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Abstract The effect of a depth-dependent shear current U(z) on surface wave disper-
sion is conventionally calculated by assuming U(z) to be an exactly known function,
from which the resulting phase velocity c(k) is determined. This, however, is not the
situation in reality. Field measurements of the current profile are performed at a fi-
nite number of discrete depths and with nonzero experimental uncertainty. Here we
analyse how imperfect knowledge of U(z) affects estimates of c(k). We performed a
numerical experiment simulating a large number of “measurements” of three differ-
ent shear currents: an exponential profile, a 1/7-law profile, and a profile measured
in the Columbia River delta. A number of measurement points were specified, the
topmost of which at z =−hs (permitting simulation of measurement points which do
not fully extend to the surface), and measurements taken from a normal distribution
with standard deviation ∆U . Four different methods of reconstructing a continuous
U(z) from the measurements are compared with respect to mean value and variance
of c(k). We find that an ordinary least-squares polynomial fit seems robust against
mispredicting mean values at the expense of relatively high variance. Its performance
is similar for all profiles whereas a fit to an exponential form is excellent in one case
and poor in another. A clear conclusion is the need for a measurement of the surface
velocity U(0) when there is significant shear near the surface. For the exponential and
Columbia profiles alike, errors due to extrapolation of U from z =−hs to 0 dominate
the resulting error of c, especially for shorter wavelengths. In contrast, the error in
c(k) decreases slowly with a higher density of measurement points, indicating that
better, not more, velocity sensors should be invested in. A pseudospectral analysis of
the linear operator corresponding to the three velocity profiles was performed. In all
cases, the pseudospectrum shows strong asymmetry around the eigenvalue for c, in-
dicating that a perturbation in the underlying current is more likely to push the value

P. Maxwell · S Å. Ellingsen · B. K. Smeltzer
Department of Energy and Process Engineering,
Norwegian University of Science and Technology,
N-7491 Trondheim, Norway
E-mail: peter.maxwell@ntnu.no



2 Peter Maxwell et al.

of c to higher, not lower, values. This is in tentative agreement with our observation
that for sufficiently large ∆U , c is found to have predominantly positive skewness,
although the direct relationship between the two is not altogether obvious.

Keywords Wave-current interaction · Dispersion relation ·Waves with vorticity

1 Introduction

A sub-surface shear current can drastically alter the dispersion of surface waves,
something that has been recognised for a long time [20]. A number of phenomena
occur because of shear that are not present for a depth-uniform current. Some of
these effects can be dramatic. Already 45 years ago Dalrymple, studying forces from
waves during hurricanes, concluded that “it is obvious ... that rational offshore design
must include the effect of [shear] currents” [5]. Only recently has the importance of
including sub-surface shear been widely recognised. The effect of shear currents on
wave dispersion has now been implemented in ocean models [14,8], and new theory
has been developed aimed at modelling, in particular the all-important wave action
conservation [1,21].

The strongly sheared tidal current in the Columbia River estuary has been a par-
ticular focus of attention for these purposes because the shear is unusually strong and
excellent measurement data for the depth-varying velocity is available [12]. Every
year thousands of ships traverse these waters, which have been dubbed “the Grave-
yard of the Pacific” for its dangerous conditions and many shipwrecks. Zippel and
Thomson found wave steepness predictions to be off by up to 20% if not accounting
for sub-surface shear [30]. In the same current some of us have predicted that wave
resistance on small ships can vary by a factor 3 or more between upstream and down-
stream motion at the same velocity relative to the surface [16], an effect solely due to
shear. Methods to reconstruct the sub-surface flow profile from measurements of the
dispersion relation have recently been developed [18,4] and tested in the Columbia
mouth [3].

What all of these studies have in common though is the study of change in wave
behavour due to a horizontal shear current U(z) that is presumed to be a known an-
alytical function. For linear waves, a range of numerical methods [29,6,24,15] and
integral approximation schemes [25,22,13,9] exist for calculating the phase velocity
c(k) —the dispersion relation— given arbitrary U(z). However, this is not the situa-
tion in practice. Invariably what is available is not a smooth function U(z), but rather
a set of measurements Un at a set of discrete depths zn, each measured with some
nonzero uncertainty ∆Un. The common procedure is to construct a function Ufit(z)
by fitting some analytical function to these points, and assume this to be the exact
velocity profile thereafter. It is pertinent, therefore, to ask how and to what extent
imperfect knowledge of the current U(z) can result in errors in the predicted value of
c(k) propagating atop it.

There are several sources of error to account for. The most obvious is the measure-
ment error ∆U but often more grievous is the fact that measurements are typically not
available for the top few meters of the water column, making it necessary to extrapo-
late U(z) from the uppermost measured point to the water surface. This is especially
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common for measurements using Acoustic Doppler Current Profilometry (ADCP).
Finally, there exists an infinity of options for how to fit a continuous function Ufit(z)
to measurement data and it is in no way obvious to what extent the choice of fitting
method can affect the predicted phase velocity.

Naturally, the set of cases and parameters relevant to our question is vast, and we
must by necessity restrict ourselves to a few values of a few of the possible parame-
ters. We have tested three different shear profiles typical of real-life applications: an
exponential profile with shear restricted to a shear layer near the surface, a profile to
represent a bottom boundary layer in a shallow water flow, and an exemplar velocity
profile from the aforementioned Columbia River dataset. We consider only unidi-
rectional profiles U(z) = U(z)ex and, reasoning that the measurement error doesn’t
change appreciably with depth, we make the simplification that the measurement er-
ror ∆U is Gaussian and is the same for all depths. We further assume that the depths of
the measurement points are exactly known. Waves are presumed to propagate stream-
wise in the same direction as the current, but see Sec. 2.2 for how results for waves
propagating counter to the current can be deduced. We compare some of the most
common procedures for fitting curves Ufit(z) to the set {zn,Un} both for cases where
the surface current velocity is and is not included in the data set.

In considering the linear dispersion relation, our analysis is necessarily concerned
with linear waves. Clearly, many situations exist where nonlinear effects become imo-
portant. Whilst it is conceptually possible to extend the analysis to second or higher
order in wave steepness, this would vastly complicate our efforts — indeed the neces-
sary theory for Stokes expansions on arbitrary shear currents does not presently exist
to our knowledge. Moreover, the question of dispersion becomes complicated, par-
ticularly so if a spectrum of wavelengths is present, since sums of eigenfrequencies
come into play. Adding to this that our parameter space is already extensive and that
such analysis would greatly increase the scope and length of our paper, no nonlinear
effects will be considered.

1.1 Problem definition

The geometry of our problem is the same as in Refs. [13,9] and many others. We con-
sider a shear current with profile U(z) whose surface when undisturbed is at z= 0 and
the bottom is at z=−h where h can be finite or infinite. A surface wave of amplitude a
and wave number k propagates on the free surface and is assumed to have small steep-
ness, ka� 1, so that linear theory can be assumed. We assume inviscid, incompress-
ible flow and neglect effects of surface tension. Due to the wave, the surface elevation
is z = η̂(x, t) and the velocity field becomes [U(z)+ û(x,z, t), v̂(x,z, t), ŵ(x,z, t)]. Hat-
ted quantities are small, and governing equations as well as boundary conditions are
linearised with respect to these. The solutions to the flow field are of form

[û, v̂, ŵ](x, t,z) = [u,v,w](z,k)eik[x−c(k)]t (1)

where k is the wave number and c(k) is the phase velocity. For reasons of manageabil-
ity, we shall limit ourselves to unidirectional (2D) systems with waves propagating
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along or against the flow direction. Now, let U0 =U(0) and

Ũ =U/U0; w̃(z̃) = w(z)/w(0); z̃ = z/d; c̃ = c/U0; k̃ = kd; h̃ = h/d, (2)

where d is a characteristic lengthscale of the velocity profile which we will define for
each profile as they are considered. The strength of the current is now described by
the Froude number

Fr =U0/
√

gd (3)

with g being acceleration due to gravity.
The system is governed by the Rayleigh equation, which is readily derived from

the Euler and continuity equations (see, e.g. [20]). Imposing the linearised free sur-
face boundary condition and Dirichlet boundary condition at the fluid bottom gives
the boundary value problem, in our units,

w̃′′− Ũ ′′(z̃)
Ũ(z̃)− c̃

w̃ = k̃2w̃; (4a)

(1− c̃)2w̃′− [Fr−2 +Ũ ′(0)(1− c̃)]w̃ = 0; z̃ = 0; (4b)

w̃ = 0; z̃ =−h̃, (4c)

where a prime denotes differentiation with respect to z̃. Note that (2) implies Ũ(0) =
w̃(0) = 1.

When Ũ(z) is known, the eigenvalue c̃(k̃) and eigenfunction w̃(z̃; k̃) follow from
Eqs. (4) and can be calculated with different methods; see Sec. 2 below.

1.2 Outline

In Sec. 2 we outline the stochastic numerical experiments to obtain statistical prop-
erties of c̃(k̃) based on the distributions of measured Ũn then present the numerical
results and discuss the implications of these in Sec. 3. Sec. 4 presents some fur-
ther numerical experiment results concerning dependence of deviation on spacing of
measurement points. Sec. 5 presents a pseudospectral analysis before conclusions in
Sec. 6.

2 Numerical experiments with ensemble of perturbed shear profiles

In this section we describe a numerical experiment to investigate the effects of a
number of limitations in realistic data from field measurements of the current profile.

One such limitation is that data is only available in a finite set of points {z̃n},
n = 1...N. There is an infinite number of ways in which to reconstruct a continuous
velocity profile from experimental measurements yet no obvious ‘correct’ choice.
We seek to characterise the effect of employing different approximation schemes for
constructing a continuous Ũ(z̃) by using a heuristic analysis. We do not consider
interpolation methods that force Ũ(z̃) to pass exactly through the measured points
since these have the unacceptable property of becoming worse for increasing number
of measurement points, N.
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Exponential profile 1/7th power-law profile Columbia River

Fig. 1 The three shear profiles studied.

The approach used in this section is to take three candidate velocity profiles Ũ(z)
which are known and select a vector of reasonable ‘measurement’ locations {z̃n} to
represent a field measurement. The exact dispersion relation for a given profile is
c̃e(k̃). Next, we perform a series of simulations wherein Gaussian random noise is
applied to the velocity profile at the measurement points to replicate what a single
experimental measurement might return. For each run, we then apply our approxima-
tion methods to yield a continuous reconstructed velocity profile Ũfit(z̃) and calculate
the resulting dispersion relation c̃fit(k̃) for a broad range of wave numbers k̃. After a
suitable number of runs have completed, we can calculate the componentwise rela-
tive error ∆ c̃/c̃e, which can in turn be used to characterise the statistical properties of
the reconstruction methods. Here ∆ c̃ = c̃fit− c̃e.

To calculate c̃fit(k̃) for each k̃ from a function Ũfit(z̃), we used a path-following
scheme [19] for solving Eqs. (4). The choice of method is in no way essential: one
can equally well use any of a range of available methods [6,24,15]. The accuracy of
the numerical method has an error of circa 10−10, so is far too small to contribute to
any error in our analysis. Even using an analytical approximation such as Refs. [25,
22,9] gives results that are hard to discern from our high-accuracy ones in the graphs
we present. Indeed, for a small proportion of the test runs, a critical layer can be
encountered. The numerical schemes take an unacceptably long time to compute in
this scenario and become less reliable. Therefore, for the small number of Ũfit(z̃) fit
functions that generate a critical layer, we substitute the c̃fit(k̃) result using the integral
approximation method from Ref. [9] (computed using Clenshaw–Curtis quadrature).
This approach has been tested and any disparity is too small to influence the results
in our figures.

Whatever numerical or approximation scheme used, the granularity of the com-
putational grid must be small enough to capture any strong curvature or oscillatory
behaviour in the fits. This is particularly important near the surface. We performed
tests with both the path-following method and approximation scheme to ensure suf-
ficiently many z computational grid points were used.

We choose three much-used velocity profiles: an exponential profile, a 1/7th
power law profile, and a profile which is based on a set of real current measurements
taken in the Columbia River estuary [12]. These are shown in Fig. 1.
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Additionally, we select a number of free parameters to characterise the problem:

– ∆Ũ is the standard deviation of the normal distribution of velocity measurements.
We assume the error is the same for all depths and the mean to be equal to the
real value at the point of measurement.

– ∆ h̃ is the spacing of the equidistantly spaced measurement points along the z̃ axis.
– h̃s ≥ 0 is the depth at which our topmost measurement sits.

h̃s is a particularly relevant parameter because most practical measurement tech-
niques such as ACDP cannot reliably measure current nearest the surface. When the
shear is concentrated near the surface such as in wind driven (Ekman) flow, the top
few meters of the water column have the greatest effect on surface wave dispersion.

The exponential profile we use is defined as

Ũexp(z̃) = ez̃. (5)

In other words, the characteristic length d is the depth at which Ũ is reduced by 1/e.
This profile is an oft-assumed model of a wind-driven surface shear layer in the upper
ocean.

The power law, or “1/7”, profile is characteristic of river flow over a smooth bed.
To avoid numerical issues due to (unphysical) singular behaviour in the derivatives at
z̃ =−h̃, we use the slightly scaled form

Ũ1/7(z̃) =
(
(1−0.001)

z̃
h̃
+1
)1/7

. (6)

The third profile is created using a methodology similar to as detailed in Ref. [16]:
a suitable exemplar profile is taken from the Columbia River dataset upon which we
fit a low-order polynomial. Further detail on this is given in Sec. 3.3.

We compare several standard methods for reconstructing a global approximant
from a discrete set of data points:

– Ordinary Least Squares (OLS). A 7th degree polynomial in z̃ is fitted to the set
{z̃n,Ũn}. We used a Chebyshev basis for numerical stability and performance
reasons but in practical testing we found no difference in accuracy compared to a
monomial basis of the same degree, e.g. MATLAB’s polyfit() function.

– Tikhonov Regularised Least Squares (TLS). In particular, we solve the problem in
the canonical linear least squares form [10, eqn. 3], min{‖AAAxxx−bbb‖2

2 +α‖LLLxxx‖2
2},

using the SVD method. In our implementation, we chose matrix LLL as to constrain
the first derivative and picked α = 1; again this is over a Chebyshev basis of 7th
degree.

– Nonlinear Least Squares Exponential Fit (EXP). In our implementation, we used
MATLAB’s lsqcurvefit() with a model function Ũ(z̃) = a+becz̃.

– Linear Extrapolation then OLS (OLS+Extr). This method is only applicable when
h̃s 6= 0. We apply a linear extrapolation to the surface using the uppermost 6
measured points, add the extrapolated surface velocity to the set of measurement
points, and then finally apply an OLS fit to this new set.
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Note that for the OLS, TLS, and EXP schemes, the function fitted to data must be
continued (extrapolated) to the surface when h̃s 6= 0.

For the OLS+Extr method an alternative version would be to do a curve fit of the
available points up to depth h̃s, then continue the fit in a straight line to the surface
with continuous derivative, add the resulting surface point to the set of measurements
and fit again. This may improve results when the curvature is monotonic such as for
the exponential profile. However, in general the curvature is not known a priori, and
we opine that the chosen method is a fairer comparison.

We also tested a global Bezier curve fit using the canonical De Casteljau’s algo-
rithm. Despite obtaining a good fit on visual inspection, it performed very poorly in
the simulations so is not further considered in our analysis. The reason for the poor
performance is likely to be that the Bezier curve must terminate exactly on the given
measurement points at each end of the interval. Therefore, it is highly sensitive to the
error in the surface measurement. Also, if the error in the measurements near the sur-
face impart some disparity then it forces strong curvature in the fit, which exacerbates
the problem. There may be a more suitable way to use Bezier curves for this purpose
but it is not immediately obvious.

An illustration of how the fitting schemes perform is shown in Fig. 2, for the
exponential velocity profile and “measurement” points from one numerical run. Note
already that the different approximation schemes exhibit different, and in some cases
biased, properties.

2.1 Remarks on how a sub-surface shear flow affects c(k)

Before going on to the results of our numerical experiment, we will briefly consider
some aspects of how the dispersion relation of c(k) is affected by a shear flow U(z)
in order to facilitate our later analysis. We assume k > 0.

The k-dependent phase velocity can be written in the form

c(k) = c0 +Ū(k) (7)

where Ū(k) is a k-dependent effective Doppler shift, and c0(k) =
√

(g/k) tanhkh. For
flows that are not too strongly sheared (e.g. oceanographic currents), a good approx-
imation is that of Stewart & Joy [25],

Ū(k)≈ 2k
∫ 0

−∞

U(z)e2kz dz (8)

in infinitely deep water, or the corresponding finite-depth version [22]

Ū(k)≈ 2k
∫ 0

−h
U(z)

sinh2k(z+h)
cosh2kh

dz. (9)

In all the currents we consider, these approximations are good to within a few percent.
In dimensionless units, c̃0 = Fr−1k̃−1/2 or c̃0 = Fr−1[k̃−1 tanh(k̃h̃)]1/2.

Considering the deep water case, the proportionality to exp(2kz) reflects the well-
known rule-of-thumb that a wave is affected by the water beneath it only down to a
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depth of about half a wavelength. Assuming, as for our exponential and Columbia
River profiles, that the shear is concentrated near the surface penetrating a distance
of order d into the depth, and that the wavelength is long compared to this, kd� 1,
Eq. (8) is a weighted average of U(z) over all of the water column where the shear is
appreciable.

In contrast, short waves compared to the shear penetration d only feel a small
part of the shear profile nearest the surface. In the limit k→ ∞, Eq. (8) and (9) both
become

Ū(k)∼U(0)+
U ′(0)

2k
+ ... (10)

In other words, with an approximate velocity profile Ufit(z) based on a data set,
the misprediction of c for very short waves will tend to

∆c∼Ufit(0)−U(0), (11)

equal to the misprediction of the surface velocity.
Thus, the error in the estimation of c(k) for long waves (small k) is mitigated by

the fact that the noise in the measurements {Un} is averaged over the water column.
In contrast, the very shortest waves depend only on the accuracy of the measured flow
at the surface. When the surface current itself is measured, c̃fit will have a standard
deviation of order ∆Ũ in this limit. When measurements start at a nonzero depth
h̃s, however, this error can be much greater, amplified by having to extrapolate the
current near the surface.

We must expect therefore that the absolute error ∆c grows for higher k until it
reaches its asymptotic value (11).

2.2 Note on the relative error

We will be plotting the relative error ∆ c̃/c̃ = ∆c/c for a number of cases, whose
meaning requires some comment.

We constrain ourselves herein to considering positive values of U(z), meaning
we consider waves propagating downstream in our frame of reference, which we
consistently take to be the ‘lab’ frame where, in particular, the current tends to zero
at the bottom. One should note that while ∆c is independent of both these choices, c,
and consequently ∆c/c, is not.

Were we to consider instead a wave propagating against the current, changing the
sign of U turns Eq. (7) into

c(k) = c0−Ū(k).

The relative error, as defined, is amplified in this case, by a factor (c0 +Ū)/(c0−Ū).
To avoid doubling an already large parameter space we do not plot results for the
counter-propagating scenario (which will differ only by this factor), but note that we
have conservatively plotted the lower of the two relative errors.
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3 Numerical results

In the following subsections, we perform a sufficiently large number of runs of the
numerical experiment and collate the componentwise relative errors ∆ c̃(k̃)/c̃(k̃) for
k̃ ranging from “long” waves k̃� 1 which essentially feel a Doppler shift from a
weighted average of Ũ(z) over the full depth-varying profile, to “short” waves k̃� 1
which are only affected by the current very close to the surface.

3.1 Exponential profile

The exponential profile, Eq. (5), is a common model for the wind-driven surface
shear layer in oceans and lakes. It has its greatest shear near the surface, which will
particularly affect the shorter waves (higher k̃). Having to use extrapolation from a
depth h̃s to the surface can be expected to introduce serious errors in the regime of
short waves of wavelength shorter than about 2h̃s, i.e. k̃h̃s & π .

Figs. 3 and 4 illustrate how the relative phase velocity error depends on k̃ for the
different approximation schemes and physical parameter combinations. From 10,000
runs of the experiment, we plot the mean value as a function of k̃ as well as the
10% percentiles on either side (i.e. 80% of the area under the distribution curve lies
between these lines) to illustrate the development of the width of the profile as well
as give some indication of its skewness.

The current in Fig. 3 is weaker (Fr2 = 0.01) than that of Fig. 4 (Fr2 = 0.05). When
the surface velocity is part of the set of measured points (h̃s = 0, the two top rows) the
results are very close for the two regimes. When h̃s > 0, however, an extrapolation
is necessary and the stronger current widens the distribution of c̃. On the other hand
the goodness of the mean value prediction is hardly affected by the change in current
strength.

We notice more generally the large difference in variance at high k̃ whether or not
the surface velocity is measured. This must be expected since, according to Eq. (11),
this simply reflects the error in determining the surface current velocity, an error
which is clearly amplified by extrapolation. The OLS scheme consistently avoids bias
of the mean itself although the results have the largest variance. The TLS scheme is
arguably unfavourable in all cases: its mean value tends to underpredict at short wave-
lengths (corresponding to a systematic underprediction of the surface velocity), the
resulting distribution is badly skewed as seen from the asymmetry of the percentiles,
and the variance is also comparatively high.

The exponential fitting scheme performs reasonably well for the exponential cur-
rent. Despite the expected somewhat unfair advantage of fitting data to a function
of the correct functional form in this particular case, the method is no significant im-
provement over the simpler OLS. Moreover, this scheme has another problem namely
that it very occasionally produces estimates for c̃ which are off by many orders of
magnitude, so much so that a single outlier out of thousands could shift the mean so
much as to lie outside of the 10% percentile. Some of this instability is still visible in
the results (for example in panel l of Figs. 3 and 4 where the mean may lie outside the
percentiles) despite a “sanity filter” being used in our tests: we discard results that are
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clearly far too large. Specifically, we discard results outside an absolute relative error
threshold of 3 against the dispersion relation for the known exact profile. In a practi-
cal situation, that approach is obviously not possible and some other sensible check
would be necessary to mitigate the effect of these rare predictions, e.g. comparing
phase velocity against known statistics in the context being measured.

We finally notice how the OLS+Extr scheme can avoid the increase in variance
for short wavelengths suffered by the other methods. On the other hand, the method
systematically underpredicts c̃ in this range, corresponding to an underprediction of
surface velocity, expected due to the strong non-linearity of Ũ near the surface. The
perceptive reader may pause upon the somewhat counter-intuitive reduction in devi-
ation for OLS+Extr going from ∆h = 0.1 to ∆h = 0.5. This is likely an artefact of
the method, i.e. of taking a linear extrapolation of the topmost 6 points to predict the
surface current. For the sparse grid, these 6 points reach 5 times further into the deep
and so is fitting over a longer portion of the curve. Furthermore, because h̃s is fixed,
the gradient on the sparser grid will be shallower. This may reduce the deviation at
the cost of worse systematic bias. Whether OLS+Extr is preferable to OLS, say, in
practice depends on the context – whether it is more important to avoid very poor
estimates (high variance) or a systematic bias (nonzero mean).

In Fig. 5 we plot the first four statistical moments of the distribution of c̃(k̃) for
the strongest exponential current Fr2 = 0.05. For clarity, only the OLS fit method is
used. Columns from left to right show increasing measurement uncertainty ∆Ũ . The
first row shows the mean values (as distributed through the panels in Fig. 4). A clear
and intuitively obvious observation is that the mean value is better predicted at high
k̃ when the surface velocity has been measured. Perhaps more interestingly, the bad-
ness of the mean estimated c̃ does not get appreciably worse with growing ∆Ũ . This
emphasises again that the error in the mean value of c̃ when h̃s > 0 depends almost
exclusively on the accuracy of Ũfit(0) by extrapolation and is relatively insensitive
to other parameters. In the present case, however, the misprediction of the mean of
∆ c̃/c̃ using the OLS approximation is less than 2% even for the most unfavourable
cases, which is unlikely to be significant in practice (other approximation methods
fare worse as previously discussed).

The standard deviation of the distributions of c̃ (second row of Fig. 5) increases
approximately linearly as a function of ∆Ũ , as one expects for a near-normal distri-
bution of c̃.

One interesting observation is that reducing the spacing between measurement
points by a factor of 5, from ∆ h̃ = 0.5 to 0.1, reduces the standard deviation of results
by less than a factor of 2. The same observation holds also for the two other profiles
considered. The indication is that for the purposes of reducing the variance of phase
velocity estimates, one would expect to be better off buying better sensors rather than
more of them.

The skewness of a variable X with standard deviation σ and mean µ is defined as

S =

〈(
X−µ

σ

)3
〉
. (12)
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The angular brackets indicate averaging. A positive skewness indicates that the most
likely values of X are higher than µ , and vice versa. The excess kurtosis of X is
defined as

K =

〈(
X−µ

σ

)4
〉
−3. (13)

A positive excess kurtosis implies a greater emphasis on the tails of the distribution,
i.e. the likelihood of measuring outliers is higher than for the normal distribution, and
vice versa. For the normal distribution S = K = 0.

As for the skewness (third row of Fig. 5) and excess kurtosis (fourth row of same)
of the distribution of ∆ c̃/c̃ on the exponential profile, we are able to draw few definite
conclusions; more interesting results appear for the other two profiles considered. The
one observation we make for future reference is that for the highest measurement
uncertainty, the skewness is predominantly positive, albeit small in magnitude.

3.2 z1/7 profile

The ‘1/7’ profile is a common model for a turbulent boundary layer flow over a flat
bottom. Since the shear in this instance is due to a boundary layer near the bottom
rather than at the surface, the shear is concentrated around depth h̃ and is relatively
weak near the surface. The characteristic shear depth is thus d = h. An extrapolation
from z̃ =−h̃s to 0 is now expected to be less problematic since the velocity deviates
much less from a straight line than was the case for the exponential profile. From the
outset we thus expect this profile to be the “easiest” of the three on which to correctly
predict c̃ based on imperfect data. This turns out broadly true when the surface current
has been measured (h̃s = 0), but the picture is richer once extrapolation is involved.

As for the exponential profile before, we plot in Figs. 8 and 9 the mean and 10%
percentiles of the distribution of c̃(k̃) from 10,000 random “measurements” {z̃n,Ũn}.
Compared to the exponential profile case we notice that the detrimental effects for
high k̃ of not having measurements of the surface flow velocity is slightly less pro-
nounced. For this profile, the shear is relatively small near the surface and so extrapo-
lations are expected to be more accurate than when near-surface curvature is present.

The exponential approximation procedure (EXP) performs remarkably well in
this case, but for a slight overprediction of the mean value. Given its very poor perfor-
mance for the Columbia profile later, and reasonable performance for the exponential
profile, its performance clearly depends very strongly on the shape of the profile and
seems to us to be somewhat unpredictable.

It is noticeable that the OLS now performs among the worst in terms of variance,
particularly when h̃s > 0. It also shows a tendency to marginally mispredict the mean
for short wavelengths. One can see the reason for this by noting that the shape of the
profile (Fig. 1b) is hard to reproduce by only a small number of terms of a power
series in powers of z̃: Ũ(z̃) has large curvature but it is situated far from the surface,
and in order to fit it, higher order terms in the polynomial must be very significant
near z̃ = −h̃, but cancel each other for the rest of the water column. Once a high
order polynomial is then extended beyond the range of points to which it was fitted,
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its behaviour becomes very volatile. Due to inherent similarities, TLS also suffers the
same problem.

The difficulty in reproducing the z̃1/7 profile with a low order polynomial is also
apparent when considering skewness and excess kurtosis of ∆ c̃/c̃ for the largest ∆Ũ
and h̃s, see Fig. 10. Both skewness and kurtosis are significant. Note that the skewness
is perturbed strongly in the positive direction. For the strongest ∆Ũ , kurtosis is also
perturbed strongly in a positive direction indicating that one should expect outlier
results more often.

3.3 Columbia River test profile

Finally we turn to a velocity profile based on real measurements in the estuary of
the Columbia River [12], where buoyant fresh water forms a surface jet atop the
heavier salt water to produce strong shear near the surface. To do this, we investi-
gated the dataset and picked one sample which was of both of good quality and had
qualitatively ‘interesting’ features; we discarded the spanwise component, which is
of small magnitude and irrelevant for our purposes. Precisely as in our models, this
data consists of a number of discrete points of unknown accuracy with no data for
the top 2m of the water column. In order to construct an exemplar profile with the
same characteristics, we arbitrarily shift the profile upwards so that the topmost avail-
able measurement depth is now considered the surface (in terms of performance this
should be conservative, since the shear is likely to further increase through the top 2
meters). A polynomial is then fitted to the points to give the profile shown in Fig. 1c,
around which our simulated “measurements” will be made. With a reasonable choice
of d for the characteristic length scale of the velocity variation with depth, we obtain
Fr2 = 0.05. Measurement points are distributed equidistantly throughout the water
column down to depth z =−h.

Compared to the two previously considered profiles, which were both idealised
model flows, the Columbia profile has a more complicated structure, containing sev-
eral inflection points and a degree of backflow near the bottom. Occurrences of par-
ticularly good (or poor) performance of particular fitting schemes which hold only
for special cases with monotonic curvature may now be exposed.

From Fig. 13, perhaps the clearest trend is that all methods struggle to correctly
predict the surface velocity, and consequently the value of c̃(k̃) for high k̃, except for
OLS. The exponential fitting in particular can very badly underpredict the surface
velocity, and combined with a small variance is almost guaranteed to give too low
values of c̃ for sufficiently large k̃ in all the cases considered, especially when h̃s > 0.
It is surprising to what extent this underprediction of the surface velocity Ũ0 holds
true also when a measurement point is present at the surface itself. Worse still, for
Fig. 13g, Fig. 13h, and Fig. 13i, the predicted mean actually lies well outside the
percentiles indicating that the fitting process is very unstable in this context.

For OLS the trend is as for the previous two profile, however: the mean value of
the distribution of c̃(k̃) remains very close to correct but at the cost of higher variance.

The bottom row of Fig. 14 shows that the OLS fit on this profile has nontrivial
positive excess kurtosis for medium-to-long wavelengths, again in the positive direc-
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tion. As for the previous two profiles the skewness is observed to be predominantly
positive. The indication is that for a profile with much structure and several inflection
points the shape of the distribution of c, in particular the thickness of its tails and bias,
becomes unpredictable.

4 Further numerical experiments to find optimal ∆ h̃ for reducing deviation

For all three velocity profiles, we have observed that increasing the number of mea-
surement points — or, equivalently, reducing ∆ h̃ — appears to effect only a modest
reduction in variance in estimated phase velocity. This may have implications when
considering equipment choice and considering more vs more accurate sensors, for
instance. To make an initial attempt at answering this question, we repeated some
numerical experiments using the OLS fitting method, this time changing ∆ h̃ in a
granular manner while fixing all other parameters (∆ h̃s = 0, ∆Ũ = 0.1, Fr2 = 0.05).
Instead of using ∆ h̃, for these purposes it is easier to talk in terms of the number of
measurement points, which we denote Nh.

In Figs. 6, 11, and 15 we calculate the standard deviation of componentwise rel-
ative error in c̃(k̃) for the exponential, 1/7, and Columbia River velocity profiles,
respectively, for various Nh values. The value of the standard deviation for each Nh at
k̃ = π is also noted. It is clear from these figures that for all three cases, the standard
deviation decreases slowly with increasing Nh. For instance, in the exponential pro-
file, increasing Nh fivefold from 10 to 50 reduces the standard deviation by only circa
40%.

For particularly low Nh, it is evident that the standard deviation becomes sensitive
to the exact placement of the measurement points and has some unpredictable k̃ de-
pendency. We in addition seek a scalar measure that avoids this k̃ dependency. Given
the standard deviation of the relative error in phase velocity evaluated at k̃ using Nh
measurement points, σNh(∆ c̃(k̃)/c̃(k̃))|k̃, we define

γ(Nh) :=
∫ k̃max

k̃min

σNh(∆ c̃(k̃)/c̃(k̃))|k̃ dk̃ (14)

as a scalar measure of the global deviation for a particular Nh.
In Fig. 7, 12, and 16, we plot normalised σNh(∆ c̃/c̃) evaluated at k̃ = π against Nh

and also normalised γ against Nh. For γ(Nh), in all three profiles, the trend is linear
up to about Nh ∼ 100 after which the trend is shallower. The slope in the linear region
is approximately −0.004 for all profiles. In other words, to reduce γ(Nh) by 20%
requires 50 extra measurement points.

We therefore conclude that increasing the number of measurement points has only
a modest effect on improving the accuracy of estimating c̃(k̃).

5 Pseudospectral analysis

The key question in this paper is how error in, or a perturbation of, a velocity profile
can influence phase velocities of the waves propagating atop that flow. If the Rayleigh
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equation is viewed as a linear operator then a perturbation of the velocity profile is a
perturbation of that linear operator. This permits analysis using pseudospectra: for a
perturbation of the linear operator of order ε , how far can the eigenvalue — the phase
velocity — be perturbed as a consequence. In our context, noise or mismeasurement
of the velocity profile can be considered a subset of such possible perturbations.

In this section we adopt slightly different notation in an attempt to adhere to the
conventions in the literature. Particularly, in accordance with standard mathematical
notation λ denotes an arbitrary eigenvalue (not a wavelength), and xxx is a correspond-
ing eigenvector.

Preamble. The system described in Eq. (4) can be naturally viewed as a Sturm–
Liouville eigenvalue problem with k̃ as the eigenvalue, and c̃ acting as a scalar parametri-
sation. However, akin to the example in [2, p. 135], we can equally well consider the
system as an eigenproblem with the phase velocity, c̃, as the eigenvalue and k̃ acting
as the parametrisation of the problem. Rewriting Eq. (4) in powers of c̃ for emphasis:

[
c̃
(

d2

dz2 − k̃2
)
+Ũ(z̃)

(
d2

dz2 − k̃2
)
−Ũ ′′(z̃)

]
w̃ = 0; (15a)[

c̃2 d
dz

+ c̃
(

Ũ ′(z̃)−2
d
dz

)
+

d
dz
−Fr−2−Ũ ′(z̃)

]
w̃ = 0; z̃ = 0; (15b)

w̃ = 0; z̃ =−h̃. (15c)

The solution sets must obviously be the same in that any triplet {k̃, c̃, w̃} which is
a solution when k̃ is considered the eigenvalue is also a solution when c̃ is considered
the eigenvalue. However, in practical scenarios, we are only interested in the subset
containing real quantities and it is more useful to have the facility to calculate c̃ from
k̃. Hence, the distinction becomes more important.

The system described by Eq. (15) can be discretised and solved numerically.
Recapitulating from [19], a collocation pseudospectral method is used to discretise,
yielding a quadratic eigenvalue problem of the form:

(AAA2c̃2 +AAA1c̃+AAA0)www = 0, www 6= 0, (16)

where a standard two boundary point row-replacement strategy [27] is used so that the
free surface condition is in the topmost rows of AAA2,AAA1,AAA0 and similarly the bottom
rows are zero for the bottom Dirichlet boundary condition (which are then removed).
This implies that the only nonzero row of AAA2 is the first row. We also note that matrix
UUU and its derivatives are diagonal. A QZ decomposition is then used to solve the
quadratic eigenvalue problem along with appropriate mechanisms to determine which
eigenvalue in the numerical solution set is the physical phase velocity.

Background and motivation of pseudospectra. What then of the behaviour of Eq. (15)
under a perturbation? This question can be answered by using pseudospectral analy-
sis. We first consider the standard eigenvalue problem,

AAAxxx = λxxx, xxx 6= 0, (17)
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for AAA ∈ Cn×n,xxx ∈ Cn,λ ∈ C. We denote the spectrum of AAA by Λ(A), i.e. the set of
eigenvalues of Eq. (17).

If we consider AAA to be a finite dimensional discretisation of some linear operator
then it is natural to ask what happens to the spectrum when AAA is perturbed by some
matrix EEE with ‖EEE‖ < ε . This is directly analogous to the fundamental problem we
are considering, viz. how do perturbations of a background velocity profile influence
the phase velocity of the waves. This notion can be made formal [28, p. 14, eqn 2.3].

Definition 1 (Matrix definition of pseudospectral set) The ε−pseudospectral set
of AAA for ε > 0 is defined as,

Λε(AAA) := {λ ∈Λ(AAA+EEE) : for all EEE ∈ Cn×n,‖EEE‖ ≤ ε}. (18)

Equivalently, we may approach this using the resolvent, (λ III−AAA)−1. The resol-
vent set is defined as ρ(AAA) := {λ : (λ III−AAA) is invertible }; the spectrum is then the
compliment of the resolvent set in the complex plane. So we have that for λ to be
an eigenvalue, the resolvent (λ III−AAA)−1 must be undefined. As noted in [28, p. 12],
an eigenvalue is inherently fragile in the sense that upon an arbitrarily small pertur-
bation, it will cease to be an eigenvalue. So, from a practical standpoint, it’s perhaps
better to ask for a set which is ‘almost’ an eigenvalue or equivalently when the resol-
vent norm, ‖(λ III−AAA)−1‖ is suitably large. This leads us to the second definition of
pseudospectra using the resolvent norm [28, p. 13, eqn 2.1].

Definition 2 (Resolvent definition of pseudospectral set) The ε−pseudospectral
set of AAA for ε > 0 is defined as,

Λε(AAA) := {λ ∈ C : ‖(λ III−AAA)−1‖ ≥ 1/ε}. (19)

Note that [28, thm 2.1, p. 16] establishes equivalence between the two definitions.
Thus ends our brief description of standard pseudospectra and we now move into

slightly more interesting territory.

Pseudospectra for Rayleigh equations. We now turn to the Rayleigh equation, gov-
erning linear surface waves on a shear current. We are considering perturbations and
eigenvalues which are by definition complex. Although phase velocities for propa-
gating waves in inviscid fluid mechanics are real, this poses no problems as we can
restrict ourselves to considering effects only along the real axis. Dissipation and/or
interaction with critical layers can moreover move the eigenvalues off the real c axis,
something which is used deliberately in systems with stationary and periodic time
dependence to enforce the radiation condition (see e.g. Ref. [17]).

The discretised system, Eq. (16), is a quadratic eigenvalue problem and therefore
the definitions of pseudospectra have to be modified to accommodate. Repeating the
definitions from [26], a polynomial matrix can be written,

PPP(λ ) := λ
mAAAm +λ

m−1AAAm−1 + . . .+AAA0, AAA j ∈ Cn×n. (20)

which leads naturally to the polynomial eigenvalue problem,

PPP(λ )xxx = 0, xxx 6= 0. (21)

The ε−pseudospectrum can then defined by [26, eqn 2.3],
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Definition 3 (Matrix definition of pseudospectra for polynomial eigenproblem)

Λε(PPP) := {λ ∈ C : (PPP(λ )+∆PPP(λ ))xxx = 0, xxx 6= 0,

∆PPP(λ ) := λ
m

∆AAAm +λ
m−1

∆AAAm−1 + . . .+∆AAA0, ‖∆AAA j‖ ≤ α j}, (22)

where ααα := (αm,αm−1, . . . ,α0) is a vector of scalar parameters which specify the
relative magnitude of the matrix perturbations.

As may be expected, there is an equivalent definition using the resolvent estab-
lished by [26, lemma 2.1],

Definition 4 (Resolvent definition of pseudospectra for polynomial eigenprob-
lem)

Λε(PPP) := {λ ∈ C : ‖PPP(λ )−1‖ ≥ (ε p(|λ |))−1} (23)

where p(x) := ∑
m
j=0 α jxk.

For our purposes, we use Eq. (16) and let PPP(c) := (AAA2c2 +AAA1c+AAA0) so that the
relevant pseudospectral set is,

Λε(PPP) := {c ∈ C : ‖(AAA2c2 +AAA1c+AAA0)
−1‖ ≥ (ε p(|c|))−1}, (24)

with α0 = α1 = α2 = 1. This choice of α j preserves an absolute scale which is ap-
propriate for our problem given the disparity of AAA2 compared to AAA1 and AAA0.

A note on homogeneous eigenvalues. We note that the recommendation in [11] is
to address the pseudospectra of matrix polynomials by expressing the polynomial in
homogeneous form PPP(α,β ) = αmAAAm +αm−1βAAAm−1 + . . .+β mAAA0. The eigenvalues
become of the form (α,β ) ∈ C2 rather than a scalar, with λ = α/β for β 6= 0. This,
in a sense, is more suited to handling infinite eigenvalues. However, it does signif-
icantly complicate plots with the suggestion being a stereographic projection onto
the Riemann sphere. Whilst it solves the problem of infinite eigenvalues in relation
to level set style plots, the spherical projection is far from intuitive. In our situation,
we choose to accept difficulties with infinite eigenvalues because it retains a clearer
representation overall and permits the reader to infer at least broad conclusions.

5.1 Pseudospectra plots for candidate velocity profiles

Fig. 17 shows the pseudospectra of the exemplar velocity profiles for k̃ = π; the full
spectrum returned by the collocation scheme is superimposed on top. The eigenvalue
corresponding to the phase velocity is marked with a red asterisk (rightmost), the
lower branch eigenvalue can also be seen in a blue asterisk (leftmost). The collocation
scheme also returns a cluster of values from the essential spectrum Ref. [7, ch. 4],
in this case approximately around the origin, such that Ũ(z)− c̃ = 0 for some z̃ ∈
[−h̃,0]; in other words, c̃ which satisfy the condition for a critical layer at some z̃.
The number of these values returned depends on the order of the collocation scheme:
as the order increases, it returns more and more values from this interval. We shall
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consider only the discrete spectrum: the leftmost and rightmost eigenvalues, which
represent propagating wave modes.

Whilst the plots for the three shear profiles are clearly different, they share some
key qualitative characteristics.

– The level set curves are not isotropic around the phase velocity c̃, which suggests
the underlying operator is not normal.

– The arrangement of the level set curves appear to be influenced by infinite eigen-
values, which is a consequence of A2 being singular. This was mentioned above
and was anticipated by [11].

– For a perturbation of order ε , a real phase velocity can increase far more than it
can decrease. This applies in all cases.

– Proximity of the phase velocity to the critical layer region appears to determine
the tightness of the level curves on the negative side of the phase velocity.

5.2 Remarks and conclusions

It is clear that perturbations of the underlying linear operator have an asymmetric
influence on the phase velocity, although the exactly how this relates to a given per-
turbation of the (actual/measured/reconstructed) velocity profile is not obvious. That
the phase velocity is likely to deviate by a larger amount in the positive real direc-
tion compared to the negative direction seems consistent with the skewness results in
the statistical moments as discussed in Sec. 3. Whenever the uncertainty of measure-
ments, ∆U , was sufficiently large, skewness was found to be predominantly positive
in all cases, meaning the estimated value of c̃ was more likely to lie above than below
the mean value. Correspondingly we notice that a sufficiently large perturbation ε is
able to shift the eigenvalue c̃ further along the real axis in the positive direction than
in the negative (although, note carefully that the shift in the mean value observed for
high k̃ in a number of cases is due to misprediction of the surface velocity by the
curve fitting schemes and bears no relation to the pseudospectral analysis in which
consider a single value of k̃).

It is anticipated that structured polynomial pseudospectra arranged in such a man-
ner as to match the diagonal nature of the shear matrices may provide further insight.
However, this presents both some philosophical and practical difficulties and would
be the subject of future research effort.

6 Conclusions

We have considered the effect of imperfect knowledge of a sub-surface shear cur-
rent on the error in the calculated phase velocity of linear surface waves, i.e. in the
dispersion relation. This corresponds to realistic situations where the current is only
measured at a finite set of depths, with nonzero uncertainty, and often not including
the surface but beginning at some depth h̃s, typically a few meters.

Four different methods for constructing a continuous velocity profile from a dis-
crete set of points were tested: an Ordinary Least Squares (OLS) fitting of the data to a
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polynomial, an exponential fit (EXP), a Tikhonov Regularised Least Squares method
(TLS) and when the topmost measurement point is not at the surface, a method of
first linear-extrapolating the profile to obtain an estimate of the surface velocity then
performing an OLS (OLS+Extr).

Based on our three rather different velocity profiles — an exponential profile
modelling a near-surface shear layer, a profile varying as z1/7 modelling a turbulent
bottom boundary layer, and an exemplar of a measured flow in the Columbia River
delta — it seems indicated that the OLS method is the most robust against systematic
bias of the mean but at the expense, in some but not all cases, of a higher variance of
results. The TLS typically has similar variance as OLS, but with a tendency to system-
atically bias results for short waves, and is therefore hardly ever the most favourable
option. The performance of EXP varies very greatly based on the exact shape of the
velocity profile: for the z1/7 profile it performs excellently, for the exponential pro-
file it is among the best, but for the Columbia River profile it fails badly. When the
shape of the profile is not known a priori the performance of EXP is therefore unpre-
dictable. Likewise, the OLS+Extr method, relevant when extrapolation is necessary,
performs poorly for profiles which are strongly curved near the surface but better for
the z1/7 profile whose large curvature is situated at greater depth.

The clearest and unsurprising conclusion is doubtlessly the importance of per-
forming a surface current measurement when the profile is expected to be most
strongly sheared near the top of the water column. Both for the exponential and
Columbia River profiles the necessity to extrapolate from the topmost measurement
point to the surface greatly increases the variance of the resulting distribution of c̃(k̃).
In both of these cases the error from extrapolation quickly outweighs that from other
sources. Conventional current measurements using Acoustic Doppler profilometry
cannot capture the portion of the water column closest to the surface. In contrast,
measurements based on measuring the wave dispersion and inferring the current from
this (e.g. [18], [3], [4], [23]), have the best accuracy in the near-surface region, an ex-
ample of the power of this technique (naturally, c(k) is directly measured for a set of
k values in this case, posing somewhat of a complementary problem to that which we
consider).

Studying the standard deviation of the distributions of ∆ c̃/c̃ estimated with OLS
approximation, the trend is the same for all profiles: not having a surface measure-
ment (topmost measuring point sits at z̃ =−h̃s) increases the deviation manyfold. In
the statistical moments tests, the standard deviation is roughly proportional to that
of the measurement uncertainty, ∆U , but a fivefold increase in the density of sen-
sors only reduces the deviation by a factor of 2. This result is replicated when the
dependence of standard deviation on the number of points Nh is examined. All else
being equal it seems indicated that, after a certain threshold, it is preferable to invest
in better measurements in each point rather than more measurement points.

The OLS fitting method shows the least tendency to mispredict mean value and
also the least skewness. Nevertheless, both skewness and excess kurtosis can be sig-
nificant, particularly once extrapolation to the water surface is necessary. The sign of
the excess kurtosis seems to be predominantly positive but depends in a complicated
manner on the interplay between velocity profile and the method whereby U(z) is re-
constructed. There is also a clear tendency for skewness to be predominantly positive
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in all cases when the uncertainty ∆U is sufficiently large, indicating that even though
the average value from many measurements is accurate, too-high values are likely to
be further off than mispredictions which are far too low.

A pseudospectral analysis, considering the Rayleigh equation as a linear operator,
can shed light on the question: If the velocity profile is somehow perturbed by an
amount ε –e.g. a measurement is performed giving a different result than the real
profile– how far can the consequent eigenvalue c shift from its true value?

While there is no simple relation between ∆U and ε , our pseudospectral anal-
ysis nevertheless produces some interesting observations. While the pseudospectra
differ significantly for the different profiles, it holds for all three that a perturbation
of magnitude ε can shift the value of c further in the positive direction than it can in
the negative. When ε is large enough this asymmetry becomes marked. This obser-
vation appears to concord with our observation from the numerical experiments that
when ∆U is sufficiently large, skewness was found to be predominantly positive. We
regard this conclusion as somewhat tentative at the present stage, worthy of further
investigation.
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7 Figures

7.1 Examples of fits on noisy measurement data (Exponential profile as ‘exact’
exemplar)
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Fig. 2 Reconstruction of noisy measurements on an exponential shear profile using various fitting meth-
ods. The velocity profile has a shear of Fr2 = 0.01. Light blue curve is the exact velocity profile, the red
asterisks are the noisy measurements, the faint grey lines indicate the measurement positions, the topmost
heavy feint grey line is the location of h̃s, and the dashed red is the reconstructed profile.
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7.2 Exponential profile simulations

7.2.1 Exponential profile: percentiles for Fr2 = 0.01
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Fig. 3 10th percentile region with mean of the relative error in phase velocity on an ensemble of noisy
measurements of an exponential velocity profile reconstructed using various fitting methods. The veloc-
ity profile has shear Fr2 = 0.01. The top two rows assume a measurement point located at the surface
whereas the bottom two rows assume the topmost measurement point is at h̃s. Colomnwise represents
greater magnitude Gaussian error. The alternate rows are due to the two different ∆ h̃ used.
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7.2.2 Exponential percentiles for Fr2 = 0.05
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Fig. 4 Similar to Fig. 3 but the exponential profile has shear of Fr2 = 0.05.
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7.2.3 Exponential profile statistical moments for Fr2 = 0.05 (for OLS fit)
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Fig. 5 Here we plot the statistical moments –mean, standard deviation, skewness, and kurtosis– of the
relative error in phase velocity on an ensemble of noisy measurements of an exponential velocity profile
reconstructed using the OLS method. The velocity profile has shear Fr2 = 0.05. The standard deviation is
chosen instead of the variance to keep the same scale as the mean.
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7.2.4 Exponential profile deviation dependence on ∆ h̃

Fig. 6 The standard deviation in ∆ c̃/c̃ against k for several ∆ h̃ values for the exponential profile. The other
parameters are kept constant: Fr2 = 0.05, ∆U = 0.1, h̃s = 0.

Fig. 7 The integral of the standard deviation of ∆ c̃/c̃ with respect to k for a range of ∆ h̃ values, shown
here instead as the number of h points used for clarity. The other parameters are kept constant: Fr2 = 0.05,
∆U = 0.1, h̃s = 0.
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7.3 z1/7 profile simulations

7.3.1 z1/7 profile percentiles for Fr2 = 0.01
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Fig. 8 Similar to Fig. 3 but for the ‘1/7’ profile (6) with shear Fr2 = 0.01
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7.3.2 z1/7 profile percentiles for Fr2 = 0.05
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Fig. 9 Similar to Fig. 3 but for the ‘1/7’ profile (6) with shear Fr2 = 0.05
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7.3.3 z1/7 profile statistical moments for Fr2 = 0.05 (for OLS fit)
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Fig. 10 Similar to statistical moments plots Fig. 5 but for the ‘1/7’ profile (6) with Fr2 = 0.05
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7.3.4 z1/7 profile deviation dependence on ∆ h̃

Fig. 11 The standard deviation in ∆ c̃/c̃ against k for several ∆ h̃ values for the ‘1/7’ profile. The other
parameters are kept constant: Fr2 = 0.05, ∆U = 0.1, h̃s = 0.

Fig. 12 The integral of the standard deviation of ∆ c̃/c̃ with respect to k for a range of ∆ h̃ values, shown
here instead as the number of h points used for clarity. The other parameters are kept constant: Fr2 = 0.05,
∆U = 0.1, h̃s = 0.
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7.4 Columbia River profile simulations

7.4.1 Columbia River profile percentiles
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Fig. 13 Similar to Fig. 3 but using the Columbia River indicative velocity profile which has been scaled
to have Fr2 = 0.05
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7.4.2 Columbia River profile statistical moments (for OLS fit)
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Fig. 14 Similar to statistical moments plots in Fig. 5 but for the indicative Columbia River velocity profile
that has shear Fr2 ≈ 0.04.
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7.4.3 Columbia River profile deviation dependence on ∆ h̃

Fig. 15 The standard deviation in ∆ c̃/c̃ against k for several ∆ h̃ values for the Columbia River profile.
The other parameters are kept constant: ∆U = 0.1, h̃s = 0.

Fig. 16 The integral of the standard deviation of ∆ c̃/c̃ with respect to k for a range of ∆ h̃ values, shown
here instead as the number of h points used for clarity. The other parameters are kept constant: ∆U = 0.1,
h̃s = 0.
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7.5 Pseudospectra plots
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Fig. 17 Pseudospectra for our exemplar velocity profiles at k̃ = π .
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surface currents from wave dispersion measurements. arXiv e-prints arXiv:1904.11575 (2019)



34 Peter Maxwell et al.
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