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Abstract— This paper develops an obstacle avoidance strat-
egy for inspection drones equipped with simple range find-
ing sensors, such as radar or sonar. The obstacle avoidance
strategy uses scenario-based model predictive control where
the predicted outcomes of a set of possible control actions are
evaluated. The action with the best predicted outcome amongst
the safe options is chosen. The resulting behaviour is deemed
safe if the probability of collision at each time-step in the
prediction is lower than a given maximal accepted probability.
The probability of collision is calculated by combining a
probability density function of the position of the drone with
an obstacle probability map generated by the range finding
sensors. This constraint is checked at each step over the
prediction horizon thus ensuring that the control action will
give rise to safe behaviour. The algorithm is implemented
in a 2D case and tested with a simple model for the range
finding sensors. Simulations show that the drone is able to
avoid obstacles and that the drone will change speed or take
detours to avoid flying in potentially dangerous areas to mitigate
risk. The algorithm is designed for avoiding obstacles along
a pre-planned path. The pre-planned path is assumed to be
generally good, but might be unsafe or not take some unknown
obstacles into account. If the pre-planned path goes through
a larger convex area or does not take a large obstacle into
account, then this algorithm might not find a way around the
obstacle and the drone will stop at a safe distance. The path of
the drone must then be re-planned taking these obstacles into
account. The resulting obstacle avoidance strategy guarantees
safe behaviour which enables higher level controllers or human
planners to plan a path based on lacking obstacle information
without taking the safety of the drone into consideration.

I. INTRODUCTION
A. Background and motivation

When moving close to static obstacles, such as for in-
dustrial inspection, including the uncertainties in the drone
and obstacle positions are essential to avoid collisions. One
approach to incorporate uncertainty in the position of the
drone is to assume bounded noise and then to ensure that all
possible positions where the drone can end up will not be
in an obstacle. This is done for the linear case with linear
constraints in [1] and for a nonlinear case with a predefined
set of manoeuvres in [2]. Another example of bounding is
in [3] where the positional variance at each time-step is
calculated and a constraint is introduced that requires that
obstacles are k standard deviations away from the drone.
Bounding the accepted uncertainty or accepted positional
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offsets makes sure that the probability of the drone colliding
is smaller than the probability that the bounds were wrong.
This method is conservative, which might be good when the
goal is to get to the goal position without colliding with
something along the way. But when the goal is to fly close
to something for inspection, such conservative bounds might
prevent the drone from getting as close to the object as is
desired. Another limitation with bounding is that it does not
give an obvious answer on what should be done when no
action, including aborting the mission, is feasible.

A less conservative approach would be to calculate the
probability of collision and then bound this probability. This
probability could be set based on maximizing the revenue
taking into account the value of the mission and the expected
loss if a collision occurred. When no action fulfils the
required probability for success, the action that minimizes the
probability of collision can be chosen. A method for model
predictive control using an upper bound for the collision
probability with linearly constrained obstacles is developed
in [4]. This work assumes that the position and shape of the
obstacles are known.

When the environment is not fully known, uncertainties
in the environment must be considered to give a reasonable
probability estimate of collision. One approach to describe
obstacle uncertainty is to use occupancy grid maps. Each cell
in these maps contains information on how likely it is that the
current cell contains an obstacle. Mapping with range finding
sensors using occupancy grid maps was first introduced by
[5]. This work lacked a computationally feasible method for
updating the map for non-ideal sensor models. A linear time
method that solved this problem was developed in [6].

Different methods for utilizing uncertainty in obstacle
information with potential fields is shown in [7] and [8].
[7] utilizes potential fields to push the vehicle further away
from objects that have a higher certainty of existence, while
[8] pushes the vehicle further away from objects where
the positional uncertainty is larger. These works incorporate
different aspects of uncertain environment information but do
not incorporate the uncertainty in the position of the vehicle
itself, and do not consider risk in a probabilistic sense.

B. Contribution

The main contribution of this paper is to develop a
risk-based framework for obstacle avoidance in unknown
environments that incorporates both uncertainty in the envi-
ronment and the vehicle’s position. The algorithm developed
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Fig. 1: Control hierarchy. Pc,max is the maximal accepted
probability of collision at each time-step. WP are the way-
points marking the planned path. α and θ are angle offsets
relative the nominal direction of motion. v0 is the reference
speed, vre f the reference velocity, τττ are motor torques and
forces, y are measurements, and x̂ is the estimated state.

in [9] for collision avoidance between ships is adapted to
the inspection drone case and modified to use probabilistic
uncertainty models that utilizes uncertainties in the drone
state and the environment to calculate the probability of
collision. The collision avoidance strategy is generalized to
3D. To achieve this a 3D line of sight guidance strategy is
proposed.

II. OVERVIEW

The task is to make an obstacle avoidance strategy for
execution of industrial inspection missions with an explicit
awareness of probability of collision with obstacles. The
task of the drone is to collect data while following the
straight lines between pre-planned waypoints. There might be
unexpected obstacles blocking the planned path of the drone
which forces the drone to deviate from the planned path to
avoid collision. The drone is equipped with multiple wide-
angle range finding sensors that give limited information
about the obstacles. Examples of wide-angle range finding
sensors are radar and sonar. The large field of view of the
sensor and the position uncertainty of the drone at the time
of sensing gives an uncertainty in the position and shape of
detected obstacles.

The proposed control hierarchy is shown in figure 1. The
drone is controlled by a velocity controller that ensures that
the drone moves in the designated direction at the designated
speed. The velocity reference vector needed by the velocity
controller is supplied by a line of sight (LOS) guidance law.
This guidance law uses the list of waypoints to calculate the
velocity reference that gently moves the drone towards and
along the planned path.

The obstacle avoidance algorithm uses the scenario based
MPC formulation presented in [9] with a probabilistic un-
certainty model that calculates the probability of collision
over the prediction horizon. This method utilizes the LOS
guidance to parameterize different paths using only one
parameter in 2D and two parameters in 3D. This method
has a limited set of possible control actions making it less
complete than optimal control methods with full control over
the drone’s behaviour, such as in [3]. The major advantage of
the method is that the run-time is linear with respect to the
number of possible combinations of control-actions, and is
easily parallelizable which makes it much faster than full op-
timal control solutions on multi-core processors. This makes
the method feasible for real-time applications. The method
might be slower than potential field methods, but it avoids
some of the inherent problems with potential field such as
unstable motion and getting stuck in potential minima close
to narrowly spaced obstacles [10]. The proposed method also
opens up for working with the probability of collision, which
potential fields do not.

This obstacle avoidance algorithm gives a constant offset
angle and reference speed to the LOS-guidance algorithm.
The offset angle makes the drone gradually move away from
the planned path specified by the waypoints. As the drone
moves further away, the LOS guidance vector will point more
directly towards the path, counteracting the offset. For angles
under 90◦ the drone will converge towards a line parallel
to the planned path. This behaviour makes it possible to
give a constant angle offset and still move in the along path
direction while executing an evasive manoeuvre. When the
angle offset is set back to zero the LOS guidance law will
automatically make the drone move back to the planned path
made by the waypoints.

A finite set of angle offsets and velocity offsets are defined.
A model of the drone system with LOS-guidance and a
velocity controller is simulated over a prediction horizon with
all the different combinations of angle and velocity offsets.
The control action is applied at the initial time-step and kept
constant over the entire prediction horizon. The probability
of collision with the resulting behaviour is checked against
the maximal accepted probability of collision at each time-
step. The control action that maximizes the overall mission
objective amongst the safe enough options is then chosen.

The probability of collision with the resulting behaviour
is calculated by combining a probability map over obstacle
positions with a probability density function over the position
of the drone. The probability map over obstacles is made on-
line based on the range measurements from a radar, sonar,
or lidar. The drone’s position is not exactly known at the
current time-step due to uncertainties in the sensors used
for estimation. When predicting into the future, the position
of the drone gets less certain over time as some unknown
disturbance might affect it. The drone will have controllers
that will counteract these errors, but these controllers have
dynamics which makes them unable to instantly counteract
disturbances.
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III. DRONE AND CONTROL MODEL

A. Open loop model

The drone is for simplicity assumed to be a fully actuated
double integrator, driven by an acceleration caused by the
control input u, and affected by an additive disturbance wc.
The state is written on the form x = [x>p , ẋ>p ], where xp is
the position of the drone decomposed in a North East Down
(NED) coordinate frame.

ẋ = Acx+Bcu+wc (1)

Ac =

[
0 I
0 0

]
, Bc =

[
0
I

]
, Ec =

[
0
I

]
(2)

As this model is linear, an exact discretization for Ac and
Bc can be found, these are denoted as A and B. The discrete
time white noise process w is assumed to be Gaussian with a
covariance matrix denoted as Q. The notation x[k] = x(k dt)
is used, where dt is the discretization time step. To simplify
notation the time-step index is only included in the state
update equations.

x[k+1] = Ax[k]+Bu[k]+w[k] (3)

B. Velocity controller

The drone is equipped with a velocity controller.

u[k] =−K(
[
0 I

]
x̂[k]−vre f [k]) (4)

x̂[k] = x[k]+v[k] (5)

Where K is a gain matrix and vre f is the reference velocity
vector. This controller uses the estimated state, x̂, which is
modelled as the true state, x, plus some estimation error, v,
that is assumed to be a discrete Gaussian white noise process
with zero mean and covariance matrix R.

The closed-loop dynamics is then given as follows

x[k+1] = Aclx[k]+Bclvre f [k]−Γclv[k]+w[k] (6)

Acl =A−BK
[
0 I

]
, Bcl = BK, Γcl = BK

[
0 I

]
(7)

C. Line of Sight guidance

A 3D line-of-sight guidance strategy is needed. Four
different options are compared in [11]. These methods
produce reference yaw and pitch angles. A method that
instead produces a reference velocity vector is presented
here. This method avoids trigonometric functions which
simplifies linearization of the resulting dynamics.

To formulate the LOS-guidance law in 3D an addition
coordinate system, called the LOS coordinate system, is
defined. This coordinate system is defined as having the
x-axis along the line between the previous and the next
waypoint, denoted as WP1 and WP2. The y- and z-axis can
be arbitrarily chosen as long as the LOS coordinate system
is a right-hand coordinate system. yLOS is chosen to be the
cross product between xLOS and the z-axis in the NED frame.

Fig. 2: LOS guidance in 3D. An offset α = 40◦ in direction
θ = 160◦ is applied the first half of the simulation, then the
offset is turned off and the drone returns to the path.

xLOS =
WP2−WP1

||WP2−WP1||
(8)

yLOS =
xLOS×

[
0 0 1

]>
||xLOS×

[
0 0 1

]> || (9)

zLOS = xLOS×yLOS (10)

The position of WP1 and WP2 as well as the vectors xLOS,
yLOS, and zLOS are given in the NED frame.

For the special case where xLOS =
[
0 0 1

]>, where the
cross product in (9) is undefined, the alternative formulation
is used.

zLOS =
xLOS×

[
0 1 0

]>
||xLOS×

[
0 1 0

]> || (11)

yLOS = zLOS×xLOS (12)

This basis can be used to find the rotational matrix
between NED and LOS.

RNED
LOS =

[
xLOS yLOS zLOS

]
(13)

The difference between the drone’s position and WP1
given in LOS frame gives the drone’s offset from the path
between the two waypoints. The x coordinate is the distance
along the path, while the y and z coordinates give the offset
across the path. LOS guidance makes the drone at all times
follow the vector pointing from its current position to a
point ∆ ahead on the planned path. In the LOS frame this
vector has coordinate ∆ in xLOS direction, and the y and
z components of the distance from the drone to WP1 in
the yLOS and zLOS direction. By normalizing this vector and
multiplying it with the desired speed, v0, the reference speed
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(a) Unwanted behaviour when switching waypoints based on along
path distance.
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(b) Correct behaviour when switching based on relative distance
to the two lines.

Fig. 3: Behaviour with different strategies for changing waypoints. Orange shows the drone position with a control action
offset, blue marks the straight line path between the waypoints.

vector that the drone should follow is generated:

χ
NED
LOS = RNED

LOS

∆

0
0

−
0 0 0

0 1 0
0 0 1

RLOS
NED(

[
I 0

]
x̂−WP1)


(14)

vre f = v0
χNED

LOS

||χNED
LOS ||

(15)

The estimated drone state, x̂, is given in the NED frame.
Note that the line of sight guidance system makes decisions
based on the current best estimate of the state, x̂, not the
actual state x.

The obstacle avoidance controller introduces an offset
angle to the velocity vector. In the 2D case developed in
[9], an angle α is is added to the LOS angle. When seen as
a vector, this is the same as rotating the vector by α about
an z-axis pointing out of the plane. For the 3D case, two
parameters are needed, α and θ . α is used for rotating the
vector around some axis orthogonal to the xLOS axis. The
angle θ tells us the orientation of this axis relative to the
yLOS axis. This is done using the rotation matrix shown in
equation (17).

χ
NED
LOS,ca = (16)

RNED
LOS Rca

∆

0
0

−
0 0 0

0 1 0
0 0 1

RLOS
NED(

[
I 0

]
x̂−WP1)


Rca = Rx=−θ Ry=α Rx=θ (17)

vre f ,ca = v0
χNED

LOS,ca

||χNED
LOS,ca||

(18)

The resulting behaviour with a constant offset angle is
shown in Figure 2. This figure also shows that the drone
gently moves back to the path when α is set to zero. How
quick the drone should move towards and away from the
path is specified by ∆.

Special 2D case: The vector-based 3D line of sight
formulation can easily be used in 2D as well but requires
some special notation as the cross product and rotational
matrices are not defined for 2D.

xLOS =
WP2−WP1

||WP2−WP1||
(19)

yLOS =

[
0 −1
1 0

]
xLOS (20)

RNED
LOS =

[
xLOS yLOS

]
(21)

χ
NED
LOS,ca = RNED

LOS Rca

([
∆

0

]
−
[

0 0
0 1

]
RLOS

NED(
[
I 0

]
x̂−WP1)

)
(22)

Rca =

[
cos(α) −sinα

sin(α) cos(α)

]
(23)

Switching between waypoints: Two common ways of
switching waypoints in line-of-sight guidance are presented
in [12]. One method is to change waypoint when the vehicle
is within a given radius of the waypoint (circle of accep-
tance). As the anti-collision control actions might take us far
away from the waypoints, this might lead to the waypoint
being missed. The other strategy is to change waypoint when
the along path distance to the next waypoint is small enough.
This strategy works well when the goal is to follow the
desired path closely but leads to unwanted behaviour when
there is a wanted offset due to the control action made by
the obstacle avoidance system. The drone might then switch
waypoint closer to the next path segment than the designed
offset. This is shown in figure 3a.

This can be solved by switching waypoints when the drone
is closer to the next path segment than to the current path
segment. This will avoid making the drone move closer and
then further away from the path segment. A margin can be
implemented to compensate for the drone dynamics, making
the drone switch waypoint a bit before its equally close to
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both path segments. The distance to the path segment should
be the closest distance to any point on the infinite line going
through the waypoints. The shortest distance a point x is
away from the infinite line going through points a and b can
be calculated as

s(a,b,x) = (x−a)>
(b−a)
||b−a||

(24)

The behaviour of this waypoint switching algorithm is
shown in Figure 3b.

IV. HEADING DYNAMICS

For the fully actuated double integrator drone model, the
heading does not affect the position and velocity dynamics,
as the drone is able to fly in any direction independent of the
heading. But as both the payload sensors (e.g. camera) and
range finding sensors may be predominantly placed in one
direction, the drone may have to turn the sensors towards the
movement direction to be able to detect obstacles in its way.
A simple heading dynamic is implemented in the simulator
to include this behaviour.

ψ[k+1] = γψ[k]+ (1− γ)ψre f [k] (25)
ψre f = atan2(Vre f ,ca,x,Vre f ,ca,y); (26)

Where ψ denotes the heading. The parameter γ ∈< 0,1 >
decides how quick the heading dynamics will be.

V. COVARIANCE PROPAGATION

A. Covaraince formulation

The LOS guidance law is nonlinear due to the normaliza-
tion of the χNED

los,ca vector in equation (18). Nonlinearities will
distort a Gaussian probability distribution making it difficult
to propagate the covariance. The system is linearized to avoid
this problem.

First, the guidance law (18) is re-written.

χ
NED
LOS,ca = E−F x̂p (27)

= E−Fxp−Fvp (28)

E = RNED
LOS Rca

∆

0
0

+
0 0 0

0 1 0
0 0 1

RLOS
NEDWP1

 (29)

F = RNED
LOS Rca

0 0 0
0 1 0
0 0 1

RLOS
NED (30)

xp =
[
I 0

]
x, x̂p =

[
I 0

]
x̂, vp =

[
I 0

]
v (31)

Both x and v are stochastic variables where x is the state
and v describes the uncertainty due to measurement errors.
Inserting (28) into (18) yields

vre f ,ca = v0
E−Fxp−Fvp

||E−Fxp−Fvp||
(32)

This equation is linearized around the estimated expected
position evaluated at time-step k denoted as xk. This state
should be propagated through the closed loop state space
equations (6) using the nonlinear LOS guidance equations
(18) for the velocity reference vector. The linearization is
done around v = 0 as v is assumed to have zero mean. The
linearization results in the following equations

v̄re f ,ca = v0(Ē− F̄x− F̄v) (33)

Ē = G+H
[
I 0

]
xk (34)

F̄ = H
[
I 0

]
(35)

G =
E−F

[
I 0

]
xk

||E−F
[
I 0

]
xk||

(36)

H =
F

||E−F
[
I 0

]
xk||

−

(
(E−F

[
I 0

]
xk)(E−F

[
I 0

]
xk)
>F

||E−F
[
I 0

]
xk||3

)
(37)

Inserting the linearized velocity reference vector into the
state equation (6) leads to

x[k+1] = ALOSx[k]+ΓLOSv[k]+w[k]+CLOS (38)
ALOS = Acl−Bclv0F̄ , ΓLOS =−Γcl−Bclv0F̄ (39)
CLOS = Bclv0Ē (40)

We now have a linear state space formulation. With the
assumption that v[k] and w[k] are independent white noise
processes, all the input terms in (38) are uncorrelated and
the covariance matrix of x[k+1] can be calculated as

var(x[k+1]) = ALOSvar(x[k])A>LOS +Γvar(v[k])Γ>+var(w[k])
(41)

var(x[k+1]) = ALOSvar(x[k])A>LOS +ΓRΓ
>+Q (42)

The initial variance is equal to the state estimator variance,
R.

var(x[0]) = R (43)

B. Resulting covariance dynamics

Figure 4 shows how the uncertainty in position varies over
time in the prediction. The figure shows that the uncertainty
in predicted position will start low and then gradually in-
crease. It is interesting to note that the probability density
function becomes elongated over time, having a larger un-
certainty in the along path direction than in the across path
direction. This is a direct consequence of LOS guidance only
counteracting across path error, making it asymptotically
stable in across path direction but only marginally stable in
the along path direction.
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(a) t=0s (b) t=5s

(c) t=10s (d) t=20s

Fig. 4: The probability density function of the drone’s predicted position at different time steps into the future.

VI. MAPPING

To be able to avoid obstacles, a map has to be made
based on the data from the range finding sensor. This work
assumes that one or more body fixed sonar or radar is used.
A laser range finder would be a special case where the field
of view of the range finding sensor is just one line, and
the different measurements in a scan can be incorporated
as separate sensors with different headings. The sensor is
assumed to return the shortest distance to any object within
a cone with the width equal to the field of view of the sensor.
A radar would return multiple reflections, but only the first
is used as it is uncertain whether later reflections are caused
by the radar-wave leaving or entering into a new material.
The exact location of the object inside the field of view is
unknown, only the distance from the sensor and the fact
that it is inside the field of view is known. This model is
quite simplistic and does not incorporate specular reflections
or multipath. Specular reflection is when the entirety of the
emitted signal is reflected away from the sensor, which will
not give a distance measurement. Multipath is when the
signal is bounced off multiple surfaces before it reaches the
sensor, which makes the measured distance longer than the
true distance to the target. One method for handling specular
reflections is presented in [13]. There will be uncertainties

in the position of a measured obstacle as there will be
uncertainties in the range measurement and in the position of
the drone at the time of the measurement. The uncertainties
are assumed to be Gaussian. The variance in position in
the direction of the measurement is added together with
the variance of the sensor output to give the measurement
uncertainty, σ2.

The occupancy grid map concept developed by [5] bases
itself on assuming that all the cells are independent and
then uses Bayesian interference to updated the map. The
probability of a cell ci being occupied given the measured
range r can be calculated as

P(ci|r) =
p(r|ci)P(ci)

p(r)
(44)

Where P(ci) is the a-priori map value and p(r|ci) is
the inverse sensor model. The inverse sensor model can be
calculated by taking the weighted sum over all possible map-
states where cell ci is occupied, weighted by how likely that
map-state is, given the a-priori information. For each possible
map-state, the probability of getting the measurement r has
to be considered. A map-state, M, is one realization of
the map where each cell is either occupied or empty. The
relevant information in each map-state is the location of
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Fig. 5: Occupancy grid map updated with one measurement.

the closest occupied cell as this cell is assumed to have
given the measurement. p(r|M) would then be the probability
density value of getting the measurement r from the closest
occupied cell in map-state M. By assuming a Gaussian sensor
model, this value could be found by setting the expected
value of the sensor model at the start of the first occupied
cell in M and then finding the probability density value of
getting measurement r . A recursive method for solving this
seemingly exponentially complex problem in linear time was
introduced by [6]. This method was developed for a laser
sensor where we get a 1D line of cells that could be in
the path of the sensor. This method can be extended to the
2D case of a range finding sensor with a larger field of
view by first finding all cells within the field of view and
then sorting them based on their distance to the sensor. This
would produce a 1D array of cells, where cells with lower
indexes would block cells with higher indexes as they are
closer to the sensor. This 1D array can be directly inserted
into the method of [6]. Figure 5 shows how the map looks
like after one update with a measured distance of 20 meters
with σ2 = 1m2 and the grid cell size of 1x1 meters.

Measurements from different sensors and at different time-
steps can simply be incorporated by examining them one at
the time. The resulting map from one updated should be used
as the a-prior map for the next sensor update. The map is
initialized to each cell having a uniform chance of containing
an obstacle. If a map over the environment is known, then the
map could instead be initialized with a higher value where
obstacles are expected to be.

As we want to limit the actual probability of collision, the
assumptions in the mapping method must be discussed. The
main assumption in an occupancy grid map is that all the
cells are independent. This assumption does not hold as all
the updated cells from one measurement will be dependent
as they give information on where one object is located. If it
turns out that the object is not in one cell, then the probability
that it is in another cell is increased as the object has to be
somewhere. For different measurements of different objects
the independent assumption holds, as not colliding with one
obstacle does not affect the probability of colliding with
another obstacle. Occupancy grid maps attempt to merge
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Fig. 6: All candidate paths from a stationary initial position.
The planned path goes straight down.

dependent sensor information and independent information
of multiple measurements in one map with one value at each
cell. A problem is that the cell probability value is dependent
on the cell size. For small cell sizes the probability does not
act as predicted and the map converges to the a-priori value
much closer than the measured range. This is highlighted
for the 1D case in [14]. As the problem is dependent on
the number of possible map-states it gets significantly worse
with the number of dimensions making this strategy unfit for
3D.

VII. SCENARIO-BASED MPC FORMULATION

The scenario-based MPC strategy will compare different
control actions and choose the action that maximizes the
mission objective while having an acceptable probability of
collision. For the 2D case the list of candidate control actions
is defined as follows.

α = [ −90 −75 −60 −45 −30 · · ·
−15 0 15 30 45 60 75 90 ]

(45)

v0 =
[
v∗0 0.5v∗0 0.25v∗0

]
(46)

Where v∗0 is the nominal speed of the drone. The resulting
possible trajectories from a stationary start-point along a
straight path going downwards are shown in Figure 6.

The drone model will be used to predict future behaviour
when applying the different combinations of angle and
velocity control actions. The predicted state, as well as the
variance in the estimate at each future time-step is used to
check the constraint and calculate the cost. The control action
that optimizes the objective (see section VII-B) is chosen
among the feasible actions that fulfill the constraints (see
section VII-A). If no action is feasible then a default action
will be taken (see section VII-C). The procedure is repeated
at regular sampling intervals.

Only essential constraints and objectives are implemented
to highlight how this algorithm works. Other objectives
could be added and tuned to give better mission-specific
performance.
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Fig. 7: Red marks the path followed by the drone if a control
action of α = 90◦ is set for the first 20 time-steps, and then
turned off for the next 20. Blue marks the corresponding
path with the nominal control action. dsca marks the resulting
reduction in traversed distance.

A. Constraint - Probability of collision

To ensure that the chosen route is safe, the probability of
colliding at each time-step has to be sufficiently low. This
probability is calculated for each cell by multiplying the
probability that the drone is within the cell by the probability
that there is an obstacle in the cell. This results in the
probability that both the drone and an obstacle are present
in that cell. The probability of collision is summed up over
all cells, giving the probability that the drone will collide
with any obstacle cell. The probability of collision has to
be lower than a specified maximum probability for collision,
Pc,max, for all time-step. If this is the case, then that control
action is deemed feasible.

The constraint is checked at each time-step over a pre-
diction horizon. This horizon is set equal the time needed
to identify obstacles, re-plan, and execute an evasive ma-
noeuvre, thereby ensuring that the probability of collision is
acceptable over the reaction time of the obstacle avoidance
algorithm.

B. Objective

The constraint ensures that the chosen path is safe. The
objective function can now be freely chosen based on the
objective of the mission. One objective that ensures progress
along the path must be implemented. This can be done by
maximizing the traversed distance along the path. Deviations
make the drone travel orthogonal to the path reducing the
traversed along path distance. The drone must fly back to
the path at some point which is introducing further delays.
This is illustrated in Figure 7. To figure out the delay
introduced by a control action, the drone is first simulated as
normal with the control action, and is then further simulated
with the nominal control action until it reaches back to
the path. The nominal action is the behaviour with α =
0 and v0 = v∗0. This second simulation is done without
variance propagation and checking the risk constraint. This

Algorithm 1: Calculation of relative distance along the
path.

Let S0(t) denote the along path distance for the
nominal action at time t.

Let T0,max denote the latest time that is predicted for the
nominal action.

Let Sca(t) denote the traversed distance for control
action (ca) at time t.

Let Tca,max denote the latest time that is predicted for
the control action ca.

Let Th be the time until a new control action will be
chosen by the obstacle avoidance algorithm.

Simulate S0(t) for t = 0 to t = Th

for all control actions ca do
Simulate Sca(t) for t = 0 to t = Th
while cross track error at Tca,max > δ do

Simulate Sca(t) for t = Tca,max +1 without
variance propagation

end
if T0,max < Tca,max then

Simulate S0(t) for t = T0,max to t = Tca,max
without variance propagation

end
dsca← S0(Tca,max)−Sca(Tca,max)

end

will significantly speed up the second predictive simulation.
By simulating the behaviour from the control action plus
the behaviour on returning to the path, the delay introduced
by the control action is captured. The traversed along path
distance is compared to the case where only the nominal
action is applied. The method is described in Algorithm 1
and the resulting predicted reduction in along path distance
introduced by the control actions is minimized.

The prediction should stop when the drone is sufficiently
close to the nominal path. The acceptable cross track error
is denoted as δ . This has to be done as the drone will
asymptotically move towards the nominal path, but may
never completely hit it. With δ small, the resulting loss in
along path distance is negligible. The larger δ is, the quicker
the simulation is finished. A trade-off between computational
time and precision has to be made.

C. Default action

When no action is feasible then the safest action among
all the given actions and the stop action should be taken.
Often when the drone gets stuck, stopping might be the safest
choice. But if measurement errors lead to the current drone
position being dangerous, then it might be safer to take a
non zero action that will move the drone further away from
obstacles. If the stop action is chosen then the drone should
start rotating to improve the obstacle map.
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VIII. SIMULATION

The simulations were done with 5 sensors, pointing for-
ward, 30 degrees to the side, and 60 degrees to the side.
The field of view of the sensors were set to ±45◦ and the
range set to 30 meters. The position and velocity variance
returned from the estimator, R, and the model variance, Q,
were set to 0.1m2. The variance in measured range is set to
0.5m2. The accepted probability of collision per time-step
is set to 0.1%. The map is initialized with a 10% a-priori
probability of containing an obstacle. The parameters were
set to give interesting behaviour that highlights the workings
of the algorithm.

Figure 8 shows that the drone successfully manages to
safely fly around a corner and into a tight corridor. An object
is present in the blind-spot around the corner. The drone
chooses to take a slight detour to acquire new information
about the corridor before it flies into it. This ensures that
it avoids the obstacle. In the corridor the drone reduces its
speed as the wide field of view of the range finding sensors
makes it hard to distinguish walls from the safe area in-
between. Reducing the speed gives the drone more time to
acquire new data and make a new plan.

Figure 9 shows that the drone manages to find the way
through a narrow opening. Figure 10 shows the limitations
of this algorithm. Figure 10a shows that the drone manages to
fly around smaller obstacles, but unable to circumvent larger
obstacles as in Figure 10b. This is caused by there not being
an option that lets the drone fly in a large enough arch with
the given dynamics and look-ahead distance ∆. Figure 10c
shows that the drone can get stuck in convex hulls without
being able to escape. A solution to this problem would be to
include more extensive control action candidates to to have
a supervisory controller that detects that the drone is stuck
and re-plans the path taking the new obstacle information
into account.

IX. CONCLUSION

This work has looked into obstacle avoidance based on
probability of collision and developed an obstacle avoidance
strategy that ensures that the probability of collision is at an
acceptable level for all time-steps. The essential constraint,
which is that the path is safe over the critical time needed
to re-plan and stop, is implemented. The essential objective
which is to traverse the path is implemented as well. The
simulation study showed that the proposed rules ensured that
the drone was safe at all times and that the drone managed
to avoid smaller obstacles. The strategy worked with the
limited mapping capabilities of range-finding sensors with
a wide field of view. It produced the behaviour of looking
around corners before entering and flying slower when only
information about a limited area is known. The strategy
forced the drone further away from the walls when the
planned path incurred to much risk. The strategy is greedy,
making it in some cases unable to find a path around larger
obstacles and out of convex hulls. The proposed strategy
ensures that the drone will be safe for all paths, and will

stop or move to a safer point when no path is feasible. This
enables a supervisory controller, or human planner, to plan
a path based on a simplified map without taking the safety
or dynamics of the drone into consideration.

The main work that needs to be done before the algorithm
can be tested out in practice is within mapping. A new
method for mapping that generates more realistic probability
values and is able to handle 3 dimensions should be devel-
oped. The map must be able to handle specular reflections
and multipath. The proposed strategy should be tested out in
3D with a more advanced model of the drone.
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(a) t=0. The initial plan of the drone.
The size of the sensor cone makes it
impossible to determined if flying towards
the path i safe.

(b) t=12.After mapping for a few seconds
a better map over the world is achieved.
It is now deemed safe to fly a bit closer
to the planned path.

(c) t=51. The drone is tasked to fly around
the corner. To avoid flying into unknown
territory the drone makes a larger turn.

(d) t=92. The drone enters a narrow cor-
ridor where the sensors large field of
view makes it difficult to distinguish walls
from open space. This forces the drone to
reduce its speed.

(e) t=94. The corridor widens enabling
the drone to make a better map over
its environments. The drone increase its
speed.

(f) The true obstacles superimposed on
the occupancy grid map showing a good
fit. There was an obstacle hidden around
the corner that the drone managed to
avoid by taking a larger turn.

Fig. 8: The drone is tasked to follow the blue lines downwards and to the left. The planned path is too close to the wall to
fly safely. The drone is marked as a black dot, and the planned path as the black line. The length of the line indicates the
speed of the drone. The background color indicates the state of the occupancy grid, white is safe and darker color indicates
a higher probability of the cell containing an obstacle.

(a) The sensor cone size makes
it difficult to detect if there is an
opening in the wall The drone
reduces its speed and aproaches
slowly.

(b) The drone moves towards a
possible opening.

(c) An opening is found and the
drone flies through at full speed.

(d) The final path the drone fol-
lowed. The true obstacles are
superimposed on the occupancy
grid map.

Fig. 9: The drone is tasked to fly straight down, but the planned path does not take the small opening into account.

(a) (b) (c)

Fig. 10: Figure (a) and (b) show that the drone manages to circumvent small obstacles, but fails at larger obstacles. Figure
(a) is the largest obstacle the drone is able to circumvent with the current control actions and ∆. Figure (b) is one pixel larger
hindring the drone form cicumventing it. Figure (c) shows that the drone can get stuck on the wrong side of an obstacle.
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