
June 2009
Rolv Bræk, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Collaboration-Oriented Modeling Of An
Offshore Group Communication System

Tam Doan-Thi-Hong

Problem Description
The proposed task in this thesis is to use the SPACE method and the Arctis tool to develop a
service for the Sea Cage Gateway platform. This service should realize group communication on a
conference or push-to-talk basis. This should enable personnel at the operations
centre to be in contact with mobile personnel in the vicinity of the fish farm (or work boat), covered
by WLAN-spots at the location (or boat). Since the extent of a aquaculture site might be 500x1000
meters, the same service is of great importance to dispersed mobile
workers at the site as well. The task includes proposing collaborative building blocks that can be
composed to realize the overall behavior, and the analysis of the overall system behavior. Possible
extensions to the development process may be studied and contributed as well.

Assignment given: 15. January 2009
Supervisor: Rolv Bræk, ITEM

 i

Abstract

This thesis studies the SPACE method by creating building blocks for a Push to Talk (PTT)

service in WLAN environment. The structure and behavior of a PTT service is analyzed and

discussed. We have modeled the behavior of a PTT service with the GUI of the PTT client.

As a result, several of building blocks for a PTT service have been proposed. They can be

stored in a library for a later reuse. We consider that the SPACE method well suited for

developing a PTT service.

Sammanfattning

Denna avhandling studerar SPACE metoden genom att skapa byggstenar för en PTT-tjänst i

WLAN miljö. Struktur och beteende för en PTT-tjänst analyseras och diskuteras. Vi har

utformat en model för beteendet av en PTT-tjänst med GUI av PTT klient. Som ett resultat

har flera byggstenar för en PTT-tjänst föreslagits. Vi anser att SPACE metoden är väl lämpad

för att utveckla ett PTT-tjänst.

 ii

Acknowledgements

This master thesis is the final project of a Master of Network Security and Mobile Computing

taken place at Royal Institute (KTH) of Technology and Norwegian University of Science

and Technology (NTNU). The thesis has been written at the Department of Telematics at

NTNU during the spring semester of 2009. My thesis supervisors have been Professor Rolv

Bræk at NTNU, Professor Gerald Maguire at KTH, and Frank Alexander Kraemer at NTNU.

First of all, I would like to use this opportunity to thank my academic supervisors, Professor

Rolv Bræk at NTNU, Professor Gerald Maguire at KTH, as well as Frank Alexander

Kraemer at NTNU. My supervisors always give me helpful supports, invaluable advices, and

quick feedback on my work during the six month period of the thesis. I strongly believe that

their invaluable advices have been significantly enhanced the quality of my work. Special

thank to Frank Alexander Kraemer for his supportive discussion and guidance on my project.

He was definitely a good navigator for my thesis work.

I would like to acknowledge the contribution of my friend Nattanond Savaphant for his

comments and discussion during the project. Another acknowledgement would go to Frode

Flægstad, TelCage/Telenor R&I for giving me an explanation of the problem domain.

I would like to show my appreciation to the NordSecMob consortium. The consortium gave

me a great opportunity to study in this master program in a cross-culture environment.

Last but not least, I would like to thank my family and all of my friends for their supports,

encouragements, and giving me motivations during my study. Special thank to my friend

Dam Hoang Anh for his great source of inspiration to me.

Trondheim, June 16, 2009

Doan Thi Hong Tam

 iii

Contents

Abstract ... i

Sammanfattning ... i

Acknowledgements ... ii

Contents ... iii

List of Tables .. vii

List of Acronyms and Abbreviations .. viii

1 Introduction ... 1

1.1 Problem statement ... 2

1.2 Structure of the report ... 3

2 Background ... 4

2.1 SPACE method ... 4

2.1.1 Arctis and Ramses ... 8

2.2 Push to Talk .. 10

2.2.1 Signaling Protocol.. 12

2.2.2 Talk Burst Control ... 13

2.2.3 Transport Protocol ... 14

2.2.4 Push to talk communication ... 15

2.2.5 Group and List management .. 16

3 System Requirement Analysis ... 17

3.1 User agents ... 17

3.1.1 Push to Talk client ... 17

3.1.2 Push to Talk server... 19

3.2 Use cases .. 21

3.2.1 User login .. 22

3.2.2 Instant personal talk session initiation .. 22

3.2.3 Joining a group talk session .. 23

3.2.4 Group talk session initiation ... 24

3.2.5 Adding users to a group talk ... 25

3.2.6 Leaving a talk session .. 27

 iv

3.2.7 Talk session termination .. 27

3.3 Integration of message flows in Arctis... 28

4 Object and collaboration analysis .. 31

4.1 Object-oriented analysis .. 31

4.2 Collaborations of Push to Talk .. 31

5 Modeling service behavior with GUI building blocks .. 35

5.1 Login service .. 35

5.2 Instant personal talk service .. 38

5.2.1 Contact view building block ... 38

5.2.2 Instant personal talk session initiation collaboration 39

5.2.3 Talk termination collaboration ... 41

5.2.4 Instant personal talk service ... 42

5.3 Ad hoc instant group talk service ... 43

5.3.1 Group view building block ... 43

5.3.2 Ad hoc instant group talk initiation collaboration.. 45

5.3.3 Group joining collaboration ... 47

5.3.4 Talk leaving ... 48

5.3.5 Add user to a group .. 49

5.3.6 Ad hoc instant group talk collaboration .. 50

6 Discussion ... 53

7 Conclusions and Future Work.. 55

7.1 Conclusions .. 55

7.2 Future work .. 55

References .. 56

 v

List of Figures

Figure 1-1: Network Infrastructure (taken from [3], appears with permission of

Telcage/Telenor R&I) ... 2

Figure 2-1: Model Transformation using the SPACE method (taken from [2]) 4

Figure 2-2: The SAPCE method (taken from [11]) .. 5

Figure 2-3: Collaboration Login .. 6

Figure 2-4: Activity and corresponding call behavior action example [13] 7

Figure 2-5: Login service example .. 9

Figure 2-6: Activity block example ... 9

Figure 2-7: Java code of the Compare block .. 9

Figure 2-8: TestCompare system block ... 10

Figure 2-9: Java code of the TestCompare system block ... 10

Figure 2-10: General PTT architecture .. 11

Figure 2-11: Talk Session Initiation, with two modes [21] ... 12

Figure 2-12: Talk session termination.. 13

Figure 2-13: Contact Header of a SIP REGISTER request in PTT 13

Figure 2-14: Accept-Contact Header of a SIP INVITE request in PTT 13

Figure 3-1: PTT client and desire functions ... 17

Figure 3-2: PTT client's GUI functions .. 17

Figure 3-3: Login dialog.. 19

Figure 3-4: Incoming Call dialog ... 19

Figure 3-5: Account setting page ... 19

Figure 3-6: Missed Call dialog .. 19

Figure 3-7: Contact list page ... 19

Figure 3-8: Group list page .. 19

Figure 3-9: Call history page ... 19

Figure 3-10: PTT server functions ... 20

Figure 3-11: PTT server processes SIP requests and Responses ... 21

Figure 3-12: REGISTER message flow ... 22

Figure 3-13: Instant personal talk session initiation ... 23

Figure 3-14: Joining a group talk ... 24

Figure 3-15: Group talk session initiation .. 25

Figure 3-16: Add a user to an ad hoc instant group talk ... 26

Figure 3-17: The receiver rejects the invitation .. 26

Figure 3-18: Leave a talk session... 27

Figure 3-19: Talk session termination.. 28

Figure 3-20: Exchanging a REGISTER message between a user and a PTT server 29

Figure 3-21: SIP REGISTER header [22] ... 29

Figure 3-22: Java method of the call operation action genRegisterMsg 30

Figure 4-1: System collaboration ... 32

 vi

Figure 4-2: Instant personal talk collaboration ... 32

Figure 4-3: Instant group talk collaboration ... 33

Figure 4-4: Ad-hoc instant group talk collaboration ... 33

Figure 5-1: Login service building block ... 36

Figure 5-2: LoginGUI building block .. 36

Figure 5-3: Login building block ... 36

Figure 5-4: Contact view building block .. 39

Figure 5-5: Instant personal talk session initiation ... 40

Figure 5-6: Talk termination session ... 41

Figure 5-7: Instant personal talk activity diagram ... 42

Figure 5-8: Group View building block ... 44

Figure 5-9: Ad hoc instant group talk initiation session initiation ... 47

Figure 5-10: Group joining .. 48

Figure 5-11: Talk leaving service .. 49

Figure 5-12: Adding user in a group .. 50

Figure 5-13: Ad-hoc instant group talk activity diagram .. 51

Figure 6-1: Data with accept signal action .. 53

 vii

List of Tables

Table 2-1: Activity node [13] [12] ... 6

Table 2-2: Talk burst control messages.. 14

Table 3-1: Main dialog pages .. 18

Table 4-1: Object attributes ... 31

 viii

List of Acronyms and Abbreviations

Abbreviations Meaning

COOS Connected Objects Operation System

ESM External State Machine

GPRS General Packet Radio Service

GUI Graphical User Interface

IMS IP Multimedia Subsystem

OMA Open Mobile Alliance

PoC Push to Talk over Cellular

PSTN Public Switched Telephone Network

PTT Push to Talk

RTCP Real-time Transport Protocol

RTP Real-time Transport Protocol

SCG Sea Cage Gateway

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

TB Talk Burst

TBC Talk Burst Control

TBCP Talk Burst Control Protocol

TCP Transmission Control Protocol

TLA Temporal Logic of Actions

TLC Temporal logic of causality

TLS Transport Layer Security

UDP User Datagram Protocol

UML Unified Modeling Language

WLAN Wireless Local Area Network

http://www.google.no/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FReal-time_Transport_Protocol&ei=bJ4fSozVJ4T3_Aag_PioCQ&usg=AFQjCNEwENWQ69DGsaQA8ge7G0o5XDrNHg&sig2=QiBoBpqz1-R1er-QkDxS4g

 1

1 Introduction

There are many situations in which it is desirable for people working as a group to be able to

easily communicate with each other. This thesis is concerned with the specific case of group

communication in a Wireless Local Area Network (WLAN) environment installed in off-

shore fish farms shown in Figure 1-1. In particular we study Push to Talk (PTT)

communication. PTT provides a half-duplex communication for mobile phone users. The

PTT service allows only one person to speak at the time and the others will listen to him or

her in the communication session. Furthermore, due to the presence of the WLAN

environment, PTT can utilize Voice over IP (VoIP) and Session Initiation Protocol (SIP)

technology to set up a call. PTT can therefore be provided cheaply by avoiding the use of

service providers in the Public Switched Telephone Network (PSTN).

The specification of PTT was defined by a consortium including Motorola, Nokia, Ericson,

Siemens AG, and AT&T Mobility and approved as standards by the Open Mobile Alliance

(OMA). There were 45.6 million PTT subscribers in 2006 and 64 million in mid 2007. It is

expected that the number of PTT subscribers reaches 340 million by 2013 [1]. Therefore, the

use of a PTT service for our off-shore group communication builds on a well proven

technology for group communication.

Developing a PTT service can be very difficult since it has various participating components.

A component has its behavior and interaction with other components. Furthermore, current

specification of PTT service proposed by OMA is based on an IMS architecture. Hence,

making the process of developing a PTT service easier is a great demand.

SPACE is an engineering method for rapid service development, developed at NTNU. In the

SPACE method, a service is composed by building blocks using Arctis tool. A building block

is a unit of specifications. It has participants, structure, and behavior. The participant is

illustrated by collaboration roles. The structure is described by UML 2.0 collaborations. The

internal behavior is illustrated by UML 2.0 activities diagrams. The external behavior is

represented by a state machine. Then in SPACE method, the collaborations and activities of

building blocks are transformed to state machines which generate executable code in a

second step using another tool (Ramses).

The SPACE method is based on three principles to speed up development of services:

collaborative building blocks, model transformation and code generation, and formal analysis

of models [2]. Arctis and Ramses are tool suites in the SPACE method to support these

concepts. In this project, we have built select building block for a PTT service in a WLAN

environment. We have modeled the behavior of the service with the user interface blocks.

Our building blocks for a PTT service can be stored in a library for later use.

 2

1.1 Problem statement

In this thesis, we model a PTT system in a WLAN environment. Since the current

specification for PTT proposed by Open Mobile Alliance (OMA) is based on an IMS

architecture, we make some variations from the OMA specification for Push to talk over

Cellular to develop a PTT system in a WLAN environment.

Figure 1-1 shows the Distributed Infrastructure of Connected Objects (DICO) network

infrastructure of the offshore group communication system. As shown in the figure, the

network infrastructure includes four main components: Sea Cage Gateway (SCG)

Headquarters, SCG Operations Centre, several Feed barges, and multiple SCG Edges. A

WLAN covers the working environment of each Feed barge. The communication link

between the Operations Centre and the headquarters, third party service providers, and the

management center is via WAN connections, while the other communication links use

WLAN technology. Every fish famer is equipped with a mobile device. This device can use

the WLAN for access through host spots at each location to communicate.

Figure 1-1: Network Infrastructure (taken from [3], appears with permission of Telcage/Telenor R&I)

We use a centralized PTT server which is responsible for managing the PTT service for the

entire network. It is located on the Operations Centre. The PTT clients are located on the

mobile devices of the fish farmer and the operators on the feed barges/boats and the

Operations Centre.

In our design, the Session Initiation Protocol (SIP) is used to manage PTT sessions and the

Real-time Transport Protocol (RTP) is used to transport the media stream. The Real-time

 3

Transport Control Protocol (RTCP) is used in conjunction with RTP to provide feedback

concerning the media session. The media exchanged among PTT clients in our project is only

speech. Hence, other types of media are out of the scope of this project.

PTT clients can be in an instant personal talk, instant group talk, or ad hoc instant group talk

to communicate with other clients. In order to talk to others, a PTT user has to hold down a

PTT button on the mobile device when talking via a PTT client. When the button is released,

the talk session is terminated. The right for a PTT client to speak is arbitrated through a

protocol called Talk Burst Control Protocol (TBCP) as defined in the OMA PoC

specifications [4]. This protocol will be described in section 2.2.2 on page 13.

The main focus of the project is modeling the performance of message flow in PTT session

initiation and termination. The scope of the project includes these tasks:

- Build a graphical user interface (GUI) for a PTT client using the Java Swing API [5]

with the Eclipse integrated development environment (IDE) [6] .

- Use Arctis described in section 2.1.1 on page 8 to build selected blocks of a PTT

service with support for instant personal talk, instant group talk, and ad hoc instant

group talk.

The actual media delivery and presence functions are out of the project’s scope. These

features have been implemented in a number of existing SIP user agents, such as minisip [7],

X-lite [8], Ekiga [9].

1.2 Structure of the report

The rest of this report is organized as follows:

Chapter 2 gives some background for the thesis project. Firstly, the idea of the SPACE

method and its tools are described, then a system overview of the Push to Talk service is

given.

Chapter 3 analyzes the system requirements in order to support the process of creating

building blocks for Push to Talk using the SPACE method. In this chapter based upon the

principal of the SIP protocol, its logic, and the specification of the Push to Talk over Cellular

proposed by the OMA, we make some simplifications of message flows to create some use

cases. At the end of this chapter, the specific use cases are selected and described in detail.

Chapter 4 analyzes the objects and the collaborations in a Push to Talk service. The modeling

process is mainly based on the use cases specified in chapter 3.

Chapter 5 models the building blocks of a PTT service together with the GUI blocks.

Chapter 6 discusses the outcome of this thesis and other solutions for system design.

Chapter 7 concludes the work and suggests future work.

 4

2 Background
In this section, we present the background of this thesis project. Firstly, we describe the idea

of the SPACE method and explain how to use its tools to support the creation of services in

reactive systems. Following this a system overview of group communication, specifically

Push to Talk, which is focus in our project, is given.

2.1 SPACE method

The SPACE
1
 method is an engineering approach for creating reactive systems by mean of

building blocks [2]. The SPACE method utilizes UML 2.0 collaborations and activities to

describe systems as compositions of building blocks. Some of these building blocks are taken

from a library [10]. When the system specification is created in the form of building blocks

containing UML collaborations and activities, it can be transformed automatically into

executable state machines by the Arctis tool, then from these state machines into executable

Java code by another tool (Ramses). Arctis and Ramses are two tool suites in the SPACE

method that support creation of services. An overview of how to use these tools is given in

section 2.1.1.

Figure 2-1: Model Transformation using the SPACE method (taken from [2])

Figure 2-1 illustrates the SPACE method. Services are composed from building blocks which

may be retrieved from a library. The resulting set of blocks is transformed into executable

state machines and components using the Arctis tool. The roles of Arctis and Ramses tools in

each process are depicted clearly in the figure.

1 SPACE stands for specification by activities, collaborations, and external state machines.

 5

Compositional Temporal Logic of Actions (cTLA) is used to check the correctness of the

model and the transformation [11]. This method has two variants: cTLA/c and cTLA/e (see

Figure 2-2). The cTLA/c formalizes the collaborative service specification by UML 2.0

activities. It transforms UML collaborations and activities to UML state machines. The

cTLA/e formalizes the behavior of the UML state machines and transforms these state

machines into executable code.

Figure 2-2: The SAPCE method (taken from [11])

The result of Temporal Logic of Actions (TLA) generator is used as input for the model

checking Temporal Logic of Causality (TLC). This is an external model checker invoked by

Arctis from the command line. The model checker generates a number of theorems which are

used to verify the specification [11].

In the SPACE method, a system specification is composed of several building blocks which

are modeled in UML as collaboration, activities, and External State Machines (ESMs). UML

collaborations describes the structure of the system, for example the participants in services.

Collaborations specify a relationship between participants in services. These collaborations

describe how the participants relate to each other. Collaboration consists of collaboration

roles of the participants of the collaboration and collaboration uses which describe the

functionality between the participants of the collaboration [12]. In a UML diagram, the

collaboration role is rectangular and the collaboration use is elliptical. Figure 2-3 shows an

example of a collaboration login. The rectangular client and server are collaboration roles.

The elliptical login is a collaboration use.

 6

Figure 2-3: Collaboration Login

UML activities illustrate the behavior of participants in a service and the interaction between

them. UML activities define a flow graph of nodes connected by edges. The control and data

flow along the edges are operated by other nodes or represent information routed to them

[12]. The summary of activity nodes in Arctis is given in Table 2-1.

Table 2-1: Activity node [13] [12]

Activity Node

Initial node A system activity starts in the initial node when it is activated

Fork node

A fork node has one incoming flow and at least two outgoing flows. All

the incoming flow and outgoing flows maybe either all object flows or

all control flows. However, if the incoming flow is an object flow, the

outgoing flows may include both object flows or control flows.

Join node

A join node synchronizes several incoming flows. When all incoming

flows arrive at a join node, an outgoing flow is produced.

Decision node When an incoming flow arrives at a decision node, one of its outgoing

flows is chosen.

Merge node

A merge node has at least two incoming flows and one outgoing flow.

The outgoing flow is produced when at least one incoming flow arrives

at the merge node.

Timer

When an incoming flow arrives at the timer node, it will be sent out

when the timer expires. The timer is usually used after a fork node since

all outgoing flows of a fork node are executed in parallel. Hence, the

timer is used to send a flow after the other flows.

Flow final node A flow final node simply ends a flow. It does not terminate the activity.

Activity final

node

An activity final node terminates an activity.

 7

Call operation

action

A call operation action performs a local method call in an activity. It is

assigned to one activity partition.

Call behavior

action

A call behavior action is an instantiation of an activity. It has input and

output pins corresponding to the parameter nodes of the activity.

Activity

parameter node

There are three types of activity parameter nodes: starting parameter

nodes, terminating parameter nodes, and streaming parameter nodes.

 The activity starts/terminates in a starting/terminating parameter

node. When the activity starts, it is active. When the activity

terminates, it is inactive.

 When the activity is active it can send or receive data via

streaming parameter nodes.

Pin When an activity is instantiated as a call behavior action, its activity

parameter nodes are turned to be corresponding pins in call behavior

action. There are two types of pin: input pin and output pin.

Send/Receive

signal action

Send/receive signal action is used to send/receive a signal to/from the

environment. The send signal action may have an input pin. The receive

signal action may have an output pin.

Figure 2-4 illustrates the deference between activities and call behavior actions, activity

parameter nodes and pins. On the left hand side, the figure shows the activity of the Login

service with a starting parameter node start and two alternative terminating parameter nodes

loginFail and loginSuccess. The activity of the Login service can be terminated via either

loginFail parameter node or loginSuccess parameter node. On the right hand side, the figure

shows the call behavior action which is an instantiation of the Login service and its

input/output pins corresponding to the starting/terminating parameter nodes of the Login

service.

Figure 2-4: Activity and corresponding call behavior action example [13]

 8

The last component of a building block is an External State Machine (ESM) which defines

the external behavior of the building block. An ESM transition is the activity parameter node

separated by a “/”. The parameter node before the slash is called the trigger parameter node.

The parameter node after the slash is called the effect parameter node. The ESM is triggered

by the trigger parameter node. The effect parameter node is the consequence of the transition

being triggered. States in ESM do not contain entry or exit actions [13].

2.1.1 Arctis and Ramses

Arctis and Ramses are tool suites implementing the SPACE method. Arctis [2] [10] is a plug-

in to the Eclipse [6] development platform to provide an editor for a service specification by

editing UML 2.0 collaborations and activities. Subsequently these building blocks are

transformed into state machines by an algorithm [14] used by Arctis. When the state

machines of the service are ready, Ramses [2] is used to generate executable Java code from

them. The focus of our project is using Arctis to model a Push to Talk group communication

in terms of building blocks which can be stored in the library for later use in related

applications.

Building blocks are the major units in Arctis. They are the units of the service specification.

Building blocks include participants, structure, and behavior. The significant feature of Arctis

is that it supports the reusability of building blocks; because completed blocks are stored in

the library for later use. Therefore, Arctis can increase the productivity of software

developers. Arctis provides four types of building block:

Service collaboration or Service is the most common building block. It has more than one

participant. The service collaboration is modeled as a UML 2.0 collaboration. The building

block has an internal behavior and an external behavior [13].

Figure 2-5 shows an example of login service collaboration in a PTT system. It includes two

participants: a user (using a PTT client) and a PTT server. The internal behavior of the login

building block is the interaction between the user’s client and the PTT server. Firstly, in order

to login to the system the user’s client executes the genRegisterMsg call operation action to

generate a SIP REGISTER request and sends it to the PTT server. After the PTT server

receives the message, it checks the user’s credentials by executing the checkUserCredentials

call operation action. The checking result of the operation then arrives at a decision node with

two branches: true and false (or else branch). The true branch leads the PTT server sends a

SIP 200 OK response to the user’s client since the user is authenticated. The building block

terminates via the output pin loginSuccess. On the contrary, the else branch leads the PTT

server sends a SIP 401 Unauthorized response to the user’s client. The building block then

terminates via the output pin loginFail. The output pins loginSuccess and loginFail are

alternative terminating parameter nodes.

 9

Figure 2-5: Login service example

Activity block or block is similar to a service, but it has only one participant with one

activity and an ESM. Hence, a block does not have any UML collaboration [13]. Figure 2-6

shows an example of an activity building block named “Compare”. It has two integer

variables a and b and a call operation action named compare to compare the values of these

variables. The compare method will return true or false depending on the values of the

variables. Figure 2-7 shows the corresponding Java code of the Compare block. Each

participant in a block is realized as a Java class. The declarations of variables and methods

are all automatically generated based upon the composition of the block.

Figure 2-6: Activity block example

Figure 2-7: Java code of the Compare block

System collaboration or system is a special service. It is used to generate code for a service

to execute it. A system includes some services and executes them, thus it does not have any

input pin or output pin. Hence, a system does not have an ESM. Furthermore a system starts

with an initial node and ends with an activity final node; while a service is triggered by an

event and terminated by an output event.

 10

Figure 2-8 shows an example of a system block to test the Compare block (described above)

by generating code to invoke it. It starts with an initial node, then the init method is called to

input the values for the two variables. The Compare block is placed after the init method.

Depending on the result of the Compare block, one of two call operation actions is called to

print out the conclusion; i.e., printing out whether the variables were equal or different in

value. The Java code of the TestCompare system block is shown in Figure 2-9.

Figure 2-8: TestCompare system block

Figure 2-9: Java code of the TestCompare system block

Shallow block is a building block that is completely described by its own ESM, hence it does

not have any UML activity. A shallow block contains only of parameter nodes and an ESM

[13].

2.2 Push to Talk

Unlike regular phone calls which are full-duplex, Push-to-Talk (PTT) is a half-duplex service

- providing an one-way voice group communication mechanism for mobile phone users. That

means that once a group communication session is created, the service allows only one

member of the group to speak and the others will listen to him or her until the user gives up

the floor. When the user who has the floor speaks, his or her voice traffic is sent as packet

stream. These packets are duplicated and sent to all recipients participating in this PTT

session. In addition to group communication, PTT also supports one-to-one half-duplex

communication between two users. In this case, a user who wishes to set up a PTT session

with another user; simply selects an entry from his contact list and pushes the PTT button. In

general, before speaking, a potential talker has to request the floor – this is done by pressing

the PTT button on the mobile device. The button will be held down when this user speaks

and released to give the floor to another participant in the session.

A PTT service was first introduced in the USA by the operator Nextel in August 1993 in their

iDen network. The service has steadily grown since that time and now is deployed in 2.5G

and 3G packet switched cellular networks, but it is called Push-to-Talk over Cellular (PoC).

 11

The specification of PoC was defined by an industry consortium including Motorola, Nokia,

Ericson, Siemens AG, and AT&T Mobility. The result of this collaboration is the set of PoC

specifications approved as standards by the Open Mobile Alliance (OMA) [15]. All of these

specifications are based on using an IMS architecture to implement PTT. In fact, PTT is the

first IMS based service for mobile networks. The PTT service based on the OMA

specifications utilizes a General Packet Radio Service (GPRS) network to stream media data

[16].

Figure 2-10: General PTT architecture

According to the OMA specification [17], the architecture of the PTT relies on PTT clients,

PTT servers, and an XML Document Management server (see Figure 2-10). The PTT client

is usually implemented as software in mobile phones. The PTT server controls one or more

PTT sessions and transfers media data among the PTT clients. However, in an instant

personal talk session, the sender may send the media data directly to the receiver since he or

she knows the IP address of the receiver in the talk session initiation. In this case, the PTT

server has the role of forwarding the talk request of the sender to the receiver. In a session the

media data provided by the PTT service may be audio (e.g. speech, music), video, images,

text, and files. The PTT server controls PTT sessions - from initiation of a new session,

media transfer during a session, and termination of the session.

PTT session initiation and termination is controlled by using the Session Initiation Protocol

(SIP). SIP is described in [18]. SIP does not convey media data. The information concerning

the media capabilities of the participating SIP user agents is carried in a SIP message body

using the Session Description Protocol (SDP) [19]. This SDP information is included in SIP

messages during the session initiation and for modifications to an existing session. The Real-

time Transport Protocol (RTP) [20] is used to transport media data. A companion protocol,

the Real-time Transport Control Protocol (RTCP) is used to monitor the quality of an

associated RTP session.

In figure 2-10, the XML Document Management (XDM) server implements a group of four

functions: Shared List XDM Server (XDMS), Shared Group XDMS, Shared Policy XDMS,

 12

and Aggregation Proxy. The Shared List XDMS manages user information. The Shared

Group XDMS manages group member list and group information. The Policy XDMS

manages the group’s policy. The Aggregation proxy connects the PTT server and one or

more XDMSs.

2.2.1 Signaling Protocol

PTT uses the Session Initiation Protocol (SIP) to initiate, terminate, and modify PTT

sessions. SIP is a text based application layer protocol. SIP messages are generally wrapped

in UDP packets for transmission over IP network (however, SIP can utilize TCP, SCTP, or

TLS). These messages can be divided into requests and responses. Requests are sent by a

client to the server, for example INVITE, REGISTER, REFER, NOTIFY, ACK, and BYE

messages; whereas responses are sent by a server in response to requests. Examples of SIP

response messages are 200 OK, 100 TRYING, 180 RINGING, and so on. Figure 2-5

illustrates the SIP message sequence to initiate a talk session. When the sender presses the

PTT button, an INVITE message is sent to the incoming PTT server for the potential receiver

in order to create a talk session. This distinction between client and server is important

because it allows the server to provide interesting services: while the sender does not actually

need to know the IP address of a potential receiver.

Depending on the configuration of PTT clients, there are two kinds of answer modes for

incoming session invitation: automatic and manual answer mode. In the automatic mode, the

receiver hears the voice from the sender without any notification or performing any action. In

contrast, in the manual mode the receiver receives a notification and must decide to accept

the call before hearing the voice of the caller. The core difference between these modes is the

SIP messages exchanged during the establishment of the session. Figure 2-11 shows the

details of the messages exchanged in these two modes. In this figure, when the receiver gets

the SIP INVITE message, it sends a SIP 100 Trying response back to the sender through the

PTT server. Depending on the answer mode configuration, the receiver either generates SIP

183 Session Progress (figure 2-11a) for auto answer mode or SIP 180 Ringing (figure 2-11b)

while generating a tone to notify the receiver of an incoming call in manual mode.

(a) Auto answer mode

(b) Manual answer mode

Figure 2-11: Talk Session Initiation, with two modes [21]

 13

The SIP message flow in a PTT session termination is shown in Figure 2-12. When the

sender finishes talking, he or she releases the PTT button terminating the session. A SIP BYE

message is sent to the receiver and a SIP 200 OK is the expected response to confirm session

termination. After this exchange the media stream terminates.

Figure 2-12: Talk session termination

There are several changes to the SIP message format when it is used in a PTT service in order

to differentiate between a normal SIP call and a PTT call. When a PTT client registers for

PTT service, the REGISTER message has a contact header containing a feature tag of the

form [21]:

Contact: sip:john.smith@ntnu.no;+g.ptt.talkburst=”TRUE”;

Figure 2-13: Contact Header of a SIP REGISTER request in PTT

The Contact header in all SIP responses includes the feature tag “+g.ptt.talkburst”. When a

PTT client generates a SIP INVITE message, the message has an Accept-Contact header of

the form [21]:

Accept-Contact: *;+g.ptt.talkburst=”TRUE”;require;explicit

Figure 2-14: Accept-Contact Header of a SIP INVITE request in PTT

When the SIP INVITE message is sent to the PTT server, the PTT server checks to see if the

invited user is registered or not. If the invited user is registered with the feature tag true for

PTT, then the PTT server continues processing the INVITE request; otherwise it rejects the

request with a “480 Temporarily not available” response [21]. In addition to being sent in the

SIP INVITE message, the Accept-Contact header shown in figure 2-14 is included in SIP all

other SIP requests except the BYE request.

2.2.2 Talk Burst Control

After a PTT session has been established, the PTT server decides which participant is

allowed to talk. Because PTT is a half-duplex service, only one participant can talk at a time.

The process of controlling which participant has the right to talk is referred as talk burst

 14

control
2
 [4]. The right to speak is normally requested by pressing a PTT button. A talk burst

is a flow of PTT speech from one PTT client to the other PTT clients in a group. When the

PTT server receives a talk burst, it distributes it to all of other members of the session. The

talk burst control message is carried in RTCP packets while the actual talk burst is carried in

RTP packets.

The Talk Burst Control Protocol (TBCP) is used to request and grant the right to send a talk

burst. Table 2-2 shows eight types of talk burst (TB) messages.

Table 2-2: Talk burst control messages

TB message Sent by Description

TB IDLE (TB_IDLE) PTT server Notify all PTT clients that no one is sending a talk
burst at the moment, thus a TB_REQUEST may

be granted

TB RELEASE (TB_RELEASE) PTT client Notify the PTT server that it has finished sending
a talk burst.

TB REQUEST (TB_REQUEST) PTT client Request the PTT server to grant the right to send a

talk burst.

TB GRANTED (TB_GRANTED) PTT server Notify the PTT client that it has been granted the
right to send a talk burst.

TB TAKEN (TB_TAKEN) PTT server Notify all PTT clients excluding the PTT client

that has the right to send a talk burst that another

PTT client has been granted the right to send a
talk burst.

TB DENY

(TB_DENY)

PTT server Notify the PTT client that its talk burst request has

been denied.

TB REVOKE (TB_REVOKE) PTT server Revoke the use of the media resource for a long
time from a PTT client to guarantee fairness. The

PTT client replies an SIP 200 OK message

TB ACKNOWLEDGEMENT

(TB_ACKNOWLEDGEMENT)

PTT client Send an acknowledgement as required when it

receives a TB message.

2.2.3 Transport Protocol

User Datagram Protocol (UDP) is used to transport RTP and RTCP packets. RTP is used to

transport media data from the sender to the receivers [20]. Talk burst control messages

between the PTT client and the PTT server are carried by RTCP [4].

2 Talk burst control is a specific form of “floor control”. It is a control mechanism to arbitrate the right to send

speech in PTT. In addition to talk burst control, there is a media burst control which is a control mechanism to

arbitrate the right to send media and multimedia.

 15

RTCP is used for control information associated with an RTP flow or to provide feedback of

the quality of service being provided by RTP, such as bytes sent, lost packets, jitter, round

trip delay, and feedback. There are several types of RTCP packets: Sender Report (SR)

packet, Receiver Report (RR) packet, Source Description (SD) RTCP packet, Goodbye

(BYE) RTCP packet, and Application (APP) Specific RTCP packets. In a PTT application,

RTCP APP is used for talk burst control while RCTP RR and SR are used for quality

feedback [4] [23].

2.2.4 Push to talk communication

PTT can be used for various types of communication in order to meet the communication

demands for a group of users. The main difference between these different types of

communication is their group policy. A PTT group can be a pre-defined group with a

restricted list of participating members or an open group that anyone can join. Therefore we

can divide PTT into two types of communication: one-to-one or group communication.

One-to-one communication or Instant Personal Talk provides one-to-one voice

communication between two users where only one user talks at a time. The caller controls the

communication by pressing the PTT button and starting to talk. Depending on the

configuration of the PTT client, the recipient may immediately hear the caller’s voice without

manually answering or the callee may manually answer the call as they would answer a

normal phone call.

Group communication provides one-to-many communication in a group of PTT users. In a

group communication session, there is only one user speaking and the rest of the group

listens. When a PTT user receives a group invitation he or she can either accept or reject the

invitation, depending on the user’s preference. Group communication can be divided into

many sub-types, including the following [16]:

 Chat group talk includes two sub-sub-types:

 Open chat group to which any other users can be invited at any time. It

allows anyone to join; and

 Restricted chat group is for members only. The members can join this group

at any time they wish during a talk session.

 Instant group talk is a PTT session for a pre-defined group. All the members of the

group are immediately invited to join the session at the time of the initial call

establishment. This behavior is different from chat group talk because users in chat

group talk can join the group at anytime they wish, while an instant group talk allows

members to join only before the start of a session.

 Ad hoc instant group talk is the same as an open chat group. The only difference is

that a unique identifier for an open chat group has been created. The unique identifier

of an ad hoc instant group talk is transient. Ad hoc instant group talks are created on

the fly. A user invites other users to an ad hoc group talk by selecting them from a

contact list or by typing their SIP-URI.

 16

 Instant personal alert is used to alert the recipient when he or she misses a call in an

instant personal talk session and requests the callee to call the caller back. An Instant

personal alert is really useful because sometimes the recipient is unreachable, for

example he or she is busy with other call or is offline. An instant personal alert

enables the callee to know that they have missed a call and to call back at a more

suitable time.

A PTT group is uniquely identified by a SIP URI which is generated by the XML Document

Management server when the group is created. Hence, every member can connect to the

group by using the group SIP URI. Group members are maintained in a group member list.

Additionally, every user is also identified by an address which is either a SIP URI, for

example sip:john.smith@ntnu.no or E.164 telephone numbers, for example +4791009171.

This address is used to set up communication with this user via a SIP proxy for this address

[24].

In a pre-defined group, all of the members are selected by the group owner/leader and only

the pre-defined members can join the group, therefore use of the group is restricted to its

members. A group communication session starts when the first member of the pre-defined

group accepts a session invitation and the right to talk is granted to the initiator of the session.

In contrast, an open group is open for anyone to join and the group members can invite any

other user to join the group at any time (even) during a talk session.

A PTT user can be a member of multiple groups at the same time. This is support by the

simultaneous session feature of PTT. For example, Alice is a member of three groups: Boats,

Operators, and Colleagues. She can receive voice messages from all of these groups and

whenever she wants to talk to a particular group, she simply selects the group and presses her

PTT button to start talking. However, Alice can only talk to one group at a time.

2.2.5 Group and List management

A Group and List Management Server (GLMS) is provided in a PTT system so that PTT

users can manage group and contact lists. A user can create, update, retrieve, and delete a

group or a contact list in his or her contact list through a graphic user interface [24].

The group identity, group member identity, and contact identity in the contact list of the user

are stored and managed in the GLMS. The group identity is generated by the GLMS when

the user creates the group. The group identity includes an indication of the group domain

where the group has been created and the group name. The GLMS generates a unique SIP

URI for the group when it is created and returns this group identity to the group member who

created the group.

A contact list is used by the PTT client. This contact list includes the identities of the other

PTT clients, groups, and contact lists. A contact list is allocated a unique SIP URI that is

generated by the GLMS when the user creates the contact list.

sip:john.smith@ntnu.no

 17

3 System Requirement Analysis
In this chapter, some analysis results of a PTT system are presented in order to support the

process of building blocks for PTT using the SPACE method. At the end of this chapter,

some specific use cases are selected a description of model methodology of these cases is

given. The modeling process in the following will be mainly based on these use cases.

3.1 User agents

In this section, we specify the functions of PTT user agents including PTT client and PTT

server.

3.1.1 Push to Talk client

The PTT client is implemented by software running on mobile device used by each of the fish

farmers. The features of PTT client to be modeled in our project are shown in Figure 3-1. The

Graphical User Interface (GUI) helps the client interact with other PTT clients and offers

three main functions: instant personal talk, instant group talk, and ad hoc instant group talk.

The initiation and the termination of these types of sessions are implemented using the SIP

protocol. The actual media data control is out of the project’s scope.

Figure 3-1: PTT client and desire functions

Figure 3-2: PTT client's GUI functions

The GUI consists of four main window dialogs: login dialog, missed call dialog, main dialog,

and incoming call dialog (see Figure 3-2). We use the Java Swing API [5] to implement all of

these dialogs in the Eclipse IDE [6]. The login dialog (Figure 3-3) is popped up after the PTT

client program is executed. After the user enters the correct user name and password, the

missed call dialog (Figure 3-6) is shown if the user has missed a call, otherwise the main

dialog is initiated. In the missed call dialog, all the contacts who had given a missed call to

the user are listed. The user can select a contact to call him or her. The incoming call dialog

(Figure 3-4) is shown when the user receives an incoming call. When the incoming call

dialog is shown a short ring tone is played. Then the user hears the voice of the talker

 18

immediately. If the user can not handle the call, he or she can press the Cancel button in the

dialog to deny the call. The incoming call dialog is closed when the call is finished or the user

presses the Cancel button in the dialog.

The main dialog contains four pages: contact list page, group list page, account setting page,

and call history page. The functionalities of these pages are described in Table 3-1.

Table 3-1: Main dialog pages

Main Dialog
Description

Contact list page

(see Figure 3-7)

The contact list page shows all the contacts of the PTT user. In the contact
list page, the PTT user can:

 either select a user in the contact list or type his or her SIP URI address

in a text box and press the Call button to make a call.

 add a new contact by pressing New button. After that a new page is

open to ask for the new contact information input.

 delete a selected contact in the contact list by pressing the Delete

button.

Group list page

(see Figure 3-8)

The group list page shows all the groups that the PTT user currently

participates in. In the group list page, the PTT user can:

 Join a group by typing the group SIP URI in a text box and press the

Join button

 invite other user to join a selected group, the PTT user type the user SIP

URI in a text box and press the INIVTE button. ; or enter a group SIP

URI in a text box to join.

 leave a group by selecting the group and then pressing the Leave button

 call a group by selecting the group in the group list and press the Call

button

Account setting page

(see Figure 3-5)

The PTT user can set a PTT account in the account setting page.

Call history page

(see Figure 3-9)

The call history page shows the most ten recent dialed calls and received

calls of the PTT user.

 19

Figure 3-3: Login dialog

Figure 3-4: Incoming Call dialog

Figure 3-5: Account setting page

Figure 3-6: Missed Call dialog

Figure 3-7: Contact list page

Figure 3-8: Group list page

Figure 3-9: Call history page

A PTT client can support both automatic answer and manual answer mode. In this project we

use manual answer mode as the default mode when modeling. When the sender pushes the

PTT button to talk, the receiver is notified by a short ring tone which the user must manually

answer before hearing the sender’s voice.

3.1.2 Push to Talk server

In general, there are two approaches for deploying a PTT service including centralized and

decentralize approach. In a centralized approach, each PTT client connects to a central PTT

server that provides a PTT service. The PTT client sends media only once time to the PTT

server, then the PTT server distributes the media to individual receivers. In the decentralized

approach, every user agent is both a PTT client and a PTT server managing the media to the

receiver. However, in a centralized approach, the PTT server acts as a central

communication; it controls all SIP messages and talk burst control messages in a PTT

session. This is an advantage of the centralized approach compared to the decentralized

 20

approach [23]. Hence, in this project, we propose to use a centralized approach for a PTT

service with a single central PTT server to handle all PTT sessions in the network.

As specified by OMA [17], the PTT server has two types of functions: participating and

controlling functions. The participating functionality handles SIP signaling from the PTT

client to create and terminate a PTT session; while the controlling functionality is responsible

for manipulating the media stream in a PTT session. Based upon this study, we illustrate the

idea of the PTT server functions in Figure 3-10.

Figure 3-10: PTT server functions

In our project, the main function of the PTT server is to handle SIP messages (to initiate and

terminate a PTT session) and talk burst control messages. We summarize the functionality of

the PTT server to process SIP requests and responses in Figure 3-11.

 When the PTT server receives a SIP REGISTER request, it will check the user

credentials. If the user is authenticated, it binds the user’s identity with the corresponding

IP address of the user’s client and sends a SIP 200 OK response to the user client. If the

user is not authenticated, the PTT server sends a SIP 401 Unauthorized response to the

user client.

 When the PTT server receives a SIP request from a sender’s client, such as an INVITE

request, REFER request, and so on, it lookups the address of the receiver’s client to

forward the request to the receiver’s client.

 When the PTT server receives a SIP response, it will forward the response to the

destination.

 21

Figure 3-11: PTT server processes SIP requests and Responses

The process that the PTT server handles talk burst requests and responses are described in a

specific case in the following section.

3.2 Use cases

While based on the OMA PoC specifications [22] [24], the principals of the SIP protocol

[18], and document [22] our project focuses on three typical features of a push to talk system:

instant personal talk, instant group talk, and ad hoc instant group talk. Various use cases

regarding these three types of PTT communication are specified and analyzed in the

following subsections. These cases include:

 User login

 Instant personal talk session initiation

 Joining a group talk session

 Group talk session initiation

 Adding users to a group talk session

 Leaving a talk session

 Talk termination

The idea presented in all of the message flow diagrams in the following subsections is

inspired by the OMA PoC specifications [22] [24], the principals of the SIP protocol [18] ,

document [25], and document [21].

 22

3.2.1 User login

A user needs to login to the system before making or receiving any calls from other users

through the network. This is done when the user executes the PTT application in their mobile

device and enters his or her user name and password via a Login Dialog. This causes the PTT

client to generate a SIP REGISTER request that includes the feature tag “+g.ptt.talkburst” in

the contact header indicating that the client is capable of supporting the PTT service. If the

user enters an incorrect username or password, the PTT server sends SIP 401 Unauthorized

message back to the client. On the contrary, if the user enters authentication credentials, he or

she successfully register the user’s client in the system (see Figure 3-12). To perform the

registration the PTT server binds the client’s identity to the device’s IP address.

Figure 3-12: REGISTER message flow

3.2.2 Instant personal talk session initiation

This case begins when a user selects another user in his or her contact list in order to initiate

an instant personal talk session. After the session is created, the initiator’s speech is

transported to the called party.

Figure 3-13 shows the INVITE procedure of an instant personal talk session. After the sender

selects a receiver from his or her contact list, he or she presses a PTT button to initiate the

talk session. At this time, a SIP INVITE message is generated and sent to the receiver. The

SIP INVITE message in this case is considered as an implicit TB_REQUEST [4]. The

Accept-contact header of the SIP INVITE message includes feature tag “+g.ptt.talkburst”.

 23

Figure 3-13: Instant personal talk session initiation

When the PTT server receives the SIP INVITE message, it checks the talk burst status of the

target receiver. If this receiver’s status is idle, then the PTT server forwards the INVITE

message to the receiver with the parameter “tb_granted=0” in the SDP parameters to

announce that the receiver is not allowed to speak. When the PTT server gets a SIP 200 OK

message from the invited client it replies with a SIP 200 OK message with “tb_granted=1” in

the SDP parameters to the sender to grant the sender permission to talk in this session [24]

[26]. After this step, the speech is delivered via an RTP media stream.

If the invited user is unreachable, the sender sends an instant personal alert to the receiver

asking for him or her to initiate an instant personal talk session between them in a more

suitable time. The instant personal alert is not modeled in this project.

3.2.3 Joining a group talk session

This case describes the message flow when a member of an existing instant group talk wants

to join/rejoin an instant group talk session or a PTT user wants to join an existing ad hoc

instant group talk session. The message flows of this process are shown in Figure 3-14.

 24

Figure 3-14: Joining a group talk

In order to join a group talk, the PTT user either selects the desired group in the group list or

enters the group SIP URI in the text box in the group list page and presses the join button.

After this process, a SIP INVITE message is generated and sent to all the members of the

group. When the sender’s client receives a SIP 200 OK message from the first recipient, the

PTT server starts checking the talk burst status of this group talk session.

 If nobody is talking in the session, then the PTT server sends a TB_IDLE message to

the sender’s client.

 In other cases, the PTT server sends a TB_TAKEN message to the sender’s client.

After receiving the TBC message, the PTT client replies with a SIP ACK to the PTT server to

indicate that it is ready to transfer media. After the sender successfully joins the group, he or

she starts receiving the media from the group if one member in the group is talking.

3.2.4 Group talk session initiation

This case describes the message flow when a member of an instant group talk or ad hoc

instant group talk starts talking in his or her group. This process is shown in Figure 3-15. The

PTT user initiates a group talk session by pressing a PTT button. The SIP INVITE request in

this case is considered as an implicit TB_REQUEST [4]. Therefore, when the PTT server

receives the SIP INVITE message, it checks the talk burst status of this group. If nobody is

 25

talking in this session, the PTT forwards the SIP INVITE message to all the members of this

group. In other cases, it informs the initiator that the group talk session initiation is fail.

After the SIP session is initiated in a group talk session, the PTT server sends a

TB_GRANTED message to the PTT client and a TB_TAKEN message to all the other

members of the group. Then the PTT client can start talking in this group session.

Figure 3-15: Group talk session initiation

3.2.5 Adding users to a group talk

This case describes the message flow when a member of an active ad hoc group invites

another PTT user in his contact list to join the group. Alternatively, the owner of the instant

group talk invites the group members to join an instant group talk session (see Figure 3-16).

If the invited user is already in the group list, then the PTT server returns a SIP NOTIFY

message indicating that the invitation was successful. In this case, in Figure 3-17, messages 5,

6, 7, and 8 are not necessary.

If the invited user rejects the invitation, he or she replies with an SIP reject response to the

invitation. The message flow of this case is illustrated in figure 3-17. In order to simplify the

model results, both of these two above exceptions in this use case are out of the project’s

scope.

 26

Figure 3-16: Add a user to an ad hoc instant group talk

Figure 3-17: The receiver rejects the invitation

 27

3.2.6 Leaving a talk session

This case describes the message flow when a user participating in an instant groups talk, or

an ad hoc instant group talk wants to leave the talk session. The remaining group members

continue their session. The message flow for this case is illustrated in Figure 3-18. The PTT

client sends a SIP BYE message to the PTT server in order to leave the group. After the PTT

server replies with a SIP 200 OK message to the PTT client, then the PTT client successfully

leaves the talk session. There are no TBC messages exchanged in this case, as there is no

continuing session – hence no need for talk burst control for the client leaving the talk

session.

Figure 3-18: Leave a talk session

3.2.7 Talk session termination

This case describes the message flow when a user finishes talking and releases the PTT

button in an instant personal talk, instant group talk, or ad hoc group talk (see Figure 3-19).

After the PTT user releases the PTT button, the PTT client sends a TB_RELEASE message

to the PTT server to indicate that he or she has finished talking. Then the PTT server sends

TB_IDLE messages to all the group members to announce that nobody is currently talking in

the group talk session. Therefore, any member of the session can ask for the floor to talk.

When the PTT client receives the TB_IDLE message, it generates a SIP BYE request and

sends it the PTT server. The PTT server then forwards the request to all the remaining group

members who reply with a SIP 200 OK response in a next step.

 28

Figure 3-19: Talk session termination

3.3 Integration of message flows in Arctis

The methodology of creating building blocks for a PTT service in our project follows these

steps:

 Identify the activity participants of each building block.

 Analyze the collaborations between these participants.

 Specify the behavior of each building block.

Based upon the use cases analysis (described above) we define that the participants of the

building blocks includes: PTT client and PTT server. A PTT client can be in role of a sender

or a receiver. The detail analysis of this step is given in section 4.1 in chapter 4. In our

project, the collaborations between these two participants consist of four services: login,

instant personal talk, instant group talk, and ad hoc instant group talk. Except the

collaboration login the remaining collaborations include several sub-collaborations defined in

section 3.2 of this chapter. The collaboration analysis is given in section 4.2 in chapter 4. The

last step of the project’s methodology is done in chapter 5.

In the third step, according to the above use cases the behavior of each building block is the

exchanging messages between participants. Before exchanging a message, the corresponding

participant has to generate the message. The participant generates the message by executing a

call operation action in Arctis. The call operation action is a Java method generating the

message. Then the generated message is passed along an object flow to the destination

 29

participant. The message reaches the destination participant by arriving at an activity node in

the destination participant.

Figure 3-20: Exchanging a REGISTER message between a user and a PTT server

Figure 3-20 shows an example of exchanging a REGISTER message between a PTT user and

a PTT server in a login service. In order to login into the system, the user has to send an

INVITE message to the PTT server. An example of a SIP REGISTER message format is

described in Figure 3-21.

REGISTER sip:129.241.209.224;lr SIP/2.0

Call-ID 7556f2f2222de1365b8c9c0f0a583541@129.241.128.250

CSeq 1 REGISTER

From <sip:alice@129.241.209.224> ;tag=4fa3

To <sip:alice@129.241.209.224>

Via SIP/2.0/UDP 129.241.128.250:6740;branch=z9hG4bKnashds7

Max-Forwards 70

Contact: <sip:129.241.128.250:6740>; +g.ptt.talkburst;

Content-Length 0

Figure 3-21: SIP REGISTER header [22]

public Request genINVITE(){

 Address destinationAddress = myAddressFactory.createAddress

 ("sip:"+destination+";lr");

 javax.sip.address.URI myRequestURI=destinationAddress.getURI();

 Address contactAddress=myAddressFactory.createAddress

 ("sip:"+myIP+":"+myPort);

 ArrayList viaHeaders = new ArrayList();

 ViaHeader myViaHeader = yHeaderFactory.createViaHeader

 (myIP,myPort,"udp","z9hG4bKnashds7");

 viaHeaders.add(myViaHeader);

 MaxForwardsHeader myMaxForwardsHeader =

 myHeaderFactory.createMaxForwardsHeader(70);

 CallIdHeader myCallIdHeader = mySipProvider.getNewCallId();

 CSeqHeader myCSeqHeader = myHeaderFactory.createCSeqHeader

 (1L, "REGISTER");

mailto:7556f2f2222de1365b8c9c0f0a583541@129.241.128.250

 30

 SipURI fromURI = myAddressFactory.createSipURI(myID, myProxy);

 Address fromAddress = myAddressFactory.createAddress(fromURI);

 FromHeader myFromHeader = myHeaderFactory.createFromHeader

 (fromAddress, "456248");

 ToHeader myToHeader = myHeaderFactory.createToHeader

 (fromAddress, null);

 Request myRequest = myMessageFactory.createRequest

 (myRequestURI,"REGISTER",myCallIdHeader, myCSeqHeader,

 myFromHeader, myToHeader, viaHeaders, myMaxForwardsHeader);

 return myRequest;

}

Figure 3-22: Java method of the call operation action genRegisterMsg

The call operation action genRegisterMsg in the participant user is responsible for generating

a SIP REGISTER message. The Java method of the call operation action genRegisterMsg is

shown in Figure 3-22. The call operation action genRegisterMsg returns the REGISTER

message and the message is carried along an object flow (colored in blue). The message

reaches the PTT server by arriving at the call operation action checkUserCredentials.

The proposed PTT service is run on the Connected Objects Operation System (COOS)

platform [27]. The platform provides an overlay network for communication between

components in the network infrastructure shown in Figure 1-1 in chapter 1. Components can

send and receive data as messages to/from other components on the COOS platform instead

of using TCP/IP transport directly. The current implementation of the COOS platform uses a

linkstate routing protocol on each COOS instances to find the shortest path for routing

message to the destination [28].

The messages using in our project’s implementation are SIP messages and RTCP messages.

The SIP messages are for the SIP protocol used in the project. The RTCP messages are for

the talk burst control protocol. Currently, there are no APIs and frameworks provided by the

COOS platform for a SIP communication and RTCP streams. Therefore, for the modeling

process in our project’s implementation, we assume to use Java JAIN SIP API [29] to build

the SIP messages and Java Multimedia Framework (JMF) [30] to build the RTCP messages.

When the messages are generated, they are transported using the COOS message bus to the

destination.

When the executable state machines generated from the building blocks, they can run on a

normal Java platform.

 31

4 Object and collaboration analysis

In our approach, the PTT service will be composed using building blocks in Arctis. Then

Arctis will generate state machines that can be transformed into executable Java code by

Ramses. This section describes the process of building blocks for a PTT service. Firstly, an

analysis to define participants in a PTT service is given in section 4.1. Secondly, based upon

the system requirements specified in chapter 3, several collaborations for a PTT service are

defined in section 4.2.

4.1 Object-oriented analysis

The purpose of our object-oriented analysis is to define a number of participants/objects in a

PTT service. Obviously PTT clients and a PTT server are objects in a PTT. Both of these

types of objects are active because they have their behaviors. In a group communication

session, a PTT client object can be either a sender object or a receiver object or a receiver

object with a multiplicity attribute from 0 to many. The attributes of these objects are

described in Table 4-1.

Table 4-1: Object attributes

Attribute Type Description

PTT client

myURI SipURI The SIP URI of the PTT client

myName String The name of the PTT user

myIP String The IP address of the PTT client

myServer String The IP address of the PTT server

myPort int The port of the PTT server providing the service

status int The login status of the PTT client

PTT server

myIP String The IP address of the PTT server

myName String The name of the PTT server

myPort int The port of the PTT server providing the service

4.2 Collaborations of Push to Talk

We depict in Figure 4-1 the system collaborations used to model a PTT service. The

collaboration role is rectangular; whereas the collaboration use is elliptical. It describes the

structure of the whole service including participants and the relations between them. The PTT

service includes two participants: PTT clients and a PTT server. A PTT client can be either

sender or a receiver in a group communication session. The sender has a multiplicity of one,

while receiver has a multiplicity of many because in PTT communication only one person is

allowed to speak and others can only listen to him or her. PTT server has a multiplicity of one

since there is a single central PTT server responsible for handling all communication in our

system design.

 32

The proposed PTT service provides three types of group communication: instant personal

talk, instant group talk, and ad hoc instant group talk. In addition, before starting

communication, each PTT client is required to login into the system. All of these behaviors

are illustrated in corresponding collaborations with the collaboration roles bound to the

corresponding participants.

In Figure 4-1 the collaboration c0 models the instant personal talk session between the sender

and the receiver. Likewise, the collaborations c1and c2 describe the instant group talk and ad

hoc instant group talk, respectively. Collaborations c3 and c4 are instantiations of the login

collaboration.

Figure 4-1: System collaboration

The instant personal talk collaboration c0 in Figure 4-1 is divided into two sub services

expressed in two collaborations: instant personal talk session initiation c0 and talk

termination c1 (see Figure 4-2). The former collaboration initiates an instant personal talk

session. The later collaboration terminates the instant personal talk session.

Figure 4-2: Instant personal talk collaboration

 33

The instant group talk collaboration c1 in Figure 4-1 has four sub-collaborations, as shown

in Figure 4-3. It includes: Group talk initiation c0 collaboration, talk leaving c1 collaboration,

talk termination c2 collaboration, and group joining c3 collaboration. The initiation and the

termination of an instant group talk are done in the group talk initiation c0 collaboration and

the talk termination c2 collaboration, respectively. During the talk session, a PTT member of

the instant group talk can join or leave the session. These behaviors are encapsulated in the

group joining c3 collaboration and talk leaving c1 collaboration, respectively.

Figure 4-3: Instant group talk collaboration

Likewise, the ad hoc instant group talk collaboration in Figure 4-1 consists of those sub-

collaborations in the instant group talk collaboration. In addition to those sub-collaborations,

the ad hoc instant group talk collaboration has one sub-collaboration more which is user add

c4. The sub-collaboration user add c4 allows a PTT user to add another PTT user in an ad

hoc instant group talk session. All sub-collaborations of an ad hoc instant group talk are

depicted in Figure 4-4.

Figure 4-4: Ad hoc instant group talk collaboration

 34

Since the four common sub-collaborations between the instant group talk collaboration and

the ad hoc instant group talk collaboration can be instantiated in the super-collaborations and

the ad hoc instant group talk collaboration has one sub-collaboration more than the instant

group talk we analyze the ad hoc instant group talk collaboration in the modeling process

presented in chapter 5.

Each PTT communication session always includes at least a sender and a receiver. If the

system is centralized, then a PTT server is needed. In addition, PTT can support several types

of group communication (discussed in section 2.2.4) which can be specified in collaborations

as described above. We consider the collaboration-oriented specification in the SPACE

method is really helpful to develop a PTT service because of the following reasons. Firstly,

the process of composing collaborations following the system requirements is very easy in

Arctis. Secondly, the divisions of a PTT system into participants and collaborations enable a

software developer to quickly understand of the system (at least at an overview level).

Thirdly, the model’s structure supports a high reusability of the individual collaborations. A

software developer can create a system specification by selecting related collaborations from

a library, instantiating them and composing them according to a system description [31].

Lastly, when the behavior of the collaboration is specified, it can be automatically

transformed into executable state machines from which executable code is generated. The

specification of the system’s behavior is presented in the following chapter.

 35

5 Modeling service behavior with GUI building

blocks
In this section, we describe and analyze the model results of three sub-services provided by

our proposed PTT service: login, instant personal talk, and ad hoc instant group talk with our

PTT client GUI presented in section 3.1.1. The modeling process includes three steps:

 Modeling the GUI blocks.

 Modeling the service blocks.

 Connecting the GUI blocks with the corresponding service blocks.

The GUI is designed for the PTT client; hence, a GUI building block is an activity block with

one participant (i.e., a PTT client). A GUI building block listens to all possible events

generated by the PTT clients. The GUI building blocks perform the following tasks:

 Show the user interface components; for example, a form with several text boxes and

buttons, etc.

 Listen to the events produced by the user interface components; for example, a button

is clicked, a text box has input, etc.

 Get the values of the user interface components for further processing; for example,

get the user name and password in a login form, etc. The result of this process may be

to show another user interface.

A service block includes UML collaborations and activities. Hence the second step includes

both UML collaborations and activities modeling. The UML collaborations illustrate the

structure of the service. They consist of participants of the service and the sub-services

between them (as described in the previous chapter). The UML activities illustrate the

behaviors of the service. The behavior of the activity is described by token flow. In this

chapter, we describe the procedure for modeling the behavior of three sub-services of a PTT

system: login, instant personal talk, and ad-hoc instant group talk.

Finally, when a GUI building block and a related service are ready, they are composed

together to make a complete service with a user interface. They can be added (by dragging &

dropping) to the related participants in the service, e.g. the GUI building block is in the client

side, and the service is in both the client and the server side. The GUI building block is

automatically colored blue; while the service block is colored black. The following sections

show the result of our modeling for a PTT service.

5.1 Login service

Figure 5-1 depicts the modeling of the behavior of the PTT login service building bock with

the login GUI building block. The GUI building block c1 is an instantiation of the activity

block LoginGUI in Figure 5-2. It is placed by dragging and dropping in the collaboration role

 36

user. The Login building block c0 is an instantiation of the service block Login in Figure 5-3.

It is a cross-cut between the collaboration role user and collaboration pttServer.

Figure 5-1: Login service building block

Figure 5-2: LoginGUI building block

Figure 5-3: Login building block

The activity of the building block LoginService in Figure 5-1 is active when the token passes

the starting parameter node start. Then the token arrives at the input pin start of the login

GUI building block c1. The behavior of the login GUI block c1 is then triggered in the

collaboration role user of this building block. The detail behavior of the building block c1 is

shown in Figure 5-2.

As shown in Figure 5-2, when the behavior of the login GUI building block is active, the call

operation action showLogin of this login GUI building block is executed to open the login

dialog described in Figure 3-3 in section 3.1.1. Then the login GUI block waits for a signal

EVENT_LOGIN which is triggered when the user enters user name, password, and presses

the OK button to login. When the signal EVENT_LOGIN is received, the login information

 37

is encapsulated and sent to the output parameter node sendUser. The activity of the login GUI

building block is still active after sending the login information via this node since it waits for

an event for a further processing, such as opening the main dialog or showing a notification if

the login is unsuccessful. Hence, the output parameter node sendUser is a streaming node.

Then the login information is transferred from the login GUI building block c1 to the login

building block c0 via the input pin start of the building block c0 (see Figure 5-1). The

activity of the login building block c0 is then active. The detail activity of the login building

block c0 is shown in Figure 5-3.

In Figure 5-3, when the login building block is active, the token arrives at the call operation

action genRegisterMsg. This call operation action is then executed to generate a SIP

REGISTER request holding the user’s login information. Then this SIP REGISTER request

is delivered to the PTT server in an object flow. When the PTT server receives the request at

the call operation checkUserCredentials node, it checks the user credentials encapsulated in

the request by executing this call operation action:

 If the checking process returns true, then the PTT server generates a SIP 200OK

message in the call operation action gen200OkMsg and then sends this response to the

PTT client. The activity of the login block is terminated by passing the terminating

parameter node loginSuccess (see Figure 5-3).

In Figure 5-1, when the token arrives at the output pin loginSuccess of the login

building block c0, this token is forwarded to the login GUI building block c1 via the

input pin loginSuccess of the building block c1.

In Figure 5-2, when the login GUI building block receives an input event

loginSuccess, the call operation action showMainGUI of this building block is

executed to open the main dialog described in Figure 3-7 in section 3.1.1. Then the

activity of the login GUI building block is terminated via the terminating parameter

node end.

In Figure 5-1, when the token arrives at the output pin end of the login GUI building

block c1 this token passes to the terminating parameter node success of the building

block LoginService. Then overall activity of the building block LoginService is

terminated.

 If the checking process returns false, then the PTT server generates a SIP 401

Unauthorized response and sends this response to the user’s client. The activity of the

login building block terminates via the terminating parameter node loginFail (see

Figure 5-3).

In Figure 5-1, when the token passes the output pin LoginFail of the building block

c0, it arrives at the input pin LoginFail of the building block c1.

In Figure 5-2, when the GUI building block receives an input event LoginFail, it

executes the call operation action LoginFail to show a login fail notification to the

 38

user. Then the activity of this building block is terminated at the terminating

parameter node fail.

In Figure 5-1, when the token arrives at the output pin fail, it goes to the terminating

parameter node unsuccess. Then the whole activity of the building block LoginService

is terminated.

If the user closes the login dialog or presses the Cancel button on the login dialog, the login

GUI building block is triggered by the signal EVENT_CANCEL. The building block is then

terminated on the terminating parameter node end (see Figure 5-2). Then in Figure 5-1, the

whole activity of the LoginService is terminated via the terminating parameter node close.

The three parameter nodes fail, end, and close of the login GUI building block are the

alternative terminating parameter nodes. By passing one of these two parameter nodes, the

activity of the login GUI building block is terminated. Likewise, unsucess, success, and close

are three alternative terminating parameter nodes of the building block LoginService in

Figure 5-1. The activity of the building block LoginService can terminated when the token

arrived at one of these nodes.

5.2 Instant personal talk service

The instant personal talk collaboration has two sub-collaborations: talk session initiation c0

and talk session termination c1, as shown in Figure 4-2. In this section we model an instant

personal talk service with the contact view building block. The GUI of the contact view is

described in Figure 3-7 in section 3.1.1. The detail of the contact view building block is given

in section 5.2.1. The internal activities of the talk session initiation collaboration and the talk

session termination collaboration are described in section 5.2.2 and 5.2.3 of this chapter.

Finally, the activity instant personal talk service is presented in section 5.2.4.

5.2.1 Contact view building block

Figure 5-4 shows the internal details of the contact view building block for the user interface

interaction in an instant personal talk session. When a user selects a contact in the contact list

page of the PTT client GUI, the contact view building block gets started. The selected contact

information is encapsulated in a Contact type defined by a Java class. Before receiving the

EVENT_PUSH signal for pushing the Call button, the selected contact information is saved

to the variable receiver of the building block in the call operation action set receiver. After

the Call button is pushed, the variable receiver is read in the call operation action get receiver

to pass the data to the terminating parameter node call. The activity of the building block is

still active by passing this node, thus the parameter node call is a streaming node.

If the input event initiationFail of the contact view block contains data, the initiationFail call

operation action is called to show a notification of the session initiation fail for the initiator.

Then the flow activity is terminated by going to the terminating parameter node fail.

 39

When the talker finishes speaking, the Call button is released. That means that in the contact

view building block the signal EVENT_UNPUSH is received. The activity of the contact

view building block is then terminated with the terminating parameter node releasePTTbtn.

The call operation action playsound of the contact view block is executed to play a short ring

tone when the input event ringing of the building block is triggered. Following this the token

is removed. However, the whole activity of the building block is still active until the talker

release the Call button that means the input event fisnishSpeaking is triggered.

Figure 5-4: Contact view building block

5.2.2 Instant personal talk session initiation collaboration

The instant personal talk session initiation c0 activity describes the behavior of the instant

personal talk session initiation collaboration in Figure 5-5. After the talker selects a contact

on his or her contact list, the talker presses the Call button to make an instant personal talk

session with the targeted contact. As input on the collaboration, the activity gets the receiver

contact information which is packed in the Contact object via the starting parameter node

call. The input token then arrives at the call operation action genINVITE on the participant

sender. In the call operation action genINVITE, a SIP INVITE request is generated. After

that, the SIP INVITE message is transported to the PTT server in an object flow as an input

of the call operation action gen100TRYING. The PTT server invokes the information

encapsulated in the input request to generate a SIP 100 TRYING response by executing the

call operation action gen100TRYING. After that, the token arrives at a fork node. This fork

has two outgoing edges:

 The first edge is an object flow carrying the generated SIP 100 TRYING response to

the sender. The response reaches the sender by arriving at the call operation action

recv100TRYING to confirm that the PTT server already received its SIP INVITE

request. Following this the token of the activity on this edge is removed. The whole

activity of the collaboration keeps continuing on the other edge.

 40

 The second edge takes the token to the call operation action checkRegStatus in the

PTT server. In this operation, the PTT server checks if the sender is able to create an

instant personal talk with the corresponding receiver.

o If the checking process return true, the PTT server will generate a SIP INVITE

request based on the SIP INVITE request it received from the sender by

executing the call operation action genINVITE. Later, this SIP INVITE request

is passed to the receiver in an object flow.

o If the sender is not able to create a session, the PTT server generates a SIP 401

Unauthorized response and sends to the sender in an object flow. Then the

sender terminates the whole activity of the collaboration via the terminating

parameter node InitiationFail. Then in the GUI of the sender, a session

initiation fail notification is shown since the input event InitiationFail of the

contact view building block is active.

Figure 5-5: Instant personal talk session initiation

The process is carried on similarly in the rest of Figure 5-5. Each call operation action is

used to process one corresponding SIP message. Each SIP message is carried in an object

flow to the destination by arriving at an activity node of the destination.

 41

When the receiver produces the output event ringing, a short ring tone is played on the GUI

of the receiver. This event is triggered the input event ringing in the contact view building

block as described above. In case of the receiver, when it produces the output event

receiverRinging, the incoming call dialog is shown as described in Figure 3-4 in section

3.1.1.

The activity is terminated in both the sender and the receiver via the terminating parameter

nodes readyToSendMedia and readytoreceiveMedia. After this, the media can start

streaming.

5.2.3 Talk termination collaboration

The activity of the talk termination collaboration is activated when the sender releases the

PTT button to finish speaking. The activity diagram for the talk termination collaboration is

shown in Figure 5-6. In this case, the participant receiver of the activity has the multiplicity

attribute of one since the instant personal talk is an one-to-one communication.

Figure 5-6: Talk termination session

The activity starts when data is available in the starting parameter node releasePttbtn. From

the starting node, the token arrives at the call operation action genTbRELEASE in the sender.

One object flow carrying a TB_RELEASE message is sent to the PTT server and arrives at

the PTT server via call operation action node genTbIDLE. The call operation action

genTbIDLE processes the received TB_RELEASE message to generate a TB_IDLE message

for both the sender and the receiver.

 42

After arriving at the call operation action genTbIDLE, the token enters a fork node where the

TB_IDLE message is duplicated twice on two edges. One token follows an outgoing object

flow to the receiver then from which the activity flow is ended. The second token arrives at

the sender. After the sender receives the TB_IDLE message, it generates a SIP BYE message

by executing the call operation action genBYE. Then following the object flows, the

generated SIP BYE message is delivered to the receiver. The receiver afterward generates a

SIP 200 OK response which is carried to the sender by the object flows. The activity is

terminated in both the sender and the receiver via the terminating parameter node senderEnd

and receiverEnd.

5.2.4 Instant personal talk service

The screen short from Arctis of the activity diagram describing the behavior of the instant

personal talk service is shown in Figure 5-7. This activity diagram connects four building

blocks: contact view c2, instant personal talk session initiation c0, media stream c3, and talk

termination c1. The media stream c3 building block is not yet implemented in our project,

but it is shown in Figure 4-10 as an illustration.

Figure 5-7: Instant personal talk activity diagram

When the sender selects a contact in the contact list to create an instant personal talk session,

the building block c2 is active. When the sender pushes the PTT button, the output pin call of

 43

building block c2 transfers the required data to the input pin of the building block c0. Then

the sender starts building block c0 with the PTT server and the corresponding receiver. The

internal activity of the collaboration c0 is shown in Figure 5-5 as described above.

When the building block c0 needs information for the fail initiation output pin, the token goes

to input pin InitialFail of the building block c2 to trigger this input event of this building

block. Then the token arrives at the output pin fail of the building block c2 as described in

section 5.2.1. After this pin, the token passes to the terminating parameter node endFail of

the instant personal talk service InstantPersonalTalk. Then the whole activity of the service is

terminated.

When the token arrives at the output pin ringing of the building block c0, it is forwarded to

the input pin ringing in the contact view building block to play a sound in the sender’s

contact view block.

When the sender finishes speaking, the PTT button is released. Then the output pin

releasePTTbtn of the contact view building block provides the data for the input pin of the

building block talk termination c1. Hence, the building block c1 gets started. The detail

behavior of collaboration c1 is shown in Figure 5-6. The building block c1 terminates via the

output pins senderEnd and receiverEnd in the sender and receiver, respectively. On the

sender side, before the whole activity of the service is terminated, the call operation action

closeIncomingCall is executed to close the incoming call dialog in the receiver’s GUI.

5.3 Ad hoc instant group talk service

The ad hoc instant group talk collaboration has five sub-collaborations as shown in Figure

4-4. To reduce the size and the complexity, we assume that all the sub-services are

established successfully as described in section 3-3. With the same type of collaboration

roles, more behavior in the ad hoc instant group talk service can be input in later.

5.3.1 Group view building block

The building block GroupView is shown in Figure 5-8. The purpose of this building block is

to receive the user’s input from the group list page of the user interface (see Figure 3-8). The

user can create an ad hoc group talk session, invite a new user to join a group, leave a group,

or join a group.

 44

Figure 5-8: Group View building block

Two stating parameter nodes selectGroup and selectUser are alternative stating parameter

nodes of the building block GroupView. This building block can start either via the starting

parameter node selectGroup when the sender selects a group in the sender’s group list or via

the starting parameter node selectUser when the sender selects a contact to invite him or her

to join a group, for instance.

When the building block is active via the starting parameter node selectGroup, the selected

group is packed in a Group object defined by a Java class. Then the group information is

saved in the variable group in the call operation action set group. Similarly, when the

building block is active via the starting parameter node selectUser, the selected contact is

stored in a Contact object defined by a Java class. Then the contact information is saved in

the variable contact. The using of set and get variable call operation actions is quite

convenient since the objects do not have to follow object flows; the values of the variables

can be stored and retrieved by using of these two call operations.

When the token arrives to the second fork node in the building block, it has three edges to go

out depending on the signal the building block receives. One of these signal is triggered if the

user presses the PTT button to make a call in a group, or he/she presses the Join button to

join a group, or he/she presses the Leave button to leave a group, or he/she releases the PTT

button to finish a talk session. The last event that the building may receive happens when the

user presses the Invite button to invite a contact to join a group. This event is controlled by

both starting parameter nodes of the building block.

 The signal EVENT_PUSH occurs when the talker wants to call the selected group.

After the signal EVENT_PUSH is received, the selected group information is read

and sent to the streaming output node call.. When the sender finishes speaking, he or

 45

she releases the Call button. Then a signal EVENT_UNPUSH is received. After that,

the building block terminates via the terminating parameter node releasePttbtn.

 The signal EVENT_JOIN occurs when the sender joins the selected group. After the

signal EVENT_JOIN is received, the group information is read and sent to the

streaming output node join.

 The signal EVENT_LEAVE occurs when the sender wants to leave the selected

group. After the signal EVENT_LEAVE is received, the group information is read

and sent to the streaming output node leave.

 The signal EVENT_INVITE occurs when the sender invites the selected user to join

selected group. After the signal EVENT_INVITE is received, the group information

is read and sent to the streaming output node invite.

If any of these services fails, the building block starts at the streaming input node sessionFail.

Then a sessionFail operation is executed to inform the sender that the service fails.

The building block has five alternative terminating parameter nodes: fail, releasePTTbtn,

endJoin, endLeave and endInvite.

 The building block is terminated via node fail if any above service fails.

 The building block is terminated via node releasePTTbtn when the user releases the

PTT button to finish a talk session.

 The building block is terminated via node endJoin when the user successfully joins a

group. Before terminating, the building block updates the group list on the group list

page of the user by executing the call operation action groupUpdate.

 The building block is terminated via node endLeave when the user successfully leaves

a group. Before terminating, the building block removed the group information from

the group list page of the user by executing the call operation action groupRemove.

 The building block is terminated via node endInvite when the user successfully invite

a new user to a group. Before terminating, the building block adds a new user in the

group member list of the group by executing the call operation action groupAdd.

5.3.2 Ad hoc instant group talk initiation collaboration

The activity of the ad hoc instant group talk initiation building block is shown in Figure 5-9.

The building block is active via the starting parameter node call. The building block has four

alternative terminating parameter nodes: sessionFail, initiationFail, readyToSendMedia, and

readytoReceiveMedia.

 The activity of the building block is terminated via the terminating parameter node

sessionFail when the PTT server fails to check either the user’s credentials or the

user’s capabilities to create an ad hoc instant group talk.

 The activity of the building block is terminated via the terminating parameter node

initiationFail when the PTT server checks that the user can not have the right to speak

since currently another user has a floor in the group talk session. The checking

 46

process is done via the call operation checkTbStatus. In this operation, the PTT server

checks that it already sent a TB_IDLE message to each member of the group talk

session, and then the PTT server forwards the SIP INVITE request from the sender to

the receivers. Later on, when the exchanging of SIP messages is finished to create the

session, the PTT server sends a TB_GRANT message to the sender to give him or her

the right to speak. Also the PTT server sends TB_TAKEN messages to the other

members of the group talk session.

 The activity of the building block is terminated via the node

readyToSendMedia/readytoReceiveMedia in sender/receivers when the ad hoc instant

group talk intiation is successfully created.

The building block produces two output events ringing and viewIncomingCall. These events

act the same as these events in the instant personal talk session initiation.

 47

Figure 5-9: Ad hoc instant group talk initiation session initiation

5.3.3 Group joining collaboration

The activity of the group joining collaboration is shown in Figure 5-10. In this collaboration,

if nobody is talking in the group at the moment that the sender joins the group, the sender

receives a TB_IDLE message from the PTT server. Then the building block of the

collaboration is terminated at the terminating parameter node joinSuccess in the sender. In

 48

other cases, the sender receives a TB_TAKEN message from the PTT server. Then the

building block of the collaboration is terminated at the terminating parameter node

readyToReceiveMedia.

Figure 5-10: Group joining

5.3.4 Talk leaving

Figure 5-11 shows the internal activity of the talk leaving collaboration. The activity starts

when there is a data available in the statring parameter node selectGroup. The input data

 49

contains a group object specifying the group which the sender is about to leave. From the

starting node, the sender executes the call operation action genBYE to generate a SIP BYE

request which is carried in a object flow to the receivers. After the receiver get the SIP BYE

request, it generates a SIP 200OK response by running the call operation action gen200OK.

The SIP 200OK response is then carried in an object flow to the sender. The collaboration

terminates via the output pin leaveTalk in the sender.

Figure 5-11: Talk leaving service

5.3.5 Add user to a group

Figure 5-12 shows the internal activity of the collaboration userAdd. This collaboration

allows a PTT user add another PTT user to a group. In this case, the receiver has the

multiplicity of one.

The building block of the collaboration has two output events invitationAlert and

invitationAccepted. The former event shows a dialog to the receiver that he or she receives an

invitation to join a group from the sender. The later event requires the receiver to accept the

invitation by pressing a confirmation button on the dialog.

.

 50

Figure 5-12: Adding user in a group

5.3.6 Ad hoc instant group talk collaboration

Figure 5-13 shows the ad hoc instant group talk collaboration with several sub-services. The

activity has two alternative starting parameter node: selectGroup and selectUser

corresponding to the event that the user selects a group to join/call/leave or the user selects a

user to invite him/her to join a group. The detail behaviors of each building block in the

diagram are presented in the previous sections.

 51

Figure 5-13: Ad-hoc instant group talk activity diagram

From the input pin selectGroup of the group view building block, the sender activates the

building block group view c5. In this building block, the sender can call a group, join a

group, leave a group, or invite another user to a group.

 If the group view building block terminates via the output pin call, the group talk

initiation collaboration c0 starts among three participants: the sender, the PTT server

and the receivers. If the group talk session initiation fails, it terminates at either output

pin initiationFail or output pin sessionFalse, then the group view building block

starts from the input pin sessionFail.

If the group talk initiation collaboration c0 terminates at the output pin ringing, the

group view building block starts from the input pin ringing. The group talk initiation

 52

collaboration terminates at the output pin readyToSendMedia, the media streaming

process gets started.

 If the group view building block terminates via the output pin join, the group joining

collaboration c2 is active. If the group joining c2 fails and terminates at output pin

sessionFalse, the token goes to the input pin sessionFalse of the group view building

block. If the group joining successes, the group view building block start from the

input pin joinSuccess. When the collaboration terminates at output pin end in the

receiver, the token goes to call operation groupUpdate to update group information.

Then the token arrives at the terminating parameter node endJoin in the sender. The

whole activity is terminated then.

 If the group view building block terminates via the output pin invite, the collaboration

c4 starts. The collaboration c4 terminates at the output pin invitationAlert,, the call

operation action viewAlert in the receiver is executed to show a dialog of incoming

invitation to the receiver. In case the collaboration c4 terminates at the output pin

invitationAccepted the operation accepted in the receiver processes the event that user

accept the invitation of the sender. After arriving to one of these call operations

invitationAlert and invitationAccepted, the token goes to a flow final node and to be

removed. The activity of the invitation continues.

 If the group view building block terminates via output pin leave, the talk leaving

collaboration starts.

 If the group view building block terminates via output pin releasePttbtn, the talk

termination collaboration starts. The collaboration terminates in both the sender and

the receiver. After going out the output pin receiveEnd in the receiver, the token

enters the call operation action closeIncomingCall to close the incoming call dialog in

the receiver.

 53

6 Discussion

PTT can be implemented in a semi-distributed manner, thus part of the PTT server runs at

each access point (i.e., there is a local PTT server associated with each WLAN access point).

Hence, every PTT client can register with the closet access point to get PTT service and each

access point can know about the locally registered clients even when they move around. In a

PTT communication session, the sender just send the media only once time to the closet

access point, then the access point distributes the media to the other clients. In addition, PTT

clients registered with the same access point can communicate directly to each other through

that access point. Talk burst requests for a group communication can be queued in First In

First Out (FIFO) order at the registered access point. These features reduce the latency of the

PTT service and reduce overhead of routing packets in the network.

The SPACE method is well suited for creating the specification of a PTT service since the

service can be modeled as building blocks of UML collaborations and activities.

Furthermore, in a PTT session instantiation and termination, SIP message flow and RTCP

message flow are exchanged between a sender and receivers through a PTT server. Each

message flow can be modeled by an object flow between these participants in Arctis editor.

The participant just has to generate the messages. Arctis will be responsible for transporting

these messages to the destination. However, this transportation is at a lower layer between

devices, not at the network layer.

The elements in a building block are not fixed when we create a building block. We can have

multiple ways to design a building block by choosing different activity nodes. For example,

Figure 6-1 describes two ways to retrieved data in the Login building block when the user

enters the username and password to login to the system. The username and password

information is packed in a Contact object. Then it can be transferred to the terminating

parameter from an output pin of the accept action EVENT_LOGIN through an object flow to

the terminating node. Another way to transfer the login information to the terminating node

by executing a call operation action get user to retrieve the login information from the

variable user.

(a) Accept signal with an object flow

(b) Accept signal with a control flow

Figure 6-1: Data with accept signal action

Arctis should support the reusability of call operation actions. Experienced from our project,

we find that a lot of call operation actions, for instance genINVITE, genBYE, gen100Trying,

 54

etc., are created in both PTT client and PTT server. Hence, if the call operation actions can be

reuse within a project, we can use them when needed. A solution for this problem can be

figure out by the current implementation of Arctis by creating an activity building block that

includes the target call operation action. Then the building block can be instantiate when it is

needed. For example, we can create a building block that generate the a SIP INVITE

message, the output pin of the building block contains the generated SIP INIVTE message.

Because a building block is active via an input pin, in other word the activity of the building

block is activated via a starting parameter, this is a limitation of the building block. When a

building block has several collaboration roles and the activity of the whole building block can

get start only when, for example, all of the collaboration roles get started. However, this

limitation can be improved when using a join node to join all the starting flows to a single

starting flow of the whole building block. Furthermore, an input pin of the building block can

contain a data object. Hence this is considered as another drawback of the building block

when it needs a number of data input. There is a solution for this drawback that we can

defined an object type of the input pin that includes all the data input of the building block.

However, it is still a challenge when the input data comes from different input pin of multiple

collaboration roles and they need to be asynchronous.

In our work, we choose several simple cases of PTT service to model. However, the model is

quite large since there are a lot of collaborations in a service and they related to others. That

means that the specification is not flat. The software developer needs to read them in parallel

to track the system. But, a simulation of a token flow among these collaborations might

reduce the burden of understanding the PTT specification.

 55

7 Conclusions and Future Work

7.1 Conclusions

In this project, we gave an overview of the SPACE method and a PTT service. Then we

design how to create building blocks for a PTT service by using the SPACE method. As a

result, several building blocks of a PTT service have been proposed.

We consider that the SPACE method well suited for designing a PTT service for various

reasons. Firstly, a PTT service always includes at least a sender and a receiver participant;

hence the collaboration-oriented specification approach is really helpful to develop a system.

Secondly, the separation of the system into building blocks supports the understanding of the

system. Thirdly, when the structure and the behavior of the building blocks are specified, the

state machines can be automatically transformed. Then from state machines, executable code

is generated. Lastly, the building blocks can be stored in a library for reuse.

Currently, the COOS platform does not have any APIs or framework that support SIP

protocol and media stream. In order to generate SIP messages and RTCP messages in our

project, we use JAIN SIP API and Java Multimedia Framework. It is a good solution for a

PTT service over a SIP protocol in the future. JAIN SIP APIs and JMF can be introduced in

to the COOS platform afterward.

7.2 Future work

By utilizing the SPACE method, we presented a novel approach to build a PTT service over a

SIP protocol in WLAN environment. In this project, we have been initialized the work for

developing this PTT service. The study of our research will continue this approach to build a

PTT service having the capabilities of presence, group list management, real-time media

streaming. The success of the PTT service will lead us to develop other applications in

telecommunication by using the SPACE method.

Supporting the reusability of call operation action is probably a good feature of Arctis in the

future. Also other limitations of Arctis as discussed in chapter 6 including should be

improved.

 56

References

[1] WinterGreen Research, Inc. Push to Talk Over Cellular Market Assessment. [Online]

http://www.wintergreenresearch.com/reports/push%20to%20talk%202007.html.

[2] Frank Alexander Kraemer. Arctis and Ramses: Tool Suites for Rapid service

Enigneering. NIK 2007 (Norsk informatikkonferanse), Oslo, Norway. November 2007.

Tapir Akademisk Forlag.

[3] Frode Flægstad. Sea Cage Gateway. EIT Tyholt 20090119 : TelCage / Telenor R&I,

2009.

[4] Open Mobile Alliance. PoC User Plane, Version 1.0. 09 June 2006.

[5] The Swing Tutorial. [Online] http://java.sun.com/docs/books/tutorial/uiswing/.

[6] Eclipse. [Online] http://www.eclipse.org/.

[7] Minisip. [Online] http://www.minisip.org/.

[8] Counterpath. [Online] http://www.counterpath.com/.

[9] Ekiga. [Online] http://www.gnomemeeting.org/.

[10] Frank Alexander Kraemer, Rolv Bræk, Peter Herrmann. Compositional Service

Engineering with Arctis. Telektronikk x/2009, 2009 (to appear).

[11] Frank Alexander Kraemer, Peter Herrmann. Formalizing Collaboration Oriented

Service Specifications using Temporal Logic. Networking and Electronic Commerce

Research Conference 2007 (NAEC 2007). October 2007.

[12] Nina Heitmann. Towards Modeling of Data in UML Activities with the SPACE Method.

Norwegian University of Science and Tchnology (NTNU). Department of Telematics,

June 2008. Master thesis.

http://daim.idi.ntnu.no/masteroppgaver/IME/ITEM/2008/4116/masteroppgave.pdf .

[13] Frank Alexander Kraemer. UML Profiles and Semantics for Service Specifications.

Norwegian University of Science and Tchnology (NTNU). Department of Telematics.

June 2008. Avantel Technical Report 1/2007 ISSN 1503-4097.

[14] Frank Alexander Kraemer and Peter Herrmann. Transforming Collaborative Service

Specifications into Efficiently Executable State Machines. Proceedings of the 6th

International Workshop on Graph Transformation and Visual Modeling Techniques

(GT-VMT 2007). Vol.7. 2007.

 57

[15] Motorola. Push-to-Talk over Cellular Consortium Phase 2 Specifications and

Documentation. [Online] http://www.motorola.com/content.jsp?globalObjectId=2647-

4398.

[16] Northstream study white paper. Push-to-talk Over Wireless Is the time right for Push-

to-talk? Does it work over GPRS?

http://www.incodewireless.com/media/whitepapers/2004/PoC_White_Paper-

Feb_2004.pdf. 2004.

[17] Open Mobile Alliance. Push to talk over Cellular (PoC) - Architecture, Version 2.0. 7

May 2008.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, E. Schooler. SIP: Session Initiation Protocol. IETF RFC 3261. June 2002.

[19] M. Handley, V. Jacobson. SDP: Session Description Protocol. April 1998. IETF RFC

2327.

[20] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A Transport Protocol for

Real-Time Applications. [Online] July 2003. http://www.ietf.org/rfc/rfc3550.txt.

[21] Open Mobile Alliance. OMA Control Plane, Version 1.0. 09 June 2006.

[22] Comneon, Ericsson, Motorola, Nokia and Siemens. Signaling Flows - Network to

Network interface (NNI); PoC Release 2.0;. June 2004.

[23] Florian Maurer. Push-2-Talk in VoIP: Decentralized. Royal Institue of Techonology

(KTH). August 30, 2004. Master thesis.

[24] Comneon, Ericsson, Motorola, Nokia and Siemens. Push to Talk over Cellular (PoC);

List Management and Do-not-Disturb V2.0.6, PoC Release 2.0. 2006.

[25] Bi-Feng Yu, Jae-Oh Lee. A PoC Deployment in the IMS and its Simulation. Dept. of

Electrical and Electronics Engineering,Korea University of Technology and Education,

Korea. 2008.

[26] Meng-Hsun Tsai, Yi-Bing Lin. Talk Burst Control for Push-to-Talk over Cellular.

IEEE transactions on wireless communications, vol.7, No.7, July 2008.

[27] Telcage - Enabling Integrated Operations in Aquaculture.

[Online] http://www.telcage.com/node/13.

[28] Connected Objects wiki. [Online] http://co-wiki.pats.no/.

[29] National Institute of Standards and Technology. The IP telephony project.

 58

[Online] http://snad.ncsl.nist.gov/proj/iptel/.

[30] Sun Developer Network. Java Media Framework API.

 [Online] http://java.sun.com/javase/technologies/desktop/media/jmf/.

[31] Peter Herrmann, Frank Alexander Kraemer. Design of Trusted Systems with

Reusable collaboration Models. Trust Management. Proceedings of the Joint iTrust and

PST Conferences on Privacy, Trust Management and Security (IFIPTM 2007), IFIP

International Federation for Information Processing, 2007, Moncton, Canada. Springer,

2007.

	Title Page
	Problem Description
	masteroppgave.pdf

