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Abstract—Intermittent energy sources demand temporal stor-
ages to balance generation and load, and batteries stand out as an
alternative. However, the lifetime is limited, and cycling depth
affects the battery degradation rate. Current stochastic multi-
stage methods lack proper representation of battery degradation.
This paper proposes a stochastic multi-stage model for optimizing
battery operation in a microgrid considering battery degradation
with a piece-wise linear cost function with uncertain wind power
production and load. The model is solved using Stochastic Dual
Dynamic Programming (SDDP) and is demonstrated on a 4-bus
test case with limited import and export capacity to illustrate the
battery degradation cost’s impacts on the battery cycling strategy.
The results show that the importance of a stochastic method is
more pronounced when battery degradation is modelled.

Index Terms—stochastic dual dynamic programming, battery
degradation, microgrid, arbitrage

I. INTRODUCTION

A. Motivation and background

The increasing share of energy conversion from intermittent

sources such as photovoltaics (PV) and wind energy con-

version systems (WECS) increase the demand for balancing

services in the power system. Coordination of energy storages

in distribution grids and microgrids are important for reliability

of supply as well as optimal economic dispatch [1].

Energy conversion from PV and WECS are uncertain by

nature, and smaller energy systems yields larger variation both

in generation and load. Optimal operation of storage in a

deterministic model will typically provide an overly aggres-

sive utilization of the storage capacity by frequently cycling

between maximum and minimum. Unfortunately, this strategy

does not account for forecast error, which may cause load

shedding or production curtailment. Therefore, the forecast

error may increase the operation cost, but also accelerate aging

of battery storage [2]. Stochastic methods are effective for

balancing cost minimization and risk, and applicable both for

planning, operation and control of microgrids [3].

B. Relevant literature

A commonly used stochastic formulation is the two-

stage stochastic problem. Reference [4] suggests a two-stage

stochastic formulation for minimizing the operational costs

including the grid power losses of a microgrid. Similar two-

stage formulations are shown in [5]–[7].

A limitation of the two-stage stochastic formulation is the

assumption that all uncertainty is revealed at once. For a

multi-stage formulation, the uncertainty is revealed stage-

wise and the control of the system is updated stage-wise as

the uncertainty is revealed. This formulation is widely used

in hydropower scheduling [8], and stochastic dual dynamic

programming is an efficient technique for solving large scale

multi-stage stochastic problems [9].

There are a few proposed methods for managing storages

in microgrids based on SDDP in the literature. Reference [10]

suggests a microgrid model minimizing procurement cost un-

der uncertain wind generation where load is balanced in terms

of purchase and sale to the utility grid, by using load shifting

and micro generators. Reference [11] has a similar formulation

also including power loss minimization and uncertain price. In

[12], the cost is minimized for a private household with battery

storage and uncertain PV generation. Reference [13] balances

uncertain wind generation with conventional generation and

battery storage including a cost associated with varying the

battery level.

C. Contributions and organization

Batteries degrade from several factor, among others state-

of-charge (SoC), depth-of-discharge (DoD) and operating tem-

perature. A shortcoming among the aforementioned papers are

lack of more sophisticated modelling of degradation due to

DoD. Batteries will typically have an increasing degradation

rate with increasing cycling depth, and [14] shows how to

represent this with a piece-wise linear model.

The contributions of this paper can be summarized as

follows: i) The microgrid storage coordination problem has

been formulated as a multi-stage stochastic problem. Battery

degradation has been modelled as a piece-wise linear cost

function to assess cycling costs. ii) The proposed method has

been applied on a 4-bus test case to demonstrate the impact

of battery degradation both for stochastic and deterministic

model formulations. The problem has been solved using the

SDDP algorithm.

The remainder of this paper is organized as follows. Section

II formulates the multi-stage stochastic formulation of the

microgrid storage dispatch problem, section III presents a test

case including numerical values, and discusses the impact
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TABLE I
NOMENCLATURE

Sets

T Time steps
N Buses
S Battery segments

Parameters

ηc
k

Charge efficiency for battery at bus k
ηd
k

Discharge efficiency for battery at bus k
R Storage replacement cost e/MWh
cm
k,t

Power price at bus k, time t

cb
k,s

Marginal storage aging cost of cycle depth at bus k, segment s

ēk,s Maximum energy stored in bus k, segment s
WPk Wind scale factor at bus k
LPk Load scale factor at bus k
p̂w
k,t

Normalized wind power forecast at bus k, time t

p̂l
k,t

Normalized load forecast at bus k, time t

φw Auto-correlation wind forecast error

φl Auto-correlation load forecast error
Emax

k
Maximum energy storage in battery at bus k

Emin
k

Minimum energy storage in battery at bus k
Bc

k
Maximum charge power to battery at bus k

Bd
k

Maximum discharge power from battery at bus k
P s
k

Maximum sale power to market at bus k
P b
k

Maximum purchase power from market at bus k
Pw
k

Maximum wind power generation at bus k
Variables

∆t Time step length
ek,t,s Energy stored at bus k, time t, segment s
bc
k,t,s

Storage charge power bus k, time t, segment s

bd
k,t,s

Storage discharge power bus k, time t, segment s

pb
k,t

Power purchase in wholesale market at bus k, time t

ps
k,t

Power sale in wholesale market at bus k, time t

pw
k,t

Wind power generation at bus k, time t

pl
k,t

Load at bus k, time t

p̂wt Normalized wind power generation at time t
p̂lt Normalized load at time t
∆p̂w

k,t
Normalized wind forecast error at bus k, time t

∆p̂l
k,t

Normalized load forecast error at bus k, time t

εwt Normalized wind forecast error noise at time t
εlt Normalized load forecast error noise at time t
Φ Battery cycle stress cost
δ Battery cycle depth

of modelling the battery degradation costs. The algorithm

convergence properties are also presented. Conclusions are

drawn in section IV.

II. MODEL DESCRIPTION

This section presents a mathematical formulation of the

optimal purchase, sale, storage and generation dispatch in a

microgrid with uncertain wind power generation and load. The

objective is to minimize utility grid power exchange costs,

diesel generation costs, and battery cycling degradation costs.

Diesel generation is considered as a purchase opportunity with

fixed price. Symbols used in the mathematical formulations are

shown in the nomenclature in table I.

A. Problem definition

Each stage in the multi-stage problem is given by a linear

problem formulation and linear objective terms. Each time step

t represents a stage in this formulation, but the formulation

may be generalized such that each stage can have multiple

time steps. A state variable represents the required information

to model the system from present time and onward. A stage

problem may contain both current and previous state variables.

A control variable is an internal stage variable and represents

an action or decision, either implicit or explicit. A noise is a

stage-wise independent random variable [15], [16].

In this paper, the state variables are given by the battery

level, wind generation forecast error and load forecast error.

The battery level must be a state variable since the current

level depends on the previous, while the wind generation and

load forecast errors are state variables since they are modelled

with auto-regressive models. The system noise is the noise

terms in the AR-models describing generation and load error.

The remaining variables are control variables.

The objective is to minimize purchase costs from the utility

grid and minimize battery degradation costs as shown in (1)

under exogenous power price.

min
∑

t∈T

∑

k∈N

(

cmk,t(p
b
k,t − psk,t) +

∑

s∈S

cbk,sb
d
k,t,s

)

∆t (1)

B. Battery degradation

Some of the factors causing battery degradation are depth-

of-discharge (DoD), state-of-charge (SoC) and operating tem-

perature. This paper only considers degradation due to DoD.

The cycle depth stress function describes how much the battery

degrades as a percentage of its expected lifetime, and is

approximated using a quadratic stress function based on the

results from [17]. The cycle depth stress function in (2), where

δ is the cycle depth percentage, has been used in this paper.

It permits 10 000 cycles at 50% DoD before battery must be

replaced.

Φ(δ) = 4 · 10−4 δ2 (2)

The battery cycling cost is implemented as a piece-wise

linear model as described in [14]. The battery is divided into

segments, where the discharge cost is increasing for increasing

segment number. This method demands segmentation of the

energy storage state variable, and the charge and discharge

variables since SDDP is not capable of handling non-linear

states. This is a potential drawback with this method as

increased accuracy for the cycling cost function demands ad-

ditional state variables, which again increase the computation

time.

To avoid simultaneous charging and discharging of battery

one must ensure that loosing power never is profitable. In this

case generation curtailment is free, and the power exchange

price is always non-negative. Simultaneous charging and dis-

charging may also be avoided by using binary variables, but

that is not supported by standard SDDP. The objective function

(1) has an individual cost associated with discharging each

segment. The low-cost segments will always be charged and

discharged first, while deeper cycles also demand use of the
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high-cost segments. The marginal cost of the segment is given

by (3) where s̄ is the number of segments.

cbk,s =
R

ηdk
s̄

[

Φ
(s

s̄

)

− Φ

(

s− 1

s̄

)]

, s ∈ 1, . . . , s̄ (3)

C. Battery and energy balance

The battery energy balance is given by the charge/discharge

and efficiency as shown in (4). Moreover, the charge/discharge

is given by the sum of the segment variables as shown

in (5). The battery segments are enforced by (7), and the

segments have equal size for each storage in our model. The

charge/discharge is enforced by (6) limiting maximum battery

charge and discharge. The total energy stored at a bus is

limited by the battery maximum and minimum limits as shown

in (8), and the purchase and sale with the utility grid is limited

as shown in (9). The power must balance at every bus in the

network, thus the net injection must be zero (10).

ek,t,s − ek,t−1,s =

(

bck,t,sη
c
k − bdk,t,s

1

ηdk

)

∆t (4)

bck,t =
∑

s∈S

bck,t,s, bdk,t =
∑

s∈S

bdk,t,s (5)

0 ≤ bck,t ≤ Bc
k, 0 ≤ bdk,t ≤ Bd

k (6)

ek,t,s ≤ ēk,s (7)

Emin
k ≤

∑

s∈S

ek,t,s ≤ Emax
k (8)

0 ≤ psk,t ≤ P s
k , 0 ≤ pbk,t ≤ P b

k (9)
∑

k∈N

(

bck,t − bdk,t + psk,t − pbk,t + plk,t − pwk,t
)

= 0 (10)

D. Load and generation uncertainty

The SDDP algorithm is only capable of solving stochastic

problems with stage-wise independent uncertainty. However,

the uncertainty is introduced as a state variable and modelled

as a first order auto regressive model, and the uncertainty is

decomposed into a dependent and an independent term [18]

as shown in (11).

∆p̂wt = φw ∆p̂wt−1
+ εwt (11)

Generation and load are correlated series. However, the

uncertainty in this model is not the generation and load but

the generation and load forecast error. Since most of the

correlation between generation and load is captured by the

forecast, the weak correlation between the forecast errors is

neglected.

The expression for wind power generation at a specific node

is given by (12) and (13) where WPk is the maximum genera-

tion at node k, p̂kt the normalized wind generation forecast and

∆p̂wt the normalized forecast error. The normalized forecast is

computed by dividing the forecast on the historical maximum

from the three previous years. To avoid negative production,

a slack variable is introduced to capture negative values.

pwk,t − p
w,slack
k,t = WPk(p̂

w
t +∆p̂wt ) (12)

pwk,t, p
w,slack
k,t ≥ 0 (13)

The wind forecast error is modelled as an auto-regressive

model of first order (11), which holds under the assumption

that the process is weak stationary. This is a common assump-

tion for wind forecasting, for details see [19].

The slack variable may also be used to generate power,

hence the cost for using it must be greater than the highest

generation cost in the system.

Similar representation is used for load forecast error but

with no cost on the slack variable, which implies that load

may be added at no cost.

E. Storage end value

If the end value is not included in the objective, the

algorithm tends to always empty the storage in the end since

there are no incentives for saving the energy for later. In this

model, the value of the stored energy in the last stage is set

equal to the value of selling all stored energy in the market

after the last stage.

F. Stochastic dual dynamic programming (SDDP)

The model has been solved with SDDP, which is a de-

composition technique for solving linear multistage stochastic

programs. The SDDP algorithm approximates the expected

cost-to-go function with piece-wise linear bounds obtained

from the dual solutions of the optimization problem at each

stage. The SDDP algorithm has two main phases: forward sim-

ulation where scenarios are sampled based on the probability

distribution of the random variables, and backward recursion

where each stage is optimized backwards along the trajectory

from the forward simulation. This procedure is repeated until

a convergence criteria is reached [9].

The model has been implemented in Julia with SDDP.jl [20]

using CPLEX 12.8.0.

III. CASE STUDY

This section presents the results from a case study of a 4-

bus test system with storage, generation and load, where both

generation and load are subject to uncertainty. The maximum

purchase and sale for the system is limited. Figure 1 shows the

topology of the test system where the utility grid connection

is limited such that the battery and the emergency generator

must balance the load and wind power generation.

A. Case numerical data

This case study uses historical time series from ENTSO-

E Transparency Platform [21]. The price series is day-ahead

for Denmark (DK-2) between 2018-12-15 and 2018-12-18.

The corresponding series are used for load and onshore wind

generation. The load and wind series has been normalized

as described in section II. The AR(1) model parameters

are calculated based on normalized historical generation and

forecast values from the given time with regression analysis.

The historical forecasts are day-ahead forecasts. The shift

between old and new forecast at midnight has therefore been

removed when doing the regression analysis. The calculated

auto-correlation for the normalized series was 0.90 and 0.65
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Fig. 1. Test system

TABLE II
CASE PARAMETERS

Utility grid

Maximum purchase 1 MW
Maximum sale 1 MW
Max purchase/sale violation penalty 600 e/MWh

Storage

Size 3 MWh
Maximum charge/discharge 1 MW
Efficiency charge/discharge 95%
Replacement cost 100,000 e/MWh

Diesel

Maximum generation 1 MW
Cost 500 e/MWh

Wind generation

Maximum generation 2 MW
Forecast error auto-correlation 0.90
Forecast error standard deviation 0.05
Slack variable cost 600 e/MWh

Load

Maximum load 2 MW
Forecast error auto-correlation 0.65
Forecast error standard deviation 0.05

for wind and load respectively, and the standard deviation

was 0.02 and 0.0065. Note that these are the statistical

properties of the forecast errors. In this case, the standard

deviation is increased to 0.05 for both generation and load to

demonstrate the capabilities of the method, and to reflect that

a smaller population yields greater standard deviation. Each

noise variable is sampled into three evenly spaced quantiles

such that the number of discrete outcomes for each stage is

nine. Other parameters are presented in table II, while net load

and price profiles are shown in figure 2. The storage cycling

cost function is divided into five segments of equal size, and

the segment marginal costs for this particular case is shown

in table III.

B. Results and discussion

The presented stochastic solution shows the percentiles of

500 simulations of 72 stages where each hour represents a

stage. The results show that the primary objective is to avoid

expensive generation from diesel by ensuring high battery level

0 24 48 72h

−1

0

1

M
W

Deterministic

Median

Min/max

10%/90%

25%/75%

(a) Net load: Difference between load and generation

0 24 48 72h

40

50

60

70

80

E
U
R

(b) Price.

Fig. 2. Sampled load, wind power generation and price.

TABLE III
BATTERY CYCLING MARGINAL COST

Segment Marginal cost

0-20% 24
20-40% 72
40-60% 120
60-80% 168

80-100% 216

when reaching the period with high net load as seen from

around hour 54 where the net load in figure 2a exceeds the

maximum purchase limit, and the battery level is 100% in

both figure 3a and 3b. Figure 3c and 3d shows that there is

no sale for at least 90% of the scenarios despite the very high

price, since all the stored energy is used to avoid generation

from diesel. Nevertheless, diesel generation is unavoidable in

25-50% of the scenarios as shown in figure 3e and 3f.

The secondary objective, given that the diesel cost always is

higher than the price difference, is using battery for arbitrage.

The battery level without degradation cost in figure 3a shows

arbitrage between hour 0 and 54. This is also shown in figure

3c where there are frequent changes between purchase and

sale. However, when including battery degradation costs as

shown in figure 3b, there is no sign of arbitrage, and the

purchase/sale profile in figure 3d is much more stable. The

lowest prices are found between hour 24 and 30 causing two

spikes in the deterministic solution in figure 3d to fully charge
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(b) Battery level with degradation.
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(f) Generation from diesel with degradation.

Fig. 3. Comparison of optimization without and with battery degradation costs.

the battery in advance to the high load from hour 54.

The difference between the deterministic and stochastic

solution is more pronounced when battery degradation costs

are included. With no degradation cost, figure 3a shows that

the deterministic and the stochastic median solutions have

almost overlapping solutions much of the time. In contrast,

the solution including battery degradation costs has a more

risk averse strategy for the stochastic solution. Instead of

charging the battery immediately as the deterministic solution,

the storage level is kept below maximum to avoid production

curtailment in case the net load should exceed the export limit.

Calculating the value of the stochastic solution is a compu-

tationally hard task. Nevertheless, an interesting property with

the solution of a SDDP problem is the interpretation of the

cuts added by SDDP. For a minimization problem, the cuts

are lower bounds for the future cost functions of the problem

state variables. These cuts may also be used as boundary

conditions for an optimization model with shorter time horizon

and possibly different solving methodology.

Note that these analysis has been carried out on a limited

case for the purpose of demonstrating the concept. To verify

the scalability of the method, it should be tested on a larger

case.

C. Algorithm convergence

To check if the algorithm has converged, the lower bound

is compared with and upper bound confidence interval as

described by [9]. The 95% confidence interval for the upper

bound is computed regularly with 200 Monte Carlo simula-

tions, and figure 4 shows how the confidence interval and
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Fig. 4. Algorithm convergence

lower bound develops for the case with degradation costs. The

results show that a high number of iterations are required to

satisfy the convergence criteria. Testing also shows that if the

diesel generation and penalty costs had been closer to the day-

ahead price, the algorithm would have converged faster.

IV. CONCLUSIONS

The importance of stochastic methods in the microgrid stor-

age coordination problem is more pronounced when including

degradation costs incurred by battery cycling. A naive model

permits correction of a sub-optimal battery level by charging

and discharging at no other cost than the energy price. For

a model including battery degradation costs, the stochastic

strategy will attempt to avoid correction of a sub-optimal

battery level caused by uncertainty by operating farther away

from the battery limits than a deterministic solution.

The battery price and cycling cost used in this case also

shows that high price differences are necessary to profit on

arbitrage with batteries. Since the net demand is correlated

with price, the battery is already occupied with load shifting

in the hours with the highest arbitrage potential.

Battery degradation has significant impact on the optimal

strategy, hence it will be instructive to extend the degradation

model to also include SoC in future work. Moreover, it

will also be instructive to embed different types of end-user

flexibility to compare how they can provide an alternative or

supplement to battery storage. Finally, recent developments

in SDDP has provided new methods for handling correlated

uncertainty in price [22] and integer problems [23] enabling

more precise formulations of multi-stage stochastic programs.
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