
August 2006
Leif Arne Rønningen, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Combining graphics and video using
graphics cards

Marcus Andre Vangli

Problem Description
Combinations of live video and synthesized graphics have been used in film production for a long
time. However, for movies streamed to users over networks, the complete movie is normally
stored on a single server. In the future, the various tracks of a movie are expected to be
distributed, and the scene composed by the end-user equipment at reception time. In many cases
(e.g., games) background objects can be synthesized by the user equipment, based on transferred
commands, while important objects like faces have to be shot with high resolution and
transferred.

In this project the following shall be carried out:

· Give an introduction to graphics and video presentation

· Propose and specify a distributed game using graphics and video

· Design parts of the game

· Implement, test and demonstrate parts of the game on a single PC with a graphics card (e.g.,
a NVIDIA GeForce card and NVSG development kit)

Faglærer og veileder: Leif Arne Rønningen

Assignment given: 17. January 2006
Supervisor: Leif Arne Rønningen, ITEM

 1

PREFACE
This thesis was done in the period January to July 2006 at Department of Telematics, at the
Norwegian University of Science and Technology

I would like to thank my advisor Leif Arne Rønningen for his valuable advices and comments
during the work on both report and implementation. I would also like to thank Henrik Davidsen
for help reading through the thesis.

Marcus Vangli, Trondheim 3 July 2006

 2

 3

ABSTRACT
This report contains an introduction to graphics and video technology. Furthermore the game
Avatars-Online, which is a massive multiplayer online game is presented. Avatars-Online
introduces a new concept of handling player-to-player interaction, which involves 3D-sound.

The report contains the answers to the tasks presented in the assignment and which was carried
out successfully. Furthermore the work of this report has lead to two interesting ideas that should
be further explored:

• Interactive meeting rooms using graphics and 3D sound
• Rapid construction of high quality 3D models

 4

 5

TABLE OF CONTENT
PREFACE___ 1

ABSTRACT__ 3

TABLE OF CONTENT __ 5
Figure List __ 7
Image List ___ 8

1 Introduction __ 9
1.1 Conventions used in this text __ 9
1.2 The report___ 10
1.3 Method ___ 10

2 LIMITATIONS __ 10

3 MOTIVATION___ 12
4 THEORY ___ 13

4.1 COMPUTER GRAPHICS ___ 13
4.2 GRAPHICS TERMINOLOGY ___ 13

4.2.1Alpha-Blending__ 13
4.2.2 Bilinear Filtering __ 14
4.2.3 Chroma-Keying ___ 14
4.2.4 Depth Cueing ___ 14
4.2.5 Double Buffering __ 15
4.2.6 Fog ___ 15
4.2.7 Gamma__ 16
4.2.8 Gamma Correction___ 16
4.2.9 Lighting ___ 17
4.2.10 Occlusion ___ 17
4.2.11 Palletized Texture __ 17
4.2.12 Projection___ 17
4.2.13 Perspective Correction___ 18
4.2.14 Rendering___ 19
4.2.15 Z-buffer __ 19
4.2.16 Z-buffering__ 20
4.2.17 Z-sorting ___ 20
4.2.18 Animation __ 20
4.2.19 3D-scanning___ 20
4.2.20 Tessellated Models ___ 21
4.2.21 Graphics Pipeline___ 21

4.3 Image Capture and Storage __ 22
4.4 INTERPOLATION ___ 23

4.4.1 Linear Interpolation __ 23
4.4.2 Techniques Involving Interpolation __ 24

4.5 TEXTURE MAPPING __ 24
4.5.1 2D Texture Mapping ___ 25
4.5.2 3D Texture Mapping ___ 26
4.5.3 Displacement Mapping ___ 29
4.5.4 Environment Maps___ 30

4.6 Video ___ 31
4.6.1 Video Imaging __ 31
4.6.2 Raster Scan __ 32
4.6.3 Interlaced Raster Scan __ 32

 6

4.6.4 Representation __ 32
4.6.5 Video Cameras__ 33
4.6.6 3D Display ___ 34

4.7 MPEG-4 __ 34
4.7.1 Scene composition in MPEG-4 ___ 35
4.7.2 Major Functionalities in MPEG-4 systems __ 36
4.7.3 MPEG-4 Systems__ 37
4.7.4 MPEG-4 Visual ___ 38

4.8 OpenGL __ 40
4.8.1 OpenGL graphics restrictions __ 40
4.8.2 OpenGL graphics operations ___ 40
4.8.3 OpenGL Architecture___ 41
4.8.4 LWJGL (Lightweight Java Game Library) __ 41

5 Specification___ 43
5.1 The Game: Avatars-Online___ 43
5.2 Interaction in Avatars-Online___ 43
5.3 Avatar Creation __ 45
5.4 Movement ___ 45
5.5 Actions ___ 45
5.5 Audio___ 46
5.6 Graphics __ 46
5.7 system requirements __ 46
5.8 Derived functionality __ 46

5.8.1 Create Avatar ___ 46
5.8.2 Buy equipment__ 47
5.8.3 Access inventory __ 47
5.8.4 Create user account __ 48
5.8.5 Log on __ 49
5.8.6 Movement ___ 49
5.8.7 Change view ___ 50
5.8.8 Communication ___ 51
5.8.9 Fire weapon __ 51
5.8.10 Ignore Avatar __ 52
5.8.11 Gather equipment/gear___ 52
5.8.12 Leave the game __ 53

5.9 Derived non-functional requirements __ 53
6 Design__ 55

6.1 Hardware Architecture __ 55
6.1.1 Geographic scalability __ 56
6.1.2 Operational non-functional requirements__ 57

6.1 Software Architecture ___ 58
6.2.1 Client Software Components ___ 58
6.2.2 Local Processing __ 58
6.2.3 Processes __ 59

6.3 Realization of the functional requirements __ 63
6.3.1 FR: Create Avatar ___ 63
6.3.2 FR: Buy Equipment __ 63
6.3.3 FR: Access Inventory___ 64
6.3.4 FR: Create user account___ 64
6.3.5 FR: Configure avatar ___ 65

 7

6.3.6 FR: Logon ___ 65
6.3.7 FR: Movement __ 67
6.3.8 FR: Change view __ 69
6.3.9 FR: Communication__ 69
6.3.9 FR: Fire weapon __ 69
6.3.10 FR: Ignore avatar ___ 71
6.3.11 FR: Leave Game ___ 71

7 IMPLEMENTATION ___ 73
7.1 Architecture ___ 73
7.2 UML Class diagram___ 74
7.3 Screenshots __ 74
7.3 Source code__ 74

8 Discussion __ 76
8.1 Reflection ___ 76

8.1.1 Introduction to graphics and video __ 76
8.1.2 Specification ___ 76
8.1.3 Design __ 76
8.1.4 Implementation ___ 77

8.2 Convergence ___ 77
8.3 Derived ideas __ 77

9 Conclusion __ 80
10 Bibliography__ 81
11 Appendix __ 84

Figure List
FIGURE 1 ..11
FIGURE 2 ..11
FIGURE 3. ...13
FIGURE 4 ..14
FIGURE 5 ..15
FIGURE 6 ..16
FIGURE 7 ..16
FIGURE 8 ..17
FIGURE 9 ..17
FIGURE 10 ..18
FIGURE 11 ..19
FIGURE 12 ..23
FIGURE 13 ..26
FIGURE 14 ..27
FIGURE 15 ..28
FIGURE 16 ..30
FIGURE 17 ..30
FIGURE 18 ..31
FIGURE 19. ...32
FIGURE 20 ..33
FIGURE 21 ..33
FIGURE 22 ..36
FIGURE 23 ..44
FIGURE 24 ..44
FIGURE 25 ..55
FIGURE 26 ..56
FIGURE 27 ..56

 8

FIGURE 28 ..57
FIGURE 29 ..58
FIGURE 30 ..58
FIGURE 31 ..60
FIGURE 32 ..61
FIGURE 33 ..62
FIGURE 34 ..64
FIGURE 35 ..65
FIGURE 36 ..65
FIGURE 37 ..66
FIGURE 38 ..67
FIGURE 39 ..68
FIGURE 40 ..68
FIGURE 41 ..69
FIGURE 42 ..70
FIGURE 43 ..71
FIGURE 44 ..73
FIGURE 45 ..74
FIGURE 46 ..76
FIGURE 48 ..78

Image List

IMAGE 1……………………………………………...13
IMAGE 2 …………………………………………..13
IMAGE 3 ...16
IMAGE 4 ...16
IMAGE 5 ...18
IMAGE 6 ...21
IMAGE 7 ...26
IMAGE 8 ...26
IMAGE 9 ...27
IMAGE 10 ...27
IMAGE 11 ...28
IMAGE 12 ...28
IMAGE 13 ...29
IMAGE 14 ...29
IMAGE 15 ...29

 9

1 Introduction
Interactive Entertainment
“If you're over 35, chances are you view video games as, at best, an occasional distraction...
If you’re under 35, games are a major entertainment and a part of life. In that sense, they
are similar to what rock ‘n’ roll meant to boomers.”
– USA Today, by Kevin Maney, November 17, 2004

The computer game industry has in the last decade become one of the biggest markets in the
world and the industry sold software for over 7 billion US dollars in the USA 2004 alone and is
still growing. This result is very close to the movie industry, which hit a result close to 9 billion
US dollars in 2004. Since the market for interactive entertainment is of such a quantity and is
still growing fast. In 2005 the gaming industry marked reached an all time high worldwide
turnover reaching 32,6 billion US dollars. According to ABI Research an international
economical analyze company the interactive gaming industry marked will be around 65,9 billion
US dollars in 2011. [1]

The gaming industry is a major force for pushing the technology in graphic development. Most
games developed are very similar to the games developed in the early eighties; the major
difference is the improved graphics and playability. As a consequence of increased bandwidth,
higher penetration of ADSL subscribers and increased data processing power computer games
are no longer only played locally on PC, Mac or a game-consol, but instead players play against
each other on the Internet. There are several popular massive-online games available, where the
most popular is World of War Craft. It currently has more than 6 millions active players [2],
where each player pays a monthly fee between 15-13$ [3], adding up to a total of (minimum)
936 million dollar a year, and the number of active players are still growing.

Arts and Entertainment (A&E) is the divided into two segments the movie industry (including
both motion pictures and television shows) and the interactive entertainment industry. On the
whole A&E is the #1 U.S. export generating more international revenue than the
chemical/pharmaceutical, auto, aircraft or agriculture industries. A&E new job creation rate is
300% of the rest of the U.S. economy. Statistics show that by 2008, the U.S. Arts and
Entertainment Industry will increase 5.4% (from $523 billion to $680 billion). This field alone
was responsible for 5.2% of the GDP of the U.S. in 2002. [4]

Keeping the numbers presented above in mind, it is likely to draw the conclusion that new
development in this field will evolve at an even greater pace than it has currently undergone the
last decades.

1.1 Conventions used in this text
Images and figures are arranged into chapters for every sub chapter, the number of each figure
will start with one and be incremented for each new figure or image. This results in many figures
and images with the same names, to avoid ambiguity when referring to figures or images the
following convention will be used.

• Italics - Variables, arguments, parameter names, spatial dimensions, matrix components,
references to other chapters and the first occurrence of key terms

• Bold - Command and routine names and matrices.
• Bold/italics – Is used to highlight important statements that are considered essential when

evaluating the text.

 10

1.2 The report
The report is formed by the combination of the tasks listed below, where all tasks is considered
equally important. In Chapter eight and nine, ideas and opinions gained from the work related to
writing of this report is discussed and evaluated.

1. Give an introduction to graphics and video presentation

2. Propose and specify a distributed game using graphics and video

3. Design parts of the game

4. Implement, test and demonstrate parts of the game on a single PC with a graphics card
(e.g., a NVIDIA GeForce card and NVSG development kit)

The structure of the report follows logically and successive the parts of the problem described
above. However the implementation is done using an OpenGL interface instead of a NVSG
development kit, as suggested in the problem description. The difference between the two
approaches is minimal since both utilize the power embedded in the GPU.

1.3 Method
The following methods were used in this report:

Literature study
The author of this report had little or no prior experience in either the field of computer graphics
or the field of video technology. Therefore literature study was regarded to be the most time
consuming and important part in the process of writing this report. Important sources where
considered; textbooks about computer graphics and video, similar reports, Internet and other
works related to this subject.

Design and implementation
The author has some years of training and experience in the field of software design and
programming in general, and is convinced that generic software design principles like UML
(Unified Modeling Language) could be used in the design phase of the game, while more
specialized techniques are needed to fulfill an adequate implementation.
The author had little to none prior experience in the particular field of video and computer
graphics. To overcome this lack of experience some time was needed to become familiar with
tools and the necessary APIs (Application Programmer Interface) that where to be used in the
implementation part of the report. In order to become familiar with the APIs needed, tutorials
and program examples where downloaded and used considerably.

2 LIMITATIONS
The scope of this report is according to the tasks presented in 1.2 is very broad; therefore the
author has attempted to reduce the scope slightly. However the broadness of this report is also

 11

one of its strengths, it allows the author to explore alternative paths that might else wise not have
been explored due to strict limitations. With this report the author has attempted to, stay truth to
the tasks presented in 1.2 and limit the scope of chapter 4 to parts that can be related to part A, B
and to some extent E in Figure 1.

Figure 1

In Chapter 8 focus will be shifted towards exploring ideas, which can be related to part E, D and
F in Figure 1. The idea is to build upon ideas and concepts explored in chapter 4.

To further limit the scope of this report, the different tasks presented in chapter 1.2 are
considered equally important, but they imply a great variety in workload. Design is more time
consuming than specification, as implementation and testing is more time consuming than the
design phase. For that reason equal ness is measured in time devoted to each subject, the result is
illustrated in Figure 2 below.

Figure 2

 12

3 MOTIVATION
Convergence between the movie industry and the interactive entertainment industry might
introduce new ways to enhance the manufacturing and development process of both industries.
Several different techniques to blend live footage with computer graphics already exist, but it is
very likely that new techniques will emerge.

The project itself was not intended to produce or result in a playable game, but to increase the
author’s knowledge of graphics and video, and to understand techniques widely used in
computer graphics today (from a high abstraction level to the implementation itself). Thereby
also gaining understanding of important requirements that particularly apply to development
within the interactive entertainment business.

Through increased understanding of computer graphics and video technology, the author expect
to identify certain areas within the design process where new techniques can be utilized to
increase productivity. And hopefully be the originator of one or more concepts, which other
might find interesting or at best beneficial.

Considering that interactive entertainment and the movie industry originally where treated as
two distinct subjects, the borders between the two subjects have faded considerable over time.
Today the movie industry has adapted and used techniques from computer graphics world as a
major tool in the production of mainstream movies (Toy-Story, Star-Wars, Titanic and more).
The close ties between the interactive entertainment industry and the movie industry is obvious,
when considering that several computer games are based on mainstream movies, and the other
way around. In the list below some of the goals the author wishes to achieve through carrying
out this assignment is presented.

1. Increase the authors knowledge of graphics and video
2. Understand techniques widely used in computer graphics
3. Identify other scientific areas, which will have an impact on the design of interactive

entertainment.
4. Explore new concept and ideas involving graphics and video
5. Identify areas in the design process where the concepts and ideas from 3 can be

utilized in order to increase productivity.

The success of massive multiplayer online games indicates that human interaction will be an
important ingredient in the creation of the next generation of computer games. I believe that the
next step in the evolution of interactive entertainment is the incorporation of different but
relatively new technologies like, video-conferencing and multiple call sessions, and that they
will serve as an integrated part of these games.

 13

4 THEORY

4.1 COMPUTER GRAPHICS
Computer graphics have evolved considerable, since its early days when computer games where
designed by “teenagers in their parents garages”. In Image 1 and Image2 below a screenshot
from Packman (the old legends in computer games) can be compared to a screenshot from the
latest version of DOOM. The difference in level of detail in the two screenshots are striking, and
provides a good indication of the high degree of transformation this branch of technology has
been subjected to.

Computer generated graphics has also been extensively introduced as a vital part of many
mainstream movies, examples are; Jurassic Park, Toy-story and more. In the computer world
graphics is associated with techniques to create or manipulate images. There are several
techniques and concepts that over the years have become standard terminology in the culture of
computer graphics. I have therefore in this chapter defined some of the basic terminology and
described some of the most commonly used techniques within computer graphics. [5] [6]

4.2 GRAPHICS TERMINOLOGY

4.2.1Alpha-Blending
Alpha: The alpha parameter describes the transparency of a graphical object. [30]

Blending is the technique of combining graphical objects by adding them on a pixel-by-pixel
basis []. This technique is very useful when working with objects that are transparent; like a
glass of water. The equation used in alpha blending is illustrated in Figure 3 from [7].

Image 1 Screenshot from the
 game DOOM III [6]

Image 2 Screenshot from the
 game Packman [5]

Figure 3, where [r,g,b] is the red, green, blue color channels and
alpha is the weighting factor.

 14

In Figure 4 above the concept of alpha blending is illustrated, the prism is blended with the
cylinder by simply adjusting the alpha parameter of the two objects.

4.2.2 Bilinear Filtering
Bilinear filtering is a technique used when anti-aliasing a texture map. When texture is mapped
onto a polygon, which is moving or rotating slowly, texels (is analogue to pixels but refers to a
“pixel” in the texture map) tend to jump randomly from one pixel to another. This random pixel
jumping is very noticeable and causes the texture image to jump and shears along pixel
boundaries. Bilinear filtering eliminates this problem by taking a weighted average of four
adjacent texels to create a single telex (a frame consisting of more than one texel). Based on text
from [11]

4.2.3 Chroma-Keying
Chroma-Keying or texture transparency is a technique where a key color or certain color range
in the texture map is made transparent. The result causes objects or images “behind the removed
color/colors” to be revealed. Chroma-Keying is used to include objects that often are to complex
to be easily modeled with polygons. Examples are the productions of weather forecasts, where a
“blue-screen” is used to separate the weather forecaster from the rest of the scene. In this process
the key color is the same as the “blue-screen”, allowing the weather forecaster to be digitally
sliced out the scene and appended upon the weather map.
 Based on text from [11] and [8]

4.2.4 Depth Cueing
Depth cueing blends image colors with the background color (typically black) as distance from
the camera viewpoint increases. This improves the perception of depth and shape for 3D objects
tremendously, especially for complex curved surfaces or wireframes [9]. The depth cuing
technique basically lowers the intensity of the pixels in an object, as the associated objects move
away from the viewpoint. In practice depth cueing is commonly implemented by using the fog
technique, described in chapter 4.2.7 Fog or a 1D texture map.

The advantage of using a 1D texture map is that the map can be used to encode an arbitrary
function of distance and it is also straightforward to implement. The process is illustrated in
Figure 5. Based on text from [10].

Figure 4

 15

Figure 5

4.2.5 Double Buffering
Computer monitors and displays constantly redraws the visible image on the screen somewhere
around 70 times a second. High quality graphical objects combined with complex movement in
3D space, could cause the display device to present the content of the buffer before the graphical
operation is finished. Thus causing ugly artifacts such as flickering, tearing and shearing to
appear on the display device. In order to hinder these artifacts from happening, a method called
double buffering was invented. Basically double buffering partition the video-RAM (Random
Access Memory) in two, where one is used for rendering while the other is being displayed. At
the same time as one of the buffers is operated on the by the rendering engine the other buffer is
being displayed. When a new frame is rendered the two buffers are switched. Thus hindering the
display device from displaying frames before the graphic operation is complete.

Double buffering is a software operation can also be implemented in hardware, but is then
referred to as page flipping. There also exist a variation of double buffering called triple
buffering1, which show no (or less) flickering, tearing and shearing.

4.2.5 Is based on text from [11] and [12].

4.2.6 Fog
Fog is a technique where the colors in graphical objects are blended with a given color, the fog
color in order to give the viewer an illusion of depth. The distance at which the blending starts
and stops can be specified in 3D space, and the way the fog color is increased throughout the
region between these two points along the Z-axis in 3D space. Thus objects close to the
viewpoint is seen with no change. As the distance from the viewpoint increases the color of the
object fades toward the fog color, at the far end (along the z-axis) objects are seen with the full
effect of the fog density. The fog effect is achieved by interpolating the color of the objects with
the fog color. By using the density parameter to control the quantity of color merging, a method
of depth cueing is provided. The fog technique or depth cueing by fading to black is illustrated in
Image 3 and Image 4, where Image 3 is the original image, while Image 4 is the result of
blending objects with a fixed color (the fog color, which in this case is black) as its pixels
become farther away from the viewpoint. Based on text from [13] and [11]

1 Se http://en.wikipedia.org/wiki/Triple_buffering for more information on triple buffering.

 16

4.2.7 Gamma
All CRT and phosphor-based displays have a nonlinear relationship between signal voltage and
light intensity. This causes a small change in the in the signal input at low voltage to produce a
change in the output display brightness level. However the same small magnitude change in
voltage at high voltage will not produce the same magnitude of change in the brightness output.
Fortunately there is a transfer function, which counterweigh what you actually measured and
what you should have fairly well. Using the following power function does this approximation:

• Output = Input^Gamma

Gamma can therefore be viewed as the difference between what you should have and what you
actually measured. Based on [11] and [14].

4.2.8 Gamma Correction
It would be convenient for graphics programmers if all of the components of an imaging system
were linear [14]. The voltage coming from an electronic camera would be directly proportional
to the intensity (power) of light in the scene, the light emitted by a CRT would be directly
proportional to its input voltage, and so on [14]. However as explained in 4.2.7 Gamma, most
real-world devices do not behave as the linear curve in Figure 6, in practice most display devices
have nonlinear signal-to-light-intensity or intensity-to-signal characteristics as illustrated in
Figure 7 [15] Gamma correction can be thought of as the process of compensating for this
nonlinearity, in order to achieve correct reproduction of intensity.

Image 3 Image 4

Figure 6 [15] Figure 7 [15]

 17

Figure 7 [15] and Figure 6 [15] describe the output intensity (y-axis) corresponding to the value of
the input signal (RGB data (x-axis)). Ideally we would like the display device to reproduce the
signal as described in Figure 6 [15], but since most display devices behave according to Figure 7
[15], the input-output deviance must be compensated. By processing the linear RGB input signal
using the equation described in 4.2.7 Gamma the deviance between the input and output signal is
compensated, this process is commonly referred to as gamma correction.
Based on [15], [11] and [16]

4.2.9 Lighting
There are many techniques for creating realistic graphical effects to simulate a real-life 3-D
object on a 2-D display [11]. One technique is lighting. Lighting creates a real-world environment
by means of rendering the different grades of darkness and brightness of an object's appearance
to make the object look solid [11]. In practice this means that pixels that in 3D space which are
close to the viewpoint are brighter than pixels situated at the far end of the viewpoint in 3D
space. Accurate use of lightning creates an illusion of depth in the image.

4.2.10 Occlusion
Occlusion is the effect seen when an object is blocking the view to
another object in 3D space. The effect is illustrated in
Figure 8 where the cylinder is blocking the view to the cube. Based on
[11]

Figure 8

4.2.11 Palletized Texture
Palletized Texture means compressed texture formats, such as 1-, 2-, 4-, and 8-bit instead of 24-
bit; this allows more textures to be stored in less memory [11].

4.2.12 Projection
The process of reducing three dimensions to two dimensions for display is called Projection. It is
the mapping of the visible part of a three dimensional object onto a two dimension screen [11].
In Figure 9 We observe that objects in the virtual 3D space in are reduced in size when projected
on the 2D display device.
When comparing the
amount of screen space
devoted to the two objects
(the sphere and the cube),
we observe that the cube (A-
B) occupies more space on
the 2D display device than
the sphere (B-C). The space
occupied on 2D display of
the object derives directly
from its z-position in 3D space. In fact the projected size of an object Figure 9

 18

is proportional to its distance from the viewpoint measured along the z-axis in 3D space. Objects
faraway appear smaller than objects closer to the viewpoint analogue to the sphere and cube in
Figure 9, thus creating an illusion of depth.

4.2.13 Perspective Correction
A particular way to do texture mapping; it is extremely important for creating a realistic image.
It takes into account the effect of the Z value in a scene while mapping texels onto the surface of
polygons [11] As a 3D object moves away from the viewer, the length and height of the object
become compressed, making it appear shorter as illustrated in Image 5 [19], where the far end of
the picture is smaller than the part closest to the viewpoint. In the picture on the far right side of
Image 5 [19] the viewpoint has been shifted from the left corner to directly in front of the picture.

3D to 2D Transformation
Figure 10 only shows a line
in 2D space being projected onto a 1D
image plane, but the same argument can
be applied to a 3D linear geometric
primitive projected onto a 2D image
plane [18]. If we think of the line AB in
Figure 10 [] as the z-property of an
object in 3Dspace, which must be
displayed on a 2D image plane, we
observe that AC and CA will appear to
be of equal size. Since depth does not
appear naturally in a 2D display device,
measures have to be taken in order to
preserve the illusion of depth. First of all the intensity of the pixels in an object is lowered, as the
associated part of the object move away from the viewpoint. In Figure 10 [] we that the intensity
of vertex A is 0.0 (max), while the intensity of vertex B is 1.0 (black as in far away),
respectively the intensity in a and b is equal. If we interpolate the value in a and b we find that
the intensity c should be 0.5. However if we follow the dotted line from the viewpoint in Figure
10 [] through c onto a point C on the line AB, we see that C is not the midpoint on AB. Since the
intensity value varies linearly in 3D space, we find that the intensity of c should not be 0.5 2.

Assuming that the line AB in F9 is a part of a cube in 3D space, fitted with texture on the side
facing the screen. To achieve the correct perspective view, the texture must be reduced in size so
that it fit in square projected on to the image plane. Fitting of the texture to match the new

2 For further information on perspective correction see [18].

Image 5 [19]

Figure 10 [17]

 19

projection on 2D screen, is done by appending a grid “on the” texture map and shrink the frame
to the projected size and then calculate the new intensity of the pixels. The perspective
correction process corrects the shape and modifies the pixels in each square of the grid to fit the
new perspective. Logically perspective correction with a dense grid gives a better result than
perspective correction with a spacious grid.
Based on [18], [19] and [11]

Without perspective correction, objects will appear to shift and 'tear' in an unrealistic way. True
perspective correction is that the rate of change per pixel of texture is proportional to the depth.
Since it requires a division per pixel, perspective correction is very computing intensive [11].
Based on [11] and [20].

4.2.14 Rendering
Rendering is the process of generating an image or frame from a model. The model is a
description of 3D objects, and is defined in a strict language. In the 'graphics pipeline' the
rendering process is the last major step, giving the final appearance to the models and animation
The rendering process involves mathematical models and formulas to add shading, color, and
lighting information to the model. Finally the model is converted into pixels that can be
displayed on a screen. Based on text from [21]

In the case of highly detailed 3D graphics, the rendering process can be very time consuming.
There are basically two types of rendering processes:

• Pre-rendering, is often computationally intensive since pre-rendering in most cases
involves complex models with rigorous resolution requirements. Typically pre-rendering
is used for movie creation.

• Real-time rendering, the complexity of the models and the resolution requirements

cannot be higher than that the graphics card/ 3D hardware accelerators can render the
model in real-time (the frame rate of the display device). Real-time rendering allows a
high degree of interactivity since user-input can have an instant effect on the scene
displayed. Therefore real-time rendering is commonly used in 3D video games.

4.2.15 Z-buffer
The z-buffer is a part of memory that contains the distance from the viewpoint for each pixel. If
the display device has a resolution of 640x480 the z-buffer is a 640x480 array. Only pixels from
objects that can be viewed from the viewpoint are stored in the z-buffer. In Figure 11 we observe
that the part A-B on the
cube are projected onto
the same pixels in the
2D display device as
parts C-D of the sphere.
Some of the projected
pixels from the cube and
the sphere will have
coherent x and y
coordinates. However
the view to part C-D of

Figure 11

 20

the sphere is blocked by the part A-B of the cube. Thus only the projection of the visible part of
the sphere is stored in the z-buffer. The z-buffer will then contain the z-value of all the 640x480
pixels currently displayed on screen. Based on text from [22]

4.2.16 Z-buffering
Z-buffering is the process of creating and updating the z-buffer. Setting all z values to “infinity”
clears the Z-buffer, and a new frame can be loaded into the buffer. When rendering objects, the
engine assigns a z-value to each pixel: the closer the pixel to the viewer, the smaller the z-value.
When a new pixel is rendered, its depth (z-value) is compared with the stored depth in the Z-
buffer [11]. If the z-value of a new pixel is lower than the pixel currently stored in the Z-buffer
the new pixel is written into the buffer, substituting the old pixel. Thus Z-buffering is a process
that continuously removes hidden surfaces from a newly rendered frame, by using the depth
value stored in the Z-buffer. Based on text from [11] and [23].

4.2.17 Z-sorting
3D objects are commonly modeled using polygons (see 4.2.20 Tessellated Models for further
details). Z-sorting take advantage of the polygons z-parameter, and sorts the polygons in back-
to-front (polygons are sorted according to their z-parameter, so that polygons closest to the
viewpoint are moved to the very front of the polygon array and polygons with furthest away are
moved to the front) order prior to rendering. The polygons are rendered by iterating the sorted
array of polygons, so that the surfaces (polygons) closest to the viewpoint are rendered last. The
result of rendering the array is always correct unless objects coincide with each other.
The advantage is not requiring memory for storing depth values [24]. The disadvantage is the
cost in more CPU cycles and limitations when objects penetrate each other [24].
Based on text from [24].

4.2.18 Animation
Animation is a technique that achieves an illusion of motion through the use of sequences of
images. The technique combines both modeling and rendering, with the handling of time. In its
most basic form animation is only a sequence of images is shown continuously that together
gives the viewer a feeling of motion. Based on text from [30].

4.2.19 3D-scanning
3D scanning uses range-finding technology to create measured 3D models. Such models are
very useful when creating 3D models, and can then be utilized in applications that need rich
visual imagery with close resemblance to real-life 3. Today 3D scanning can be combined with
regular RGB-cameras enabling the user to capture both color and depth of a scene (see 4.6.5
Video Cameras for further reading). Based on text from [24] and [25]

3 3D scanning equipment has been extensively used in manufacturing industry. 3D graphics is incorporated in all
product development process phases - from conceptual design, detailed part and assembly design to shop floor
manufacturing. For further reading [25] is recommended.

 21

4.2.20 Tessellated Models
[Tessellated models: 3D-models where the planar surface is composed of repeated use of a
single shape without gaps or overlapping.]

Tessellation is the process of subdividing a surface into
smaller shapes. To describe object surface patterns,
tessellation breaks down the surface of an object into
manageable polygons. Triangles or quadrilaterals are two
usually used polygons in drawing graphical objects because
computer hardware can easy manipulate and calculate these
two simple polygons. An object divided into quads and
subdivided into triangles for convenient calculation.

Most real-worlds tessellated models are composed of
complexes of triangles with shared vertices. These are
generally known as triangular meshes or triangular irregular networks (TINs). Most graphical
programs need to be able to handle these models effectively and also merge these models with
texture.

TINs are commonly used to store and represent complex three-dimensional models. There are
basically two approaches used for storing a TIN:

1) Treat each triangle as independent entities thus storing each triangle separately as a
vector containing the vertices in the triangle.

2) Try to somehow share the common vertices. So instead of treating each triangle as
independent entity we use two classes; class mesh and class mesh-triangle. The mesh
class contains information of the material and an array called vertices, which contains
the three vertices in the triangle. The class mesh-triangle contains indices [i0, i1, i2] into
the vertex array vertices, and a pointer meshptr, which points to the mesh-triangle
parent.

Using the strategy in 1) results in storing a random vertex R1 on average six times. Since a large
mesh typically has each vertex stored by about six triangles, although there can be any number
of extreme cases. The strategy in 2) is bit more complicated to incorporate. But considering that
the storage is reduced by a factor of two makes the complication well worth the effort.
Especially when a large number of properties are added to the vertices.
Based on text from [30].

4.2.21 Graphics Pipeline
Graphics pipelining allows several sets of operations to be conducted successive, meaning that
next operation can start before the foremost operation has finished. The pipelining technique has
been used extensively in several areas of computer technology.

The graphics pipeline is composed of the following steps that are:

1. Transforming: The first stage is to import and fit each object to the “worlds”. In practice
this means scaling the imported 3D models so that the size of the models logically fit
together. This stage is necessary because the original design of an airplane might be no
larger than the design of a bike imported into the same 3D world. Thus the two imported

Image_6 [image of a typical TIN]

 22

models must be resized to fit the 3D world, so that the airplane is larger than the bike.
This process involves both shrinking and enlargement of the imported models.

2. Transferring: Once the all models has been fitted to logically suit the 3D world, the
objects or models must be transferred to fit the perspective that the viewer will be
looking from (the viewpoint). Thus all objects must be based on coordinates from the
viewpoint. This stage involves rotating objects to fit the viewpoint, and resizing the
objects. So that objects closer to the viewpoint appear larger than objects further away.

3. Occlusion culling: During this step hidden polygons that are hidden (blocked by other
objects) from the viewpoint are removed. Techniques used in this process are Z-sorting
(see 4.2.17 Z-sorting) and Z-buffering (see 4.2.16 Z-buffering).

4. Lighting/illumination: The illumination stage is fairly complicated. Not only does all
light sources have to be accounted for, but lighting also affect the appearance of the
models/objects by changing their color. In normal 3D, perfect lighting is expected.
Achieving perfect lighting is computationally demanding and in most cases not possible
to combine with real-time rendering4. Since most games have strict real-time constraints
a compromise between speed and eye candy is necessary. Usually the compromises
involve fewer light sources, a minimum of reflection and often only lighting from
discrete sources are calculated.

5. View-Frustum: Summarizing the steps completed so far on the pipeline, objects and
polygons that cannot be seen from the viewpoint have been “removed”. Thus with basis
in the viewpoint, we now have a lighted 3D scene, which gives our models their correct
color. In this step a “view frustum5” is created since all the information in the 3D scene
cannot be displayed on the screen. All models outside the view frustum are discarded, the
problem occurs when a parts of a polygon is in the view frustum and the other part is
outside. These polygons need to broken into smaller polygons, thus adding more vertices
and polygons for rasterization later in the pipeline. Only the polygons needed to display
the scene are saved, the rest are deleted at this stage.

Conversion: Basically step six makes 3D into 2D. Changing 3D into 2D involves a lot of work;
all information is held in texels and vertices, which must be converted to pixels for the display
device. This part involves techniques explained in; 4.2.12 Projection, 4.2.13 Perspective
Correction (under 3D to 2D Transformation). Finally, texture (

6. 4.5.1 2D Texture Mapping), fog (4.2.6 Fog), alpha blending (4.2.1Alpha-Blending), anti-
aliasing () depth (4.2.4 Depth Cueing), and all the other functions that make your
graphics look great.

Based on text from [26], [27]

4.3 Image Capture and Storage
There are several different formats used to digitally store “real” images captured using digital
cameras or flatbed scanners. Most scanners and cameras use a light-sensitive chip to record light.
The dominant technologies are CCD and CMOS arrays [30], three different filters are used to
digitally record the different RGB composition of each pixel. Camera manufactures have
different proprietary algorithms for creating a single RGB image captured using the Bayer

4 See 4.2.14 Rendering for more information on real-time rendering and pre-rendering.
5 Frustum: Rectangular cone formed by lines from the camera to each corner of the projection plane [27].

 23

mosaic that are somewhat more complicated than the obvious strategy of linear interpolation.
The Bayer mosaic is displayed in Figure 12.

 Bayer mosaic

G B G B G B G

R G R G R G R

G B G B G B G

R G R G R G R

G B G B G B G

R G R G R G R

G B G B G B G

 Figure 12

To reduce the storage requirement, most image formats allow for some kind of compression. Viewed
from a high level compression algorithms can be divided into two main categories lossless and lossy. If
an image is compressed using a lossless algorithm all information lost in the process can be recovered.
Using a lossy Compression algorithm the discarded information can be recovered.

Gif
This format indexes only 256 possible colors. The quality of the image depends on how carefully
256 colors have been chosen. This format typically works well for natural diagrams. Gif is a
lossy format.

Jpeg
Jpeg is a lossy format that works well for natural images.

Tiff
This is a lossless format and usually a compressed 24-bit per pixel, but other options do exist.

PPM
PPM is a lossless format and usually a 24-bit per pixel, uncompressed format although other
options do exist.

Based on text from [30]

4.4 INTERPOLATION

4.4.1 Linear Interpolation
Interpolation is one of the most commonly used mathematical techniques used in computer
graphics. The technique is extensively used in the following processes:

 24

• To form line segments in 2D and 3D where two points a and b are associated with a
parameter t to form the line p=(1-t)a±tb where tΕ[0,]. Resulting in a straight line
between the two points a and b.

• Another common linear interpolation is among the set of positions on one of the axis x, y
or z, where only a limited set of points exist, the limited set of points can be connected
by a straight line, using linear interpolation. It is natural to use parametric line equations
for these segments. The parameter t is just the fractional distance between x_i and x_i+1:

Linear interpolation is also used to smooth color transitions, letting the different colors in the
color palette have values that are related logically to each other.

4.4.2 Techniques Involving Interpolation
Anti-aliasing
Anti-aliasing interpolates pixels in the edge of an object with the background, this technique
makes the edges appear to have better resolution. [24]

Texture Anti-aliasing
Texture Anti-aliasing is an interpolation technique used to remove texture distortion, stair-casing
or jagged edges, at the edges of an object [24].

Texture Filtering
Removing the undesirable distortion of a raster image, also called aliasing artifacts, such as
sparkles and blockiness, through interpolation of stored texture images [Error! Bookmark not
defined.].

4.5 TEXTURE MAPPING
The technique of mapping a pixel-based image onto a three-dimensional surface is a
Mapping techniques add realism and interest to computer graphics images. Texture mapping
applies a pattern of color to an object. Bump mapping alters the surface of an object so that it
appears rough, dented or pitted. Texture mapping is also used to “carve out “ three-dimensional
objects with a desirable surface.
The function or image that is used is called a texture map and the process is called texture
mapping. Texture mapping is classified by several different properties:

• The dimensionality of the texture function.
• The correspondence between points in the surface and points in the texture function.
• Whether the texture is primarily procedural or primarily a table look-up.

The common technique to handle variations of reflectance is to store the reflectance is to store
the reflectance as a function or a pixel-based image and map it onto a surface.
Based on text from [28] and

 25

4.5.1 2D Texture Mapping
In two-dimensional texture mapping, we have to decide how to paste the image on to an object.
The image is often either scanned photographs or images created in a paint or drawing package.
For each pixel in an object, we need to know where to look in the texture map to find the right
color. When using a two-dimensional texture map coordinates in this map is often referred to as
uv, which is used to create the reflectance R(u, v).

The key is to take the (u,v) coordinates of the image and associate them with points in the texture
map. The process is illustrated in Figure 13, where the technique creates the appearance of grass,
sky and bricks without the cost of rendering thousands of polygons.
Based on text and images from [30]

 26

Figure 13

The technique is very intuitive when dealing only with two-dimensional objects and images.
When the two-dimensional texture maps are to be used on three-dimensional objects the process
becomes slightly more complicated. However the basics are very similar, but one needs to find a
scheme to associate the uv-coordinates of the texture map with points on a three-dimensional
surface.

4.5.2 3D Texture Mapping
For a map shape that’s planar, we take an (x,y,z) value from the object and throw away (project)
one of the components, which leaves us with a two-dimensional (planar) coordinate. We use the
planar coordinate to look up the color in the texture map. In Image 7 and
Image 8 below the result of texture fitted upon a three-dimensional object is illustrated.

Image 8 Image 7

 27

The colored surface used as texture in
Image 8 above does not completely reveal what happens
to the three dimensional object when the object is viewed
from an angle were the objects z-component is visible.
When viewing Image 7 the result is very similar to what
would be achieved using projector to project the colored
texture map in
Image 8 onto a three-dimensional object.

The mathematically process used in texture mapping
simulate the effect of projecting an image onto a three-dimensional object, as illustrated in
Image 9. Therefore I have thoroughly described the
mapping process in Figure 14 below.

Figure 14

Viewed from another angel in Image 10 the three-
dimensional shape of the object is revealed, and one of
catches with using a two-dimensional image as texture for a
three-dimensional object becomes imminent.

Several textured-mapped objects that have a planar map
shape. None of the objects have been rotated. In this case,
the component that was thrown away was the z-coordinate.

Image 9

Image 10

 28

You can determine which component was projected, by looking for color changes in coordinate
directions.
When moving parallel to the x-axis or the y-axis an object’s color changes.
However, movement along the z-axis does not produce a change in color. This is how you can
tell that the z-component was eliminated.

The elimination of the z-component reveals one of
the effects of using a two-dimensional map on
three-dimensional objects. Another effect that it is
not revealed due to the nature of the color-grid-
map is that the two-dimensional map should be
fitted specifically for the corresponding tree-
dimensional object. Image 11 is specifically fitted
for a three-dimensional sphere. Note that the
image has a different number of pixels horizontally
and vertically so the image pixels have a non-
uniform aspect ratio in (u,v) space.

When examining the Image 11 closer one should be able to notice the excessive size of
Greenland, which exactly corresponds to the shrinking that occurs when the map is applied to a
sphere. In the Image 12 we can observe the effect the
shrinking process. Since the image was specifically fitted
for a sphere Greenland does not appear to be just the right
size, also notice that areas close to equator has increased
in size.

The mapping procedure used in this image is slightly
different than the one explained in Figure 14. To map a
two-dimensional image onto a sphere, we first have to
find a mapping scheme that will allow us to match the
(u,v) space of the image onto the (u,v,w) space of the
sphere. This process involves calculating the polar

coordinates of the sphere and then use the mapping scheme described
in Figure 15.
Based on text from [30] and [29].

 For a sphere with center (cx, cy,cz) , the parametric
 equation of the sphere is :

 x = xc+R cos φ sin θ

 y = yc+R sin φ sin θ
 z = zc+R cos θ

 we can find (θ, φ), where [θ, φ] Ε[0,π] X [-π,π]

 θ = arccos ((z-zc)/R)
 φ = arctan 2 (y-yc, x-xc)

Image 11

Image 12

Figure 15

 29

Thus the following formula can be used to find the right uv-coordinate for each point in the
three-dimensional surface:

o u= (φ/2π)
o v =(π-θ)/π

This mapping is used in image (world). There is similar
although likely more complicated way to generate
coordinates for most three-dimensional shapes.
Based on text from [30]

To further illustrate this point the same two-dimensional
texture map used in Image 7 has been used on the same
object but this time with the use of polar coordinates, the
result can be viewed in Image 13. There are different
mapping schemes for most common three-dimensional
object, like cylinders, cubes, pyramids and many others.
When working with three-dimensional surfaces and “real” images captured by digital cameras
the result of a texture mapping process can be difficult to predict. Using texture mapping on a
wall similar to the one in figure_1 suddenly involves several unexpected obstacles when the wall
is modeled as a three-dimensional object like incorrect perspective view an other as we shall see
in chapter 4.5.2 Tessellated Models.

 To use “photo-texture” on three-dimensional objects can be quite the challenge since the photos
must be specifically “labeled” for the three-dimensional object, and finding the right “labeled”
image (illustrated in Image 15 for your model can be quit the challenge. However “photo-
texture” is very useful when one wants to se reflections of images in the three-dimensional
object. The concept is illustrated in Image_11.
Based on text from [29] [30] [31],

4.5.3 Displacement Mapping
Displacement mapping is a technique used to ad realism to three-dimensional objects, by
actually changing their geometry. The technique uses a displacement map to exchange points on

Image 13

Image 14 from [31]

Image 15

Image_8

 30

the surface of the geometrical object with new points from the displacement map. A common
simplification is that the displacement will be in the direction of the surface normal.

The normals on the base surface can be represented as ˆN(u, v). Using this representation the
points on the new displaced surface P`(u, v) are defined as:

Displacement mapping is straightforward to
implement in a z-buffer code by storing the surface
to be displaced as a fine mesh of many triangles.
Each vertex in the mesh can be displaced along the
normal vector direction. This result in large models, but it is quit robust.
Text based on [30] and [32]

4.5.4 Environment Maps
Often we would like to have a texture-mapped background and for objects to have specular
reflection of that background. This is accomplished through the use of environment maps. An
environment map can be implemented as a background function that takes in a viewing direction
b and returns an RGB color from a texture-map.

There are many different techniques used to store an environment map, where some of the most
commonly used are:

• A cube map, the object is encapsulated in a large cube and the surface of the object
reflects texture of the cube. Cube mapped
reflection is done by determining the vector that
the object is being viewed at. This camera ray is
reflected about the surface normal of where the
camera vector intersects the object. This results
in the reflected ray, which is then passed to the
cube map to get the pixel, which the camera then
sees as if it is on the surface of the object. This
creates the effect that the object is reflective.

• A sphere map, which is very similar to a cube

map basically is a spherical table indexed with
spherical coordinates.

For more specific information on environment maps the following material is recommended:

• http://www.blender.org/modules/documentation/htmlI/x4881.html
• http://developer.nvidia.com/object/cube_map_ogl_tutorial.html

Based on text from [33] and [30]

Figure 16 The points P are displaced in the
direction of N with point P

Figure 17 illustrates the use of a cube-
map [33]

 31

4.6 Video
Since the 1920s when the black-and-white prototypes where introduced, television has evolved
into and high quality color TV. The latest amendment to high quality color TV is HDTV (High
definition TV). It is considered as the latest step in the direction of closing the gap between
human perception of the real world, and the virtual reality displayed on a screen, but the hurdle
of 3D TV still remains. Leading authorities like the IST (Information Society Technologies
program, sponsored by the European Commission.) that 3D is the next major revolution in the
history of TV. [34]

Video is basically a sequence of images or still
pictures of a scene, where each images are shoot
at a certain time interval. The concept is
illustrated in Figure 18, where a sequence of
pictures is sorted in timely order; variation in the
pictures can adequately represent the motion in a
scene. Based on text from [35].

In this part I have tried to cover the most commonly used techniques in video technology. After
reading this section of chapter 4 the reader should be able to understand the following:

• How a video signal is generated.
• How a video signal is represented for storage or transmission.
• How a video signal is converted between different digital representations.
• Understanding of MPEG-4 video compression.

4.6.1 Video Imaging
Images are captured through the use of a camera, where the optical lens is used to find the
correct focus of the scene. By converting optical signals into electrical signals a photosensitive
surface digitally records the focused image of the scene. There are basically two types of
imagers6:

• Tube based imagers such as; vidicons , plumbicons or orthicons.
• Solid-state-sensor; charge-coupled devices (CCD).

There is one major difference between the two types of imagers. With tube based imagers the
photosensitive surface are scanned with electron beams, and the two dimensional optical beam is
translated into an electrical signal. With solid-state-sensors the electrical signal is read out
directly.
The CCD technology is the most extensively used technology type of the two imagers’ types.
Text based on [35] and [36].

6 For further information and comparison of imagers and their characteristics see: IVAR ’94 Tutorial. Image
Acquisition and Display, PatrickWambacq [36].

Figure 18

 32

4.6.2 Raster Scan
When capturing images light from a scene is focused upon a photosensitive surface. The
photosensitive surface records the intensities or shades of light as variable charges, and is
scanned according to the pattern illustrated in Figure 19. A CCD (Charge Coupled Device) is
commonly used as the photosensitive surface, which is an analog device that holds a variable
charge and is capable of recording the varying shades of light. To convert the content of CCDs
into the digital realm, analog to digital (ADC) converters quantify the variable charge into a
discrete number of colors.

The raster scan begins in the top left corner
(1) in Figure 19 where the electron beam is
turned on (one line at the time). In (2) the
beam is turned of to go back to the next
line, and then turned off in (3) to go back to
the2 top which is known as the “horizontal
retrace”. [35] [37]

4.6.3 Interlaced Raster Scan
Interlaced raster scan is very similar to a regular raster scan. Different however is that two fields
sampled at sequentially different times are composed into one frame. This is done in order to
reduce the perceived flicker associated with a regular raster scan.
The process involves scanning line 1, then line 3, then line 5 etc. to the bottom of the scan from
field 1, and then repositioning the electron beam so that lines 2, 4, 6 etc. are scanned from the
next field, thus shortening the interval between each successive scan. [35]
In raster graphics architecture a primitive is formed by scan conversion where each scan line
intersects the primitive at two ends, P left and P right. A contiguous sequence of pixels on the
scan line between P left and P right is called a Span. Each pixel within the span contains the z,
R, G, and B data values. [11]

4.6.4 Representation

Figure 19, from [37].

 33

In Figure 20 the process of how light is converted
to digital representation of the real life scene
focused through the optical lens is illustrated.
Light rays are focused onto a photosensitive
surface, in this instance a CCD, which “converts”
the light rays into an electrical signal. The ADC
(Analogue Digital Converter) converts the
electrical (analogue) signal into a digital one. In
the chip marked DSP (Digital Signal Processing)
in Figure 20 the digital signal received from the
ADC chip is converted (generally this conversion
process involves compressing the) into the desired
image format.
Based on [38].

4.6.5 Video Cameras
Originally video cameras was designed to create a two-dimensional representation of a scene, as
described in chapter 4.6.4 Representation. However technology is constantly on the move,
searching for bigger and better solutions. The latest addition to the DV-camera family is the
Z-cam, which allow user to create record both image and depth.

The ZCam™ captures the depth value of each pixel in the scene in addition to the color value,
thus creating a depth map of the object by grey level scaling the distances [39] And so by using
the PRS (Parallel Range Sensing - invented and patented by 3DV) technology, every video
frame is supplemented with an additional frame
known as the Z-Buffer [39]. The depth image
supplemented by the ZCam has an image (Z-
Buffer) corresponding to every frame in the
video, and supplements the color information
found in the video with the depth information
extracted by the ZCam, all done in real-time [39]

The optical system of the sensor itself performs
the high-speed parallel calculations for each pixel
range. And so information such as the object
boundaries; object surface elevations and object
distances is provided by a ZCam™ output [39].

Figure 20 from [38]

Figure 21 [39]

 34

4.6.6 3D Display
There are several possible approaches for labeling 3D displays, but basically they are only
classified after three distinctive criteria’s.

1) In the first approach 3D displays are divided into three categories; Real 3D, true 3D and
not true 3D. Real 3D is analogue to the real world and the display device resembles the
pattern of light rays emitted from real 3D space. True 3D recreates real life by creating
two sets of images from the same scene, where the only difference is the slight difference
in the angle of view. By presenting one of the image sets only to the left eye and the
other set only to the right, the effect of 3D is achieved. In not true 3D the same image is
presented to both eyes. [35]

2) The second approach labels 3D displays either as auto-stereoscopic or stereoscopic. With

a stereoscopic 3D display device the viewer requires optical means like glasses or special
viewing to observe in 3D. Auto-stereoscopic 3D displays the viewer does not require the
use of special viewing or any other optical means for viewing in 3D. [35]

3) The third and last approach labels 3D displays according to the type of technology the

3D display construction is based on. Current techniques include; holographic,
volumetric, lenticular, parallax based or stereoscopic 7.

Currently autostereoscopic LCD 3D (15”) displays can be acquired for less than $1700 [40]. 3D
display devices are currently most useful in context with computer applications, allowing the
viewer to experience 3D models the way they where meant. Affordable 3D display devices
could prove an interesting alternative for mainstream consumers looking for an enhanced
viewing experience.

4.7 MPEG-4
MPEG-4 is an ISO/IEC standard developed by MPEG (Moving Picture Experts Group), the
committee that also developed the Emmy Award winning standards known as MPEG-1 and
MPEG-2. These standards made interactive video on CD-ROM, DVD and Digital Television
possible. MPEG-4 is the result of another international effort involving hundreds of researchers
and engineers from all over the world. MPEG-4, with formal as its ISO/IEC designation
'ISO/IEC 14496', was finalized in October 1998 and became an International Standard in the
first months of 1999. The fully backward compatible extensions under the title of MPEG-4
Version 2 were frozen at the end of 1999, to acquire the formal International Standard Status
early in 2000. Several extensions were added since and work on some specific work-items work
is still in progress. [41]

One of the main objectives with the MPEG standards was to avoid a multitude of proprietary
non-inter-working media formats. The basic idea is similar to most standardization project, to
achieve global interoperability. MPEG-4 is backward compatible with all prior releases, and
seeks to achieve interoperability by providing standardized ways to:

7 For more information on these 3D specific technologies [35] is recommended.

 35

• Represent media content like visual, auditory or audiovisual content, often referred to as
media objects. These media objects can be of synthetic or natural origin (recorded with a
camera or microphone, or be computer generated).

• Describe the composition of the media objects in a scene, in order to create complex
audiovisual scenes.

• Multiplex and synchronize data associated with these media objects. In order to assure
that the media objects are transported across the network with the appropriate QoS
(Quality of Service) parameters considered necessary for the specific media objects.

• Interact with the audiovisual scene generated by the user equipment at the receiver’s end
[41].

The MPEG-4 specification organizes scene graph (the scene graph is composed of several media
objects) in a hierarchical fashion. At the leaves of the scene graph we find primitive objects such
as

• Still images (e.g. as a fixed backgrounds like landscape, buildings and so on);
• Video objects (e.g. a talking person - without the background;
• Audio objects (e.g. the voice associated with that person, background music);

These primitive media objects are coded according to the MPEG-4 specification, which is
designed to be as efficient as possible while still attending to desired functionalities like: Error
robustness, easy extraction and editing of a media object, or having an object available in a
scalable form. The coding allows all media objects to be represented independent of its
surroundings or background, thus elements in a scene can be extracted and inserted dynamically.
Based on [41].

4.7.1 Scene composition in MPEG-4
In Figure 22 from [41] an example of an MPEG-4 scene is illustrated. The figure (Figure 22 [41])
is composed of several different types of primitive objects such as; the person, the globe and
sound (voice). By combining primitive objects like the visual object corresponding to the person
with the corresponding voice, a new compound media object is formed. The new media object
will then contain both the aural and visual component of a talking person. [41]

The hierarchical structure of a scene graph specified in MPEG-4, allows authors to construct
complex scenes. The MPEG-4 specification is highly versatile and offers a wide set of function
to manipulate both primitive objects and compound media objects. MPEG-4 provides the
possibility to:

• Place media objects anywhere in a given coordinate system.
• Change both the geometrical and acoustical appearance of a media object, through the

use of transforms.
• Apply streamed data to media objects.
• Interactively change the viewpoint and the listening points in a scene.

Based on text from [41].

 36

Figure 22 [41]

Figure 22 [41] illustrates one of the core principles associated with MPEG-4, it is object oriented.
A complete scene is created from primitive media objects. In Figure 22 [41] primitive media
objects like the 2D background and 3D objects (person, chair and the desk) are combined with
audio objects (voice) to produce a complete multimedia experience.

4.7.2 Major Functionalities in MPEG-4 systems
The MPEG-4 specification is an extensive framework, which basically defines an advanced
toolbox for compression algorithms and coding of media content. MPEG-4 specification seeks to
offer a complete framework that address all major aspects associated with multimedia content.
Therefore the MPEG-4 specification is relatively large and complex. Major functionalities
described in the MPEG-4 specification include:

• Transport, MPEG-4 does not define transport layers, but instead offers adaptation to a
specific existing transport layer.

• DMIF, or Delivery Multimedia Integration Framework, is an interface between the
application and the transport layer. DMIF supports a wide variety of transport protocols
including; IP, ATM, mobile, PSTN, narrowband ISDN and offers transparent
communication between peers.

• Systems, this part addresses description of the relationship between the audio-visual
components that constitute a scene, and defines an extensive set of tools that can be used

 37

to code, compress, transmit8 and generate multimedia scenes. For more details see 4.7.3
MPEG-4 Systems.

• Audio, supports coding of general audio signals, ranging from very low bit rates to high
quality. MPEG-4 also supports speech and synthetic audio coding. Speech coding can be
done using bit rates from 2 kbit/s up to 24 kbit/s, averaging as low 1.2 kbit/s when
utilizing the possibility for variable rate coding.

• Visual, MPEG-4 allows hybrid coding of natural (pixel based) images together with
computer generated 3D models and graphics in a scene. For more details see 4.7.4
MPEG-4 Visual.

• Extensions, MPEG is currently working on several possible extension to MPEG-4
specification.

4.7.2 Major Functionalities in MPEG-4 systems is based on text from [41].

4.7.3 MPEG-4 Systems
4.7.3 MPEG-4 Systems is copied from [41].
As explained above, MPEG-4 defines a toolbox of advanced compression algorithms for audio
and visual information. The data streams (Elementary Streams, ES) that result from the coding
process can be transmitted or stored separately, and need to be composed so as to create the
actual multimedia presentation at the receiver side.

The systems part of the MPEG-4 addresses the description of the relationship between the audio-
visual components that constitute a scene. The relationship is described at two main levels.

• The Binary Format for Scenes (BIFS) describes the spatio-temporal arrangements of the
objects in the scene. Viewers may have the possibility of interacting with the objects, e.g.
by rearranging them on the scene or by changing their own point of view in a 3D virtual
environment. The scene description provides a rich set of nodes for 2-D and 3-D
composition operators and graphics primitives.

• At a lower level, Object Descriptors (ODs) define the relationship between the
Elementary Streams pertinent to each object (e.g the audio and the video stream of a
participant to a videoconference) ODs also provide additional information such as the
URL needed to access the Elementary Steams, the characteristics of the decoders needed
to parse them, intellectual property and others.

Other issues addressed by the MPEG-4 Systems part:

• A standard file format supports the exchange and authoring of MPEG-4 content
• Interactivity, including: client and server-based interaction; a general event model for

triggering events or routing user actions; general event handling and routing between
objects in the scene, upon user or scene triggered events.

• Java (MPEG-J) is used to be able to query to terminal and its environment support and
there is also a Java application engine to code 'MPEGlets'.

• A tool for interleaving of multiple streams into a single stream, including timing
information (FlexMux tool).

• A tool for storing MPEG-4 data in a file (the MPEG-4 File Format, ‘MP4’)

8 MPEG-4 provides a transparency between the MPEG-4 application and a variety of transport protocols.

 38

• Transport layer independence. Mappings to relevant transport protocol stacks, like
(RTP)/UDP/IP or MPEG-2 transport stream can be or are being defined jointly with the
responsible standardization bodies.

• Text representation with international language support, font and font style selection,
timing and synchronization.

• The initialization and continuous management of the receiving terminal’s buffers.
• Timing identification, synchronization and recovery mechanisms.
• The initialization and continuous management of the receiving terminal’s buffers.
• Timing identification, synchronization and recovery mechanisms.
• Datasets covering identification of Intellectual Property Rights relating to media objects

4.7.4 MPEG-4 Visual
The MPEG-4 Visual standard allows the hybrid coding of natural (pixel based) images and video
together with synthetic (computer generated) scenes [41]. This enables, for example, the virtual
presence of videoconferencing participants [41]. To this end, the Visual standard comprises tools
and algorithms supporting the coding of natural (pixel based) still images and video sequences as
well as tools to support the compression of synthetic 2-D and 3-D graphic geometry parameters
(i.e. compression of wire grid parameters, synthetic text) [41]. MPEG-4 provides a relatively
powerful set of tools that can be used to combine computer graphics with video. The framework
supports streaming and allows different encoding of objects in the same scene; accordingly
visual objects in focus can be coded with higher resolution than objects out of focus. Hence
limiting the amount of transferred information. Based on text from [41].

The MPEG-4 visual Part supports a vide variety of bit rates (from 5kbit/s to more than 1 Gbit/s),
formats and resolutions (from sub-QCIF to 4000x4000 pixels). It offers state of the art
compression algorithms for all bit rates including textures for texture mapping on both 2D and
3D meshes. [40]

MPEG-4 visual Part is embedded with content based functionality, which include:

• Content-based coding of images and video allows separate decoding and reconstruction
of arbitrarily shaped video objects [41].

• Random access of content in video sequences allows functionalities such as pause, fast
forward and fast reverse of stored video objects [41].

• Extended manipulation of content in video sequences allows functionalities such as
warping of synthetic or natural text, textures, image and video overlays on reconstructed
video content. An example is the mapping of text in front of a moving video object
where the text moves coherently with the object [41].

Scalability
The scalability of MPEG-4 is highly versatile in that it can adjust its coding and decoding
complexity, in order to adapt to both the available bit rate, delay and the display resolution.
MPEG-4 compression scalability can be accomplished both on the receiver and the sender side.
[41]

 39

On the sender side the level of compression is determined by two factors, delay and available bit
rate. A high level of compression is time consuming (involves a lot of processing), but allows
high quality video objects to be transferred over a connection with relatively low available bit
rate. On the other hand by keeping the compression level at a minimum (limited need for
processing) the delay is reduced extensively while increasing the demand for bandwidth. [41]

On the receiver side similar options as those on the sender side is available. The decoding
processes available in MPEG-4 are also able to compromise between delay (measured in needed
processing power) and quality. In practice there are four available decoding techniques in
MPEG-4, which are:

• Spatial scalability, only a subset of the encoded bit stream is decoded, resulting in a
reduced spatial resolution.

• Temporal scalability, only a subset of the received bit-stream is decoded resulting in
reduced temporal resolution.

• Quality scalability, the received bit-stream is translated into several layers of different bit
rates, where a combination of the subset of the layers can be decoded into a meaningful
signal. The quality of the reconstructed signal relates to the number of layers used for
decoding and reconstruction.

• Complexity scalability, quality of the decoded signal relates directly to the complexity of
the decoder used. The complexity of the decoder might be directly related to the
available processing power, so that less powerful decoders only decode parts of the bit
stream.

Since MPEG-4 is scene graph is object oriented, scene objects can be encoded and decoded
according to desired bit rate, delay and resolution. This means that essential visual objects in
focus can be coded or decoded with higher resolution than other “less important” visual objects
in the scene. The complexity scalability is available to all visual objects including texture, image
and video. [41]

MPEG-4 coding of 2D and 3D meshes
MPEG-4 is embedded with a set of tools for coding of 3D polygonal meshes or TINs (4.2.20
Tessellated Models), which include coding of properties like shading, colors and texture
coordinates for polygons. Coding of 2D meshes include; motion tracking of animated objects,
2D mesh and motion vector compression and suspended texture transmission with dynamic
meshes. [41]

 40

4.8 OpenGL
The main goal of designing the OpenGL framework was to provide programmers with a
standard programming language that could utilize the full power of the graphical processing unit
(GPU) of the system. By using the OpenGL framework graphics developers no longer had to
concern themselves with hardware specific problems, but instead focus on program specific
problems. Today OpenGL is the foremost used application-programming interface (API) for
developing 2D and 3D graphics; it is supported by every major operating system (Windows
95/98/2000/XP/NT, Unix, Linux, Mac OS, OPENStep and BeOS), and is callable from Ada, C,
C++, Fortran, Python, Pearl and Java. OpenGL offers complete independence from network
protocols and topologies. [42] [43]

OpenGL encourages innovation and speeds application development by offering the developer a
broad set of embedded rendering techniques, which include:
Viewing, Color, Lighting, Fog (4.2.6 Fog), Blending (4.2.1Alpha-Blending), Texture Mapping (

4.5.1 2D Texture Mapping, 4.5.2 3D Texture Mapping). [44] [45]

4.8.1 OpenGL graphics restrictions
The OpenGL interface consists of about 150 distinct commands that can be used to specify
objects and the operations needed to produce interactive 3D applications. Although OpenGL is a
extensive hardware independent interface, it has certain limitations. OpenGL does not provide
the programmer with high level commands that can be used to describe complex 3D models,
such as; cars, trains and airplanes. Instead the programmer is required to describe/build the
desired 3D models using a set of geometric primitives. [46]

In order for OpenGL to remain a hardware and platform independent interface, no commands for
performing windowing tasks or handle user input are included in the OpenGL API.

4.8.2 OpenGL graphics operations
OpenGL is a large and complex graphic system embedded with an extensive set of tools that can
be used to manipulate and create stunning graphics9. However, to thoroughly describe the
OpenGL graphics system is a considerable task and beyond the scope of this report. Therefore
only a brief description of major graphics operations is listed:

1. OpenGL construct shapes from geometric primitives, and in so doing it creates a
mathematical description of objects (OpenGL considers points, lines, polygons, images,
and bitmaps to be primitives.).

2. Arrange the constructed objects in a 3D space with basis in a given viewpoint, and then
extract the “projected view frustum ” of the composed 3D scene.

3. Calculate the effect of specific lighting conditions for the color of tall objects in a 3D
scene.

4. Convert the mathematical description of 3D objects and their associated color

9 For more detailed information on OpenGL rendering see [46].

 41

information into a 2D pixel array that can be displayed on the screen. This process is
called rasterization.

During these four stages OpenGL can also perform occlusion culling, thus removing hidden
objects surfaces. In practice OpenGL performs its task analogous to the steps described in 4.2.21
Graphics Pipeline.

Since OpenGL is platform and hardware independent platform, the command format is identical
on both the server and client side. Thus OpenGL programs can work across networks even if the
server and client are running on completely different platforms (Unix and Windows). [44Error!
Bookmark not defined.]

4.8.3 OpenGL Architecture
When OpenGL was created the designers wanted the architecture to be flexible, in order to make
sure that vendors could tailor the OpenGL implementation to meet unique system and
performance objectives. The solution was an architecture that could be executed on both
dedicated hardware, run as software routines on the standard system CPU, or a combination of
both. By introducing the OpenGL extension mechanism, hardware developers where able to
differentiate their products by developing extensions. In the context of OpenGL extensions are
vendor specific API that allows software developers to access additional performance and
functionality. [44]

Several different OpenGL extensions are available through the OpenGL Extension Registry,
which also contains naming conventions as well as guidelines for crating; new extensions,
extension specifications and other related documentation. [44]

4.8.4 LWJGL (Lightweight Java Game Library)
The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional and
amateur Java programmers alike to enable commercial quality games to be written in Java [47].
LWJGL provides developers access to high performance cross-platform libraries such as
OpenGL (Open Graphics Library) and OpenAL (Open Audio Library) allowing for state of the
art 3D games and 3D sound [47]. Additionally LWJGL provides access to controllers such as
Gamepads, Steering wheel and Joysticks. All in a simple and straightforward API. The LWJGL
project also has bindings for FMOD and DevIL, aka OpenIL [47].

 42

 43

5 Specification
Propose and specify a distributed game using graphics and video

The idea in this thesis is to create a distributed online game, similar to existing games where you
can play against other people on the Internet. However I wanted to incorporate some new ideas
into the game that similar games does not have at the current time.
The idea for the distributed game application presented in this paper appeared as result of
relentless focus on designing a game application within area D in Figure 1. Considering that the
arrival of massive multiplayer online games have been astonishingly successful, the idea was to
build further on some of the same concepts and ideas that constitute the bedrock of these games,
which are:

• Player to player interaction
• Game content are largely produced by participating players

The concepts mentioned above are associated with network effects so that the “value” of the
game is proportional to the number of players that are linked to the game.

5.1 The Game: Avatars-Online
Avatars-Online, the name is set to reflect the idea of numerous players who plays an online
version (the avatar) of them selves in a virtual world that only can be accessed through the
Internet, thus the name Avatars-Online (and slightly inspired from the success of the Funcom
success anarchy-online).

In order to participate in the game players need to create an online account. Once an online
account has been created players need to log onto a game server. Since the game is real-time
based (meaning that players need to respond immediately to the constantly shifting virtual
environment), players will automatically be directed to servers within near proximity.

The setting of the virtual world could be anything from medieval to futuristic, but the setting of
the game described in this report is set to a futuristic virtual world. Detailed description and
thematic for this futuristic world is not a essential part of this report, and therefore a world
description has been limited to the following expressions; daunting, incredible, innovative and
amazing. Most important is that the world can offer the players a world where they can escape
from boring real life everyday routines. Instead players can enter a virtual world where the
everyday routine is daring adventures packed with frightening monsters that needs to be
defeated.

5.2 Interaction in Avatars-Online
Communication
The game is played in a similar fashion as most multiplayer online games are played today, the
only major difference between Avatars-Online and other games is that a headset equipped with a
microphone (and support for 3D audio) is needed in order to play the game. The head set is an
essential piece of equipment that is vital for communication with other participating players.
Once a player has logged on to a game server communication with all other players logged on to
the same server is possible. Every avatar is surrounded by a fixed communication edge. When
other player’s avatar enters this edge, communication between these two avatars is possible. The
game application dynamically updates which avatars that can talk to each other. If there are more

 44

than two avatars within each other’s communication edge, all avatars can communicate to each
other simultaneously.

Figure 23

Figure 23 the position of four players player A, B, C and D in a virtual three-dimensional world,
and their communication edge marked by the surrounding circle. In Figure 23 the player A, B
and C are able to communicate with each other because their position in the virtual world places
them within the communication edge of each other. Players within each others communication
edge are

Figure 24

In Figure 24 player D has changed his position in the virtual space allowing him to join in on the
conversation between player A, B and C. The game application continuously monitors and
updates the communication list for each player in the game. In order to enhance the feeling of a
virtual reality audio is appended to the player’s avatars, which is equivalent to 3D-audio. In
practice this allows players with the right user-equipment (6.1 surround) will be able to match
the sound with positions in the 3D virtual world. Thus players are able to separate players on
voice characteristics and by positioning the origin of the voice in the virtual 3D world.

In order to hinder players from verbally abusing each other, the game offers an ignore function
that allows players to ignore specific players. Once a specific avatar is added to the ignore list of
a player, the avatar becomes invisible and soundless from that players perspective. The same
happens to the players who are being ignored, they are no longer able to see or hear the ignoring
avatar. Thus no direct contact between the two players is possible. Otherwise the virtual world
appear the same to both players (ignored and the ignoring).

 45

5.3 Avatar Creation
Conversation alone is not enough to create a virtual environment where players can escape from
boring everyday routines. Players need freedom of movement and a set of useful skills that can
be helpful when embarking on daring adventures in the virtual world. The virtual world should
offer an extensive set of skills players can choose for their avatar, in order to let players create
and mold their avatar individually.

In the avatar creation phase players can choose voice filters that will modify the voice of the
player to suit the appearance of the avatar.

Once a player has chosen skills for his avatar, the player is granted a fixed amount of money that
he can buy equipment to his character for. Equipment can vary from clothing to spaceships, but
at the start of the game players should only have enough money to buy the most basic
equipment. Consequently encouraging players to go out in the virtual world to generate wealth
and resources.

5.4 Movement
Players should be able to move freely around the virtual world. However in order to travel
between planets and over vast distances equipment like cars and spaceships must be used, if the
avatar cannot afford the equipment he can hitch a ride or use public transport (low cost).

5.5 Actions
The following actions are basic actions that must

• Trade, Players are allowed to trade or transfer equipment between each other.
• Battle is a major part of the game, and there are always monsters somewhere within the

virtual world that needs to be defeated. Players can defeat monsters enemies/monsters
together or individually. Avatars-Online allows players to fight, ambush and rob each
other at certain areas. Players are not allowed to put other avatars whom they are battling
on the ignore list once the battle has started, instead they must fight the battle to end or
flee. However in most areas players are not allowed to battle each other, but instead
encouraged to go adventuring together.

• Movement, avatars have different movement rate in the three-dimensional virtual world.
The movement rate reflects the amount of equipment carried and the specific attributes of
each avatar. Thus avatars carrying a small amount of weight can move faster than avatars
carrying loads of equipment.

• View: players can choose to view the world through the eyes of their avatar or from a
bird’s perspective.

• Collect, players must be able to collect gear that they find in the virtual world.
• Use equipment, Players are allowed to use a wide variety of equipment including;

weapons, transport and more. At all times players have access to their inventory and able
to rearrange the way they use their equipment.

 46

5.5 Audio
Audio plays an important part in Avatars-Online, since all communication with other players are
verbal. More precisely it’s the demand for 3D audio that is vital for the game to achieve its full
potential. 3D audio strange as it might sound in this context addresses the need for players to
identify where in the virtual world the audio signal originated.

In the game the virtual position of the players in the game can be viewed nodes in a continuously
changing topology that will consist of separate nodes (players with no other players within their
communication edge) and clusters of nodes (players within each others communication edge).
The game application must be able to reconfigure the routing of the received audio stream from
every player, to match the current network topology at all times.

5.6 Graphics
Excellent graphics is one of the bedrocks for designing a commercially successful computer
game and excellent graphics demand both loads of memory and processing power. In order to
limit the amount of transferred data, graphics are generated locally from primitive commands.
Accordingly every player needs to have a copy of all graphical objects used in the game stored
on the local machine that they are using to play Avatars-Online.

Avatars-Online shall be compatible with 3D display devices.

5.7 system requirements
In order to play the game players needs an Internet connection (preferably 2Mbit+) and a
relatively new computer with a graphics card that should be able to handle a 3D display device.
The computer must be equipped with support for at least 5.1 surround, but preferably 7.1
surround, in order to exploit the full effect of 3D-sound.

5.8 Derived functionality
The following list of functionality has been derived from the description of Avatars-Online:

5.8.1 Create Avatar
Use case name Create Avatar
Summary In order to play the game, players must create an avatar that he

can direct in the virtual world of Avatars-Online.
Main success scenario:

1. The player decides how his particular avatar is designed
by combining several pre defined parameters (hair and
eye color, gender, skills and more)

2. After the avatar has been designed the player provides
the avatar with a name.

Exceptions: The player chooses to abort the create avatar procedure, in
which case the procedure must be finished at some other time.

Trigger 1. The player decides to create an avatar.
Pre condition Avatars-Online has been successfully installed on the player’s

 47

computer.
Post condition • The player has successfully created an avatar.

• The same as in Pre condition.

5.8.2 Buy equipment
Use case name Buy equipment
Summary The player wishes to equip his avatar from predefined list of

available equipment.
Main success scenario: 1. The player chooses to abort the buy equipment

procedure, in which case the procedure must be finished
at some other time.

2. In case the player tries to buy more equipment than he
can carry a dialog box will pop up, forcing the player to
either drop or sell a piece of equipment.

3. The player tries to buy equipment he cannot afford, in
which case a dialog window pops up to inform the
player

Exceptions: NIL
Trigger 1. The player decides to equip his avatar (buy items from a

predefined available at avatar creation phase).
2. The player has entered a shop in the virtual world

Pre condition • The player has successfully created an avatar
• The avatar enters a shop within the virtual store

Post condition • The player has successfully equipped his avatar.
• The same as in Pre condition.

Author Marcus Vangli

5.8.3 Access inventory
Use case name Access inventory
Summary Once the avatar has been created players can access their avatars

inventory in order to:
• Specify exactly what sort of equipment the avatar is

currently using (weapons, clothing...). Equipment not
used can either be carried for later use, or it can be
dropped/discarded.

Main success scenario:

1. The player accesses the inventory list of the avatar.
2. The player decides what kind of equipment the avatar is

going to use, by dragging the piece of equipment to
correct place (this should be a straight forward and
intuitive operation, due to self explaining GUI).

3. The player can access equipment information by double-
clicking on the item, which causes a window with
information on the specified item to pop up.

4. Items can be discarded or dropped by right clicking on

 48

the specified item. This causes a dialog box to pop up
that requires the player to confirm that he wants to
discard the selected item.

Exceptions: 2a: The player tries to place a piece of equipment at a illegal
 position (boots on the hands), which causes a dialog
 message to appear informing the player that the piece of
 equipment be placed elsewhere.

Exceptional paths NIL
Trigger 1. The player pushes the view inventory button.
Pre condition The player has successfully created an avatar.
Post condition • The player has successfully configured the inventory of

his avatar.
• The same as in Pre condition.

Author Marcus Vangli

5.8.4 Create user account
Use case name Create user account
Summary In order for a player to participate in Avatars-online he needs to

create a user-account (the user-account is created for billing and
customer support purposes).

Main success scenario:

1. When the game application is installed on the local

machine, the user is required to register and create a
user-account in order to play the game. Once the game
has been properly installed a dialog box pops up asking
the player if he wants to create a user-account now or
later.

2. If the player chooses to create a user account, he must
fill out the Avatars-Online registration form (the form is
used to verify the installed software and for billing).

3. The player confirms that the form has been properly
filled out, before pressing commit.

Exceptions: A. The player has missed to fill out one or more essential

parts of the form. In which case the program notifies the
player of what is missing.

B. The player has filled in a invalid product, in which case
the player has to redo 2 and 3 in main success scenario.

C. In case the player has an inactive Internet connection, he
may choose to fulfill 2 and 3 in main success scenario
later. But a user account must be created in order for a
player to use the online game servers.

Trigger 1. A version of Avatars-Online has been successfully
installed on the player’s computer.

2. The player decides to go online (play the game for the
first time).

 49

Pre condition A proper version of Avatars-Online has been successfully
installed on the player’s computer.

Post condition • The player has created an active user-account.
• The same as in Pre condition.

Author Marcus Vangli

5.8.5 Log on
Use case name Log on
Summary The player has successfully created an avatar and wishes to start

playing the game.
Main success scenario:

1. The player chooses the game server he wishes to log
onto from a list of available game servers.

Exceptions: The player’s user-account is no longer active, and thus the
player is not allowed to access a game server.

Trigger 1. The player pushes the join game button to a particular
server

Pre condition • The player is in possession of a ready (fully created and
equipped) avatar.

• The player has an active user-account. Active in this
context, denote that the system can verify that the
monthly user fee has been paid.

Post condition • The same as in Pre condition.
• The player is logged onto a game server

Author Marcus Vangli

5.8.6 Movement
Use case name Movement
Main success scenario:

Players control the movement of their avatars by using both the
keyboard and the mouse. Control of movement should be
analogue to similar games, thus making it easier for new player
to adapt to the avatars-Online.

The movement message consist of the following three different
parameters that the player needs to be able to control efficiently:

• X-movement/speed
• Z-movement/speed
• Y-movement/speed (the z-movement is a passive

parameter dependant of the terrain.)

1. The player specifies a point in the virtual world by a left
mouse click, the avatar automatically moves towards
that point.

2. Players can also manually control the movement by

 50

pressing keyboard hot keys that directly control the
movement (north, south, east, west and speed) of the
avatar.

Exceptions: • At certain areas movement can be blocked by virtual
hinders like; buildings, trees, walls and more.

• Other avatars or fiends that tries to obstruct the avatar
from continuing on his path can affect movement.

Trigger • Key_ events: north, south, east, west and speed.
• Left mouse click on point in the virtual world guides the

avatar on a direct path towards that point.
Pre condition The player has successfully logged onto the game server of his

choice.
Post condition The same as in Pre Condition.
Special Requirements: Local game application must be synchronized with game

application (since Avatars-online it is a “real-time” game)
running on the server, and so must all of the other local game
application. In practice the application nodes are
plesiochronous. Thus allowing some lag between the different
nodes and but still keeping a consistent view of the virtual
world on all application nodes over time.

Author Marcus Vangli

5.8.7 Change view
Use case name Change view
Summary The player changes the viewpoint, from through the avatars eyes

to a bird’s perspective or the other way around.
Main success scenario: 4. The player changes the viewpoint
Exceptions: NIL
Trigger 1. The player pushes the change view button (available on

the screen) or the keyboard change view hot-key is
pressed

Pre condition
• The player is logged on to a game server

Post condition • The player is stilled logged onto the game server but the

viewpoint is shifted.
Author Marcus Vangli

 51

5.8.8 Communication
Use case name Communication
Summary Communication in Avatars-Online is designed to be very

dynamic. The game application automatically checks which
avatars that is your avatars communication edge and
automatically play the received speech from the other avatars on
your sound system. When a player chooses to talk the speech is
digitally recorded and sent to the avatars that are within the
communication edge. Thus all the avatars players are able to
hear what is said.

Main success scenario:

1. Similar to a basic multiple cal session.

Exceptions: NIL
Trigger NIL: Once logged on to a game server this process stays active.
Pre condition • The player is logged onto a game server
Post condition • The same as in Pre condition.
Author Marcus Vangli

5.8.9 Fire weapon
Use case name Fire weapon (battle)
Summary When the player decides to fire the weapon of his choice (the

one his avatar is currently equipped with), he places the mouse
pointer on thee target and presses the right mouse button. The
avatar then fires the weapon.

Main success scenario: The player right clicks on the target
Exceptions: The avatar is out of ammunition and consequently the weapon

cannot be fired.
Trigger Key event: Right mouse click fires the weapon;

Special requirements: Since the game is played in real-time, certain measurement

1. The event is time-stamped.
2. Mouse position is recorded and used as the direction the

weapon was fired (x-parameter, y-parameter and z-
parameter).

3. Each weapon has parameters as range and damage,
which is included in the message to the game server or
host.

Pre condition 1. The player needs to be logged on to an active game-

session and the avatar needs to have at least one bullet
left in the ammunition storage/inventory.

Post condition 1. No ammunition left
2. Ammunition minus fired shell left.

Author Marcus Vangli

 52

5.8.10 Ignore Avatar
Use case name Ignore Avatar
Summary Because of the very nature of Avatars-Online players might end

be bothered and annoyed verbally by other players. Therefore
Avatars-Online offers players the possibility to ignore other
avatars. Once a specific avatar is added to a players ignore list,
the player can no longer see or hear the selected avatar.
Consequently the virtual world will appear the same to both
players (ignored and ignoring) except that they can no longer
observe each other avatars directly in any way.

Main success scenario: 1. The player left clicks on the target avatar.
2. The player chooses ignore avatar from the dialog box

that pops up
Exceptions: Nil
Trigger Player adds target avatar to his ignore list
Special requirements: Nil
Pre condition Target avatar is within the player’s avatars communication edge
Post condition Player can no longer observe the ignored avatar.
Author Marcus Vangli

5.8.11 Gather equipment/gear
Use case name Gather equipment/gear
Summary The player comes across items in the virtual world that he

wishes to add to his avatars inventory.
Main success scenario: 1. The player left clicks on the target piece of equipment

2. The player chooses to add the target to his inventory list
from the dialog box that pops up

Exceptions: 2a: The avatars inventory list is full. Thus forcing the player is
forced to discard/drop the least desired piece of equipment from
the inventory in order to make room for the new piece of
equipment.

Trigger The player chooses: add item to the inventory list from the
dialog box.

Special requirements: Nil
Pre condition Target avatar is within reach (close distance within the virtual

world) of a new piece of equipment.
Post condition 1. The avatars inventory list has changed as a result of

added equipment
2. The player has chosen to leave the newly discovered

piece of equipment; consequently the post condition is
identical to the pre conditions.

Author Marcus Vangli

 53

5.8.12 Leave the game
Use case name Leave the game
Summary The player wishes to end an ongoing game session
Main success scenario: 1. The player left clicks on exit game button in the dialog

window
2. A new dialog box appears requiring the player to

confirm that he wishes to end the game.
3. The application automatically saves that current status of

all avatar parameters, thus making sure the avatar is
ready for subsequently game sessions.

Exceptions: NIL
Trigger NIL
Pre condition The player is logged onto an active game server
Post condition The player is no longer logged onto an active game server
Author Marcus Vangli

5.9 Derived non-functional requirements
In order to perform certain aspects of the given description of Avatars-Online successfully
according to the expectations of current gamers, certain non-functional requirements have to be
fulfilled.

1. Performance, the performance of the game application is considered as the time from
the player utters a command until the system has processed and displayed the result of
that command, which is commonly referred to as the system response-time. The
response-time of Avatars-Online should be no more than the average response time of
human nerve system.

2. Graphics, today computer graphics has reached a level of detail that is close to viewing
objects in real life, and current gamers expect nothing but the best. Accordingly graphics
in Avatars-online should be of high quality and as close to real life as possible.

3. Audio, due to the very nature of Avatars-Online (5.2 Interaction in Avatars-Online)
players should have equipment that supports 3D sound, to get fully pleasure from
Avatars-Online.

4. Scalability (load). The game application need to be able to handle a growing workload
gracefully, meaning that an increasing number of active players should only lead to a
proportional increase in the game servers workload. A strict definition would be that the
workload should be growth of the workload should be O(n) where n is the number of
players logged onto the server.

5. Scalability (geographic). Players should not feel that the performance (1) of the game is
related to their geographical whereabouts.

6. Availability:
7. Dependability:
8. Extensibility is an important success factor of Avatars-Online, because it permit rapid

introduction of new game features. Consequently players and their avatars can grow with
the game, instead of out of it.

9. Platform compatibility. In order to maximize the number of potential players/customers
Avatars-Online should be platform compatible with the most commonly used gaming-
platforms, which include: Windows 2000/XP/Vista, Mac OS X, Playstation 3 and X-box
360.

 54

 55

6 Design
Design parts of the game10

In part 5 Specification Avatars-Online was described and evaluated from the perspective of
potential users of the system, which resulted in a list of specific requirement. This chapter (

6 Design) is devoted to describing the resulting system and how it should be constructed to best
accommodate the requirements in 5.8 Derived functionality and 5.9 Derived non-functional
requirements.

6.1 Hardware Architecture
Basically there is only one type of network topology that can be used to meet the demands of
Avatars-Online, which is the server-client architecture described in Figure 25 below. A
prerequisite for using the Avatars-Online application is that all clients are in possession of an
Internet connection with a minimum bandwidth of +2Mb/s, typically an ADSL connection.

Figure 25
The proxy server is used to manage incoming requests. Request originating from clients with a
valid game-key (indicating that the player has paid the monthly subscription fee) are directed to
the game server. Requests originating from players without a valid game-key are redirected to a
billing server where the potential player can buy a valid game-key.

When a player logs on to a game server for the very first time, the proxy needs to send a request
to the mainframe computer to validate that the player has installed a valid copy of Avatars-
online on his computer, if the request checks out the proxy issues a valid game-key to the
requesting player. The player is then offered to log onto the server

10 Due to a fault the task originally was “Design the game”, however it has later been corrected to its intended form.

 56

Once a player is granted access to the game server a direct connection between the game server
and the client is established. This process is illustrated in Figure 26 below.

Figure 26

6.1.1 Geographic scalability
In 5.9 Derived non-functional requirements geographic scalability was listed as one of the non-
functional requirements that had to be fulfilled. To achieve the desired level of real-time
(geographical) scalability the game servers and the clients needs to be in relatively close
proximity, in order to prohibit a considerable increase in signal propagation delay. Thus Avatars-
Online need to offer players available application servers situated within certain geographic
vicinity (i.e. a player geographically situated in Norway wishes to log onto a game server
physically located in Sydney, would most likely experience that the signal propagation delay
between the two cities as annoying). The concept is illustrated in Figure 27 where each city is
represented with a local application server allowing players to log onto the application server
with the least propagation delay. All customer data is contained in the Avatars-Online
mainframe computer and since communication with the mainframe computer does not impose
real-time constraints, only one mainframe computer is needed 11.

Figure 27

11 In Figure 27 the Avatars-Online Application servers refers to a cluster of servers, the composition (number of
servers and type. The specific configuration will differ from cluster to cluster due to variations in workload from
location to location).

 57

6.1.2 Operational non-functional requirements
Operational non-functional requirements are qualities concerning the operational system, such as
availability, reliability and fault-tolerance (requirements are specified in 5.9 Derived non-
functional requirements). The operational non-functional requirements (availability, reliability
and fault-tolerance) all have a relatively clear and standardized definition, and they are therefore
relatively easy to measure12.

To ensure that the fault-tolerance requirement is met, a redundant hardware architecture like the
one illustrated in Figure 28 is necessary. The scheme is to operate with two sets of network
routers where one set is active while the other contains hot reserves. In case one of the active
routers in set A fails, a hot reserve from set B is ready to take over, thus reducing the downtime
considerably. The size of the two sets should adequately large to accommodate the operational
non-functional requirements (availability, reliability and fault-tolerance)

 Figure 28

The game-server-cluster contains a pool of active servers (type 1 in Figure 28) and a pool of hot
reserves (type 2 in Figure 28). In case of a sudden peak in the workload one of the hot reserves
can “step in” and relieve the active servers of some of their workload. The last type (type 3 in
Figure 28) is a pool of cold reserves that are used to replace failed servers from the active or hot
pool. However since the workload on the server-clusters will differ from geographic location to
geographic location, the exact composition of the server-clusters should be configured according
to the experienced workload on that specific server-cluster. Figure 28 is only designed to
illustrate the concept of how hardware can be configured to increase; reliability, availability,
dependability and fault-tolerance.

12 For detailed description of how to measure and design dependable systems [TTM 4120 dependable computing
systems and communication, Department of Telematics, NTNU 2003] is recommended].

 58

6.1 Software Architecture
Avatars-Online is described as a massive multiplayer online game, the

6.2.1 Client Software Components
In Figure 29 the software structure running on a client machine is illustrated. On top of the
software stack is the game application, which controls the other software (OpenGL and Audio)
components during an active game session. The Avatars-Online communication component is an
integrated part of the game application, but has been placed among the standardized components
because it contains logic that operates independently of the Game-Application. The Game-
Application should be implemented partly in C/C++ and partly in assembler in order to achieve
maximum application speed.

Figure 29

6.2.2 Local Processing
The two processes in Figure 30 (the
LocalGameEngine and the
LocalGameAgent) that have to
share the only CPU. The
LocalGameAgent is equivalent to
the communication component in
Figure 29. Once the game has been
initiated the LocalGameEngine is
given control of the CPU and keeps
it as long as the game application is
running, or until the underlying
operative-system grants it to
another process. The
LocalGameAgent basically works as

organizer of incoming data from
the server and data sent to the
server.

In order to reduce the traffic between the game server and the clients, all clients are in possession
of an identical file-system that contains all the graphical objects that are used to build the virtual

Figure 30

 59

World. Data transferred between the server and client is limited to primitive commands that are
used to manipulate the graphical objects. Consequently the graphical objects level of quality will
not affect the amount of traffic between the server and the client. The level of quality of the
graphical content displayed is thus only limited to the processing power of the client’s
computers.

Avatars-Online is a real-time massive multiplayer online game, which in practice means that
performance is of vital importance. If the player’s actions are not immediately reflected in the
rendered scene, the application will give the player the impression it has a life of its own.
Consequently user input has to be monitored and processed quickly enough to give the player a
feeling of instant control of the displayed scene. The solution to this problem is described in
6.2.3 Processes.

In Figure 30 only three processes are named LocalGameLoop, Rendering and LocalGameAgent
and a reference to a number (n) of unidentified processes are included. Once the game
application is up and running the process named LocalGameLoop is running the show. All other
process that are called, are called from this process.

6.2.3 Processes
In order to construct a real-time game application that will work successfully, it is imperative to
display the effect of the user input in the displayed scene, to accommodate this performance
requirement the local game application is controlled through a continuously iteration of the
LocalGameLoop (described in Figure 31, Figure 33 and Figure 32).

 60

Figure 31

The LocalGameLoop is designed to be the “brain” of the application running on client machines.
Within an iteration of the LocalGameLoop both input from the user and the game server is
gathered and processed. The LocalGameLoop continue (repeat itself) to execute its logic, until it
receives the endgame command (either from the server or the player), described in Figure 32.

 61

Figure 32

The EndGame procedure is not thoroughly described, since all it really does is to end the game.
Ending the game is analogue to ending the LocalGameLoop, thus once the end game procedure
is called the LocalGameLoop process is stopped. Consequently the other processes are allowed
to take control of available machine resources.

In the box named calculate effect of: (user [], game []) in Figure 32 the effect of both user-input
and game-input is processed. The Rendering procedure is the most process demanding part of
the game application, it involves a lot of computing since it has to calculate the effect of the
player and the effect the other players actions has on the avatars that are within certain range
(visual range in the virtual world) of the player. Once the effect has been calculated it is sent to
the GPU controller in form of OpenGL statements.

 62

In order for the LocalGameLoop to start a direct connection with the game server needs to be
established. The Initialize procedure instructs the LocalGameAgent to establish a connection
with the game server. Specific details on the construction of the LocalGameAgent have been left
out, since the goal was to illustrate how the LocalGameLoop is structured.

Figure 33

If the client is denied access to the server (T=false) for some reason (server is down, the player
does not have a valid game key, network failure and so on) the LocalGameAgent process cannot
be activated. Instead other processes are started depending on the reason of the access denied
message.

 63

6.3 Realization of the functional requirements
There are some terms used in the UML-sequence charts that need some degree of clarifying, so
that they are interpreted correctly. The term GameLoop and GameEngine is used as extensively
used as references in the MSCs below. They are closely related but there is subtle difference;
GameEngine is a software class that contains the process GameLoop. There are two different
version of the GameLoop.

• The LocalGameLoop, which is the version of the GameLoop clients are equipped with.
• The MainGameLoop, which is the version servers are equipped with.

Once a game-server is active, the MainGameLoop continuously monitor events and calculate the
effect these events have on the game globally. The MainGameLoop is responsible for keeping
the players

The GameAgent is a software object situated on the server/host. For every player participating,
the game-server/host creates a GameAgent that represent the respective player. All
communication between the client and server/host is conducted through the related GameAgent.
Clients are equipped with a process called LocalGameAgent, which is responsible for
communication with the server. The LocalGameAgent will in practice work as a passive
container/buffer, which the LocalGameLoop regularly checks (and flushes), in order to
continuously monitor the continuously transmits game-data from the server. However the Clients
are only equipped with one LocalGameAgent and for that reason it is not necessary to refer to it
in the MSCs, instead the term client is used.

The MSC has been limited to only procedures that involve direct communication between
the server and the client.

6.3.1 FR: Create Avatar
The create avatar process does not involve direct communication between the server and the
client, since the process is executed on locally and the result stored in as an (avatar) object on the
client machine. However once the player logs onto a server the specific avatar-object parameters
are transferred to the according to 6.3.5 FR: Configure avatar.

6.3.2 FR: Buy Equipment
The buy equipment process can partly be viewed as an integrated part of the create avatar
process since it is executed locally. In this case the server will receive the necessary data on the
avatars equipment once the player logs onto the server.

However if the player is logged onto a game server and has entered a shop in the virtual world
and the player chooses to buy an item, the associated process will involve communication with
the server. Before a message is sent the client will reconfigure the avatar object according to the
purchased item. In this case the MSC will be identical to
6.3.5 FR: Configure avatar. The same procedure is used when accessing the avatars inventory,
since the effect of rearranging the inventory basically is the same as reconfiguring the avatar.
Thus the MSC in
6.3.5 FR: Configure avatar will be valid for both, 6.3.2 FR: Buy Equipment and

 64

6.3.3 FR: Access Inventory

6.3.3 FR: Access Inventory
See 6.3.2 FR: Buy Equipment

6.3.4 FR: Create user account

Figure 34

The database access is needed to check weather the game has been purchased or if it is an illegal
copy. If desired the customers can be forced to fill out registration form, so that customer
information can be stored for future use.

Once the proxy has generated a userID the userID is stored locally in the clients files-system so
that this process don’t have to be repeated. The proxy also stores a copy of the userID in order to
avoid unnecessary database accesses.

 65

6.3.5 FR: Configure avatar

Figure 35

The game application on running on the client will reconfigure the avatar object according to the
instructions contained in the parameter [] array. Once the avatar object has reconfigured it self
the derived result is stored and appended to the configurationList [] and passed on to the server.

6.3.6 FR: Logon
In order for a player to logon to a game server, the player needs to have a valid game-key. The
only way to acquire a valid game key is to register as a customer of Avatars-Online (Figure 36).

Figure 36

 66

 The database access in Figure 36 is needed to check whether the game has been purchased
legally or if it is an illegal copy.

Once the player has received a valid game-key (game-key is equivalent to the userID in Figure
36 and Figure 37) the player is ready to log onto a game server.

Figure 37

The reader should notice that the logon process in Figure 37 that eliminates the proxy server
once a connection between the game server and the client has been established. Elimination of
the proxy is done in order to cut down the propagation delay to a bare minimum and relieve the
proxy from unnecessary work.

 67

Figure 38

Once a player has joined the states are changed in the GameAgent and on the client side. Once
the GameEngine noticeses the state change in the GameAgent, the GameEngine adds the
respective GameAgent to the array containing the address of clients currently in play. By doing
this we achieve a higher level of game-response since the GameEngine now will check the
GameAgent for data-updates once in every iteration of the main GameLoop.

6.3.7 FR: Movement
Movement in the virtual environment is one of the time critical functions in the game. Ideally
movement should be mirrored perfectly on all clients, so that the players have a consistent view
of the virtual world. In practice this means that the map position of player A should be identical
on client A and client B, and that the speed and angle of movement also should be identical.
However when considering the information flow between client-server/host-client, some
propagation delay is always associated, and will to some extent influence the human perception
of the game. Therefore some lag between the players position from client to client must be
tolerated.

To compensate for this delay, clients render the screen at a higher pace than the sending interval
of Movement (pid, x, y, z, speed, position) messages in Figure 38. As a consequence of this, the
position of a player at a given moment in time may vary from client to server/host, but since the
server doesn’t need to display graphics it is considered adequate to monitor the position in the
virtual environment.

 68

Figure 39

However it is not sufficient for the server alone to know the position of all players. The clients
need to know the movement of other players as well (only player within the avatars visual range)
in order to display them on the screen. To keep the traffic load between the server and the clients
as low as possible, only primitive parameters that can be used to manipulate the media objects
stored in the file-system of the clients are sent (also included is the compressed of the other
players that are within the communication edge of the avatar13).

Figure 4014

13 See 5.2 Interaction in Avatars-Online for explanation.
14 Local_communication Broker is identical to a LocalGameAgent

 69

If the clients rendered the screen only when the GetViewUpdate () message reply was received,
the movement of the other players could appear blurry and fragmented. To avoid this effect, a
client renders every frame with the parameters currently in the objectArray (the objectArray
different is where the reference and parameters to the objects, which is to be displayed on the
screen is stored) once for every iteration of the LocalGameLoop. In theory this should result in a
slight degree of inconsistency between the positions in the virtual environment, which the server
and the clients have registered.

To compensate for this inconsistency the exact position of the object is included in the message
view, the server or host uses the position parameter to correct small inconsistency between the
server/host and the clients. On the client side, inconsistency between the calculated position and
received is compensated by increasing the objects movement speed to the correct position
(correct position is always the position received in the latest reply of the GetViewUpdate
message). Using this approach prevents the objects movement from appearing detached.

6.3.8 FR: Change view
The change-view process is solely executed on the client and does not involve any
communication with server, thus a MSC for this functional requirement is not included.

6.3.9 FR: Communication
• Outgoing communication should be included in the movement message in Figure 3915.
• Incoming communication should be included in the view message in Figure 40.

6.3.9 FR: Fire weapon

Figure 41

15 In times when an avatar is not moving, both the client and the server will send the view and movement message,
since the network resource is already reserved (connection oriented server-client communication).

 70

The weaponFired event and its parameters are stored in the GameAgent object, which is situated
on the server or host. Each player has one GameAgent object that represents him or her on the
server. In Figure 41 above the game agent stores the message received from the client in an
eventArray, the main GameLoop regularly (once every iteration of the main GameLoop) access
each of the players GameAgents to monitor movement and battle parameters in the game.

Since most of the calculations are done in the periphery nodes (the clients) the weaponFired
event is generated. The GetUpdate message replies are handled/processed in a round-robin
fashion. Since this process is repeated so frequently (several times pr second) that it is
impossible for human perception to register the time between each iteration, the game will not
concern itself with sorting events successively with respect to the exact time they where
generated. Events recorded within one iteration of the main GameLoop are treated as events
occurring at the exact same time.

Firing a weapon can be dangerous in the real world, and this applies to the virtual world in
Avatars-online as well. Therefore it is possible for avatars to die from wounds caused by
firearms. In Figure 43 a description of how Avatars-Online design handles damage done to
avatars is provided in the form of a MSC.

Figure 42

To ease the workload of the server, the design seeks to leave most of the workload to the clients.
The message Hit (damage) is checked first for every iteration of the local GameLoop. In practice
this means that once it is received the local GameLoop calculates the damage, if the damage
doesn’t exceed current life the local GameLoop continuous at the point it was interrupted, else
the local GameLoop issues the message gameOver to the server/host before terminating letting
the player know the game is over.

 71

Once the server or host register that a player has been “killed” it removes the GameAgent
representing the player is removed from the list of active GameAgents and transferred to the list
of idle GameAgents. The MainGameLoop only occasionally accesses the list of idle
GameAgents.

6.3.10 FR: Ignore avatar
It has been considered that the best way to implement this feature is to keep the list of ignored
avatars contained in the avatar object. Thus the MSC for adding a avatar to the ignore list is best
described by the MSC in 6.3.5 FR: Configure avatar.

6.3.11 FR: Leave Game

Figure 43

The Leave_Game procedure is almost identical to the Remove_Object procedure, the only real
difference is that the player initiates the Leave_Game procedure. The LeaveGame message is in
very similar to the gameOver message in Figure 42, except that it leaves the GameAgent in state
Leave. Once the main GameEngine registers that the GameAgent is in state Leave it initiates a
timer, which eventually will remove the GameAgent object.

 72

 73

7 IMPLEMENTATION
Implement, test and demonstrate parts of the game on a single PC with a graphics card (e.g., a

NVIDIA GeForce card and NVSG development kit)

7.1 Architecture
In this thesis Java was chosen on the basis that the author are familiar with the language and
solely on that basis. In a complete realization of Avatars-Online, the application should be
implemented in a combination of C/C++ and assembler, instead of Java, due to its efficiency in
speed (a decision based on the conclusion of [48]). The reason for implementing the demo in
Java was not based on the fact that the author was proficient in this language and had no
experience with either C/C++ or assembler. The software modules used in the demo is illustrated
in Figure 44 below.

Figure 44

In Figure 44 the different building blocks of the game design is described conceptually. The core
of the game is the Java Virtual Machine (JVM) where all processes are executed. The local JVM
is granted access to the graphical processing unit (GPU) through the LWJGL library, which
allows the JVM to utilize the power of the GPU. Both the JVM and the OpenGL are allowed to
access media files stored on the local hard-drive.

There are several other libraries which the JVM utilizes in the realization of the game, but the
essence of the design is how the JVM is can utilize the GPU through the use of LWJGL and
OpenGL. However the reason for choosing OpenGL instead of DirectX is based on the report
“3D rendering in Java” that concluded that OpenGL performs better than DirectX. [48]

 74

7.2 UML Class diagram
The software classes used in the demo and their relationship is described in Figure 45.

Figure 45

7.3 Screenshots
The program creates a cube and rotates it in 3D space. In Image 16 and Image 17 the screenshots
from the demo pictures the cube from different angles in the 3D space.

7.3 Source code
The source code of the program can be found in the Appendix. In order to successfully run the
demo on a computer the LWJGL framework has to be installed. The LWJGL framework works
on the following platforms; Windows, Mac OSX and Linux.

At the LWJGL homepage (http://www.lwjgl.org/installation.php), both the framework and a
installation manual can be found.

Image 16 Image 17

 75

 76

8 Discussion

8.1 Reflection
After carrying out the tasks presented, some reflection around the choices that where made is
necessary in order discover where the “mistakes” were made, and why they were made, in order
to gain knowledge from them and thus avoid making the same “mistakes ” in the future. In the
next chapter a quick evaluation of the four parts (introduction to graphics and video,
specification, design and implementation) is presented.

8.1.1 Introduction to graphics and video
In the beginning of this report, the author had little to no experience with in either the area of
graphics or the area of computer graphics. However the vastness of the two areas soon became
apparent, and with it the realization that either the scope of the task or the level of detail had to
be reduced. The decision ended on a compromise between the two paths (broadness or detail).
Subjects relating to the areas described in Figure 46
where given more attention than the other areas. This
Decision was based on the idea that this area would be
interesting in the context of quick production of quality
3D models. The target in Figure 46 is pictured to be a
piece of hardware equipment that could be used to create
close to reality 3D models that could be used to shorten
the time spent to development stunning graphics.
Looking back on the choices that where made, the
impression is that the compromise was the right thing to
do.

8.1.2 Specification
Specification is all about the good ideas, and it soon became apparent that all the good ideas “I”
developed, someone else had developed before me or the ideas turned out to be everything else
than good. However the task in the assignment (Propose and specify a distributed game using
graphics and video) was not to specific to kill all creativity, and not to wide to lead creativity on
a directionless path.

The idea for the game Avatars-Online is inspired by similar games like, World of Warcraft and
AnarchyOnline. However the idea of incorporating a way for player to interact with other
players in the most natural way (using Mpeg4 compressed speech and appending it onto
graphical objects using 3D-audio), I still believe is quit original (until I discover that someone
else has created a similar feature). With out the interaction feature Avatars-Online would be a
reproduction of most other massive online multiplayer games.

8.1.3 Design
Due to the scope of the task the design had to be incomplete, the question was to find the correct
tasks to focus on. The focus was directed to the client and specifically the LocalGameEngine in
order to clarify the common structure for all real-time based computer games. Looking back on
the design phase the focus could also have been directed towards process concerning player
interaction and then specifically how to achieve the combine audio with the graphical Objects.
Considering that the interaction process is original (as far as I know), I believe that it positively
could have been the major focus of the design process.

Figure 46

 77

8.1.4 Implementation
Originally the idea was to add texture onto the cube (7 IMPLEMENTATION) and move it
around in 3D-space with the use of the keyboard or the mouse, unfortunately I did not succeed in
doing so. However the demo provides a good example on how a real-time game application
could be designed and has contributed to increase the author knowledge on OpenGL
programming.

8.2 Convergence
Continues development within computer graphics and the digitalization of the movie industry,
has resulted in closer relationship between the two industries. There is no longer a clear border
between computer graphics and the movie industry. The movie industry now extensively uses
computer graphics as a tool to create spectacular scenes, and some movies are made using only
computer graphics (Toy Story). Likewise movie clips are used to add reality to computer games.
Thus computer graphics and the motion picture industry can no longer be seen as two distinct
branches. A fair statement would be that there is an ongoing convergence process between the
computer industry and the motion picture industry.

It is in my opinion likely that the increased demand for lifelike graphics in the computer industry
will result in new ways to create three-dimensional graphical objects, and that hardware like the
Z-cam [39] will play a more significant role in the creation of interactive entertainment.

8.3 Derived ideas
The author is convinced that two ideas presented in this chapter should be further explored in the
future

Interactive meeting rooms using graphics and 3D sound
Combination of an online meeting place with the speech feature described in 5.2 Interaction in
Avatars-Online, could be killer application.
Imagine the possibility to log onto a German server and practice your German, or to “Walk”
into a virtual café and mingle with other people from all around the world

Rapid construction of high quality 3D models
A possible course of action is illustrated in Figure 47. The idea is to use Z-cameras that are able
to record the three-dimensional properties of an object. In order to get the necessary information
the object has to be shoot from a total of six angles (north, south, west, east, top and bottom).
Using heuristics the six images can be synthesized into a complete digital representation of the
three-dimensional object. It is important that the distance from the center of the object is equal
from all the six angles, so that the scale of the different images is fitted for the synthesizing
process. Once a complete digital representation of the object is finished, it can be manipulated
by standard GPU operations and methods already available through open-GL. Through the use
of this scheme spectacular three-dimensional graphics can be created quickly.

 78

 The synthesizing algorithm must be
able to identify triangles that cover the
same are in each of the two images
TINs. Once identified only one of them
is used in the final digital representation
of the three-dimensional object.

• Many real surfaces have a rather smooth surface (cars, books, furniture and so on)
therefore a large number of points in the z-buffer will have the same value. Practically
this means that the z-grid is unnecessary tight for a large smooth area, and thus large
parts of the TIN can be replaced by single triangles.

• In the synthesize process some redundant information can be deleted in order to reduce
the amount of data needed in a digital representation of the object, Figure 48 illustrates
the scheme.

• When the image is captured, the object in most cases does not occupy all the pixels in the
image. The idea is to “carve” out the desired object in the image and deleting the rest of
the image in order to delete unnecessary information from the image.

• By using Huffman-coding and other smart compression algorithms the data size can be
further reduced.

The technique described above could also be utilized effectively in other industries than the
interactive gaming industry. Other suggested areas of use could be; as an effective technique to
document different aspects in the construction industry and in the manufacturing industry.

Figure 48

Figure 47

 79

 80

9 Conclusion
The writing of this report has greatly enhanced the authors understanding of computer graphics
and video technology, and improved his familiarity different technologies within the area of both
graphics and video. Furthermore the author has gained valuable experience in writing scientific
papers.

All tasks presented in the assignment have been answered, and all the goals in presented in
chapter 3 has been achieved. The author is also convinced that someone will find the two
derived ideas presented in chapter 8.3 interesting.

 81

10 Bibliography

1 www.dn.no/esa Last visited 15 February 2006

2 World of Warcraft: http://en.wikipedia.org/wiki/World_of_Warcraft#_note-sixmillion. Last
visited 31 May 2006.

3 FAQ (official World of Warcraft site):
http://wowvault.ign.com/faq/index.php?category=1#1_0_6. Last visited 31 May 2006.

4 U.S. Industry Status and Projected Growth: http://www.coloradofilmschool.net/cgi-
bin/disp_help.cgi?subpage=stats. Last visited 29 May 2006.

5 Web-games; http://www.ebaumsworld.com/pacman.html. Last visited 29 May 2006.

6 http://www.doom3.com/

7Alpha Blending: http://www.visionengineer.com/comp/alpha_blending.shtml, Last visited 12
June 2006.

8 Chroma-Key; http://en.wikipedia.org/wiki/Chroma_key. Last visited 12 June 2006

9 Depth Cuing: https://www.mcell.psc.edu/DReAMM/reference/03-Depth%20Cueing.html, Last
visited 12 June 2006.

10 Depth Cueing:
http://www.opengl.org/resources/code/samples/sig99/advanced99/notes/node278.html. Last
Visited 13 June 2006.

11 Directron.org: http://www.directron.com/videoglossary.html. Last visited Monday, July 3,
2006

12 Double buffering: http://en.wikipedia.org/wiki/Double_buffering. Last visited 13 June 2006.

13 Real-Time Color-Based Depth Cueing: http://www.vis.uni-stuttgart.de/depthcue/.
Last visited 14 June 2006.

14 PNG (Portable Network Graphics) Specification Version 1.0: http://www.w3.org/TR/PNG-
GammaAppendix. Last visited 15 June 2006.

15 Gamma Correction in Computer Graphics:
http://www.teamten.com/lawrence/graphics/gamma/index.html. Last visited 15 June 2006.

16 Chapter 6 of the book: A Technical Introduction to Digital Video, by Charles Poynton,
published in 1996 by John Wiley & Sons.

17 Perspective-Correct Interpolation, Kok-Lim Low, Department of Computer Science,
University of North Carolina at Chapel Hill, March 12, 2002.

 82

18 Perspective-Correct Interpolation, Kok-Lim Low, Department of Computer Science,
University of North Carolina at Chapel Hill, March 12, 2002.

19 Perspective Correction: http://www.mediachance.com/pbrush/help/perspectc.html. Last
visited 15 June 2006.

20 Perspective Correction: http://www.mediachance.com/pbrush/help/perspectc.html. Last
visited 15 June 2006.

21 Rendering (computer graphics):
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)#Features. Last visited 18 June
2006.

22 Z-Buffer: http://www.tyan.com/support/html/graphics.html#d. Last visited 19 June 2006.

23 Z-Buffer: http://www.tyan.com/support/html/graphics.html#d. Last visited 19 June 2006.

24 Glossary - Computer Video and Graphics, http://www.directron.com/videoglossary.html.
Last visited 29 May 2006.

25 3D digital corp: http://www.3ddigitalcorp.com/home.htm. Last visited 19 June 2006.

26 The Graphics Pipeline: http://www.devhardware.com/c/a/Video-Cards/The-Graphics-
Pipeline/1/. Last visited 19 June 2006.

27 View Frustum:
http://astronomy.swin.edu.au/~pbourke/stereographics/HET409_2003/frustum.html. Last visited
20 June 2006.

28 Teaching Texture Mapping Visually,
http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1
.htm. From _1.htm to _10.htm. Last visited 29 May 2006.

30 Fundamentals of Computer graphics, Peter Shirley, School of computing University Utah

31 http://www.graphics.com/modules.php?name=News&file=print&sid=2802

32 Displacement Mapping, Michael Doggett, ATI Research, January 13, 2003. Complete text in
PDF is provided on source -CD.

33 Cube mapped reflection: http://en.wikipedia.org/wiki/Cube_mapped_reflection. Last visited
29 May 2006.

34 ATTEST: Advanced Three-dimensional Television System Technologies, André Redert1,
Marc Op de Beeck, Christopher Fehn, Wijnand Jsselsteijn, Marc Pollefeys, Luc Van Gool, Eyal
Ofek, Ian Sexton, Philip Surman, The complete report is included in the source-CD.

35 Digital Video: An introduction to mpeg-2, Barry G.Haskell, Atul Puri and Arun N. Netravali.

 83

36 IVAR ’94 Tutorial, Image Acquisition and Display, by PatrickWambacq. Complete text in
PDF is provided on source -CD.

37 Raster Scan:http://computing-dictionary.thefreedictionary.com/raster+scan. Last visited June
8, 2006.

38 Technology CCD: http://www.answers.com/topic/ccd. Last visited June 10 June 2006

39 3DV Systems: http://www.3dvsystems.com/products/zcam.html. Last visited June 10
June 2006

40 3D Displays: http://www.3dcgi.com/cooltech/displays/displays.htm. Last visited June 10 June
2006

41 Overview of the MPEG-4 standard: http://www.chiariglione.org/mpeg/standards/mpeg-
4/mpeg-4.htm. Last visited 29 May 2006.

42 Official online OpenGL overview: http://www.opengl.org/about/overview/#8. Last visited 23
June 2006.

43 http://lwjgl.org/wiki/doku.php/lwjgl/tutorials/opengl/index

44 Official online OpenGL overview: http://www.opengl.org/about/overview/#8. Last visited 23
June 2006.

45 http://lwjgl.org/wiki/doku.php/lwjgl/tutorials/opengl/index

46 The Official Guide to Learning OpenGL, Version 1.1, OpenGL Programming Guide
(Addison-Wesley Publishing Company), Second Edition. Complete guide is included in the
source CD.

47 Lightweight Java Game,
Libraryhttp://en.wikipedia.org/wiki/Light_Weight_Java_Game_Library. Last visited 29 May
2006.

48 3D-rendering in Java, report from university of Roskilde. The complete report is included in
the source-CD.

 84

11 Appendix

package demo.data;

 import testing1.utils.GenericGameEngine;
 import testing1.utils.FramesPerSecond;
 import org.lwjgl.opengl.GL11;
 import org.lwjgl.input.Keyboard;
 import org.lwjgl.opengl.glu.GLU;
 import org.lwjgl.opengl.Display;

 public class LocalGameEngine extends GenericGameEngine {

 private static float rotX = 0.0f;
 private static float rotZ = 0.0f;
 private static float rotY = 0.0f;

 public LocalGameEngine() {
 super();
 }
 //--

 protected void render() {

Display.setTitle(this.getClass().getName() + " - FPS : " +
FramesPerSecond.getFps());

GL11.glClear(GL11.GL_COLOR_BUFFER_BIT |
GL11.GL_DEPTH_BUFFER_BIT); //clears color and depth buffer

 GL11.glLoadIdentity();

 GLU.gluLookAt(0, 0, 6, 0, 0, 0, 0, 1, 0); // This determines the viewpoint
 // in the 3D virtual space

 GL11.glRotatef(rotX, 1.0f, 0.0f, 0.0f);
 GL11.glRotatef(rotY, 0.0f, 1.0f, 0.0f);
 GL11.glRotatef(rotZ, 0.0f, 0.0f, 1.0f);

 CreateCube(-1, -1, -1, 2);

 rotX += 0.3f; // rotation speed along the X axis
 rotY += 0.3f; // rotation speed along the Y axis
 rotZ += 0.8f; // rotation speed along the X axis

 GL11.glMatrixMode(GL11.GL_PROJECTION); // Select The Projection Matrix
 GL11.glPushMatrix(); // Store The Projection Matrix
 GL11.glLoadIdentity(); // Reset The Projection Matrix
 GL11.glOrtho(0, 800, 0, 600, -1, 1);
 GL11.glMatrixMode(GL11.GL_MODELVIEW); // Select The Modelview Matrix
 GL11.glPushMatrix(); // Store The Modelview Matrix

 85

 GL11.glLoadIdentity(); // Reset The Modelview Matrix

 GL11.glColor3f(1.0f, 0.0f, 0.0f);
 GL11.glMatrixMode(GL11.GL_PROJECTION); // Select The Projection
 // matrix
 GL11.glPopMatrix(); // Restore The Old Projection Matrix
 GL11.glMatrixMode(GL11.GL_MODELVIEW); // Select The Modelview
 // Matrix
 GL11.glPopMatrix(); // Restore The Old Projection Matrix
 }

 protected void gamelogic() {
 if (Keyboard.isKeyDown(Keyboard.KEY_ESCAPE)) {
 // end the "game"/DEMEO
 exitApplication = true;
 }
 }

 protected void initGL() {
 super.initGL();

 GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // Black Background
 GL11.glEnable(GL11.GL_DEPTH_TEST); // Enable depth testing

 GL11.glMatrixMode(GL11.GL_PROJECTION); // Select The Projection
 // Matrix
 GL11.glLoadIdentity(); // Reset The Projection Matrix

 //set the preffered screen mode parameters
 GLU.gluPerspective(45.0f, (float)SCREEN_LENGTH_Y /
(float)SCREEN_LENGTH_X, 1.0f, 300.0f);

 GL11.glMatrixMode(GL11.GL_MODELVIEW); // Select The Modelview Matrix

 }

 private void CreateCube(float x, float y, float z, int radius) {
 // The following part creates a 3D-cube (quad).
 // the commands used in this part is identical to the commands
 //used in "pure2 OpenGL. The six sides of the cube are created separately.

 GL11.glBegin(GL11.GL_QUADS);

 // These vertices create the Back Side
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x, y, z);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x, y + radius, z);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y, z);

 86

 // These vertices create the Front Side
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x, y, z + radius);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y, z + radius);

 // These vertices create the Bottom Face
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x, y, z);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x, y, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y, z);

 // These vertices create the Top Face
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x, y + radius, z);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z);

 // These vertices create the Left Face
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x, y, z);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x, y, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x, y + radius, z);

 // These vertices create the Right Face
 GL11.glColor3f(0, 0, 1); GL11.glVertex3f(x + radius, y, z);
 GL11.glColor3f(1, 0, 1); GL11.glVertex3f(x + radius, y, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z + radius);
 GL11.glColor3f(0, 1, 1); GL11.glVertex3f(x + radius, y + radius, z);

 GL11.glEnd();
 }

 public static void main(String[] args) {
 LocalGameEngine avatarGame = new LocalGameEngine();
 avatarGame.init(800, 600);
 avatarGame.localGameLoop();
 }

 }

 87

package demo.utils;

 import org.lwjgl.opengl.*;
 import org.lwjgl.input.Keyboard;
 import org.lwjgl.input.Mouse;
 import org.lwjgl.opengl.Display;
 import org.lwjgl.opengl.DisplayMode;
 import org.lwjgl.opengl.GL11;
 import org.lwjgl.opengl.glu.GLU;

 public abstract class GenericGameEngine {

 protected static final int SCREEN_COLOUR_DEPTH = 16;
 protected static final float VIEW_DISTANCE = 3500;

 protected boolean exitApplication = false;
 protected long timerRes = 0;

 protected int fps = 0;

 protected int SCREEN_LENGTH_X;
 protected int SCREEN_LENGTH_Y;

 protected int mouseX;
 protected int mouseY;
 //___
 // STANDARD LWJGL METHOD USED TO CREATE THE DISPLAY SCREEN

 public void init(int pixelWidth, int pixelHeight) {
 SCREEN_LENGTH_X = pixelHeight;
 SCREEN_LENGTH_Y = pixelWidth;

 try {

 DisplayMode[] modes = Display.getAvailableDisplayModes();
 if (modes.length == 0) {
 throw new Exception("Cannot find any available display modes.");
 }
 DisplayMode chosenDisplay = modes[0]; // Default to the first screen mode
 for (int i=0; i<modes.length; i++) {

// Try and find a screen mode that fits the preffered screensize.
 if ((modes[i].getWidth() == SCREEN_LENGTH_X) &&
 (modes[i].getHeight() == SCREEN_LENGTH_Y) &&
 (modes[i].getBitsPerPixel() == SCREEN_COLOUR_DEPTH)){

 chosenDisplay = modes[i];
 break;
 }

 88

 }

 Display.setDisplayMode(chosenDisplay);
 Display.setFullscreen(false);
 Display.setVSyncEnabled(true);
 Display.setTitle(this.getClass().getName());
 Display.create(new PixelFormat(0, 8, 0));

 Mouse.create();
 Keyboard.create();

 mouseX = SCREEN_LENGTH_X / 2;
 mouseY = SCREEN_LENGTH_Y / 2;

 initGL();
 }
 catch (Exception e) {
 System.out.println("Failed to initialise : " + e);
 }
 }

 //__

 protected void resizeGLScene(int width, int height) {

 GL11.glViewport(0, 0, width, height)
 GL11.glMatrixMode(GL11.GL_PROJECTION);
 GL11.glLoadIdentity();

 GLU.gluPerspective(45.0f, ((float) width) / ((float) height), 1.0f,
 VIEW_DISTANCE);

 GL11.glMatrixMode(GL11.GL_MODELVIEW);

 GL11.glLoadIdentity();
 }

 protected void initGL() {
 resizeGLScene(SCREEN_LENGTH_X, SCREEN_LENGTH_Y);

 GL11.glShadeModel(GL11.GL_SMOOTH);

 //Black Background
 GL11.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 GL11.glClearDepth(1.0f);

 GL11.glEnable(GL11.GL_DEPTH_TEST);

 89

 GL11.glDepthFunc(GL11.GL_LEQUAL);

 GL11.glHint(GL11.GL_PERSPECTIVE_CORRECTION_HINT,

GL11.GL_NICEST);
 }

 // --
 // ONCE THE LOCALGAMELOOP HAS BEEN STARTED IT WILL RUN
//UNTILL "THE PLAYER" PRESSES
// THE ESCAPE BUTTON OR ENDS THE APPLICATION
 public void localGameLoop() {
 try {
 while (!exitApplication) {
 if (!Display.isVisible()) {
 Thread.sleep(200);
 } else if (Display.isCloseRequested()) {
 exitApplication = true;
 } else {
 gamelogic();
 render();
 }
 Display.update();
 }
 } catch (Throwable t) {
 t.printStackTrace();
 } finally {
 destroy();
 }
 }

 protected abstract void gamelogic();

 protected abstract void render();

 private void destroy() {
 Keyboard.destroy();
 Mouse.destroy();
 Display.destroy();
 }

 }

 90

package demo.utils;

 import org.lwjgl.Sys;

 public class FramesPerSecond {

 // Hold the time from the last frame
 private static long lastTime = 0;

 // Old fps number
 private static int old_fps = 0;

 // Frame interval.
 public static float frameInterval = 0;

 //Last frame's time.
 private static long frameTime = 0;

 // Fps = number of frames pr second
 private static int fps = 0;

 // Calculates the frame rate (the number of times the frame is rendered pr
second).
 public static int getFps() {
 long currentTime = Sys.getTime();

 frameInterval = ((float)(currentTime - frameTime)) / 1000;
 frameTime = currentTime;
 fps++;

 if(currentTime - lastTime > Sys.getTimerResolution()) {
 lastTime = currentTime;
 old_fps = fps;
 fps = 0;
 return fps;
 }
 else {
 return old_fps;
 }
 }
 }

