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Optimal choice of state tomography quorum formed by projection operators
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A minimal set of measurement operators for quantum state tomography has in the nondegenerate case
ideally eigenbases which are mutually unbiased. This is different for the degenerate case. Here we consider the
situation where the measurement operators are projections on individual pure quantum states. This corresponds
to maximal degeneracy. We present numerically optimized sets of projectors and find that they significantly
outperform those which are taken from a set of mutually unbiased bases.
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I. INTRODUCTION

Any physical system which is supposed to function as a
building block of a quantum computer requires a procedure
to determine its state in order to demonstrate its functionality
and if necessary to debug it. The measurements and com-
putations which allow estimating a quantum state are called
quantum state tomography. Therefore, it has been performed
on trapped ions [1–5], photonic qubits [6], superconducting
qubits [7–10], spin qubits in quantum dots [11–15], and
13C and N nuclear spins at a nitrogen-vacancy defect in
diamond [16].

For an n-dimensional Hilbert space, the density matrix has
n2 − 1 parameters, which need to be estimated. This can be
achieved by projective measurements; i.e., for known states it
is counted by repetitive measurements how often the unknown
state is projected onto them. In the nondegenerate case, one
observable can provide projections on n eigenstates, from
which n − 1 are actually useful. A minimal set of observables
which provide knowledge about the complete density matrix
is called a quorum [17]. It contains n2 − 1 distinct states. As
a fixed finite number of measurements can provide only an
estimate for the quantum state, a central question of state
tomography is how to choose the measurements such that
these estimates are as precise as possible. For nondegenerate
measurement operators the ideal choice of the quorum cor-
responds to mutually unbiased bases (MUBs) [18], i.e., the
eigenstates of the measurement operators form such bases.
“Mutually unbiased” means that a measurement outcome
in one bases, or for one of the operators, does not reveal
any information about the other measurements. Note that
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in general, state tomography is realized by positive-operator
valued measures (POVMs); see, e.g., Refs. [19,20]. However,
in this paper, we will restrict the discussion to projective
measurements. Further note that if loss in the measurement
process has to be taken into account, which effectively refers
to Trρ < 1, the optimal choice of the measurement set is
different from MUBs [21–23]. In that situation n2 parameters
have to be determined.

If some of the restrictions to a minimal predefined mea-
surement set are dropped, more possibilities for finding an op-
timal tomography scheme exist. This holds if the tomography
scheme can include more than n2 − 1 quantum states [24,25]
or the states can be changed after some of the measurements
are done so that the quantum state is not completely unknown
and the measurements can be adapted [26].

In this article, we will keep the restrictions to exactly
n2 − 1 states and the decision about them before the start of
the measurement, which is relevant for experiments where it
is difficult to alter the measurement setting. However, we will
not consider the nondegenerate case but the situation where
each measurement operator is a projector on one pure quan-
tum state. Then a quorum consists of n2 − 1 such projectors.
Previously, projectors on basis states from a set of MUBs have
been suggested [27] for such a situation. Their performance
is clearly better than a quorum based on nonentangled states
only [28]. However, by applying a numerical search, we show
in this article that there are quorums which perform even
better than MUBs. This is possible due to the fact that the
involved n2 − 1 states can be freely chosen, while in MUBs
the states within one of the bases have a fixed, nonideal
relation to each other.

The article is organized as follows: In Sec. II we dis-
cuss physical implementation for which our considerations
are relevant, namely, measurements based on spin-to-charge
conversion in a double quantum dot (see Sec. II A) and
measurements of photonic orbital angular momentum with
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only two photon counters (see Sec. II B). Section III provides
the formalization of the situation as an optimization problem,
which is solved numerically in Sec. IV including a discussion
of the results. We compare the obtained results to the perfor-
mance of MUBs in Sec. V, consider additionally the infidelity
of reconstruction for different state tomography schemes in
Sec. VI in order to verify their quality, and present conclusions
and an outlook on more general situations in Sec. VII.

II. PHYSICAL SYSTEMS WITH PROJECTIVE
MEASUREMENTS ON INDIVIDUAL STATES

The work which we present here is relevant for quantum
systems which are measured by projections on individual
quantum states; i.e., the measurement is a projection on a one-
dimensional subspace of the Hilbert space. In the following
we discuss two relevant implementations.

A. Spin-to-charge conversion

We consider two spin qubits in a double quantum dot. This
is one implementation of a four-dimensional Hilbert space.
Electron spin resonance allows for single-qubit gates [29].
Controlling the exchange interaction enables universal two-
qubit gates [30]. Both types of operations have been demon-
strated in the same double dot [15,31]. Thus these double dots
could be a building block for a quantum computer. Apart from
the possibility to read out each spin qubit individually as done
in Ref. [15], spin-to-charge conversion [32,33] can be applied.
This means the electric potential at one of the dots is reduced
so that both electrons will go to this dot provided that the spin
state of this two electron system ends up in a singlet state at
the end of this sweep. Measuring the charge state then projects
either on one quantum state, if the charge of the energetically
lower dot is measured to be two elementary charges, or on the
remaining three-dimensional subspace, if only one elementary
charge is detected. This is a realization in four dimensions of
the situation we consider in this article. Typically the state
tomography is supposed to determine the density matrix of
the two-qubit system before the sweep. Note that the state
which is connected to the singlet state after decreasing the
electric potential in one of the dots is not necessarily the spin
singlet state but depends actually on the speed of the transition
[11,12,27,34,35].

B. In quantum optics

Nicolas et al. [36] described the realization of state tomog-
raphy for a photonic qubit where the quantum information is
encoded in the orbital angular momentum of the light. The
measurements are projections onto certain qubit states which
correspond to the x, y, and z axes of the Bloch sphere. The
authors discuss potential extensions to higher dimensions.
In their proposed setups there are as many single-photon
detectors included as the dimension of the quantum state.
This corresponds to the possibility to perform nondegener-
ate measurements. However, if all but two detectors were
removed, one could in this then simplified setup obtain the
measurements by projection on individual states. One of the
remaining detectors can detect a photon if the photonic qubit
has been in a certain state, while the other one can detect

it if it was in any state of the remaining (n−1)-dimensional
subspace. Actually the second detector is needed only to
determine the ratio of detected to nondetected photons, while
theoretically one detector would be sufficient.

III. DEFINING THE SEARCH SPACE

We denote a state |ψ〉 in an n-dimensional quantum system
by

|ψ〉 = cos θ1|1〉 + sin θ1 cos θ2eiφ2 |2〉 + · · ·
+ sin θ1 sin θ2 · · · cos θn−1eiφn−1 |n − 1〉
+ sin θ1 sin θ2 · · · sin θn−1eiφn |n〉, (1)

where {|1〉, . . . , |n〉} is an orthonormal basis in the n-
dimensional Hilbert space, which describes our system. Note
that our state is fully given by the 2n − 2 real parameters
{θ1, θ2, . . . , θn−1, φ2, φ3, . . . , φn}. Here we took into account
the normalization of the state and that a different global phase
does not yield a different physical state.

In general the state of the quantum system is described
by a density matrix ρ, which is a n × n Hermitian matrix
with trace 1. This means n2 − 1 real parameters need to be
determined by quantum state tomography. As in the situation
we consider here, each measurement is just a projection on
a certain quantum state, we need at least n2 − 1 projection
operators, which are linear independent of each other within
the vector space of n × n matrices. If we denote the quantum
states which form a quorum, i.e., a minimal set for state
tomography, by |ψ1〉, . . . , |ψn2−1〉, then ρ can be determined
by obtaining experimental estimates of

Ai = Tr(Piρ) = Tr(|ψi〉〈ψi|ρ), i = 1, . . . , n2 − 1, (2)

from repeated measurements of the projection Pi = |ψi〉〈ψi|.
As we know already that Trρ = 1, we can disregard the

component of Pi which is proportional to 1,

Qi := Pi − 1/n. (3)

A. Number of free parameters of the optimization problem

As a quorum is formed by n2 − 1 states and one state
is determined by 2n − 2 real parameters, the number of pa-
rameters, Nparam, for our optimization problem seems to be
2(n2 − 1)(n − 1) = 2(n3 − n2 − n + 1). However, this num-
ber can be reduced by making use of the fact that any unitary
transformation of all of the states leaves the resulting precision
of the state tomography unchanged. This is because we have
assumed that all individual projective measurements can be
done with the same precision. By using this fact, we can set
fixed values for some of the states’ parameters. The effect
is that in the optimization problem, which we formulate
here, the number of parameters is reduced by eliminating
equivalent solutions, which are those which are connected by
a global unitary transformation. This reduces the number of
parameters by n2 − 1, which is the dimension of the special
unitary group SU (n), leading to

Nparam = 2(n3 − n2 − n + 1) − (n2 − 1)

= 2n3 − 3n2 − 2n + 3, (4)

leaving the leading order to be cubic in n; see Table I.
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TABLE I. Number of free parameters, Nparam, for our optimiza-
tion problem for dimension n.

n 3 4 5 6 7 8

Nparam 24 75 168 315 528 819

Practically we can fix the parameters which we want to
exclude by setting for the first n states, without loss of
generality,

|ψ1〉 = |1〉,
|ψ2〉 = cos θ21|1〉 + sin θ21|2〉,
|ψ3〉 = cos θ31|1〉 + sin θ31 cos θ32eiφ32 |2〉 + sin θ31 sin θ32|3〉,

...

|ψn〉 = cos θn,1|1〉 + sin θn,1 cos θn,2eiφn,2 |2〉 + · · ·
+ sin θn,1 sin θn,2 · · · cos θn,n−1eiφn,n−1 |n − 1〉
+ sin θn,1 sin θn,2 · · · sin θn,n−1|n〉. (5)

From |ψn+1〉 on, the states have the full number of nonfixed
parameters as given in Eq. (1). Thus the first n states of
the quorum have 0, 1, 3, 5, . . . , 2n − 3 free parameters, while
each of the remaining states has 2n − 2.

B. Determinant of the quorum as a quality measure

We consider the matrix Q, which is formed by writing
the operator Qi, or rather its components when denoted in
a orthogonal basis for the space of traceless n × n matrices,
as the ith row of Q. Then the value of |detQ| serves as a
quality measure for the quorum. It is identical to the volume
of the parallelepiped spanned by the vectors corresponding
to the Qi in the (n2−1)-dimensional vector space. Wootters
and Fields [18] have shown that this volume evaluates how
much knowledge about an unknown quantum state can be
obtained with a finite number of measurements. Note that
there exists the alternative approach of using the condition
number of the reconstruction matrix as a quality measure for
the measurement set [22,23,37,38]. The determinant might be
computed by just applying a simple Gaussian diagonalization
scheme. This means, for each step k > 0,

for i > k: Q(k)
i = Q(k−1)

i − B(k)
ki

B(k)
kk

Q(k−1)
k , (6)

B(k)
i j = 〈

Q(k−1)
i

∣∣Q(k−1)
j

〉
M, (7)

where 〈A|B〉M = ∑n2−1
i=1 A∗

i Bi is the dot product for the re-
duced projection vectors Q j . Then the determinant is given
by

det Q =
n2−1∏
k=1

√
B(k)

kk . (8)

This method has the advantage that it is actually not necessary
to calculate the Q(k)

i , because for k = 1, we have

B(1)
i j = |〈Qi|Q j〉M | = 〈ψi|ψ j〉|2 − 1/n, (9)

and then we find as all the B(k)
i j are real

B(k+1)
i j = B(k)

i j − B(k)
k j B(k)

ik

B(k)
kk

. (10)

However, this can include division by very small numbers,
which is numerically problematic; therefore we use in practice
more stable standard methods for calculating the determinant
using existing linear algebra libraries. In order to do so, we
define a basis in the (n2−1)-dimensional matrix space where
we then calculate the matrix Q.

C. Formulation of the optimization problem

The remaining problem, which will be tackled numerically
in the following section, can be formulated as follows. The
function D = |detQ| should be maximized as a function of
the Nparam parameters:

θ21, θ31, . . . , θn2−1,1, θ32, . . . , θn2−1,2, . . . , θn2−1,n−1,

φ32, φ42, . . . , φn2−1,2, φ43, . . . , φn2−1,3, . . . , φn2−1,n. (11)

The values for the θm j can be restricted to the interval [0, π/2],
and the parameters φm j can be restricted to [0, 2π ). For
computing D(θ21, . . . , φn2−1,n), numerical standard methods
for computing a determinant are applied.

IV. NUMERICAL OPTIMIZATION

A. Methods

Due to the lack of information about the function to be op-
timized, an exploratory analysis was performed. The rugged-
ness of the function as well as parameter interdependency
were presumed. As part of the exploratory analysis different
methods from the optimx and optim packages from R [39,40]
were used. The methods include local as well as global op-
timization approaches: the Nelder-Mead or downhill simplex
method [41], a variable metric method, BFGS, which is based
on Ref. [42], “CG,” which implements a conjugate gradients
method based on Refs. [43,44], a Newton-like method for
unconstrained problems with at least first derivatives, nlm
[45], spg [46], a nonmonotone spectral projected gradient
method, which is based on Refs. [47,48], a quasi-Newton-type
general purpose optimization algorithm, ucminf, [49], and
the method “optim:sann” [50], which is a variant of simu-
lated annealing, belonging to the class of stochastic global
optimization methods. Powell’s methods newuoa [51] and
uobyqa [52], from the package optimx, were also tested. For
all algorithms the default stopping criteria were used, and the
iteration maximum was set to 10 000. Relative convergence
tolerance was used as a stopping criterion, namely, the algo-
rithm stops if it is unable to reduce the value val by a factor of
reltol ∗ (abs(val) + reltol) at a step, where the relative
tolerance reltol used was 1.490116 × 10−8.

It was determined that, without special tuning, Powell’s
derivative-free methods performed the best for this problem.
The chosen method NEWUOA (NEW Unconstrained Opti-
mization Algorithm) [51] was then applied to solve the opti-
mization problem. NEWUOA is a derivative-free algorithm,
which is based on a trust region technique when searching
for the optimal solution. At each iteration, the algorithm
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TABLE II. Comparison of the results for dimension n for the
MUB quorum and for the numerically optimized quorum. Note that
for n = 6 a set of MUBs is not known. Therefore, the respective
value is shown in gray here. The numerical results (third column)
clearly outperform the MUBs. We also provide an upper bound,
which follows from the length of the row vectors in Q. The results
are visualized in Fig. 2.

n |det QMUB| max |det Q| Bound

3 1
9 0.1588 0.1975

4 1
32 0.07843 0.1156

5 8 × 10−3 0.04076 0.06872
6 1.8900 × 10−3 0.02140 0.04115
7 4.1650 × 10−4 0.006313 0.02473
8 8.6317 × 10−5 0.001803 0.01490

uses quadratic interpolation to compute the objective function
and then performs conjugate gradient minimization within
a trust region. It then updates either the current best point
or the radius of the trust region, based on the a posteriori
interpolation error.

For state spaces of dimensions n = 3 to n = 8, 15 random
points were used as starting points, and the NEWUOA search
was run. For n = 3, additionally the algorithm was run with
2000 random starting points in order to compare it with the
theoretical hypothetical bound. For finding the top result,
the best results were repeatedly used as starting points until
convergence.

Among the quorums which were found by numerical opti-
mization with random starting points, there were some which
had the property that some of the obtained parameters were
nearly identical or close to zero. In order to make use of this,
we implemented a modified search [53] setting the similar
parameters to be exactly identical and the ones close to zero to
be exactly zero which simplifies the problem. Then rerunning
the optimization with the reduced number of free parameters
using 25 random starting points allowed us to find improved
results.

B. Results and discussion

The optimized values for |detQ| are presented below in
Table II. Expectedly, the numerical optimization performs
better for a lower number of free parameters, finding nearly
the same value of |detQ| at each run for n = 3, 4, 5, while
there is a larger variance for higher dimensions. Consequently,
the chances get higher that the best result out of the 15 runs
which were performed is still significantly below the global
maximum the higher the value of n. In the following, we
will analyze the structure of the obtained optimized quorum
within the space for the traceless part of the measurement
operators for three and four dimensions. In order to do so,
we calculate pairwise the absolute squared scalar products of
the quorum states, which are directly related to the angles
between the respective vectors in operator space. We show
that the optimal quorum which was found numerically is not
unique for four dimensions. For three dimensions we will
present analytical expressions for the parameters of the state
of one quorum which we assume to be optimal and up to

permutations unique as the quorum could not be improved
numerically. The parameters of the best performing quorums
for n = 4, 5, 6 are given in Appendix A.

Furthermore, we will discuss the robustness of the results
against deviations in the measurement setup for n = 4. In the
case in an experiment, the projections are not precisely on the
desired states of the optimized quorum, but the deviation is
known, the robustness given here allows us to estimate the
loss of performance.

1. Three dimensions

Following the strategy described at the end of Sec. IV A,
we found a quorum with absolute squares of the quantum
states, W 3D

i j = |〈ψi|ψ j〉|2, being, up to permutations, close to
the following rational values:

W 3D =

⎛
⎜⎜⎜⎝

W 3D
1 W 3D

2 W 3D
2 W 3D

2

W 3D
2 W 3D

1 W 3D
2 W 3D

2

W 3D
2 W 3D

2 W 3D
1 W 3D

2

W 3D
2 W 3D

2 W 3D
2 W 3D

1

⎞
⎟⎟⎟⎠ (12)

with

W 3D
1 =

(
1 4/9

4/9 1

)
and W 3D

2 =
(

7/27 7/27
7/27 7/27

)
. (13)

Indeed, we were able to identify the following parameters
which provide exactly this quorum:

θ11 = 0,

θ21 = arccos(−2/3),

θ31 = θ41 = θ51 = θ61 = θ71 = θ81 = arccos
√

7/27,

θ12 = θ32 = θ72 = 0,

θ22 = −π/3,

θ42 = θ52 = θ62 = θ82 = arcsin(3/4),

φ12 = φ72 = 0,

φ22 = −φ42 = φ52 = φ62 = − arccos(−1/[2
√

7]),

φ32 = arccos(−13/14),

φ82 = arccos(10/[7
√

7]),

φ13 = φ33 = φ43 = φ73 = 0,

φ23 = − arccos
√

3/7 + arccos(−13/14),

φ53 = − arccos(−1/[2
√

7]),

φ63 = π/3,

φ83 = − arccos(−1397/1778), (14)

providing |detQ| = 0.158766448204.
This value of |detQ| is larger than that of all numerically

optimized with 2000 random starting points. Therefore, we
assume that it is indeed the optimal choice. A proof of this
assumption, however, is not provided here. Note that other
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quorums which were found numerically contain some significantly different values for |〈ψi|ψ j〉|2, while |detQ| is only a little
bit lower. For example, the quorum given by the parameters

(θ21, . . . , θ81) = (1.035269, 2.033255, 0.887359, 1.037837, 0.921986, 1.035269, 1.037836),

(θ32, . . . , θ82) = (0.4920704, 1.283451, 0.8515625, 0.414486, 2.295302, 0.8515648),

(φ32, . . . , φ82) = (6.8892, 6.052385, 4.53376, 2.208782, 4.148872, 1.749426),

(φ43, . . . , φ83) = (4.272501, 5.449324, 4.991345, 0.2010878, 2.664994) (15)

yields

W 3D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.2604 0.199 0.3987 0.2581 0.3651 0.2604 0.2582
0.2604 1 0.2581 0.2581 0.2604 0.2581 0.4445 0.2604
0.199 0.2581 1 0.2604 0.3987 0.2604 0.2581 0.3651
0.3987 0.2581 0.2604 1 0.3651 0.2604 0.2581 0.199
0.2581 0.2604 0.3987 0.3651 1 0.199 0.2604 0.2581
0.3651 0.2581 0.2604 0.2604 0.199 1 0.2581 0.3987
0.2604 0.4445 0.2581 0.2581 0.2604 0.2581 1 0.2604
0.2582 0.2604 0.3651 0.199 0.2581 0.3987 0.2604 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

containing several values, namely, 0.199, 0.3987, and 0.3651,
which differ significantly from 4/9 = 0.4444 or 7/27 =
0.2593. However, |detQ| = 0.158766446951 differs only on
the order of 10−9 from the value found for the assumed-to-be-
optimal quorum given above.

2. Four dimensions

The optimized quorums, which were found for 15 differ-
ent random starting points, have nearly identical values for
|detQ| ≈ 0.07843. Interestingly, for all of them the states
of the quorum, |ψ1〉, . . . , |ψn2−1〉, can be ordered in a way
that the symmetric matrix W 4D, defined as W 4D

i j = |〈ψi|ψ j〉|2,
takes the form

W 4D =

⎛
⎜⎜⎝

W 4D
1 W 4D

2

(
W 4D

2

)T

(
W 4D

2

)T
W 4D

1 W 4D
2

W 4D
2

(
W 4D

2

)T
W 4D

1

⎞
⎟⎟⎠ (17)

with

W 4D
1 =

⎛
⎜⎜⎜⎝

1 0.2966 0.2966 0.1795 0.1795
0.2966 1 0.1795 0.2381 0.1921
0.2966 0.1795 1 0.1921 0.2381
0.1795 0.2381 0.1921 1 0.2966
0.1795 0.1921 0.2381 0.2966 1

⎞
⎟⎟⎟⎠

(18)
and

W 4D
2 =

⎛
⎜⎜⎜⎝

0.1636 0.1921 0.1921 0.1921 0.1921
0.2381 0.1677 0.2624 0.2624 0.1978
0.2381 0.2381 0.2624 0.1677 0.1978
0.2381 0.1677 0.1755 0.2624 0.1677
0.2381 0.1755 0.1677 0.1677 0.2624

⎞
⎟⎟⎟⎠,

(19)
where a deviation of the value is maximally 10−4. This means
that the operators of the quorum are always arranged in the
same way and the respective vectors show some structure.
Namely, there are three groups of states with the same relation
towards each other within the group. However, the quorum
is not unique even when permutations are disregarded as
the states are not equivalent; i.e., there are different ways to

arrange the construction given by W 4D in the four-dimensional
Hilbert space of the quantum states.

If the structure or some of its properties were known
beforehand, one could formulate the optimization problem
with fewer free parameters, as some of them would be known
to be identical.

3. Robustness

We consider the robustness by calculating |detQ′| for Q′
being the quorum one obtains by a shift θi j → θi j + �θi j

or φi j → φi j + �φi j keeping the other parameters constant.
We calculate the positive and the negative values for �θi j

and �φi j which correspond to |detQ′| being 5% reduced
compared to |detQ| and present the averaged respective state
infidelity 1 − |〈ψi|ψ ′

i 〉|2 where |ψ ′
i 〉 is the state for the shifted

parameter, θi j + �θi j or φi j + �φi j , in Fig. 1. We show here
only the robustness for a quorum in four dimensions, which
we consider to be the most relevant case as it corresponds to
two qubits. Note that in an experiments the shifts �θi j and
�φi j have to be known in order to apply the results shown
here. Uncertainties, i.e., noise, have to be taken into account
differently. However, Fig. 1 shows that even if projections
on a quantum state deviate from the desired quorum state
by a state infidelity of around 4%, the “volume” of the set
of measurement in (n2−1)-dimensional space of the traceless
parts of its projections is only slightly (5%) reduced compared
to a gain of more than a factor of two compared to the quorum
from MUBs; see Sec. V. Thus, small imperfections of its
realization have less influence than the overall choice of the
quorum itself.

V. COMPARISON TO A SET FROM MUBS

If a set of n + 1 MUBs exist, which is certainly the case for
n being an integer power of a prime number [18], a quorum
can be formed by choosing n − 1 states from each MUB,
resulting in n2 − 1 states in total. The states from different
MUBs are unbiased, i.e., the corresponding row vectors in the
matrix Q(MUB) are diagonal. Thus, we can write Q(MUB) as a
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FIG. 1. State infidelity 1 − |〈ψi|ψ ′
i 〉|2 which corresponds to a

shift of the parameter θi j + �θi j or φi j + �φi j that reduces |detQ′|
by 5% compared to the desired |detQ|. The parameters are ordered
as follows: θ21, θ31, . . . , θ15,1, θ32, θ42, . . . , θ15,3, φ32, . . . , φ15,4. The
visible fluctuations are due to the specifications of the specific
quorum chosen. See Appendix A. Note that changes in the parameter
φ12,3 do not yield a change in the determinant of Q′ larger than
0.045 because |〈ψ12|3〉| happens to be rather small. Therefore, this
parameter is left out here.

block diagonal matrix, where we just need to diagonalize the
blocks, which are (n − 1) × (n − 1) matrices. This is a rather
simple task, because we know already that the corresponding
quantum states are diagonal. Therefore, 〈Q(MUB)

i |Q(MUB)
j 〉M =

1/n if Q(MUB)
i and Q(MUB)

j are from the same basis and i 	= j.
Using the same diagonalization scheme as above for the block
and also adapting the notation, we obtain by straightforward
calculation

B(k)
ik = n − k

(n − k + 2)(n − k + 1)
if i > k (20)

and

B(k)
kk = n − k

n − k + 1
. (21)

Then the absolute value of the determinant can be expressed
as

|detQ(MUB)| =
[

(n−1)(n−2) · · · 1

n(n−1) · · · 2

] n+1
2

= 1

n(n+1)/2
. (22)

In Table II and Fig. 2 we compare the results obtained
in the previous section to the result one would get for a
MUB quorum and to the upper bound [(n − 1)/n](n2−1)/2. The
bound just follows from the length of the row vectors in Q,√

(n − 1)/n. Note that this bound cannot be reached, which
was shown explicitly for n = 4 in Ref. [27]. We assume that
this is the case for all dimensions n > 2. The improvement
of the numerical optimization compared to the quorums from
MUBs becomes more significant with increasing dimension-
ality. Note, however, that for a large Hilbert space it is rather

FIG. 2. Values of |detQ|/bound for the numerically optimized
quorums (black squares) and the quorums constructed from MUBs
(gray circles).

unpractical to perform state tomography by projections on
individual states.

VI. INFIDELITY OF RECONSTRUCTION

So far, we have used |detQ| as a quality measure of
the set of projectors for a state tomography scheme. For
practical application it is also useful to determine the average
infidelity of the reconstructed density matrices as done, e.g.,
in Ref. [25]. Here we “simulate” the application of the state
tomography scheme for n = 4. “Simulate” means here that we
first select randomly a density matrix ρ to be reconstructed,
then we generate possible measurement outcomes for the
given projectors following the binomial distribution, and fi-
nally we determine a reconstructed density matrix ρ̃ from
these simulated measurement outcomes using the maximum-
likelihood approach. Details of the procedure are given in
Appendix B. The infidelity of the reconstruction is

1 − f (ρ, ρ̃ ) = 1 − [Tr
√√

ρ̃ρ
√

ρ̃]2. (23)

In addition to the comparison to a MUB quorum, the infidelity
of reconstruction also allows a direct comparison to a state
tomography scheme which is formed by those n2 projection
operators which define a symmetric, informationally complete
positive operator-valued measure (SIC-POVM). The states
|φ j〉, j = 1, . . . , n2 corresponding to the SIC-POVM projec-
tors fulfill

|〈φ j |φk〉|2 = 1

1 + n
, for j 	= k. (24)

We perform the comparison by keeping the overall number
of measurement runs constant, which means each SIC-POVM
projector is measured 15/16 times as often as one of the
projectors form a minimal set. For details of the SIC-POVM
used for the “simulations,” see Appendix B. The averaged
infidelities of reconstruction are presented in Fig. 3 dependent
on the overall number of measurement runs, Ntot. The results

032332-6



OPTIMAL CHOICE OF STATE TOMOGRAPHY QUORUM … PHYSICAL REVIEW A 100, 032332 (2019)

FIG. 3. Infidelity of the reconstructed density matrices by max-
imum likelihood for different state tomography schemes: MUBs
(black), our numerical optimized quorum (gray), SIC-POVM (red,
dashed guiding line), and a broken quorum (blue, dotted) which is
identical to the numerical optimized one with the exception that one
of the projectors is deleted and another one is measured twice. Each
result is the average over 1000 random density matrices which have
been reconstructed. The broken quorum is included for comparison
in order to identify the Ntot needed to be at all at a point where one
can talk about reconstructing the density matrix and not just a part of
it and guessing the missing information.

confirm that |detQ| is a useful quality measure, as indeed the
average of 1 − f (ρ, ρ̃ ) is higher for the MUB quorum than for
the numerically optimized quorum. For a “broken” quorum,
which is identical to the numerically optimized one up to
one projector missing and another one being measured twice
(det Q′ = 0), 1 − f (ρ, ρ̃ ) is significantly higher for values
of Ntot � 15 × 162. This also shows that smaller numbers of
Ntot do not provide a useful state tomography because for
the broken quorum one parameter of ρ̃ is completely guessed
without any knowledge about ρ.

Furthermore, we see in Fig. 3 that the SIC-POVM state
tomography set outperforms our numerically optimized quo-
rum. We assume that the reason for this is the symmetry
in operator space of the states defining the SIC-POVM; see
Eq. (24). Note, however, that the optimization problem solved
in this article considered the minimum number of projec-
tions, n2 − 1, which is relevant in situations where changing
the setup from measuring one projector to another is time
consuming.

We further calculate the averaged infidelity of reconstruc-
tion for some nonideal quorums where one of the parameters
θi j or φi j deviates from the ideal value so much that |detQ|
is reduced by 20%; see Fig. 4. We find that the infidelity of
reconstruction is the same within the statistical uncertainty for
all the different parameters which deviate. As expected, the
nonideal quorums perform worse than the ideal numerically
optimized quorum, but better than the MUB quorum, which
has an even smaller value of |detQ|.

FIG. 4. Infidelity of the reconstruction for different quorums: the
quorum based on MUBs, the numerical optimized (no) quorum,
and those deviating in the coefficient indicated at the x axis so
much that |detQ| is reduced by 20%. The simulations were done
for 1000 random density matrices. The error bars indicate twice the
standard deviation for the average value. We see that the infidelity of
reconstruction for these 20% reduced quorums is higher than for the
ideal numerically optimized one but significantly lower than for the
MUB quorum, which has a value of |detQ| which is even lower. For
comparison, the infidelity for the broken quorum introduced above
(|detQ = 0|) we found to be 0.032 in these simulated measurements.

VII. CONCLUSIONS AND OUTLOOK

In this article, we have presented numerically optimized
quorums for state tomography based on measurement oper-
ators which are projectors on individual quantum states in
contrast to the more common nondegenerate measurements.
The results are clearly improved compared to a quorums
constructed from states taken from sets of MUBs. The best
quorums for three and four dimensions show an interesting
arrangement of the states. Analyzing the structure of opti-
mized quorums in higher dimensions and investigation of how
optimal quorums can be constructed rather than numerically
found are beyond the scope of this article and should be the
objectives of further studies.

Our approach, to apply numerical optimization in order
to determine a good choice for a quantum state tomography
scheme, can be extended to models which include noise; i.e.,
the measurements are not perfect, and the performance of
each measurement might be different. Furthermore, one can
include the quantum gates, i.e., the unitary transformations,
which need to be applied prior to the actual measurement
and the imperfections to those gates in the optimization. This
means the approach would provide not only the quantum
states which form an optimal quorum but also the opera-
tions which are necessary to perform these measurements
and minimize the expected uncertainty of the tomography
scheme. Another direction for future research are degenerate
measurements which are different from the projections on
individual quantum states considered here, e.g., the case n = 4
with projections on two-dimensional subspaces, which refers
to two qubits where one of them is measured. In combination
with previously applied quantum gates this can also provide
full state tomography of the two-qubit system.

Generally speaking, our optimization approach can be
extended in order to provide customized tomography schemes
for experimentally realized quantum systems and measure-
ment setups.
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APPENDIX A: PARAMETERS OF THE BEST PERFORMING QUORUM FROM
THE NUMERICAL OPTIMIZATION

Here we give the numerically determined parameters of the optimization problem belonging to the best results obtained for
|detQ| for dimensions four, five, and six. For seven and eight dimensions we spare the sets of parameters due to their length.
Note that those parameters which we have chosen to set to zero are not given again. The parameters are ordered starting in a
way that we first present θi1(i = 2, . . . , n2 − 1), then the other θi j ( j = 2, . . . n − 1), and then φi j until φn2−1,n. Note that the
restriction of θi j to [0, π/2) and of φi j to [0, 2π ) was applied to the starting points but not enforced on the optimization. Thus,
some of the values given here are outside this interval.

Four dimensions: |detQ| = 0.0784336423365

(θ21, θ31, . . . , θ15,1, θ32, θ42, . . . , θ15,3, φ32, . . . , φ15,4)

= (−1.987238, 1.11715, 2.0805, 2.080499, 1.117151, 1.11715, 2.008353, 1.987238, 2.080499, 2.008353, 2.1467,

5.288292, 2.080499, 2.024443, 2.495647, 1.119342, 0.9914846, 2.495645, 1.10621, 0.9093897, 1.862942, 1.11934,

2.232204, 2.247469, 2.247471, 2.15011, 1.106211, 2.915391, 2.898041, 1.031702, 0.825679, 1.133683, 0.6625359,

2.239346, 0.5620509, 1.431614, 2.519742, 1.004276, 1.933486, 6.554038, 7.994821, 1.967422, 6.012345, 7.279308,

0.98654, 6.283182, 4.571561, 2.155061, 4.287843, 1.995348, 7.457368, 2.145481, 5.064952, 3.087178, 3.03431,

4.531637, 6.351414, 4.985414, 4.524217, 4.090605, 6.983559, 3.394178, 2.692911, 0.7303369, 0.651116, 2.154539,

7.25511, 4.092227, 2.967463, 6.387222, 1.057313, 1.975125, 8.553043, 2.356182, 6.866927). (A1)

Five dimensions: |detQ| = 0.0407645110122

(θ21, θ31, . . . , θ24,1, θ32, . . . , θ24,4, φ32, . . . , φ24,5)

= (2.025332, 1.063227, 1.187547, 1.954049, 1.184432,−1.149042, 2.014489, 1.964083, 2.02577, 1.185496, 1.121085,

1.086572, 1.161708, 1.139781, 2.055027, 1.169922, 1.178831, 1.160673, 1.115826, 1.168168, 1.187548, 2.024097,

2.065788, 2.101547, 0.9118843, 1.234142, 0.8088603, 1.219918, 2.324767, 1.131091, 1.968451, 1.121148, 1.05738,

2.086829, 0.9157541, 1.915946, 1.84196, 0.9293043, 1.202568, 1.083903, 1.797014, 1.259305, 1.019004, 1.198495,

2.017589, 1.951278, 0.9733781, 1.262492, 0.923137, 1.845973, 0.9209366, 1.779616, 1.015688, 0.6300233, 1.366076,

0.915297, 1.302166, 1.409244, 0.7888966, 0.5972418, 0.6029987, 0.8702579, 2.064999, 0.9712894, 1.105447, 2.211262,

2.012101, 1.296047, 0.5692779, 1.367542,−0.5053642, 1.052135, 0.3175097, 1.141402, 0.3709571, 0.3776104, 0.7486942,

0.7060893, 2.734705, 0.8864123, 2.846409,−1.122271, 0.7982444, −1.088667, 2.669574, 2.04523, 8.225065, 6.850108,

6.277125, 5.770382, 5.008554, 6.695896, 4.893754, 3.96695, 1.531828, 4.747936, 1.806821, 5.248359, 1.065362,

4.062266, 5.003858, 3.000425, 1.328327, 6.302228, 3.702629, 0.9964051, 6.258343, 8.023806, −0.9168062, 0.9622705,

2.20119, 2.195767,−0.4585056,−0.3640269, 0.3979758, 1.388356, 2.117641, 2.005458, 4.532796, 4.856528, 2.372003,

4.202955, 1.991998,−1.257368, 3.796135, 3.683472, 0.2753047, 3.692093, 0.6109305, 7.674062, 9.065004, 2.675162,

−1.163622, 5.801429, 1.455933, 4.373961, 4.228544, 7.097044, 3.308416, 4.137023, 4.796179, 2.713446, 7.061001,

5.772213, 0.5179369, 5.173816, 7.975781, 2.503486, 6.562516, 5.218709, 5.541723, 4.674475, 0.8936102, 5.298166,

0.7285783, 0.6042217, 2.206226, 2.48539, 6.088396, 2.542696, 4.578949, 3.910954, 6.342585, 3.870752, 4.560328,

1.161769, 6.149991, 3.581524). (A2)

Six dimensions: |detQ| = 0.02180422

(θ21, θ31, . . . , θ35,1, θ32, . . . , θ35,5, φ32, . . . , φ35,6)

= (1.200726, 2.007267, 1.136718, 1.212113, 1.166749, 1.955048, 1.938887, −8.285738, 2.021419, 1.956438, 1.168484,

1.930938, 2.025287,−4.354848, 1.941466, 2.007702, 1.959066, 1.967186, 1.943287, 1.95033, 1.149914, 1.183036,

1.216544, 1.19203, 1.204242, 1.959146, 1.174527, 1.194205, 1.141995, 1.952349, 1.927501, 1.211222, 1.208198,

032332-8



OPTIMAL CHOICE OF STATE TOMOGRAPHY QUORUM … PHYSICAL REVIEW A 100, 032332 (2019)

1.12139, 1.064684, 2.0864221.9439, 2.201574, 1.863483, 1.131354, 1.148588, 0.8711998, 1.937272, 1.925475,

1.206975, 1.897486, 2.127146, 1.868534, 1.837702, 2.207828, 1.03747, 1.96676, 2.203703, 1.964852, 1.127361,

0.9741118, 2.076148, 2.078879, 7.602875, 2.016043, 1.823238, 1.866946, 1.247623, 1.258312, 2.068498, 1.207911,

2.069339, 1.771407, 0.9804647, 1.157219, 1.103222, 1.991693, 0.9509069, 0.6588244, 2.063136, −1.146611, 2.257391,

1.957527, 1.191194, 1.204787, 1.197062, 1.63133, 1.992722, 0.7632899, 1.231786, 1.343243, 1.716956, −0.8128132,

1.502357, 1.182634, 1.2321, 2.205136, 0.8250355, 2.176076, 0.9415523, 2.304861, 0.8823443, 1.887888, 1.367516,

1.030026, 1.652564, 2.012481, 2.232824, 2.224815, 1.251554, 2.428719, 2.121333, 2.157949, 1.208416, 1.183949,

2.338161, 1.217264, 1.648025, 1.038377, 0.9404738, 2.555162, 2.605002, 0.9860226, 0.6911011, 1.718876, 1.382294,

2.057402, 2.448013, 1.05691, 1.170197, 0.9376441, 1.063722, 2.420602, 0.900834, 0.9794334, 1.520725, 2.072939,

−0.116024, 2.516558, 4.064503, 2.088605, 2.543337, 2.422057, 0.9362635, 1.141614, 1.860171, 0.8277882, 2.369419,

0.8202935, 1.656815, 3.433743, 0.5829571, 1.119176, 2.65132, −0.7378547, 0.4070498, 0.7148053, 2.42493, 1.423588,

0.3030078, 1.844847,−0.3382007, 3.890063, 2.028514, 0.4060558, 4.904644, 4.90699, 1.696743, 6.200229, 5.828303,

7.514629, 4.948504,−0.119077, 4.79245, 2.538788, 1.588528, 0.1839321, 3.898752, 6.239238, −0.3239425, 3.202382,

7.133572, 7.715874, 3.939151, 4.72454, 1.709308, 8.44531, 4.641578, 4.920483, 3.364537, 1.680187, 3.172782,

4.011768, 2.640836, 3.799028, 0.9947096, 7.476654,−0.9945264, 4.38951, 3.769075, 2.161899, 3.928993, 4.267702,

1.647526, 4.847141, 4.082247, 3.027623, 2.474754, 3.93895, 2.47395, −0.05955911, 4.831441, −1.871281, 5.520931,

2.018618, 1.692524, 8.043, 6.460713, 5.610878, 2.603571, 4.934541, 5.695705, 4.833942,−0.1214876, 3.862147,

1.26356, 0.5518539, 0.4031677,−1.23673,−1.565766, 1.632747, 6.026669, 4.477365, 3.363691, 2.212875, 8.209061,

5.764668, 6.732687, 2.478291, 1.589077, 4.579485, 1.926466, 2.411238, 1.443562, 3.50158, 1.3331353.995756,

6.938622, 1.851612, 5.173889, 1.587738, 6.237971, 4.8003, 6.100522, 4.027243, 1.085882, 2.080531, 4.132851,

2.844395, 1.822641, 4.423196, 4.160778, 2.260777, 5.634928, −0.09330294, 6.368033, 4.231467, 7.917326, 3.783284,

4.940628, 4.534321, 9.482261, 2.510288, 3.609704, 4.197574, 4.131333, 5.933377, 3.558919, 5.804634, 8.318015,

3.207322, 5.103573, 8.584231, 3.727574,−0.2379239, 7.491072, 6.295222, 6.716216, 8.036527, 3.512619, 7.393747,

5.192058, 6.201087, 5.450548, 2.864755, 6.192834, 4.871876, 5.751969, 7.261904, 5.910425, 2.041802, 7.703962,

1.025542, 8.406518, 5.986424, 2.717615, 4.374027, 3.573012, 3.021222, 4.182929, 5.589567, 4.574366, 5.864266,

5.576348, 3.837732, 3.23019, 4.32822, 4.400782, 7.319795, 0.606244). (A3)

APPENDIX B: DETAILS OF THE “SIMULATED”
STATE TOMOGRAPHY

1. Random density matrices

We obtain randomly the eigenbasis of ρ as the eigenbasis
of a random unitary matrix U and the eigenvalues as the
differences between an ordered set of zero, one, and three
random numbers r1, r2, r3 between 0 and 1 with a uniform
distribution. To obtain the unitary random matrix, we follow
the method known already by Hurwitz in 1887 as described
in Ref. [56]. Note that there are also potentially more efficient
alternatives; see Ref. [57].

2. Simulate measurement outcomes

We use a random density matrix ρ and consider one of
the sets of projection operators for state tomography, Pj ,
where j = 1, . . . , n2 − 1 for a minimal set (quorum) and j =
1, . . . , n2 for a SIC-POVM. The probability to measure that
the state ρ is projected on Pj in one individual measurement
is given by p j = Tr(Pjρ0). For Nj repetitions the number of

“measurements” which measure the state to be projected on
Pj can then be “simulated” by a binomial distributed random
value n j for the individual probability p j .

3. Maximum-likelihood reconstruction

The likelihood that a certain density matrix ρ yields the
measurement result n j , i.e., the number of measured projec-
tions on the subspace given by Pj , for Nj repetitions is given
by the binomial distribution, Lj (n j, ρ) = B(n j |p j, Nj ). Con-
sequently, the likelihood to measure the entire set {n1, . . . , nm}
where m = n2 − 1 or m = n2, respectively, is given by the
product

L({n1, . . . , nm}, ρ) =
m∏

j=1

Lj (n j, ρ). (B1)

We are looking for the ρ = ρ̃ which leads to the highest like-
lihood L for the “simulated” set of measurement outcomes,
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{n1, . . . , nm}. For numerical reasons, we maximize log L =∑m
j=1 log Lj instead of L [58].

4. A SIC-POVM for four dimensions

A SIC-POVM can be constructed using a representation of
Zn × Zn; see Ref. [19]. The standard representation of this
group is a combination of the shift operator S and the phase
operator T :

S =

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠, T =

⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −1

⎞
⎟⎠. (B2)

The elements of the SIC-POVM can be constructed by apply-
ing S and T to a fiducial vector |φ〉, which means the elements
of the SIC-POVM are S jT k|φ〉 for j, k = 0, 1, 2, 3. For our
calculations for n = 4 (see Fig. 3) we use one of the fiducial

vectors given in Ref. [19],

|φ〉 = r0|1〉 + r+eiθ+ |2〉 + r1eiθ |3〉 + r−eiθ−|4〉 (B3)

with the coefficients [19,59]

r0 =
√

1−1/
√

5

2
√

2−√
2

, r1 = [
√

2−1]r0,

r± =

√
1+ 1√

5
±

√
1
5+ 1√

5

2
,

θ± = ±
arccos 2√

5+√
5

2
+

arcsin 2√
5

4
+ π

4
, θ1 = π

2
.

(B4)
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