number of milliseconds it may take before a response is
received;

Time to Live - Maximum Time to Live (TTL) value;

Number of Echo requests to send - Maximum number of milliseconds it may take before a
response is received.

B Route record and source routing

B.1 IP Record Route Option

Excerpt from Stevens [14]:

“The ping program gives us an opportunity to look at the IP record route (RR) option. Most
versions of ping provide the -R option that enables the record route feature. It causes ping

1 http:/ /www.ietf.org /rfc/rfc792.txt
12 http:/ /www.ietf.org/rfc/rfc1812.txt

50

Demonstrator 1 (Final)

to set the IP RR option in the outgoing IP datagram (which contains the ICMP echo request
message). This causes every router that handles the datagram to add its IP address to a list
in the options field. When the datagram reaches the final destination, the list of IP addresses
should be copied into the outgoing ICMP echo reply, and all the routers on the return path
also add their IP addresses to the list. When ping receives the echo reply it prints the list of IP
addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the source host,
processing of the RR option by the intermediate routers, and reflection of the incoming RR list
in an ICMP echo request into the outgoing ICMP echo reply are all optional features. Fortu-
nately, most systems today do support these optional features, but some systems don’t reflect
the IP list.

The biggest problem, however, is the limited room in the IP header for the list of IP addresses.
We saw in Figure 3.1 that the header length in the IP header is a 4-bit field, limiting the entire IP
header to 15 32-bit words (60 bytes). Since the fixed size of the IP header is 20 bytes, and the RR
option uses 3 bytes for overhead (which we describe below), this leaves 37 bytes (60-20-3) for
the list, allowing up to nine IP addresses. In the early days of the ARPANET, nine IP addresses
seemed like a lot, but since this is a round-trip list (in the case of the -R option for ping), it’s of
limited use today. Despite these shortcomings, the record route option works and provides an
opportunity to look in detail at the handling of IP options. Figure 20|shows the general format
of the RR option in the IP datagram.

- 39 bytes >

% CDT'_Q‘, addr#1 | addr#2 | addr#3 | addr#4 | addr#5 | — = = = = = = = — addr #9

1 1 144 bytes A4 bytes A4 bytes A4 bytes 4 bytes A4Dbytes A
ptr=4 ptr=8 ptr=12 ptr=16 ptr=36 ptr=40

Figure 20: General format of record route option in IP header.

Code is a I-byte field specifying the type of IP option. For the RR option its value is 7. Len is
the total number of bytes of the RR option, which in this case is 39. (Although it’s possible to
specify an RR option with less than the maximum size, ping always provides a 39-byte option
field, to record up to nine IP addresses. Given the limited room in the IP header for options, it
doesn’t make sense to specify a size less than the maximum.)

Ptr is called the pointer field. It is a 1-based index into the 39-byte option of where to store the
next IP address. Its minimum value is 4, which is the pointer to the first IP address. As each
IP address is recorded into the list, the value of ptr becomes 8, 12, 16, up to 36. After the ninth
address is recorded ptr becomes 40, indicating the list is full.

When a router (which by definition is multihomed) records its IP address in the list, which IP

51

Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

addpress is recorded? It could be the address of the incoming interface or the outgoing interface.
RFC 791 [10] specifies that the router records the outgoing IP address. We’ll see that when
the originating host (the host running ping) receives the ICMP echo reply with the RR option
enabled, it also records its incoming IP address in the list. “

B.2 IP Source Routing Option

Excerpt from Stevens [14]:

“Normally IP routing is dynamic with each router making a decision about which next-hop
router to send the datagram to. Applications have no control of this, and are normally not
concerned with it. It takes tools such as Traceroute to figure out what the route really is.

The idea behind source routing is that the sender specifies the route. Two forms are provided:

e Strict source routing. The sender specifies the exact path that the IP datagram must follow.
If a router encounters a next hop in the source route that isn’t on a directly connected
network, an ICMP "source route failed" error is returned.

o Loose source routing. The sender specifies a list of IP address that the datagram must tra-
verse, but the datagram can also pass through other routers between any two addresses
in the list.

Traceroute provides a way to look at source routing, as we can specify an option allowing us to
force a source route, and see what happens.

Some of the publicly available Traceroute source code packages contain patches to specify loose
source routing. But the standard versions normally don’t include this option. A comment in
the patches is that "Van Jacobson’s original traceroute (spring 1988) supported this feature, but
he removed it due to pressure from people with broken gateways." For the examples shown in
this section, the author installed these patches and modified them to allow both loose and strict
source routing.

Figure 20|shows the format of the source route option.

This format is nearly identical to the format of the record route option that we showed in
Figure 20, But with source routing we have to fill in the list of IP addresses before sending the
IP datagram, while with the record route option we allocate room and zero out the list of IP
addresses, letting the routers fill in the next entry in the list. Also, with source routing we only
allocate room for and initialize the number of IP addresses required, normally fewer than nine.
With the record route option we allocated as much room as we could, for up to nine addresses.

The code is 0x83 for loose source routing, and 0x89 for strict source routing. The len and ptr
tields are identical to what we described in Section The source route options are actu-
ally called "source and record route" (LSRR and SSRR, for loose and strict) since the list of IP
addresses is updated as the datagram passes along the path. What happens is as follows:

e The sending host takes the source route list from the application, removes the first entry
(it becomes the destination address of the datagram), moves all the remaining entries left

52

Demonstrator 1 (Final)

by one entry (where left is as in Figure 20), and places the original destination address as
the final entry in the list. The pointer still points to the first entry in the list (e.g., the value
of the pointer is 4).

e Each router that handles the datagram checks whether it is the destination address of the
datagram. If not, the datagram is forwarded as normal. (In this case loose source routing
must have been specified, or we wouldn’t have received the datagram.)

e If the router is the destination, and the pointer is not greater than the length, then (1)
the next address in the list (where ptr points) becomes the destination address of the
datagram, (2) the IP address corresponding to the outgoing interface replaces the source
address just used, and (3) the pointer is incremented by 4.

This is best explained with an example. In Figure 21| we assume that the sending application
on host S sends a datagram to D, specifying a source route of R1, R2, and R3.

dest=D
{#R1, R2, R3}

S dest = R1 N R1 dest = R2 R2 dest = R3 N R3 dest=D D
{#R2, R3, D} {R1, #R3, D! {R1, R2, #D} {R1, R2, F{Sg}

Figure 21: Example of IP source routing.

In this figure the pound sign (#) denotes the pointer field, which assumes the values of 4, 8, 12,
and 16. The length field will always be 15 (three IP addresses plus 3 bytes of overhead). Notice
how the destination address of the IP datagram changes on every hop.

When an application receives data that was source routed, it should fetch the value of the
received route and supply a reversed route for sending replies.

The Host Requirements RFC specifies that a TCP client must be able to specify a source route,
and that a TCP server must be able to receive a source route, and use the reverse route for all
segments on that TCP connection. If the TCP server later receives a different source route, that
newer source route overrides the earlier one.”

C Hping scripts

C.1 Send-nam.htcl

#

Name: send—nam.htcl

Purpose: hping tcl script for gemerating ants in the BISON demo

Description: The ants are IP packets with dst port 51234 sent to a

process "recv.htcl" that resides on the destination node.
This process calculates the temperature based

#
on the cost values seen so far and the cost value carried

53

Biology-Inspired techniques for Self Organization in dynamic Networks

IST-2001-38923

by the last ant. For this demo, the TTL is set

to 8 because this is the maximum number of steps that can
be observed by the route record in IPv4 optional header.
The cost and temperature of the returning ants are written
to a trace file named "trace"

Change the use of tos bit. Cause problems when sending from
windows machines and through commersial routers.

Project: BISON

Documantation: Deliverable D14 of BISON
Last modified: 2006—03—10

Author: Poul Heegaard, Telenor R&D

F o3 3 FE I o o o o 3

Check arguements, expects $target and $inf and $antld
if {$argc < 5} {

Extends "send.htcl" by generating NAM trace data from cost values.

puts stderr "Usage: send_<target>_ <inf> <antid>_<data>_<freq>_\[<explAnts>\] \[<rho>\]_\[<beta>\]_\[<explRatio>\]""

—oputs_stderr "Example: send 10.7.8.2 eth0 50000 0 1000 \[10 0.05 0.98 0.20\]"

exit

#_globals: _read _argument,_list
foreach {target inf_antld data_freq_explAnts_rho _beta} $argv break
#_observe_that_$data_==_0_is_ants,_$data_==_1_is_data

#_CEants_parameters _(these_might also _later _be given, as _arguments)
if {$rho ==_{}}_{_set_rho 0.05_}

if {$beta_==_{}} _{_set_beta 0.98_}

#_the 10_first_ants_are_explaratory _ants

if {$explAnts_==_{}}_{_set_explAnts_10_}

#_Default_is _20%_of_the_ants_are_maintenance_(explaration) ants

if {$explRatio_==_{}}_{_set_explRatio 0.2 }
#_this_means_1_sec_between_each, ant

#_set_freq,_ 1000

#_Nam_topology, and_initialisations
#_test

set_node(127.0.0.1)_0

#_demo_net
#set_node(10.100.1.1)_0
#set_node(10.100.1.11)_1
set_node(10.3.11.1)_3
set_node(10.3.11.2)_0
set_node(10.3.12.2)_0
set_node(10.)
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.

1

= 1

= 1

= 1

= 2

= 1

= 1
set_node(10.

(I Sl ISR TR N

o

NNNFNFRNN=~NS
N

set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10
set_node(10.
set_node(10.

OV O U1 UT W e W WL

~c c Cc CC ¢ C¢CT LT LT[~[[[[T[T

=}
DSISEIST SR SR
ISR SIS S R N N N R NI NI N)

~~~~~~—[ [ [ [ [ [ [

[ S S S A

00 0 00 0 N0 = VOO UT N W= O N0 U1 W N
[S e

O 0 NN [

9.
.10.
.10.
.10.
.10.
J11.
J11.

set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.
set_node(10.

PBORANO L NAENWRRUTNUG B WRNW®RRNNN DS ©®w

=00 = = = O
coco

—

#_begin,_demo_nam_preamble

set, delay_0.060

set_delayms_60ms

#_open_nam_file for _animations

set_namfile_[open "t$antld.nam" _w]

puts_$namfile "V —t x —v 1.0a5"

puts_$namfile "n —t * —s 11 —v box —c black —z 10 —S UP —b SRC"
puts_$namfile "n —t * —s 10 —v box —c black —z 10 —S UP —b AR—-10"

54



Demonstrator 1 (Final)

puts_$namfile "n —t * —s 9 —v box —c black —z 10 —S UP —b AR—9"
puts_$namfile "n —t * —s 8 —v box —c black —z 10 —S UP —b AR—8"
puts_$namfile "n —t * —s 7 —v box —c black —z 10 —S UP —b AR-7"
puts_$namfile_"'n —t * —s 6 —v box —c black —z 10 —S UP —b AR—6"
puts_$namfile_"'n —t * —s 5 —v box —c black —z 10 —S UP —b AR—5"
puts_$namfile_"'n —t * —s 4 —v box —c black —z 10 —S UP —b AR—4"
puts_$namfile "'n —t * —s 3 —v box —c black —z 10 —S UP —b AR—3"
puts_$namfile "n —t * —s 2 —v box —c black —z 10 —S UP —b AR—2"
puts_$namfile "n —t * —s 1 —v box —c black —z 10 —S UP —b AR—1"
puts_$namfile_'n —t * —s 0 —v box —c black —z 10 —S UP —b DST"
puts_$namfile "1 —t * —s 9 —d 10 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 8 —d 11 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 7 —d 8 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 6 —d 10 —r 100kb —D $delayms —c black —o 180deg —1 100 —S UP"
puts_$namfile "1 —t * —s 6 —d 8 —r 100kb —D $delayms —c black —o Odeg —1 100 —S UP"
puts_$namfile "1 —t *x —s 5 —d 6 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 4 —d 8 —r 100kb —D $delayms —c black —o 90deg —1 100 —S UP"
puts_$namfile "1 —t * —s 3 —d 7 —r 100kb —D $delayms —c black —o 90deg —1 100 —S UP"
puts_$namfile "1 —t * —s 3 —d 4 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 2 —d 10 —r 100kb —D $delayms —c black —o 135deg —1 141-S UP"
puts_$namfile, "1 —t * —s 2 —d 6 —r 100kb —D $delayms —c black —o 90deg —1 100 —S UP"
puts_$namfile, "1 —t * —s 2 —d 4 —r 100kb —D $delayms —c black —o Odeg —1 100 —S UP"
puts_$namfile "1 —t * —s 1 —d 9 —r 100kb —D $delayms —c black —o 135deg —1 141 —S UP"
puts_$namfile "l —t * —s 1 —d 5 —r 100kb —D $delayms —c black —o 90deg —1 100 —S UP"
puts_$namfile "1 —t * —s 1 —d 3 —r 100kb —D $delayms —c black —o Odeg —1 100 —S UP"
puts_$namfile "1 —t * —s 1 —d 2 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile "1 —t * —s 0 —d 3 —r 100kb —D $delayms —c black —o 45deg —1 50 —S UP"
puts_$namfile_"c¢ —t * —i 0 —n Blue"
puts_$namfile "¢ —t * —i 1 —n Green"
puts_$namfile "¢ —t * —i 2 —n Brown"
puts_$namfile "¢ —t * —i 3 —n Yellow"
puts_$namfile "¢ —t * —i 4 —n Yellow"
puts_$namfile "¢ —t * —i 5 —n Red"
puts_$namfile "a —t 0 —s $node ([ hping outifa $target]) —n AntGen"

0

puts_$namfile "a —t 0 —s $node ([ hping resolve $target]) —n AntRec"
#_end,_demo_nam_preamble

if {_$data_==0_}_{
_ #_print_ant_setup

__puts_" !
__puts_"Finds connections from [hping outifa $target] to $target ([hping resolve $target])"
__puts_"sending an ant every $freq ms, with [expr 100=*$explRatio]% exploration"
__puts_"number of initial exploration ants = $explAnts, "

__puts_"and rho=$rho and beta=$beta."

__puts_" !

__puts " "

J_else_{

__#_print_data_setup

_._puts_" !

__puts_"Data sent on connection from [hping outifa $target] to $target ([hping resolve $target])"
_.puts_"sending data every $freq ms
puts "
puts "
}

# Init variables

set accTime 0

# counts number of received ants
set recvind 0

# counts number of sent ants
set sentind 1

#set tcl_precision 4

# Send ants every $freq [ms] to destination as specified in $target
proc genAnts {} {
global target freq sentind recvind explAnts explRatio antld rho beta delay accTime

# explore = 0 : maintenace ants and data packets

# explore = 1 : exploration ants

# explore = 2 : exploration ants, initialisation phase
# cost = 0: ant packets

# cost = 1: data packets

# the ant is sent as exploration ant at startup and later as maintenance
# the initial exploration phase is over when the predefined number of ants
# are received
if {$recvind <= $explAnts} {

set explore 2
} else {

set explore [expr rand() < $explRatio ]

}
if { $data == 1} {
set explore 0

}

# construct packet to be sent to $tagret and with route record
set pck "ip(daddr=$target,ttl=8)+ip.rr"

55



Biology-Inspired techniques for Self Organization in dynamic Networks

IST-2001-38923

append pck "+udp(sport=$antld,dport=51234)"
set cost $data

if { $explore == I
# Send initialisation exploration ant to reset
# the variables on receiver for port number $antld
append pck "+data(str=$explore/$rho/$beta/$cost)"”
} else {
# cost values for testing of NAM trace generation
append pck "+data(str=$explore/$cost)”

# send packet
incr sentind 1

puts "Generated: $pck”
hping send $pck

# next packet using "bootstrapping”
after $freq genAnts
}

# Read incoming ants and write cost and current temperature to $outfile
proc recAnts {} {
global inf outfile outfile2 namfile recvind antld node delay target accTime

# receive packet accoring to filter settings
set p [hping recv $inf 10]
set pck [lindex $p 0]

# read source and destionation ports and data field
set sp [hping getfield udp sport $pck]
set dp [hping getfield udp dport $pck]
set dt [hping getfield data str $pck]

# content of data field:

# 0 = expldata

# 1 = exp(—cost/temp) (for click)
# 2 = cost

# 3 = temp

# 4 = beta

# 5 = accTime (for nam trace)

# 6 = #hops in path

# 7 — (7+#hops—1) = table of costs
# (7+#hops) — end = route addresses

set tab [split $dt /]

set explore [lindex $tab 0]

set cost [lindex $tab 2]

set temp [lindex $tab 3]

set beta [lindex $tab 4]

set tmpaccTime [lindex $tab 5]

if { $accTime < $tmpaccTime |} {
set accTime $tmpaccTime

}

# determine number of hops
set hops [lindex $tab 6]

# is this an ant? (the filter settings did not work when too restrict)
if { $sp == 51234 } |{
puts "Received: _$pck"”
set dt [hping getfield data str $pck]
set Isrr [hping getfield ip.lsrr data $pck]
set lsrl [hping getfield ip.lsrr ptr $pck]
# Update ant received — write cost and temp to trace file
if { $explore == 0 } {
incr recvind 1
puts "$recvind _$temp _$temp2 $cost"
puts "Source_route:_ $lsrr”
print to "trace"
puts $outfile "$recvind, $temp_$cost"”
write temp all also (use beta field)
#puts $outfile "$recvind_S$temp _$cost"
puts $outfile "$accTime _$temp_$cost”
flush $outfile
]
if { $explore == 1 } {
puts $outfile2 "$accTime $temp S$cost”
flush $outfile2

B

}

# read list of hosts

set sa [hping getfield ip saddr $pck]

set da [hping getfield ip daddr $pck]

puts $lsrr

set thost [split $lsrr /]

puts "Hosts, pre—pre: $lsrl_$thost_S$hops"
set hops [expr "$lsrl_/ 4 —2"]

#set thost [lrange S$thost 0 [expr $hops—2]]

56



Demonstrator 1 (Final)

set thost [lrange $thost 0 $hops]

# reverse host list

set ttmp {}

set ind [llength $thost]

puts "Hosts,_pre: $thost_$ind_$hops"”

while {$ind>—1} {
lappend ttmp [lindex $thost $ind]
incr ind —1

}

set thost [lrange $ttmp 1 end]

# append source address of reply packet, i.e. target
lappend thost $sa

# print to check

puts "Hosts: $thost"

if { $explore == 0 } {
# read the cost of each hop in the path
set tcost [lrange $tab 7 [expr 7 + $hops — 1]]
puts "Costs: _$tcost"

sent on link (leave node)
drop on link
set size [hping getfield ip length $pck]
set size 1000
set i 0
set shost $da
if { $explore < 3 } {
# forward path to the destination
foreach dhost $thost {
# set fixed time addition on each hop to control animation
set accTime [expr $accTime+$delay]
set dhost [lindex $thost $i]
puts $namfile "h_—t_$accTime_—s_$node($shost)_—d $node($dhost)_—e_$size_—i 0_—a 0"
flush $namfile
puts "h_—t_$accTime_—s_$node($shost) _—d $node($dhost) _—e_ $size_—i 0"
set shost $dhost
incr i 1

}

un through the routing table to build nam events

}

# if not leading to an update: dropped at destination or at router
if { $explore > 0 } {
set accTime [expr $accTime+$delay]

set last [expr [llength $thost]—1]
set shost [lindex $thost $last]
if { $last > 1 } {
set dhost [lindex $thost [expr $last — 1]]
} else {
set dhost $da
}

if { $explore == 1 | $explore ==
puts $namfile "d_—t_$accTime _—s_$node($shost)_—d_$node($dhost)_—e $size _—i_5_—a_ $explore”
flush $namfile
puts "d_—t_$accTime_—s_$node($shost) _—d $node($dhost) _—e_$size_—i 5 —a_ $explore"”

}
if { $explore == 3 } {
# determine the other end of the link state event
set tmp [split $shost .]
set tmpl [lindex $tmp 3]
if { $tmpl == 1 } {
set tmplast 2
} else {
set tmplast 1
}
set tmp [lrange $tmp 0 2 ]
lappend tmp $tmplast
set dhost [join $tmp "." ]
puts "shost:_$shost"
puts "dhost:_$dhost"

puts $namfile "1_—t_$accTime_—s_$node($shost) _—d $node($dhost)_—S DOAN"
flush $namfile
puts "1_—t_$accTime_—s_$node($shost) _—d_%$node($dhost)_—S PDOAN"

}
if { $explore == 4 } {
# determine the other end of the link state event
set tmp [split $shost .]
set tmpl [lindex $tmp 3]
if { $tmpl == 1 } {
set tmplast 2
} else {
set tmplast 1

set tmp [lrange $tmp 0 2 ]

57



Biology-Inspired techniques for Self Organization in dynamic Networks

IST-2001-38923

}

}
}

}

lappend tmp $tmplast
set dhost [join $tmp "." ]
puts "shost:_$shost"
puts "dhost:_$dhost"

puts $namfile "1_—t_$accTime_—s_$node($shost)_—d $node($dhost)_—S UP"
flush $namfile
puts "1_—t_$accTime_—s_$node($shost)_—d $node($dhost) _—S UP"

else {

set accTime [expr $accTime+$delay]

puts $namfile "h_—t_$accTime_—s_$node($shost)_—d $node($target) —e $size —i 0,—a 0"
flush $namfile

puts "h_—t $accTime _—s_$node($shost)_—d $node($target) _—e $size _—i 0_—a 0"

# backward path from the destination

# reverse host lists

set ttmp {}

set ind [llength $thost]

while {$ind>—1} {

}

lappend ttmp [lindex $thost $ind]
incr ind —1

set tcost [lrange $ttmp 1 end]
set thost [lrange $thost 0 end—1]
set thost [concat $da $thost]

set i [expr [llength $thost]—1]
set shost $sa

foreach n $tcost {

}

set accTime [expr $accTime+$delay]

set dhost [lindex $thost $i]

puts $namfile "h_—t_$accTime_—s_$node($shost)_—d $node($dhost) —e_ $size_—i 1_—a 1"
flush $namfile

puts "h_—t_$accTime_—s_$node($shost)_—d_$node($dhost) —e_ $size —i 1 —a 1"

set shost $dhost

incr i —1

set accTime [expr $accTime+$delay]

puts $namfile

flush $namfile

puts "h_—t_$accTime_—s_%$node($dhost) _—d $node ([ hping_outifa_$target])_—e $size —i 1,_—a 1"

# reread $inf after 1 ms
after 1 recAnts

}

# open trace file

set outfile [open

.. /trace—$antld" w]

set outfile2 [open "../trace—$antld—all" w]

# Set filter
setfilter $inf "udp"

hping

after
after

vwait

1 genAnts
1 recAnts

forever

C.2 Recv-nam.htcl

F o3 FE I FE o o o 3 3 3 3 3 3 3k 3 3 3 3 3

Name:
Purpose: hping tcl script for receiving ants in the BISON demo
Description: This script "recv.htcl" receives ants (UDP packets)

reco—nam.htcl

on port 51234 and returns ants to $target on the same port.
The different roles and directions of the ant packets are
indicated by the use of the TOS byte (see D14 of BISON).
The ants are sent by the "send—nam.htcl" process on the
$target node.

Elite selection:

The temperature is updated if cost is below as threshold.
The update is for each ant species as indicated by the
src port number of the received packets. The threshold is
updated as new ants and cost values are observed.

Ants with cost values that not qualifies for the elite,
will return to the source with animation data only and
will not cause any update in the intermediate nodes.

Change the use of tos bit. Cause problems when sending from
windows machines and through commersial routers.

Extends previous wversion "recv.htcl" by animation tracing,
elite selection and type classifications.

Project: BISON

58

"h_—t_%accTime_—s_%$node($dhost)_—d $node ([ hping _outifa_S$target])_—e_ $size_—i 1 —a 1"



Demonstrator 1 (Final)

# Documantation: Deliverable D14 of BISON
# Last modified: 2006—03—10

# Author: Poul Heegaard, Telenor R&ED

#

# Check arguements

if {$arge != 1} {
puts stderr "Usage: send <inf>"
puts stderr "Example: recv eth0"
exit

}

# globals: read argument list
foreach {inf} $argv break

set antTab {}
set accTime 0
set verysmall 0.000001
set alpha 0.9

# Set filter
hping setfilter $inf "udp_and _dst_port, 51234"

# do forever: read incoming ants (IP packets)
while 1 {

incr accTime 1

set p [hping recv $inf]

set pck [lindex $p 0]

puts $pck

# get type (expldata), ports, route record, and cost values from packet
set target [hping getfield ip saddr $pck]

set dp [hping getfield udp dport $pck]

set sp [hping getfield udp sport $pck]

set rr [hping getfield ip.rr data $pck]

set rl [hping getfield ip.rr ptr $pck]

set dt [hping getfield data str $pck]

set expldata [lindex [split $dt /] 0]

# is this an ant?
if { $dp == 51234 } {
set elem [lsearch $antTab $sp]
if { $elem < 0 } {
if { $expldata == 2 } {
# exploration ant in initialisation phase, expldata ==
# setup connection and read CE ants parameters
set rho($sp) [lindex [split $dt /] 1]
set beta($sp) [lindex [split $dt /] 2]
#set explAnts($sp) [lindex [split $dt /] 3]
puts "

puts "Connected, by _$target_on_port_$sp "

#puts "number,_of_initial _exploration_ants_=_$explAnts($sp), "
puts "and_rho=$rho($sp) _and_beta=$beta($sp)."

puts "

puts "
lappend antTab $sp
set gaO($sp) 0
set M($sp) 0
set A($sp) 0
set B($sp) 0
set gaOtot($sp) 0
set Mtot($sp) 0
set Atot($sp) 0
set Btot($sp) 0
} else {
puts stderr "Unknown_ants _dropped"
}
} else {
# the connection exists
# if route recorded, send back in reversed order
if { $r1 >0 } {
# reverse recorded route
set last [expr "$rl_/ 4 — 2"]
set route [split $rr /]
set route [lrange $route 0 $last]
set rr [join $route /]
puts "Route: $rr"
puts "Route _joined $route”
puts "Last_$last"
set rroute {}
if ($last>—1) {
# recorded route is set to be source route path
set ind [expr $last—1]
while {$ind>—1} {
lappend rroute [lindex $route $ind]
incr ind —1

59



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

# last hop is final destination
lappend rroute $target

# destination address is first hop
set target [lindex $route $last]
# source routing

set rroute [join $rroute "/" ]

}

puts "Updated, route: $rroute_$target”

}

set tcost [hping getfield data str $pck]
set hcosts [split $tcost /]
if { $expldata == 2 } {
# if this is initial exploration ant, remove expldata field and setup parameters
set start 3
} else {
# else remove only expldata field
set start 1

}

set data [lindex $hcost $start]
set hcosts [lrange $hcosts [expr $start+1] end]

if { $data == 1 } {
# add load to cost wvalue for path pointed to by $rr
# this makes the
if { [info exists $load($rr) ] } {
set load($rr) [expr $load($rr)=$alpha + (1—$alpha)x*1]
} else {
set load($rr) 1

else {
# read cost wvalues for each hop, and accumlate to total sum
set tcost [join $hcosts /]
set hops [llength $hcosts]
if {[expr $last+2]>$hops} {
puts "HEI: $last_$hops"”
} else {
set cost 0
foreach n $hcosts {
set cost [ expr $cost+$n ]

}

# elite selection: if initial exploration ants or

# if cost value is below given threshold (dynamically updated) => accept
set thresh [expr —log($rho($sp)) *$galtot($sp)]

puts "Variables: $thresh_$cost_$expldata_$sp SM($sp)"

# update temperature over all observed ants

#calculate temperature

if {$Mtot($sp) == 0 | $galtot($sp) <= 0 } {set gaOtot($sp) [expr —$cost/log($rho($sp))]}
set tmp [expr $cost/$galtot($sp)]

Set tmpE [expr exp(—$tmp)]

set gaOtot($sp) [expr ($Btot($sp) + $costx$tmpE)/((1+$tmp)*$tmpE + ($Atot($sp) — $rho($sp)=((1—pow($beta ($sp),$Mtot($sp)+1))/ (1 —$beta($sp)))
set tmp [expr $cost/$galtot($sp)]

set tmpE [expr exp(—$tmp)]

set expCost $tmpE

incr Mtot($sp) 1

set Atot($sp) [expr ($Atot($sp) + (1+S$tmp)=+$tmpE) «$beta($sp)]

set Btot($sp) [expr ($Btot($sp) + $costx$tmpE)«$beta($sp)]

if { $expldata == 2 || [expr $cost — $thresh < $verysmall] |} {

puts "—_update_sent_to $target"

#calculate temperature

if {$M($sp) == 0 | $gal0($sp) <= 0 } {set gaO($sp) [expr —$cost/log($rho($sp))]}
set tmp [expr $cost/$gal($sp)]

set tmpE [expr exp(—$tmp)]

set expCost $tmpE

set ga0($sp) [expr (SB($sp) + ScostxStmpE)/((1+$tmp)+$tmpE + (SA($sp) — $rho (Ssp)x((1—pow($beta($sp) $M($sp)+1))/ (1 —Sbeta($sp))))) ]
set tmp [expr $cost/$gal($sp)]

set tmpE [expr exp(—$tmp)]

incr M($sp) 1

set A($sp) [expr ($A($sp) + (1+$tmp)=*$tmpE) x$beta ($sp)]

set B($sp) [expr ($B($sp) + $costx$tmpE)*«$beta($sp)]

set expldata 0

set ga $ga0($sp)

else {

# no update in routers but need data for animation of forward path

set expldata 1

set ga $galtot($sp)

}

# create and send packet

set rpck "ip(daddr=$target,ttl=8)"

if {$rr>0} {

append rpck "+ip.lsrr(data=$rroute)”

60



Demonstrator 1 (Final)

}

# backward packet: set source port = 51234, and destination port = $sp of forwad packet
append rpck "+udp(sport=$dp,dport=$sp)"
if {$hops>1} |{

append rpck "+data(str=$expldata/$expCost/$cost/$ga/$beta($sp)/$accTime/$hops/$tcost/$rr)"
} else {

append rpck "+data(str=$expldata/$expCost/$cost/$ga/$beta($sp)/$accTime/$hops/$tcost)”
}

puts "Return: $rpck"
hping send $rpck

D Demo start-up description
The demo consists of

¢ 10 LinkSys routers,
e 15 interconnection cables (7 red (short) and 8 gray (long)),

¢ 10 management cables (blue)

2 8-port switches

2 8-port conductor rail

10 power-supplies for LinkSys boxes
1 Mac PowerBook

1 Linux-PC

In Figure 22|the demo is illustrated, and in Figure 23| the details of network configurations and
cable connections are given.

The following steps are necessary to start up the swarm routing demo.

1. Prepare the LinkSys boxes for click, see Section
2. Generate and move click configuration files to LinkSys boxes, see Section[G.4]

3. Start up Ant-click router, see Section [G.5]
# click ant1.click

4. Start up AntPing receiver
# bison-pc connected to node 3
# address=10.3.11.2, default gw=10.3.11.1
%> ifconfig eth0 10.3.11.2 gw 10.3.11.1
# $SHOME = ~poulh/hping/
# $NAMHOME = $HOME/hping-nam
%> cd SNAMHOME
%> sudo hping3 exec recv-nam-v3.htcl eth0

61



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

Figure 22: Picture taken at the lab illustrating the demo network

5. Start up AntPing sender
# mac-box connected to node 8
# address=10.8.11.2 (demo) with default gw=10.8.11.1
# In “SystemTools” -> “Networks”: Select place “demo” and “activate” or:
# $HOME = ~poulh/hping/
# SNAMHOME = $HOME/hping-nam
%> cd SNAMHOME
%> sudo hping3 exec send-nam-v3.htcl 50000 en0 0

6. Run live animation
# The “send-nam-v3.htcl” records packet events to nam-formatted tracefile “t50000.nam”
# nam reads from the continuously updated tracefile.
%> cd SNAMHOME
%> tail -f -1000 t50000.nam | nam -r 50ms -

7. Plot data tracing and plot generation
# “makeplot” calls “makegnuplot” which produces “plot.gnu”

62



Demonstrator 1 (Final)

10.6.10.0/30 |_ | | | 10.6.8.0/30
10/1.05 ol I I ol 35/3.45 2

[2]| ARs T'l

10.5.6.0/30 - 10.7.8.0/30

10.9.10.0/30
1/0.10

10.4.8.0/30

10.2.10.0/30 | 30/2.35
——

20/2.35

10.1.9.0/30
20/2.35

10.2.4.0/30
1/010 .2 AR-4 A

10.1.5.0/30
26 /2.60

net address

cost / delax

10.1.3.0/30
1/0.10

Figure 23: The network configuration

# “makeplot” calls gnuplot with “plot.gnu” that reads trace of cost and temperatur data
from “trace-50000”

# “makeplot” calls gnuplot every second and reproduces graphical plots in png-format

# $HOME = ~poulh/hping/

%> $HOME/makeplots 50000

8. View plots in web-browser
# “makeplot” produces png-files that can be viewed through “plot.html”
# the “plot will autorefresh every second
# $HOME = ~poulh/hping/
# open the file $HOME/plot.html in the web browser

E Installing OpenWRT on LinkSys WRT54G(S)

This is a brief description of how to flash “OpenWRT Linux” on LinkSys WRT54G(S) routers.

Note: All work was done on Linux, however it should be possible to do this from other OS’es as well

63



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

E1 About OpenWRT

OpenWRT [A1] is a Linux distribution for wireless routers. Instead of trying to cram every pos-
sible feature into one firmware, OpenWRT provides only a minimal firmware with support for
add-on packages. For users this means the ability to customize features, removing unwanted
packages to make room for other packages. For developers this means being able to focus on
packages without having to test and release an entire firmware.

OpenWRT comes in two versions: jjfs2 and squashfs. We are using squashfs because this is
expected to be more stable and is said to have lower risk for turning the router into a brick
when flashing. The squashfs versions give you slightly more jffs2 space and are capable of
booting even when the jffs2 filesystem is broken or corrupted.

E.2 Preparing Router for Accepting flash via tftp/thftp and boot_wait

To minimize the risk of flashing the router to a useless paperweight, we have enabled boot_wait
on the routers. Boot wait is done by factory to easy reflash bad routers in production line. Boot
Wait is a function that halts the router to accept external flash of firmware to LAN1-port for
some seconds on boot.

This function is disabled on routers when they hit the store. Due to some security flaw, it is still
possible to re-enable boot_wait.

E.2.1 Boot_wait on routers older than V4.0.

Go to administration menu by addressing adminhttp://192.168.1. 1. To activate boot_wait
on LinkSys WRT54G and WRT54GS < V4.0, choose diagnostics from administration menu and
execute the following commands one by one:

;cp${IFS}*/*/nvram${IFS}/tmp/n
;*In${IFS}set${IFS}boot_wait=on
;*/In${IFS}commit
;*/n${IFS}show>tmp/ping.log

E.2.2 Boot_wait on WRT54GS > V4.0.

First downgrade the firmware to V1.05.2 (from LinkSys firmware download). Boot_wait may
be enabled via console on a perl script Execute the commands in the following from the perl
console. Activate boot_wait on LinkSys WRT54GS V4.0:

/usr/sbin/nvram set boot_wait=0n
/usr/sbin/nvram commit
/usr/sbin/nvram get boot_wait

13 See [A4] for information.

64


http://192.168.1.1

Demonstrator 1 (Final)

E.3 Flashing the firmware

Set static IP on the host computer for the flashing. In our case, the settings are applied:
IP:192.168.1.x (1 < x < 255)
Mask: 255.255.255.0
GW: 192.168.1.1

Now, connect the host computer to LAN1 on the LinkSys router, and start tftp and thftp from a
console: tftp 192.168.1.1. The sequence of command in the tftp console are

tftp> binary
tftp> rexmt 1
tftp> timeout 60
tftp> trace
Packet tracing on.
tftp> put openwrt-wrt54gs-squashfs.bin

Before the last step, you have to unpower the router, and power it again followed by tftp> put
openwrt-wrtb4gs-squashfs.bin instantly. If you receive an error, try again. If successful, the output
should look like the following, and the router is rebooting. If there is a DMZ-indicator in front,
it should light up during boot. When DMZ is off, you should be able to telnet to 192.168.1.1.
Set root-password from terminal with the command passwd root.

received ACK <block=3017>

sent DATA <block=3018, 512 bytes>
received ACK <block=3018>

sent DATA <block=3019, 0 bytes>
received ACK <block=3019>

You should now have a barebone OpenWRT squashfs installed on your router.

F How to configure network interface on switch ports

Each switch port on the LinkSys router can be treated as a separate, individual Ethernet inter-
face by the use of robocfg [A7]. The port is enable or disable by

robocfg port X state <enabled | disabled | rx_disabled | tx_disabled>
An example of a script setting all port on vlan0 is

robocfg switch disable

robocfg vlans enable reset

65



Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

robocfg vlan 0 ports "0 1 2 3 41"

robocfg switch enable

vconfig add eth0 0

ifconfig vian0 hw ether XX:XX:XX:XX:XX:00
ifconfig vian0 xx.xx.xx.xx netmask xx.XX.XX.XX
ifconfig vian0 up

The configuration of MAC address is important when defining several vlans, see [A7].

G Installing Click on OpenWRT

Click [2.3.2] has to be compiled for the OpenWRT platform and the LinkSys processor (Broad-
com CPU). The description in the following is based on Click OpenWRT http://sarwiki.
informatik.hu-berlin.de/Hacking the_Netgear_wgt634ul The router does nothave
enough memory to do the compiling itself, so a PC with a recent GNU/Linux distribution is
necessary. Click can then be cross-compiled on this platform. The first thing we need is a build
environment for OpenWRT.

G.1 OpenWRT Toolchain

You need a Linux computer with approximately 1GB free disk space to download and compile
the OpenWRT source code and the toolchain. The following tools/libs are required:

e wget, tftp

e CVS, subversion

e gcc, gcc-Cc++, bison, flex
e patch, gettext

e autoconf, automake

e zlib-devel

e UClibc++

The OpenWRT toolchain can be downloaded with the following command:
cvs -d:pserver:anonymous@openwrt.org:/openwrt
logincvs -d:pserver:anonymous@openwrt.org:/openwrt co obsolete-buildroot
We need a C++-compiler, so you'll need to patch SOPENWRT/buildroot/Makefile.
INSTALL_LIBSTDCPP:=true

That’s all: run make

66


http://sarwiki.informatik.hu-berlin.de/Hacking_the_Netgear_wgt634u
http://sarwiki.informatik.hu-berlin.de/Hacking_the_Netgear_wgt634u

Demonstrator 1 (Final)

G.2 Compiling Click

To build click you have to create the Makefile click.mk and put it in directory $OPENWRT/buil-
droot/make

Listing 5: Makefile click.mk

#

# click 1.4.3

: )
CLICK_PREFIX:=$ (BUILD_DIR)/ staging_dir/bin
DEPLOY_DIR:=/ tmp

click—source: $(CLICK_DIR)/.unpacked

$(CLICK_DIR) /. unpacked : $(DL_DIR)/$(CLICK_SOURCE)
(cd $(BUILD_DIR); \
svn co svn://sarsvn.informatik .hu—berlin.de/archives/click —1.4.3/ $(CLICK_DIR))
touch $(CLICK_DIR)/.unpacked

$(CLICK_DIR) /. configured: $(CLICK_DIR)/.unpacked
$(CLICK_DIR); rm —rf config.cache; \

$ (TARGET_CONFIGURE_OPTS) \

CFLAGS="$ (TARGET_CFLAGS) " \

CXXFLAGS="$ (TARGET_CFLAGS) —1$ (STAGING_DIR)/ usr/include__—fno—builtin _—nostdinc++_—nodefaultlibs" \

AR _CREATEFLAGS="cru" \

./ configure \

—Dbuild=1686—pc—linux—gnu \

—host=mipsel—linux \

—disable—linuxmodule \

—enable—userlevel \

—enable—local \

—disable—aqm —disable—ip6 —disable—ipsec \

—disable—grid —disable—bsdmodule —disable—radio \

—disable—test —disable—wifi \

—enable—tools=no \

—prefix=$(CLICK_PREFIX) \

)i

touch $(CLICK_DIR)/.configured

$ (CLICK_DIR)/ click : $(CLICK_DIR)/.configured
$ (MAKE) CC=$(TARGET_CC) —C $(CLICK_DIR) \
LIBS="—L$ (STAGING_DIR)/ lib _—fno—builtin _—nostdinc++_ —nodefaultlibs_—luClibc++_—lc _—Im —lgcc"

$ (CLICK_PREFIX)/bin/click : $(CLICK_DIR)/ click
$(MAKE) CC=$(TARGET CC) —C $(CLICK_DIR) install

click: $(CLICK_PREFIX)/bin/click
click—clean:

$(MAKE) —C $(CLICK_DIR) clean

rm —rf $(TARGET_DIR)/usr/bin/click

click—dirclean:
rm —rf $(CLICK_DIR)

We also need the Bison elements. Copy the following files to SOPENWRT/buildroot/click/ele-
ments/local:

anttable.cc/hh

anttrafficmonitor.cc/hh

backwardant.cc/hh

forwardant.cc/hh

sourceroute.cc/hh
They will then be compiled into the click binary file.
That'’s all: run make click to build click.

67




Biology-Inspired techniques for Self Organization in dynamic Networks IST-2001-38923

The Click binary will end up in SOPENWRT/build_mipsel/staging_dir/bin/bin/ Copy it to direc-
tory /sbin on the router.

G.3 Prepare the router for Click

There are a few steps necessary before we can run Click.
Download and install uClibc++ on the router:
wget uclibc++_0.1.11-2_mipsel.ipk
ipkg install uclibc++_0.1.11-2_mipsel.ipk
Remove unnecessary services (to save memory space):
rm /etc/init.d/S45firewall
rm /etc/init.d/S50httpd
rm /etc/init.d/S50telnet
rm /etc/init.d/S50dnsmasq

We should also configure some network parameters that will make it easier to access the router
from a separate network:

nvram set wan_ipaddr=10.100.1.x (1< x < 255)
nvram set wan_proto=static

nvram set wan_gateway=10.100.1.1

nvram set wan_netmask=255.255.255.0
nvram set wl0_radio=0nvram commit

We can then connect an external computer to the ?Internet? port on the router and use the
10.100.1.0 segment to do maintenance, logging, debugging etc.

G.4 Generate Click configuration file

Click must be run with a configuration file that tells it what to do when packets arrive on the
different interfaces as described in 2.4. This file will be different on each router, and can easiest
be generated with a Perl script.

Set the following environment variable (example from the setting on node 1 in our demo):
$ifs = [ [ "vlan3", 26, 3, "10.1.5.1", "255.255.255.0", "00:0A:0A:01:05:01" ],

[ "vlan4",1,2,"10.1.2.1", "255.255.255.0", "00:0A:0A:01:02:01" ],

[ "vlan5", 1, 1,"10.1.3.1", "255.255.255.0", "00:0A:0A:01:03:01" ],

[ "vlan6", 20, 0, "10.1.9.1", "255.255.255.0", "00:0A:0A:01:09:01" ],

I;

This array contains four rows with the variables: interface name, cost value, physical port
number, ip-address, netmask, mac-address.

68



Demonstrator 1 (Final)

Then run the script
# make-router.pl > ant1.click

The click file must be copied to the router. Generate one such file for each router.

G.5 Run Click

Log in to the router with ssh. Start Click like this:
# click ant1.click

References

[A1] OpenWRT main site http://openwrt.org/

[A2] OpenWRT Documentetion http://wiki.openwrt.org/OpenWrtDocs

[A3] OpenWRT forums http://forum.openwrt.org/

[A4] OpenWRT howto http://wiki.openwrt.org/OpenWrtHowTo

[A5] OpenWRT Faqhttp://wiki.openwrt.org/Faq

[A6] OpenWRT http://www.cinnaman.info/mediawiki/index.php/OpenWRT

[A7] robocfg http://wiki.openwrt.org/OpenWrtDocs/
Configuration#head-92940f6a6b5db4331a641f53a9f40ddbd3a2£f505

69


http://openwrt.org/
http://wiki.openwrt.org/OpenWrtDocs
http://forum.openwrt.org/
http://wiki.openwrt.org/OpenWrtHowTo
http://wiki.openwrt.org/Faq
http://www.cinnaman.info/mediawiki/index.php/OpenWRT
http://wiki.openwrt.org/OpenWrtDocs/Configuration#head-92940f6a6b5db4331a641f53a9f40ddbd3a2f505
http://wiki.openwrt.org/OpenWrtDocs/Configuration#head-92940f6a6b5db4331a641f53a9f40ddbd3a2f505

	I Introduction
	II Theoretical background - the elite CE ants algorithm
	Generate ants
	Forward searching ants 
	Path evaluation
	Backward updates

	III AntPing - design and implementation
	AntGen - ``the ant nest''
	Methods
	Implementations

	AntRec - ``the food source''
	Methods
	Implementations

	Ant forwarding in Click
	Methods
	Implementations

	Ant datagram format
	Animations

	IV Description of scenario 
	Topology details and implementation
	Monitoring quality of virtual connections
	Monitoring indices
	Network dynamics in the demonstrator
	Observations from demo trials and simulations
	Demo trials
	Simulations of demo topology
	Simulations of extended topology


	V Closing remarks
	References
	Appendices
	ICMP ping
	Route record and source routing
	IP Record Route Option 
	IP Source Routing Option 

	Hping scripts
	Send-nam.htcl
	Recv-nam.htcl

	Demo start-up description
	Installing OpenWRT on LinkSys WRT54G(S)
	About OpenWRT
	Preparing Router for Accepting flash via tftp/thftp and boot_wait
	Boot_wait on routers older than V4.0. 
	Boot_wait on WRT54GS > V4.0. 

	Flashing the firmware

	How to configure network interface on switch ports
	Installing Click on OpenWRT
	OpenWRT Toolchain
	Compiling Click
	Prepare the router for Click
	Generate Click configuration file
	Run Click



