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Abstract— The articulated intervention AUV (AIAUV) is an
underwater swimming manipulator (USM) with intervention
capabilities. Station-keeping and trajectory tracking are essen-
tial for the AIAUV to be able to move in confined spaces and to
perform intervention tasks. In this paper we propose using the
generalized super twisting algorithm, which is an extension of
the regular super-twisting algorithm, for the trajectory tracking
of the joint angles, position and orientation of the base of
the AIAUV in 6DOF. Furthermore, we show the ultimate
boundedness of the tracking errors. We also demonstrate the
applicability of the proposed control law and compare the
performance with the regular super-twisting algorithm with
adaptive gains.

I. INTRODUCTION

The articulated intervention autonomous underwater vehi-
cle (AIAUV) is an underwater vehicle (UV) with multiple
joints such as a manipulator arm, and multiple thrusters,
i.e. an underwater swimming manipulator (USM). The
thrusters give the AIAUV station-keeping capabilities and en-
able the AIAUV to perform trajectory tracking without using
body undulations, which are necessary for underwater snake
robots (USRs) [1]. The joints enable the AIAUV to operate
as a manipulator arm, thus enabling the AIAUV to perform
intervention tasks. These manoeuvring capabilities and its
slender body enable the AIAUV to move around in confined
spaces in which a remotely operated vehicle (ROV) or AUV
would not have access. Moreover, the AIAUV has adopted
the high kinematic redundancy of USRs and the fully energy-
efficient hydrodynamic properties and tetherless operation of
AUVs. These properties enable the AIAUV to exploit the full
potential of the inherent kinematic redundancy [2], [3].

Station-keeping and trajectory tracking are essential for
the AIAUV to be able to move in confined spaces and
to perform intervention tasks. Since the AIAUV is subject
to hydrodynamic and hydrostatic parameter uncertainties,
uncertain thruster characteristics, unknown disturbances, and
unmodeled dynamics, and since the coupling forces caused
by joint motion are even larger for the AIAUV than for
ROVs because it has no separate vehicle base and a low
mass compared to an ROV, it is essential for the control
approach to be robust. The design of a robust trajectory
tracking controller is therefore the objective of this paper.

Sliding mode control (SMC) is a robust and versatile non-
linear control approach that has been used for many differ-
ent systems and applications, including three-phase power

I.-L. G. Borlaug, K. Y. Pettersen and J. T. Gravdahl are with
the Centre for Autonomous Marine Operations and Systems, Depart-
ment of Engineering Cybernetics, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway. {Ida.Louise.Borlaug,
Kristin.Y.Pettersen, Tommy.Gravdahl}@ntnu.no

converters [4], Markovian jump systems [5], [6], stochastic
systems [7], [8] and microgrid control [9] just to mention
some. For UVs SMC has been used for singularity-free
control [10] to address partly unknown non-linear thruster
characteristics [11], [12] and for trajectory control [13] -
[16]. SMC has also been used to handle coupling forces
between a manipulator arm and a UV [17]. In [18], SMC is
applied to land-based snake robots to achieve robust tracking
of a desired gait pattern and underactuated straight-line path
following.

In recent years, SMC has been developed into higher-order
SMC schemes, that removes the chattering problem. The
super-twisting algorithm (STA) with adaptive gains [19] has
been tested for the AIAUV in 2DOF and in 6DOF in [20] and
[21], respectively, because it is the most powerful second-
order continuous SMC algorithm. STA attenuates chattering,
and no conservative upper bound on the disturbance gradient
has to be considered to maintain sliding because of the
adaptive gains.

In [20] tracking control of the centre of mass of the
AIAUV in 2D was considered by using STA with adap-
tive gains [19] and a higher-order sliding mode observer
(HOSMO) [22]. It was proven that the tracking errors were
ultimately bounded, and the simulation results demonstrated
that the proposed control method provided excellent tracking
capabilities. The results obtained in [20] were therefore
extended to 6DOF in [21]. In [21], the position, orientation
and joint angles were considered for the tracking problem,
and equally good results were obtained in theory and in
simulations. In [20] and [21], a HOSMO had to be used
because velocity measurements were unavailable. When us-
ing a HOSMO, Euler angles have to be used to represent
the system since the observer does not work with a different
number of states in position versus velocity.

In this paper the generalized super-twisting algorithm
(GSTA) [23], will be used for trajectory tracking in 6DOF.
GSTA is an extension of STA that provides finite-time
convergence in the presence of time- and state-dependent
perturbations, which is essential for robust control of the
AIAUV. As in [21], we consider the position, orientation
and joint angles for the trajectory tracking, but we assume
that the velocity measurements are available. We thus avoid
using a HOSMO, which means that we can use quaternions
to represent the system. We then avoid singularities in the
Jacobian matrix at θ = ±π/2, which is a well-known
problem with using Euler angles (xyz-convention). Finding
and including an observer that works with quaternions will
be a task for future work. Furthermore, we show the ultimate



boundedness of the tracking error, and we illustrate our
theoretical findings with simulation results. Finally, GSTA
is compared with STA with adaptive gains.

The contributions can be summarized as follows:
• The trajectory tracking control problem of an AIAUV

in 6DOF is solved by using GSTA.
• It is proven that the tracking errors are ultimately

bounded.
• The results are compared with those obtained with the

STA with adaptive gains.
The remainder of this paper is organized as follows. In

Section II, the model and the tracking control problem for
the AIAUV are defined mathematically. The control law
for tracking the desired trajectory is presented in Section
III. In Section IV, we prove the ultimate boundedness of
the tracking errors. A description of the simulation model
implemented for this paper and the simulation results are
presented in Section V. Conclusions and suggestions for
future work are given in Section VI.

II. MODELLING AND THE TRACKING CONTROL PROBLEM

In this section, we present the model and the mathematical
definition of the tracking control problem for the AIAUV.
The AIAUV is composed of n links connected by n − 1
motorized joints, where each joint is regarded as a one-
dimensional Euclidean joint. We consider link 1 to be the
base and link n to be the front, where the end-effector is
positioned. Furthermore, the AIAUV is equipped with m
thrusters. To provide station-keeping capabilities it has tunnel
thrusters acting through the links, and to provide forward
thrust it has one or more thrusters acting along the body of
the AIAUV. For control purposes, the AIAUV is considered
to be a floating-base manipulator operating in an underwater
environment, subject to added mass forces, dissipative drag
forces, and gravity and buoyancy forces. This allows us
to model the AIAUV as an underwater vehicle-manipulator
system (UVMS), with dynamic equations given in matrix
form as [24], [25]

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + g(q,RIB) = τ(q) (1)
where q ∈ R(n−1) is the vector representing the joint angles,
M(q) is the inertia matrix including added mass terms,
C(q, ζ) is the Coriolis-centripetal matrix, D(q, ζ) is the
damping matrix and g(q,RIB) is the matrix of gravitational
and buoyancy forces. The control input is given by the
generalized forces τ(q):

τ(q) =

[
T (q) 06×(n−1)

0(n−1)×m I(n−1)×(n−1)

] [
τthr
τq

]
(2)

where T (q) ∈ R6×m is the thruster configuration matrix,
τthr ∈ Rm is the vector of thruster forces and τq ∈ R(n−1)

represents the joint torques. To implement the control input
τ(q), a thruster allocation scheme as proposed in [26] needs
to be implemented to distribute the desired control inputs
onto the m thrusters. The vector of body-fixed velocities, ζ,
is defined as

ζ =
[
vT ωT q̇T

]T ∈ R6+(n−1) (3)
where v and ω are the body-fixed linear and angular veloc-
ities of the base of the AIAUV, and q̇ is the vector of joint

angle velocities. In [21] we used Euler angles to represent
the orientation of the AIAUV. Here, we will instead use
quaternions to avoid singularities in the Jacobian matrix.
Using Euler parameters rather than Euler angles provides
us the advantage of a well-defined Jacobian matrix, which is
necessary to be able to use the inverse of the Jacobian matrix.
However, at the same time, we cannot use the HOSMO
from [22], which means that we need velocity measurements
to control the system. The complete state vector specifying
the position, orientation, and shape of the AIAUV is then
represented as

ξ =
[
ηT1 pT qT

]T ∈ R7+(n−1) (4)
where η1 =

[
x y z

]T ∈ R3 is the position of the base
and p =

[
εT η

]T
=
[
ε1 ε2 ε3 η

]T ∈ R4 is the
unit quaternion describing the orientation of the base in the
inertial frame. The Euler parameters η and ε satisfy

η2 + εT ε = 1. (5)
The kinematic differential equation for the unit quaternion
can be written as [24][

ε̇
η̇

]
=

1

2

[
ηI3 + S(ε)
−εT

]
ω = Jk,oq(p)ω (6)

where I3 is the (3 × 3) identity matrix and S(·) is the
cross-product operator defined as in [27, Definition 2.2]. To
complete the dynamic model, we can write the relationship
between the body-fixed velocities and the complete state
vector specifying the position, orientation, and shape of the
AIAUV as

ξ̇=J(p)ζ=

 RIB(p) 03×3 03×(n−1)
04×3 Jk,oq(p) 04×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)

ζ (7)

where RBI is the rotation matrix expressing the transforma-
tion from the inertial frame to the body-fixed frame.

The desired velocities are denoted as
ζd =

[
vTd ωTd q̇Td

]T
(8)

in the body-fixed frame. The desired velocities, ζd, are
typically given by the inverse kinematics as described in
[28]. The desired trajectory,

[
ηT1,d pTd qTd

]T
, can then be

reconstructed from the desired velocity using, for instance,
a CLIK algorithm [29, Ch. 11]. The desired orientation of
the base of the AIAUV with respect to the inertial reference
frame is given by the unit quaternion, pd =

[
εTd ηd

]T
,

and the corresponding rotation matrix R(pd). The orientation
error can then be specified by the composite rotation

RT (pd)R(p) = R(p̃) (9)
where

p̃ =

[
ε̃
η̃

]
=

[
ηεd − ηdε+ S(εd)ε

ηηd + εT εd

]
(10)

is the unit quaternion representing the orientation error. For
the orientation, the aim is to ensure that p = ±pd, which
corresponds to p̃ =

[
01×3 ±1

]T
. The tracking errors then

consist of the position error η̃1, the orientation error ε̃ and
the joint angle error q̃, and the tracking error vector can then
be written as

ξ̃ =

η̃1ε̃
q̃

 =

 η1 − η1,d
ηεd − ηdε+ S(εd)ε

q − qd

 . (11)

The goal of the tracking problem is to make the error



vector, ξ̃, converge to zero. The tracking control objective
is therefore to make (ξ̃, ζ̃) = (0, 0) an asymptotically stable
equilibrium point of (1) and (7), which will ensure that
the tracking error will converge to zero. Note that η̃ is not
included as an independent state in (11), since η̃ and ε̃ satisfy
(5). When ε̃→ 0, then p̃ =

[
01×3 ±1

]T
.

III. SLIDING MODE CONTROL

In this section, we find the error dynamics for the system
and propose a tracking control law for the AIAUV based on
the theory of SMC.

A. Error dynamics

Define x1 = ξ̃ and

x2 =

 RIB(p̃) 03×3 03×(n−1)
03×3

1
2 (η̃I3 + S(ε̃)) 03×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)

(ζ − ζd)
= T (p̃)ζ̃.

(12)

Note that T−1(p̃) is well defined such that (12) is a globally
valid coordinate transformation. The reason why this is well
defined will be explained in Sec. IV. The reason for choosing
x2 = T (p̃)ζ̃ is that this makes x2 = ẋ1, and by using that, we
can prove that the error variables asymptotically converge to
zero when the sliding surface is equal to zero (see Sec. III-B
for the proof), which is a requirement when designing the
sliding surface. If x2 was chosen to be equal to ζ̃, then this
would not have been the case. The error dynamics can then
be written as

ẋ1 = x2

ẋ2 =
d

dt
(T (p̃))T−1(p̃)x2 +M−1(q̃ + qd)T (p̃)

(−C(q̃ + qd, (T
−1(p̃)x2 + ζd))(T

−1(p̃)x2 + ζd)

−D(q̃ + qd, (T
−1(p̃)x2 + ζd))(T

−1(p̃)x2 + ζd)

− g(q̃ + qd, R
I
B) + τ(q̃ + qd)−M(q̃ + qd)ζ̇d).

(13)

To reduce the space used to write the model, we will
introduce some new functions, f1(·) = d

dt (T (p̃))T−1(p̃) and
f2(·) = (−C(·)(T−1(p̃)x2 + ζd)−D(·)(T−1(p̃)x2 + ζd)−
g(·)−M(·)ζ̇d, such that the model can be written as

ẋ1 = x2

ẋ2 = f1(·)x2 +M−1(·)T (·)(f2(·) + τ(·))
(14)

B. Sliding surface

To use an SMC approach, we must first design a sliding
surface. It should be designed such that when the sliding
variable σ goes to zero, the error variables asymptotically
converge to zero and such that the control input τ(q) appears
in the first derivative of σ. The sliding surface is chosen as

σ = x1 + x2 ∈ R6+(n−1). (15)
If σ = 0, we will have x1 + x2 = 0. Since x2 = ẋ1, we can
write this as

ẋ1 = −x1 (16)

which ensures that x1 globally exponentially converges to
zero. Since x1 = ξ̃, the original state variable ξ̃ will also
globally exponentially converge to zero if σ = 0.

C. Generalized super-twisting algorithm
In this section, the equations describing GSTA are pre-

sented in detail. The GSTA proposed in [23] can be written
as

uGSTA = −k1φ1(σ) + z ∈ R6+(n−1)

ż = −k2φ2(σ)
(17)

where
φ1(σ) = dσc

1
2 + βGSTAσ

φ2(σ) =
1

2
dσc0 +

3

2
βGSTAdσc

1
2 + β2

GSTAσ
(18)

where dacb = |a|b sgn(a), and k1 ∈ R6+(n−1), k2 ∈
R6+(n−1) and βGSTA ∈ R6+(n−1) are controller gains. With
the extra linear term, compared to STA, three degrees of
freedom are obtained in the design of GSTA gains: k1, k2
and βGSTA. The linear growth term βGSTAσ in φ1 helps to
counteract the effects of state-dependent perturbations, which
can exponentially increase in time. By choosing the gains
as described in [23], the algorithm is proven to make σ
go to zero, globally and in finite time in the presence of
state- and time-dependent uncertain control coefficients and
perturbations. Note that the gains when chosen as described
in [23], are defined based on bounds on the perturbations
and control coefficients.

D. Super-twisting algorithm
We want to compare the GSTA with an algorithm that

has previously been used and proved more efficient than a
PD controller for the AIAUV; the STA with adaptive gains,
[20]. In this section for completeness, we briefly present the
equations describing the STA with adaptive gains, previously
presented in [20] and [21]. The difference between [20], [21]
and the algorithm presented here, is that the sliding surface σ
is chosen differently. The STA with adaptive gains proposed
in [19] can be written by the update law

uSTA = −α|σ|1/2 sgn(σ) + v ∈ R6+(n−1)

v̇ = −βSTA sgn(σ)
(19)

where the adaptive gains are defined as

α̇ =

{
ω1

√
γ1
2 if σ 6= 0

0 if σ = 0
(20)

and
βSTA = 2ε1α+ λ1 + 4ε21 (21)

where ε1 ∈ R6+(n−1), λ1 ∈ R6+(n−1), γ1 ∈ R6+(n−1) and
ω1 ∈ R6+(n−1) are positive constants and σ is the sliding
surface. For implementation purposes, a small boundary is
put on the sliding surface such that the adaptive gains can
be expressed as

α̇ =

{
ω1

√
γ1
2 if |σ| > αm

0 if |σ| ≤ αm
βSTA = 2ε1αx + λ1 + 4ε21

(22)

where the design parameter αm is a small positive constant
chosen empirically. The STA with adaptive gains makes σ
and σ̇ go to zero in finite-time, [19].

IV. STABILITY ANALYSIS

In this section, we will analyse the closed-loop system,
and we show that the tracking error converges asymptotically



to zero. In the proof of Theorem 1 under the analysis of
subsystem 2, we state the results obtained in [23] before
we use the Lyapunov function obtained in [23] to prove
uniformity, which has not been shown previously.

A. Overall closed-loop dynamics

By using the fact that ẋ1 = x2 from (13), (15) can be
written as

ẋ1 = σ − x1. (23)

By differentiating (15), we obtain
σ̇ = ẋ1+ẋ2 = x2+f1(·)x2+M−1(·)T (·)(f2(·)+τ(·)) (24)

and by using that x2 = σ + x1, we obtain
σ̇ = σ+x1+f1(·)(σ+x1)+M−1(·)T (·)(f2(·)+τ(·)). (25)

Now, by introducing ϕ(σ, x1, t) = ϕ1(σ, x1, t)+ϕ2(σ, x1, t),
where ϕ1(0, x1, t) = 0, γ(·) = M−1(·), and by setting

τ(·) = T−1(·)uGSTA (26)
we obtain
σ̇=−k1γ(·)φ1(σ)+ϕ1(σ, x1, t)+γ(·)(z+

ϕ2(σ, x1, t)

γ(·)
) (27)

where ϕ1(σ, x1, t) = σ + f1(·)σ + γ(·)(−C(·)σ − D(·)σ)
and ϕ2(σ, x1, t) = x1+f1(·)x1+γ(·)(−C(·)(x1+T (·)ζd)−
D(·)(x1+T (·)ζd)−T (·)g(·)−T (·)M(·)ζ̇d). Now by setting
σ1 = σ and σ2 = z + ϕ2(σ, x1, t)/γ(·), we can write the
overall closed-loop dynamics as∑

1

{
ẋ1 = σ1 − x1∑

2

{
σ̇1 = −k1γ(·)φ1(σ1) + ϕ1(σ1, x1, t) + γ(·)σ2
σ̇2 = −k2φ2(σ1) + d

dt (
ϕ2(σ1,x1,t)

γ(·) )

(28)

Theorem 1: Consider the error dynamics given by (13)
and let the sliding surface σ be defined by (15). Let
the control input be given by (26). Then, the closed-loop
dynamics is described by (28), and the origin of this cascade
system is uniformly globally asymptotically stable (UGAS),
which ensures the asymptotic convergence of the tracking
error when 0 < km ≤ γ(·) ≤ kM , |ϕ1(·)| ≤ α|φ1(σ)| and
| ddt (

ϕ2(·)
γ(·) )| ≤ ∆, where km, kM , α and ∆ are positive

constants.
Proof: To analyse the cascade system (28), [30,

Lemma 2.1] will be used. Note that the system is actually
interconnected, but since subsystem 1 is well behaved as
long as σ does not explode, i.e. x1 is bounded, the system
can be analysed with cascaded theory by analysing along
the trajectories with x1(t) bounded. When analysing the
complete system, we will prove that this is indeed the case,
i.e. prove that x1(t) is uniformly globally bounded. We first
start by analysing subsystem 1 without perturbations.

Analysis of subsystem 1 with σ1 = 0: With σ1 = 0,
subsystem 1 can be written as∑

1

{
ẋ1 = −x1 (29)

This is clearly a globally exponentially stable linear system,
but since we will need a Lyapunov function to analyse
this system when σ1 6= 0, we use the Lyapunov function
candidate V1(x1) = 1

2x
2
1 for the analysis. The derivative of

V1 yields
V̇1(x1) = x1ẋ1 = x1(−x1) = −x21 ≤ −||x1||

2 (30)

This means that the Lyapunov function satisfies:
k1||x1||a ≤ V1(x1) ≤ k2||x1||a

∂V1
∂x

f(t, x) ≤ −k3||x1||a
(31)

with k1 = k2 = 1
2 , k3 = 1 and a = 2. Hence, by virtue of

[31, Theorem 4.10], the origin for subsystem
∑

1 with σ = 0
is globally exponentially stable.

Analysis of subsystem 2: Subsystem
∑

2 has the same
structure as the system in [23]. In [23], it is proven that the
origin of the system is globally finite-time stable (GFTS) if
0<km≤γ(·)≤kM , |ϕ1(·)|≤α|φ1(σ)| and | ddt (

ϕ2(·)
γ(·) )|≤∆,

where km, kM , α and ∆ are positive constants. Since the
system is GFTS it is also globally asymptotically stable [32,
Proposition 3]. To prove that the origin of σ is UGAS, [32,
Theorem 12] will be used. The function V = ξTPξ, where

ξT = [φ1(σ1) σ2] and P =

[
p1 −1
−1 p2

]
, p1p2 > 1, is the

generalized Lyapunov function for subsystem 2; see [23] for
details. This function is globally proper and continuous (but
not Lipschitz continuous on the line σ1 = 0). For σ1 6= 0,
this function is differentiable and

DVF (σ1,σ2)(σ1, σ2) ≤ −µ1

√
V (σ1, σ2) (32)

where µ1 > 0 and(
σ̇1
σ̇2

)
∈F (σ1, σ2)=

(
−k1γ(·)φ1(σ1) + ϕ1(σ1, x1, t) + γ(·)σ2

−k2φ2(σ1) + d
dt (

ϕ2(σ1,x1,t)
γ(·) )

)
(33)

For σ1 = 0 and σ2 6= 0 we need to calculate a generalized
directional derivative. Thus, consider the limit

D{hn},{un}V(0,σ2)=lim
n→∞

V(hnu
σ1
n ,σ2+hnu

σ2
n )−V(0,σ2)

hn
(34)

where {hn} ∈ K (K is a set of all sequences of real numbers
converging to zero, i.e. {hn} ∈ K⇔ hn → 0, hn 6= 0), un =
(uσ1
n , u

σ2
n )T , {un} ∈ M(d) (M(d) is a set of all sequences

of real vectors converging to d ∈ Rn, i.e. {vn} ∈ M(d) ⇔
vn → d, vn ∈ Rn), and d ∈ F (0, σ2). In this case uσ1

n → σ2
and uσ2

n → q, where q ∈ [− 1
2k2 ±∆, 12k2 ±∆]. Hence,

D{hn},{un}V (0, σ2)= lim
n→∞

V (hnσ2, σ2 + hnq)− V (0, σ2)

hn

= lim
n→∞

(
p1(|hnσ2|(1/2) sgn(hnσ2) + βhnσ2)2

− 2(|hnσ2|(1/2) sgn(hnσ2) + βhnσ2)(σ2 + hnq)

+ p2(σ2 + hnq)
2 − p2σ2

2

)
/hn = −∞

(35)

Therefore,
DF (σ1,σ2)V (0,σ2)={−∞}≤−µ1

√
V (0,σ2) for σ2 6=0 (36)

and the origin of subsystem 2 is therefore globally uniformly
finite-time stable [32, Theorem 12], and therefore, it is also
UGAS. This results implies that ||σ(t)|| < β ∀t ≥ 0.

Analysis of the complete system: To analyse the complete
system, [30, Lemma 2.1] is used. To check whether the
solutions of the complete system are uniformly globally
bounded, the boundedness of x1 must be evaluated when
σ1 6= 0. The derivative of the Lyapunov function V1 is then
as follows:

V̇1(x1) = −||x1||2 + σx1

≤ −||x1||2 + θ||x1||2 − θ||x1||2 + β||x1||

≤ −(1− θ)||x1||2 ∀ ||x1|| ≥
β

θ

(37)



where 0 < θ < 1. The solutions are then UGB because the
conditions of [31, Theorem 4.18] are satisfied. Consequently,
the conditions of [30, Lemma 2.1] are satisfied, which
implies that the origin of the complete system is UGAS.

Remark 1: One way for the inequalities in Theorem 1 to
be satisfied is if the assumptions in Theorem 2 are satisfied.
The parameters α, km, kM and ∆ should then be chosen
according to the inequalities (38), (41) and (42) given in
the proof, and the procedure in [23] can then be used for
choosing the gains k1, k2 and βGSTA in (17) and (18), which
will ensure the finite-time convergence.

Theorem 2: Consider the closed-loop system in (28). If
the following assumptions are satisfied

Assumption 1: The AIAUV is neutrally buoyant.
Assumption 2: The AIAUV has only revolute joints.
Assumption 3: The reference trajectory and its derivatives

are continuous and bounded by design.
Assumption 4: The matrix || d

2

dt2T (·)|| ≤ TM , where T (·)
is defined in (12) is bounded, the Coriolis-centripetal matrix
is bounded by ||C(·)||≤CM ||x2|| and || ddtC(·)||≤Cm||x2||,
the damping matrix is bounded by ||D(·)|| ≤DM ||x2|| and
|| ddtD(·)|| ≤ Dm||x2||, and the matrix of gravitational and
buoyancy forces is bounded by || ddtg(·)||≤gM ||x2||.

Assumption 5: x2(t) is bounded.
then positive constants km, kM , α and ∆ exist such that

1) Inequality 1: 0 < km ≤ γ(·) ≤ kM
2) Inequality 2: |ϕ1(·)| ≤ α|φ1(σ)|
3) Inequality 3: | ddt (

ϕ2(·)
γ(·) )| ≤ ∆

are satisfied.
Remark 2: These assumptions are valid since the AIAUV

is a mechanical system.
Proof: To be able to prove that the above inequalities

are satisfied, we first note some properties that arise from
having revolute joints: [24].

1) Property 1: λmin(M) ≤ ||M || ≤ λmax(M)
2) Property 2: M = MT > 0
3) Property 3: Ṁ = C+CT and ζT (Ṁ−2C)ζ = 0 ∀ ζ ∈

R6+(n−1)

Proof of Inequality 1: 0 < km ≤ γ(·) ≤ kM
Since γ(·) = M−1(·), we need to prove that

0 < km ≤M−1(·) ≤ kM (38)
From Properties 1 and 2, we have that the above is true, and
Inequality 1 is therefore satisfied.

Proof of Inequality 2: |ϕ1(·)| ≤ α|φ1(σ)|
Since ϕ1(σ, x1, t) = σ + f1(·)σ + γ(·)(−C(·)σ − D(·)σ)
with f1(·) = d

dt (T (p̃))T−1(p̃), we need to prove that
|σ + f1(·)σ + γ(·)(−C(·)σ −D(·)σ)| ≤

α|φ1(σ)| = α|dσc
1
2 + βGSTAσ|.

(39)

By rewriting
|1 + f1(·) + γ(·)(−C(·)−D(·))||σ| ≤

α|φ1(σ)| = α|dσc
1
2 + βGSTAσ|

(40)

we find that if
|1 + f1(·) + γ(·)(−C(·)−D(·))| ≤ α, (41)

the inequality holds. Now, T (·) is a matrix that contains the
rotation matrix RIB , the identity matrix and the expression

Fig. 1. The Eelume vehicle (Courtesy: Eelume)

(1/2)(η̃I3 + S(ε̃)), which comes from Jk,oq(p̃). Since they
are all bounded, the matrix T (·) will also be bounded. The
matrix T (·) is also well defined since quaternions are used,
which means that T−1(p̃) exists and will also be bounded.
By taking the derivative of T (·) we find that for d

dt (T (p̃))
to be bounded, x2(t) needs to be bounded, which it is by
assumption. The function f1(·) is therefore a function of
bounded signals and f1(·) is thus bounded. The function
γ(·) is found to be bounded in the proof of Inequality 1.
The matrices C(·) and D(·) are bounded by assumption as
long as x2(t) is bounded, which is bounded by assumption.
The matrices C(·) and D(·) are therefore bounded, and since
all the functions on the right-hand side of (41) are bounded,
the inequality holds. Eq. (39) is therefore satisfied, and thus
Inequality 2 is satisfied.

Proof of Inequality 3: | ddt (
ϕ2(·)
γ(·) )| ≤ ∆

Since ϕ2(σ, x1, t) = x1 + f1(·)x1 + γ(·)(−C(·)(x1 +
T (·)ζd)−D(·)(x1 + T (·)ζd)− T (·)g(·)− T (·)M(·)ζ̇d), we
need to prove that

| d
dt

((x1+f1(·)x1+γ(·)(−C(·)(x1+T (·)ζd)−D(·)

(x1+T (·)ζd)−T (·)g(·)−T (·)M(·)ζ̇d))/γ(·))|≤∆.
(42)

By differentiating, we find that for the above to hold, we
need that d

dtf1(·), d
dtγ(·), d

dtC(·), d
dtD(·), g(·), d

dtg(·) and
d
dtM(·) are bounded since x1(t), x2(t), f1(·), γ(·), T (·),
M(·), C(·), D(·), d

dt (T (p̃)), ζd, ζ̇d and ζ̈d have been proven
to be bounded before or are bounded by assumption.

For the functions d
dtf1(·) to be bounded, we need for the

matrix d2

dt2T (·) to be bounded, which it is by assumption;
thus d

dtf1(·) is bounded. The time derivative d
dtγ(·) is

bounded if d
dtM(·) and M(·) are bounded. Since C(·) is

bounded, d
dtM(·) is bounded (from Property 3), and M(·)

is bounded by Property 1. The function d
dtγ(·) is therefore

bounded. Furthermore, d
dtC(·) and d

dtD(·) are bounded since
x2(t) is bounded by assumption. The matrix g(·) is bounded
since the AIAUV is neutrally buoyant, and d

dtg(·) is bounded
by assumption since x2(t) is bounded. Now, since (42) is
satisfied Inequality 3 is satisfied.

V. SIMULATION RESULTS

A. Implementation

The complete model and controllers are implemented
in MATLAB Simulink. The model is implemented by the
method described in [33].The implemented AIAUV is based
on the Eelume robot, Fig. 1. The AIAUV has n = 9 links and
m = 7 thrusters. The properties of each link are presented



in Tab. I. In the thrusters column, ”2: Z, Y” means that the
links have 2 thrusters, one working in the z-direction and
one working in the y-direction of the link. Since the robot
has n = 9 links, it has n− 1 = 8 joints. All the joints were
implemented as revolute. The joint properties are presented
in Tab. II. In the simulation we use an inverse kinematic

TABLE I
EELUME LINK PROPERTIES

Link nr. Length [m] Volume [m3] Thrusters
1 0.62 0.0143 0

2, 4, 6, 8 0.104 0.006 0
3 0.584 0.0127 2: Z, Y
5 0.726 0.0098 3: X, X, Z
7 0.584 0.0127 2: Y, Z
9 0.37 0.0078 0

TABLE II
EELUME JOINT PROPERTIES

Joint nr. Joint rotation axes
1, 3, 5, 7 Z
2, 4, 6, 8 Y

controller to give us the reference that we want the AIAUV
to follow, as proposed in [26]. The thruster allocation matrix
is also implemented as proposed in [26].

B. Simulations

The task that is performed in the simulation is trajectory
tracking for the base of the AIAUV. A suitable path for
the base to follow is generated by giving set-points to an
inverse kinematic controller. The set-points given are for the
end-effector of the AIAUV, and the inverse kinematic then
generates a reference trajectory for the base and joints, such
that the end-effector reaches it target. Three different set-
points are given to the inverse kinematic, and they change
at 5, 200, 400 seconds. In Fig. 2 and Fig. 3 the reference
trajectory for the base (i.e. position and orientation) and
joints are presented. For the simulations, a fixed-step solver
with a step size of 10−4 was used. Gains where chosen
such that the comparison with the STA with adaptive gains
would be as fair as possible. Specifically, the gains were
chosen such that the two algorithms use the same maximum
thruster force, i.e. the absolute maximum amplitude for the
thruster forces are as similar as possible. Since the STA
has an adaptive gain α, the choice of parameters is not that
important for the STA. The choice of gains can impact how
fast the adaptive gain reaches its optimal value, but it will
always reach that value. The gains for the STA were therefore
chosen by tuning them manually. Specifically, the gains in
the super-twisting algorithm with adaptive gains were set
to ε1 = [0.0001e14]T , λ1 = [0.1e6 5e8]T , γ1 = [e14]T ,
ω1 = [8e14]T and αm = [0.005e14]T . In Fig. 5 the thruster
forces applied when using STA with adaptive gains are
presented. The GSTA gains were then tuned to achieve

Fig. 2. Reference position and orientation of the base

Fig. 3. Reference joint angles

Fig. 4. GSTA: Thruster forces

similar maximum amplitude for the resulting thruster forces.
The gains were chosen as k1 = [5e14]T , k2 = [0.0002e14]T

and βGSTA = [15e14]T where ei is a 1 × i vector of ones.
In Fig. 4 the thruster forces applied when using GSTA are
presented. Fig. 6 presents the simulation results for the
position errors and orientation errors of the base. In Fig. 7,
the simulation results for the joint angles errors are presented.
Tab. III presents the absolute maximum position error before
and after settling for both algorithms.

C. Discussion

From Figs. 6 and 7 we can see that there are small dif-
ferences in the tracking performance of the two algorithms.



Fig. 5. STA with adaptive gains: Thruster forces

Fig. 6. Position and orientation error

Fig. 7. Joint angles error

In the x-direction we can see that the GSTA has a smaller
overshoot than the STA before settling, and for θ and ψ we
can see that when the STA is used there are small oscillations
at the beginning of the simulation. For ψ we can see that after
200s and 400s, i.e. when the set-points are changed for the
end-effector, there is a small overshoot for both algorithms.
However, the overshoot at 200s is a bit larger for the STA
then for the GSTA. For the joint angle errors, shown in Fig. 7,
we can see the same tendencies as we did for the orientation
errors. The STA produce some oscillations in the beginning
that the GSTA does not have, and then there is an overshoot
for both algorithms at 200s and 400s. However, for the joint

angle errors the overshoot at 200s is a bit larger for the GSTA
than for the STA. By taking a look at Table III, we see that
for the position and orientation (expect for y) the GSTA gives
better error before settling, while for the joint angle errors
the STA gives better error before settling. The STA also gives
better error after settling ((11/14) cases). This can perhaps be
explained by looking at the thruster use in Fig. 4 and Fig. 5.
We can see that the thruster forces used when using STA
(Fig. 5) are much more aggressive than when using GSTA
(Fig. 4). In the beginning the STA uses longer time to settle,
but after 200s and 400s the GSTA uses longer time to settle.
The STA does however have some tendencies of chattering,
that the GSTA does not have. So the GSTA has a bit better
thruster use, since the thruster forces are smoother. It also has
mostly smaller errors before settling, at least for the position
and orientation, but it does have larger errors after settling.
The STA on the other hand is more aggressive, and therefore
produces some larger overshoots in the beginning, but it gives
better errors than the GSTA after settling. The thruster use
for both algorithms are well within the thruster limit of 50N ,
which is the limit of the thrusters on the AIAUV.

One thing worth noticing about the GSTA is that by tuning
the gains one can reduce the thruster use noticeably, without
losing too much when it comes to tracking capabilities.
While for the STA this is not that easy since the gains are
adaptive, and therefore will converge to what is appropriate.
One can choose the gains such that the STA with adaptive
gains is a bit less aggressive, but then it takes longer time
for the errors to converge, and the errors are not noticeable
changed. Using the GSTA, the simulations show that even
though we reduce the thruster use we can achieve an error in
the magnitude of 10−4, and also a low error before settling.
Then the question comes down to whether we need better
tracking error than 10−4, and that depends on restrictions
on thrusters and positioning systems. For instance, if the
positioning system does not give better measurement errors
than 10−4, then we might not need better tracking errors than
10−4.

TABLE III
ABSOLUTE MAXIMUM VALUE FOR ERRORS

Errors
GSTA STA

Before settling After settling Before settling After settling
x 0.0384 2.4886 · 10−6 0.1166 6.1575 · 10−8

y 0.0089 2.6793 · 10−7 0.0075 3.7481 · 10−7

z 1.2834 · 10−4 1.3775 · 10−7 0.0039 2.7480 · 10−8

φ 5.2596 · 10−4 4.1004 · 10−5 0.0018 3.8510 · 10−6

θ 2.8117 · 10−4 2.3776 · 10−7 0.0101 2.8715 · 10−7

ψ 0.0126 1.2887 · 10−5 0.0181 5.4592 · 10−7

q1 0.0101 1.8077 · 10−5 0.0026 8.2499 · 10−7

q2 1.6885 · 10−4 8.1314 · 10−6 1.5384 · 10−5 3.9801 · 10−6

q3 0.0055 5.5463 · 10−6 0.0023 6.1911 · 10−8

q4 8.5975 · 10−5 2.6329 · 10−6 7.1403 · 10−6 2.0984 · 10−6

q5 0.0015 1.4348 · 10−7 0.0011 4.2552 · 10−9

q6 4.5758 · 10−5 2.9402 · 10−6 9.6045 · 10−6 1.3011 · 10−6

q7 1.0849 · 10−4 5.2766 · 10−8 5.0211 · 10−4 3.1874 · 10−8

q8 6.3008 · 10−6 4.5485 · 10−8 4.5491 · 10−6 3.4363 · 10−7



VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed the generalized super-
twisting algorithm for solving the trajectory tracking control
problem of the AIAUV. Furthermore, we have proven that
the closed-loop error system is uniformly globally asymp-
totically stable, and have performed a simulation study
to verify the applicability of the proposed control law in
6DOF. Specifically, we have performed a comparison study
between the generalized super-twisting algorithm and the
super-twisting algorithm with adaptive gains. The conclusion
of the simulation study is that both algorithms can be
used, but which one should be used depends on restrictions
on thruster forces and the accuracy of the measurement
data. The generalized super-twisting algorithm shows better
thruster use than the super-twisting algorithm with adaptive
gains.

Future work includes experiments to investigate the per-
formance of the control algorithm in practice and finding and
including an observer that work with quaternions.
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