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Introduction 

Projective texture mapping is a method of texture mapping described by Segal [3] 
that allows the texture image to be projected onto the scene as if by a slide projector.  
Figure 1 shows some example screen shots from the projspot demo, available in the 
NVIDIA OpenGL SDK.  Projective texture mapping is useful in a variety of lighting 
techniques, including shadow mapping [4].  This document provides some background 
and describes the steps involved in projective texture mapping in OpenGL. 

Projective texture mapping refers both to the way texture coordinates are assigned to 
vertices, and the way they are computed during rasterization of primitives.  We usually 
think of texture mapping as “the application of a texture image to a primitive,” and while 
it certainly is that – there is more math going on than most folks think.  If you have ever 
written your own rasterizer with support for mipmap filtered, perspective-correct, 
projective texture mapping, you no doubt became aware of the many subtle issues 
involved.  We will begin by discussing the way that texture coordinates are computed 
during rasterization, and then we will discuss methods for assigning the texture 
coordinates to the vertices.  We do not discuss filtering here, but there is a paper on 
Anisotropic Filtering at the NVIDIA developer web site that provides a good 
introduction to that topic. 

 

Figure 1.  Two different views of a smiley face texture projected onto the scene. 



Rasterization Details 

When performing projective texture mapping, we use homogeneous texture 
coordinates, or coordinates in projective space.  When performing non-projective texture 
mapping, we use real texture coordinates, or coordinates in real space.  For projective 2D 
texture mapping, the 3-component homogeneous coordinate (s,t,q) is interpolated over 
the primitive and then at each fragment, the interpolated homogeneous coordinate is 
projected to a real 2D texture coordinate, (s/q, t/q), to index into the texture image.  For 
non-projective 2D texture mapping, the 2-component real coordinate (s,t) is interpolated 
over the primitive and used directly to index into the texture image.   

The images in Figure 2 illustrate the difference between interpolating in projective 
space and real space.  In projective space, the two triangles have the same screen-space 
coordinate gradients, but that is impossible in real space.  These images were generated 
with the qcoord demo, which is available in the NVIDIA OpenGL SDK.  

One important note about the images in Figure 2 is that the geometry is a trapezoid 
that is parallel to the image plane.  It is not a perspective projection of an elongated 
rectangle extending into the distance.  This is an important distinction because the effect 
we see here looks like an illustration of the difference between perspective-correct and 
non-perspective-correct interpolation.  The idea is related because perspective 
correction is about correctly interpolating in post-perspective real space (window 
coordinates), parameters that vary linearly in homogenous clip (or eye) space [1]. 

While the concepts of perspective-correct interpolation and projective texture 
mapping are closely related, they are, in fact, orthogonal. Perspective-correct (or non-
perspective-correct) interpolation describes how each of s, t, q, and any other parameters 
that vary from vertex to vertex are interpolated over a polygon.  The fact that s and t are 
divided by q for projective texture mapping is mostly irrelevant to the machinery 

 (a) projective space interpolation           (b) real space interpolation 
Figure 2.  These images illustrate interpolation in (a) projective space and (b) real space. 



responsible for interpolating these quantities.  I say mostly because, early OpenGL 
implementations performed both projection and perspective correction with a single 
divide (by q/w).  While this approach worked well for non-multitexture systems without 
perspective-correct color, it is less useful in modern multitexture-capable hardware with 
perspective-correct color because each texture unit has its own q coordinate. 

Assigning Homogeneous Texture Coordinates 

The rasterization discussion above assumed that homogeneous texture coordinates 
had been assigned per-vertex.  As the application programmer, that is our job.  This 
section describes how to set that up in OpenGL [2]. 

Consider that the texture is being projected onto the scene by a slide projector.  This 
projector has most of the same properties that cameras have – it has a viewing transform 
that transforms world space coordinates into projector space (or eye space), and it has a 
projection transform that maps the projector space view volume to clip coordinates.  
Finally, we have a scale and bias to apply a simple range mapping.  In the case of the 
camera, x and y are mapped based on the current viewport settings, and z is mapped 
based on the current depth range.  For projective texture mapping, the range mapping is 
typically [0,1] for each coordinate.  The NV_texture_rectangle texture target is an 
exception to this case because it is indexed by s ∈ [0, width] and t ∈ [0, height]. 

Figure 3 compares the transforms that are applied to vertex position in order to 
compute window space positional coordinates and projective texture coordinates. 

The key to assigning texture coordinates for projective texture mapping is to use the 
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OpenGL texture coordinate generation (texgen) facility.  The texgen facility simply 
generates texture coordinates from other vertex attributes.  In the case of GL_OBJECT_-
LINEAR and GL_EYE_LINEAR texgen, the vertex position (in object space and eye 
space respectively) is used to generate the texture coordinate.  Other forms of texgen use 
different attributes.  GL_SPHEREMAP and GL_REFLECTION_MAP_ARB use the eye 
space vertex position and normal.  GL_NORMAL_MAP_ARB simply assigns the eye 
space normal vector to the texture coordinates. 

OpenGL keeps texgen state on a per-coordinate basis, which means, for example that 
you could assign the S texture coordinate with GL_SPHERE_MAP, the T coordinate 
with GL_REFLECTION_MAP_ARB, the R coordinate with GL_OBJECT_LINEAR, 
and the Q coordinate with GL_EYE_LINEAR.  This flexibility is not particularly useful, 
though, and we typically use the same form of texgen for all coordinates. 

The two types of texgen that are useful for projective texture mapping are object 
linear and eye linear.  In both of these modes each component of the texture coordinate is 
computed by evaluating a plane equation at the vertex position.  Because each coordinate 
has its own plane equation, and evaluating the plane equation is equivalent to a 4-
component dot product, it may be more intuitive to think of the four texgen planes as 
forming a 4x4 matrix, T.  Since texgen can be enabled per-coordinate, it would have been 
difficult to use this language in the OpenGL spec.  Equations 1 and 2 illustrate how 
vertex positions are transformed into texture coordinates by the “texgen matrix”. 

In the following two subsections, we will consider how to compute To (for object 
linear texgen) and Te (for eye linear texgen).  Also note that the texture coordinate 
generated by texgen is still transformed by the texture matrix.  This can be attractive 
because it allows us to use standard matrix manipulation commands (glTranslate(), 
glRotate(), gluPerspective(), etc.), but it may be slightly less efficient than combining all 
transforms into the texgen matrix. 
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Object Linear Texgen 
Object linear texgen transforms the object space vertex position as specified to 

OpenGL.  The concatenation of matrices required in this case is shown in Equation 3.  In 
this equation, M is the model matrix (not to be confused with the OpenGL 

MODELVIEW matrix), Vp is the view matrix for the projector, and Pp is the projection 
matrix for the projector.  The final matrix given performs the scale and bias to map the s, 
t, and r components of the texture coordinate to the [0,1] range. 

Some considerations of using object linear texgen are that 1) you should keep track of 
your current model matrix – which is something OpenGL does not help you with, and 2) 
the object linear texgen planes, To, must be updated every time the model matrix 
changes. 

Eye Linear Texgen 
Eye linear texgen transforms the eye space vertex position, which is simply the object 

space vertex position transformed by the OpenGL MODELVIEW matrix.  The 
concatenation of matrices required in this case is shown in Equation 4.  The matrices in 
this equation are the same as in Equation 3, except that the model matrix, M, has been 
replaced with the inverse of camera (or eye) view matrix, Ve

-1.  This is logical, because 
we need to undo the eye’s viewing transform to get back to world space. 

Some considerations for using eye linear texgen are that 1) OpenGL transform and 
lighting must compute eye-space vertex position, and 2) a matrix inverse must be 
computed.   OpenGL transform and lighting may already be computing eye space vertex 
position if we are using per-vertex lighting, so there may not be any significant per-vertex 
cost associated with eye linear texgen.  OpenGL also tries to help out with the matrix 
inverse that is needed.  It does this by transforming the eye planes (or rows of Te) by the 
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inverse of the current MODELVIEW matrix.  This is a common source of confusion 
when using eye linear texgen, so be aware.  If you want to specify Te directly, you should 
verify that the current MODELVIEW matrix is identity.  To let OpenGL take care of the 
inverse view matrix, you can simply set the MODELVIEW matrix to contain only the 
view matrix.  Then, you would pass in the matrix from Equation 4 without including Ve

-1. 

Caveats 

There are a couple of issues to be aware of when using projective texture mapping.  
One is reverse projection and the other is texture image resolution and filtering.   

Reverse Projection 
Unlike a real projector, the math of projective texture mapping actually produces a 

dual projection.  One along the projector’s view direction, and another in the opposite 
direction.  Figure 4 illustrates this effect. 

The sign of q becomes negative behind the projector, which inverts the texture image 
in the reverse projection.  Typically applications use a 1D texture or other interpolated 
quantity to eliminate color contribution when the q coordinate of the projective texture 
becomes negative.    

Filtering Projective Textures 
Another complication of projective texture mapping is the pathological variation in 

filtering requirements that can occur.  Due to the nature of the two frusta involved, there 
can be portions of the texture image that require extremely anisotropic filter kernels, 
extreme minification, and extreme magnification of a single texture image in a single 
pass.  Figure 5 illustrates this “deer in headlights” orientation of the two frusta. 

 

 

Figure 4.  Projective texture mapping produces a reverse projection as well. 



Conclusion 

Projective texture mapping has been supported in OpenGL since version 1.0.   It is 
central to a number of interesting advanced rendering techniques, like per-pixel spotlight 
cone rendering and shadow mapping.  The description provided here should provide 
enough background to enable OpenGL developers to implement projective texture 
mapping.  Please visit http://www.nvidia.com/developer for more information, or send 
email to cass@nvidia.com. 
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Figure 5.  The “deer in 
headlights” effect occurs 
when the projector’s 
frustum faces the eye’s 
frustum.  This gross 
mismatch in sampling 
frequencies makes for 
complicated filtering. 


