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Slender structures immersed in a cross flow can experience vibrations induced by vortex shedding
(VIV), which cause fatigue damage and other problems. VIV models that are used in structural
design today tend to assume harmonic oscillations in some way or other. A time domain model
would allow to capture the chaotic nature of VIV and to model interactions with other loads and
nonlinearities. Such a model was developed in the present work: for each cross section, recent
velocity history is compressed using Laguerre polynomials. The compressed information is used
to enter an interpolation function to predict the instantaneous force, allowing to step the dynamic
analysis. An offshore riser was modeled in this way: some analyses provided an unusually fine
level of realism, while in other analyses, the riser fell into an unphysical pattern of vibration. It is
concluded that the concept is promising, yet that more work is needed to understand orbit stability
and related issues, in order to produce an engineering tool.

1. Introduction

1.1. Relevance

Vortex-induced vibration (VIV) is a vibration of a flexible structure that occurs when a
fluid flowing around the structure sheds vortices at near-regular intervals, locked with the
structure’s own vibration. VIV is a major concern in the offshore oil industry in particular,
where marine currents can cause slender structures like pipelines, risers, umbilicals, and
cables to vibrate, inducing fatigue damage. While design tools are available, they are still
improvable. Today, VIV is still actively studied.

A brief classification of existing VIV models is presented in the following. The
classification is biased in the sense that it aims at comparing existing models with the model
proposed here. More comprehensive overviews of existing models can be found in [1, 2].
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1.2. Detailed Wake Models

In this group of models, the details of the wake flow behind the structure are resolved, to
various levels of detail, by using various techniques of computational fluid dynamic. Such
models can be coupled to a structural model, which typically uses beam elements. Because
the water behaves in a strongly nonlinear fashion, such models operate in the time domain.
While all models use some sort of “strip theory”, computing the flow at a limited set of points
along the riser, the computation in a given strip may allow 3D turbulence or limit it to 2D, the
later being now recognized as unsuitable.

Orcina’s vortex tracking method is based on [3]: the vorticity is assumed concentrated
in a curve that is convected by itself and the incoming current.

Deepflow [4], the USP code [5], and VIVIC [6] use discrete vortex solutions in a series
of planes along the riser.

ACUSOLVE is a general purpose computational fluid dynamic software. It has been
used for VIV modeling [7]. Such an approach is computationally intensive.

1.3. Simplified Harmonic Models

The common denominator of the models in this group is that they operate by characterizing
the oscillation, at any given point along the riser, by frequency, amplitude, and possibly phase
difference between oscillations in two orthogonal directions (in-line and cross-flow). These
values are used to enter tables that yield excitation and added mass coefficients. Such tables
first appeared, to the author’s knowledge, in [8]. Models differ widely on how they make use
of the above coefficients to estimate a solution.

Because they assume harmonic vibration, the models in this class tend to share the
same approach to similitude: the reduced frequency is computed as the ratio of the time
it takes a particle in the undisturbed flow to travel one cylinder diameter, divided by the
oscillation period.

VIVA [9] models the response of the structure as a superposition of amplitude-
modulated traveling waves. Again, force coefficients are obtained from tables.

In [10], a time domain solution is used, in which, at any step and point along the cable,
the recent computed velocity is approximated by a harmonic function of time. This is used
to enter the above-mentioned tables. The instantaneous value of the force is then computed
from the hydrodynamic coefficients, allowing to pursue the time domain integration.

SHEAR7 [11] starts from a modal analysis of the structure. Modes are then examined
for their susceptibility to lock-in. Tables are used for lift coefficients.

In VIVANA [12, 13], an iteration scheme is used to arrive at a harmonic solution for
the whole structure. When relevant, the solution can be a superposition of such oscillation
“modes”.

1.4. Simplified Nonharmonic Models

Models in this group forgo a detailed description of the flow in the wake, replacing it by a
highly simplified nonlinear model with very few degrees of freedom. The model is repeated
at several points along the oscillating structure. The analysis operates in the time domain,
and the response of the structure is typically computed using finite element analysis. The
challenge in such models is to capture the influence of structural motions on the wake, and
of the wake forces on the structure, in a compact model.
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Several models make use of simple nonlinear oscillators to represent the self-exciting
and self-limiting nature of VIV response: A single degree of freedom van der Pol oscillator
has been used in several models [14–17]. Orcina also uses a wake oscillator with few degrees
of freedom [18].

1.5. Discussion

The drawback of detailed wake models is that for the relevant Reynolds numbers, they
are computationally very demanding. Hence they do not really offer a practical option
in structural design and design verification, where extensive computations are needed to
adequately sample the statistics of currents and other operating conditions that the structure
is likely to encounter.

Despite the fact that they currently provide the most used tools in VIV design,
simplified harmonic models have several drawbacks. Most of them do not operate in the
time domain, which makes it difficult to account for structural nonlinearities. The models
characterize the oscillation of a cross section by amplitude and frequency, which is not
adequate to describe more general types of motions.

Time domain models based on nonlinear oscillators have been proved to be able to
reproduce some aspects of VIV behavior, but so far seem limited in their ability to capture the
details of the response in a range of current conditions.

A good time domain, nonharmonic, simplified model, if it existed, would open new
possibilities, compared to harmonic models:

(1) study of VIV on nonlinear structures, for example, studying the damping effect of
seafloor interaction in a steel riser or using a hysteretic cross section model for VIV
on flexible pipes,

(2) accounting for VIV caused by unsteady water flows, in particular by waves or
vessel motions,

(3) accounting for the increase in drag at wave frequency due to VIV,

(4) accounting for the superposition of wave-frequency and VIV-frequency stresses in
fatigue analysis,

(5) accounting for the asymmetry of oscillation patterns in the vicinity of, for example,
a seafloor.

1.6. Objective

The objective of thework reported here is to demonstrate the viability of a local, deterministic,
time-domain force model for VIV on slender bodies with cylindrical cross sections.

The model is to treat in-line and cross flow vibrations jointly.
It is to characterize the recent history of velocity of the cross section relative to the

surrounding fluid without making a harmonic assumption. The characterization is to be used
to enter a “table”, necessarily more complex than those used under harmonic assumption, to
predict the instantaneous value of the hydrodynamic force. The model is to handle external
steady or unsteady water currents.

Like many other models discussed above, this force model is to be used at each Gauss
point of the dynamic finite element (FE)model of a slender structure. The model is to be used
within a time domain analysis (e.g., Newmark-β time integration with Newton-Raphson
iteration).
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Hence the FE model resembles that commonly used in a slender structure analysis,
with degrees of freedom for the structure, and none for the surrounding fluid. In other words,
the proposed model takes the place usually held in software by the Morison model for wave
induced loads.

2. Model Outline

2.1. Postulate

The present work hinges on the following postulate. The force exerted by the surrounding fluid
on a section of the slender structure is completely determined by the recent histories at that section
of the velocities of the structure and of the undisturbed fluid. Several points in this sentence are
worthy of discussion.

The “force” includes the components usually distributed into added mass, excitation
forces, drag, lift, and so forth.

That the force “at a section of the slender structure” is determined by the history “at
that section” implies a “strip theory” in which it is excluded that motions of the structure
at a point A cause disturbances in the fluid that affect the force at point B away from A.
In other words, it is assumed that there is no significant transmission of information in the
axial direction within the water (as opposed to within the slender structure). This would
be proved wrong if it turned out that unstable phenomena, like boundary layer shedding,
although transmitting little energy along the structure, transmit information that steers how
local hydrodynamic energy is channeled at a given point along the structure.

That the force should be “completely determined” implies that the behavior of the
structure is deterministic. This does not contradict the observation of hysteretic response of
short cylindersmounted on elastic support. Uniqueness of forces for a given position does not
imply uniqueness of static equilibrium. Neither does “completely determined” contradict the
observation of irregular and unpredictable responses to VIV: nonlinear dynamic systems can
have a chaotic behavior. Still, complete determinism is provably wrong, since a short vertical
cylinder dragged at uniform speed through water will experience oscillating lift forces. At
any given moment, there is nothing in the history of (constant) velocity that allows to predict
whether the lift is left or right. So the present work is based on the bet that ignoring such
“bifurcations” still leaves us with a useful model.

“Recent” can be defined as anything between the present time and a few times tw,
where the value of tw still is an object of debate. tw is likely to be case dependent. The current
will transport (convect) away vortices so that they quickly loose significance. The time tw
should then be of the order of D/U where D is the cross section diameter and U the current
velocity. In contrast, if the cylinder is oscillating in still water, it will be traveling in its own
wake, and tw should be related to the rate of diffusion and/or viscous dissipation of vortices,
which is likely to result in much higher values of tw. Tests on periodic forced motion of short
cylinders sometimes show a slow drift of the forces (over as many as ten periods). In contrast,
force decay tests for a cylinder stopped after oscillations at zero mean velocity, point towards
a fraction of a period. In the present work, the idea is to choose an upper bound for tw, after
adequate scaling (cf. Section 3.2).

The “velocity histories” are what count. Accelerations would not do because for
example, zero acceleration can correspond to different speeds and hence different forces. On
the other hand, the force on a cylinder will not be affected by a uniform translation of its
whole trajectory, so a history of positions contains irrelevant information.
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In the remainder of this text, the word “trajectory” will be given a very specific
meaning. The trajectory is defined as the recent history of the velocity vector of the cylinder relative
to the undisturbed surrounding fluid.

2.2. Restrictions

In the present phase of research, the following restrictions are introduced, in order to achieve
some simplification of the task. The outer cross section of the slender structure is assumed
perfectly circular and smooth. The surrounding fluid is assumed to be infinite, excluding the
presence of sea floor, free surface, or neighboring risers. Only fluid flows perpendicular to the
cylinder at any point are considered.

2.3. Input and Output

As stated earlier, the VIV model being developed here replaces the Morison model for wave-
induced loads. The VIV model is called at each step and iteration, and at each Gauss point or
node of each element.

The model is to receive as input:

(1) the diameter of the cylinder, the viscosity, and density of the surrounding fluid,

(2) the instantaneous velocity of the cross section relative to the undisturbed fluid,

(3) the instantaneous velocity and acceleration of the local undisturbed fluid, in a
Galilean reference system.

The model uses velocity information stored from previous steps. On this basis, the model
produces as output:

(1) the vector of hydrodynamic forces per unit length, acting on the cylinder,

(2) the matrix containing the derivative of the above with respect to instantaneous
values of the cylinder’s behavior.

Gauss integration is then used to compute a consistent load vector and partial derivative
matrices (damping, stiffness, and mass) for each element. Note that these element matrices
are likely to vary significantly over each VIV oscillation “period”—in contrast to added mass
or damping matrices, deemed to be constant over a long time in semiempirical VIV models.
The connection of the force model to the finite element analysis is discussed in Section 7.

2.4. Algorithmic Steps

Only the local VIV model is described here, not the whole FE analysis.

(1) The relative velocity of the cylinder relative to water (thereafter: “velocity”) is
computed.

(2) The velocity is scaled (Reynolds scaling) to that the cylinder diameter is the unit of
distance (Section 3.2).

(3) The trajectory (again: the recent histories of both x and y components of velocity)
is compressed into a small number of “Laguerre coefficients”. This compression
is such that it provides detailed information over the recent past and increasingly
coarse information for the more distant past (Section 4).

(4) The Laguerre coefficients are used to enter an interpolation function (a feed-
forward neural network with some specifically tailored properties) which returns
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x and y components of hydrodynamic force (Section 5). The fitting of the
interpolation function is discussed in Section 8.1.

(5) The force is scaled back to the relevant diameter (Section 3.2).

(6) The Froude-Krylov forces, which depend on the acceleration of the undisturbed
flow, are added (Section 3.1)

The identification of nonlinear systems using a bank of orthogonal filters (including Laguerre
filter) to generate multiple signals from a single one, and then using the multiple signals to
enter a nonlinear, memory-less function, was introduced by Wiener [19] (Wiener-Laguerre
filtering). In the present work, a base of Laguerre polynomials is used, in contrast to Laguerre
functions introduced by Wiener. While Wiener apparently did not use neural networks as
nonlinear functions (but e.g., Hermite polynomials), neural networks in Wiener models have
been studied for some time [20–22]. In the present work, Laguerre filtering is presented
without making use of the vocabulary of cybernetics. In particular, the z-transform is not
introduced here.

3. Exploiting Similitudes

3.1. Froude-Krylov Forces

This section gives the justification for point 6 of Section 2.4. If the undisturbed fluid in which
the cylinder is plunged is accelerating (because of surface waves, e.g.,), then it is natural to
introduce two reference systems: G is a Galilean reference system, for example, fixed relative
to the sea floor and A is an accelerated reference system, locally following the undisturbed
flow. Transforming the equations of equilibrium fromG (in whichwe carry out FEM analysis)
to A (for which we have experimental data, in water that is not accelerated) requires the
addition of inertia forces.

The inertial forces create a uniform pressure gradient that was not present in the
laboratory test. The effect of a pressure gradient on a submerged body is variously referred to
as “Archimedes forces” when the pressure gradient results from the acceleration of gravity,
or as “Froude-Krylov forces” when the pressure gradient is due to fluid acceleration in for
example, surface waves. As familiar, the integral of the pressure over the wet surface is
transformed into a volume integral [23].

It is assumed that this pressure gradient does not affect the turbulent flow, so that the
pressure gradient can simply be added to the pressures resulting from turbulence. This seems
reasonable enough for incompressible flows, and indeedwhen it comes to Archimedes forces,
the submerged weight of a cylinder is routinely subtracted to laboratory measurements and
the relevant correction added again in FEM analysis—even though the Archimedes forces in
the laboratory do not necessarily scale with those in the analysis. To the author’s knowledge,
there is no experimental indication that a horizontal and vertical cylinder, all other conditions
being equal, experience different forces.

To conclude, the hydrodynamic force acting on the cylinder at a given instant is the
sum of two terms:

(1) a force that is a function of only the cylinder diameter and the recent history of the
velocity of the cylinder relative to the undisturbed, steady water flow,

(2) Froude-Krylov forces.

All computations in Sections 4 and 5 deal only with the first of the above two terms.
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3.2. Scaling

This section details how points 2 and 5 of Section 2.4 are implemented. In order to reduce the
amount of experimental data necessary to create the interpolation function used in point 4,
one must take advantage of scale similarities. To that effect, all data used to either train or
query the database is scaled. Correspondingly, all forces returned by the database are scaled
back. The present model uses a scaling that is quite different from the scaling typical used by
simplified harmonic models (Section 1.3): reduced amplitudes and frequencies are not used.
Instead velocities histories are scaled in a manner familiar from the Reynolds number.

VIV forces are assumed to be uniquely defined by fluid density ρ, kinematic viscosity
ν, cylinder diameter D, and the motion history. Hence, in order to create a database that is to
be entered with scaled velocities, we wish all experimental data to be scaled to fixed reference
values ρo, νo, and Do. The choice of ρo, νo, and Do is arbitrary, and in this work, all are set to
the value 1.

By expressing the units of these quantities, one gets three equations on λm, λs, and
λkg , which are the scaling factors for the basic units of distance, time, and mass. Solving the
system yields

λm =
1
D
,

λs =
ν

D2
,

λkg =
1

ρD3
.

(3.1)

Once the scaling of basic units is known, the scaling of any derived quantities, for example,
velocities, accelerations, and forces per unit length can be expressed:

λms−1 =
D

ν
, (3.2)

λms−2 =
D3

ν2
, (3.3)

λNm−1 =
D

ρν2
. (3.4)

The choice Do = 1 [m] hence implies that scaled displacements can be considered to have “1
diameter” as unit. Similarly, the choices Do = 1 [m] and νo = 1 [m2/s] together imply that
scaled velocities are expressed as Reynolds numbers since the scaled velocity is calculated as
Dv/νwhere v is the velocity. The Reynolds number is usually computed using some velocity
that is characteristic of the system under study. In VIV science, the undisturbed velocity of the
current is used. By contrast, in this work, instantaneous local values of the relative velocity
vector are multiplied by D/ν. The scaled velocities thus obtained are a generalization of the
traditional use of Reynolds number: considering an immobile cylinder in a current, the norm
of its scaled relative velocity vector is equal to the traditional Reynolds number. To prevent
confusion of the present usage of Reynolds number with the more particular classical one,
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yet emphasize the relation between both, the expression “ilr-Reynolds” (for “instant, local,
relative Reynolds”) will be used in this document.

Since scaling is applied consistently to all derived quantities, all nondimensional
numbers based on combinations of distance, time and mass (including Reynolds and Froude
numbers) are conserved. However, any dimensional quantity with units different from those
of ρ, ν, and D is scaled to values that depend of ρ, ν, and D. In particular, (3.3) shows that
all accelerations, including the acceleration of gravity g, are scaled with a factor proportional
toD3/ν2. So while the scaling used here may conserve Froude’s number, it does not allow to
build a database of forces related to surface wave effects, because the database does not refer
to a uniform value go.

4. Characterization of Trajectory

4.1. Foreword

This section details how point 3 in Section 2.4 is to be implemented. The objective is, for any
given point in time, to distill a “summary” of the recent history of the velocity of the cylinder
relative to the surrounding fluid (trajectory). Note that the history of each component of the
velocity vector is treated separately in this section and that the procedure is applied to the
scaled trajectory.

The trajectory is approximated as a linear combination of some adequate family of
functions, and the coefficients in this linear combination are the summary. The family of
functions that is used here is the series of Laguerre polynomials (Section 4.2). It is shown
in Section 4.3 that if the “Laguerre coefficients” of the linear combination are obtained by
integrating the product of the trajectory by adequate “Laguerre analysis functions”, then the
difference between the approximating linear combination and the real trajectory is small in
the recent past and larger in the further past. This justifies the choice of Laguerre polynomials:
they allow to summarize the trajectory in a way that represents recent velocities very
precisely, and older velocities in a coarser manner. It is assumed that this corresponds to
the information needed to obtain a good estimate of the hydrodynamic force.

Computing the integral of the product of Laguerre analysis functions and trajectory
takes time. Luckily, one can show (Section 4.5) that the Laguerre coefficients are the solution
of a differential equation driven by the instant value of the velocity. To obtain results that
are independent of step size, this differential equation must be carefully discretised in time
(Section 4.6) when summarizing experimental data.

4.2. Definitions

The Laguerre polynomial (Figure 1, top) of degree i − 1 can be defined by its Rodrigues
formula [24]

Li(x) ≡ ex

i!
di

dxi

(
xie−x

)
. (4.1)

Laguerre polynomials verify the orthonormality property

∫∞

0
Li(x)Lj(x)e−xdx = δij . (4.2)
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Figure 1: Laguerre polynomials (top), Laguerre analysis functions (middle), andweight function (bottom).
The convolution of a signal by the Laguerre analysis functions yields Laguerre coefficients (analysis). The
linear combinations of the Laguerre polynomials weighted by the coefficients give an approximation of the
original signal (synthesis), with a quality that decreases towards the past in a way related to the weight
function.

We seek to describe the recent trajectory with a precision that is good for the immediate
past, and decreasing for the further past. To this end, we introduce a weight function which
emphasizes “recent past” (Figure 1, bottom)

W(t) ≡ et/tw

tw
, t ∈ R

−, (4.3)

where the interpretation of tw has been discussed in Section 2.1. Functions will now be noted
as vectors (in a Hilbert space), markedwith overline symbols. An indexed family of functions
will be noted as a matrix (symbols with double overline) and so will a linear operator (a
distribution of two variables). We introduce the symmetric positive definite operator

W(t1, t2) = δ(t1, t2)W(t1) (4.4)

and a dot product in a suitable space of real valued functions

f
T ◦ g ≡

∫0

−∞
f(t)g(t)dt (4.5)

with the canonical norm

∣∣∣f
∣∣∣ ≡

√
f
T ◦ f. (4.6)
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Further we introduce the base

L(t, i) ≡ Li

(
− t

tw

)
, t ∈ R

−, i ∈ {1, . . . , n}. (4.7)

Equation (4.2) can be rewritten in matrix notation as

I = L
T

◦W ◦ L, (4.8)

where I is the n × n identity matrix. It is useful to introduce the weighted norm or w-norm

∣∣∣f
∣∣∣
w
≡
√
f
T ◦W ◦ f. (4.9)

Note that sinceW(t) is of dimension [1/s], |f |w is of the same dimension as f . So when taking
f as a scaled velocity, |f |w is an ilr-Reynolds number.

4.3. Analysis and Synthesis

For a history v(t) of either the x or y component of the velocity, we seek the vector of

“Laguerre coefficients” τ with which to combine the columns L, that minimize the weighted
error J defined as

J =
1
2

∣∣∣∣v − L · τ
∣∣∣∣
2

w

=
1
2

(
v − L · τ

)T

◦W ◦
(
v − L · τ

)
.

(4.10)

A notation borrowed from physics is used here: the dot in the above equations symbolizes a
sum, as would appear in a matrix-vector product or the scalar product of two vectors. In this
notation, the sum acts on the last index of the left argument and the first index of the right
argument. Vector transpositions are hence without effect, but have been added in the text for
readers that prefer matrix notations.

To this effect, we require that the derivative be zero:

∂J

∂τ
= L

T

◦W ◦ L · τ − L
T

◦W ◦ v, (4.11)



Mathematical Problems in Engineering 11

which implies

τ =
(
L
T

◦W ◦ L
)−1

· L
T

◦W ◦ v (4.12)

= L
T

◦W ◦ v, (4.13)

τ = D
T

◦ v (4.14)

with

D ≡ W ◦ L. (4.15)

The “Laguerre analysis functions” D (Figure 1, middle) are by definition equal to

D(t, i) = Di

(−t
tw

)

= Li

(−t
tw

)
et/tw

tw
.

(4.16)

The Laguerre analysis functionsDmust not be confusedwith the Laguerre functions (note the
factor 2 in (4.18)). Incidentally, Wiener-Laguerre models use Laguerre filters whose impulse
response is Laguerre functions (not analysis function), so the present approach is slightly
different from the classical Wiener-Laguerre model. A justification for the present choice will
appear in Section 6.1.

4.4. Convergence

Laguerre functions, which can be defined as

F(t, i) ≡ Fi

(−t
tw

)
(4.17)

≡ Li

(−t
tw

)
et/(2tw)√

tw
(4.18)

or in matrix notation as

F =

√
W ◦ L, (4.19)
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have been extensively studied. Series of Laguerre functions are known to converge almost
everywhere (under some conditions of continuity) [25]. In matrix notation, this result can be
stated as

lim
n→∞

∣∣∣∣F · F
T

◦ f − f

∣∣∣∣ = 0. (4.20)

This can be used to obtain a result on the convergence of series of Laguerre polynomials. We
introduce the change of variables

f =

√
W ◦ g (4.21)

so that

∣∣∣∣F · F
T

◦ f − f

∣∣∣∣ =
∣∣∣∣∣F ·D

T

◦ g −
√
W ◦ g

∣∣∣∣∣

=

∣∣∣∣∣

√
W ◦

(
L ·D

T

◦ g − g

)∣∣∣∣∣

=
∣∣∣∣L ·D

T

◦ g − g

∣∣∣∣
w

.

(4.22)

We hence have convergence in terms of the quality of approximation that we are seeking,
with emphasis on the recent past. Further, on any finite (or “compact”) interval, convergence
in thew-norm is equivalent to convergence almost everywhere. So under some conditions of

continuity on g, the series of Laguerre polynomials obtained using D as analysis functions
converges almost everywhere towards g in any finite interval.

Figure 2 illustrates how Laguerre coefficients indeed provide a “summary” of the
trajectory

4.5. Differential Equation for Laguerre Coefficients

In the finite element analysis, we need to update the Laguerre coefficients at each iteration
of each time step, for every Gauss point of every node of the system. The explicit calculation
of (4.14) for every update is hence a CPU-time critical operation, taking in the order of n ×
N floating point operations (flops), where n is the number of Laguerre polynomial used
and N the number of time steps that the analysis functions take to decay to a negligible
value. Further, for each Gauss point, 2N velocity values need to be stored, a severe memory
requirement.

In the present section and the next, it is shown how the computation of (4.14) can be
carried out by a recursive operation requiring no other storage than that of the Laguerre
coefficients and the last velocity values, and taking in the order of n × n flops, which is
advantageous because n � N. In this section, it is shown that τ verifies a differential equation
driven by the history v of the velocity component. In Section 4.6, this differential equation is
solved time-step by time-step in a recursive update.
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Figure 2: Example of Laguerre approximation for two components of a velocity history (arbitrary scaling).
The red curve is the original cyclic signal. Each black dot marks a present time and the black curves are the
corresponding Laguerre approximations for the recent past.

Equation (4.14) can be rewritten without matrix notation and differentiated

∂τi
∂t

=
∫+∞

0
e−θLi(θ)

∂v

∂t
(t − twθ)dθ

= − 1
tw

∫+∞

0
e−θLi(θ)

∂v

∂θ
(t − twθ)dθ.

(4.23)

Multiplying by tw and integrating by parts yields

tw
∂τi
∂t

= −
[
e−θLi(θ)v(t − twθ)

]

+
∫+∞

0

[
−e−θLi(θ) + e−θ

∂

∂θ
Li(θ)

]
v(t − twθ)dθ.

(4.24)

A property of Laguerre polynomials is [24]

∂

∂θ
Li(θ) = −L(1)

i−1(θ)

= −
i−1∑
j=0

Lj(θ),
(4.25)
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where L(1)
i (θ) is a generalized Laguerre polynomial. Hence we can write

tw
∂τi
∂t

= Li(0)v(t) − τi −
∫+∞

0
e−θ

i−1∑
j=1

Lj(θ)v(t − twθ)dθ

= v(t) − τi −
i−1∑
j=1

τj

= v(t) −
i∑

j=1

τj .

(4.26)

which is of the form

∂τ

∂t
(t) = μ · τ(t) + n v(t) (4.27)

with

μij =

⎧
⎨
⎩
− 1
tw

j ≤ i

0 j > i,

ni =
1
tw

.

(4.28)

Equation (4.27) shows that at any time t, the rate of the Laguerre coefficients is fully defined
by the Laguerre coefficients and the velocity signal.

4.6. Recursive Filter

The discrete integration of (4.27) must be done carefully, for two reasons. Firstly, it is
important to obtain Laguerre coefficients that are independent of the sampling rate used (as
long as the sampling rate is “adequate”). This is because the experimental data on which
the VIV model is based may come from experiments which, after scaling, may have different
sampling rates. Further, the numerical analysis in which the VIV model is used may use yet
another time step. The choice of time step or sampling ratemust not affect the way a trajectory
is characterized by Laguerre coefficient.

The second reason for care in discrete integration is that we wish to be able to create

synthesized signals L·τ of good quality. Synthesized signals are neither used in the numerical
process of creating a force interpolation function (Section 5) or in the FEM use of the VIV
model. However, visualization is essential to the process of research, both for fault diagnosis
and quality control, and to communicate an understanding of the method.

This discrete integration is only used in the analysis of experimental data, to provide
an input to the training of the “rotatron” (Section 5.6). In dynamic analysis, the integration of
(4.27) is done by means of the Newmark-β method, as detailed in Section 7.
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Assume that velocity is sampled at regular intervals

vj = v
(
t0 + jdt

)
. (4.29)

We seek the values of the Laguerre coefficients at the same intervals

τj = τ
(
t0 + jdt

)
. (4.30)

The vector τj (the list of the coefficients for all Laguerre polynomials, taken at step j) must
not be confused with scalar τi (the coefficient for the Laguerre polynomial of degree i). We
choose t0 such that t0 + jdt = 0, and we approximate v by a function that is linear over the
interval [0, dt]. Equation (4.27) becomes

∂τ

∂t
(t) = μ · τ(t) + α + βt (4.31)

with

α = nv(0),

β = n
v(dt) − v(0)

dt
.

(4.32)

This new differential equation can be solved exactly: we seek a solution of the form

τ(t) = exp
(
μt
)
· a + bt + c (4.33)

over the interval. Here exp(μt) stands for a matrix exponential. Replacing this expression into
(4.31), noting that

∂

∂t
exp

(
μt
)
= μ · exp

(
μt
)
,

exp
(
0
)

= I,

(4.34)

and identifying the constant and linear terms and enforcing the initial value leads to

b = −μ−1 · β,

c = −μ−2 · β − μ
−1 · α,

a = τ(0) + μ
−2 · β + μ

−1 · α.

(4.35)
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Replacing these expressions in (4.33) at t = dt, a tedious but straightforward computation
yields the recursive filter

τj+1 = M · τj + V 1 · vj + V 2 · vj+1 (4.36)

with

M = exp
(
mdt

)
,

μ1 = μ
−1 · n,

μ2 = μ
−2 · n 1

dt
,

V 1 = M · (μ1 − μ2

)
+ μ2,

V 2 = M · μ2 − μ1 − μ2.

(4.37)

5. Force Interpolation

5.1. Foreword

This section details the implementation of point 4 in Section 2.4. This section presents an
interpolation function which, given the Laguerre coefficients, predicts the present value of
the force vector. Polynomials were considered initially, but it soon became clear that feed-
forward “neural networks” provide a better class of functions to work with. The reason for
this is that the number of polynomial coefficients of degree d for a polynomial of n variables
is nd, and high values of dmust be expected to be necessary. By contrast, in a neural network,
nonlinearity is introduced by “sigmoid” or “threshold” functions, and the coefficients are
used to specify in which direction nonlinearity applies. Further, polynomials are infamous
for their propensity to oscillate.

The “rotatron” presented here is based on the “perceptron” [26, 27], a well-studied
architecture of neural network which provides a flexible tool for the interpolation of scalar-
valued functions of a vector (Section 5.2). The rotatron takes advantage of certain symmetry
properties of the physics at hand (Section 5.3).

In Section 7, the rotatron is used to predict scaled forces based on the Laguerre
coefficients for scaled trajectories.

5.2. Perceptron

The perceptron [26, 27] is a simple feed-forward neural network, consisting of 3 layers. The
input layer has 2n neurons where n is the number of Laguerre coefficients for each velocity
component and the factor 2 comes from the need to analyze in-line and cross-flow speed
histories together. The values of the input layer neurons are set to the Laguerre coefficients
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for both velocity components. The second layer has nhid neurons, whose values are an affine
function of the values of the first layer, passed through a sigmoid function like

σ(x) = 1 − 2
e2x + 1

. (5.1)

Finally, the third layer gives the output of the perceptron, and its values are an affine function
of the values of the second layer. This can be summarized as

f̂i = Mij · σ
(
Njkl · τkl + Vj

)
+Ui. (5.2)

Mij , Njkl, Ui and Vj are the “weights” or interpolation coefficients, that must be adjusted
to fit the perceptron to interpolate some given data. τkl are Laguerre coefficients and f̂i are
predicted force components. i is the index of force direction (x versus y), j the index of neuron
in the hidden layer, k the index of velocity direction, and l the index of Laguerre coefficient.

Each output of the perceptron can be seen as a function, which is a sum of sigmoid
steps in directions defined by Njkl.

5.3. Symmetries

The relation between trajectories (in the sense of the history of the velocity of the cylinder
relative to the water) and forces can reasonably be assumed to exhibit several symmetries
(Figure 3).

Rotational symmetry: if a trajectory can be deduced from the other by a rotation
around the origin, then the resulting forces are also deduced from each other by
the same rotation.

Mirror symmetry: if a trajectory can be deduced from the other by a mirroring
around a line crossing the origin, then the resulting forces are also deduced from
each other by the same mirroring.

Rotational symmetry and mirror symmetry together imply directionality: if a trajectory is
within a line crossing the origin, then the resulting forces are within the same line. In
particular, zero velocities must imply zero forces.

The symmetries imply that once experimental data for a trajectory has been obtained,
there is no need to acquire data for rotated or mirrored trajectories. However, if one
was training a perceptron to interpolate the data, the training set would need to include
trajectories and their rotates and mirrors, with the correspondingly rotated and mirrored forces.
This would increase memory and CPU usage during training, but also during use of the
trained perceptron, because the perceptron will need a larger number of hidden layers to
interpolate the training data.

Another approach is hence used in the present work: the classic perceptron is replaced
by a “rotatron” (Section 5.5). It is designed so that, whatever the values of the weight
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Figure 3: For circular cross sections, it is assumed that if two trajectories that can be deduced from each
other by rotation or mirroring; then the corresponding forces are deduced from each other by the same
operation.

coefficient, a rotation or mirroring of the input trajectory results in the same rotation or
mirroring of the output force vector.

5.4. Index Notations

In the present work, index notations inspired from tensor analysis are used. However, the
present setting differs from tensor analysis in at least three ways.

Firstly, we assume that we are only operating in Euclidean spaces (and not in
more general Riemannian manifolds) so that orthogonal bases can be used. This makes it
unnecessary to distinguish between co- and contravariant bases and coordinates. Hence, only
lowered indexes appear in the present work. Incidentally, it was here assumed that the state
of the model is a point in a vector space, which is not true when finite rotations are present
and Riemannian geometry should be introduced instead.

Secondly, in tensor notations, each index spans the dimension of the manifold. In an
expression like σij = Cijklεkl, the indexes range from 1 to 3. Following Einstein’s convention,
indexes k and l are summed over, and the relation is valid for any combination of i and j.
The fact that the equation is valid at each point within a solid is implicit in the notation.
In the present work, we prepare for the manipulations of arrays in a computer, involving
operations that are repeated, for example, for various locations along a riser. If indexes x, y
and zwere introduced to note the position to which the various tensors refer, one would tend
to write σijxyz = Cijklxyz εklxyz, which violates Einstein’s convention, because no summation
(or rather: no integral) is implied over the positions.

Thirdly, we introduce nonlinear functions. These functions can combine the values of
the coordinates for some indexes (these will be noted in brackets) and operate in parallel on
the coordinates for other indexes (not brackets). For example, by definition of the notation

|y[j]k| is equal to
√
y2
1k + y2

2k, all values of j are present in one evaluation of the square root,
and the square root is evaluated for each value of k.
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Figure 4: Laguerre analysis and rotatron transform velocity histories into a hydrodynamic force. The
matrixD is the discrete form of the Laguerre analysis functions, which appear in (4.14). The dots symbolize
a matrix-matrix product.

Appendix A gives a detailed description of the conventions used.

5.5. Rotatron

A modified interpolation function (which will be referred to as “rotatron” in this text) is
defined as

f̂i = Vkσik (5.3)

with

σik = σi

(
y[j]k

)
(5.4)

=
yik∣∣y[j]k

∣∣(1 + ∣∣y[j]k
∣∣αk

) , (5.5)

∣∣y[j]k
∣∣ =

√
y2
1k + y2

2k, (5.6)

αk = −1 − e−Uk , (5.7)

yjk = Mklτjl. (5.8)

In the above, indexes i and j refer to direction, index l to the Laguerre polynomial, and k to
the hidden layer. Vk, Uk, and Mkl are tunable parameters. τjl are Laguerre coefficients, given
as input to the “rotatron”. Note that (4.14), (5.3), and (5.8) operate linearly, identically, and
independently of the terms related to the x and y directions, while (5.5) involves a unit vector
multiplied by a nonlinear function of its norm.

The rotatron can be shown to enforce the symmetries discussed in Section 5.3: if τjl is
multiplied by a 2 by 2 matrix sjj ′ representing a rotation or a mirroring, then yjk is multiplied
by the same matrix. The Euclidean norm |y[j]k| is hence unchanged. The term yik in (5.5) is
multiplied by sij ′ , hence so are σik and f̂i: a rotation or mirroring of the Laguerre coefficient
results in the same transformation of the forces.

Figure 4 illustrates the flow of information, from right to left, from two vectors
containing the histories of the velocity components, to Laguerre coefficient, that are then
processed in the rotatron.
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The nonlinear function appearing in (5.5) is a sigmoid, whose abruptness is par-
ametrized by Uk (Figure 5). The sigmoid is shown in Figure 5 for various values of the
parameter Uk.

5.6. Training

“Training” of a neural network refers to finding weight coefficients Vk, Mkl, and Uk such
that for any training point number m, consisting of Laguerre coefficients τjlm and two force
components fim, the outputs f̂im computed by the neural network are close to fim.

5.6.1. Regularization

A common problem when training neural networks is “overspecialization” [28]. In this
situation, the neural network predicts the training outputs with high accuracy but behaves
wildly between the training points. In contrast, what is implicitly sought is a smooth response
of the network to the input, even if this means an imperfect fit to the training data.

Many strategies are described in the literature to address this problem. One of them,
which is adopted here, is regularization [28]: the value of the weight parameters Vk,Mkl, and
Uk are chosen by minimizing the cost function

J
(
V[k], U[k],M[k], f[im], τ[jlm]

)
=

1
2

(
fim − f̂i

(
τ[jl]m

))2
+ ρ

1
2

(
U2

k + V 2
k +M2

kl

)
. (5.9)

The “regularization coefficient” ρ is an arbitrary input to the training algorithm. High values
of ρ favor smoothness of the response of the neural network against precision in reproducing
the training set.
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Arguments of symmetry by permutation of the numbering of the first index of yjk

in (5.6) show that the cost function has multiple minima. Further, there are probably local
minima higher than the lowest maxima.

5.6.2. Conjugate Gradient Optimization

J is a function of a large number of weight coefficients, and hence it is not practical to compute
the Hessian of J , because the Hessian is a full matrix. It also proves to be very costly to even
compute an approximation to it as done in the Levenberg-Marquardt algorithm [29, 30]. On
the other hand, the Nelder-Mead “downhill simplex” algorithm [31], which uses only the
values of J , proved very slow in this case. Hence a search method is chosen, that determines
the search direction from the gradient of J [32]. This is a conjugate gradient method, in which
the step length is found by deriving the gradient in the direction of the search. In this method,
the positive definiteness of the (implicit)Hessian is forced by adding a scaled identity matrix
to it, a technique known as “trust region”.

The conjugate gradient method proved far more efficient than the Levenberg-
Marquardt and Nelder-Mead methods for the present task.

The weight coefficients are set to random values at the start of the conjugate gradient
iterations.

6. Metric

6.1. Euclidean Metric and Distance

In order to describe the available data, it is useful to define a distance between trajectories.
This will allow to determine to what extend the set of available data “fills” the set of all
possible trajectories, or to detect zones of transition from one hydrodynamic behavior to
the other. Finally, this will help detecting contradictions in the available data, arising from
a variety of sources, including hidden experimental variables, measurement uncertainties, or
inadequate modeling in inverse methods and not least, the natural variability of VIV forces.

The x and y components of a trajectory are described by a pair of functions:

f ≡
(
fx, fy

)
. (6.1)

We can define a scalar product between trajectories, that captures any recent differences:

f
T � g ≡ f

T

x ◦W ◦ gx + f
T

y ◦W ◦ gy

=
∫0

−∞

et/tw

tw

(
fx(t)gx(t) + fy(t)gy(t)

)
dt.

(6.2)

By replacing fx, fy, gx, and gy by their expression in terms of Laguerre polynomials and
their respective Laguerre coefficients τfx, τfy, τgx, and τgy, one finds that

f
T � g = τTfx · τgx + τTfy · τgy

= τTf · τg
(6.3)
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Figure 6: A set of neighboring trajectories according to (6.6). Typical distance between trajectories: 103 [ilr
Re].

with

τf ≡
[
τfx

τfy

]
, τg ≡

[
τgx

τgy

]
. (6.4)

The distance is defined from the scalar product in the usual manner:

∣∣∣f − g
∣∣∣ ≡

√(
f − g

)T �
(
f − g

)
, (6.5)

=
∣∣τf − τg

∣∣. (6.6)

In other words, neighboring vectors of Laguerre coefficients describe trajectories that are
similar in the recent past. This is illustrated by taking random samples of Laguerre
coefficients around a given value obtained from data analysis and plotting the synthesized
trajectories (Figure 6). Given that trajectories are compared using an integral weighted with
an exponential (4.2). This important property can be seen as the justification of the choice of
the Laguerre coefficients to “summarize” trajectories.

6.2. Rotatron Distance

The above does not account for rotational and mirror symmetries. We seek a distance for
which the distance of a trajectory to its transforms by rotation or mirroring is zero. Another
distance is hence introduced:

d
(
f, g

)
≡ min

(
min
R∈R

∣∣∣f − R
(
g
)∣∣∣,min

S∈S

∣∣∣f − S
(
g
)∣∣∣
)
, (6.7)
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Figure 7: A trajectory and its neighbors in terms of rotatron distance. Smooth curve: Laguerre
approximation of trajectory, stippled arrow: true force, smooth arrow: predicted force. Black is for the
trajectory used to enter the model to find the force. Green and red are used for the three closest points in
the database, respectively, before and after rotation or mirroring.

where R is the set of all rotations of the trajectories around the origin and S the set of all
mirroring of trajectories around a line passing by the origin. Note that no norm or scalar
product associated to the distance d is presented here (The vector-space of trajectories,
divided by the group of rotations and mirrorings, is not a vector space).

Because fx is related to τfx by the same linear relation that relates fy to τfy, linear

combinations of fx and fy (including rotation and mirroring) are related to the same linear

combinations of τfx and τfy. By expressing the distance |f − R(g)| as a function of the angle
α of the rotation R, and then differentiating it with respect to α, it can be shown that the value
of α that minimizes |f − R(g)| is

α = arctan
(
τfx · τgy − τfy · τgx, τfy · τgy + τfx · τgx

)
, (6.8)

where arctan(y, x) ∈ ] − π,π] is the angle of a vector [x, y]T with the x-axis. Similarly, it can
be shown that the mirroring that minimizes |f −S(g)| is the composition of a rotation of angle

β = arctan
(
τfx · τgy + τfy · τgx, τfy · τgy − τfx · τgx

)
(6.9)

by a swap of the sign of the x-coordinates. Equations (6.8) and (6.9) allow to compute (6.7).
Figure 7 shows a trajectory and the trajectories within a small database that have the

smallest distance to it, measured using d.
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6.3. Existence of Functional Relation

6.3.1. Introduction

From experiments, one can obtain databases of velocity histories, and the corresponding
hydrodynamic forces. The velocity histories can be “summarized” into Laguerre coefficients.
An open question at this stage is whether there is actually a functional relationship between
the Laguerre coefficients and the forces, that the rotatron could be used to approximate. For
example, if the decay time tw was chosen too small, then the same velocity in the recent
past (represented by the Laguerre coefficient)will result in different forces, depending on the
velocity in the more remote past. In that case, there is no functional relation. The functional
relation could also be lost if too few Laguerre coefficients are used, or if the force in the
experiments is affected by incoming turbulence. In the absence of a functional relation,
attempting to train the rotatron will not give useful results, in the same way as no curve
drawn through a cloud of points on a piece of paper will provide a useful model.

The approach in this section hinges on two ideas. Firstly, the higher the dimension of
a spaceis, the faster the volume of a ball increases with its radius. Hence, the statistic of the
distances between points in a cloud of data can be used to define a dimension (Section 6.3.4).
For example, a set of points on a piece of paper will be shown to follow a curve if the number
of neighbors increases linearly with the radius. Secondly, if Laguerre coefficients τ predict
forces f , then the dimension of the cloud of experimental τ values must be the same as the
dimension of the cloud of [τ, f] points (Section 6.3.3).

6.3.2. Minkowski-Bouligand Dimension

Considering a relatively uniform cloud of points, the number m of points in a ball is
proportional to the radius r of the sphere to the power of p, where p is the dimension of
the space in which the cloud is defined. For example, using 2 × 10 Laguerre coefficients to
describe both components of a trajectory, the number of points in the ball would bem ∝ r20.

Conversely, one can define the Minkowski-Bouligand dimension (often referred to as
the fractal dimension [33]) p of a set (in particular, of a “database” of Laguerre coefficients)
by counting the numberm(r) of pairs of points in a set, which have a distance smaller than r:

p(r) ≡ ∂ logm(r)
∂ log r

. (6.10)

In practice, one should either smooth m(r) or compute the derivative by finite differences
over a large enough interval. Note that the fractal dimension p is a function of the scale r.

6.3.3. Functional Relation

Imagine that we have a series of data-points (x, y, z), and we are investigating whether z can
be predicted using x and y. Let us imagine that the fractal dimension of the set of (x, y) pairs
is 2 (the set of (x, y) fills the plane). If the fractal dimension of the set of (x, y, z) is equal to
2, then the set of (x, y, z) is within a surface, and z can be predicted using x and y. If the
fractal dimension of the set of (x, y, z) is equal to 3, the data forms a cloud, and x and y are
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Figure 8: Statistics of the distance between vectors of Laguerre coefficients (“τ distance”, black) and vectors
of Laguerre coefficients and forces (“τ-f distance”, red). the four red curves, from left to right correspond
to an added random noise to the force with standard deviation 0, 1 × 107, 2 × 107, and 10 × 107 [N/m].

not sufficient to predict z, therefore other hidden variables must be at play. These concepts
are now applied to the study of the experimental database.

6.3.4. Minkowski-Bouligand Dimension

Figure 8 shows the cumulative distribution of the distances between trajectories (“τ-
distance”, black curve) computed using (6.7). p is seen to depend on the scale: from afar
(r > 2 × 104 [ilr Re]), the slope of the curve is zero, hence the dimension is zero: all the data
are lumped into a point. Zooming into the data set (r = 3 × 103 [ilr Re]), one can discern a
cloud of dimension 4.76. At r = 1.5 × 103 [ilr-Re], the slope decreases to about p = 2, and it is
believed that this is the dimension of the data set for a given point along the riser. At a small
scale (r < 1× 103 [ilr Re]), the dimension increases again, possibly due to noise in the data. or
weaknesses in the Laguerre approximation.

The red curves in Figure 8 are computed by adding the sum of squares of the
differences between force components (suitably scaled) to the squares of the distances
between trajectories, and then extracting the square root (“τf-distance”). The four red curves,
from left to right, are drawn using the original force data, to which Gaussian noise of standard
deviation 0, 107, 108, and 109 [N/m], respectively, has been added (The standard deviation
of the original force is about 2 × 108 [N/m]). The first curve is close to the black one, which
is strongly suggestive that indeed, there is a functional relation. The two first red curves are
indistinguishable, which seems to indicate that we cannot expect to achieve a 10% precision
in force predictions. Themarked difference with curves 3 and 4 shows, however, that we have
assets in hand to predict the force. Similar curves have been produced with added noise of
standard deviations 1 × 107, 2 × 107 and 10 × 107, [N/m], and already at 2 × 107 [N/m] the
curve is distinct from the one based on the original data.



26 Mathematical Problems in Engineering

6.3.5. Discussion

The present study suggests that there is indeed a functional relation to be seen in the data
set used here. The Laguerre coefficients can be used to predict the forces, with a precision
of about 107 [N/m]. The conclusion must be treated carefully, however. The dimensional
analysis provides a necessary condition, not a sufficient one: it does not exclude, for example,
that there exists a neighborhood of points τ in which two distinct values of f appear.

7. Dynamic Analysis

7.1. Foreword

Once it is possible to predict hydrodynamic forces on a cross section for a given velocity
history, the next development is to include the force thus predicted in a dynamic time domain
simulation. Because the VIV forces introduce severe nonlinearities, a naive connection (where
the forces are just added to the right-hand side of the system)might lead to slow convergence
or to divergence of the Newton-Raphson iterations used at each time step. To obtain a proper
formulation, it is necessary to jointly treat the system of differential equations composed
of the state equations of the structure and the differential equations (4.27) followed by the
Laguerre coefficient. However, in doing so, for each displacement degree of freedom, n
Laguerre coefficients are added, and it is crucial for efficiency to eliminate them before solving
a large linear system of equations.

To this effect, in this section, the following sequence of transformations is applied to
the differential equations.

(1) The differential equations are first set in incremental form (Section 7.3).

(2) Time discretisation by the Newmark-β method is introduced (Section 7.4).

(3) The Laguerre coefficients are condensed out of the system of equations
(Section 7.5).

(4) Finite element interpolation is introduced (space discretisation), using Gauss
quadrature (Section 7.6).

This particular sequence leads to a VIV model that is implemented at the Gauss point
level and can easily be introduced in a general purpose FEM software with standard,
displacement-based beam, or cable elements. Another sequence, 1, 4, 2, 3, can be used to
obtain either a hybrid element, or alternatively, a mixed element which would require a
specialized solver for optimal efficiency. These alternatives are more difficult to integrate into
existing software working with displacement-based elements and are not discussed here.

7.2. Differential Equations

The dynamic differential equation of a 3D beam subjected to VIV loads can be formalized as

rdi
(
x[bj], ẋ[bj], ẍ[bj], t

)
= λ−1

Nm−1 f̂d
(
τ[pb]i

)
+ Edi, (7.1)
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where Newton’s “dot” notation for a time derivative stands for a derivation with respect to
unscaled time t, as opposed to scaled time t∗, and with [23, 34]

Edi = CLρν(ẇdi − ẋdi) + CQ
1
2
ρDi|ẇdi − ẋdi|(ẇdi − ẋdi)

+ CM
π

4
ρD2

i (ẅdi − ẍdi) +
π

4
ρD2

i ẅdi.

(7.2)

The four terms in the above Morison’s equation are the linear drag, the quadratic drag, the
sum of diffraction and added mass forces, and the Froude-Krylov forces. The fourth term
introduces the correction discussed in Section 3.1.

If CL, CQ, or CM are set to values different from zero, then it is necessary to subtract
the corresponding values from the forces fdi used to train the rotatron. Experience shows that
using CM = 1, CQ = 1, and CL = 0 contributes to the stability of the dynamic analysis.

Equation (4.27)must be scaled to keep only derivatives with respect to unscaled time,
for the application of Newmark-β (Section 7.4)

∂τlbi
∂t∗

= μlpτpbi + nlλ
−1
ms(ẋbi − ẇbi) (7.3)

so that

λ−1s τ̇lbi = μlpτpbi + nlλms−1(ẋbi − ẇbi). (7.4)

The indexes d and b span pairs of directions, orthogonal to the cylinder. Indexes i and j
stand for positions along the cylinder and span a continuous set of values (coordinates along
the cylinder). Indexes l and p refer to the Laguerre coefficients of various degrees. Forces
f̂di = f̂d(τ[pb]i) at location i only depend on the Laguerre coefficients τpbi for the same location.
At that location, the force component in direction d depends on the Laguerre coefficients
of all degrees b for both directions p. ρ is the fluid density and ẅdi is the acceleration of
the undisturbed fluid. π/4ρD2

i ẅdi stands for the Froude-Krylov forces. Diffraction forces are
present in the laboratory tests and hence accounted for by f̂d.

7.3. Incremental Form

The incremental form of (7.1) and (7.4) is

rdi + kdibjdxbj + cdibjdẋbj +mdibjdẍbj = λ−1
Nm−1 f̂di + hdipbjdτpbj + Edi, (7.5)

λ−1s (τ̇lbi + dτ̇lbi) = μlp

(
τpbi + dτpbi

)
+ nlλms−1(ẋbi + dẋbi − ẇdi) (7.6)
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with

kdibj =
∂rdi
∂xbj

,

cdibj =
∂rdi
∂ẋbj

+ CQρDiδij
[∣∣ẇ[p]i − ẋ[p]i

∣∣δbd+(ẇdi − ẋdi)(ẇbi − ẋbi)
∣∣ẇ[p]i − ẋ[p]i

∣∣−1]+CLρνδijδbd,

mdibj =
∂rdi
∂ẍbj

+ CM
π

4
ρDiδijδbd,

hdipbj = λ−1
Nm−1

∂f̂di
∂τpb

δij .

(7.7)

The expression for ∂f̂di/∂τpb is presented in Appendix B.

7.4. Time Discretisation

Newmark-β is a method geared towards second order differential equations. Equation (7.6),
however, is only of the first order. The reason for using Newmark-β here is that the present
VIV model is to be integrated into the model of a larger structure, and the differential system
for that structure is of the second order. Preparing a first order equation for a second order
solver opens two options: we can treat (7.6) as being of the second order in τlbi, but with the
coefficient of τ̈lbi being zero. Alternatively, we can introduce the antiderivative Tlbi of τlbi, and
treat (7.6) as being of the second order in Tlbi, but with the coefficient of Tlbi being zero. The
latter option was chosen, based on the weak justification that this treats τlbi and ẋbj both as
first derivatives, which seems natural considering (4.14).

Applying Newmark-β to (7.5) and (7.6) in this way yields

∀d, i,
[
kdibj +

γ

βdt
cdibj +

1
βdt2

mdibj

]
dxbj −

γ

βdt
hdipbjdTpbj

= λ−1
Nm−1 f̂di + Edi − rdi + cdibjb

x
bj +mdibja

x
bj − hdipbjb

τ
pbj ,

− γ

βdt
nlλms−1dxbi +

[
1

βdt2
λ−1s δlp −

γ

βdt
μlp

]
dTpbi

= nlλms−1(ẋbi − ẇbi) + μlpτpbi − λ−1s τ̇lbi − nlλms−1b
x
bi − μlpb

τ
pbi + aτ

lbi

(7.8)

with

ax
bj =

1
βdt

ẋbj +
1
2β

ẍbj ,

bxbj =
γ

β
ẋbj +

(
γ

2β
− 1

)
dt ẍbj ,

aτ
pbj =

1
βdt

τpbj +
1
2β

τ̇pbj ,

bτpbj =
γ

β
τpbj +

(
γ

2β
− 1

)
dt τ̇pbj .

(7.9)



Mathematical Problems in Engineering 29

For refinement iterations, ax
bj , b

x
bj , a

τ
pbj , and bτpbj are set to zero. Typically, γ = 1/2, β = 1/4.

The step dt refers to unscaled time.
As usual in the Newmark-βmethod, the increments for the time derivatives are found

from the increment as

dẋbj =
γ

βdt
dxbj − bxbj , (7.10)

dẍbj =
1

βdt2
dxbj − ax

bj , (7.11)

dτpbj =
γ

βdt
dTpbj − bτpbj , (7.12)

dτ̇pbj =
1

βdt2
dTpbj − aτ

pbj . (7.13)

7.5. Condensation

The time discrete equations can be rewritten in a compact form:

s1dibjdxbj − s2dipbjdTpbj = s3di,

s4l dxbi + s5lpdTpbi = s6lbi

(7.14)

with

s1dibj = kdibj +
γ

βdt
cdibj +

1
βdt2

mdibj , (7.15)

s2dipbj =
γ

βdt
hdipbj , (7.16)

s3di = λ−1
Nm−1 f̂di + Edi − rdi + cdibjb

x
bj +mdibja

x
bj − hdipbjb

τ
pbj , (7.17)

s4l = − γ

βdt
nlλms−1 , (7.18)

s5lp =
1

βdt2
λ−1s δlp −

γ

βdt
μlp, (7.19)

s6lbi = nlλms−1(ẋbi − ẇbi) + μlpτpbi − λ−1s τ̇lbi − nlλms−1b
x
bi − μlpb

τ
pbi + λ−1s aτ

lbi. (7.20)

One can then condense dTpbi out of the above system of equations:

dTpbj =
(
s5
)−1

pl

(
s6lbj − s4l dxbj

)
, (7.21)

[
s1dibj + s2dipbj

(
s5
)−1

pl
s4l

]
dxbj = s3di + s2dipbj

(
s5
)−1

pl
s6lbj . (7.22)
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Equation (7.22) is forced into “Newmark form” as

[
k∗
dibj + kdibj +

γ

βdt
cdibj +

1
βdt2

mdibj

]
dxbj = f̂∗

di − rdi + cdibjb
x
bj +mdibja

x
bj (7.23)

with

k∗
dibj = s2dipbj

(
s5
)−1

pl
s4l ,

f̂∗
di = λ−1

Nm−1 f̂di + Edi − hdipbjb
τ
pbj + s2dipbj

(
s5
)−1

pl
s6lbj

(7.24)

k∗
dibj

and f̂∗
di

both depend on dt, β, and γ : the symbol k∗
dibj

was chosen to indicate that the
matrix is handled by the Newmark-β solver in the same way as a stiffness. However, this
term cannot be interpreted physically as a stiffness.

7.6. Spacial Discretisation

The consistent discretisation by Galerkin finite elements of (7.23) leads to

K∗
nm = Ndink

∗
dibjNbjm,

F̂∗
n = Ndinf̂

∗
di.

(7.25)

K∗
nm and F̂∗

n are typically computed by Gauss quadrature. Note that no space derivative is
present in k∗

dibj , so no partial integration or Gauss quadrature with curvature shape function
appears. One can hence simplify the expression of the element matrix to

K∗
nm = Ndink

∗
dibNbim (7.26)

which means “same quadrature as for a mass matrix”.

7.7. Implementation

In nonlinear FEM code, incremental matrices and vectors are computed by Gauss quadrature.
The Gauss quadrature involves shape functions, tensors that are local, continuous versions
of the stiffness, damping and mass matrices, and the force imbalance vector. For example,
for the drag damping of a beam element, the tensor relates a vector whose components
are increments in velocities in three directions, to another vector whose components are
increments in forces per unit length in three directions.

Within an iteration, the linear solver provides incremental nodal positions, velocities
and accelerations for the model. These are disassembled and provided to the elements. The
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Table 1: Reynolds number in NDP tests.

Test name Reynolds number Current
TN2030 13500 uniform
TN2340 0–16200 shear
TN2370 0–24300 shear

elements compute positions, velocities, and accelerations (and more) in a corotated reference
system at Gauss points. The resulting values are handed to the VIV-Gauss point procedure.

The axial velocities are discarded. The procedure scales the provided values using (3.2)
and (3.3).

Having stored the previous approximation of the scaled position, the procedure
determines the position increment dxbj , and then uses (7.21) to obtain the Laguerre coefficient
increment dTpbj . From there, (7.12) and (7.13) are used to compute dτpbj and dτ̇pbj . The values
of Tpbj , τpbj , and τ̇pbj are updated from previously stored values. τpbj is then used to evaluate
f̂di and its derivative with respect to τpbj . These are scaled back, and Froude-Krylov forces are
added, leading to k∗

dibj
and f̂∗

di
.

The above matrix and vector are padded with zeros to indicate zero force in the axial
direction and zero torque.

The condensation of a larger system of time-discretised equations introduces some
inelegant features compared to standard dynamic FEM: the VIV-Gauss point must be
provided with β, γ , and dt and a flag showing whether a call is made at a step or within
a refinement iteration.

Note that when the VIV model is integrated in the dynamic FEM computation, in the
way detailed in this section, the recursive Laguerre filter presented in Section 4.6 is not used.
In this work, the filter was used only to process velocities time series and product Laguerre
coefficients for the training of the rotatron model. The filter provides a very efficient way to
process whole time series.

8. Results

8.1. Training

The Norwegian Deepwater Program was a research effort in which reduced scale tests
were carried out on long, flexible riser models, subject to uniform or sheared current [35].
The displacement histories thus acquired at 19 points along the riser model were later
prescribed on short stiff cylinders, and the hydrodynamic forces acting on the cylinders
directly measured [36, 37]. Some data from [36, 37] is used in this work. It consists of the
displacements at 19 points along the NDP riser model, for 3 current profiles (Table 1), so a
total of 57 short cylinder test runs. For each of the 57 runs, 100 instants are randomly selected,
yielding a training set of the rotatron with 5700 “points”. Each “point” consists of two sets of
n = 30 Laguerre coefficients and the two components of the corresponding force (Figure 11).

The rotatron was trained using n = 30 Laguerre polynomials, 200 neurons in the
hidden layer, and 50 to 1000 iterations of the conjugate gradient optimization algorithm.
Other settings have been studied. No precision improvement was obtained from increasing
the number of neurons or from increasing the number of iterations. This may suggest that the
optimization algorithm converges on a local minima. If that is the case, improvement would
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Figure 9: Quality of prediction for 5 nodes in test TN 2030. Velocity (left), training force (middle), and
predicted force (right). All velocities and all forces presented at the same scales.

require the use of an optimization algorithm better suited to finding absolute minima in a
“jungle” of local ones.

Figure 9 shows how the rotatron predicts the forces for the trajectories in the above-
mentioned 57 runs of short cylinder tests. The predicted forces are compared to the forces
acquired experimentally. Themodel’s ability to predict these forces seems to be good, although
we lack a good criteria to judge that yet.

Figure 10 provides a visualization of the different steps of the modelization process,
and is hence a useful diagnostic tool. It shows

stippled black line: the trajectory for which a force prediction is wanted,

smooth black line: the Laguerre approximation to the above trajectory, used to enter
the rotatron,

stippled black arrow: the measured force for the above trajectory,

smooth black arrow: the predicted force for the above trajectory,

green: neighboring (in the sense of the rotatron distance, Equation (6.7)) trajectories
from experiments, used in the training set (and corresponding Laguerre approxi-
mation, experimentally measured force and predicted force),

red: same as the above after rotation and/or mirroring.
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Figure 10: Illustration of the approximation process. See Section 8.1.
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Figure 11: Force vector and Laguerre approximation of velocity, for a fraction (1%) of the data used to train
the rotatron. The blue cross marks the origin (zero velocity relative to water).

Figure 10 gives an indication of the quality of the Laguerre approximation, the adequacy of
the training set for the trajectory at hand, the presence of contradictions in the training set
near the trajectory at hand, the quality of the fit of the rotatron to the training data, and
finally the quality of the interpolation between training points.
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Table 2: Characteristics of the NDP reduced scale riser model.

Quantity Value
length 38 m
outer diameter 0.027 m
EI 37.2 Nm2

EA 5.09 · 105 N
mass 0.933 kg/m
tension 3000 N
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Figure 12: NDP test results, test 2370 (Re ∈ [0, 24300]). The color coding describes the displacement.

8.2. Dynamic Analysis of a Flexible Riser

VIV depends not only on current velocities, but also on the type of slender system they
act upon. Tension, stiffness, damping, length, and boundary conditions affect the vibration
and hence the velocity trajectories that appear in the vibration. Hence the database used in
Section 8.1 to train the rotatron is specialized, not only to a few Reynolds numbers for the
current velocity, but also to some extend to the particular model used in the NDP program.
No study was carried out in this work to determine how much change in the structure this
specialized rotatron can accommodate.

Hence, in order to test the performance of the present VIV model within a dynamic
analysis, the simplest case was considered: the riser model used in the NDP testing program
([35], characteristics in Table 2) was modeled. The present method was used to analyze
the test condition TN2370 (Re ∈ [0, 24300]). Numerical results were compared with those
obtained experimentally on the NDPmodel. A laptop, using one core of a dual core processor,
took 20 to 50 seconds to compute one second of riser response.

In Figures 12 and 13, the horizontal axis is NDP-laboratory time and the vertical axis
is the unscaled length along the riser. The upper subplot shows the response in line (IL)with
the flow, the lower subplot the cross-flow (CF) response. The color codes the displacements,
with the same color scale used in Figures 12 to 14.
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Figure 13: Analysis results, test 2370 (Re ∈ [0, 24300]).
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Figure 14: Analysis results, test 2030 (Re = 13500).

Figures 12 and 13 are for test TN2370 (Re ∈ [0, 24300]). The dynamic simulations
captures the frequency doubling between CF and IL, as well as the instationary nature of the
vibrations. Frequency and amplitude are adequately captured. The 6th mode’s dominance
of the CF vibration is correctly captured. The dynamic analysis assumes constant tension.
By contrast, some small tension modulations seem to displace the position of the lower
vibration node in the test. In test 2370, there is a marked tendency for CF vibrations to
propagate downwards. In the analysis results, CF waves are of a more static character. The IL
vibration in the analysis occurs at a higher mode (11) than in the test (9). This is best seen by
counting red dots along diagonals, for example, starting from coordinate 38m and time 17.9 s
in Figure 12. As a consequence, and since, for a given propagation celerity, wavelength and
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Figure 15: Quality of prediction on a control data set. See for example, color code of Figure 9.

period are related, the phase drift between IL and CF is of opposite sign in the analysis and
the test.

It proved impossible to reproduce tests 2340 and 2030 in the samemanner. The analysis
quickly ends with IL and CF vibrations occurring at the same frequency, and in Figure 14,
with in-line motions dominating.

9. Discussion

9.1. Force Prediction and Reynolds Interpolation

Figure 9 shows that given the velocities in the training data as input, the model allows to
reproduce the forces in the training data, based on the velocity in the training data.

The same exercise is carried out with trajectories from another test, N2430 (not to be
confused with TN2340), which was carried out in shear current (Re = 0 to Re = 40500).
In comparison, the highest current velocity appearing in the training set is Re = 24300. In
N2430, the forces are fairly well predicted at the lower current velocities (Figure 15), while
the predictions are very poor at higher velocities.

This illustrates that the present model provides no mechanism to use forces from
a test at a given Reynolds number, to predict forces in a situation with another Reynolds
number (due to higher current velocity e.g.,). In contrast, a simplified harmonic method like
VIVANA enters a “table” with values of reduced amplitude and frequency. The tables are
assumed to represent VIV behavior over a relevant range of Reynolds numbers. Because
the transformation from added mass and excitation coefficients into forces makes use of



Mathematical Problems in Engineering 37

the current speed (which is proportional to the Reynolds number), this effectively provides
VIVANA with a mechanism for interpolation over Reynolds number. The present model,
on the other hand, uses a compressed form (Laguerre coefficient) of recent velocity history,
scaled to Reynolds-like numbers. The scaling and data compression scheme used in the
present model does not separate the classical Reynolds number as a separate variable.
Instead, it is embedded in the compressed data as the average of the recent scaled in line
velocity already provided to the rotatron.

It remains an open question whether one should at all try to add such a Reynolds
interpolation scheme in models of the present type. In a range of Reynolds number values in
which the wake flow remains similar, it is reasonable to assume that viscous forces increase
linearly with velocity and inertial forces increase quadratically. For harmonic motions, the
component of the force in phase with acceleration can be attributed to an inertial force, and
the component in phase with velocity, to a viscous force. For more general motions, “phase”
becomes a problematic concept, making it difficult to separate the force into viscous and
inertial components that one can scale each according to their own law.

9.2. Dynamic Analysis

The comparison of Figures 12 and 13 is encouraging: when simulating exactly the system
from which trajectories were acquired experimentally in the first place, the simulation comes
strikingly close to the experimental results. It is understood that a simulation is good if it
captures the statistical properties of the real response. With VIV being chaotic, there is no
hope to reproduce exactly any given realization of the response.

Figure 14 shows the result of a simulation of a case which is also directly represented
in the training data. The simulation fails, in the sense that IL and CF vibrations are simulated
to occur at the same frequency. Two explanations are proposed.

The quality of the force prediction by the rotatron, illustrated in Figure 9, was declared
“satisfactory”, but this constitutes only an observation that the fitting procedure is operating.
On what criteria should one judge that the fit is adequate? When training was carried out,
the average norm of the difference between the training force and the predicted force was
found to be about 30% of the average norm. For a control group composed of data points
from the same experimental database, but not used in training the perceptron, the same ratio
was about 40%. These numbers are high and can be reduced to some extend by increasing
the number of hidden layers and of training iterations, but this was not found to yield
better simulations. Further specializing the perceptron (by training it with data from test
2030) did not lead to successful simulations. One study which might help to understand
the observations would be to find the corrective forces that need to be added to the forces
predicted by the model, to force the simulation to track the motions observed during test
2030. This can be achieved using dynamic inverse FEM analysis [38–40].

Even if the above corrective forces were strictly zero, so that the model was accurately
predicting forces for the riser motion from test 2030, this would not be sufficient to ensure
that the simulation adequately mimics test 2030. A given trajectory could still have very
different stability properties in the physical system and in the simulation. It could be that in
the physical system, the trajectories follow the “bottom of a valley” while themodel renders it
as the “crest of a mountain”. Ameasure of stability for this is the Lyapunov exponent [41, 42].
Procedures exist to compute Lyapunov exponents from experimental data, and this should
be compared to Lyapunov exponents for the simulation.
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9.3. Influence of tw

One issue that was explored was the adequacy of tw: the rotatron was trained with tw =
5 · 10−5. This corresponds roughly to 1/4 of a cross-flow oscillation period in reduced scale
for test 2370, and to a smaller fraction for other tests at lower current velocity. It could be
argued that this fraction becoming too small could be the cause of the failure of analyses at
lower velocities (Figure 14). The rotatron was hence trained again using a suitably increased
value of tw. This was done twice, once with the full training set and increasing the number
of Laguerre polynomials to n = 60, and once with only the experimental data from lower
currents and an unchanged number of polynomials (n = 30). Neither rotatrons allowed to
perform a successful simulation for the lower current velocities.

9.4. Tension

In Figure 12, one can observe modulations of the positions of the vibration nodes (in
particular on the cross-flow graph). One possible explanation for this would be that in the
physical system, the tension is modulated by the vibration. This effect, if present, is not
captured by the numerical model, which assumes constant tension. The method presented
here is designed for use in a nonlinear analysis. However, in this research, time was saved by
using a simpler linear structural model.

10. Conclusions

A model for the prediction of VIV forces given the history of velocity of a cylindrical cross
section relative to the undisturbed fluid has been developed. The model is closely related
to Wiener-Laguerre filters: the recent history of velocity is represented by the coefficients of a
Laguerre polynomial series. These coefficients are then used to enter a memory-less nonlinear
interpolation function, in this case, a custom made neural network in which some relevant
symmetry properties were “hard-wired”. The neural network was trained by using forces
and displacements obtained in irregular forced motion tests on a short cylinder.

The proposedmodel operates in the time domain, making it well suited for integration
into fully nonlinear analyses with unsteady currents. It further deals with in-line and cross-
flow vibrations as one inseparable issue, which is arguably a necessity to improve on existing
VIV models.

The model could provide a “good” reproduction of the forces in the training test, as
well as a “good” prediction of forces for “comparable” trajectories. Where the model was
queried with trajectories very different from those present in the training data, the model
gave very poor results—as should be expected. Due to the limited amount of experimental
data available, the present model remains quite specialized to a limited number of situations.
What remains unknown at this stage is the size of the training set, and of the neural network
model, necessary to create a model with some ambition of generality.

In some dynamic analyses of laboratory tests (NDP TN2030 and TN2430) with a long
flexible riser, the numerical solution fell into an unphysical mode of vibration with the same
frequency for in-line and cross flow vibration. On the other hand, for another case (TN2470),
some unusually fine details were captured by the numerical model. From this, it is concluded
that the concept has merit and deserves to be pursued.

At the same time, the present paper leaves several important questions unanswered.
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The proposed method assumes that hydrodynamic forces can be predicted by the
recent history of velocity of the pipe relative to the surrounding fluid. Fractal dimensional
analysis in Section 6.3.4 suggests that this is, to some extent, the case. On the other hand,
experimental evidence clearly shows that if a cylinder is forced twice to follow the same
trajectory, the histories of hydrodynamic forces will not be exactly the same. Will adding a
random force process to the output of the model be of any value in reproducing the dynamics
behavior of a pipeline? If so, how should such a random process be studied and modeled?

What is the information content of the relation between velocities and forces? As the
size of the experimental database is increased, will data points confirm each other and be
interpolated with a relatively simple model (a rotatron with few tunable parameters), or will
a landscape of ever increasing complexity appear, defeating the present approach?

The rotatron was found to be able to predict forces “reasonably” well, yet, when
included in a dynamic model, the ability to reproduce the dynamics of the system was
limited. Can the measure of force agreement, used in training the rotatron be improved?
Would it be useful, as suggested to the author by Dr. Halvor Lie to emphasize a good
prediction of the power of the force? More generally, how does one ensure that an
approximate model reasonably reproduces the statistics of the response of the original
nonlinear dynamics system?

Appendices

A. Conventions for Indexed Notations

The following conventions for indexed notations are used in this text.

(1) By default, where an index appears more than once in a combination of products
and/or divisions, a summation over the index is implied. If that index has a
continuous range, then the “sum” is an integration over the range. Points 2, 3, and
4 specify exceptions to this rule.

(2) Point 1 notwithstanding, if an equation is preceded by the symbol ∀, followed by a
list of indexes, then the listed indexes are not summed over.

(3) Point 1 notwithstanding, if within an equation, there is a combination of products
and/or divisions within which an index appears only once, then no sum over that
index is carried out in the whole equation. (In any situation other than a simple
term in the left-hand side, readability should be improved by using the symbol ∀.)

(4) Point 1 notwithstanding, if an index appears within an input to a function, and the
output of the function is multiplied or divided by one or several terms that have
the same index, then no sum within the input to the function is carried out on that
index.

(5) If an index of an argument to a function is within brackets, then the whole range
of index values is used as input to one function evaluation. For example, σi(y[j]k)
refers to the evaluation at multiple locations (k) of a vector-valued (i) function of a
vector (j).

(6) When the output of the function is shorthanded without explicitly writing its input,
then the indexes of the input that are not within brackets are added to the indexes
of the function. For example, σi(y[j]k) can be shorthanded σik.
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(7) Derivatives of a function are noted with only the bracketed indexes of the input
appearing under the fraction: ∂σi/∂yj . To refer to the value of that derivative for
input k, one writes ∂σik/∂yj .

B. Rotatron Gradients

The derivative of the force predicted by the rotatron, with respect to the Laguerre coefficients
is needed in Section 7. With references to (5.3) to (5.8) that describe the rotatron, we can write

∂f̂in
∂τ̇jl

=
∂f̂in
∂σk

∂σikn

∂yj

∂yjkn

∂τ̇l

= Vk
∂σikn

∂yj
Mkl

(B.1)

with

∂σikn

∂yj
= − 1

∣∣y[j]kn
∣∣3(∣∣y[j]kn

∣∣αk + 1
)2

×
[
αkyiknyjkn

∣∣y[j]kn
∣∣αk + (−1)δij y¬ikny¬jkn

(∣∣y[j]kn
∣∣αk + 1

)]
.

(B.2)

Here index i ranges over two values (for two directions orthogonal to the cylinder), and ¬i is
the other direction than i.

The gradients of the rotatron with respect to its coefficients are also needed in order to
compute the gradient of the target function with respect to the parameters Vk,Uk, andMkl:

∂f̂in
∂Vl

= σiln,

∂f̂in
∂Mkl

=
∂f̂in
∂σk

∂σikn

∂yj

∂yjkn

∂Mkl

= Vk
∂σikn

∂yj
τ̇jln,

∂f̂in
∂Ul

= Vk
∂σikn

∂Ul

(B.3)

with

∂σikn

∂Ul
= −δkl

e−Ulyikn

∣∣y[j]kn
∣∣αk−1 log

∣∣y[j]kn
∣∣

(∣∣y[j]kn
∣∣αk + 1

)2 . (B.4)
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C. Inverse of s5

The inverse of s5 (Equation (7.19)), where s5 is of the form

s5ij = αTij + βδij (C.1)

with

Tij =

⎧
⎨
⎩
1 j ≤ i

0 j > i,
(C.2)

can be verified to be lower triangular banded, with terms on diagonal i equal to

Q1 =
1

α + β
,

Qi = − αβi−2
(
α + β

)i , i ∈ {2 . . . n}.
(C.3)
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