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Abstract: Total internal reflection occurs for large angles of incidence,
when light is incident from a high-refractive-index medium onto a low-
index medium. We consider the situation where the low-index medium is
active. By invoking causality in its most fundamental form, we argue that
evanescent gain may or may not appear, depending on the analytic and
global properties of the permittivity function. For conventional, weak gain
media, we show that there is an absolute instability associated with infinite
transverse dimensions. This instability can be ignored or eliminated in
certain cases, for which evanescent gain prevails.
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1. Introduction

When light is incident from a high-refractive-index medium onto a low-index medium, it un-
dergoes total internal reflection provided the angle of incidence is larger than a certain critical
angle. Total internal reflection is a fundamental physical phenomenon with several famous ap-
plications; in particular modern telecommunications rely on optical fibers based on this phe-
nomenon.

Since the tangential electric and magnetic fields must be continuous at the interface, there
must be nonzero fields in the low-index medium, even though the incident wave is totally re-
flected. For lossless/gainless media, these evanescent fields decrease exponentially away from
the interface. The presence of evanescent fields in the low-index medium suggests that the re-
flected wave will sense any perturbation induced there. In particular, if the low-index medium
has gain, the reflection response will change compared to the lossless/gainless case. The prob-
lem of determining the correct electromagnetic response in the case of an active low-index
medium is far from trivial, and has been discussed for 40 years without reaching consen-
sus [1–11]. A key issue is whether the reflectivity may exceed unity (i.e., evanescent gain exists)
when the active medium fills the entire half-space. Experiments have indicated that evanescent
gain exists [12–15]. However, it has been argued that the amplified reflection may be due to
backreflection from e.g., the boundaries of the active medium [11].

When the active medium has a finite thickness, it is well known that the overall reflection
from the slab may exceed unity. This situation is fairly simple, as there is no need to determine
the sign of the longitudinal wavenumber in solving Maxwell’s equations for this case; the two
waves (with opposite signs) are present simultaneously.

Since there are no gain media with infinite thickness, why examine this case? The answer
becomes clear if we formulate a similar question in terms of the refractive index: Why define
the refractive index as a separate parameter, when the electromagnetic field in any realistic,
bounded structure can be expressed in terms of the permeability and permittivity? While the
refractive index or longitudinal wavenumber are not needed to obtain the formal solution to
Maxwell’s equation in a finite slab, it is still useful since it immediately provides information
about the involved physics. For example, it predicts whether the medium refracts positively or
negatively [16]. Also, assuming darkness for time t < 0, the solution to Maxwell’s equations
for a semi-infinite gain medium equals that of a finite slab for times t less than d/c, where d
is the slab thickness and c is the vacuum velocity of light. Hence, understanding semi-infinite
media helps explaining transient phenomena.

We will now summarize the existing controversy. Assuming well defined frequency-domain
fields, Maxwell’s equations can be solved in the frequency-domain, using the sign convention
exp(−iωt). With respect to Fig. 1 we define the transverse wavenumber (spatial frequency
of the source) kx. For simplicity we assume both media to be nonmagnetic. Let ε1 and ε2 be
the relative permittivities of the high-index medium to the left and the low-index medium to the
right, respectively. For plane waves, Maxwell’s equations require the longitudinal wavenumbers
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Fig. 1. A wave is incident from a high-index medium to a low index medium with gain.
The source produces a single, spatial frequency kx. The electromagnetic boundary condi-
tions require preservation of the wavenumber kx parallel to the interface. The longitudinal
wavenumbers are denoted k1z and k2z. Note that since the excitation is assumed to be causal,
it contains a band of frequencies, and therefore also a band of k1z’s and k2z’s.

in the high-index and low-index media to be

k1z =±
√

ε1ω2/c2 − k2
x , (1a)

k2z =±
√

ε2ω2/c2 − k2
x . (1b)

At some observation frequency ω = ω1, we assume k2
x < Reε1 ω2

1/c2 while k2
x > Reε2 ω2

1/c2.
Since the high-index medium is passive, we may readily determine the correct sign of the square
root in Eq. (1a). For the low-index medium, we assume Imε2 < 0 and | Imε2| � 1 (i.e., small
gain). The correct sign for the square root in Eq. (1b) is far from obvious: Either Imk2z > 0
and Rek2z < 0, or Imk2z < 0 and Rek2z > 0, see Fig. 2. None of these solutions are appealing:
The first requires the phase velocity and Poynting vector to point towards the boundary. Since
there are no sources at z = ∞, one may argue that this scenario cannot be true [11]. The second
solution requires that the fields increase exponentially away from the boundary. Also, in the

limit of zero gain the fields will increase exponentially as exp(z
√

k2
x −Reε2 ω2

1/c2) (see Fig. 2),

while in the limit of zero loss, the fields decrease exponentially as exp(−z
√

k2
x −Reε2 ω2

1/c2).
Such a discontinuity seems unphysical [9].

In this work we will first go back to fundamental electromagnetics, to ensure that we use the
principle of causality in its most primitive form: No signal can propagate faster than the vacuum
velocity of light. After the general analysis in Section 2, we consider conventional, weak gain
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Fig. 2. The two possible solutions for the wavenumber k2z for monochromatic analysis and
a gainy medium. The arrows indicate the two possible wavenumbers in the complex plane,
as the gain tends to zero. For a lossy medium, we always have a solution that tends to the

upper alternative +i
√

k2
x −ω2

1/c2 in the limit of zero loss. For simplicity we have taken
Reε2 = 1 here.

media in Section 3 and show that they provide evanescent gain. In Section 4 we present an
example that demonstrates that not all gain media give evanescent gain; this depends on the
medium’s global dispersion behavior.

2. Laplace transform frequency-domain analysis

Going back to fundamental electromagnetics, we note that Maxwell’s equations, combined with
appropriate causal constitutive relations, contain everything necessary to obtain a unique solu-
tion. To determine the correct solution, we must be certain that we consider the real, physical
situation. The real physical fields are the ones in the time-domain. By requiring the fields to
be zero for t < 0 (see Appendix B), we obtain the causal solution to Maxwell’s equations. The
complex frequency-domain fields are usually found from the time-domain fields by a Fourier
transform. However, when there is gain in the system, using the Fourier transform can be per-
ilous, since the field may increase with time. At first sight, any instability seems to be convective
in our case. This is however not true: A causal excitation involves an infinite band of frequen-
cies. For a single spatial frequency kx this means that modes with a wide range of incident
angles are involved; in fact even the mode with k2z = 0 may be excited. This “side wave” gets
amplified and leads to infinite fields at the boundary. This instability is somewhat artificial, since
its existence is dependent on infiniteness in the transverse direction; we will argue below how it
can be ignored in certain situations. Nevertheless, within a linear medium framework, Fourier
transforms do not necessarily exist. Therefore, as in electronics and control engineering, we
generalize the analysis by using the Laplace transform,

E(ω) =
∫ ∞

0
E (t)exp(iωt)dt. (2)
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In Eq. (2) a sufficiently large value of Imω will quench an exponential increase in the time-
domain electric field E (t), such that the integral converges. (Note that ω is complex in general,
equal to is, where s is the conventional Laplace variable.) The inverse transform is given by

E (t) =
1

2π

∫ +∞+iγ

−∞+iγ
E(ω)exp(−iωt)dω. (3)

The integral is taken along the line ω = iγ , for a sufficiently large, real parameter γ , above all
non-analytic points of E(ω) in the complex ω-plane. An important observation is the following:
The frequency-domain field E(ω) only has physical meaning through the transforms (2)-(3).
Thus, if the field is to be interpreted for all real frequencies, it must be analytic in the upper
half-plane Imω > 0. However, as is shown below, if the non-analytic points are located in the
upper half-plane, but close to the real axis and far away from the excitation frequency, we can
still attribute a physical interpretation to the frequency-domain expressions.

In order to derive the Fresnel equations and determine the sign of k2z, it is tempting to start
with the response from a slab of finite thickness d, and then take the limit d →∞. For finite d the
solution to Maxwell’s equations is independent of the sign of k2z in the slab [17, 18]. However,
for an active slab the multiple reflections may diverge, especially for a large d. Thus, for real
frequencies, the limit d → ∞ is not necessarily meaningful [11, 17]. A way around this, is to
evaluate the fields for sufficiently large Imω , where the frequency-domain fields exist. There,
an exponential increase is quenched by the exponential factor exp(− Imω t). As a result, we
can take the limit d → ∞ [16]. For TE polarization, the Fresnel reflection coefficient ρ and the
transmission coefficient τ (including the propagation factor exp(ik2zz)) become [16,17]

ρ =
k1z − k2z

k1z + k2z
, (4a)

τ =
2k1z

k1z + k2z
exp(ik2zz), (4b)

provided the sign of k2z is determined such that k2z →+ω/c as Imω →∞, and k2z is an analytic
function of ω . Indeed, even though Eqs. (4) have been derived for large Imω , we can extend
their valid region as follows: The reflected and transmitted frequency-domain fields are given
by Eqs. (4) multiplied by the Laplace-transformed incident field. The associated, physical, time-
domain fields are obtained by the inverse transform (3). Now, by analytic continuation, we can
reduce γ until we reach a non-analytic point of Eqs. (4), without altering E (t). If the expressions
(4) are analytic in the entire, upper half-plane, we can set γ = 0 and interpret ρ and τ for real
frequencies. On the other hand, if there are non-analytic points in the upper half-plane, the time-
domain fields diverge. In that case, real frequencies are not physically meaningful in general.

3. Weak gain media

To find the actual reflection and transmission response, we first consider conventional weak
gain media, with the following assumptions or properties:

1. The permittivity ε2(ω) obeys the Kramers–Kronig relations.

2. The gain and dispersion is small, so that the permittivity can be written

ε2(ω) = ε̄2 +Δε2(ω), where |Δε2(ω)| � ε̄2 for real ω. (5)

Here ε̄2 is required to be a positive constant. In the following we take ε̄2 = 1; the analysis
can easily be generalized to the case with another ε̄2. (In the latter case, ε̄2 is only constant
in a wide frequency band including the band where Δε2(ω) is nonzero; for very high
frequencies it necessarily tends to 1.)
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3. The medium is gainy at the observation frequency ω1 and the critical frequency kxc.

4. Let Δεmax ≡ maxω |Δε2(ω)|. In a bandwidth Δεmaxkxc around the critical frequency kxc,
the permittivity ε2(ω) varies slowly:

∣∣∣∣
dε2

dω

∣∣∣∣<
2

kxc
for |ω − kxc|<

Δεmax

2
kxc. (6)

Properties 2 and 4 essentially mean that the gain is weak and the dispersion is small.
We now solve the equation

ε2(ω)
ω2

c2 = k2
x , (7)

to determine whether k2z has branch points in the upper half-plane of the complex ω plane.
Since ε2(ω) satisfies the Kramers–Kronig relations, it is analytic in the upper half-plane. The
maximum modulus principle of complex analysis [19] therefore ensures that property 2 is valid
also in the upper half-plane, not only at the real frequency axis. Substituting ε2(ω) = 1+
Δε2(ω) into Eq. (7) we find

ω =±kxc

(
1− Δε2(ω)

2

)
(8)

in the upper half-plane, since |Δε2(ω)| � 1. Thus, every solution to the dispersion relation
in the upper half-plane is located within a distance (Δεmax/2)kxc from the critical frequencies
±kxc.

We therefore examine the region around kxc in more detail. If there were two solutions ωa

and ωb to the dispersion relation, then Eq. (8) would predict that

Δε2(ωa)−Δε2(ωb) =
2

kxc
(ωb −ωa). (9)

By property 4 this is impossible unless ωb = ωa. Thus there is a unique solution to Eq. (7) in
the first quadrant, located in the vicinity of kxc:

ω = kxc+δ ′+ iδ , where δ ′ =−ReΔε2(ω)

2
kxc and δ =− ImΔε2(ω)

2
kxc. (10)

In addition there is a mirrored solution in the second quadrant, located at ω =−kxc−δ ′+ iδ .
Note that

δ ≤ Δεmax

2
kxc. (11)

In the expression for k2z and the Fresnel coefficients (4), these solutions appear as branch
points. Hence, when evaluating the physical time-domain fields by the inverse Laplace trans-
form, we must integrate above the associated branch cuts, from −∞+ iγ to +∞+ iγ , see Fig. 3.
By path deformation this path is the same as the path from −∞ to ∞ plus the paths around the
branch cuts in the upper half-plane (Fig. 3). Thus we may use the inverse Fourier transform to
determine the time-domain fields, but only if we add the integrals around the branch cuts. Due
to the exponential factor exp(−iωt), the integrals around the branch cuts diverge and dominate
after some time.

The divergence of the time-domain fields can be explained as follows. Any causal excitation
involves an infinite frequency band. For example, the Laplace transform of a unit-step-function
modulated cosine, u(t)cos(ω1t), is iω/(ω2 −ω2

1 ). Thus, it is nonzero for all finite ω �= 0. One
of these frequencies is the branch-point frequency for which k2z = 0, that is, ω ≈ kxc+ iδ .
This frequency is complex; the imaginary part δ means that the associated eigenmode is a
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Imω

Reω−ω1 ω1

−kxc

Imω = γ

kxc

Fig. 3. The complex ω-plane. For conventional, weak gain media, there are branch points
right above ω =±(kxc+δ ′)≈±kxc. The branch cuts can be chosen arbitrarily; however,
the shown, vertical cuts minimize the integral around the part of the branch cuts in the
upper half-plane.

growing wave with envelope exp(δ t). Physically, a wave with k2z = 0 propagates along the
boundary. Because the medium is gainy, this side wave picks up gain on its way. Consider a
fixed observation point, e.g. the point z= 0+ and x= 0. Since the medium and the excitation are
unbounded in the transverse x-direction, there are side waves that start arbitrarily far away from
the observation point. Thus the field at the observation point diverges. As the field in medium
2 becomes infinite, the field in medium 1 is infinite as well. Since the field at a fixed point in
space diverges and the instability is not a result of amplified, multiple reflections, the instability
for the system in Fig. 1 can be classified as an absolute instability [17, 20, 21].

This instability could be eliminated (or converted into a convective instability) by limiting the
extent of the gain medium in the transverse direction with an absorbing boundary. Alternatively,
the incident wave itself could be limited in the x-direction, leading to an infinite spectrum of
kx modes (see Appendix A and Ref. [8]). Rather than imposing such remedies, we will simply
calculate the time-domain fields by an inverse Laplace transform above the branch cuts. If the
excitation frequency ω1 is sufficiently remote from the branch points, the side wave with k2z = 0
is only excited very weakly, and can be neglected up to a certain time. The condition that the
excitation frequency is remote from kxc means that the incident angle is not close to the critical
angle. This condition is imperative in order to distinguish between the reflected wave, with an
angle of reflection equal to the angle of incidence, and the wave associated with the growing
side wave, with “reflection” (or propagation) angle equal to the critical angle.

The reflected time-domain field for the excitation u(t)exp(ikxx− iω1t), with Laplace trans-
form exp(ikxx)/(iω1 − iω), is given by

Eρ(x, t) =
1

2π

∫ +∞+iγ

−∞+iγ

k1z − k2z

k1z + k2z

exp(ikxx− iωt)
iω1 − iω

dω, (12)

at z = 0. The integral (12) can be evaluated by a generalized version of the residue theorem,
in which we find the contour integral around all poles and branch cuts of the integrand in half-
plane Imω < γ . Provided ω1 is sufficiently remote from any resonances of the two media, the
transients due to all poles and branch cuts for Imω < 0 can be ignored. Alternatively, for times
larger than the maximum inverse bandwidth Γ−1 of the resonances, the transients will have died
out. Then the reflected field for x = 0 is given by

Eρ(0, t) =
k1z − k2z

k1z + k2z
exp(−iω1t)+Ebc(0, t), t � Γ−1, (13)
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ω → +∞
Re k22z

ω = ω1

ω = 0

Im k22z

ω = kxc

Fig. 4. The function k2
2z(ω) = ε2(ω)ω2/c2 − k2

x for a typical gain medium, plotted in the
complex k2

2z-plane. To identify k2z, we require it to be +ω/c at ω = ∞, continuous as ω
decreases towards zero, except at the branch cut at ω = kxc where it changes sign.

where the wavenumbers k1z and k2z have been evaluated at the frequency ω1. The term Ebc(0, t)
is the integral (12) around the two branch cuts above ω =±kxc. This integral is bounded by

|Ebc(0, t)| ≤
const

kxc−ω1
· exp(δ t). (14)

Here, the constant depends on the specifics of the active medium (see Appendix C). In other
words, for Γ−1 � t � δ−1 and provided ω1 is not too close to kxc, we can ignore Ebc(0, t). Then
the reflected field is well described by the first term in Eq. (13).

We can now answer the question about the existence of evanescent gain. To obtain Eq. (13),
we have only considered two branch cuts in the upper half-plane; these are the necessary branch
cuts due to the zeros of ε2(ω)ω2/c2 − k2

x . We must ensure that the integrand in Eq. (12) is
analytic everywhere else in the upper half-plane. That is, the sign of k2z must be determined
such that k2z is analytic everywhere, except at the two branch cuts in the upper half-plane.
Since k2z → +ω/c as ω → +∞, we can determine the sign by decreasing ω from +∞ to ω1,
ensuring that k2z is continuous everywhere except at ω = kxc where it changes sign. From Fig.
4 we find that Imk2z > 0 at the observation frequency ω1. Hence, for weak conventional gain
media, provided the “reflected” field from the side wave can be ignored, evanescent gain is
possible. This result is consistent with [7,8], and the time-domain simulations in [10] where the
dispersion of the medium is discarded.

In Fig. 5 we plot the reflected and transmitted electric field for a weak Lorentzian medium,
after the transients have died out, and before the side wave dominates. The reflected field was
computed by Eq. (12), including the propagation factor exp(−ik1zz) in the integral. The trans-
mitted field was computed with the same equation, but with τ instead of ρ exp(−ik1zz) in the
integral (see Eq. (4)). For z > 0 we clearly see an evanescent decaying field, while the reflected
field for z < 0 is larger than unity.

It is interesting to examine the situation when we approach the critical angle associated with
the frequency ω1. If we insist on using only the first term of Eq. (13) in this case, a simple
calculation shows that the power reflectance would have been bounded by (

√
2+1)2 ≈ 5.83 at

the critical angle. Also, the wavenumber k2z and the reflected field would be discontinuous as
we pass the critical angle. This is clearly a paradox, as the branch cuts were chosen arbitrarily.
The dilemma is resolved by noting that the entire Eq. (13) must be used in this domain; both
terms naturally coexist and cannot be separated. As we approach the critical angle, Ebc(0, t)
becomes comparable to or larger than the first term in Eq. (13), for all times. A different choice
of branch cuts will alter each of these contributions, but the sum remains the same. For finite
transverse dimension, the side wave’s contribution to the “reflected” field does not necessarily
diverge any more; however, the intensity of the reflected field can be arbitrarily large as the
dimension is increased, or if the reflections from the transverse end facets are large.

#150178 - $15.00 USD Received 1 Jul 2011; revised 22 Aug 2011; accepted 25 Sep 2011; published 14 Oct 2011
(C) 2011 OSA 24 October 2011 / Vol. 19,  No. 22 / OPTICS EXPRESS  21411



−10 0 5
−1

1

ω0z/c

E(
z
,t

)
Fig. 5. The reflected electric field (solid line, z < 0) and transmitted electric field (dashed
line, z > 0) for a plane wave incident to a weak Lorentzian gain medium (20). The param-
eters used: F = 0.01, Γ = 0.1ω0, kxc = 2ω0, ω1 = ω0, γ = 0.001, and ε1 = 4.7. The field
is plotted for x = 0 and ω0t = 103, and normalized to the incident field. The amplitude of
the reflected field is 1.01. Note that the field is discontinuous at z = 0 because the incident
wave is not included.

4. General gain media

More sophisticated gain media can be constructed, at least in principle, that behave differently
compared to the conventional weak gain media. We will here show that we can obtain a near-
imaginary k2z with negative imaginary part at an observation frequency ω1 < kxc. Consider the
permittivity

ε2(ω) =
(ω −N)(ω +N∗)

(ω −P)(ω +P∗)
+

ω2
2

ω2 , (15)

where the complex numbers N and P are located in the lower half-plane, and ω2 is a real
constant. The longitudinal wavenumber satisfies k2

2z(ω) = ε2(ω)ω2/c2 − k2
x , which gives

k2
2z(ω) =

ω2(ω −N)(ω +N∗)

c2(ω −P)(ω +P∗)
+

ω2
2

c2 − k2
x . (16)

Choosing ω2 = kxc, we can tailor the frequency dependence of k2
2z by carefully selecting the

locations of zeros and poles. Let N = n− iC and P = p− iC, where C > 0. All poles and zeros
are now located in the (closed) lower half-plane. For ω > 0, assuming C � n, p, the longitudinal
wavenumber can be written

k2
2z(ω) = A(ω)(B(ω)+ iC(n− p)) (17)

for real functions A(ω) and B(ω); in addition A(ω) > 0. Hence, for n < p, Imk2
2z < 0

for all positive frequencies. Since k2z is analytic in the upper half-plane of ω , and since
k2z → +ω/c as ω → ∞, k2z will be located in the forth quadrant of the complex k2z-plane,
i.e., Rek2z > 0 and Imk2z < 0 for all ω > 0. A proper evanescent or “anti-evanescent” wave has
|Re(k2z)/Im(k2z)| � 1, so we search for values of ω1 satisfying this requirement. Analyzing
Fig. 6, there exists an ω1 where |Re(k2z)/Im(k2z)| � 1 for n < ω1 < p. We have hence found a
medium for which k2z describes an “anti-evanescent” wave in a finite frequency range.

Any realistic incident wave contains a spectrum of wavenumbers kx. While there are no zeros
of k2

2z in the upper half-plane for the particular kx considered above, this is not the case for all
possible kx. Thus, also for this medium there are growing waves. The fact that the medium has
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Fig. 6. The real and imaginary parts of k2z(ω) =
√

ε2ω2/c2 − k2
x , with ε2 given by Eq.

(15). We have set ω2 = kxc, N = kxc(6/10− i/1000) and P = kxc(7/10− i/1000).

large gain, and the presence of instabilities, mean that it is very challenging to observe the “anti-
evanescent” response in practice. In principle, however, up to a certain time the amplitude of the
instabilities can be limited by ensuring a narrowbanded spectrum of incident kx’s. Formally, if σ
is the width of the incident wave, and Eσ (x,z, t) is the resulting electric field, limσ→∞ Eσ (x,z, t)
tends to the “anti-evanescent” response as t → ∞, while limt→∞ Eσ (x,z, t) = ∞ for any finite σ .

The permittivity (15) has a double pole at ω = 0. While the medium is causal in principle,
the medium might be easier to realize if the pole is moved slightly away from the origin, into
the lower half-plane. It turns out that this modification does not alter the permittivity function
signifiantly, in the frequency range of interest. Also, if desired, the behavior at ω = ∞ can be
adjusted along the lines described in Ref. [17].

In Fig. 7 we plot the reflected and transmitted field for the gain medium (15), calculated with
the inverse Laplace transform for a sufficiently large t when the transients have died out. Only
a single kx has been excited. The reflection amplitude is 0.98, and the transmitted field is an
exponentially increasing function of z. While realizable in principle, the example is highly
unrealistic: To observe a behavior similar to that in Fig. 7, t must be at least of the order
of 102(kxc)−1; otherwise the transients would disturb the picture. Any realistic gain medium
has finite thickness. However, to act as a semi-infinite medium, the thickness d of the gain
medium must satisfy d > ct, or kxd � 102, such that the light has not reached the back end.
With the “anti-evanescent” growth rate in Fig. 7, this would imply unphysically large fields
(or in practice, nonlinear gain saturation). Hence, if the “anti-evanescent” behavior is to be
observed experimentally, one would need to construct a medium where the transients die out
rapidly, and/or a medium which leads to a sufficiently small | Imk2z|. At the same time the
medium must violate the conditions in Sec. 3; that is, it must have large gain and/or large
dispersion for some frequencies.

5. Conclusion

We have considered the case where light is incident from a high-index medium to a low-index
medium with gain, generalizing the situation with total internal reflection.

In principle, it is apparent that both solutions (k2z in the second and fourth quadrant of the
complex plane) can be attained with a suitably engineered medium. In other words, evanescent
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Fig. 7. The reflected electric field (solid line, z < 0) and transmitted electric field (dashed
line, z > 0) for a plane wave incident to the gain medium described by Eq. (15) and Fig.
6. The field is plotted for x = 0 and kxct = 105, and normalized to the incident field. The
amplitude of the reflected field is 0.98. The parameters used: ω1 = 0.65kxc, γ = 10−6, and
ε1 = 4.

gain may or may not be the case, dependent on the detailed permittivity function. This demon-
strates the fact that the sign of k2z cannot be determined from the electromagnetic parameters
at a single frequency, but must be identified from the entire frequency domain dependence,
after a check of possible non-analytic points (instabilities) in the upper half-plane of complex
frequency.

For conventional, weak gain media, we have seen that there is an absolute instability asso-
ciated with infinite transverse dimensions. In some cases this instability can be eliminated or
ignored; then evanescent gain prevails.

A. Finite incident beam and finite size medium

To origin from a realistic source, an incident beam should not only be causal, but also be of finite
width. We will here describe how to model an incident beam using standard Fourier optics, and
argue that even for active media, we are allowed to interchange the order of integration with
respect to transverse wavenumber kx and frequency ω . Thus we can treat a causal excitation of
each kx separately.

Let E (x, t) be the incident TE field at the interface between the high-index medium and
the active low index medium. Performing a Laplace transform t → ω followed by a Fourier
transform x → kx, we obtain the transformed field E(kx,ω). The inverse transform is given by

E (x, t) =
1

(2π)2

∫ ∞+iγ

−∞+iγ
dωe−iωt

∫ ∞

−∞
dkxE(kx,ω)eikxx

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
E(kx,ω ′+ iγ)e−iω ′t+γt eikxxdkxdω ′. (18)

By Fubini’s theorem we may interchange the order of integration in Eq. (18), provided
E(kx,ω ′ + iγ) is absolute integrable with respect to kx and ω ′. This is the case assuming
that the incident field is sufficiently smooth with respect to t and x. For example, taking
the incident wave to be a(x)eiKxxb(t)e−iω1t , the transformed field becomes E(kx,ω ′ + iγ) =
A(kx −Kx)B(ω ′ −ω1 + iγ), where A is the Fourier transform of a, and B is the Laplace trans-
form of b. Here we assume that b(t) = 0 for t < 0. If a and b are continuous, A and B are
absolute integrable.
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Fig. 8. The semi-infinite gain medium can be replaced by a finite size gain medium, pro-
vided we only consider times t < d/c.

We can repeat the above argument for the total field (incident + reflected, and transmitted).
Assuming no superexponential instabilities, the total field is uniformly bounded:

|E (x,z, t)| ≤Cexp(γt), (19)

for positive constants C and γ . Then the transforms t → ω followed by x → kx exist, and we can
express the total field in the form (18). The total field is determined using the wave equation.
In order to consider each mode kx separately, we interchange the order of integration for each
term in the wave equation. To do so, we require the second order derivatives with respect to t
and x to be continuous.

It remains to prove that our solution is consistent with this requirement. From the theory
in Sec. 2, we find the solution for each kx, given a sufficiently smooth incident field. For this
solution, the Fresnel equations show that the reflection and transmission coefficients tend to
zero and unity, respectively, as |ω ′| → ∞ or |kx| → ∞. Therefore the reflected and transmitted
field in the (ω,kx)-domain adopt any absolute integrability property from the incident field.

In our analysis the incident field u(t)exp(ikxx− iω1t) is not continuous. Hence, strictly speak-
ing, the above described method cannot be used. However, by smoothing the discontinuity
around t = 0, we can make the field and its second order derivative continuous. This modifica-
tion will not affect the discussion in general, since a slower transient will reduce the bandwidth.
Thus the side waves are excited weaker, such that inequality (14) is satisfied with an even larger
margin.

In a real experiment, not only the beam width, but also the size of the active medium itself,
must be finite. Provided the fields never reach the end of the structure in the time window of
interest, the fields will be identical to those in a semi-infinite active medium. Thus we can
consider a setup as in Fig. 8, where the least distance from the incident beam to the boundary
is d. For t < d/c the fields will be the same as if the finite-size medium were replaced by a
semi-infinite medium.
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Fig. 9. Circles and stars mark zeros and poles of k2z respectively. The cross marks the pole
at ω = ω1. Branch cuts are arbitrarily chosen to lie parallel to the imaginary axis, extending
into the lower half-plane Im(ω)< 0. The integration path C is shown with the dashed line.
Contributing branch cuts and poles are enclosed by paths C1, bc− and bc+. For t � 2/Γ,
we have

∮
C f (ω)dω ≈

∮
C1

f (ω)dω +
∫
bc− f (ω)dω +

∫
bc+ f (ω)dω .

B. Instabilities in infinite media

It is convenient to divide instabilities into two categories, convective and absolute instabilities
(see e.g. [20,21]). Media with absolute instabilities are often regarded as impractical for small-
signal, linear applications, since for an unbounded medium the fields diverge even at a fixed
point in space. In contrast, media with convective instabilities are useful in the linear regime.
Here the fields do not diverge at a fixed point in space; the growing wave is rather convected
away.

However, even in the case with only convective instabilities, there may be fundamental prob-
lems in the case where the medium occupies an infinite region or half-space: Any small per-
turbation may propagate an infinite distance, thus picking up an infinite amount of gain. In our
analysis we assume that the active medium is dark for t < 0. It is not clear whether this is pos-
sible, not even in principle, since perturbations in the remote past would not die out but rather
increase exponentially.

The remedy is motivated by practical considerations. In an experiment, the active medium
must have finite size in all directions. For a medium without absolute instabilities and with
a given maximum size d, there will be no instabilities provided the gain is sufficiently weak.
Examples of such configurations include optical amplifiers, and laser resonators with pumping
below threshold. When there are no instabilities, we can turn on the pump in remote past such
that the perturbations have died out before t = 0. For 0< t < d/c we can still regard the medium
as semi-infinite, since, as seen from Fig. 8, it makes no difference.

C. Determining the reflected time-domain field

Here we will calculate the reflected field in the time-domain, when the gain medium is described
by a weak, inverted Lorentzian function:

ε2(ω) = 1− Fω2
0

ω2
0 −ω2 − iωΓ

. (20)

In Eq. (20) F , ω0, and Γ are positive parameters, describing the resonance strength, frequency,
and bandwidth, respectively. The physical, time-domain reflected field at z = x = 0 is given by
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the inverse Laplace transform (12), repeated for convenience here:

Eρ(0, t) =
1

2π

∫ +∞+iγ

−∞+iγ

k1z − k2z

k1z + k2z

exp(−iωt)
iω1 − iω

dω. (21)

The field can be interpreted by evaluating integral (21) by a generalized version of the residue
theorem. We here recognize that integrating along path −∞+ iγ to +∞+ iγ , is the same as
integrating around all branch cuts and poles. The denominator k1z+k2z does not have any zeros,
provided the permittivity ε1 can be considered constant and larger than unity in the frequency
range of interest. Thus we only need to consider the branch cuts extending from branch points
of k1z and k2z, and the pole at ω = ω1. Note that the branch cuts are arbitrary, as long as they
extend from the branch points. We let all branch cuts lie parallel to the imaginary axis, towards
Imω = −∞. See illustration in Fig. 9. The branch points of k1z are located far away from
(and below) the real frequency axis, provided the medium’s bandwidth is sufficiently large.
The wavenumber k2z has two branch points in the upper half-plane, located immediately above
ω =±kxc. In addition there are four branch points located below the real frequency axis, with
imaginary parts −Γ/2; two simple zeros and two simple poles. The integrals around the latter
four branch cuts decay with time constant at most 2/Γ. Thus, for t � 2/Γ, the only contributing
terms are the residue of the pole at ω1, and the contribution Ebc(0, t) from the two remaining
branch cuts of k2z:

Eρ(0, t) =
k1z − k2z

k1z + k2z
exp(−iω1t)+Ebc(0, t). (22)

Here k1z and k2z have been evaluated at the frequency ω1. We write Ebc(0, t) = Ebc−(0, t)+
Ebc+(0, t), where Ebc−(0, t) and Ebc+(0, t) are the contributions from the branch cuts in the left
and right half-planes, respectively.

Assuming F � 1, Γ � ω0 and
√

2ω0 < kxc, the branch cut in the right half-plane extends
from approximately ω = kxc+ iδ to ω = kxc− i∞, where δ ≤ FΓ. Then, for t � 2/Γ

Ebc+(0, t)≈
1

2π

∫ kxc+iδ

kxc−i Γ
2

ρl(ω)
exp(−iωt)
iω1 − iω

dω

− 1
2π

∫ kxc+iδ

kxc−i Γ
2

ρr(ω)
exp(−iωt)
iω1 − iω

dω. (23)

Here subscripts l and r indicate that ρ(ω) is discontinuous when crossing the branch cut, de-
noting the left and right side of the branch cut respectively. We further define fl,r(ω) = k2z/k1z.
Since k2z is small in the vicinity of kxc, by first order approximation ρl,r(ω) = 1− 2 fl,r(ω),
where fr(ω) =− fl(ω). The integral (23) can now be simplified:

Ebc+(0, t)≈
−2
iπ

∫ kxc+iδ

kxc−i Γ
2

fl(ω)
exp(−iωt)

ω1 −ω
dω, (24)

In order to obtain a manageable expression for fl(ω), it is useful to express k2
2z as a function of

its zeros and poles. With poles denoted by subscript p, and zeros denoted by subscripts kxc and
ω0 (indicating the location along the real frequency axis), k2

2z appears as

k2
2z =

(ω −ωω0)(ω +ω∗
ω0
)(ω −ωkxc)(ω +ω∗

kxc)

c2(ω −ωp)(ω +ω∗
p)

. (25)

Identifying δ = Im(ωkxc) and ωi = Im(ω), and recognizing that (ω −ωω0)/(ω −ωp) ≈ 1 at
ω = ωkxc, Eq. (25) can be simplified: k2

2z ≈−i2kx(δ −ωi)/c. This gives

| fl(kxc+ iωi)| ≈
√

2(δ −ωi)/(kxc(ε1 −1)). (26)
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For kxc−ω1 � Γ, we can now find an upper bound of integral (24) by noting that
√

δ −ωi ≤√
FΓ+Γ/2 for all ωi considered. We can estimate Ebc−(0, t) similarly, yielding the bound

|Ebc(0, t)| ≤
Γ3/2

(kxc−ω1)
√

kxc(ε1 −1)

(
eFΓt − e−Γt/2

)
(27)

Consequently for 2/Γ � t � 1/FΓ, the field is well described by the first term in Eq. (22).
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