
Projective Texture Mapping
Cass Everitt

cass@nvidia.com

Introduction

Projective texture mapping is a method of texture mapping described by Segal [3]
that allows the texture image to be projected onto the scene as if by a slide projector.
Figure 1 shows some example screen shots from the projspot demo, available in the
NVIDIA OpenGL SDK. Projective texture mapping is useful in a variety of lighting
techniques, including shadow mapping [4]. This document provides some background
and describes the steps involved in projective texture mapping in OpenGL.

Projective texture mapping refers both to the way texture coordinates are assigned to
vertices, and the way they are computed during rasterization of primitives. We usually
think of texture mapping as “the application of a texture image to a primitive,” and while
it certainly is that – there is more math going on than most folks think. If you have ever
written your own rasterizer with support for mipmap filtered, perspective-correct,
projective texture mapping, you no doubt became aware of the many subtle issues
involved. We will begin by discussing the way that texture coordinates are computed
during rasterization, and then we will discuss methods for assigning the texture
coordinates to the vertices. We do not discuss filtering here, but there is a paper on
Anisotropic Filtering at the NVIDIA developer web site that provides a good
introduction to that topic.

Figure 1. Two different views of a smiley face texture projected onto the scene.

Rasterization Details

When performing projective texture mapping, we use homogeneous texture
coordinates, or coordinates in projective space. When performing non-projective texture
mapping, we use real texture coordinates, or coordinates in real space. For projective 2D
texture mapping, the 3-component homogeneous coordinate (s,t,q) is interpolated over
the primitive and then at each fragment, the interpolated homogeneous coordinate is
projected to a real 2D texture coordinate, (s/q, t/q), to index into the texture image. For
non-projective 2D texture mapping, the 2-component real coordinate (s,t) is interpolated
over the primitive and used directly to index into the texture image.

The images in Figure 2 illustrate the difference between interpolating in projective
space and real space. In projective space, the two triangles have the same screen-space
coordinate gradients, but that is impossible in real space. These images were generated
with the qcoord demo, which is available in the NVIDIA OpenGL SDK.

One important note about the images in Figure 2 is that the geometry is a trapezoid
that is parallel to the image plane. It is not a perspective projection of an elongated
rectangle extending into the distance. This is an important distinction because the effect
we see here looks like an illustration of the difference between perspective-correct and
non-perspective-correct interpolation. The idea is related because perspective
correction is about correctly interpolating in post-perspective real space (window
coordinates), parameters that vary linearly in homogenous clip (or eye) space [1].

While the concepts of perspective-correct interpolation and projective texture
mapping are closely related, they are, in fact, orthogonal. Perspective-correct (or non-
perspective-correct) interpolation describes how each of s, t, q, and any other parameters
that vary from vertex to vertex are interpolated over a polygon. The fact that s and t are
divided by q for projective texture mapping is mostly irrelevant to the machinery

 (a) projective space interpolation (b) real space interpolation
Figure 2. These images illustrate interpolation in (a) projective space and (b) real space.

responsible for interpolating these quantities. I say mostly because, early OpenGL
implementations performed both projection and perspective correction with a single
divide (by q/w). While this approach worked well for non-multitexture systems without
perspective-correct color, it is less useful in modern multitexture-capable hardware with
perspective-correct color because each texture unit has its own q coordinate.

Assigning Homogeneous Texture Coordinates

The rasterization discussion above assumed that homogeneous texture coordinates
had been assigned per-vertex. As the application programmer, that is our job. This
section describes how to set that up in OpenGL [2].

Consider that the texture is being projected onto the scene by a slide projector. This
projector has most of the same properties that cameras have – it has a viewing transform
that transforms world space coordinates into projector space (or eye space), and it has a
projection transform that maps the projector space view volume to clip coordinates.
Finally, we have a scale and bias to apply a simple range mapping. In the case of the
camera, x and y are mapped based on the current viewport settings, and z is mapped
based on the current depth range. For projective texture mapping, the range mapping is
typically [0,1] for each coordinate. The NV_texture_rectangle texture target is an
exception to this case because it is indexed by s ∈ [0, width] and t ∈ [0, height].

Figure 3 compares the transforms that are applied to vertex position in order to
compute window space positional coordinates and projective texture coordinates.

The key to assigning texture coordinates for projective texture mapping is to use the

MODEL MATRIX

CAMERA VIEW
MATRIX

CAMERA PROJECTION
MATRIX

Viewport and depth range

Perspective divide

Object space -- homogeneous

World space -- homogeneous

Eye space -- homogeneous

Clip space -- homogeneous

NDC space -- real

Window space -- real

Camera

MODEL MATRIX

PROJECTOR VIEW
MATRIX

PROJECTOR
PROJECTION MATRIX

[0,1] range mapping

Object space -- homogeneous

World space -- homogeneous

Projector space -- homogeneous

Projector clip space -- homogeneous

Texture space -- homogeneous

Projector Figure 3. The camera
transforms applied to
world space vertex
position to generate
window space coordinates
are very similar to the
projector transforms
applied to world space
vertex position to
generate projective
texture coordinates.

OpenGL texture coordinate generation (texgen) facility. The texgen facility simply
generates texture coordinates from other vertex attributes. In the case of GL_OBJECT_-
LINEAR and GL_EYE_LINEAR texgen, the vertex position (in object space and eye
space respectively) is used to generate the texture coordinate. Other forms of texgen use
different attributes. GL_SPHEREMAP and GL_REFLECTION_MAP_ARB use the eye
space vertex position and normal. GL_NORMAL_MAP_ARB simply assigns the eye
space normal vector to the texture coordinates.

OpenGL keeps texgen state on a per-coordinate basis, which means, for example that
you could assign the S texture coordinate with GL_SPHERE_MAP, the T coordinate
with GL_REFLECTION_MAP_ARB, the R coordinate with GL_OBJECT_LINEAR,
and the Q coordinate with GL_EYE_LINEAR. This flexibility is not particularly useful,
though, and we typically use the same form of texgen for all coordinates.

The two types of texgen that are useful for projective texture mapping are object
linear and eye linear. In both of these modes each component of the texture coordinate is
computed by evaluating a plane equation at the vertex position. Because each coordinate
has its own plane equation, and evaluating the plane equation is equivalent to a 4-
component dot product, it may be more intuitive to think of the four texgen planes as
forming a 4x4 matrix, T. Since texgen can be enabled per-coordinate, it would have been
difficult to use this language in the OpenGL spec. Equations 1 and 2 illustrate how
vertex positions are transformed into texture coordinates by the “texgen matrix”.

In the following two subsections, we will consider how to compute To (for object
linear texgen) and Te (for eye linear texgen). Also note that the texture coordinate
generated by texgen is still transformed by the texture matrix. This can be attractive
because it allows us to use standard matrix manipulation commands (glTranslate(),
glRotate(), gluPerspective(), etc.), but it may be slightly less efficient than combining all
transforms into the texgen matrix.

(1) (2)

objectw

z

y

x

o

v
v
v
v

q
r
t
s



















=



















T

eyew

z

y

x

e

v
v
v
v

q
r
t
s



















=



















T

Object Linear Texgen
Object linear texgen transforms the object space vertex position as specified to

OpenGL. The concatenation of matrices required in this case is shown in Equation 3. In
this equation, M is the model matrix (not to be confused with the OpenGL

MODELVIEW matrix), Vp is the view matrix for the projector, and Pp is the projection
matrix for the projector. The final matrix given performs the scale and bias to map the s,
t, and r components of the texture coordinate to the [0,1] range.

Some considerations of using object linear texgen are that 1) you should keep track of
your current model matrix – which is something OpenGL does not help you with, and 2)
the object linear texgen planes, To, must be updated every time the model matrix
changes.

Eye Linear Texgen
Eye linear texgen transforms the eye space vertex position, which is simply the object

space vertex position transformed by the OpenGL MODELVIEW matrix. The
concatenation of matrices required in this case is shown in Equation 4. The matrices in
this equation are the same as in Equation 3, except that the model matrix, M, has been
replaced with the inverse of camera (or eye) view matrix, Ve

-1. This is logical, because
we need to undo the eye’s viewing transform to get back to world space.

Some considerations for using eye linear texgen are that 1) OpenGL transform and
lighting must compute eye-space vertex position, and 2) a matrix inverse must be
computed. OpenGL transform and lighting may already be computing eye space vertex
position if we are using per-vertex lighting, so there may not be any significant per-vertex
cost associated with eye linear texgen. OpenGL also tries to help out with the matrix
inverse that is needed. It does this by transforming the eye planes (or rows of Te) by the

(3)

(4)

MVPT ppo

























=

1000
2
1

2
1

00

2
1

0
2
1

0

2
1

00
2
1

1

1000
2
1

2
1

00

2
10

2
10

2
1

00
2
1

−

























= eppe VVPT

inverse of the current MODELVIEW matrix. This is a common source of confusion
when using eye linear texgen, so be aware. If you want to specify Te directly, you should
verify that the current MODELVIEW matrix is identity. To let OpenGL take care of the
inverse view matrix, you can simply set the MODELVIEW matrix to contain only the
view matrix. Then, you would pass in the matrix from Equation 4 without including Ve

-1.

Caveats

There are a couple of issues to be aware of when using projective texture mapping.
One is reverse projection and the other is texture image resolution and filtering.

Reverse Projection
Unlike a real projector, the math of projective texture mapping actually produces a

dual projection. One along the projector’s view direction, and another in the opposite
direction. Figure 4 illustrates this effect.

The sign of q becomes negative behind the projector, which inverts the texture image
in the reverse projection. Typically applications use a 1D texture or other interpolated
quantity to eliminate color contribution when the q coordinate of the projective texture
becomes negative.

Filtering Projective Textures
Another complication of projective texture mapping is the pathological variation in

filtering requirements that can occur. Due to the nature of the two frusta involved, there
can be portions of the texture image that require extremely anisotropic filter kernels,
extreme minification, and extreme magnification of a single texture image in a single
pass. Figure 5 illustrates this “deer in headlights” orientation of the two frusta.

Figure 4. Projective texture mapping produces a reverse projection as well.

Conclusion

Projective texture mapping has been supported in OpenGL since version 1.0. It is
central to a number of interesting advanced rendering techniques, like per-pixel spotlight
cone rendering and shadow mapping. The description provided here should provide
enough background to enable OpenGL developers to implement projective texture
mapping. Please visit http://www.nvidia.com/developer for more information, or send
email to cass@nvidia.com.

References

[1] James F. Blinn. Hyperbolic interpolation. IEEE Computer Graphics (SIGGRAPH)
and Applications, 12(4):89 94, July 1992.

[2] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.2.1). www.opengl.org

[2] Mark Segal, et al. Fast shadows and lighting effects using texture mapping. In
Proceedings of SIGGRAPH ’92, pages 249-252, 1992.

[3] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
SIGGRAPH ’78, pages 270-274, 1978.

Figure 5. The “deer in
headlights” effect occurs
when the projector’s
frustum faces the eye’s
frustum. This gross
mismatch in sampling
frequencies makes for
complicated filtering.

